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Abstract 
 
In recent years, large language models (LLMs) have revolutionized language-related 
applications across various fields. These powerful models, trained on massive datasets, can 
understand and generate natural language for tasks like summarization, question-
answering, and information extraction. One notable application of LLMs is their integration 
into the healthcare sector. Although numerous clinical applications have been proposed, 
from extracting medication information to providing patient support through chatbots, 
widespread implementation is still in progress.  
 
This review aimed to identify clinical tasks that make use of LLMs and can be applied within 
the healthcare sector, from relevant literature. From the 1008 founded publications, a 
random subset was included in this review. After thorough screening, 129 clinical tasks were 
described within the resulting 89 publications. These clinical tasks were categorized into the 
overarching tasks: ‘Clinical workflow’, ‘Patient education and communication’ or ‘Healthcare 
management’. The categorization of these clinical tasks, as well as the identification of the 
underlying classical NLP tasks, aimed to provide a comprehensive understanding on the 
described clinical tasks and the potential capabilities of utilizing LLMs in healthcare.  
 
Although many utilities of LLMs in healthcare were described, the majority was not yet 
implemented within clinical settings. This indicates that the future holds promise for the 
widespread implementation of these clinical tasks, but further development and validation 
are essential for realizing their full potential in transforming healthcare services. 
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Layman Summary 
 
In recent years, large language models (LLMs) have changed how we use language in 
different areas. These models, which are really powerful and trained on huge amounts of 
data, can understand and generate natural language and can be used for tasks like 
summarizing text, answering questions, and extracting information. These kinds of tasks can 
also be utilized within healthcare settings. LLMs can for instance summarize medical 
documents for patients, help doctors in making clinical decisions or automating tasks like 
patient appointment scheduling. However, there is currently no clear overview on what kind 
of tasks can be used in healthcare and how these can be categorized.  
Therefore, within this review, literature was investigated to identify different clinical tasks 
that make use of LLMs. In total, 129 different clinical tasks were found, with most of them 
being related to the clinical workflow, followed by patient education and communication, 
and healthcare management. By categorizing these founded clinical tasks, an overview was 
made, focusing on the language tasks and their impact on healthcare. While a lot of clinical 
tasks were described in the literature, the majority of these was currently not being used in 
healthcare. This shows that even though there is a lot of promise in using LLMs for clinical 
tasks, future work is still needed to implement these tasks in healthcare.  
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Introduction 
 
The emergence of large language models (LLMs) has facilitated the development of many 
language-orientated applications in multiple domains. LLMs, which are Transformer models 
that are trained on massive datasets, possess the capability to understand and generate 
natural language for a variety of natural language processing (NLP) tasks, such as text 
summarization, question-answering and information extraction. Especially since the launch 
of ChatGPT by OpenAI in November 2022, chatbots have gained immense popularity in a 
short time. Currently, ChatGPT boasts over 100 million weekly active users who employ the 
interacting chatbot for a wide array of purposes, including informational queries, 
educational or creative writing assistance, language translation as well as coding and 
programming help (1). 
 
Another purpose of utilizing chatbots or LLMs is their integration within the healthcare 
sector. Despite numerous proposed clinical LLM applications, which span from extracting 
medication information to identifying potential adverse drug effects, generating clinical 
reports, and providing patient support through chatbot systems, the overall implementation 
is not yet widespread. However, this integration is becoming increasingly prominent as it 
holds the potential to profoundly reshape healthcare delivery. 
 
While previous research outlines NLP tasks based on publicly available electronic health 
record data from patients (2), a clear description of the exact clinical NLP tasks that can be 
used in healthcare settings is lacking. Having this description is crucial, as it facilitates a 
comprehensive understanding of how the described clinical tasks can be categorized and 
what the potential capabilities of utilizing LLMs in healthcare are. 
 
Therefore, this review aims to create a comprehensive overview of clinical tasks that make 
use of LLMs, that have been described in literature. These described clinical tasks only 
involve LLM applications that are applicable within a clinical setting, thereby excluding those 
intended for medical education and research. Moreover, these existing publications on 
LLMs in healthcare will be categorized, focusing on the overarching clinical application, but 
also the underlying classical NLP task, as well as the end-user.  
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Background of LLMs 
 
Short history of natural language processing (NLP) 
 
The origins of NLP can be traced back to 1950, when Alan Turing proposed the ‘Turing test’, 
in order to determine a machine’s ability to achieve human intelligence (3). From the 1950s 
to 1980s, NLP was mainly focused on applying rule-based approaches, that were designed 
based on linguistic rules and patterns. However, due to complexity and flexibility of human 
language, this was a difficult task. Since the 1980s, a shift was seen, as statistical NLP 
systems were designed that were able to extract features from the large amount of digitally 
available texts. The utilization of statistical and machine learning algorithms gradually 
replaced the rule-based NLP systems, as machine learning models were able to learn 
linguistic patterns in a text without following a set of fixed rules (4).  
 
In 2003, Bengio et al. published a paper describing a neural probabilistic language model.  
This model departed from the use of probabilities in a statistical language model. Instead, 
the model employed the concatenation of word embeddings through a one-hidden layer 
feed-forward neural network to predict the next word in a sequence (3). 
 
The evolution of NLP took a significant leap in 2017, when Vaswani et al. introduced the 
Transformer model architecture, thereby replacing previously used recurrent neural 
networks (5), long short-term memory networks (6) and Word2Vec (7). Transformers utilize 
self-attention mechanisms, which enable the model to consider different parts of the input 
sequence when processing each element. This enables Transformers to process input in 
parallel and learn long-term dependencies, thereby enhancing the model’s capability to 
better comprehend context and relationships within sentences. 
 
Large language models (LLMs) are Transformer models, which are extensively trained on 
large datasets. A popular model is BERT (Bidirectional Encoder Representations from 
Transformers). In contrast to directional models, BERT reads text input sequentially, 
meaning that during training the entire sequence of words from both the left and right 
direction are taken into account (8). This bidirectional approach enables the BERT model to 
comprehensively understand the context and relationships within a given text.  
As mentioned before, another well-known model is GPT (Generative Pre-trained 
Transformer), which is developed by OpenAI. GPT takes a generative approach, as it is 
trained to predict the next word or token in a sequence based on the context provided by 
the preceding words. By learning statistical patterns and relationships in the training data, 
GPT can generate text that is both coherent and contextually relevant. 
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Description of NLP tasks 
 
The classical NLP tasks cover a diverse set of objectives, that are all aimed at enabling 
machines to understand, interpret, and generate human language. Within the clinical tasks 
that are described within this review, multiple classical NLP tasks, as described by Gao et al. 
(2) could be identified (Table 1).  
 
Table 1. Overview of classical NLP tasks, description and examples.  
 

Classical NLP task Task description  Example  
Text Generation (TG) Generate text based on 

given inputs, aiming to 
achieve the appearance of 
being indistinguishable 
from human-written text 

Generation of a patient report 
based on information from 
the electronic health care 
record 

Summarization (Summ) Summarize the main ideas 
of given a piece of text. 

Summary of patient letter in 
layman style 

Question answering (QA) Providing answers to 
questions raised by humans 
in a natural language. 

 Use of a chat prompt to ask 
medical question  

Named Entity Recognition 
(NER) 

Identify and classify named 
entities from texts. 

Example of identified entities: 
Disease: chronic kidney 
disease 
Medication: epinephrine 
Surgery: tonsillectomy 

Information Extraction (IE) Extraction of entities and 
relations from a text 

"Patient Jane Smith was 
diagnosed with diabetes and 
prescribed insulin" could be 
processed by IE to extract the 
information that "Jane Smith" 
has a diagnosis of "diabetes" 
and has been prescribed 
"insulin." 

Speech Recognition (SR) Convert human speech into 
text information.  

Generation of clinical 
interview transcripts based on 
a patient encounter 
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Methodology 
 
Inclusion criteria 
 
For this scoping review, relevant academic literature published from 1 January 2010 up to 
14 December 2023 was searched on Pubmed (https://pubmed.ncbi.nlm.nih.gov/).  
These data were selected to ensure a comprehensive coverage of relevant publications, 
with 2010 chosen as the starting point, given the prominence that LLMs have gained over 
the last decade. The search string consisted of a combination of terms that were related to 
'large language models' and 'healthcare' (Supplementary Table 1). 
Due to time limitations, a randomized sampling procedure was performed, in which 100 
publications from the total found publications, were included in the screening procedure. 
This screening procedure entailed screening both the title and abstract of each paper, to 
make sure that the publication matched our inclusion criteria. As the aim of this review was 
to identify LLM applications in healthcare that can applied within a clinic, all publications 
related to medical education and research were excluded.  
Additional literature was included through manual inspection of the reference lists of 
identified documents to ensure a level of saturation on the various clinical tasks reported. 
 
Data synthesis and summarization 

 
Among the papers included in this review, characteristics of the clinical LLM application 
were summarized into tables. Following Jianning Li et al.'s categorization (8), the identified 
applications were categorized into overarching clinical tasks, including the 'Clinical 
workflow,' 'Patient communication and education,' and 'Healthcare management.' In short, 
'Clinical workflow' refers to all the processes involved in patient care, such as diagnosis, 
treatment, and follow-up. 'Patient communication and education' involve both interactions 
between healthcare providers and patients, as well as providing medical information and 
guidance to patients. 'Healthcare management' pertains to the organization and 
administration of healthcare services. 

These described overarching clinical task could be linked to different end-users, including 
‘patient/relatives’, ‘healthcare professionals’, ‘clinical centers’ and ‘lawyers and regulators’. 
Besides documenting the clinical task description and the clinical relevance of this task, also 
the classical NLP tasks (e.g. ‘Information extraction’ or ‘Text generation’) that could be 
identified, were documented. Furthermore, the type of input data and output data was 
described. Similair to Jianning Li et al. (9), a tag (level 1 – 3) was assigned to the selected 
papers, which indicated the depth and particularity in which the clinical task was described. 
Where level 1, indicated that the task was only described by using generic comments (e.g. 
"ChatGPT can aid patients before radiologic-guided procedures." (10)), level 2 papers 
provided some more depth about the clinical task as a specific medical specialty and/or 
scenario for the task was described (e.g. "Our system makes the simplifying assumption that 

https://pubmed.ncbi.nlm.nih.gov/
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patient-level smoking status determination can be achieved by accurately classifying 
individual sentences from a patient’s record." (11)). The papers that had a level 3 tag, 
described besides the clinical task itself, also the purpose and/or relevance of the clinical 
task, (e.g. "This study developed and validated a rule-based classification algorithm for 
prediabetes risk detection using natural language processing from home care nursing 
notes." (12)). As a result, level 3 papers offer a clearer depiction of actual capability of LLMs 
in healthcare. To assess the current extent of LLMs integration in healthcare, it was also 
documented whether the specified tasks had already been implemented in clinical settings. 
A full overview of the extracted form can be found in Supplementary Table 2. 
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Results 
 
Using the search string, a total of 1008 publications were found for review. From these, a 
random subset of 100 publications was included in the data analysis. This number 
represented a saturation point at which no new clinical LLM applications could be identified. 
After the first review phase, 27 papers were excluded based on the exclusion criteria. A total 
of 16 papers was added after manually inspecting the reference lists of the included articles. 
This led to a total of 89 publications included in the review (Figure 1). 
 

 
Figure 1: Flow diagram of screening strategy  
 
Within the found publications, 129 clinical tasks were identified. Out of these described 
tasks, the majority (97 tasks) could be applied within the clinical workflow (Figure 3). The 
second group of 23 reported tasks was utilized for patient education or communication 
(Figure 2). Only 4 of the described tasks had usage in healthcare management (Figure 3). 
 
Patient education and communication 
 
The clinical tasks that were described within the patient education and communication field 
often relied on chatbots, utilizing a classic NLP task known as ‘Question Answering’. The 
usage of chatbots allows patients to receive support whenever healthcare professionals are 
not available. For instance, a chatbot service can provide patients with intensive behavioral 
counseling recommended for weight management programs for obesity and support 
behavior change by applying various mental health approaches (13). Chatbots can also be 
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used to help patients to maintain a healthy life style by supporting physical activity, healthy 
eating or assisting with tobacco cessation (14,15). Besides providing support, chatbots were 
also used to provide patients with personalized education materials, on diabetes self-
management education (16), otolaryngology-related information (17), or about ophthalmic 
plastic and reconstructive surgery topics (18). Additionally, the usage of chatbots to answer 
medical questions on various topics were often reported (19–27). 
Moreover, chatbots can improve health literacy by answering patient questions about 
insurance coverage of specific services or clinical research participation (28). 
Such applications are valuable as they alleviate the burden on healthcare professionals, 
thereby offering financial benefits as well. 
 
The NLP task ‘Text Generation’ and ‘Summarization’ was also often described. LLMs can 
convert medical information or letters in layman style in order to make them accessible and 
understandable for patients (28–34).  
 

 
 
 
 
 
 

Figure 2: Overview of LLM applications in healthcare that utilize the classical NLP task of 
‘Question Answering’ (QA) 
 
 
Clinical workflow 
 
Within the clinal workflow many different clinical tasks were described. For instance, just as 
chatbots can provide patients with personalized education materials, healthcare 
professionals can also access personalized learning material and recommendations for 
remote patient monitoring (31,35), as well as receiving feedback based on free-text 
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transcripts of patient encounters (36). Another ‘Question Answering’ NLP task within the 
clinical workflow is the use of interactive chat interfaces that allow healthcare professionals 
to engage with the report and image (30) or providing answers to medical questions (37,38).  
Gupta et al. describe how a chatbot can provide personalized treatment and lifestyle 
recommendations for patients with complex wounds based on the provided patient 
information, wound characteristics and medical history (39). 
Furthermore, Wang J. et al. developed ‘PhenoPad’, which is an intelligent clinical note-
taking interface that can capture free-form notes and phenotypic information from various 
modalities, such as speech and NLP techniques, but also from handwriting recognition (40).  
  
The utilization of free-text electronic health records (EHRs) to extract information was often 
described in literature. The classical NLP tasks ‘Information Extraction’ and ‘Named Entity 
Recognition’ can be applied for multiple purposes. For instance, the extraction of  
medication information from EHRs can be useful to detect substance abuse (41,42), identify 
potential adverse drug effects (27,33) or pharmacovigilance in general (33,43,44).  
The task of identifying smoking status from EHRs has also been reported, which is important 
for both informing and improving the assessment of smoking behavior, as it impacts not 
only diagnosis but also treatment options (11,42). 
 
Moreover, by extracting clinical outcomes from EHRs, predictive analysis can be performed 
(45–47), such as the prediction of seizure recurrence (48), overall survival of rectal cancer 
patients (49) or readmission following an acute myocardial infarction (50). Furthermore, 
extracting temporal information from EHRs enables the generation of a complete timeline 
of a patient’s medical events, which is crucial for many medical reasoning tasks (51).  
Another common use of ‘Information Extraction’ involves its application in clinical decision 
support (20,25,27,29,30,33,40,52–60). One of the described functionalities involves 
incorporating LLMs in the process of radiologic decision-making. This is achieved by 
assessing the appropriate imaging modalities for various clinical presentations related to 
breast cancer screening and breast pain (54).  
 
The extraction of predefined or ontology-based entities, such as specific medical terms, 
categories, or concepts, from patient-generated data or EHRs can be used for multiple 
purposes (33,61–65). Firstly, the extracted ontologies can be used to characterize clinical 
characteristics of patients to aid disease surveillance (31,34,66–69), such as in cystic fibrosis 
(70) or surveilling heart failure symptoms (71,72).  
These observations are useful for disease classification (33,34,47,56,73), which is for 
instance useful for diseases like glaucoma which is difficult to identify in early stages, due to 
existence of variation on physiologic characteristics (74).  
Moreover, extracted ontologies can aid in identifying risk groups for diseases like 
prediabetes (12) or can be used to identify suspicious findings in breast cancer (75).  
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Lastly, ontology-based entities are used to extract phenotypical information that is 
described in pathological reports (76), for detailed patient-specific data for biosurveillance 
(77) or to extract prognostic and predictive biomarker status of breast cancer patients (78). 
 
Extracting clinical information extends beyond medical conditions, as it is also used to 
capture information from goals-of-care discussions between patients and healthcare 
professionals (79,80). This involves documentation of patients’ values, goals and treatment 
preferences or end-of-life discussions, which are very important in palliative care (81,82). 
In palliative care, manual chart reviews are frequently used, even though the majority of 
crucial information regarding end-of-life care is found in free-text notes. Utilizing NLP tools 
can facilitate the extraction of this information, thereby enhancing palliative care 
consultations. 
 
Another clinical LLM application involves patient cohort selection for trials. This can be 
achieved by extraction information from EHRs, but also by extracting the clinical trial 
eligibility criteria from clinical trial protocols (20,33,34,78,83–85). Patient-trial matching is 
generally conducted manually, which typically requires a significant amount of time from 
clinicians or administrative staff with specialized knowledge. By automating this process, 
both time and resources can be saved.  
 
Besides extracting information EHRs, the classical NLP task of ‘Named Entity Extraction’ is 
also used in the (re)structuring of clinical notes. This can include rewriting clinical notes to 
include a specific metric in a report (30) or integrating clinical information from various 
sources (45,86). Another application that has been described by Jiu J et al. is the removal of 
duplicated information from EHRs, as this has been shown to have a positive impact on 
clinical NLP models (87). Furthermore, the conversion from free-text notes into structured 
reports is also often described, as it enhances communication, promotes collaboration 
among health care professionals and standardizes reporting language across institutions 
(19,30,32,88,89). Lastly, de-identification of clinical records is another application, that is 
critical to facilitate the use of unstructured clinical records while protecting patient privacy 
and confidentiality (61,90–92). 
 
The classical NLP task ‘Text generation’ and ‘Summarization’ have also been described 
within the clinical workflow. Healthcare professionals can for instance use LLMs to generate 
(summarized) patients reports (25,30,93,94) or write patient letters or discharge summaries 
(45,95). The generation of these medical documents results in time savings for healthcare 
professionals. 
 
Finally, LLMs can also contribute the clinical workflow by automating administrative tasks of 
healthcare professionals (28). A chatbot can for instance be used to automate appointment 
scheduling (19,25). But it can also prepare patients before certain procedures. Ismail A et al. 
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described how LLMs can be used to aid patient before radiologic-procedures by providing 
the patients with information and support, while also assessing their readiness for the 
procedure (10). Also after a certain procedure, such a cataract surgery, voice conversational 
agents can perform follow-up calls (96).  
Another clinical NLP application, as described by Were MC et al., involves extracting 
provider follow-up information from discharge summaries. This task is crucial, as medical 
errors frequently occur during the transition of care from the inpatient to outpatient 
setting. This is particularly true in cases where there is a requirement to contact the follow-
up provider long after the patient has been discharged from the hospital (97). 
The automation these clinical repetitive tasks, enables healthcare professionals to be 
redeployed to higher-value activities, where their skills can best be used.  
 

 
Figure 3: Overview of LLM applications in healthcare that utilize the classical NLP task of 
‘Named Entity Recognition’ (NER) and ‘Information Extraction’ (IE) 
 
 
Healthcare management 
 
In the field of healthcare management, the NLP task ‘Information Extraction’ can also be 
utilized. One application is the extraction of information from patient experience surveys. 
These reports are leveraged to evaluate accessibility, communication and overall 
satisfaction, aiming to improve patient experience (98). Furthermore, patient safety event 
reports, in which adverse events and errors in healthcare are documented, can be utilized to 
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extract contributing factors that led to the event. This will help safety officers to address 
safety issues that occurred within the organization (99). 
 
Another application involves the extraction of billing codes from EHRs. The identification of 
these billing codes is crucial for healthcare organizations, as it enables them to receive 
payment for the provided healthcare services (33). 
 

 
Figure 4: Overview of LLM applications in healthcare that utilize the classical NLP task of 
‘Text generation' (TG) and ‘Summarization’ (Summ) 
 
 
Current usage and outlook 
 
Out of all the publications, only five reported to have conducted a trial within in a clinic, 
meaning the majority of identified clinical tasks have not yet been implemented within 
clinical settings. Furthermore, the level in which the clinical task was described was often 
found to be either level 1 or 2, meaning the exact relevance or expected usage of the clinical 
task was not described. For instance, Wu H et al. describe the clinical task of disease 
surveillance by extracting disease information from EHRs (34). However, the specific details 
of the extracted information and its practical implications for healthcare professionals are 
not mentioned. Another example is the publication by Guergana K. Savova et al., which 
addresses the identification of the patient’s smoking status from EHRs (11). However, also 
here the publication fails to elaborate on how this information can be utilized in healthcare. 
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Discussion and Conclusion 
 
This scoping review provides a comprehensive overview of the applications of LLMs in 
healthcare, that can be utilized in clinical settings. The found clinical applications could be 
assigned to different overarching clinical tasks, including ‘Patient education and 
communication’, ‘Clinical workflow’ and ‘Healthcare management’, which each focused on 
different end-users and tasks. Additionally, within each sector, the various classic NLP tasks 
underlying the clinical workflows were identified. 
 
The 'Patient education and communication' sector primarily involves utilizing the classical 
NLP task 'Question Answering.' Chatbots play a key role in enabling patients to ask medical 
questions, seek guidance, and receive support related to specific diseases or conditions. 
Additionally, the 'Text generation' NLP task is employed to create personalized education 
materials for patients and translate medical documents into layman's terms. 
Within the ‘Clinical workflow’, many different clinical tasks were identified. The classical NLP 
tasks 'Question Answering' and 'Text generation' are again utilized, but with a focus on 
providing healthcare professionals with medical information and assisting them in routine 
tasks such as generating patient reports or handling administrative tasks like appointment 
scheduling. Within the clinical workflow, the NLP task of ‘Information Extraction’ was most 
often described, as the clinical information from EHRs proves to be valuable for diverse 
clinical tasks. The extracted ontologies could subsequently be utilized for diagnosis, disease 
surveillance, predictive analytics, clinical decision support or patient cohort selection.  
In the 'Healthcare management' sector, the 'Information Extraction' task could also be 
employed. For instance, extracted data from patient surveys can be utilized to measure 
overall satisfaction. Similarly, identifying billing codes from EHRs is crucial for the accurate 
processing of payments. 
 
While existing literature on LLM applications in healthcare outlines numerous potential 
clinical tasks, many have not been implemented yet. Additionally, the specific purposes of 
these tasks are often not clearly defined, as generic statements like 'AI models may assist in 
clinical decision support, clinical trial recruitment, clinical data management, research 
support, patient education, and other fields' (100) were frequently encountered. This shows 
that the interest in the application of LLMs in healthcare is growing, but the actual  
implementation of the described clinical tasks is still in development.  
 
One limitation of our scoping review methodology is the random sampling procedure, 
where only 100 publications out of the 1008 identified by the search string were included in 
the screening process. However, upon thorough inspection of this subset and the additional 
publications identified through manual inspection of reference lists, we believe that a level 
of saturation was achieved. This allowed us to identify, if not all, at least the most prevalent 
applications of LLMs in healthcare. 
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Another limitation is that this review did not specifically address or validate the accuracy of 
the output generated by the described clinical tasks. However, one could argue that this was 
beyond the scope of the review, as its primary purpose was to offer an overview of the 
described clinical tasks that have or may hold promise for future implementation. 
 
One thing to appreciate from this review, is the identification of both the classic NLP task 
and its clinical purpose within the described tasks. Providing this information is crucial for 
understanding how the described clinical tasks can be categorized and sets our review apart 
from previous work.  
 
In conclusion, this review was able to provide an overview on the applications of LLMs in 
healthcare settings, focusing both on the underlying classical NLP tasks, as well as their 
clinical implications. Although current literature shows the potential of utilizing LLMs in 
healthcare, their widespread implementation is still on the horizon, representing a focus for 
future developments. 
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Supplementary Materials 
 
Supplementary Table 1. The search query 
 

Database Date Search string 
Pubmed 01-01-2010 to 

14-12-2023 
("large language model"[ti] OR "LLM"[ti] OR "Natural-
Language"[ti] OR "language models"[ti] OR "AI language 
models"[ti] OR "chatbot"[ti] OR "natural language 
inference"[ti] OR "natural language processing"[ti] OR 
"NLP"[ti] OR "ChatGPT"[ti] OR "BERT"[ti] OR "LLaMA"[ti] OR 
("AI"[ti] AND "language model"[tiab])) AND 
("healthcare"[ti] OR "health care"[ti] OR "clinical"[ti] OR 
"clinical workflow"[ti] OR "clinic"[ti] OR "medicine"[ti] OR 
"hospital"[ti] OR "clinics"[ti] OR "care"[ti] OR "patient"[ti] 
OR "treatment"[ti]) 

 
Supplementary Table 2. Data extraction sheet format 
 

Domain Extracted item  Additional explanation 
Paper information First author Surname is enough 
 Title  
 Extracted by  
 Year of publication  
 Type of publication  
 Depth/particularity 

level of clinical 
application 

Level 1: Generic comments about the 
LLM task 
Level 2: LLM task described in a 
specific medical specialty and/or 
scenario 
Level 3: LLM task described in a 
specific medical specialty and/or 
scenario. Also the purpose and/or 
relevance of the clinical task is 
described. 

Application information Description of 
application 

As described in paper 

 User orientation - Patients/relatives  
- Healthcare professionals 
- Clinical centers 
- Lawyers/regulators 

 User-specialization  E.g. radiologists 
 Overarching clinical 

task 
- Patient communication 
- Patient education 
- Clinical workflow 
- Healthcare management 

 Task description Description in own words 
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 Type of application  
 Purpose/relevance of 

application 
 

 Type of classical NLP 
task 

- Text generation (TG) 
- Summarization (Summ) 
- Named Entity Recogntion (NER) 
- Information Extraction (IE) 
- Question Answering (QA) 
- Speech Recognition (SR) 

 Type of input data  
 Example of input data  
 Type of output data  
Usage of application Implemented in 

clinic? 
 

 Number of scenarios 
tested 

 

 
 


