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B.1.2 — Abstract

In this study, the main objective is to develop a large, pan-cancer multimodal foundation
model that can be used to predict response to neoadjuvant immunotherapy, an unmet need
in the field of oncology. The past years, neoadjuvant immunotherapy has emerged as a
groundbreaking paradigm in oncology, transforming treatment strategies by exploiting the
immune system before surgery to enhance therapeutic efficacy. Ongoing clinical trials
highlight the potential of neoadjuvant immune checkpoint blockade as a promising strategy
for many different cancer types. Clinical trials and other studies aim to find predictive
biomarkers for neoadjuvant immunotherapy response. Nowadays, increasing amounts of
biological data are collected as patients are diagnosed and treated in the hospital. Deep
learning (DL) can be used to unlock the full potential of these datasets by learning intrinsic
patterns in the data for cancer diagnosis, prognosis, and many other use cases. However, most
DL methods are trained on a small amount of labelled data which limits the generalization
capability of these models. Outside the medical domain, the rise of foundation models (FM)
has led to major successes in natural language processing and computer vision. FMs are
billion-parameter models that are trained on vast amounts of data with self-supervised
learning, a DL method that allows the FM to develop a general understanding of unlabelled
data. We aim to develop a large, multimodal FM that includes both histopathology and
transcriptomics data from a large patient database. Furthermore, we will exploit our FM to
predict response to neoadjuvant immunotherapy based on ongoing clinical trials. The
development of a large, multimodal FM is unprecedented in oncology and will pave the way
for personalized medicine.

B.1.3 — Layman’s summary

Cancer is a disease caused by uncontrolled division of abnormal, tumour cells that can occur
in different parts of the body. Traditional cancer treatments include surgery, chemotherapy,
radiation, or immunotherapy. As the immune system is supressed in cancer cells, the body’s
natural defence mechanisms are disturbed. Immunotherapy aims to empower the immune
system to recognize and destroy cancer cells more effectively. Recently, it has been found that
giving immunotherapy prior to surgery even further improves the ability of the body to



combat the cancer. This is called neoadjuvant immunotherapy. Currently, many clinical trials
are conducted to properly investigate the effect of neoadjuvant immunotherapy in different
cancer types and so far, promising results have been delivered. However, not every patient
responds well to this treatment approach, and it is important to decide as early as possible
what patients can benefit from neoadjuvant therapy and what patients may have more
benefit from an alternative treatment approach. Response to treatment is dependent on
many patient characteristics. A personalized approach can identify for each patient whether
he or she will be a responder and lead to more effective treatment decisions. Artificial
intelligence (Al) methods can learn underlying patterns from large, medical datasets and can
aid in cancer diagnosis, prognosis, and treatment strategies. As more data becomes available,
Al models become bigger, and the most recent trend are foundation models (FM). The unique
strength of foundation models compared to more traditional Al methods is that they are able
to leverage the large datasets available in the hospital setting. Medical foundation models are
often trained on one data type, for example on microscopic tissue images or genetic data. In
this proposal, we aim to develop a foundation model that is trained on multiple,
complementary data types. This multimodal approach will improve the FM’s understanding of
the underlying cancer biology. Finally, we will bring our multimodal FM into practice by
predicting neoadjuvant immunotherapy response, which will ultimately contribute to a
treatment approach tailored to each individual patient.

B.1.4 - Keywords
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B.2.1.a — Extensive background

Neoadjuvant immunotherapy

For patients with cancer, neoadjuvant immunotherapy has revolutionized the landscape of
cancer treatment. Neoadjuvant immunotherapy encompasses the administration of immune
checkpoint inhibitors prior to surgery, with the aim of strengthening the body’s immune
response against cancer cells (1). Compared to adjuvant immunotherapy, neoadjuvant
immune checkpoint blockade (ICB) is thought to initiate a stronger and broader T-cell response
as the tumour is still fully present. A largerimmune response will lead to a reduction in tumour
size which improves resectability (2,3). The field of neoadjuvant immunotherapy has
progressed rapidly over the past few years and many clinical trials are going on to unlock the
full potential of this novel treatment approach (1). ICB typically targets programmed death 1
(PD-1), programmed death ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4).
The efficacy of these drugs in the preoperative setting was first seen in mouse studies and has
been further validated in translational studies and clinical trials, with promising results for
improved patient survival in several cancer types (4). Currently, there are two U.S. Food and
Drug Administration (FDA)-approved neoadjuvant ICB treatment regimens for both resectable
non-small-cell lung cancer (NSCLC) (5) and early triple-negative breast cancer (TNBC) (6), with
many more on the way. Boydell et al. give a selection of ongoing neoadjuvant immunotherapy
phase Ill trials (7).

However, not every patient benefits from neoadjuvant immunotherapy. Therefore, the next
challenge is to identify at baseline what patients are likely to respond and who will likely
benefit from a different treatment to avoid unnecessary treatment with toxic immunotherapy
(3). Neoadjuvant immunotherapy is often given to treatment naive patients where the cancer
is in a resectable stage, so it is important to carefully select eligible patients as to ensure the
best treatment for each patient. The plethora of clinical trials for neoadjuvant immunotherapy
provide a goldmine of information about biomarkers that may contribute to a patient being a
responder or non-responder to neoadjuvant ICB (4,7). The NICHE-1 and NICHE-2 phase Il
clinical trials have named mismatch repair deficiency (dIMMR) as a promising biomarker for
response to neoadjuvant ICB in early stage colon cancer (8,9), although only a small subset of
patients have dMMR (7). So far, no predictive biomarker has been validated for neoadjuvant
ICB response. Suggested potential biomarkers are PD-1/PD-L1 expression, the status of the
tumour microenvironment (TME), presence of regulatory T cells, high tumour mutational
burden, microsatellite instability, and T cell receptor diversity. It is highly unlikely there will be
a single predictive biomarker for neoadjuvant immunotherapy response, as there are many
complex interactions between the tumour and the immune system. The cancer immunogram
depicts those interactions and states that many components of the immune system play a role
in the response to cancer (3,4,7,10,11).



Deep learning for precision oncology

As cancer patients are diagnosed and treated in the hospital, massive amounts of biological
information are collected about each patient. The understanding of individual patient’s
characteristics can help advance personalized therapy. Therefore, there lies an important
opportunity to learn from these different data modalities, including clinical, radiological,
histological and omics data, that complement each other. There is a challenge in how to
effectively integrate this high-dimensional patient data, but deep learning (DL) shows
enormous potential to advance clinical and biological understanding by identifying patterns
and extracting hidden information in large biomedical datasets. Development of such
multimodal DL methods allows for the discovery of data-driven biomarkers and pushes
forward the rise of precision oncology (7,12—-14).

Many unimodal Al models have been developed already to aid in cancer discovery, diagnosis,
prognosis, and treatment (15). Boehm et al. provide an extensive overview with examples for
radiology, histopathology, and genomics (12). Only a small number of these algorithms
eventually gets approved for clinical use. In the field of radiology, many DL methods have been
approved for clinical use, mainly for cancer detection and diagnosis (16). For adjuvant ICB, a
radiomics-based biomarker was found to be associated with clinical outcome for pan-cancer
patients treated with anti-PD-1 and PD-L1 (17). Compared to radiology images, H&E-stained
whole slide images (WSI) provide more information about the tumour microenvironment. As
these are acquired during routine clinical practice and thus abundantly available, histology
images provide a promising avenue for DL-based cancer biomarker identification (13).
Microsatellite instability (MSI) status, a possible predictive biomarker for response to
neoadjuvant ICB, can be predicted directly from H&E stained whole slide images (WSI) for
colorectal cancer (18), and regulatory approved diagnostic DL methods exist for breast cancer
(19), colorectal cancer (19,20), and prostate cancer (21,22). In an exploratory study, Chen et
al. have developed a machine learning method that can predict response to neoadjuvant ICB
for breast cancer patients based on expression of immunological genes (23).

Multimodal DL methods provide great potential to integrate these different data types and
develop cancer classifiers based on not one but multiple modalities. Much effort has been put
into developing such multimodal DL methods as reviewed in Boehm et al. (12), and recently
more multimodal models include histopathology images. In the field of neoadjuvant ICB, a
recent study proposed a computed tomography (CT) based DL model that could predict
pathological response to neoadjuvant immunotherapy in NSCLC. Based on a small cohort of
274 patients, they used both CT images and clinical characteristics (24). Vale-Silva et al.
presented MultiSurv, a deep learning method that predicts pan-cancer survival based on
different modalities including omics, clinical and imaging data from 11,081 patients from the
publicly available The Cancer Genome Atlas (TCGA, (25)) (26). For each modality a specific
subnetwork was trained that learns feature representations. After fusion of these
representations, the final model predicts the survival probabilities for each patient. Best



performance was achieved when combining clinical data with either gene expression or DNA
methylation data. MultiSurv is a promising example of how large-scale, high-dimensional,
multimodal data can be leveraged to a powerful modelling approach.

The performance of DL methods is dependent on large datasets to properly capture relevant
underlying patterns in the data. DL methods are often trained in a supervised manner where
the model is trained on a labelled dataset to learn the relationship between an input (e.g.
histopathological images) and an output (e.g. tumour subtype classification), to eventually
predict the output for new, unseen input. The lack of large, publicly available, annotated
datasets in the medical domain hampers the development of large machine learning models.
Creation of such datasets requires manual annotation by medical experts which is a time-
consuming process. Especially for computational pathology, extensive labelling of WSI on the
patch level is exhaustive and requires expertise knowledge (27).

Good performance has been reached with supervised classification of breast cancer
metastasis with a small, pixel-level labelled dataset of 400 WSI (28). However, the small
sample size may restrain its clinical applicability due to a limited representation of clinical
variation. Campanella et al. propose a framework that can train classification models without
pixel-level labelled WSI (27). They created a large dataset containing 44,732 uncurated WSI
from different institutions, thus representing clinical variability and artifacts encountered in
the hospital setting. Only a small part of their dataset is publicly available. Instead of
supervised learning as described above, they used the slide-level annotations to perform
multiple instance learning (MIL), which is a type of weakly supervised learning (WSL). WSL is
a DL paradigm where the model is trained using data that is labelled at a less precise level
than for supervised learning. WSL is often used in scenarios where obtaining fully labelled
datasets is challenging. MIL addresses this issue by giving each tile of the WSI the same high-
level, weak label (e.g. diseased or healthy). This slide-level diagnosis is readily available from
diagnostic reports and easy to come by, in contrast to the pixel- or tile-level annotation. The
MIL classifier is first trained at the tile level and then aggregates the tile-level predictions to
give a slide-level classification. This framework showed that pixel-level annotated WSl are not
necessary to reach clinical grade performance for cancer diagnosis, which allows for the full
use of biologically available data that carries only slide-level labels. PORPOISE is another WSL
method, where a pan-cancer DL-based multimodal fusion algorithm was trained on H&E WSI
and multiple molecular profile features to predict cancer survival on 6,592 WSI slides from
TCGA (29)

Outside the medical domain there are lots of large, annotated datasets available, for example
ImageNet (30), a database of currently around 15 million natural images. ImageNet can be
deployed for DL tasks in the medical domain with transfer learning, a DL method to transfer
knowledge from a general, pre-trained model (e.g. trained on ImageNet) to a model finetuned
on a smaller, annotated dataset for a specific downstream medical task (e.g. classification from



histopathology slides). For example, both MultiSurv and PORPOISE use an ImageNet
pretrained model (ResNeXt50 and ResNet50 respectively) to extract the feature
representation from WSI for the downstream classification task (26,29). However, there are
fundamental differences between natural and medical images. Histopathology images are
very large in size, have no canonical orientation, have a different colour scheme, and the
classification task is often dependent on small details instead of larger structures compared
to natural images. This may restrain knowledge transfer as the features learned by the
pretrained model may not be applicable to the medical domain (31-33).

Foundation models

Recently, foundation models (FM) have emerged as a new generation of Al frameworks that
can learn to perform diverse tasks using large, unannotated datasets. FMs show amazing
capacity to obtain general knowledge from extensive datasets that allows them to perform
many different tasks. FMs are pretrained on large amounts of unlabelled data where the idea
is to learn the intrinsic representations from datasets without explicit task-specific labels. This
pretraining phase is crucial to gain a broad understanding of the patterns and general features
of the data. After pretraining, FMs can be finetuned for specific tasks, making them adaptable
for a wide range of downstream applications (34,35).

Examples of well-known FMs include BERT (36) and GPT (37) for natural language, and CLIP
(38) is a multimodal FM that integrates natural language and images. Foundation models are
built with self-supervised learning (SSL), where the model extracts meaningful
representations from the input data by automatically creating tasks that enable the model to
generate its own learning signals (34,39). There are multiple ways to perform this pretext task
in SSL, including contrastive learning, masked modelling, and self-distillation. Contrastive
learning involves training FMs to differentiate positive and negative pairs and is used in
methods like SimCLR (40) and MoCov2 (41). Self-distillation, as seen with DINO (42), relies on
a teacher-student framework, where a student learns to reconstruct its own perturbed input
from the teacher. Masked modelling, as seen in BERT, tasks FMs with reconstructing masked
portions of the input data. Masked modelling can also be applied to computer vision, for
example with iBOT (43). iBOT is a self-supervised framework that uses masked image
modelling and a vision transformer (ViT) architecture. ViT have shown remarkable
performance for image understanding and processing compared to convolutional neural
networks (CNN), for example ResNet (34,39).

In the medical domain, self-supervised learning is increasingly utilised to unlock the full
potential of large-scale, unannotated datasets. FMs trained on biological datasets allows the
model to learn the underlying patterns, thereby potentially enhancing diagnostic capabilities
and many other medical tasks, without the need for exhaustive manual annotation of these
large datasets. There are loads of unannotated medical datasets available (histology slides,
radiology images, sequencing data, electronic health records, and protein sequences) and self-



supervised learning provides a promising avenue to use these datasets to the fullest extent
(32). In the field of computational histopathology, much effort has been put towards
developing self-supervised learning methods to use the large amounts of unlabelled WSI
available. Using contrastive SSL, CTransPath is a histopathology FM trained on 30,000 WSI
from TCGA and PAIP (44), another large publicly available WSI dataset. Based on CTransPath,
Wagner et al. developed a transformer-based algorithm to predict MSI status from CRC
histopathology slides (45). They have used CTransPath as the FM and used a MIL method for
the biomarker prediction task. However, their method was based on resected slides instead
of biopsy material which is preferred for a diagnostic method.

Filiot et al. were the first to develop a histopathology FM, Phikon, with masked image
modelling using iBOT (31). Phikon was trained using 6,000 unlabelled WSI slides from TCGA.
For equivalent model architectures (ViT-B), they showed that in-domain pretraining
outperformed out-of-domain pretraining methods based on ImageNet. They have
benchmarked several MIIL methods like ABMIL, TransMIL, and Chowder, and used Chowder
as the MIL method in the final model. On various weakly supervised slide-level classification
tasks (MSI status, subtype prediction, metastasis detection) evaluated on both TCGA and
external validation cohorts, Phikon outperforms CTransPath and other state-of-the-art
histopathology SSL methods, both with cohort-specific and pan-cancer pretraining.

As the performance of FMs scales with the size of the dataset, recently focus has shifted
towards increasing the size of the dataset for pretraining. Most SSL models for histopathology,
including CTransPath and Phikon, use TCGA as their main data source that includes around
11,000 diagnostic WSI. However, data leakage can occur if FMs are pretrained on TCGA data
and the subsequent downstream, classification tasks are evaluated on TCGA data as well. Last
year, UNI was released, a ViT-L SSL model pretrained on 100,000 in-house pan-cancer WSI
using DINOv2 (46). They have shown to outperform CTransPath on all weakly-supervised slide-
level classification tasks on external test cohorts (excluding TCGA tasks that have no external
test cohort), including tasks like NSCLC subtyping, breast metastasis detection, and several
mutation prediction tasks. UNI uses ABMIL as the method to perform weakly supervised slide
classification after extracting the features from WSI from the pretrained model.

Recently Virchow was developed, to date the largest histopathology foundation model trained
on 1.5 million pan-cancer WSI from Memorial Sloan Kettering (MSK) Cancer Center. Virchow
is based on a ViT-Huge architecture and trained with the DINOv2 SSL algorithm. They state
that a student-teacher based SSL method like DINOv2 is more suitable for a class-imbalanced
dataset like WSI than contrastive learning, as is used in CTransPath. They performed weakly
supervised slide-level biomarker prediction (MSI, FGFR, and EGFR) on unseen datasets, using
AGATA as the MIL method. Virchow outperformed CTransPath on the same task for every
biomarker. The unprecedented performance of UNI and Virchow emphasizes the importance
of pretraining FMs on massive pan-cancer histopathology datasets.



Self-supervised learning is not limited to histopathology but can be applied to different
modalities as well. For example, Padegal et al. predicted vital status for colorectal cancer
patients based on RNA-sequencing data using self-supervised learning (47). As gene
expression data is of tabular format, they used a pre-existing SSL framework called TabNet
(48). Their model was pretrained on unlabelled gene expression from TCGA and thereafter
finetuned on the labelled target dataset (a subset of their train dataset). As gene expression
is very high-dimensional, they used rigorous feature selection beforehand, reducing the
number of features from 60,660 gene IDs to ~200. They selected the features on the labelled
dataset and used those features as a filter to perform feature reduction on the unlabelled
dataset, thus using the labelled dataset during the pretraining stage. In this model, clinical and
copy number variation were also included making this a multimodal tabular foundation
model.

Last year, a visual-language foundation model was developed specifically for histopathology,
trained on large dataset of 208,414 images and their textual descriptions curated from Twitter
and other public internet resources (49). The PLIP (pathology language-image pretraining)
model is trained using contrastive learning between the language and image modalities and
is based on CLIP (contrastive language-image pretraining). CLIP is a large, well-known visual-
language foundation model (38) pretrained on a large dataset of images with captions. PLIP is
evaluated on external validation datasets and was shown to outperform the baseline CLIP.

Taking all these developments into account, it can be concluded that the development of a
large, multimodal foundation model for oncology has been unprecedented. Such a model will
pave the way for tumour classification, clinical response prediction, and many other
downstream tasks.



B.2.1.b — Overall aim

Using large-scale unlabelled histopathology and transcriptomic data from cancer patients, we
aim to develop a pan-cancer multimodal foundation model that later can be used for a wide
range of downstream tasks, including neoadjuvant immunotherapy response prediction. We
will use self-supervised learning techniques to develop a foundation model that learns the
underlying intrinsic structure of the data, that subsequently can be used for more specific
downstream tasks with supervised training on a smaller, labelled dataset. Our foundation
model will be the first to integrate different medical modalities on such a large scale. Using
our FM, we aim to predict pathologic response to neoadjuvant immunotherapy for TNBC,
NSCLC, and melanoma among others, as there are currently limited biomarkers available, and
an Al-based decision method can reduce the need for extensive molecular profiling.

B.2.1.c — Objectives
Objective 1: Develop a pan-cancer multimodal foundation model for gene expression and
histopathology images.

Objective 2: Validate the performance of the multimodal foundation model on different
downstream classification tasks.

Objective 3: Use the multimodal foundation model to predict response to neoadjuvant
therapy for cancer patients.



B.2.2.a — Design of the proposed research

We aim to develop a multimodal foundation model based on large amounts of histopathology
and transcriptomics data. This foundation model can be used for a wide variety of
downstream tasks, where we will focus on the prediction of neoadjuvant immunotherapy
response for different cancer types. The FM will be trained on a large dataset from both in-
house and publicly available datasets, and will be finetuned on both publicly available datasets
and in-house clinical trial datasets.

Data collection for FM training

FM training data will be collected from the internal patient database (The Netherlands Cancer
Institute) where currently 83,000 diagnostic WSI are available and a subset of TCGA cohorts
(8,180 diagnostic WSI). From TCGA, we will use all available cohorts except the ones
mentioned in table 1. Per patient we will collect gene expression and digital histopathological
images to build our pan-cancer dataset. We will select unlabelled formalin-fixed paraffin-
embedded (FFPE) haematoxylin and eosin (H&E) stained WSI. The distribution of cancer types
in the internal patient database is unknown but is expected to follow the same trend seen in
TCGA, where more prevalent cancer types have more entries into the database.

WSI preprocessing

WSI will be preprocessed as described by Filiot et al. in section 3.2 (31). Filiot et al. have
downsampled the number of tiles across slides to obtain the same number of tiles for each
cancer type. We will skip this down sampling step to increase the size of our dataset. Virchow
did not use down sampling to create their pan-cancer dataset, they have thus used an
imbalanced dataset with a larger occurrence for more prevalent cancer types to train their
model. At a later stage, we can explore the effect of balancing the number of tiles per tissue
type in the pretraining dataset.

Gene expression data preprocessing

Preprocessing of RNA-sequencing data will be performed similar to Padegal et al. (47). They
have defined the fragments per kilobase of transcripts per million mapped reads upper
quartile (FPKM-UQ) as the preferred method to represent the gene expression values. As gene
expression data is high-dimensional, we will follow a similar feature selection strategy where
first only the protein coding genes are selected. As a second step, Padegal et al. perform
feature reduction on a smaller, labelled dataset to then use these features as a filter on the
larger unlabelled dataset. This is unfavourable for our situation where we want to use the
gene expression values from an unlabelled dataset without using a labelled dataset.
Therefore, we will use all 19,962 protein coding genes.

FM training
To develop a multimodal foundation model for histopathology and transcriptomics data, we
will adapt existing multimodal foundation model architectures. PLIP is a multimodal



histopathology — language FM that encodes image and text into one embedding using
contrastive learning. We will adapt this approach to image and tabular data, and we aim to
fuse the two modalities as early as possible. For both modalities, we will build a transformer
model specific to that modality. For the histopathology images, we will use a ViT-B
architecture, based on Huang et al. and Filiot et al. UNI and Virchow implemented a ViT-L
architecture but also used a larger dataset. The vision transformer takes tiles of 224 x 224
pixels as input. For the tabular gene expression data, we will use a TabNet architecture. Both
encoders will output a vector of similar dimension, and during training these vectors will be
optimized by minimizing the contrastive loss between similar pairs. This will ensure the FM
will learn from both modalities simultaneously. The FM will be trained on the in-house pan-
cancer dataset. Once trained, the FM returns the learned representations for a given input of
histopathology and gene expression data.

Evaluation of the FM on downstream classification tasks

Next, the pretrained FM can be used to perform downstream, supervised classification tasks.
We will evaluate our FM on an extensive set of downstream tasks that are either common in
related studies or fit our research question. These tasks involve publicly available datasets so
we can compare the performance of our FM to other state-of-the-art SSL methods.

Data collection for finetuning tasks

We collect data from TCGA (25). An exploratory search at the TCGA repository showed 11,765
available diagnostic FFPE WSI from 32 different TCGA cohorts with multiple digital
histopathological slides available per case. We will only include patients if they have both WSI
and RNA-sequencing data available. Preprocessing of WSI and gene expression data will be
handled similar as described above.

Finetuning tasks

We have defined a set of downstream tasks to evaluate our multimodal FM inspired by the
evaluation tasks of other histology pretrained FMs like Phikon, Virchow, and UNI. In these
studies, usually both slide-level and patch-level tasks are evaluated. We will only evaluate
slide-level classification tasks as patch-level tasks are not directly relevant to our research
question. Patch-level classification tasks are generally considered easier whereas slide-level
classification resembles real-world scenarios and our intended research aim (50).

To perform the finetuning, we first extract the features from our pretrained FM to then train
a MIL model on the downstream classification task using weakly supervised learning. The MIL
methods discussed in the background section (Chowder, ABMIL, TransMIL) are all aimed at
weakly supervised learning for just histopathological images and do not enable integration
with tabular data. We will adapt the multimodal multi-instance fusion module (M3IF) that was
developed to perform MIL with a cross-modal representation from both histopathological



images and tabular clinical data (51), where we will use tabular gene expression data instead
of clinical data.

We have defined a number of downstream classification tasks based on TCGA cohorts, as
TCGA provides both histopathological images and gene expression data. The histopathology
FMs also evaluated their performance on other datasets like Camelyon16 and PAIP-CRC but
they consist of only WSI and are thus not applicable to our FM. Table 1 describes the
classification tasks, the TCGA cohort they are based on, and if the task is evaluated in one of
the other histopathology FMs. The number of WSI gives an estimate of the number of patients
as it can occur that one patient has multiple WSI entries in the database. Also, the TCGA data
portal does not allow easy filtering to find the exact number of patients that have both WSI
and gene expression data available. The final number of included patients may therefore be
lower than the number of WSI stated in this table.

Task Cohort Nr. of WSI Performed in other
study

Histological subtype TCGA-KIRC, TCGA- 940 (31)

prediction for renal  KIRP, TCGA-KICH

cell cancer

Molecular subtype  TCGA-BRCA 1,133 (31)

prediction for breast

cancer

Cancer type TCGA-LUAD, TCGA- 1,053 (31,46)

prediction for NSCLC LUSC

Genomic alteration = TCGA-COAD 459 (31,46)
prediction (MSI)

Table 1 — Overview of downstream TCGA-based classification tasks, the cohorts that will be used, the number of
WSI that is available for those cohorts, and from what study the task has been adapted. NSCLC = non-small cell
lung cancer, MSI = microsatellite instability, WSI = whole slide images, KIRC = kidney renal clear cell carcinoma,
KIRP = kidney renal papillary cell carcinoma, KICH = kidney chromophobe, BRCA = breast invasive carcinoma,
LUAD = lung adenocarcinoma, LUSC = lung squamous cell carcinoma, COAD = colon adenocarcinoma.

Prediction of neoadjuvant immunotherapy response

Finally, we will evaluate the performance of our foundation model on our intended
downstream task: prediction of neoadjuvant immunotherapy response from histopathological
images and gene expression data. The downstream classification task will be performed
similar as the TCGA tasks, first extracting the learned features from the multimodal FM and



subsequently performing MIL to classify patients. Table 2 provides an overview of the ongoing
clinical trial cohorts at the NKI. If other clinical trial studies are available at time of this
research, they will be included in this step as well. For example, the TONIC2 trial is expected
to finish in 2024. For each trial, we will select the patients that received neoadjuvant
immunotherapy. The downstream, finetuning tasks is defined as predicting pathologic
complete response (pCR). pCR is achieved when no more tumour cells are found after ICB. It
has been shown that pCR is correlated with overall survival, but it still has to be validated as a
regulatory-approved endpoint for neoadjuvant immunotherapy. As pCR is evaluated shortly
after treatment with neoadjuvant ICB, it allows the physician to alter the treatment plan based
on pCR (3,7).

Trial name Cancer type Trial phase Nr. of patients included (so
far) that received
neoadjuvant ICB

NADINA (52) Stage lll melanoma Phase I 210

OpaCIN(-neo) Stage Il melanoma Phase Il 96

(53)

PRADO (54) Stage lll melanoma Phase Il 99

NICHE (8) Early-stage colon Phase Il 40
cancer

NICHE2 (9) Early-stage colon Phase Il 112
cancer

NABUCCO (55)  Stage Ill urothelial Phase | 24
cancer

IMCISION (56) HNSCC Phase Ib/Il 32

Table 2 — Overview of clinical trials that will be used to predict neoadjuvant immunotherapy response. All trials
are performed at the Netherlands Cancer Institute TNBC = triple negative breast cancer, ICB = immune checkpoint
blockade, HNSCC = head and neck squamous cell carcinoma.

B.2.2.b — Work plan / research lines
Objective 1: Develop a pan-cancer multimodal foundation model for gene expression and
histopathology images (2 years).
Deliverables:
= Literature review outlining current state-of-the-art approaches and technologies
related for existing medical FMs, focussing on histopathology, transcriptomics, and
multimodal efforts.



= Curation of a pan-cancer dataset from both in-house (NKI) and publicly available
(TCGA) data.

= Development and evaluation of a robust, multimodal FM.

= Complete documentation of FM training procedure to enhance reproducibility.

Objective 2: Validate the performance of the multimodal foundation model on different
downstream classification tasks (1 year).
Deliverables:
= Curation of dataset for different downstream classification tasks from an external
dataset (TCGA).
=  Finetuning of the multimodal FM on these downstream tasks
= Rigorous evaluation of the performance on these downstream tasks, including
comparison with existing state-of-the-art methods.
= Complete documentation of FM finetuning procedure to enhance reproducibility.

Objective 3: Use the multimodal foundation model to predict response to neoadjuvant
therapy for cancer patients (1 year).
Deliverables:
= Curation of dataset of in-house (NKI) clinical trial data.
= Finetuning of the multimodal FM to predict neoadjuvant immunotherapy response.
= Validation of the performance on the prediction task in close collaboration with
physicians.

B.2.3 Feasibility & risk assessment

The practical feasibility of this research proposal is demonstrated by several key factors that
together will ensure its realization. First, we have robust data availability from both in-house
and publicly available datasets. The Netherlands Cancer Institute’s extensive collection of
clinical trial and general patient data is directly available to us, and we will use publicly
available datasets like TCGA. Second, the lab’s prior experience with developing self-
supervised learning methods for histopathology (57) establishes a solid groundwork for the
proposed research. Third, a potential research collaboration with Memorial Sloan Kettering
(MSK) Cancer Center adds a layer of strength to our research as they have prior experience
with developing large foundation models (58). In terms of time planning, a timeline has been
outlined in the previous section, accounting for dataset curation, model development, model
validation, and potential refinements.

The greatest potential risk lies in the novelty of our proposed research, being that our
multimodal foundation model may encounter difficulties in capturing interactions between
the different data modalities. This can lead to model instability or suboptimal performance
and will be reflected in a low performance on the supervised, downstream tasks compared to
the benchmark methods. To mitigate this risk, an alternative approach involves adopting a



modular model design where we will develop a separate foundation model for each modality.
The representations learned by each model will then be fused before the inference task. For
the histopathology data, we will use a similar model architecture and training procedure as
Phikon (31). For the transcriptomics data, we will use TabNet as the self-supervised learning
framework as proposed by Padegal et al. (47). For the downstream inference tasks, we will
use the same approach as in our original proposed research. This modular approach aims to
tackle the challenges related to integration in the foundation model while making sure the
strengths of each modality are still effectively captured. The downside of this approach is that
the early integration of the different modalities is sacrificed.

In the event that both the multimodal foundation model and the modular approach face
unsurmountable challenges, we will revert to a more traditional DL approach, similar to the
design of MultiSurv (26). As this is a supervised learning method, we will adapt MultiSurv to
predict neoadjuvant immunotherapy response from a histopathology and transcriptomic sub
model. Even though in this case we will no longer develop a large, multimodal foundation
model, there are not many studies yet that aim at predicting response to neoadjuvant
immunotherapy, and the availability of these studies at the NKI still secures the novelty of this
research.

The proposed research seamlessly integrates with the available resources and expertise at the
Netherlands Cancer Institute (NKI), which has been at the forefront of neoadjuvant
immunotherapy. This treatment paradigm was first pioneered at the NKI and since then many
clinical trials in the field are hosted by the institute’s research groups. Our proposed research
benefits from access to extensive clinical trial and general in-house patient data, providing a
solid foundation for developing a large DL model for predicting neoadjuvant immunotherapy
response. Furthermore, the NKI has access to a high-performance computing (HPC) cluster
that aligns with the computational demands of the proposed research, enabling us to
efficiently process large datasets for the development and finetuning of our multimodal FM.
This strategic embedding promises a beneficial collaboration that can lead to important
breakthroughs in cancer treatment.

B.2.4.a — Scientific impact

This research proposal holds considerable scientific significance as it describes the first
multimodal foundation model that combines histopathology and genomics data. On one
hand, effort has been put into developing large foundation models for histopathology
(31,46,58) and transcriptomics (47). On the other hand, a few studies have investigated the
potential of weakly supervised learning for pan-cancer multimodal survival prediction (26,29).
We are the first to propose a general-purpose foundation model built on different modalities
that can be used for a wide variety of downstream tasks beyond our intended application for
prediction of neoadjuvant immunotherapy response. For example, the FM can be used for
cancer diagnosis, metastasis detection, subtype classification, and many other applications.



Furthermore, our proposed research can help in understanding the workings of neoadjuvant
immunotherapy by investigating the differences between responders and non-responders.
This reverse translation is thought to help with uncovering the therapeutic targets of
neoadjuvant immunotherapy as well as define novel predictive biomarkers for response (1).
We currently propose the integration of two different modalities in a foundation model. The
potential for extension with additional modalities like clinical information and radiology
images paves the way for further improvement and adaptation to an ever-increasing amount
of available biological data.

Beyond its immediate application, the development of a multimodal, medical foundation
model contributes to the broader impact of artificial intelligence in healthcare. The ability to
unravel underlying patterns across diverse medical datasets not only has implications for
prediction of treatment response but sets a precedent for the use of DL in the landscape of
precision medicine. Lastly, we will release the code and the weights of the model publicly to
ensure full reproducibility and transparency.

B.2.4.b — Societal impact

The direct aim of this research, the development of a multimodal foundation model for
predicting neoadjuvant immunotherapy response, has the potential to revolutionize cancer
treatment. By enabling a personalized and precise approach, this research could lead to more
effective and targeted interventions in patient care, avoiding unnecessary treatment-related
side effects and improving overall patient quality of life. An efficient DL method for predicting
treatment outcomes will reduce the need for extensive molecular profiling and make
treatment decisions quicker and more cost-effective.

If neoadjuvant immunotherapy becomes the standard of care, such a DL framework may
become essential for predicting treatment response in clinical practice. Further development
and extensive clinical validation of both neoadjuvant immunotherapy and such DL methods is
required before approval for clinical practice, but this research provides a promising first step
in that direction. Our multimodal approach can be used beyond oncology to enable
personalized medicine in other diseases as well which will impact the life of many patients.

B.2.5 — Ethical considerations

In this research proposal, both publicly available and in-house datasets are used. For the
publicly available data collected from TCGA, the donors are anonymised and ethical approval
from the patients has been obtained by TCGA. For the internal general patient dataset,
informed consent is obtained when the patient is admitted to the hospital. For the internal
clinical trial dataset, informed consent is obtained when patients are enrolled to the clinical
trial by the hospital. For both the general patient and the clinical trial dataset we use
anonymised data. By taking these measures, we ensure there is no personal information
present in the datasets our FM is trained on and that it can never expose sensitive information.
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