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Abstract 
Structural variants (SVs) are genomic alterations of at least 50 base pairs in the DNA. The PrediCT 
study utilizes two gene panels to investigate tumour development linked to germline mutations in 
cancer predisposition genes. The aim of this project is to optimize an SV pipeline and identify if 
there are clinically significant SVs, focussing on deletions, in genes from the gene panels in PrediCT 
patients.  

SV callers identify genomic alterations in the DNA and produce a VCF file. However, currently there 
is not a single caller good enough for accurate and comprehensive detection of SVs (Koboldt, 2020) 
(Kuzniar et al, 2020) (Kosugi et al, 2019). Hence, SV callers Manta and Dysgu are combined for a 
more accurate and comprehensive detection of SVs. Both callers contain a property in their VCF file 
useful for validating the accuracy of the event and can process CRAM files, therefore significantly 
reducing the pipeline’s runtime.  

The pipeline is optimized by setting thresholds for Dysgu’s Probability Score- and Manta’s Quality 
Score property, based on event verification in IGV (Robinson et al, 2011), which serve as filter. SV 
length and high-confidence-calls from a single caller are also filtered in. Events of interest are 
annotated using AnnotSV, annotation software specialized for SVs, and exon-region filtering is 
performed. Many identified SVs lack clinical significance due to being population-common. 

Combining Dysgu and Manta showed improved results over the use of them as a single caller. With 
an equivalent number of correctly identified events, fewer false positives are called when combing 
the callers. 

In the analysis, the pipeline was unable to detect any novel clinically significant SVs beyond those 
that were already established.  
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Plain language summary 
In this study, the focus was to detect structural variants (SVs) in DNA, which are significant changes 
in the DNA of 50 or more base pairs. Specifically, it is looked at SVs in genes which are known to 
increase the risk of cancer development. The goal was to improve the process of identifying these 
SVs, with a particular emphasis on deletions, in patients from the PrediCT study by creating an SV 
calling pipeline. The SV calling pipeline has as input files with information about DNA and as output 
which mutations in the DNA are interesting and might be the cause of the cancer. 

To reach this goal, specialized software known as “SV callers” are used. These SV callers find 
changes in the DNA and generate a VCF file, which is essentially a detailed record of DNA sequence 
variations, also known as mutations. However, no single SV caller is currently perfect at identifying 
all SVs accurately. To overcome this, two dieerent SV callers are combined, Manta and Dysgu, to get 
a more comprehensive and precise detection of SVs. These tools do not only give the mutations, 
but they also have features that confirm the accuracy of the detections. Plus, they can process data 
in a way that speeds up the pipeline.  

The detection process is improved by setting specific criteria for the SVs to meet, which helps filter 
out less likely SV candidates. Dieerent criteria are tested to find out what good filters are for SV 
calls. To add more information to the interesting findings and focus on specific areas within the 
genes, AnnotSV is used. Many of the found SVs are common in the general population and not 
necessarily linked to cancer.  

Three interesting pipeline runs are done: the first run used no filters, the second run used to filter 
which were determined in this project, the third run looked at more genes compared to the first two 
executions. 

By combining Manta and Dysgu, better results are achieved compared to using either one alone. 
This approach led to fewer incorrect identifications while maintaining the same level of correct 
detections. However, it is important to note that the improved pipeline did not uncover any new SVs 
linked to cancer that were not already known.  There are several reasons no clinically significant 
SVs are found. The first reason is there is only looked only at deletions, which is only one of the SV 
types. There can be other SV types in the data. Another reason might be the deletions are not 
detected during SV calling. It is also possible there are no more clinically significant SVs in the data. 
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Introduction 
The quantity of a specific gene present in an individual’s genome can differ. When there is a 
variation in the amount of a particular gene, it is known as Copy Number Variation (CNV). CNVs are 
caused by duplications, deletions or other genomic rearrangements that result in an imbalanced 
gene dosage (Shaikh, 2017). Structural variants (SVs) are genomic alterations of at least 50 base 
pairs in the DNA (Mahmoud, et al, 2019). There are several different SVs we discern: deletions 
(DEL), duplications (DUP), insertions (INS), translocations (TRA) and inversions (INV). Not all SVs 
result in a variation of copy number. To illustrate, when part of the DNA is inverted, the gene dosage 
does not change, and therefore there is no variation of copy number. SVs can have an impact on 
the phenotype (Mahmoud, et al, 2019).  Such change in the genome can result in up- or 
downregulation of a gene, or even fully disrupting the gene. Not all SVs have the same impact on 
the phenotype. When an SV is located in an exon, the effect will likely be larger than if the SV is 
located in an intron. When an SV results in a frameshift, it is more probable that it will significantly 
affect the phenotype. During translation, every three bases are translated into a single amino acid. 
If this triplet sequence is altered by a deletion or an insertion, a frameshift occurs. This frameshift 
affects the entire sequence until a stop codon is encountered. The position of this stop codon may 
be shifted earlier or later in the sequence as a consequence of the frameshift. 
 
Identifying SVs in germline data is different compared to identifying SVs in tumour data. Identifying 
tumour-specific SVs poses a significant challenge. This challenge arises from variability in 
pinpointing exact breakpoints, the diverse types of variants that can be derived, and the biological 
nature of certain rearrangements (van Belzen, Schönhuth, Kemmeren, & Hehir-Kwa, 2021). Cancer 
genomes exhibit higher levels of genomic instability. This instability leads to more, and more 
complex, SVs compared to germline variations. This complexity is highlighted by complex SVs, 
which are identified through clustering of numerous breakpoints. A complex SV means there are 
multiple types of SVs in the same region. These complex SVs are believed to result from a singular 
catastrophic process, followed by ongoing rearrangements or repair processes. The clustering of 
breakpoints complicates deducing the genomic rearrangements. This results in complexity of 
identifying the events that caused the tumour (van Belzen et al, 2021). There have been dieerent 
types of SVs identified in cancer which cause dysfunction of the gene. The first type is where a SV 
causes an upregulation in gene dosage, resulting in a large overexpression of the gene. The second 
type of SV is a gene fusion (Mahmoud et al, 2019). SVs can combine multiple genes across 
chromosomes. The third type of SV is a change in gene expression, caused by a change in location 
of gene regulatory elements (Mahmoud et al, 2019). 
 
The potential effect of a mutation is determined by the significance of the gene impacted by the SV. 
To illustrate, if an SV disrupts a tumour-suppressor gene, there is an increased change to the 
development of a tumour. However, not all genes function as tumour suppressors, and therefore, 
not all SVs necessarily result in tumour development. Cancer predisposition genes are the genes in 
which a germline mutation increases the risk of getting cancer (Rahman, 2014). Up to 10% of the 
cancers are caused by mutations in cancer predisposition genes (Wang, 2016). However, not all of 
these mutations are SVs, the majority of this percentage is caused by single nucleotide 
polymorphisms (SNPs).  
 
In the PrediCT study (PREDIsposition to Childhood Tumors) a “genotype first approach” is used 
instead of the most commonly used “phenotype first approach” in children with cancer. To 
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illustrate how a genotype first approach can be effective: In 43.3% of children with low-hypodiploid 
acute lymphoblastic leukaemia mutations in TP53, a cancer predisposition gene, were found which 
were also found in non-tumour cells (Holmfeldt et al, 2013). This suggests that this is a germline 
mutation which could be found before the tumour was developed. This example illustrates why 
using a genotype first approach is interesting when we think about tumour development. In the 
PrediCT study, children between age 0 to 19 are used. All children in this study have been 
diagnosed with a type of cancer. In PrediCT, the focus is on determining whether the cancer 
originates from a germline mutation in one or more cancer predisposition genes. The PrediCT study 
uses two gene panels, one gene panel contains 139 genes and one gene panel contains 400 genes. 
Both gene panels are a collection of genes which are known to be linked with child cancer 
predisposition syndromes in children with cancer. There is whole genome sequencing (WGS) data 
of 355 children available. The PrediCT study is done with whole exome sequencing (WXS) data. 
WXS data is used for trying to understand what causes a disease or what is causing symptoms. 
Given that WXS only sequences exomes, there is a likelihood that segments of SVs may not be 
sequenced and consequently remain undetected. Therefore, WGS data is more appropriate for 
identifying SVs.  
 
SVs are found through DNA sequencing. The sequencer produces DNA reads of a certain length. 
These reads are compared to a reference genome, the difference between the sequenced reads 
and the reference gives information about SVs and other genetic alterations. SVs are often harder 
to detect than SNPs. This is because the length of SVs can be larger than the read length, making 
mapping the read to the reference genome a difficult task. Therefore, the length of the reads is 
important for finding SVs. Short read sequencing is currently the most used form of sequencing 
(van Campen, 2022). The length of the reads with this form of sequencing is usually between 50 
and 300 bases but can go up to 600 bases (Amarasinghe et al, 2020). A more recent form of 
sequencing is called long read sequencing. Long read sequencing can produce reads with a length 
over 10 kilobases (Amarasinghe et al, 2020). Long read sequencing is therefore more suitable for 
finding SVs. This method of sequencing is, however, much more expensive and consequently not 
as much used as short read sequencing. 
 
The sequenced reads are mapped against a reference genome. The Human Genome Project 
started deciphering the entire human genetic code (Collins & Fink, 1995). This project has 
undergone consistent enhancement over the past two decades (Nurk et al, 2022). When the reads 
are mapped against a reference genome, a Sequence Alignment Map (SAM) file is produced. A SAM 
file can be compressed to a binary representation of the information, this is called a Binary 
Alignment Map (BAM) file. Compressed files require less time for transferring and require 
significantly less storage capacity than uncompressed files. There is an alternative to SAM- and 
BAM files, called a Compressed Reference-orientated Alignment Map (CRAM) file. A CRAM file 
reduces storage costs by describing the differences between reference sequence and the aligned 
sequence reads.  
 
The identification of SVs in an alignment file is done by SV callers. SV callers produce a Variant Call 
Format (VCF) file where the gene sequence variations are described. SVs in the genome can be 
found using tools made for germline- and somatic detection of SVs. There are many different of 
these callers developed over the last few years. However, there is currently still not a single caller 
good enough for accurate and comprehensive detection of SVs. For that reason, it is 
recommended to combine different callers for a more accurate and comprehensive detection of 
SVs (Koboldt, 2020) (Kuzniar et al, 2020) (Kosugi et al, 2019). Combining dieerent callers means 
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merging the SVs in VCF files produced by the callers. When doing this, some SVs are found by 
multiple callers while other SVs are found by less callers. There are many dieerent callers and this 
number keeps increasing with the rapid growing next generation sequencing (NGS) methods. A big 
problem is the lack of comparability between these tools (Wittler, Marschall, Schönhuth & 
Mäkinen, 2015). This lack of comparability comes from errors during sequencing, an uncertainty in 
breakpoints, and in repetitive regions are multiple possible representations of SVs. These problems 
result in a challenge for comparing and merging SVs (Sedlazeck et al, 2017). In some cases, 
dieerent callers describe more than one SV type in the same region. Or even a single caller 
describes more than one SV type in the same region. This could be the result of an error in the call 
made or there can be a complex SV in that region. A tandem duplication of a large region could be 
described by some callers as a novel insertion, while other callers describe this event as a 
duplication. These examples illustrate how dieerent SV callers might disagree over the same data 
and the complexity of merging calls from dieerent callers (Sedlazeck et al, 2017). 
 
The research question is: “Can we identify constitutional small structural variants of clinical 
significance in cancer predisposition genes in children with cancer?”. This question is answered by 
creating an optimised SV pipeline. 
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Material & Methods 
This chapter gives a description of the used cohorts, how choices are made to establish the 
pipeline (Fig. 1).  Two SV callers are combined for a more accurate and comprehensive detection of 
SVs. Several filter steps are applied, followed by annotation and filtering on exon regions. Each 
subchapter in this chapter is dedicated to a detailed explanation of the steps illustrated in Fig. 1.   

Cohort 
Two dieerent cohorts are used for this project. One of the cohorts of our interest, the PrediCT 
samples with WGS data and proper consent, contains 318 samples. For PrediCT’s samples, there 
is only proper consent to look in genes from the PrediCT gene panels, making it not suited for 
testing. For all the 318 samples, there is proper consent to identify mutations in the first gene 
panel, consisting of 139 genes. For the second gene panel, consisting of 400 genes, is only proper 
consent for 37 samples. 
 
For the testing of the pipeline, three samples from the ROHHAD study (Manuscript In Preparation) 
are used. The ROHHAD study is a study done by Nienke van Engelen. The sample used from 
ROHHAD is suited here because there is proper consent to look into all sequencing data. For some 
ROHHAD samples, optical mapping has been used and the genome of the parents is also 
sequenced.  
 
For the first PrediCT gene panel, two SVs are already identified. There is a 172679 base pair deletion 
in the FANCA gene and an exon deletion in SDHB of 7904 base pairs.  
 

Figure 1. Schematic overview of the pipeline used to process the PrediCT samples. The pipeline has as input VCFs 
produced by Dysgu and Manta 
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Combining SV callers 
Not a single caller is good enough for accurate and comprehensive detection of SVs. Hence, it is 
recommended to combine different callers (Koboldt, 2020) (Kuzniar et al, 2020) (Kosugi et al, 2019). 
For this project, five SV callers are tested and compared. Manta (Chen et al, 2016) is a tool 
developed in 2016 and is widely used for the detection of indels and structural variants in cancer- 
and germline sequencing analysis. Dysgu (Cleal & Baird, 2022) is a recently developed SV caller 
from 2022 and uses machine learning to classify which makes it unique compared to the other SV 
callers. GRIDSS2 (Cameron et al, 2021) is the newer version from GRIDSS and is released in 2021. 
Both GRIDSS and GRIDSS2 use positional de Bruijn graph assembly to assemble the reads that 
potentially support a structural variant (Cameron et al, 2017) (Cameron et al, 2021). Lumpy (Layer, 
Chiang, Quinlan & Hall, 2014) and Delly (Rausch et al, 2012) are both also older, and therefore more 
tested, SV callers released in 2014 and 2016. These five SV callers dieer in their approach to detect 
SVs, their release duration and the extent of how much they have been used in previous research. 
Dieerent types of SV calls per caller can be observed in Table 1.  

 
DEL DUP INS TRA INV BND SGL BAM CRAM 

Manta 
         

GRIDSS2 
         

Delly 
         

Lumpy 
         

Dysgu 
         

Table 1. For five SV callers (Manta, GRIDSS2, Delly, Lumpy, Dysgu) shown which SVs they identify (DEL=deletion, 
DUP=duplication, INS=insertion, TRA=translocation, INV=inversion, BND=breakend, SGL = single breakend SV support). 
CRAM indicates if the caller can directly work with CRAM files. 

SURVIVOR (Jeffares et al, 2017) can merge the VCFs produced by different callers effectively. It 
ensures each SV found by multiple callers appears only once in the VCF with an annotation of 
detecting caller(s). The output by SURVIVOR is a new VCF with all merged events. 
 

Property filtering 
On average there are around 4400 SVs per individual in germline data, predominantly deletions 
(Abel et al, 2020). Considering that the callers called ~2x till ~19x the average amount of SVs (Table 
3) in germline data, many SVs are likely incorrectly called. When there is an interest in clinically 
significant SVs, the VCF file should have a high percentage of correct calls. Each VCF produced by 
the caller gives some properties with the called event. Examples of such properties are a quality 
score, number of paired-reads supporting the variant, number of pieces of evidence supporting the 
variant, a probability score and the mean map quality for primary reads supporting the variant. To 
filter the VCF files on a higher percentage correctly called SVs, these properties given with the calls 
might be interesting. When there are more total pieces of evidence supporting a variant and the 
quality of the mapping is higher, it would be logical if an event is then more likely to be correct. To 
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test this, called events are checked in Integrative Genomics Viewer (IGV), a visualisation tool that 
facilitates the analysis of extensive datasets on regular desktop computers (Robinson et al, 2011). 
When an event is verified in IGV, it is labelled as true or false in the VCF file. By doing this, two 
groups are created: the correctly-called-group and the incorrectly-called-group. If enough events 
are checked, a difference might be shown in values of certain properties between the two groups. If 
there is a clear difference in value of a certain property between these groups, this property might 
be a good indication of an event being correct and a threshold can be set. For example, if all 
correctly called events have a quality score of 700 or larger and all incorrectly called events have a 
quality score lower than 700, a threshold can be made which filters a VCF file on keeping only the 
SVs which have a quality score higher than 700 for that property. In this way, the percentage of 
correct SVs in the VCF will be higher. This filter is applied using a Python script (Appendix 1). 
 
For each caller are called events checked to determine useful properties for setting a threshold. 
These events are checked in a sample from the ROHHAD study. Each event exhibits unique 
properties for each identifying caller. The resulting “SURVIVOR VCF” contains a reduced set of 
properties. To enable a single SV verification in IGV to account for multiple callers, when an event is 
called by multiple callers, and retain the original properties, the true- and false labels are recorded 
within the SURVIVOR VCF file. A Python script is made to annotate “true” or “false” for each 
specific event in the original VCF (Appendix 1). Each event is assigned a unique ID within its original 
VCF, which is also located in the SURVIVOR VCF, facilitating linkage of true- and false labels 
between the two. The properties of interest are those that distinguish between SVs labelled as true 
or false.  
 
Multiple properties show correlation with being correctly 
called but almost all show no clear threshold value. An 
example is shown in Figure 2. This property might give an 
indication of a call being correctly called but it is not 
convincing enough. If a threshold would be set for this 
property, too many correct calls would be falsely removed 
from the VCF. Better properties to use when trying to 
determine if an SV is correctly called are the probability score 
from Dysgu and the quality score from Manta (Fig. 3, Fig. 
4).  In these figures there is a clearer difference between 
correctly- and incorrectly called SVs. For these properties, a 
threshold can be determined which can be used to filter the 
VCF files. 
 

Determining SV callers 
Dysgu and Manta are chosen as callers for the pipeline. Based 
on Figure 3 and Figure 4, Manta and Dysgu both have a property 
which is useful for indicating if an event is likely correct. VCFs 
from Manta and Dysgu can therefore be filtered on these 
properties. Only calls made by Dysgu with a probability score 
>= x and calls made by Manta with a quality score >= x are 
used. In this way, the percentage of correct calls in the VCF is higher.  

Figure 2. Number of split-reads 
supporting a call made by Delly. This 
property suggests potential accuracy for 
an event. However, this measure is not 
suSiciently reliable to establish a 
definitive threshold. 
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Runtime plays an important role in the pipeline’s eeiciency. Both Dysgu and Manta are capable of 
processing CRAM files (Table 1), resulting in a significantly reduced runtime. 

Removing SV types  
Diverse SVs require distinct approaches for detection, resulting to not all SV types are identified by 
every SV caller (Table 1). This dieerentiation is due to the unique operational mechanisms of each 
SV type, which demand specific thresholds for each property and SV type. For instance, for a 
deletion, a Dysgu probability score of 0.65 might be sueicient to confirm that the call is likely 
correct. However, for accurately predicting translocations, a higher probability score of 0.90 may be 
required. Consequently, it’s advisable to set a threshold for only SV type. Given that deletions are 
the most frequently occurring SV type, the focus is solely on these in the pipeline.  

Gene panel filtering 
The PrediCT study aims to identify clinically significant SVs in specific gene panels, in line with the 
consent obtained for the patients. Manta and Dysgu both generate a VCF file. The next step uses 
bcftools (Danecek et al, 2021) to confirm if each SV aligns with a gene in the gene panel. This tool 
filters the SVs by comparing the VCF file with a BED file or regions-of-interest file, ensuring that only 
SVs which are relevant are included.  
 

Figure 3. The Probability Score assigned by 
Dysgu for both verified correct- and incorrect 
calls shows a notable distinction in the 
probability values between calls made 
accurately and those made inaccurately. 

Figure 4. The Quality Score assigned by Manta 
for both verified correct- and incorrect calls 
shows a notable distinction in the probability 
values between calls made accurately and 
those made inaccurately. 
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SV length filtering 
The pipeline also filters on SV length using a Python script (Appendix 1). In the VCF files are SVs 
from several tens of base pairs up to over a million base pairs. Using PrediCT’s germline data, it is 
improbable to find undetected SVs spanning hundreds of thousands of base pairs, and if entire 
genes or numerous exons were deleted, they would most likely have already been identified since 
Copy Number Variation (CNV) analysis are already performed. But these very long SVs cause a lot 
of noise in the data. After applying the threshold filter for the properties, it is still possible that a 
long SV had a score above this threshold since the threshold will never remove all incorrect calls 
from the data. The threshold values are adjusted to a moderate level to ensure that correct events 
are not excessively excluded. For that reason, there is a possibility a long SV ends up in the filtered 
data. If this event gets annotated, the output is filled with noise. Each gene that falls within this 
event will be annotated, making it harder to find more likely correct events. To avoid this problem, 
the assumption is made that very large SVs are not in the data. Hence, only events are kept that fall 
below a certain length. This length is set at 200000 bp. This length of 200000 bp is so that the 
extremely large SVs are not in the data but the already known SVs are found.  

Artificial VCF merging  
Dysgu and SURVIVOR do not work together properly. When trying to merge a VCF with a relatively 
low SV count (~50) or less, with a VCF produced by Dysgu, a segmentation fault error will be 
produced (Fig. 5). “Segmentation fault: 11” is an error code for SURVIVOR trying to access memory, 
where it does not have the access for (Finn, 2013). The error is unpredictable because it does not 
show up every time you run the same command. The same command is run five times and only four 
times the error occurs (Fig. 5). The issue shown in Figure 5 seems to have no solution. Trying to find 
a solution, Fritz Sedlazeck, the developer of SURVIVOR, was contacted to help solve this issue. 
Unfortunately, Fritz Sedlazeck was unable to provide a solution for this error. He suggested using 
an alternative program of his called Truvari (Sadlazeck, 2023) (English, Menon, Gibbs, Metcalf, & 
Sedlazeck, 2022), but due to the stage of the internship, transitioning to a new program was not 

Figure 5. When attempting to merge a VCF file with relatively low SV count from Dysgu using SURVIVOR, it occasionally 
results in a segmentation fault error. Interestingly, this error is inconsistent, as repeating the same command multiple 
times does not always produce the error. 
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feasible. Instead of transitioning to a new program, a workaround was identified by merging the 
VCF from Manta with an artificial VCF containing non-existent mutations (Fig. 6). This new VCF 
includes 2000 fabricated mutations combined with the genuine mutations found by Manta. 
Merging the Dysgu VCF with this new VCF, which contains artificial- and Manta’s mutations, 
successfully circumvents the segmentation error. The artificial mutations do not persist in the final 
SURVIVOR merged VCF because these mutations are not found by both callers. This results in a file 
exclusively containing calls from Manta and Dysgu. 
 
The non-existing mutations are made using a python script (Appendix 1) and are all deletions with a 
length of 100bp with a start location 1000bp from each other. Each non-existing mutation has an ID 
which contains “mantaArtDEL”. The incorporation of “Art” in the original Manta ID is not a 
possibility. Therefore, in the event that Dysgu found an SV at a same location as an non-existing SV 
and these get merged, this can readily be identified since the original IDs are included in the 
SURVIVOR VCF. 
 

 
Figure 6. Artificial VCF with fake deletions. 

SURVIVOR merging 

The VCFs are merged using SURVIVOR. SURVIVOR takes 8 arguments. The first argument contains 
a file with the paths to the VCFs to be merged. The second argument is the maximum distance 
between breakpoints. The recommended distance for this by SURVIVOR is 1000 base pairs. When 
the same event is found by multiple callers, the distance between breakpoints is suspected to be 
much less than 1000 base pairs. Slight variances are expected due to some breakpoint 
uncertainties. To test this hypothesis, for the same single ROHHAD sample that was used before, 
the merging distance is identified when the merging distance is set at 1000 base pairs (Fig. 7). As 
anticipated, the vast majority of merged events occur within a narrow range of base pairs. There are 
merging distances greater than 1000 base pairs, even though the merging distance is set at a 
maximum 1000 base pairs. This occurs when one breakpoint is located within a 1000 base pairs 
range, leading to merging the events, while the distance of the other breakpoint exceeds 1000 base 
pairs. Thus, when merging events with a maximum distance of 1000 base pairs, the vast majority of 
events get merged within a narrow range of base pairs, hence for the pipeline the recommended 
merging distance of 1000 base pairs is kept. The third argument is the minimum number of 
supporting callers, this argument is set on two. Combining callers show improved results over one 
caller (Fig. 11). The fourth, fifth, sixth and seventh argument are set at 0. The eight argument is the 
output. 
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When using SURVIVOR, the command 
requires a file specifying the paths of the 
VCFs intended for merging. To ensure 
that SURVIVOR works properly with 
Dysgu, it is crucial to position the path of 
Dysgu’s VCF at the bottom, or close to 
the bottom. The order matters when 
using Dysgu’s VCF, the paths of the 
VCFs from other callers should precede 
Dysgu’s VCF path. If Dysgu’s file path is 
at the top of the file, there is an 
increased risk of encountering a 
“Segmentation fault: 11” error (Fig. 5). A 
workaround involves merging an 
additional artificial VCF for merging (Fig. 
8). Consequently, the file read by 
SURVIVOR for merging contains three 
VCFs: Manta’s VCF merged with 2000 
artificial SVs, the original Dysgu VCF and 
an artificial VCF containing 5000 
fabricated mutations. It is essential to 
note that the 2000 mutations merged 
with Manta’s VCF and the artificial VCF 
containing 5000 SVs should not share 
the same artificial mutations. This 
differentiation is crucial because 
SURVIVOR identifies SVs that occur at 
least twice in total: therefore, unique 
artificial mutations will not be included in the merged VCF.  
 

 
Figure 8. Artificial VCF with non-existing deletions. 

Adding high score calls made by single caller 
Manta’s quality score and Dysgu’s probability score have proven to be a good indication of an event 
likely to be correct (Fig. 3, Fig. 4). Hence, events with a high quality- or probability score are likely to 
be correct events. Events only found by Dysgu with a probability score over 0.90 and events found 
by Manta with a quality score over 950 are seen as high confidence calls. These are filtered using a 
Python script (Appendix 1). If one caller misses an event but the other caller found this event with a 
high confidence score, it can still be an interesting event. For that reason, events which are found 
by one caller with a high confidence score will also be annotated. These events are placed in its 

Figure 7. Amount of base pairs between merged events from 
diSerent SV callers. When setting the merging distance at 1 kbp for 
the combined calls, it is observed that certain merging distances 
exceed 1 kbp. This occurs because one breakpoint is within the 1 
kbp range, leading to the merging of events, while the other 
breakpoint lies at a greater distance. 
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own folder, separated from the SURVIVOR merged calls. For those who may not find interest in 
events exclusively found by a single caller, it is straightforward to avoid them by solely focussing on 
the events in the map with events from the SURVIVOR. 

AnnotSV 
Events of interest are annotated using AnnotSV (Geoffroy et al, 2023) (Geoffroy et al, 2021) 
(Geoffroy et al, 2018). AnnotSV is a command-line annotation tool written in the Tcl programming 
language, specialised for annotating SVs. It can be executed on different operating systems and be 
integrated in NGS analysis pipelines (Geoffroy et al, 2018). The required input for AnnotSV is a VCF 
or BED file. The annotation is performed by identifying the overlap between the annotation features 
and the input. Annotation can be carried out utilising either the GRCh37 or GRCh38 version of the 
human genome build. For the PrediCT samples, GRCh38 is used. Annotations linked to the gene 
name will also be reported. AnnotSV generates for each SV two types of annotation, the first type is 
the annotation based on the full length SV. The second type is annotation for each gene that falls 
within the SV. The output is a TSV file. This TSV file can be opened in different spreadsheet 
programs, for example Excel.  
 
Events found by Dysgu and Manta and events by one caller with a high confidence score are 
annotated and placed separately in two different folders.  

Extracting exon information 
Most found SVs are in introns and are therefore not of clinical significance. The events of interest 
are SVs that remove bases within an exon. AnnotSV gives in its annotation the location of the event. 
If the deletion removes bases from an exon, it is annotated here in dieerent ways. The first type of 
annotation are annotations containing “exon”, two examples to illustrate: “exon4-exon4” and 
“intron2-exon3”. The second type of annotation which can contain an exon is “intronX-intronX+”, 
thus when the deletion removes multiple introns, exons will be removed as well. An example of how 
it could look in the annotation file is “intron4-intron5”. The remaining two annotations do not always 
cover an exon, but since it is a possibility, these events should be verified. The annotations are as 
follows: “txStart-intronX” and “intronX-txEnd”. It is a possibility that an exon falls between the 
transcription start and an intron or between an intron and the transcription end, however it is not 
necessarily.  

Filtering for uncommon mutations 
Many of the found mutations are mutations that are common for a certain population and are 
therefore not of interest when the interest  is in SVs of clinical significance (Fig. 9). Since these SVs 
are not of interest, they should not be in the output TSV. Removing these SVs is done with a Python 
script (Appendix 1) that has as input the TSV file with common mutations and an integer, N,  which 
represents the maximum number of times an SV is allowed and as output a new TSV. The script 
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checks which chromosome the SV is on and the start location and if the same chromosome and 
start location is seen more than N times, they are not written in the new TSV.  

BED file 
The TSV produced after the previous step contains only SVs which are worth checking in IGV. To 
make the process of verifying the events in IGV faster, a BED file is produced based on the events of 
interest. This script is made in Python (Appendix 1) and makes a BED file based on an AnnotSV TSV 
file.  The number of base pairs, N, left- and right of the breakpoints can be specified. N is set at 10 
for the pipeline. A few base pairs left- and right of the indicated breakpoints can give a better 
overview of the event when checking in IGV.  

Bitbucket 
Repository with all required scripts for the pipeline is located on Bitbucket:  
https://bitbucket.org/princessmaximacenter/pmc_kuiper_projects/src/master/svpipeline/ 
 
  

Figure 9. There is a 42 base pair deletion on chromosome common for a population and is therefore found in many diSerent samples, making it 
not clinically significant. 

https://bitbucket.org/princessmaximacenter/pmc_kuiper_projects/src/master/svpipeline/
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Results 
This section of the report presents the outcomes generated throughout the project, detailing the 
selection process for SV callers and thresholds. Additionally, it provides an analysis of the results 
obtained from three pipeline executions: one with property thresholds implemented, another 
without property thresholds, and a third using the Hemato gene panel.  

Assessing SV caller’s and SURVIVOR’s performance 
To assess the performance of each SV caller in comparison to the other, all five callers identify SVs 
in the same sample. The overlap between these calls gives information how the caller performs. To 
determine overlapping calls, the produced VCFs are merged. Next, ensure each SV found by 
multiple callers appears only once in the VCF with an annotation of detecting caller(s). This is  

Table 2.  As the first argument, SURVIVOR needs a file with the VCF names and paths to them. The second command is 
the maximum distance between the breakpoints when it merges SVs from diSerent VCFs. Not every tool will give the exact 
same breakpoint locations, so this number sets the maximum distance when it calls a mutation as the same or if you 
want to see them as separate SVs. This value is set at 1000 bp, the recommended length by the developers. This length 
works well for diSerent datasets (Sadlazeck, 2021) The third argument is the minimum number of supporting callers. If we 
set the minimum number of supporting callers at 1, all found SVs by all the callers will be written in the new VCF file. If this 
argument is set at 5, only the SVs which are found by all five callers will be written in the new VCF file. The fourth argument 
is if the type of SV should be considered. If within the given maximum distance between the breakpoints diSerent callers 
call an SV but it is a diSerent SV type, should this be merged into one SV in the newly produced VCF. This value is set at 0 
since the type of SV is not that important and distinguishing diSerences between insertions and duplications for example 
can be hard. Hence, it is set at 0. The fifth argument is if the strand should be considered when merging SVs is set at 0. 
This is set at 0 because this flag can be hard to parse, according to the developer (Sadlazeck, 2021). The sixth argument is 
disabled in SURVIVOR 1.0.7. The seventh argument is the minimum size of the SVs to be considered. If SVs are smaller 
than this given length, they will not be written in the new VCF. Minimum length is set at 0 since all SVs are interesting at 
this point. And the final, eighth, argument is the output VCF name and path. 

 

Argument 
 

Value used for assessing Caller’s 
performance 

1 File with VCF names and paths 
 

2 Maximum distance between 
breakpoints 

1000 

3 Minimum number of supporting callers 1 

4 Take type of SV into account (1==yes, 
else no) 

0 

5 Take strand of SV into account (1==yes, 
else no) 

0 

6 Disabled. 0 

7 Minimum size of SVs to be considered 0 

8 Output VCF name and path 
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facilitated with SURVIVOR. SURVIVOR can merge VCFs from different SV callers efficiently. 
SURVIVOR has multiple options when merging SVs, which need to be specified in the arguments 
(Table 2).  
The testing of SURVIVOR and assessing the performance of the callers (Table 2) is done on a single 
WGS germline sample from the ROHHAD study. 
 
Figure 10 describes the overlap between the calls, 1820 SVs are found by all five SV callers. What is 
also immediately noticeable is the difference in the number of SVs called per caller. Dysgu calls 
more than 16x the number of SVs compared to Manta (Table 3).  
 

 
DEL DUP INS TRA INV BND SGL TOTAL 

Manta 4293 589 1755 
 

394 766 
 

7797 

GRIDSS2 9160 1472 1002 
 

466 2336 4294 18730 

Delly 11642 8887 82 
 

54110 15131 
 

89852 

Lumpy 5239 1685 
  

408 16482 
 

23814 

Dysgu 19203 2442 26508 30692 48831 
  

127676 
Table 3. Presentation of the number of SVs identified by five diSerent callers in a single ROHHAD germline WGS sample. It 
is important to note that calls classified as breakends (BND) or single breakend SV support (SGL) are not of interest in the 
context of identifying clinically significant SVs. 

Figure 10. This Venn Diagram illustrates the quantity and overlap of calls made five SV 
callers. Noticeable is the variation in the number of calls each caller makes. 
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Determining property thresholds 
To accurately determine a threshold for Manta’s quality score and Dysgu’s probability score for 
deletions in the VCF files, more verified events are required. The same ROHHAD sample as used for 
Figure 3 & 4 is used. Dysgu- and Manta calls get merged and only SVs which are found by both 
callers are verified. Verified calls found by a single caller are not used for the merged set. When 
thresholds are applied, correctly- and incorrectly called SVs are lost (Table 4 & 5). Optimal 
determination for the thresholds of the SV caller’s properties rely on the specified percentage of 
True Positives (TP) to be identified. To illustrate, if the interest is to find at least 90% of the TP SVs in 
the data,  
 
 258 * 0.90 = 232.2 
 
Finding ~90% of the true SVs in this dataset means finding ~232 true SVs.  
 
Using Dysgu, to find 232 true SVs a probability threshold of 0.65 is suited (Table 4). This results in 
finding 233 TP calls and 163 FP calls. Consequently, losing ~10% of the correct SVs and losing 
~45% of the incorrectly called SVs. 
 

Dysgu 
Prob. 

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

True 258 256 255 254 253 253 252 252 251 249 246 242 239 233 217 189 138 117 74 23 

False 298 294 281 266 260 247 237 228 221 214 205 191 176 163 130 81 31 13 3 0 

Table 4. Shown how many correctly called- (True) and incorrectly called (False) SVs are found for diSerent thresholds for 
Dysgu’s Probability Score.  

Manta 
Quality 

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 

True 258 258 258 253 249 242 234 220 214 199 184 165 151 139 131 118 106 86 78 73 

False 298 274 246 224 206 186 158 136 109 99 86 72 51 45 32 27 20 19 12 8 

Table 5. Shown how many correctly called- (True) and incorrectly called (False) SVs are found for diSerent thresholds for 
Manta’s Quality Score. 

To find at least 232 true SVs using Manta, a quality score threshold could be set at 300. This results 
in finding 234 TP and 158 FP (Table 4). To put in percentages, losing ~10% of the correct SVs and 
~47% of the incorrectly called SVs.  
 
If Dysgu and Manta are merged, around the same percentage of correctly called SVs can be found 
but with less incorrectly called SVs. When combining calls filtered on Dysgu probability 0.55 and 
Manta quality 200, 231 TP- and 139 FP calls are found (Appendix 1). To put in percentages, ~10% of 
the TP calls and ~53% of the FP are lost in this dataset. Hence, combining Dysgu and Manta can 
lead to finding the same percentage of correctly called SVs with less incorrectly called SVs.  
 
If there are a lot of SVs in the data, the percentage FP found can be too high when trying to find 90% 
of the TP calls. If the interest is therefore to find 70% of the TP, the following thresholds can be set, 
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258 * 0.70 = 180.6 
 

To find around 181 correct SVs for Dysgu, a threshold of 0.75 is appropriate. With this threshold, 
189 correctly called SVs and 81 incorrectly called SVs are found (Table 4). To put this in 
percentages: losing ~27% of the correctly called SVs and losing ~73% of incorrectly called SVs. 
 
To find around 181 correct SVs for Manta, a threshold of around 500 can be used. With this 
threshold, 184 correctly called SVs and 86 incorrectly called SVs are found (Table 5). To put this in 
percentages: losing ~29% of the correctly called SVs and losing ~71% of the incorrectly called SVs. 
 
Combining Manta and Dysgu leads again to finding less incorrectly called SVs while finding around 
the same percentage of correct calls. Combining Manta’s quality threshold of 400 with Dysgu’s 
probability score threshold of 0.70 leads to a dataset with 182 correctly called SVs and 50 
incorrectly called SVs. To put in percentages, losing ~29% of correctly called SVs and losing 83% of 
incorrectly called SVs. Consequently, combining SV callers lead to the less falsely called SVs for 
the same amount of correctly called SVs (Fig. 6). 
 
In the PrediCT dataset, it is crucial to identify nearly all SVs. For that reason, a Dysgu probability 
threshold of 0.55 and Manta quality threshold of 200 is suited, resulting in finding ~90% of SVs. For 
the pipeline, Dysgu’s probability threshold is set at 0.54 instead of 0.55. This is due to one of the 
already verified SVs in the PrediCT data having a Dysgu probability score of 0.54 and this SV should 
be in the final output.  
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Results with thresholds 
The pipeline (Fig. 1) is executed using thresholds of 0.54 for Dysgu’s probability and 200 for Manta’s 
quality, aiming for identifying 90% of the SVs in the data (Appendix 1).  

The evaluation in IGV, along with explanations for why SVs are inaccurately or accurately 
identified, is included in the Appendix. For cases where the assessment was more 
complex, the details of these events are discussed in this section of the chapter. 
 
In total, 4606 SVs are called in all PrediCT patients combined, 247 are in exons. The events 
which are not common in the population are shown in Table 6.  
 
An SDHB exon 3 deletion in PrediCT196 is found by Dysgu and Manta. However, this event was 
already previously identified. 
 
A FANCA deletion in PrediCT878 is found by Dysgu and Manta. However, this event was already 
identified.  
 
PrediCT745 contains a deletion, eliminating parts of the genes CEP57 and MTMR2 (Appendix 6). 
This event is found by Dysgu and Manta. CEP57 is a gene that is in the PrediCT gene panel, and 
therefore interesting. The patient has Non-Hodgkin lymphoma (NHL). The PrediCT study used in 
their research Whole Exome Sequencing (WXS) data (Appendix 7). This mutation is not reported in 
the VCF that was earlier produced. The deletion does not cause a frameshift since the end part is 
removed. A mutation frequently observed in the population occurs in close proximity to this 

Figure 11. Manta’s- and Dysgu’s precision are shown in purple and red. The dotted lines are respectively found 70% 
and 90% of the True Positives (TP). In the figure can be seen that combining Manta and Dysgu results in a better 
dataset. For the same percentage TP found, fewer False Positives (FP) are found when combining callers compared to 
using a single caller. 
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specific structural variant (UCSC, n.d.). Considering that there is a deletion more common at this 
location, it is not likely this is a causation for NHL.  
 

Sample DEL 
length 

Gene Tumour type Assessment Appendix 

PrediCT878 172679 bp FANCA ALL Correct  
PrediCT196 7904 bp SDHB Feochromocytoma Correct  
PrediCT177 91 bp RTEL1 Wilms Incorrect 5 
PrediCT745 1300 bp CEP57 NHL Correct but 

likely not 
clinically 
significant 

6 

PrediCT403 36 bp ETV6 NBL Correct but 
likely not 
clinically 
significant 

8 

Table 6. SVs found by the pipeline in all PrediCT samples using a threshold of 0.54 for Dysgu’s Probability and 200 for 
Manta’s Quality which are in an exon and not common in a population. 

PrediCT403 has a deletion in ETV6, one of the cancer predisposition genes (Appendix 8) and is 
found by Dysgu. There are no reads at this location in the WXS, and thus not found in the VCF. There 
are no reads at this location in the WXS because the bed file that is used, 
“KAPA_HyperExome_hg38_capture_targets.bed”, does not have this location in the file. Hence, it is 
not found in the WXS data and the VCF. PrediCT403 is diagnosed with a Neuroblastoma (NBL). The 
deletion has a length of 36 base pairs, meaning there is no frameshift. In literature, there are no 
mentions about ETV6 segment deletion and NBL. Considering that there is no frameshift and no 
information in literature about NBL and ETV6 segment deletion, this deletion is likely not the cause 
for NBL. 

The threshold combination using Dysgu’s probability of 0.54 and Manta’s Quality of 200 resulted in 
80% correctly called events and no correct SVs missed when these results are compared with the 
pipeline execution without thresholds. 

Results without thresholds 
For the PrediCT cohort, it is to identify all the interesting SVs. Hence, the pipeline is run with no 
thresholds for Dysgu’s probability- and Manta’s quality score. The SV length filtered is applied with 
a maximum length of 200000 base pairs. The SVs found using thresholds for Dysgu’s Probability of 
0.54 and Manta’s Quality Score of 200 are identified again, however more uniquely called SVs are in 
the output (Table 7). 
 
The evaluation in IGV, along with explanations for why SVs are inaccurately or accurately identified, 
is included in the Appendix. For cases where the assessment was more complex, the details of 
these events are discussed in this section of the chapter. 
 
In total 5167 SVs are called, 429 of those are in an exon and 13 are unique events. The unique 
events are in Table 7. 
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Sample DEL 
length 

Gene Tumour type Assessment Appendix 

PrediCT878 172679 bp FANCA ALL Correct  
PrediCT196 7904 bp SDHB Feochromocytoma Correct  
PrediCT177 91 bp RTEL1 Wilms Incorrect 5 
PrediCT745 1300 bp CEP57 NHL Correct but 

likely not 
clinically 
significant 

6 

PrediCT403 36 bp ETV6 NBL Correct but 
likely not 
clinically 
significant 

8 

PrediCT242 1045 RPL11 ALL Incorrect 9 
PrediCT242 433 RPL11 ALL Incorrect 9 
PrediCT242 2691 RPL35A ALL Incorrect 9 
PrediCT242 3304 RPS24 ALL Incorrect 9 
PrediCT242 125 EIF4G2 ALL Incorrect 9 
PrediCT738 26673 PAX5 ALL Incorrect 10 
PrediCT138 154090 CREB3L3 ALL Incorrect 11 
PrediCT917 89363 DDB2 NHL Incorrect 12 

Table 7. SVs which are in an exon and not common in a population found by the pipeline using only a filter on SV length in 
all PrediCT samples. 

In PrediCT138 is a 154090 base pairs deletion called (Appendix 11). The two identified breakpoints 
are correct. However, it is not likely that there is a deletion between these breakpoints. If the genes 
within these breakpoints are deleted, this could be seen in the CNV plot (Appendix 3). In this plot, 
there is no clear CNV seen at chromosome 19 around 4MB. Therefore, it is not likely this deletion is 
correctly identified.  
 
Using no threshold for Dysgu’s Probability and Manta’s Quality score resulted in 31% correctly 
called events. 

Hemato panel 
The “Hemato gene panel” is PrediCT’s second gene panel. While this panel contains a large 
number of genes, there are only 37 samples for which proper consent and WGS data is available. 
The pipeline was executed using no thresholds for Dysgu’s Probability and Manta’s quality. There 
was a SV length filter used with a maximum length of 200000 base pairs. In total, 103 SVs are 
called, 52 of those in an exon and 3 are unique called events. 
 
Three uniquely called SVs were identified using no thresholds for Dysgu’s Probability and Manta’s 
Quality Score, two of the events were identified with the threshold filter (Table 8).  
 
The called event in PrediCT738was already found with PrediCT’s other gene panel (Appendix 10). 
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Sample DEL 
length 

Gene Tumour 
type 

Assessment Appendix Identified with 
Dysgu 0.54 
and Manta 200 
filter 

PrediCT738 26673 PAX5 ALL Incorrect 10 No 
PrediCT160 83342  ALL Incorrect 13 Yes 
PrediCT347 78 

 
GP1BA ALL Correct but likely 

not clinically 
significant 

14 Yes 

Table 8. SVs which are in an exon and not common in a population for PrediCT samples with proper consent for the 
Hemato gene panel. 

The second called event is found in PrediCT160 (Appendix. 13). This event is an 83342 base pairs 
deletion on chromosome 11. The event is called between 64195495 and 64278841 base pairs. 
Chromosome 11 spans around 135 million base pairs (MedlinePlus, 2016). This means the deletion 
should occur approximately in the central region of the chromosome. The CNV data (Appendix 4) 
shows no indication of a deletion at this location. Hence, the called deletion is likely incorrect. 
 
The third called event is in PrediCT347 (Appendix 14). This deletion in the GP1BA gene has a length 
of 78 base pairs. Hence, the deletion does not cause a frameshift. The patient is diagnosed with 
Acute Lymphocytic Leukaemia (ALL). In literature, there are no mentions about GP1BA segment 
deletion and ALL. Considering that there is no frameshift and no information in literature about ALL 
and GP1BA segment deletion, this deletion is likely not the cause for ALL.  
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Conclusion 
There are many different SV callers developed over the last years. None of these callers performs 
with well enough for accurate and comprehensive detection of SVs. For that reason, it is 
recommended to combine different callers for a more accurate and comprehensive detection of 
SVs (Koboldt, 2020) (Kuzniar et al, 2020) (Kosugi et al, 2019).  Manta and Dysgu are chosen as 
callers for the reasons they both contain a property useful for indicating if an event is correctly 
called. Manta has the property Quality Score and Dysgu has the property Probability Score. The 
second reason these SV callers are chosen is for the reason they can process CRAM files. 
Combining the two SV callers show improved results over using them as a single caller (Fig. 11). For 
the same amount of correctly found SVs, less incorrectly called SVs were found when combining 
Dysgu and Manta. This is tested for finding 70%- and 90% of the correct SVs in the dataset. 
 
When the interest is finding at least 70% of the correct SVs in the data, a Dysgu probability 
threshold of 0.70 and Manta quality threshold of 400 is recommended (Appendix 1). When the 
interest is finding at least 90% of the correct SVs in the data, a Dysgu probability threshold of 0.55 
and Manta quality threshold of 200 is recommended (Appendix 1). Hence, the determination of the 
combination thresholds relies on identifying the minimum number of SVs. 
 
The established thresholds for Dysgu’s Probability at 0.54 and Manta’s Quality Score at 200 are 
functioning effectively. The set of SVs identified using these thresholds show improved accuracy 
compared to the subset identified without any thresholds for the two properties. The correctly 
called SVs are in both sets, however, the set with the thresholds applied contained less incorrectly 
called SVs.  
 
The research question is: “Can we identify constitutional small structural variants of clinical 
significance in cancer predisposition genes in children with cancer?”. In the analysis, the pipeline 
was unable to detect any clinically significant SVs beyond those two that were already established.  
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Discussion 
During this project, no clinically significant SVs that had not been previously identified are 
discovered. It was expected to identify three clinically significant SVs since around 1% of the 
tumours are the result of a germline SV in a cancer predisposition gene. This suggests that either 
there are no tumours in this cohort caused by SVs in cancer predisposition genes, or SVs are not 
being detected by the current pipeline. Alternatively, it is possible that samples potentially 
containing an SV in a cancer predisposition gene were of insufficient quality, leading to not getting 
detected during sequencing. Short read sequencing is used as sequencing method, while long read 
sequencing might reveal more SVs in the data since it is better for SV detection.  
 
The analysis solely focused on identifying deletions, which represents merely one category of SV. 
However, it is possible that another type of SV in a cancer predisposition gene might be present in 
the data and could be the underlying cause of the tumour.  
 
Manta uses mapped paired-end sequencing reads to call SVs (Saunders, 2018), Dysgu is 
programmed to work with paired-end reads as well (Cleal, 2018). GRIDSS2 uses positional de 
Bruijn graph assembly, perhaps this technique could identify SVs which are not found now.  
 
Dysgu incorporates a range of artificial intelligence modules and has called more SVs which are 
common in the population compared to Manta. This detection might be the result of the AI 
elements that have been trained to recognize these specific population-common SVs.  
 
The SVs identified in PrediCT403 and PrediCT347 are labelled as incorrect. However, more 
research must be done to verify that the deletion, even though there is no frameshift, is not a 
reason to lead to tumour development. 
 
When testing how well SV callers perform, it is very difficult to know how many true SVs are in the 
data but are missed by the callers. Therefore calculating the real specificity is not possible. Only 
SVs that are found by at least one tool, and checked, can be used for determining how well callers 
perform. When at least one caller found an SV and this SV is checked and labelled as true, it can be 
used to see if other tools found this SV as well. This problem can be resolved by using data where 
every SV is known. If you know how many -and which SVs are in the data, you can measure how 
well the caller performs and also identify which SVs are missed by all callers. The problem with this 
method is however that finding real data for which a “true” vcf exists is very difficult. There are 
“artificial SV generators” but the problem with these generators is that this data might be very 
different from real data, and therefore the performance of the caller might be different on fake data 
compared to real data.  
 
In this project, numerous SVs are labelled as true or false, forming the basis for following 
decisions. These categorizations were determined through a careful examination of SVs using IGV. 
However, it is important to note potential inaccuracies, given the complexity of certain SVs. 
Deletions with clear breakpoints but minimal coverage drop or distinct coverage drops without 
identifiable breakpoints present difficulties.  Therefore, when using these labels, it’s important to 
recognize the sensitivity to human error, and the accuracy may not be perfect.  
 
When checking SVs in IGV, it was noticeable that many of the falsely called SVs are in bad 
sequenced repetitive regions. We are looking for SVs of clinical significance, these are most likely 
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in exons. Many repeats (~89.5%) are assumed to be non-functional because they are located in 
introns (Liao et al, 2023). When looking at SVs in regions of interest, a higher percentage is true 
since regions of interest are not in repetitive regions, where many of the falsely called SVs are.  
 
To make the best choices for deciding a threshold for the properties of different VCF files, it 
seemed logical at first to take SVs from the called-by-five-callers group. This is because a single 
labelled SV could be used five times, one time for each tool. However, because an SV is called by 
five different callers, it is much more likely to be true than if it is called by only one caller. This led to 
the fact that many of the verified calls came from the called-by-five-callers group. Resulting in a 
sample group where true-labelled-SVs are “very true”. So when looking for thresholds for 
properties, thresholds are for the “obviously true” SVs. With obviously true deletions, deletions 
with close to perfect breakpoints are meant and homozygous deletions with good breakpoint 
indications. Even though in the data are more deletions, which are also true, but less clear. These 
have less total reads around the mutation or are in a less well sequenced region. This results in 
lower confidence properties. When in the true- and false labelled groups are only these high 
confidence mutations, the set is too biassed. Resulting in too many correct SVs which will be 
filtered out. To reduce the effect of these high-confidence-SVs in the set, SVs which were called by 
less callers are verified and added to labelled set. 
 
To establish the thresholds for the pipeline, evaluation of SVs was conducted using data from a 
single sample (Appendix 2). The use of a single sample is a requirement due to the necessity of 
merging calls generated by Dysgu and Manta. The merging process requires that the SVs originate 
from the same sample to ensure meaningful consistency. This is due to the fact that the rationale 
behind merging SVs lies in identifying mutations where both SV callers independently detect the 
same SV. When dealing with VCF files containing SVs from multiple samples, a potential issue 
arises. The issue comes to life when one caller identifies an SV on chromosome X at position X for 
one sample, and another caller detects an SV at the same chromosome and position but for a 
different sample, merging these SVs would cause flawed data merging. To avoid the risk of this 
happening, all SVs were exclusively verified from a single sample during the threshold 
determination process. Consequently, the thresholds established during this process may be too 
tailored to the characteristics of the sample chosen. It is important to acknowledge that if a 
different sample were chosen, results might show some differences. This leads to cautious 
interpretation of the thresholds, recognizing potential sample-specific influences on the 
determined thresholds.  
 
The total amount of checked SVs in Table 4 & Table 5 compared to Appendix 2 is different. When 
merging the VCFs, SURVIVOR did not recognize for four SVs they should be merged. 
 
The order of the different steps in the pipeline is important. Especially the step for applying the 
gene panel filter before merging the different VCFs. The reason this is important is because after 
merging the VCFs, only one of the coordinates is kept. The merging distance is set at 1000 bp, this 
means that SVs are merged if they are within 1000 bp from each other. So it is possible that the 
location of a SV changes from within the gene panel to outside of the gene panel, or the other way 
around. To be sure that we only look at SVs that we are sure of are within the gene panel, this step 
is applied early in the pipeline.  
 
Manta’s quality score gives an indication of a call being true or not (Fig. 4). The maximum quality 
score Manta gives is 999. When looking at calls made by Manta which have a quality score of 999, 
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there are many large SVs (>100000 bp) which have a quality score of 999 but are, however, not 
correct. Using the quality score of Manta to predict if an SV is correct, works better with smaller 
SVs. When going through the Manta VCFs there were too many large SVs with a quality score of 
999. For that reason, the step of the pipeline where calls made by a single caller which have a high 
quality score are added uses the VCFs where there is already filtered on SV length. By doing this, 
the really large SVs with a quality score of 999 are not in the annotated files. 
 
On reflection, considerable time was devoted to selecting the optimal combination of SV callers for 
the pipeline. The tests consistently showed the same result: more callers enhanced precision but 
at the cost of losing some true calls. The search for the “perfect combination” continued, even 
though this does not even exist. Subsequently, when implementing Manta and Dysgu, the search 
for the “perfect thresholds” began, taking more time than necessary. Throughout the project, there 
was an assumption that identifying the ideal combination of tools and thresholds would optimise 
the pipeline’s performance. However, this assumption overlooked the variability in performance 
across different samples, SV types, and perhaps variables like sequence depth. In hindsight, a 
more efficient approach would involve spending less time on SV caller(s) and threshold(s) 
selection, but instead relying on results to make adjustments based on the current performance of 
the pipeline.  
 
For future projects of similar nature, using AI would be in consideration. A substantial portion of the 
project involved manually labelling SVs as true or false, essentially generating training data for an 
AI system. In this process, VCF file entries were marked based on manual assessment of their 
properties to recognize the likelihood of accuracy. An AI, given sufficient training data, has the 
potential to perform this task more effectively. Exploring the development and testing of an AI for 
this purpose could be very promising. This approach of using AI to filter VCF files, might be a viable 
solution in the future for this task.  
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Appendix 
Appendix 1  
Scripts can be found in the repository on Bitbucket: 
https://bitbucket.org/princessmaximacenter/pmc_kuiper_projects/src/master/svpipeline/CODE/  

Script Function 
generateSVpipelineBatchJobs.sh SV pipeline which can run samples parallel using 

scheduler. 
generateSVpipelineSettings.sh Creates generateSVpipelineBatchJobs scripts with 

a variety of diIerent thresholds combinations for 
Manta’s Quality- and Dysgu’s Probability Score. 

dysguVCFfilterBySVLEN.py  Filter Dysgu’s VCF by retaining only SVs that are 
smaller than the specified integer. 

mantaVCFfilterBySVLEN.py Filter Manta’s VCF by retaining only SVs that are 
smaller than the specified integer. 

dysguFilter.py Filter Dysgu’s VCF by retaining only SVs that have a 
Probability Score value larger than the specified 
value. 

mantaFilter.py Filter Manta’s VCF by retaining only SVs that have a 
Quality Score value larger than the specified value. 

annotSVexonInformationToUniques.py Extract non-population common events from 
AnnotSV TSV.  

makeBedfileFromAnnotSV_regularFormat.py Create BED file based on AnnotSV TSV for original 
format VCFs 

makeBedfileFromAnnotSV_SURVIVORformat.py Create BED file based on AnnotSV TSV for 
SURVIVOR format VCFs. 

extractExonInformationFromAnnotSV.sh Extracts exon regions and filters for unique SVs 
from an AnnotSV file. 

createMantaArtificialVCF.py Create artificial deletions in Manta’s VCF format. 
SURVIVORvcfToOriginalVCF_Manta.py Takes an original VCF and a SURVIVOR merged 

VCF as input and gives only the SURVIVOR merged 
calls in original Manta VCF format. There is also an 
option to add TRUE / FALSE verifications to the txt 
format if these are added to the SURVIVOR VCF in 
the last column. 

SURVIVORvcfToOriginalVCF_Dysgu.py Takes an original VCF and a SURVIVOR merged 
VCF as input and gives only the SURVIVOR merged 
calls in original Dysgu VCF format. There is also an 
option to add TRUE / FALSE verifications to the txt 
format if these are added to the SURVIVOR VCF in 
the last column. 

Appendix 1. Scripts used for the pipeline and their function. 

  

https://bitbucket.org/princessmaximacenter/pmc_kuiper_projects/src/master/svpipeline/CODE/
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Appendix 2. Merged calls by Dysgu and Manta and their minimal Dysgu Probability (DP) and Manta Quality (MQ) Score. 
Each cell represents the verified events with a threshold set for the probability- and quality scores. The number before the 
T(rue) and F(alse) indicates how many SVs are found with the determined threshold combination. In total there are 552 
checked events, 256 true and 296 false, which will all be found if the minimal probability- and quality score are set at 0 
(top left cell).  
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Appendix 3 

 

 

  

Appendix 3. CNV data from PrediCT138. The mutation is called on chromosome 19 around 4MB. Chromosome 19 has a 
length of around 59 Mbp. This plot shows no clear indication of a CNV at this location. 
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Appendix 4 

 
Appendix 4. 2. CNV data from PrediCT160. The mutation is called on chromosome 11 around 65 Mbp. This is around the 
central region of the chromosome. There is no clear indication of a mutation at this location. 
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Appendix 5 

    

Appendix 5. This event has been identified by Dysgu and Manta but appears to be insignificant. The event was called 
in the exon. There are two points that might be breakpoints outside of the exon, but the presence of a deletion is not 
convincing.  
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Appendix 6 

Appendix 7 

  

Appendix 6. This deletion eliminates the terminal part of CEP57 and the initial part of MTMR2. The cancer 
predisposition gene, CEP57, is interesting for this project. 

Appendix 7. Segment deletion of CEP57 as revealed by the WXS data. 
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Appendix 8 

 

  

Appendix 8. Deletion in ETV6 in PrediCT403 
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Appendix 9 

 

  

Appendix 9. Five SV called in PrediCT242. In the top left gene are two events called, in the other three genes is one event called. All called events 
provide insuSicient evidence for being correct. 
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Appendix 10 

 

 

 

 

  

Appendix 10. 26673 base pairs deletion called in PrediCT738. No breakpoints are present, and there is no 
decrease in coverage observed. Therefore, the SV is most likely incorrectly called. 
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Appendix 11 

 

 

 

  

Appendix 11. Two breakpoints of the 154090 base pairs deletion in PrediCT138. There is no evidence in the CNV plot (Appendix 2) that there is a 
deletion between these breakpoints. 
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Appendix 12. Two called breakpoints of an 89363 base pairs deletion in PrediCT917. No breakpoints are present and no decrease in 
coverage is observed. Hence, the SV is most likely incorrectly called. 
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Appendix 13. Two breakpoints of the 83342 base pairs deletion called in PrediCT160. 



 
45 

Appendix 14 

 

Appendix 14. Deletion in PrediCT347. This event does not cause a frameshift. 


