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Abstract

Causal knowledge is often modelled in directed acyclic graphs (DAGs)
where an directed edge between variables, like A → B, indicates that
one (A) influences another (B). Many algorithms attempt the difficult
task of finding such DAG models given only data – causal discovery –
though fewer attempt to do it in the presence of unmeasured confound-
ing variables. To represent a confounder between A and B, we can use
a bidirected edge: A ↔ B. This gives us acyclic directed mixed graphs
(ADMGs). We develop three algorithms that are variants of greedyBAP,
a causal discovery algorithm that greedily searches through the space of
bow-free acyclic path diagrams (BAPs) which are acyclic ADMGs with no
bows (variable pairs with both a directed and bidirected edge). The mod-
ified algorithms restrict the search space from BAPs to arid graphs, that
are everywhere identifiable, and maximal arid graphs, which allow each
ADMG to map to a unique nested Markov equivalent arid graph. Because
these arid models are smooth, the asymptotic results of the BIC model
score justifying its use on graphical models holds for them. This is not the
case for BAPs or unmeasured variable models in general. However, we do
not find empirical evidence of improved performance of these algorithms
over greedyBAPs in our simulation studies, so we conclude that they offer
little to no advantage in practice.
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1 Introduction

We first outline our research questions rather quickly. Concepts introduced
here, as well as the basics of graphical causal analysis and causal discovery, are
explained in more detail in Section 2.

Learning graphical causal models from data (causal discovery) is a difficult
problem, certainly when we take into account the possibility of unmeasured
confounding variables. However, a solution to it would contribute greatly to
science and society in general, by giving us causal insights we may not have
been able to gain otherwise.

In this work, we focus on learning from a dataset an acyclic directed mixed
graph (ADMG) representation of the causal relations of the variables involved.
We restrict the search space more specifically to (maximal) arid graphs (MArGs)
(Shpitser, Evans, & Richardson, 2018), a class of ADMG that gives everywhere
identifiable models that imply a nested Markov constraint (Richardson, Evans,
Robins, & Shpitser, 2023) for each missing edge. We base this method on
the greedyBAPs algorithm for learning bow-free acyclic path diagrams (BAPs)
(bow-free ADMGs) by Nowzohour, Maathuis, Evans, and Bühlmann (2017),
who also introduce useful notions of approximate distributional equivalence of
ADMG models. Because we base it on greedyBAPs, our implementation uses
linear-Gaussian models, but the same algorithm could in theory be applied
equally well to discrete data.

Our research intends to answer the question of whether restricting the search
space of a greedy algorithm to maximal arid graphs (MArGs) provides a worth-
while improvement over restricting it only to BAPs (a strict superclass of
MArGs). Improvements may be improvements in retrieval of the correct graph,
or in computational time. We also want to test how the difference in perfor-
mance – if there is one – differs with the amount of variables/nodes, or with the
amount of causal relations/edges.

We analyse graph retrieval performance by using the method from Now-
zohour et al. (2017) for comparing the minimal absolute causal effects matrix
of graphs, rather than the graphical structures themselves, because those are
unreliable for ADMGs.

As mentioned, all relevant background concepts are explained in Section 2.
The algorithms and their implementations are discussed in Section 3 and simula-
tion studies and their results are discussed in Section 4, followed by a discussion
of the results and some limitations of this study in Section 5 and a conclusion
in Section 6.

2 Background

In this section we will describe the current state of the literature relevant for
our work. We have attempted to make the text accessible also to those who are
not already well-versed in graphical statistical (causal) modelling.
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2.1 Intro to causality

2.1.1 Basic causal analysis

Causality is a concept that is fundamental not only to science, but to everyone’s
perception of the world. Everyone has an intuitive sense of what it means for one
thing to cause another. Unfortunately, much of science is based on a treatment
of statistics which avoids the explicit treatment of causality. Since causality is
so important – we want to know whether a drug causes an improvement, not
whether it is associated with one – causality is still dealt with, but informally.
Standard hypothesis testing methods, like t-tests and ANOVAs, are meant to
discover causal relations, though they are described statistically only in terms
of association. We get causal information from them implicitly through our
experimental design. This is truly unfortunate, since this informality makes
causal conclusions less precise, and less reliable.

Fortunately, it is possible to treat causality more formally, with graphical
causal models. The basic idea is to represent causal relations as a directed
acyclic graph (DAG). This is a graph (network) with directed edges (connections
or arrows) and no cycles. For our causal purposes, the nodes of the graph
represent variables, and a directed edge X → Y means that variable X is a
direct cause of variable Y . The first work on this formal treatment of causality
is dealt with most comprehensively and most up-to-date in the book Causality
(Pearl, 2009).1

We will demonstrate the usefulness of formal causal analysis using DAG
models using an example adapted from the introductory textbook Causal infer-
ence in statistics: A primer (M. Glymour, Pearl, & Jewell, 2016). Say that we
have observational data on a group of patients of some disease. That is, data
from simple data collection: we have not performed an experiment to generate
the data. We know for each of the patients whether they underwent a treatment
(X), whether they recovered from the disease (Y ), and whether they were under
30 years old (Z). All three are binary variables that have a value of 1 when true
and 0 when false.

We use statistical associations (correlations) in the data and our understand-
ing of the situation to model the causal relations of these variables graphically
as a DAG, shown in Figure 1a. We see a positive correlation between the treat-
ment and recovery, and we think that this is a causal effect, so we add an edge
X → Y . We also see that there is a correlation between age and recovery: more
younger people recover. Since recovery from a disease does not influence one’s
age, we think that being younger helps with recovery, so we add Z → Y . We
also see that younger people are more likely to get the treatment. Of course,
treatment also does not affect age, so X → Z, like Y → Z, is rejected, and we
add Z → X.

We would argue that for this clear visual representation of causation alone, as
opposed to less clear textual descriptions, graphical representation of causality

1A more informal treatment for a (somewhat) general audience with a reasonable grasp of
secondary school mathematics can be found in The Book of Why (Pearl & Mackenzie, 2018)
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(a) The true model

X Y

Z

(b) The manipulated model

Figure 1: A causal DAG. X is a treatment, Y is recovery, and Z represents
whether the patient is under 30. All variables are binary.

is worthwhile. There is however more to this. The fact that the age of patients
influences their probability of getting a treatment is scientifically unfortunate.
We would like to know what the effect of the treatment on the outcome actually
is. But given only this observational data, we can’t know this. We see in the
data that young people recover more often, and that people who undergo the
treatment also recover more often, but we cannot tease these causes apart. We
don’t know to what degree young people recover more often because they are
more likely to get the treatment, or simply because of their youth.

Now, we will see that we can use the properties of our causal model beyond
just using it as a nice visual representation. The DAG that we have constructed
translates our assumptions about the causations into a more constrained causal
model. If we make no assumptions about the data, and we want to use our
model for predicting the probabilities of certain outcomes, we have to estimate
the probability of every possible configuration of the variables. That is, we
need to estimate the full joint probability P (V), which for this example is
P (X,Y, Z). For binary variables, there are 2|V| possible configurations, such as
(X = 0, Y = 0, Z = 0), (X = 0, Y = 0, Z = 1), etc., where |V| is the number of
variables. The number of possible configurations therefore grows very quickly
as the variable set V grows, and then many configurations may never even show
up in the data, making it even harder to estimate their probabilities.

If we make no assumptions, with our variable set V = {X,Y, Z } we get
that

P (V) = P (X,Y, Z) = P (X)P (Y | X)P (Z | X,Y ),

using the fact that P (A,B) = P (A)P (B | A) = P (B)P (A | B) for all variables
or sets of variables A and B. The variables may be reordered in that expression,
since joint probability is symmetric, but the probability of a configuration will
always be a function of all the other variables. Note that the above expression
is not a specific probability, but the definition of a probability distribution. It
defines a function that takes a specific configuration and outputs a concrete
probability, such as

P (X = 0, Y = 1, Z = 0) = P (X = 0)P (Y = 1 | X = 0)P (Z = 0 | X = 0, Y = 1).

Using our DAG model, however, we encode assumptions about the data.
This simplifies our model significantly. DAG-based statistical models like this
one are also known as Bayesian networks (BNs). The only difference between
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BNs in general and causal models like this one are the causal implications we
have given the model. In a BN model, we have that the joint probability sim-
plifies significantly to

P (V) =
∏
X∈V

P (X | pa(X)), (1)

where pa(X) is the set of parents of X, or nodes that have an arrow pointing to
X. This puts a constraint on the model: the constraint that the joint probability
must have this form. We can use the formula to find that the model in Figure 1a
factorises as P (X,Y, Z) = P (Z)P (X | Z)P (Y | X,Z).

This can dramatically decrease the number of probabilities we need to esti-
mate, because of the following. In the model without assumptions, we had to
estimate P (X = 0 | V \X). That is, for each variable, X, we need to estimate
for each configuration of the remaining variables what its probability is. Now,
in the BN model, we only need for each variable one estimate for each configura-
tions of its parents, which is usually much fewer. An estimate like this is called a
parameter of the model. For example, a parameter of the assumptionless model
might be P (X = 0 | Y = 1, Z = 0) = 0.2, while a parameter of the BN model
might be P (X = 0 | Z = 0) = 0.3. Remember that in an unconstrained model,
we need to estimate 2|V| parameters: the parameter count is exponential in the
total number of variables. In a BN, the parameter count is only exponential in
the maximum in-degree: the number of parents of the variable with the most
parents.

More formally, we can identify the probability of a patient recovering given
that they received the treatment: P (Y = 1 | X = 1). But what we want is
to identify the probability of a patient recovering in the hypothetical situation
in which age does not influence the probability of getting the treatment, or
equivalently, the probability of recovering if we forced someone to undergo the
treatment. In terms of the model, this means that we don’t observe the distri-
bution of X from the data, but set the value ourselves. Let’s call the value we
set it to x. This would correspond to the causal representation in Figure 1b,
with the edge Z → X removed, since X now has no causes except for our
decision. The corresponding distribution, which we will call Pm, factorises as
Pm(X,Y, Z) = Pm(Y | x, Z)Pm(Z). The factor corresponding to X has been
crossed out, or more technically, the distribution has been divided by the fac-
tor Pm(X | Z). This makes sense intuitively, because there is no longer any
meaningful probability of the value of X: we have set the value of X, so the
probability of it having that value is 1.

To be able to identify causal effects like the probability of recovery given
one if forced to undergo treatment, normally we use the scientific practice of in-
terventions: we essentially do force some people to undergo the treatment, and
some not to, in randomised controlled trials, and other experimental designs.
But these trials are costly and time-consuming, and often even impossible be-
cause of ethical reasons. We cannot, for example, force people to smoke for the
sake of an experiment. Luckily, though, it turns out that using graphical causal
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analysis, we can identify this interventional probability without actually per-
forming a costly intervention. We call this probability P (Y = 1 | do(X = 1)),
using the so-called do-operator. Now, we use the manipulated model in Fig-
ure 1b, and we see that P (Y = 1 | do(X = 1)) = Pm(Y = 1 | X = 1). In words:
the probability of recovery (Y = 1) when forced to undergo treatment (X = 1)
in the original model corresponds to the probability of recovery given that one
underwent treatment in the manipulated model. Note that probabilities for P
can be estimated from the data, because the data was generated from it, while
probabilities for Pm cannot be estimated, since it did not generate the data.

M. Glymour et al. (2016) show that our probability of interest comes out to

P (Y = 1 | do(X = 1)) = Pm(Y = 1 | X = 1)

=
∑
z

Pm(Y = 1 | X = 1, Z = z)Pm(Z = z)

=
∑
z

P (Y = 1 | X = 1, Z = z)P (Z = z),

using an average over the possible values z of Z (in this case 0 and 1). The
last step is allowed because the factors involved stay the same between the
two different models. We have now expressed an interventional probability
completely in terms of ordinary conditional probabilities that we can estimate
from observational data. In other words, we can use (observational) data from
the world in which Figure 1a is the true model, and measure the effect of the
treatment as if we had performed an intervention and Figure 1b was the true
model.

Since we have identified the causal effect P (Y = 1 | do(X = 1)), we can say
that this effect is identifiable. The specifics of how to identify arbitrary causal
effects is beyond the scope of this thesis, but we will note that it is possible
to identify any effect that is identifiable, by using the do-calculus (Pearl, 2009)
or the ID algorithm (Tian & Pearl, 2002). In DAG models, like these ones, all
thinkable effects are identifiable.

2.1.2 Unmeasured confounders

Sometimes we know or suspect that data is generated by a process where a
variable is involved that we have not measured or cannot measure and that has
a causal effect on several of the measured variables in our model, so that it
obscures the causal relations between them. We call these variables unmeasured
confounders, or also latent confounders. These confounders can equally well be
modelled by a DAG. We can take as an example again the models in Figure 1.
Let’s say now that Z is not age, but some genetic factor that we cannot measure.
This factor, just like age, has an effect both on probability of recovery and on
the probability of undergoing the treatment. Interpreted in this way, Figure 1
now shows latent DAGs.2

2Formally, latent DAGs are often defined as having separate sets of measured nodes (V)
and unmeasured nodes (U).
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In these latent DAGs, it is not always possible to identify all causal effects,
because some of the (observational) probabilities that we would need cannot be
estimated, since the relevant variables are not measured in our data. Graphs
in which we can identify all effects are called everywhere identifiable, which is a
very desirable property.

2.1.3 Linear-Gaussian models

Up until now we have – for ease of exposition – only used binary variables.
Causal analysis over categorical variables with more than two possible values
works mostly the same, it is generally only a bit more notationally cumbersome.
We also have to estimate a few more parameters, since it no longer suffices to
estimate the probability of 0 and infer the possibility of 1, but we must estimate
the probability of k − 1 values, if the number of possible values of the variable
is k.

Many variables, however, are inherently numerical. Age, for example, is
really a continuous variable, being able to take any real value greater than or
equal to 0. We could imagine continuous alternatives for our other two example
variables as well. For example, X could be dosage of the drug, and Y might
be some numerical measure of quality of life after treatment. Structural causal
modelling is also possible with continuous variables, but it does work differently
in some important ways.

Apart from assuming binary variables, we have made no parametric as-
sumptions about the types of distributions of the variables, nor about the way
in which the variables are related to each other. This is standard when deal-
ing with categorical variables. When dealing with continuous variables, such
assumptions are very often made, though it is not required. This is because
not making assumptions would make the space of parameters absolutely im-
mense. A very commonly studied case, therefore, is the linear-Gaussian case,
in which each variable individually follows a normal (Gaussian) distribution,
and the value of each variable can be written as a linear equation in terms of
its parents. This is the type of model we investigate in this work, and it is the
only type of continuous causal model we will discuss. See Section 2.2.3 for an
example of the definition of a linear-Gaussian model.

An important advantage of linear-Gaussian models over non-parametric cat-
egorical models is that the number of parameters involved is much smaller. All
that is necessary to fully define a linear-Gaussian probability is the distributions
(mean and standard deviation) of each of the individual variables, and for each
edge an “edge weight” specifying how much one variable influences another. Re-
member that in the categorical case, the number of parameters is exponential
in the maximum in-degree of the DAG model.

2.1.4 What actually is causality?

At the end of this introductory section on causal analysis, there remains one
very important omission: we have not yet given a clear definition of what we
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actually mean when we say that one variable causes another. This can be quite
a deep philosophical question. For the purposes of this work, however, we will
work with a rather simple probabilistic notion of causality. Intuitively, we say
that a variable X is a cause of another variable Y , or influences Y , if forcing
the value of X to some value (intervening on X) (significantly) changes the
probability distribution of variable Y . Formally, X is a cause of Y if and only
if P (Y ) ̸= P (Y | do(X)) in the true distribution.

2.2 Causal discovery

In a lot of cases, it is quite clear which variable causes which. We know that
rain causes the road to be wet, and that road wetness does not cause rain.
Similarly, if we see a correlation between age (below 30 or not) and recovery, as
we did in the previous section, we can safely assume that it is youth that causes
better chances at recovery, albeit possibly in some indirect way. Recovering
from a disease does not make someone younger. This leads us clearly to the
model in Figure 1a. Many other causations, however, are not so clear. Does
mindful meditation improve professional performance? If we have no data, we
don’t know. If we do have data, and we see a positive correlation, we might
still ask ourselves whether perhaps the more professionally successful are more
likely to get involved in mindfulness. Perhaps because they can afford to take
more spare time, reversing the direction of the causality, or perhaps there is
some other variable that causes both: a confounder.

Firstly, of course, a graphical model can be useful simply by giving a visual
representation of our current hypotheses. This can be especially useful if our
domain contains more than, say, three variables, because a textual description
then becomes hard to conceptualise. But a DAG model also provides the useful
concept of d-separation. This is a property of variables that we can read from
the graph that should correspond to statistical conditional independence. That
is: if we see in the graph that X is d-separated from Y given Z, we expect
to see that X is statistically independent of Y given Z (written X ⊥ Y | Z).
If this independence does not hold in the data, then our model is not a good
representation of the distribution of the data and must be tweaked (Verma &
Pearl, 1990). We can then test whether it is a good representation again and
again incrementally, until we are satisfied with our model.

If this assumption that d-separation implies (conditional) independence holds,
we say that the graph is Markov to the data, or that the graph is an indepen-
dence map or I-map of the true distribution. The other way round we say that
the data is faithful to the graph if every (conditional) independence in the data
has a corresponding d-separation in the graph. We can also say that the graph
is a dependence map or D-map. (Some authors define faithfulness as the graph
being both a D-map and an I-map – a perfect map, or P-map – but that is
not the definition we will use.) We do not need the directions of the edges to
always be in the direction of causation for them to model the dependences and
independences in the data well. This is why Bayesian networks in general do
not require causal edge directions.
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To allow the reader to understand d-separation, we will now introduce some
terminology. The important thing to remember about d-separation, however,
is that it is a way to read independence from graphs, where variables in the
“conditioning set” can block paths between the variables that are independent.
If we have in a graph A→ B, we say that A is the parent of B, while B is the
child of A. Since the nodes share an edge, we say that they are adjacent. A
sequence of nodes that are adjacent to each other we call a path. (A path may
involve the same node more than once, if it does not, it is a simple path.) If
all edges on a path are in the same direction, it is a directed path. A node is
a collider on a path if it has two incoming edges on that path. For example,
on the path A → B → C ← D, C is a collider. This makes (B,C,D) together
a collider triple. The set of descendants of a variable X, de(X), is the set of
variables that can be reached from it through a directed path by following the
direction of the edges. This includes the singleton path with no edges: any
node is also its own descendant. The set of ancestors of X, an(X), is defined
analogously, but the edges are followed against their direction. Now, we say
that a set of variables A is d-separated from set B given C in graph G if every
path between A and B contains a non-collider variable that is in C or the path
contains a collider that has no descendants in C. We write this as A ⊥G B | C.
If C is the empty set, we simply write A ⊥G B.

By comparing d-separations to dependences in the data and using expert
knowledge, we can construct a causal graph “by hand”. While this is often a
good approach, certainly when much is already known about the domain of the
data, we may sometimes wish for more automation. Especially when little is
known about the interactions of variables in a domain this may become neces-
sary. For this reason, algorithms have been designed that completely automate
this task of causal discovery. These algorithms take in a dataset as input, and
output a graphical representation of the causal structure, often in the form of
a DAG or a related type of graph. It is this algorithmic causal discovery that
interests us for this work. More specifically, it is causal discovery with latent
(unmeasured) confounders that interests us, which we will explain now.

2.2.1 Unmeasured confounders in causal discovery

Many approaches to causal discovery assume that the measured variables ac-
count for all causal relations in the data. This is the assumption of causal
sufficiency. This assumption is unfortunately often quite unrealistic. Unmea-
sured confounders are the norm rather than the exception in real-world data:
there are an incredible amount of variables in the world that can influence the
variables that you are interested in, and you are very unlikely to fully mea-
sure all of them in most cases. There are, therefore, also many methods for
dealing with unmeasured confounders, as opposed to ignoring them. A well-
known approach is the fast causal inference (FCI) algorithm (Spirtes, Glymour,
& Scheines, 2001), which is an extension of the classical independence-testing
based PC algorithm that can find between which variables confounding happens
by defining different edge types for possible confounding relations. Huang, Low,
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Xie, Glymour, and Zhang (2022) use rank constraints to find not only where
confounding happens, but to actually find the confounding variables, and even
a hierarchical structure between several unmeasured confounders. In quite the
opposite direction there is the approach of Frot, Nandy, and Maathuis (2019),
which does not attempt to find the confounders at all, but does first remove
their influence, so that we can search for causal relations over only the observed
variables without violating causal sufficiency.

The type of representation we are interested in lies somewhere between these
approaches. We are interested in representing causal models with acyclic di-
rected mixed graphs (ADMGs). These are a superclass of the traditional di-
rected acyclic graphs (DAGs), with the addition of bidirected edges. An ADMG
can capture the causal relations between the observed variables in the traditional
way with directed edges, and represents confounding between two variables with
a bidirected edge. ADMG models of causality are based on the assumption that
the true causal situation can be represented by a DAG that explicitly contains
the unmeasured confounders as additional nodes in the graph: a latent DAG.3

Note that it is possible for there to be both a directed edge A→ B and a bidi-
rected edge A↔ B. Such a structure is called a bow. As an example, Figure 3b
contains two bows.

Every latent DAG can be associated with an ADMG through the operation
of latent projection (Verma & Pearl, 1990). The idea of latent projection is to
remove unmeasured (latent) variables from the graph, and replace the informa-
tion they provide about confounding by a simple bidirected edge. Take as an
example the DAG in Figure 2a and its latent projection shown in Figure 2b.
The confounding variable U1 is removed from the resulting latent projection,
and the confounding information is represented in the bidirected edge between
X2 and X4.

Definition 2.1. A latent DAG G can be associated with its latent projection
G∗, which is the ADMG that we find when we apply the following procedure:

• Initialise G∗ with the nodes and directed edges of G.

• Remove all unmeasured variables and their incoming and outgoing edges
from G.

• For any path of the form A→ · · · → B in G, with all intermediate variables
being unmeasured, add an edge A→ B to G∗.

• For any path of the form A← · · · → B in G with all intermediate variables
being unmeasured non-colliders, add a bidirected edge A↔ B in G∗.

Using this definition, we see that the latent DAG in Figure 2c also maps to
the same ADMG in Figure 2b, with the chain of two confounders corresponding
to the same single bidirected edge. The concept of d-separation in DAGs extends
naturally to mixed graphs, only it is called m-separation. For m-separation,

3Note that this assumption fails if the true causal structure contains feedback loops, since
cycles are by definition disallowed in DAGs (directed acyclic graphs).
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X1 X2 X3 X4

U1

(a) Latent DAG

X1 X2 X3 X4

(b) acyclic directed mixed graph (ADMG)

X1 U1 X2 X3 X4

U2 U3

(c) Latent DAG with three unmeasured variables

Figure 2: Latent projection

bidirected edges also count as incoming edges for determining which nodes are
collider nodes, so that B is also a collider on the paths A ↔ B ← C, A →
B ↔ C and A ↔ B ↔ C. Otherwise the definition is the same. ADMGs are
a superclass of DAGs, since DAGs can be seen as ADMGs without bidirected
edges: DAGs ⊂ ADMGs.

A latent DAG is more informative than its corresponding ADMG, but it is
harder to find the correct one. Let’s assume that the true model generating our
data is a latent DAG model. The distribution that we obtain from the data
is then the distribution with the unmeasured variables marginalised out. For
any such marginal distribution, an infinite number of latent DAGs could have
produced it, so it is hard to find the true one, at least without making additional
parametric assumptions (assumptions about the types of distributions and rela-
tions between the variables, i.e. that variables are Gaussian, or non-Gaussian,
or linearly related or not).

If we decide that we do not particularly care about how many confounding
variables there are and where they should be in the model, we can still represent
at least between which variables any confounding happens by searching only
for an ADMG, which is more feasible. Intuitively, this information is already
sufficiently interesting. A more general concept of latent projection that we will
unfortunately not investigate, but that we think is still worth mentioning, is
captured in marginalised directed acyclic graphs (mDAGs) (Evans, 2016). These
more elegantly accommodate, for example, the possibility of one unmeasured
confounder influencing more than two observed variables.
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X1 X2 X3

U1

(a) Latent DAG

X1 X2 X3

(b) Standard latent pro-
jection

X1 X2 X3

(c) mDAG latent projec-
tion

Figure 3: mDAGs more elegantly capture confounding by one unmeasured vari-
able on several measured variables.

As an example, take Figure 3a. The unmeasured variable U1 influences all
three measured variables. Standard latent projection would yield the ADMG in
Figure 3b, where a single variable (U1) corresponds to three bidirected edges.
From this ADMG, it is impossible to see that these three bidirected edges had
anything to do with each other. The mDAG latent projection, however, uses a
single so-called “bidirected hyper-edge” to connect the three measured variables,
as shown in Figure 3c. This makes it clear that there are not three separate (sets
of) confounders, but that they share a confounder. mDAGs are a generalisation
of ADMGs, so we have DAGs ⊂ ADMGs ⊂ mDAGs.

2.2.2 Formal graphical definitions

We will now define DAGs and ADMGs formally, though they have already been
informally introduced. We will also define some important genealogical relations
between nodes.

Definition 2.2. A directed acyclic graph (DAG) G(VG) is a graph with a set
of nodes VG and an edge set EG which contains ordered pairs of nodes which
represent directed edges in the graph. If EG contains the ordered pair (A,B),
G contains an edge from A to B, which we may also write more visually as
A → B ∈ EG. A DAG may not contain directed cycles. That is: there is no
directed path from any node to itself except the trivial path involving no edges.

To avoid notational clutter, we will leave out the subscript G when it is clear
from context which graph we are referring to. In this work, we will refer to
nodes in a graphical model and variables interchangeably with capital letters.
That is, A, B, and C can be the nodes in the DAG A← B → C as well as the
variables that those nodes represent. ADMGs are defined formally as follows.

Definition 2.3. An acyclic directed mixed graph (ADMG) G(VG) is a graph
with a set of nodes VG, a set of directed edges EG and a set of bidirected edges
BG. The set EG contains ordered pairs, as in DAGs, while the set BG contains
unordered pairs which represent bidirected edges: edges that have arrowheads at
both sides. For example, the unordered pair {A,B } ∈ BG would represent the
bidirected edge A↔ B. As in DAGs, the directed edges may not form cycles.

We say that two nodes are adjacent if there is some type of edge between
them. A path is a sequence of nodes wherein each node is adjacent to the next

13



X1 X2 X3 X4

Figure 4: A BAP.

node. A trivial path containing only one node and no edges is also a path. A
path is directed if all edges along the path point in the same direction. A path
is bidirected if all edges along the path are bidirected edges. All nodes along a
bidirected path are said to be bidirected-connected.

We use the standard genealogical sets of variables, which we define below in
Definition 2.4. (Some of these have already been introduced.) In order, these
are the parents, children, ancestors, descendants, siblings, and the district of A.
Note that, because there is always a trivial path from A to A itself, with no
edges, A is included in its set of ancestors and its set of descendants.

Definition 2.4. For any variable A, we define the following genealogical sets:

paG(A) =def {B ∈ VG | B → A ∈ EG }
chG(A) =def {B ∈ VG | A→ B ∈ EG }
anG(A) =def {B ∈ VG | there is a directed path from B to A }
deG(A) =def {B ∈ VG | there is a directed path from A to B }
sibG(A) =def {B ∈ VG | A↔ B ∈ BG }
disG(A) =def {B ∈ VG | there is a bidirected path from A to B }

We allow for these definitions to be applied disjunctively to sets, such that
for example

pa(A) =def

⋃
A∈A

pa(A).

The induced subgraph GS of G, with S ⊆ VG , is the graph containing only
the nodes in S and only the edges that have both end-points in S. If GS contains
only one district, we say that the set S is bidirected-connected in G.

2.2.3 Linear-Gaussian acyclic path diagrams

The algorithms we develop are based on the greedyBAPs algorithm by Nowzo-
hour et al. (2017), so it is convenient to show how they define linear-Gaussian
models. For each variable Xi in the graph G, its value is given by

Xi =
∑

Xj∈paG(Xi)

BijXj + ϵi.
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The graph in Figure 4 would be represented as follows:

X1 = ϵ1

X2 = B21X1 + ϵ2

X3 = B32X2 + ϵ3

X4 = B43X3 + ϵ4.

Here, each variable is a linear combination of its parents (only singular parents
in this case) and an ϵ term that includes its variance and the covariance with
other variables caused by bidirected edges. Means are assumed to be normalised
to 0 (though that is not a feature of linear-Gaussian models in general). We
have then that (ϵ1, ϵ2, ϵ3, ϵ4)

T ∼ N (0,Ω), with

Ω =


Ω11 0 0 0
0 Ω22 0 Ω24

0 0 Ω33 0
0 Ω24 0 Ω44

 .

To phrase this in a perhaps more intuitive way, for each i-th and j-th node, the
covariance cov(ϵi, ϵj) = Ωij .

4

Since all means are zero, the only parameters are Ω11,Ω22,Ω33 and Ω44,
representing the variances of the variables, B21, B32 and B42, representing the
directed edges, and Ω24 representing the bidirected edge. The B parameters can,
like the Ω parameters, be seen as entries in a B matrix. The set of parameters
for a graph G we call θG. We can obtain from these parameters the covariance
matrix of the observed variables

Σ = (I −B)−1Ω(I −B)−T ,

which at each entry Σij contains the covariance of variables Xi and Xj . From
such a model, we can obtain the total causal effect of a variable Xj on a variable
Xi, Eij =

∂
∂xE[Xi | do(Xj = x)], by taking

Eij = ((I −B)−1)ij .

This gives us the causal effects matrix E.
This type of model definition is called a linear structural equation model

(SEM), because the relations are linear, and it defines a structural model through
a set of equations. More generally, causal models defined by equations, as op-
posed to the Bayesian network definition we saw before, are called structural
causal models (SCMs). Variables in SCMs in general need not be normally
distributed or be related linearly, they only need to be defined by equations in
terms of their parent variables. This work concerns only the (very common)
case of linear SEMs.

4Note that this works for the variances of the individual variables as well, since the covari-
ance of a variable with itself is its variance: cov(X,X) = Var(X) for all variables X. The
variances are therefore on the diagonal of Ω.
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2.2.4 Constraint-based methods

There are two main types of approaches within causal discovery: constraint-
based approaches and score-based approaches. Constraint-based approaches
such as PC and FCI (Spirtes et al., 2001) generally start a search at a complete
undirected graph (with an undirected edge between every pair of variables), and
remove and orient edges to arrive at some type of partially directed acyclic graph
(a DAG in which some edges have no defined direction) with as many edges
oriented as we can tell from the data. To do this, they use constraints in the
form of conditional independence tests, and they exploit structural properties
of the graph. In a sense, these constraint-based methods are similar to the
approach of constructing a graph by hand mentioned above in that they both
examine conditional independences. They can also take expert knowledge into
account. These methods check for relevant conditional independences more
systematically.

2.2.5 Score-based methods

There are also score-based algorithms, which are the focus of our research.
These algorithms try to maximise a score function which represents how well
the graph captures the data. Many of them do this searching through the space
of graphs by adding edges, deleting edges or switching edge directions. The
most important part of the score function is often the log likelihood of the data
given the graph. The likelihood of the data is (informally) the probability that
the current model would have generated the given data: P (data | model). The
log likelihood is just the logarithm of likelihood, with any base you like, for
computational reasons.5 Score functions also incorporate a penalty term on
complexity to avoid overfitting with complex models. If two models explain the
data equally well, we prefer the simpler model, with fewer edges, and a simpler
model is often preferable even if its likelihood is slightly lower than a more com-
plex model. Two important examples of such scores are the Akaike information
criterion (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC)
(Schwarz, 1978). A more extensive overview of score functions can be found in
Vowels, Camgoz, and Bowden (2022).

Local search Essentially, many score-based algorithms define the problem
of causal discovery as an instance of local search. They do this, because the
number of DAGs (or superclasses of dags) with d nodes is super-exponential
in d, so exhaustive search is infeasible. For local search, we need a domain
of solutions, in our case, the set of graphs of the type we are interested in, a
way to evaluate solutions, in our case, the score function, and a neighbourhood

5Specifically, since probabilities often multiply, they tend to differ from each other expo-
nentially rather than linearly. Because of this, they often become very very small, such that
the floating point representation computers use for real numbers cannot capture these prob-
abilities well. Taking a logarithm makes the differences linear and makes the probabilities
representable by floating point. In fact, one generally works only with logarithms of probabil-
ities in computational settings, as opposed to just taking the logarithm after the calculation.
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relation or function that defines local moves from one solution to another. This
is a function mapping one graph to another of the same type. For DAGs, we
usually say that G′ ∈ neighboursDAG(G) if and only if G′ is also acyclic, and
either

• G′ contains one edge that G does not, but is otherwise identical (edge
addition), or

• G′ is missing one of the edges G has, but is otherwise identical (edge
deletion), or

• G and G′ differ only in the direction of one edge (edge change).

The simplest local search algorithm is greedy search. We will explain greedy
search precisely, because our work is based on it. Pseudocode for general greedy
search in the space of graphical statistical models is shown in Algorithm 1. The
graph to start from, Gstart, is often the empty graph, with no edges between
any of the variables, though this is not required. A neighbourhood function
needs to be provided, as well as a score function that takes a graph and a set
of parameters and outputs a score. The greedy search algorithm then, at every
step, produces all neighbours of the current graph, scores them, and continues
on from the best-scoring graph, until no score improvement is possible anymore.

Algorithm 1 The general form of greedy graph search algorithms. Gstart is
the graph to start the search from, score is the score function, neighbours is
the specific neighbourhood function to use and ε is the threshold specifying
the minimum score difference for improvement. Either the dataset X can be
provided (in the categorical case) or the covariance matrix Σ (in the linear-
Gaussian case).

procedure GreedyGraphSearch(Gstart,X||Σ,neighbours, score, ε)
i← 1
Gi ← Gstart
∆score ←∞
while ∆score > ε do

Candidates← neighbours(Gi)
for all candidates Gc ∈ Candidates do

θ̂Gc ← EstimateParameters(Gc,X||Σ)
Gi+1 ← argmaxGc∈Candidates∪{Gi } score(Gc, θ̂Gc

)

∆score ← score(Gi+1, θ̂Gi+1)− score(Gi, θ̂Gi)
i← i+ 1

return Gi

Greedy search can often work quite well for its simplicity. However, it is
prone to getting stuck in local maxima in the score function. It may reach a
graph G that has no neighbours G′ that score better than it, while there does
exist a graph H that scores (much) better than G, but it simply is not reachable
from the G through local moves and greedy choices.
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Score functions While our main research question is largely agnostic of
whether we use categorical models or linear-Gaussian models, it should be noted
that there are some important differences for causal discovery between the two.
The difference lies mainly in the score function. As mentioned, score functions
generally have the form of

score(G, θ̂G) = L(G, θ̂G)− parameter penalties,

with L the log-likelihood function and θ̂G a set of parameters. For example, the
well-known BIC score (Schwarz, 1978) is defined as

BIC(G, θ̂G) =def −2L(G, θ̂G) + |θ̂G |

−BIC(G, θ̂G) =def 2L(G, θ̂G)− |θ̂G |.

The first line is the usual definition here, because lower BIC scores are better, but
in this work we will use negative score functions where a higher (less negative)
value is better, so the second line shows this form better.6

The hat above θ̂G is because parameters do not come with the graph, their
values have to be estimated from the data. The graph and associated type of
statistical model dictate which parameters have to be estimated exactly. For
example, in our example from Figure 1a, using an ordinary Markov model, we
need to estimate P (Z = 0), P (X = 0 | Z = 0), P (X = 0 | Z = 1), P (Y = 0 |
X = 0, Z = 0), P (Y = 0 | X = 0, Z = 1), et cetera. For discrete models, as
mentioned, the number of parameters to estimate is exponential in the maximum
in-degree (2 in this case), which can be quite a lot. We also need the whole
dataset to estimate this every time. For linear-Gaussian models, this is quite
different. We don’t need the data, we only need the covariance matrix, which we
can generate from the data once, after which we don’t need the data anymore.
This is why in Algorithm 1, either the data X can be passed in, or the covariance
matrix Σ.

Decomposition Fitting parameters can be quite an expensive operation, and
therefore scoring a graph can be expensive. This is a problem for score-based
causal discovery methods, because we generally need to assess the score of many
graphs before we reach our best-scoring graph. Luckily, we don’t need to re-
score every graph from the ground up every time we make a small change. We
can make use of the factorisation property in (1). Because an ordinary Markov
model is defined in terms of individual factors for each node, the likelihood
function can also be expressed as a combination (sum or product) of individual
terms, each term corresponding to a single node and its parents. That means
that when an edge is changed, at most two terms have to be recalculated, while
the rest can be cached, so we don’t have to re-calculate the score for the entire
graph after every edge change. For models defined over ADMGs this works
slightly differently: generally the terms correspond to districts, not singular

6The score is negative, because the likelihood P (G | data) is a probability, so in the range
[0, 1], and a logarithm of a value between 0 and 1 is always negative.
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nodes. This means that a bit less computation will be saved, but it’s still a big
difference, as long as districts don’t get too large.

2.2.6 Continuous optimisation methods

A more modern development is the rise of continuous optimisation approaches
to causal discovery. Standard score-based methods enforce DAGness by hav-
ing a discrete acyclicity constraint (or other-type-of-graphness with different
constraints): a graph is either a DAG or it is not. Continuous optimisation
methods instead transform this constraint into a continuous numerical one (a
number that captures how “DAGgy” a graph is, further from 0 is less DAGgy)
so that continuous optimisation can be used to find the best graph instead of
local search. Often, these methods use neural networks. For more comprehen-
sive overviews of causal discovery methods, see C. Glymour, Zhang, and Spirtes
(2019), who focus on traditional constraint-based and score-based methods, and
Vowels et al. (2022), who focus on continuous optimisation methods.

2.2.7 Model equivalence

One of the most important problems for causal discovery from observational data
is the concept of model equivalence. In score-based methods, we want to find a
graph that scores best given the data, based on its likelihood (P (data | graph)).
Unfortunately, the likelihood of different graphs is often the same. Then, if
their penalty terms are also the same (because they imply the same number of
parameters), we cannot distinguish them with our score function. This happens
if the two graphs are equivalent according to the type of model that we use the
graph to define. If we find two (or more) equivalent graphs as our best graph,
then either of them explains the data equally well statistically, and we have only
our own judgement to decide which is really most likely to have generated the
data.

A graphical causal model uses a graph to define a model (as the name im-
plies). A model puts constraints, such as (conditional) independences, on the
joint distribution. The model also specifies a set of parameters of which the
value needs to be estimated. Two models are equivalent if they impose the
same constraints. It is possible to define different types of models over the same
graph. We will go into these differences in this section.

Ordinary Markov equivalence Perhaps the simplest case is that of ordi-
nary Markov equivalence over DAG models with categorical variables. It is the
case we described in Section 2.1.1. The constraints that an ordinary Markov
model implies are the (conditional) independences that we read from the d-
separations in the DAG. If these are the same between two graphs, the models
are equivalent.

For DAGs, we have a simply checkable graphical characterisation of this
equivalence. Verma and Pearl (1990) show that two DAGs are Markov equiva-
lent if and only if they have the same skeleton and the same v-structures.
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For a graph G′ to have the same skeleton as a graph G means that if and
only if there is an edge between two nodes in G, there is also an edge between
those nodes in G′, whatever its direction. Essentially, the graphs have the same
edges if we ignore the direction of the edges. v-structures, sometimes also called
unshielded colliders, are collider triples where the two parents are not adjacent.
For example: the collider triple A → B ← C is also a v-structure, unless an
edge A→ C or C → A is also present. (That would turn the ‘v’ into a triangle.)

A complete set of DAGs that are Markov equivalent to each other, a Markov
equivalence class (MEC), can be efficiently represented by a complete partial
directed acyclic graph (CPDAG). The CPDAG has a directed edge where all
DAGs in the equivalence class agree on the direction, and an undirected edge
where some DAGs disagree on the direction. Of course, two different DAGs in
the same MEC do not have the same causal interpretation, but we would not
be able to tell which interpretation is correct from the data. CPDAGs are a
generalisation of DAGs in a very similar but still different way from ADMGs,
so we have CPDAGs ⊃ DAGs ⊂ ADMGs ⊂ mDAGs.

For DAGs, it is possible to use equivalence and CPDAGs to our advantage.
This is done by the well-known greedy equivalence search (GES) algorithm,
which was originally developed by Meek (1997) and proved to find the opti-
mal solution (under certain conditions) by Chickering (2003). The algorithm
searches in the space of CPDAGs (or equivalently the space of MECs). The
precise way in which the neighbourhood relation is defined is a bit involved, but
the general idea of it is that all DAGs in the equivalence class are instantiated,
an edge addition or removal is performed on them, resulting in a new DAG, and
the final result is the CPDAGs corresponding to that new DAG. GES actually
first has a forward phase, where edges are added until a local maximum of the
score function is reached, and then a backward phase where edges are removed
until a local maximum is reached again. Variants of the GES algorithm that are
more efficient in different ways are introduced in Chickering and Meek (2015)
and Chickering (2020). The moves defined by the neighbourhood relation given
by Chickering (2003) can also be used in different local search procedures, for
example with the ant-colony optimisation meta-heuristic (Daly & Shen, 2009).

Nested Markov equivalence ADMG models can encode ordinary Markov
constraints through m-separation. However, it has long been known that they
can imply more constraints on the joint probability distribution (Robins, 1986,
Verma and Pearl, 1990). Shpitser, Evans, Richardson, and Robins (2014) and
Richardson et al. (2023) (among others) call these constraints nested Markov
constraints, and use them to define nested Markov models, along with param-
eterisations7 for those models. Essentially, a nested Markov constraint is an
independence that holds in a version of the original graph that has been al-
tered: some number of the nodes have been “fixed”, an operation similar to

7Definitions of the parameter set, and how to map from the parameters to a probability
distribution.
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Figure 5: The conditional acyclic directed mixed graph (CADMG) resulting
from fixing X3 in Figure 2b.

do-operator interventions like in Figure 1b.8

To explain nested Markov constraints, we will come back to Figures 2a and
2b (page 12). We see that no d-separations are encoded among the observed
variables in the DAG Figure 2a, and that (therefore, as intended by the defini-
tion of latent projections) no m-separations are encoded in the ADMG in Fig-
ure 2b. These graphs therefore encode no regular (conditional) independences.
However, it turns out that these graphs do still encode some constraints. For
example, if we “fix” X3 in Figure 2b, i.e. give it a set value (equivalent in
this case to intervention), we get the graph in Figure 5 (the fixed node is indi-
cated as a square).9 In this graph, X1 is independent of X4 (given X3, though
also marginally). We can observe such “post-truncation independences” in ob-
servational data corresponding to such a graph. The authors call an ADMG
with fixed nodes like the one in Figure 5 a conditional acyclic directed mixed
graph (CADMG).10 A post-truncation independence like the one described
above is an example of a nested Markov constraint. If two graphs impose the
same nested Markov constraints on the distribution, we say that they are nested
Markov equivalent. Section 2.4 goes into more depth on fixing and other nested
Markov definitions, such as when a node is allowed to be fixed.

Unfortunately, no graphical characterisation of nested Markov equivalence
exists, as we do have for ordinary Markov models in the form of the requirement
of having the same skeleton and v-structures. Of course, this means that no
equivalent of the CPDAG, which elegantly shows the equivalence class, exists
for this model. This is a long-standing open problem.

Shpitser, Richardson, Robins, and Evans (2012) estimate that about 25%
of ADMGs with four nodes have such post-truncation independences, so taking
them into account may help us distinguish models we could not have distin-
guished through ordinary Markov (non)equivalence in a significant amount of
cases. Shpitser et al. (2018) show that linear SEMs also obey the nested Markov
property. That is, all nested Markov constraints over a graph G are also present
in a linear-Gaussian model over that graph G, so nested Markov models are not
only relevant in the discrete case.

Evans (2018) shows that nested Markov models capture all equality con-

8Specifically, fixing generalises marginalizing out a variable and do-operator intervention
by dividing out the factor corresponding to a variable from the factorisation.

9There are rules about which nodes are “fixable” at which time, but they involve rather
complex graphical definitions that we will not reproduce here.

10CADMGs are a strict generalisation of ADMGs: every ADMG is a CADMG, just with
no nodes fixed.
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straints for discrete models, showing that there is no more fine-grained notion
of equivalence possible for discrete model, as long as we don’t want to consider
inequality constraints, which for the purposes of this work, we don’t.11

Distributional equivalence For linear-Gaussian models, as opposed to dis-
crete models, there are more fine-grained notions of equivalence available. For
example, van Ommen and Mooij (2017) make progress on algebraic equivalence
constraints, which are polynomial constraints on the covariance matrices of lin-
ear structural equation models.

Nowzohour et al. (2017) discuss the case of BAPs: ADMGs without bows.
Let SG be the set of possible covariance matrices over a BAP G, and S̄G ⊂ SG
the set of normalised covariance matrices over G, where S̄G = {Σ ∈ SG | Σii =
1 for all Xi ∈ VG}. They define two BAPs G and G′ to be distributionally
equivalent if S̄G = S̄G′ . This is yet more fine-grained than algebraic equivalence.

As with nested Markov equivalence, no graphical characterisation of distri-
butional equivalence is known. Nowzohour et al. (2017) do, however, provide
some necessary and some sufficient conditions for distributional equivalence.
They prove that any two BAPs with the same skeleton and the same collider
triples must be equivalent (sufficient condition) and that two BAPs cannot be
equivalent if they do not have the same skeleton and v-structures (necessary
condition). This means concretely that for any BAP G, all other graphs with
the same skeleton and collider triples are definitely equivalent, and more graphs
may be equivalent, as long as they have the same v-structures.

They use these results to restrict the search space in a search for empirically
equivalent graphs. That is, they find a graph that fits the data, then to find
equivalent graphs, they start by adding all graphs with the same skeleton and
collider triples to the empirical equivalence class. They then greedily make small
changes to these graphs that do not result in a difference of v-structures, and
score these models. If they score the same (or at least very similarly) as the
original found graph, they are added to the empirical equivalence class. This
algorithm is the first of its kind for this type of graph, and provides some clarity
in the absence of a full characterisation. It is unfortunately a lot slower and less
reliable than the quickly constructed and mathematically proven CPDAGs.

2.3 Limitations of causal discovery

We think it is important to give the reader a bit of perspective on the usefulness
of causal discovery, since in these explanations of the theoretical possibilities we
run the risk of overselling the actual possibilities. Current methods for causal
discovery can certainly be useful, but their use absolutely has its limits. If causal

11All constraints that we have considered up to now, and that we will consider later, have
been and will be equality constraints: constraints that can be written as equalities. For
example, the post-truncation independence we will discuss in the next paragraph can also
be written as ∂

∂x1

∑
x2

P (x4 | x1, x2, x3)P (x2 | x1) = 0. Models can however also imply

constraints that can only be written as inequalities. Relatively little is known about these,
and we will not consider them further for this work.
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discovery were a completely solved problem, that would practically mean that
much of science would be solved. This would be amazing, but unfortunately,
causal discovery is not a solved problem. It is an incredibly hard problem. In
many cases, the necessary information is simply not there in the data. And even
if the information is there, many algorithms are intractable at larger numbers
of variables, and still may be slow at smaller numbers of variables. Algorithms
can also be very sensitive to parameter tuning. So causal discovery is useful,
but we cannot expect to just feed in a bunch of data to an algorithm that then
outputs the complete and true causal structure of the variables any time soon,
if ever.

Another important warning to give to anyone intending to use graphical
causal models is that the main assumption we make is not a trivial one. We
assume that the data we observe is generated by a process that can be modeled
as a DAG, but that is not always the case. For example, sometimes, real-world
processes involve feedback loops where one variable influences another, which in
turn influences the first. This would correspond to a cycle in a graphical model,
which is disallowed in DAGs because they are hard to deal with. It is in general
not always the case that a DAG exists that is Markov and faithful to the data,
though we often assume that there is such a graph in causal discovery.

2.4 Maximal Arid Graphs

In this study, we develop greedy search algorithms over the class of maximal arid
graphs (MArGs), a subclass of ADMGs, introduced by Shpitser et al. (2018).
The arid part of its name implies that it is everywhere identifiable. Themaximal
part means that any missing edge in a MArG implies a nested Markov constraint.
The authors show that every ADMG G has an associated MArG G† through the
operation of maximal arid projection. This MArG G† is also nested Markov
equivalent to G. Since, as mentioned, Evans (2018) showed that nested Markov
models capture all equality constraints for discrete models, it can be argued
that, for a discrete model, instead of any G, we may as well use its maximal
arid projection G†, since it is equivalent, and everywhere identifiable. For those
familiar, MArGs are analogous in a way to maximal ancestral graphs (MAGs).
What MAGs are to ancestral graphs, MArGs are to ADMGs in general. The
maximal arid projection can also preserve much more of the causal structure of
a graph than its corresponding MAG.

To define the maximal arid projection, we need a few more graphical concepts
relevant to nested Markov models. That is, for the maximal arid projection, we
need the reachable closure, and for the reachable closure, we need to specify
what fixing orders are allowed. Firstly, we properly define a CADMG G(V,W)
to be an ADMG with a set of random nodesV and a set of fixed nodesW.12 The
siblings of fixed vertices do not overlap with their parents: sibG(W )∩paG(W ) =
∅ for all W ∈ W. A node V ∈ V is fixable if and only if its district and

12To update the overview of graph classes, we now have CPDAGs ⊃ DAGs ⊂ MAGs ⊂
MArGs ⊂ BAPs ⊂ ADMGs ⊂ CADMGs.
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descendants do not overlap (except for itself): disG(V ) ∩ deG(V ) = {V }. We
define a fixing operation fixX(G) that takes a CADMG G(V,W) and a fixable
node X ∈ V and returns a new graph G(V \ {X } ,W ∪ {X }) where all edges
with arrowheads at V are removed.13 Sometimes, one node cannot be fixed
before another node is fixed. This means that not all fixing orders over a set
of nodes to fix are valid. Shpitser et al. (2018) do prove, however, that any
fixing order over the same set of nodes will always result in the same CADMG.
If, for some set of nodes X ⊆ V, there exists a fixing order for the remaining
nodes V \X, that, if fixed, leaves only X unfixed/random, we say that X is a
reachable set. To illustrate: we may have a CADMG G({A,B,C,D } , ∅), where
C cannot be fixed before A and B are. Then (A,B,C) or (A,C,B) would be
valid fixing orders, while (A,C,B), for example, is not. Fixing the nodes in the
two valid fixing orders will however result in the same CADMG. From this we
know that, for example {C,D } and {D } are reachable, but {A,D } is not.

Every set of variables S in a CADMG G(V,W) has a unique reachable
closure C, where S ⊆ C ⊆ V, that is the minimal set (w.r.t. inclusion) that is a
subset of S that is reachable. For example, in the paragraph above we described
a graph where C was not fixable before both A and B were fixed. Let’s say that
D is fixable at any time. We have that the set {A,C } is not reachable. We
need to add B to make the set reachable. Since we made a minimal addition to
the set, and it is sufficient, we know that {A,B,C } is the reachable closure of
{A,C }.

Now, an ADMG G(V) is arid if and only if the reachable closure of each
node V ∈ V node contains only itself, or more precisely ⟨{V }⟩G = {V }. This
is important, because the SEM for an ADMG is everywhere identifiable if and
only if it is arid (Shpitser et al., 2018). The term arid is used, because an
induced subgraph G⟨{V }⟩ is also called a V -rooted C-tree or an arborescence
converging on V , and trees don’t grow well in arid environments. It is these
C-trees or arborescences that cause problems in identifiability.

Now we will define the property of maximality, for which we need the notion
of densely connected nodes.

Definition 2.5. A pair of nodes A ̸= B is densely connected if one of the
following holds:

• A ∈ paG(⟨{B }⟩G), or

• B ∈ paG(⟨{A }⟩G), or

• ⟨{A,B }⟩G is a bidirected-connected set.

A CADMG is maximal if every pair of densely connected vertices is adjacent.

Then we finally come to the definition of the maximal arid projection:

13With the graphical operation of fixing also comes a probabilistic operation on the set of
distribution the graphical model defines, but we will not go into those definitions.
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Definition 2.6. The maximal arid projection of a CADMG G(V,W), which
we will denote G†, is the graph that contains the same vertices V and W, but
only contains the following edges. For each A,B ∈ V,

• there is an edge A→ B if A ∈ paG(⟨{B }⟩G),

• and there is an edge A↔ B if

– neither

∗ A ∈ paG(⟨{B }⟩G)
∗ nor B ∈ paG(⟨{A }⟩G)

– and ⟨{A,B }⟩G is a bidirected-connected set.

It is important for our purposes to note the following:

Lemma 2.1. Every arid graph is bow-free.

Proof. We prove the equivalent contrapositive statement: if a graph is not bow-
free, then it is not arid. If a graph is not bow-free, it contains a bow, i.e. a
construction for some A,B ∈ V such that A ̸= B, and A → B and A ↔ B.
Then, dis(A) ⊆ {A,B }, and de(A) ⊆ {A,B }, so dis(A) ∩ de(A) ⊆ {A,B } ≠
{A }. That means that A cannot be fixed before B is. Therefore, the reachable
closure of {B } must include A as well, which means that the graph is not
arid.

It is also important that the converse is not true:

Lemma 2.2. Not every bow-free CADMG is arid.

Proof. We prove this by providing a counterexample that is bow-free, but not
arid. We see that the ADMG in Figure 6a has no bows. However, since the graph
is fully bidirected-connected, the only district is the district containing all nodes,
and all nodes are ancestors of C. That means that for each node X ∈ V \{C },
C is both in its descendants and in its district, which in turn means that none
of them can be fixed before C. The reachable closure of C, therefore, contains
all the nodes in the graph, instead of just C: ⟨{C }⟩ = V {A,B,C,D } ≠ {C }.
That means that the graph is not arid.

This means that restricting the search space to MArGs is actually meaning-
ful, compared to only restricting it to BAPs.

3 Algorithms

3.1 greedyBAP

The implementation of the algorithms developed here are based mainly on the
greedyBAPs algorithm by Nowzohour et al. (2017),14 which we will now de-
scribe. It should be noted that the idea of restricting the search space to MArGs

14The code for greedyBAP, and the experiments run by Nowzohour et al. (2017), is available
at https://github.com/cnowzohour/greedyBAPs.
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does not depend on the specific implementation of greedyBAP, nor on the fact
that greedyBAPs searches for linear-Gaussian models. In theory, it should be
applicable to other types of variables and other types of models as well.

What makes greedyBAPs unique is its neighbourhood relation, which en-
sures that we search only in the space of BAPs, which are bow-free ADMGs.
For compatibility with our own research we will formulate this a function that
maps a graph to its neighbours. For this case, G′ ∈ neighboursBAP(G) if and
only if G′ is a BAP and either

• G′ contains one edge that G does not, but is otherwise identical (edge
addition), or

• G′ is missing one of the edges G has, but is otherwise identical (edge
deletion), or

• G and G′ differ only in the direction or type of one edge (edge change, the
options for edges are →, ←, and ↔).

We may also choose to only allow a subset of these conditions, to get forward
search or backward search.

The score function employed by greedyBAPs is the following:

s(G, θ̂G) =def
1

n

(
L(G, θ̂G)− (|{nodes}|+ |{edges}|) log n

)
It differs from the BIC score only in that the penalty for nodes and edges is
twice as large, which the authors found to work well in testing. Of course, in
the actual implementation, the score is decomposed into score parts per district.
See the paper for details on that decomposition. Partial scores are cached, so
that scoring slightly different graphs takes very little time.

To prevent getting stuck in local maxima, greedyBAPs uses multiple random
restarts from uniformly sampled random BAPs, using a self-defined sampling
procedure based on Markov chain Monte Carlo steps.

3.2 Arid algorithms

We compare greedyBAPs to three different algorithms, which we will describe
here.15

Arid limiting search The first algorithm limits the search space to arid
graphs. For a move to be allowed, the new graph must not only be acyclic and
bow-free, but also arid (which of course also implies bow-freeness). This can be
seen as a “correct” version of greedyBAP, because of the following.

As Shpitser et al. (2014) point out, the rationale for using BIC, given with
its definition by Schwarz (1978), is that it is an approximation of the model
posterior (P (graph | data)). The proofs for this assume that the parameter map

15The code for all of the algorithms, and also for the experiments and the generated datasets,
can be found on https://github.com/Sebastiaan-Jans/greedyBAPs.
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(mapping parameters to distributions) of the model in question is smooth. This
does not hold for models with unmeasured variables in general. As Shpitser
et al. (2018) show, only SEMs associated with arid graphs are known to be
guaranteed to represent a so-called curved exponential family, and therefore to
have a smooth parameter map. Using BIC on BAPs is therefore not entirely
theoretically justified. The same, and what follows, also holds for the score used
by Nowzohour et al. (2017), which is only a slight variant of BIC.

Arid graphs are, as mentioned before, everywhere identifiable, while BAP
models are only almost everywhere identifiable: the set of unidentifiable pa-
rameters has measure zero in the space of possible parameters. The probability
that, if we were to randomly generate a parameter for an edge, we generate a
parameter that would be unidentifiable for a parameter estimation procedure,
is zero. In the same way, the probability that the “true” parameter of an edge
is such that not all parameters of the model can be identified is zero. Still, such
parameters may exist. This works like a line on a two-dimensional plane. The
line is there, and you can name points that lie on the line if you know where
the line is, but the probability of hitting it by randomly choosing a point on the
plane that the line goes through it is zero.

However, though these unidentifiable parameters should not generally cause
problems for parameter identification, they can cause the parameter map to
become non-smooth. As Drton (2009) points out, this may cause the likelihood
function to behave strangely near those unidentifiable parameters, which can be
a problem for BIC scoring.

Aside from being in a sense more correct, the restriction to arid graphs is
also without loss of generality (within the class of nested Markov models), since
Shpitser et al. (2018) show that SEMs associated with arid graphs represent all
Gaussian nested Markov models. A restriction of the search space can be useful
simply because we may need to score fewer graphs, and we may prevent the
search from reaching an unfavorable local maximum.

We now prove some relevant facts for the implementation of this algorithm.
For example, to check aridity of a resulting graph after a local move, we need
to check that it is still the case that the reachable closure of each node contains
only itself. It turns out that we do not need to check the reachable closures
of each node in the node set (V). This may be quite helpful, because finding
the reachable closure can be a relatively expensive operation, being quadratic
in the number of nodes in the worst case,16 and it may not be uncommon to
get situations close to that worst case. That would make checking the reachable
closure of all nodes in a set S on the order of |S|3.

Specifically, when we add an edge A ↔ B, we only need to re-check the

16To compute the reachable closure of a set S, we try to fix all nodes in V outside S, until
we find that we cannot fix any more. In the best case where no nodes are fixable, we only
need one pass. If some nodes are fixable, we may still need only two passes: one to fix the
nodes, another to check that no more can be fixed. In the worst case, all of them might be
fixable, but every we time that we check all of them, all of the ones we check – except the
last one – cannot be fixed before the last one we check. This way, we need to make an order
|V \ S| pass for each node, which makes it quadratic.
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reachable closures of nodes in the district of A and B in the new graph (which
they are both in), and when we add an edge A→ B, we need only re-check the
reachable closures of nodes in the descendants of B (including B, of course).

Lemma 3.1. Let G be an arbitrary arid graph with node set V which contains
nodes A, B, and possibly others, where there is no bidirected edge A ↔ B. Let
G′ be the graph that results from adding the bidirected edge A↔ B to G, which
shares the node set V. Then, for all V ̸∈ disG′(A)(= disG′(B) = disG′({A,B })),
we have ⟨{V }⟩G′ = {V }.

Proof. For a node V ∈ V to have ⟨{V }⟩G′ ̸= {V }, there must be one or more
nodes T ∈ ⟨{V }⟩G′ \{V }. Then, we must have T ∈ disG′(V ) and T ∈ anG′(V ),
because otherwise T would be fixable in G′⟨{ v }⟩G′

and it would not be in ⟨{ v }⟩G′ .

The only changes in genealogical relations from the addition of A↔ B are that
disG′(A) = disG′(B) = disG′({A,B }) = disG(A) ∪ disG(B). The addition of
a bidirected edge affects no ancestor relations. Therefore, if V ̸∈ disG′(A), its
ancestor sets and districts are the same in G′ as in G. Since we know that there
was no such node T in G – because G is arid – there cannot now be such a node
T in G′, and we have ⟨{V }⟩G′ = {V }.

Lemma 3.2. Let G be an arbitrary arid graph with node set V which contains
nodes A, B, and possibly others, where there is no directed edge A → B. Let
G′ be the graph that results from adding the bidirected edge A→ B to G, which
shares the node set V. Then, for all V ̸∈ deG′(B) = deG(B), we have ⟨{V }⟩G′ =
{V }.

Proof. The only genealogical relations affected here are that anG′(B) = anG(B)∪
anG(A) and deG′(A) = deG(A)∪deG(B). The only way this can affect fixabilities
is if there is a node X ∈ anG(A) and a node Y ∈ deG(B), such that X ∈ disG(Y ).
Then, Y becomes a descendant of X in G′, so X cannot be fixed before Y in G′,
which means that the reachable closure of Y in G′ will include X. This means
that the only nodes for which the reachable closure can be different in G′ than
in G are those in de(B) (including B itself). For nodes V ̸∈ deG′(B), we already
have that ⟨{V }⟩G′ = {V } because that same property holds in G – since it is
arid – and their reachable closures are unchanged.

Maximal arid limiting search The second algorithm limits the search to
maximal arid graphs. For a move to be allowed, the new graph must be acyclic,
(bow-free,) and maximal arid. Unfortunately, we have found no way to make this
more efficient than simply checking whether a graph’s maximal arid projection
equals the graph itself. Both are operations on the order of |V|4, since to check
maximality, we need to check the reachable closure of all pairs of nodes. The
only slight implementation difference is that we do not need to make a copy
of the graph to check if it is maximal arid, though we did not implement that
optimisation.
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Maximal arid projection search The last algorithm, and perhaps the most
interesting one, defines moves slightly differently. We will refer to this algorithm
as simply the projection algorithm. It makes sense to define the neighbourhood
function for this algorithm, which we will simply call the projection algorithm, in
a more algorithmic style. Essentially, we make all edge additions/changes/edges
according to neighboursBAP, and then take the maximal arid projection of all
those graphs. Then we filter out those graphs whose maximal projection goes
back to being G again. More formally, the neighbours of G are

neighboursprojection(G) =def

{
G′† | G′ ∈ neighboursBAP(G) ∧ G′† ̸= G

}
,

where † is the maximal arid projection operator as before.
The projection can make moves that affect more than one edge at once. This

can be illustrated by using the graph in Figure 6a. Let’s call it G, and let’s call
the graph that results from removing the edge D → C from it G−, shown in
Figure 7. This graph is maximal arid. If this graph is the current state in the
projection algorithm, a possible move would be to add the edge D → C. That
results in the graph G, which as we know is not arid. The projection algorithm
then takes the maximal arid projection, resulting in the graph in Figure 6b. As
we see, the addition of the edge D → C also causes the edge A↔ C to become
directed: A→ C, so it causes a change in an edge that involves none of its own
end-points. Note that this G− is just a concrete example, the same goes for any
other graph G− resulting from an edge removal from G.

The ability to make changes to multiple edges at once has some advantages
and some disadvantages. The limiting algorithms would simply disallow the
move adding D → C to G− because it results in a non-arid graph, while the
projection algorithm does allow it, and “fixes” the non-aridity by taking the
maximal arid projection. Permitting more moves may allow the algorithm to
explore a larger part of the search space, which might increase the chance of
escaping a local maximum. A disadvantage would be performance. When mak-
ing local changes, it is quite straightforward to work out which districts – and
corresponding parent sets – have changed, and should have their (partial) score
recomputed, so that only that partial score needs to be recomputed. It is not
obvious what the effects of a local move followed by a maximal arid projection
on the districts may be on the districts of a graph, so the whole graph will have
to be re-scored after each non-local move in the projection algorithm, after the
set of districts are re-calculated. This is not catastrophic, since partial scores
can be cached, and not too many parts should have to actually be re-scored.
It does mean that some look-ups need to be performed to retrieve the partial
scores.
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A B C D

(a) A bow-free, non-arid ADMG.

A B C D

(b) Its maximal arid projection.

Figure 6: Maximal arid projection.

A B C D

Figure 7: The graph G−, which results from removing the edge D → C from
the graph in Figure 6a.

4 Experiments and results

4.1 Number of (maximal) arid BAPs

To gain insight into the space through which the algorithms search, we tested
how much the search space restrictions actually restrict the search space. For
different values of the maximum in-degree α and model size d (node count), we
used the algorithm for generating uniformly distributed random BAPs provided
by Nowzohour et al. (2017) to generate 1000 random BAPs. We then checked
which of these BAPs were arid, and which were maximal arid. The results
are shown in Figure 8a. As can be seen, for low values of α and d, very few
to no BAPs are not (maximal) arid. For larger values, however, few BAPs are
(maximal) arid. Of course, fewer BAPs are maximal arid than arid. It should be
noted that a uniform sample from the space of all d-node BAPs with maximum
in-degree α will include many more models with many edges than models with
few edges, because there are simply more models with many edges: there are
more ways to arrange many edges than there are ways to arrange few edges.
Indeed, from visually inspecting a sample of generated BAPs with unrestricted
in-degree (α =∞), it became clear that most of them have edges between most
node pairs. This means that a uniform sample over all possible BAPs is not
a perfect representation of the type of graphs that a greedy search algorithm
starting from the empty graph is actually likely to encounter.

4.2 Greedy search experiments

To test the algorithm, we ran it on generated data. The testing procedure was
as follows.
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(a) Percentage of arid BAPs.
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(b) Percentage of maximal arid BAPs.

Figure 8: Percentage of (maximal) arid BAPs in a sample of 1000 per model
size and max in-degree.
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(a) BAP search.
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(b) Arid graph search.
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(c) Maximal arid limiting search.
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(d) Maximal arid projection search.

Figure 9: ROC curves of the minimal absolute causal effect predictions from the
experimental setting d = 8, α = 4, N = 100. The grey curves are the N = 100
resulting ROC curves, and the black curve is the point-wise average of those
ROC curves, with each point showing the average TPR against the average
FPR for a specific threshold.
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Experimental setup After some preliminary examination of the algorithms,
we chose the following three experimental settings for larger samples. We gen-
erate random ground truth graphs G for the settings shown in Table 1, where
we also show the means and standard deviation of edge count of the generated
ground truth graphs, and the maximum possible edge count for a graph with d
nodes. We used the uniform BAP sampling procedure developed by Nowzohour
et al. (2017), and set the model size (number of nodes) to d. The maximum al-
lowed in-degree for a generated graph was set to α, and we generated N graphs
for each setting. We then took the maximal arid projection of these graphs.
Note that it can be argued that this puts the greedyBAPs and arid limiting
algorithms at a slight disadvantage, since the ground truth is known to be a
MArG.

Experimental setting/graph type Mean(SD) of edges Possible edges
d = 8, α = 4, N = 100 17.95(2.86) 28
d = 8, α = 3, N = 100 18.13(3.08) 28
d = 6, α = 6, N = 200 9.26(1.48) 15

Table 1: The three experimental settings/graph types.

We chose these settings based on the results from the previous section, which
showed that a significant fraction of BAPs in these regions are not arid, or max-
imal arid. We balanced this against the fact that large graphs with many edges
and large districts are difficult for greedy search and parameter fitting. We
also took into account that models with very high in-degree (say, 5 or more)
are generally not very informative causal models. We then randomly gener-
ated parameters θG = (B,Ω) for each BAP G, and simulated n = 10000 data
points from each θG . See Nowzohour et al. (2017) for some details on parameter
generation and data simulation.

Then, for each of the graph sets corresponding to the experimental settings,
we ran the four algorithms, to get estimate graphs Ĝ. Within each experimental
setting, each algorithm was run on the same set of N graphs. Of course, between
the settings, the graphs are different. Though greedyBAPs is intended to be
run with random restarts from randomly generated BAPs – Nowzohour et al.
(2017) run it with 100 restarts – we did not use restarts. This is because our aim
is not to find an algorithm with optimal performance, but to see if the aridity
modifications have an effect on a greedy search. A greedy search in its purest
form is run just once. To make as few assumptions as possible, we start this
search at the empty graph (with no edges).

Evaluating results Evaluating a causal discovery algorithm over ADMGs is
notoriously difficult, because no simply calculable graphical characterisation of
equivalence exists for most models associated with ADMGs.17 More concretely,

17A notable exception is MAGs, for which a greedy equivalence search algorithm was recently
developed by Claassen and Bucur (2022), but as mentioned MAGs cannot represent causal
structure as flexibly as MArGs (or superclasses of MArGs).
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in this linear-Gaussian application, when we run the algorithm on data gener-
ated from a ground truth graph G, and we obtain an estimate Ĝ, we cannot
simply say that the estimate is correct if it equals G, and incorrect if it doesn’t.
This is because Ĝ may well in fact be correct, in that it is in the distribu-
tional equivalence class DEC(G) of G. Since most types of equivalence over
ADMGs cannot be computed simply, measures like Structural Hamming Dis-
tance (SHD) are often employed. The SHD is simply the number of node pairs
((A,B) ∈ V × V) where G and Ĝ disagree on what edge is there, or if there
is an edge. This does not take equivalence into account at all, however, and is
therefore still a rather poor estimate of the prediction quality.

This is where the greedy empirical equivalence class search algorithm by
Nowzohour et al. (2017) becomes very useful. They not only use the empirical
equivalence class in the evaluation, but also do not compare edges, but identi-
fiable causal effects. They reasonably claim that this is often more relevant in
practice than actual edges. They estimate the causal effects matrix Ê for each

graph G′ ∈ D̂EC(G) (the estimated distributional equivalence class), which con-
tains the causal effect of node Xj on Xi in each element Êij . They then take
absolute values of all these effects, and take the element-wise minimum over all
causal effects matrices in the equivalence class to get Êmin

G . Now if Êij > 0

there is an effect of Xj on Xi in each of the graphs in D̂EC(G). The same is

done for Ĝ, to get Êmin
Ĝ .

Now we simply have two matrices to compare, that represent their empirical
distributional equivalence classes. This is now an instance of binary classifica-
tion: if there is an effect (a non-zero entry) in Êmin

G , we want to predict that

there is an effect in Êmin
Ĝ , and if there isn’t an effect, we don’t want to predict it.

Instead of taking a non-zero entry to imply an effect immediately, we can also
set a threshold. We can plot a receiver operating characteristic (ROC) curve,
that for each value of the threshold calculates the true positive rate 18 and the
false positive rate 19 and plots them against each other. The area under that
curve (AUCs) is often a good measure of the performance of a binary classifier
in general, regardless of a particular threshold.

The average AUC and standard deviaton for each algorithm and experi-
mental setting is shown in Table 2, as well as the average time taken by the
algorithm per graph.20 The ROC curves for the setting d = 8, α = 4, N = 100

18Thre true positive rate is given by TPR = TP
TP+FN

= TP
P

, where TP is the number of

true positives, FN the number of false negatives, and P the number of ground truth positives:
effects in Êmin

G . This is also known as recall or sensitivity.
19The false negative rate is given by FPR = FP

FP+TN
= FP

N
, where FP is the number of

false positives, TN the number of true negatives, and N is usually the number of ground truth
negatives. In this case, strictly speaking, we don’t use the real FPR. Because the predictions
aren’t independent – we cannot have an effect from A to B as well as B to A – using the
true number of non-effects as N in the denominator would result in false positive rates greater

than 1. Instead, the number of possible effects (
d(d−1)

2
with model size d) is used. The more

widely known precision statistic ( TP
TP+FN

= TP
PP

with PP the predicted positives) can also

be used instead of the false positive rate for ROC analysis, but this is less commonly done.
20Individual graph times were not recorded, so the standard deviations of time per graph
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Graph type Algorithm Mean(SD) of AUC Time (s/graph)
(d = 8, greedyBAPs 0.57(0.17) 7.4
α = 4, Arid limiting 0.55(0.17) 19.4
N = 100) MArG limiting 0.54(0.19) 103.5

MArG projection 0.54(0.18) 119.9
(d = 8, greedyBAPs 0.57(0.19) 7.8
α = 3, Arid limiting 0.55(0.18) 19.2
N = 100) MArG limiting 0.52(0.18) 108.7

MArG projection 0.55(0.18) 121.1
(d = 6, greedyBAPs 0.55(0.23) 4.3
α = 3, Arid limiting 0.55(0.22) 7.4
N = 200) MArG limiting 0.55(0.24) 21.3

MArG projection 0.55(0.23) 23.7

Table 2: AUC and time results of the various algorithms.

are shown in Figure 9. The thresholds were chosen in steps such that for the
lowest threshold, all non-zero entries in Êmin

G are predicted as effects (top-right
corner of the ROC curve), and for each next threshold value, one fewer effect
is predicted, until for the last threshold, no effects are predicted (bottom-left
corner of the ROC curve). Apart from the individual ROC curves per run, for
each threshold value, the average TPR is plotted against the average FPR, in
black, taken over all N runs. For interpretation: a diagonal line corresponds to
chance performance and AUC = 0.5, to the left and above is better than chance
and AUC > 0.5.

For each experimental setting, we performed a repeated measures ANOVA
analysis, with the algorithm as the independent variable, and the AUC as the
dependent variable. A repeated measures ANOVA is justified, because the dif-
ferent algorithms are run “within subjects”: the graphs are the subjects, and
the algorithms are run on the same set of graphs. We found no significant
difference of AUC between the algorithms for the setting d = 8, α = 4, N =
100 (F (3, 297) = 1.68, p = .17), nor for the setting d = 8, α = 3, N = 100
(F (3, 297) = 1.68, p = .17), nor for d = 6, α = 3, N = 200 (F (3, 297), p = .22).

Visual histogram inspections showed that the AUC was approximately nor-
mally distributed in all conditions except d = 8, α = 4, N = 100, which showed
a spike at AUC ≈ 1 next to the otherwise normal distribution as shown in
Figure 10. We speculate that this could be due to the greedy equivalence search
algorithm. It may have incorrectly found the same equivalence class for the
ground truth and the estimate many times. This could be because the relevant
setting d = 8, α = 4 is quite challenging: it is a very large search space.

could not be calculated.
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Figure 10: Distribution of average AUCs per graph for the condition d = 8, α =
4, N = 100.

5 Discussion

Findings We found no improvements over greedyBAPs for any of the pro-
posed algorithms. It is possible, of course, that the algorithms would show
better performance over a different search space, perhaps of BAPs with even
more nodes and edges, though with the minute differences in AUC we found
it seems unlikely. The algorithm limiting the space to arid graphs may still
be chosen, since it takes little longer than greedyBAPs, and is more theoreti-
cally sound. The algorithm limiting the space to maximal arid graphs, however,
takes much longer. The maximal arid projection algorithm is more flexible in
its moves, but still shows no performance benefit, and is as slow as the maximal
arid limiting algorithm. Neither of the maximal arid algorithms therefore seems
useful.

Limitations We previously intended to test the maximal arid projection ver-
sion of greedy search on categorical variables with nested Markov models, using
the fitting provided by the ananke-causal Python package.21 However, param-
eter fitting turned out to be prohibitively slow, which makes sense because this
package is intended for analysis of single models, when it does not matter that
fitting takes a few seconds. In a greedy search over many variables, however,
this does matter. Re-implementing nested Markov model fitting in a way that is
more suited to model search would have been too time-consuming, with uncer-

21Available at https://gitlab.com/causal/ananke/.
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tain results. The maximal arid projection does fit quite naturally with discrete
nested Markov models, since it preserves nested Markov equivalence, which is
complete with respect to equality constraints for discrete models, while it does
not preserve distributional equivalence for linear-Gaussian models.

Theoretically, it makes sense to allow arbitrary (non-bow-free) ADMGs to
result from the first step of the neighbours function, after which the maximal
arid projection is taken, because not doing so may restrict the search space
unnecessarily. Unfortunately, the implementation of greedyBAPs is not very
modular (to make many precise optimisations possible), so it was not possible
to replace that representation within the time-frame of this study.

6 Conclusion

In this study, we investigated whether restricting the search space of a greedy
search algorithm over the space of BAPs (greedyBAP) to arid graphs or max-
imal arid graphs, or taking the maximal arid projection of each move, would
improve performance. We argued that the theoretical backing for scoring only
arid graphs with BIC, or a BIC-like score, is stronger. For this reason, one
might argue for the use of the arid limiting algorithm instead of greedyBAPS.
However, since none of the algorithms showed an increase in performance on
the simulation studies, there seems to be no reason to choose the maximal arid
limiting algorithm or the maximal arid projection algorithm over greedyBAPs.
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A Glossary of abbreviations

DAG directed acyclic graph

BN Bayesian network

MEC Markov equivalence class

ADMG acyclic directed mixed graph

CADMG conditional acyclic directed mixed graph

CPDAG complete partial directed acyclic graph

SEM structural equation model

SCM structural causal model

mDAG marginalised directed acyclic graph

MArG maximal arid graph

MAG maximal ancestral graph

BAP bow-free acyclic path diagram

FCI fast causal inference

GES greedy equivalence search

AIC Akaike information criterion

BIC Bayesian information criterion

ROC receiver operating characteristic

AUC area under the (ROC) curve
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