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1 Introduction

Since the release of GitHub Copilot in 2021 and of ChatGPT in 2022, the

use of large-language models (LLMs) for developing programs has exploded1.

Besides other tasks, these LLM-based tools can help programmers by providing

feedback and suggesting code completions for incomplete programs, and often

even developing textual descriptions for the program itself. They also show the

ability to work as artificial teaching assistants due to their ability to provide

specific feedback to students [13].

To request code generation, Copilot and ChatGPT are prompted via snippets

of natural language. The quality of the generated code is affected significantly

by the structure and specific wording of these prompts [7, 38], making the ability

to write the prompts a crucial skill indeed. Recent research has uncovered that

LLMs can be “taught” to approach a problem step-by-step, which has shown to

be beneficial to the success rate of the generated code [35, 36].

Tools like ChatGPT and Copilot create both opportunities and challenges for

computer science education [7]. On the one hand, these tools can help students

by fixing problems in their code or by explaining difficult steps [14]. On the other

hand, it may result in an increased dependency on the tool, with possibilities

for academic misconduct [3]. It has also been shown that generated code often

contains imperfections. Many researches claim that computer science programs

will need to pay more attention to evaluating generated code, code quality, and

higher-level program design, given both the strengths and weaknesses of using

code generated by LLMs, and still expect human elements to play a significant

role in programming at this stage [27, 32, 2, 1, 22].

Due to the potential that LLMs have for assisting students while being prone

to faulty generations or misuse, we need to develop methods for writing prompts

1SimilarWeb reported 100 million users two months since the launch of
ChatGPT, see https://www.thehindubusinessline.com/info-tech/social-media/

chatgpts-popularity-tops-globally-100mn-users-in-2-months/article66470565.ece,
accessed: 04-02-2023
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for these tools that lead to good quality results with regards to code generation.

This is especially important for students, but also for all other user groups.

There is evidence that sub-goals are an effective method for teaching cop-

uter programming [16]. Dividing problems into sub-goals is a well-known ap-

proach to problem-solving [16, 5] and has similarities to a widely researched

prompting method known as Chain-of-thought (CoT) prompting, which aims

to break down the problem-solving process into steps for the model to take one

by one [35]. We argue that using sub-goals in the prompts will be an effective

way to generate high-quality answers from LLM-based tools. In this paper, we

want to verify that the competency to formulate sub-goals is indeed important

when using LLM-based tools to develop programs. The research question we

address in this paper is: “Does specifying sub-goals in the prompts for

GitHub Copilot and ChatGPT improve the quality of generated code

for Python problems that should be solvable by students that have

completed CS1?”

We answer our research question by investigating how Copilot and ChatGPT

deal with sets of programming problems. We submit the corresponding prompts

to Copilot and ChatGPT and analyze the results. We then attempt to engineer

the prompts of those problems for which the respective LLMs are unsuccessful

using sub-goals in an effort to generate a correct result. Finally, we will discuss

the significance and meaning of the results, threats to validity, and limitations

of the study.

2 Introducing GPT-3

GitHub Copilot and ChatGPT are built upon a large language model called

Generative Pre-trained Transformer 3 (GPT-3). GPT-3 is an auto-regressive

transformer language model that was released by OpenAI shortly before the

summer of 2022 [21]. At its core, an LLM predicts the most likely next token
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from a preceding textual input. Their auto-regressive properties enable them

to extrapolate from their own output - thus predicting tokens that follow upon

each other [26, 24].The GPT-3 model is large: according to Brown et al. [4]

GPT-3 uses 175 billion parameters, at least ten times as many as previously

developed LLMs. In a collaboration between OpenAI, Microsoft and GitHub,

Chen et al. [6] trained GPT-3 on a large dataset of programming code. The

resulting model, Codex, is used in GitHub Copilot. ChatGPT was developed

and released one year after as a closely related model, being based on a similar

- though improved - version of the same LLM, and with a different aim [20].

We chose Github Copilot (more specifically, its Codex model) and Chat-

GPT for this study for their ease of access and the model’s aims. Codex was

developed specifically as an “AI-pair programmer”, in particular for the Python

programming language, among others.

2.1 GitHub Copilot

GitHub Copilot utilizes a version of the GPT-3 model specialized for code gen-

eration [34], the code-davinci-002 model. It is accessible as a plugin from a

number of programming IDEs 2. GitHub Copilot’s functionality can be divided

into two parts [2]: One, suggesting code snippets while a user develops code.

Often these code snippets complete the line of code the user is writing. Two,

Copilot can interpret a natural language problem prompt in comments, and

suggest code solving the problem described in the prompt. Figure 1 shows an

example for both functionalities.

2.2 ChatGPT

ChatGPT is another AI-driven tool, which is not solely trained on program code,

unlike Copilot. Using OpenAI’s text-davinci-003, this AI is capable of conversing

24 different IDEs have been listed on the corresponding GitHub Docs page, see https:

//docs.GitHub.com/en/copilot, accessed: 03-03-2023
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Figure 1: Examples of GitHub Copilot functionality. The top image shows an example
of the first functionality, and the bottom image an example of the second.

in natural language with the user and is deployed in a chatbot format. This

enables it to use information that was provided earlier in the same session by the

user. A web demo of ChatGPT was launched in November 2022, shortly after

the launch of Copilot. The major difference between ChatGPT and Copilot lies

in how the underlying model is trained.

Like Copilot’s Codex, it’s based on the GPT-3 architecture and its 500 billion

token training set. Unlike Codex, however, ChatGPT is additionally trained on

supervised learning via simulated natural language conversations [20, 4], whereas

the former is trained on repositories for programming language only. However,

ChatGPT has demonstrated good abilities to solve programming problems as

well. It is therefore interesting to see how its qualities compare to those of

Copilot. Compared to other available LLMs and Masked Language Models

(MLMs), ChatGPT is considered the game changer by Wang et al. [34] for its

ability to perform well in in-context learning and prompting.
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3 Task location and prompting the model

Copilot and ChatGPT can be prompted to generate code by the user with a

natural language description detailing what the code should do. The underlying

LLM then attempts to compare this prompt to the natural language snippets

it was trained on, and creates a response that is formed by predicting the like-

liest response per snippet. The model’s ability to determine what part of the

model’s training set is useful to generate an answer to the prompt is called “task

location”.

3.1 N-shot prompting

Prompting an LLM using a single description without any further examples to

aid the model’s task location is known as “Zero-shot prompting”. Several re-

searchers [6, 7] attempt to improve GPT-3’s task location by first presenting the

model with examples of similar problems to solve [24]. This is known as “n-shot

prompting”, where n is the amount of given examples. Prompting with n > 1

examples shown to the model is called “Few-shot prompting”. A currently pop-

ular research topic is to use few-shot prompting to show examples to the model

on how to divide a problem into intermediate steps to improve the model’s rea-

soning capabilities. This is known as CoT-prompting [9, 35, 11]. This approach

was inspired by Nye et al. [19]’s approach known as “Scratchpad”, which had

the model show its work and how it achieved its answer, encouraging the model

to break the answer into steps. Current research investigates the effectiveness

of chain-of-thought for smaller language models, which gives additional indica-

tion that the chain-of-thought approach is effective for LLMs too. For example,

Ho et al. [10] use a fine-tuning approach to generate reasoning capabilities in

smaller language models, and Shridhar et al. [29] propose an approach using

semantic decomposition: breaking up the problem into smaller subproblems to

solve, and use that to solve complex reasoning problems.
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Instead of priming the model via few-shot prompting, we have chosen to

not prime the model with examples and instead use zero-shot prompting. This

is because we believe this to be the closest to the normal setting found in

most educational environments. The zero-shot prompting method also works

well given the chosen dataset for the experiment, which we will elaborate on

later. Reynolds & McDonnell [24] have also shown that GPT-3, in some cases,

performs identically - if not better - when using zero-shot prompting compared

to one-shot or few-shot prompting.

3.2 Prompt engineering

Denny et al. [7] and Zhou et al. [38] demonstrate that the quality of the code

generated by LLM-based tools is heavily affected by the information provided

in the prompt. For this reason, Denny et al. [7] investigate how to engineer

prompts such that the resulting generated code is of better quality. Zhang et

al. [36] propose a method to auto-generate CoT examples to aid in the few-

shot prompting of LLMs. Shin et al. [28] propose an automated approach to

prompting as a solution to its time-consuming nature for Medium Language

Models, before the emergence of Copilot and ChatGPT.

The activity of engineering prompts is dubbed “prompt engineering”. Prompt

engineering is challenging, and careful prompting is needed to generate code [38,

24]. The knowledge pertaining to prompt engineering appears to be hard to ac-

quire. Sarkar et al. [27], conclude from the interviews they performed that the

act itself is of considerable difficulty and the art behind it seen as uncharted

territory, which can only be explored through trial and error.

LLMs do not possess the same capabilities as humans to correctly answer a

question, making them prone to misinterpreting prompts. Manshadi et al. [15]

and Rahmani et al. [23] argue that ambiguity in the natural language description

can cause an LLM-based tool to generate different output than what is expected.
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However, there appears to be no consensus on what kind of prompts cause

the most errors. Gao et al. [9] show that the main mistakes made by LLMs

in reading prompts fall under the categories ’incorrect reasoning’ or ’incorrect

calculation’. Zhou et al. [37] specifically emphasize the difficulties that LLMs

have with complex reasoning tasks when they differ significantly from what they

were trained on. Veres [33] finds that semantics is the main error category in

interpreting prompts.

From all these findings, we conclude that prompt engineering is important

for ensuring that LLM code completion tools generate code that matches a user’s

expectations. Correct prompt engineering is not easy, however, and especially

for students, guidance for prompt engineering will be required.

4 Subgoals

According to Catrambone [5], Margulieux et al. [16] and Lee et al. [13], splitting

the goal of a problem to be solved into sub-goals has been a proven effective

method in general problem-solving for a long time. The main benefit of introduc-

ing sub-goals is that it allows students to better adapt to novel problems when

an established procedure to solve the problem does not fully work. Catrambone

et al. [5] define a sub-goal as “a meaningful conceptual piece of the overall

solution” . This means that when taken together, sub-goals should describe the

conceptual steps to be taken in a procedure from start to finish. In our case,

this procedure will take the form of “the solution to a programming problem”.

Morrison et al. characterize sub-goals as “function-based instructional expla-

nations” [18], and thus each sub-goal is constrained to performing one single

function. We develop our subgoals according to these two definitions.

The effectiveness of sub-goals has been proven across a number of STEM

fields according to Morrison et al. [18], especially with respect to the cognitive

load theory [16, 31]. Margulieux et al. [17] have specifically shown the usefulness
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of sub-goals in a programming context. In their study, they implement sub-

goals which follow a strict structure. The structure is explained in Figure 2

using a subgoal example. The first element is an imperative verb, an action

that the sub-goal sets out to complete. Second is the affected object, most of

the time a particular variable. Finally, all the way at the end, a condition may

be introduced by preceding it with the word “if”. A sub-goal with a condition

need only be addressed if that condition is met, otherwise it will be skipped.

Figure 2: Example of subgoal with condition. The colored labels each indicate different
parts of the subgoal structure.

The examined related works show that GPT-3 performs better when pre-

sented with a prompt that is structured using sub-goals compared to prompting

using only a problem description.

5 Literature gap

Little literature exists on how to correctly engineer prompts to improve LLMs

performance in code generation. Several researches do employ prompt engineer-

ing: Denny et al. [7] show that Copilot is pretty good at generating code for

minor programming problems using prompt engineering, Wei et al.[35] show it

can be used to overcome reasoning problems common to the underlying GPT-3

model, and Siddiq et al. [30] use it in their proposed framework as a way to

tackle code of insufficient quality, but they do not elaborate on how prompt

engineering is utilized with respect to the natural language involved or how it

is practiced. Some researches do show it in different settings, however, which

we will talk about here and how exactly those researches differ from ours.
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A very close match with respect to the method in prompting is Kojima et al.

[11]. Their research indicates that simply prompting LLMs to “think step-by-

step” vastly improves performance, which they achieve by using two prompting

instances. The first distills the reasoning steps from the model, and the second

uses those steps to generate the answer. Our work differs from theirs on a few

points. First, even though they also use GPT-3, they do not use Codex and

instead focus on its performance relative to Instruct GPT-3 and PaLM. Second,

Kojima et al. focus on researching reasoning capabilities of LLMs in a diverse

set of reasoning task categories while our focus is specifically on programming

code generation. Finally, while their method is a zero-shot technique, it does

utilize two different prompts per problem, while we limit ourselves to a single

prompt.

Zhou et al. [37] argue that while CoT has marked improvements in multi-

step reasoning for LLMs, reasoning tasks that differ from those used to train the

model have remained difficult for LLMs to solve. In their work, they leverage the

CoT’s principle of step-by-step computations as well as Scratchpad’s approach

of showing the steps themselves in order to develop “algorithmic prompting”:

they increase the amount of detail shown in the rationales and specify the steps

taken in the prompt. The findings of Kojima et al. [11] and Zhou et al. [37]

support our hypothesis that LLMs like those used in Copilot and ChatGPT for

code generation benefit from approaching problems step-by-step.

Another closely related work that was recently published, Sakib et al. [25]

delved into ChatGPT’s ability to solve programming problems on a custom

Leetcode dataset of 128 problems. They concluded that ChatGPT’s ability to

change answers via feedback after generation was very limited. They used a

follow-up prompt via ChatGPT’s conversational interface to attempt and guide

ChatGPT into correcting itself, however, this was only successful in no more

than 30% of the cases, highlighting the need for research on how to correctly

(re-)prompt the model after an unsatisfactory result. While utilizing a research
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design very similar to ours, they made use of a different dataset, did not evaluate

the OpenAI Codex model, and used a different approach for failed exercises by

issuing a follow-up prompt rather than editing the starting prompt and using

that to allow new code to be generated from scratch.

Finally and perhaps the most closely related in goal, Denny et al. [8] have

developed an approach to teach students to effectively prompt for LLMs via

a new concept: a “Prompt Problem”. They are given a visual representation

of a problem they are required to solve by prompting the LLM correctly using

natural language. This very closely matches our research goal and methods, the

latter which we will elaborate on in the next section. The main difference is

that when the solution is not satisfactory yet, the approach is to write a follow-

up prompt asking for a revision of particular parts of the solution generated

by the model, whereas we instead focus on the use of sub-goals in an entirely

independent prompt.

6 Experiment design

Denny et al. [7] show that prompt engineering affects Copilot’s ability to gen-

erate correct code. In an example they provided, by re-writing the prompts to

elaborate on the computational steps to take, they were able to eliminate bugs

in the code. We want to expand on this by taking this concept further, intro-

ducing sub-goals into the prompts and identifying factors and features of the

exercises that Copilot would fail initially. Additionally, we introduce a different

dataset to examine the effect of having different prompt structures and have

ChatGPT attempt to solve the same problems.

6.1 Research question

We aim to answer the following main research question: “Does specifying

sub-goals in the prompts for GitHub Copilot and ChatGPT improve
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the quality of generated code for Python problems that should be solv-

able by students that have completed CS1?”

We will answer this with an experiment that compares both models against

a series of public programming exercises. We hope to be able to indicate a

significant difference between subgoal and non-subgoal prompts. After that, we

attempt to extract important features of subgoals, identifying characteristics of

successful prompts and the pain points of prompts that failed. We hope this

will help prompting of similar tools in similar settings in the future.

6.2 Experiment approach

We use two sets of publicly available coding problems and ascertain Copilot and

ChatGPT’s ability to solve them. One by one, exercises and their description

are presented to the tool as prompts. We record the output the LLM in question

generates in response to the prompt. When we observe that the tools fail to

generate correct code for an exercise, we start the process of incorporating sub-

goals into the prompt.

Before creating a sub-goal-centered approach, we first define what “using

sub-goals in prompt engineering” means. Margulieux et al. [16, 17], building

upon Catrambone’s work from 1998 [5], label groups of steps that contribute

to a particular goal. We introduce sub-goals into the prompts with a structure

identical to the ones introduced during their experiments: An imperative verb

followed by an object. A conditional statement is added at the end whenever

necessary. When taken together the sub-goal labels should form a complete list

of actions describing the problem in steps from start to finish. After deliberation

and testing using this structure, we decided to adapt it for this research to create

the necessary sub-goals for the prompts.

With this structure in mind, the process of adding sub-goals to the exercise

prompt goes as follows. First, we attempt to identify the sub-goals of the
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exercise. This is done according to the following principles:

1. Start with the given variables. The first sub-goal always indicates

the variables and information on them, like the data type or what the variable

represents, that is provided by the exercise description itself.

2. Creating new variables should be explicitly indicated in their

corresponding sub-goals. If one or more new variables should be used in the

program, a sub-goal should exist indicating their creation.

3. Each sub-goal with the exception of the first described an oper-

ation to be executed on a particular object. Multiple complicated com-

putations may happen under a single sub-goal, but they should all contribute

to the described operation.

4. Loops, breaks and return statements should be explicitly in-

dicated in their corresponding sub-goals. These are steps that change

the order of execution in a code file and thus are important to indicate. “If”

blocks are excluded here because they are determined by the conditional part

of a sub-goal already.

The sub-goals per exercise should provide a complete list of programming

steps to take in order to produce the desired output, making use only of the

variables and elements defined in the problem description.

Once that is done and all sub-goals are identified, we engineer the prompt

by adding a section at the end of the prompt describing each sub-goal. Then we

check whether the sub-goals have led to a correct answer. If the resulting code

still does not produce satisfactory output, we apply changes to the prompt iter-

atively, one by one and re-evaluate the exercise until the output is satisfactory.

Changes are processed in the following order:

• Re-order subgoals that are not addressed/handled incorrectly by the gen-

erated code

• Identify specific elements in the prompt that the generated code failed to
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address and reword those to ensure the model understands the element

correctly

• Remove the standard description of the exercise, leaving only the subgoals

in place, to avoid confusing the model and to make it focus explicitly on

the steps

Finally, we analyze the initial and the engineered prompt to establish the

missing factors that initially caused the incorrect code to be generated. In doing

this, we hope to gain insight into what is considered important for Copilot and

ChatGPT in prompts to generate code correctly.

An example is provided in Figure 3. Without using sub-goals like the top

example, the model mistakenly assumes that it should only update the variable

when the next evaluated value is larger than the stored value. This creates a bug

where an equal value does not update the variable position. The result is that

only the first occurrence of the largest value is stored. By adding sub-goals like

in the bottom example, we can clarify that an equal value should also update

position, eliminating the bug and making the code function correctly. It now

indicates the last occurrence of the value instead of the first.

6.3 Setup

We use Copilot with all default parameter settings as plugin for Microsoft Visual

Studio Code (VSC), a free coding environment that is often used by students.

We choose to use the programming language Python for this experiment. There

are two reasons to choose for Python. First, the model itself is trained on

Python and is the most proficient when generating in this language [21].3 Chen

et al. [6] also use Python to evaluate Codex’s code-writing abilities. Second,

the dataset used in this research is also directed at Python programming. This

3GitHub reports the tool works “especially well in Python” and a few other languages. see
https://GitHub.blog/2021-06-29-introducing-GitHub-copilot-ai-pair-programmer/,
accessed: 16-2-2023
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Figure 3: Examples of prompting GitHub Copilot. In both images, code below the
“def” was generated by Copilot from the comments above it. The top image uses the
prompt directly. The bottom image uses the prompt and five determined sub-goals -
the fourth of the five sub-goals is conditional.

is especially important given that other researchers have also used one of these

dataset to evaluate Codex [7]. We will further elaborate on this in Section 7.

ChatGPT is prompted via its dedicated web application from OpenAI itself.4

The prompts are fed into the request bar, in the same form as for Copilot.

However, Copilot - being encased in a dedicated IDE - is aware from the start

that the file is to be written in the Python language and that a code snippet

is requested in the first place. We therefore precede the exercise text with

the following statement: “Generate a Python code snippet according to the

description below”.

Each exercise from the dataset is submitted to Copilot/ChatGPT directly in

the form of a natural language prompt using the descriptions published with the

exercises. Copilot/ChatGPT then generates code based on the prompt. That

generated code is then submitted for evaluation via a number of test cases. Each

test case contains a value for every variable and the expected result.

4The application is publicly accessible to users registered on their webpage. see https:

//chat.openai.com/auth/login, accessed: 27-9-2023
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For each exercise, once the code suggestion is generated and tested, we record

whether the code was successful at meeting the requirements of that exercise

using the available test cases. We also identify and record a number of key fea-

tures of the exercise, such as (but not limited to): the type of input and output,

whether the exercise clarifies any edge cases, whether it gives an example, and

whether it limits itself to particular input values. “Edge cases” are combina-

tions of values for the variables in the exercise that warrant a different treatment

than usual, like when particular values are 0 or a negative value (which causes

some computations to return exceptions - for example, if said value is used as a

position argument for an array).

6.4 A sub-goal based prompt engineering approach

In this final step of the research, we analyze the changes made during the en-

gineering of prompts. Together with the features of the prompts and the spec-

ifications of the subgoals, we aim to draw conclusions about how and in which

situations sub-goals may be useful.

7 Dataset

We use the 166 public exercises of CodeCheck, a list of educational programming

problems also used by [7]. We intended to compare our own work with theirs and

build upon it using the sub-goal method. The dataset is divided into categories

of subjects, and is then further categorized by a particular kind of operation

which the exercise intends to teach the user.

The exercises in the dataset are categorized into 4 supercategories by the

authors, which revolve around a particular type of input on which certain op-

erations are asked to be performed:

• Branches: 22 exercises. Varied input types.
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• Strings: 29 exercises. 1 or more strings as input.

• Lists: 65 exercises. 1 or more lists of integers as input.

• 2D arrays: 50 exercises. 1 or more 2-dimensional arrays as input.

The questions from the dataset are aimed at returning single objects or an

array of one object type. The code format is mostly limited to one code block

with a single dependency. No external libraries are used. For each exercise, a

link is supplied by CodeCheck which directs to an online editor for that exercise.

The editor comes with:

• Comments explaining the expectations of the exercise and the desired

result structure of the code

• A prewritten function name with arguments in line with the description

in the comments (or a simple variable), which is where the result is to be

stored/returned

• A check button, which causes the editor to check the result, alongside a

reset button

If the check button is pressed, the editor will run a number of tests using

different values for the arguments to check that the submitted code works as

intended. It will then return the number of tests it ran as well as the number

of tests in which the code returned the expected results (“successful” tests).

Additionally, we experimented with expanding the dataset using other sources.

This however brought a number of concerns. To start, the dataset had to be

compatible with the input method for Copilot and ChatGPT. For example, if

the necessary description was embedded into an image or the description was

not long enough, there would be little use for a natural-language driven tool like

these. The dataset would also need to be reputable and thorough, representing

the CS1 level of programming.
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8 Results

We analyzed the 166 different exercises and recorded the results using a pass/fail

notation, with a “pass” signifying that the code fulfilled the requirements of the

matching description. For the description, we counted the number of lines and

words per exercise, both for the textual description as well as the generated

code. This was done for both Copilot and ChatGPT.

Due to the use of a uniform structure for writing the sub-goals, the position

of particular words is consistent among sub-goals. This allowed analysis of

particular parts of sentences. One such analysis is the analysis of the verbs used

in the sub-goal, which indicate what that particular sub-goal aims to achieve or

what element within the code it will add or change with regard to the eventual

code generation.

8.1 Using zero-shot prompts for solving exercises

As the first step, we check if Copilot and ChatGPT are able to solve the exercises

of Codecheck using zero-shot prompts without prompt engineering. The results

of these attempts at the 166 exercises can be seen in Figure 4 for Copilot and

Figure 5 for ChatGPT. We distinguish between four possible results:

1. Syntax fail: The generated code showed unhandled exceptions when run

using the test cases. The defining characteristic is a failure to compile said

code when entered and executed via a console.

2. Rule fail: The code used methods forbidden by the test cases. These are

sometimes explicitly mentioned in the exercise description - usage in such

a case triggers a special exception.

3. (Normal) fail: The code compiled and was executed to completion, but at

least one test case failed to generate a correct result.

4. Pass: The results are identical to all the test cases’ expected results.
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Figure 4: Chart of first-try code generation results for Copilot.

Figure 5: Chart of first-try code generation results for ChatGPT.

For Copilot, of the 166 exercises that it attempted to solve, 110 exercises were

solved completely on the first attempt (66,27%) when evaluated using the test

cases from CodeCheck. The remaining 56 failed exercises (33,73%) 9 (5,42%)

contained Syntax failures and 2 (1,2%) Rule failures. We formulated subgoals

for the failed exercises.

ChatGPT could solve 135 of 166 (81,3%) exercises in the first attempt. Of

the 31 other failures (18,67%), only 1 (0,6%) contained a Syntax failure. Notable

here is that ChatGPT also has the habit of generating additional elements during

its attempt at generation. Namely a post-code explanation of the variables and
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Number of generated lines of code
non-sub-goal files

Application Average Std. Dev.
Copilot 12,81 6,49

ChatGPT 13,34 7,32

Sub-goal files
Application Average Std. Dev.
Copilot 13,16 5,70

ChatGPT 18,00 6,08

Figure 6: Averages and standard deviations for lines of code generated from prompts
for non-sub-goal and sub-goal exercises, respectively.

Number of sub-goal lines
Application Average Std. Dev.
Copilot 5,80 1,75

ChatGPT 5,81 1,39

Figure 7: Average and standard deviations for lines of sub-goals used in the exercise
prompts.

operations used, as well as test cases to show the code’s output most of the time.

It was also able to identify and correct spelling errors in the method names

provided via the exercise. Like Copilot, some of the generated solutions came

with additional comments explaining the steps taken in the code. ChatGPT’s

explanations, though part of its output, are not included in the assessment of

whether the output is correct or not.

Figure 6 contains tables that denote the average amount of code lines for

both sub-goal and non-sub-goal files, along with the standard deviation. Figure

7 contains a similar table for the number of sub-goal lines.

8.2 Subgoal details

We then analyzed the results of the previous stage via NLP to show the preva-

lence of particular (combinations of) words in the exercises with sub-goals im-

plemented. The following characteristics have been extracted:

• The total length in characters of:

– The exercise description

– The established subgoals
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Figure 8: Plot of subgoal length/line count versus code line count for Copilot subgoal
items.

– The generated code solution

• The amount of times particular words are present in the exercise descrip-

tion

We also aimed to establish a relationship between the amount of code lines

generated and the amount of lines used/total length of the subgoals. Figure

8 and 9 show the amount of generated code lines plotted against the subgoal

length, including a trend line calculated using least-squares.

Comparing results from both LLMs, we find that 19 exercises were failed

by both Copilot and ChatGPT in the first try. Of those, 6 belonged to the

“2D Arrays” category. 8 belonged to the “Lists” category. We analyzed the

faults made by both models in further detail for these 19 exercises. The reasons

for failing the exercise for both models are displayed in Figure 10. Of the 19

exercises, both models exhibited the same output errors in 7 of them.
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Figure 9: Plot of subgoal length/line count versus code line count for ChatGPT subgoal
items.

9 Discussion

Notable is that ChatGPT has scored a much higher first-try solving percentage

than Copilot. We would have expected Copilot to perform better since the

experiments are coding-oriented and in the Python language on top of that.

This would be close to the optimal use case for Copilot.

Codex and ChatGPT both draw from the same base model, however, they

are fine-tuned differently. This might be giving ChatGPT an edge with respect

to understanding the natural language in the prompts.

Using a two-sample t-test, we conclude that at a confidence interval of 95%

there is not enough evidence to support that both LLMs create results of signif-

icantly different size or that they require more or less sub-goal lines to prompt

properly. However, in sub-goal files, the difference between the amount of gen-

erated lines of code is statistically significant, suggesting that the LLMs do

not generate code snippets of equal length on average when prompted using

sub-goals.
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Figure 10: Chart of first-try code generation results for ChatGPT. “Code ineffective”
is used when the generated code returns the variable to be changed without modifica-
tions, or when it returns a default result (like “None” or “”).
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10 Threats to validity

Four main threats to the validity of this research have been identified. The first

two arise from the nature of the exercises used in the research. One, the dataset

should be representative of real-world scenarios where users attempt to utilize

the software to resolve similar programming exercises. Two, it must be ensured

that Copilot does not recognize the dataset from training and tailor its responses

as a result. The third identified threat stems from the non-deterministic and

black-box nature of the LLMs powering Copilot and ChatGPT. The fourth and

final threat concerns the method by which information is fed to the programs

themselves. Here we also elaborate on what kinds of validity are at risk for each

risk: Internal, external, construct, and conclusion validity.

10.1 Representativeness of dataset

The dataset used is publicly accessible as a web resource. As this is a single

source written in a particular style and language, it does not fully represent

other programming problems available as those may be written by different

authors and in different languages, which threatens the external validity. This

The dataset was used because of its connection to the research of Denny et al. [7]

and its low pre-processing needs, as the text could be directly used to feed the

prompts for the LLMs without needing to be altered or converted.

For our prompts, we convert the problem description of each exercise directly

into the initial prompt. While we did add a single line for ChatGPT to clarify

the goal of the prompt and bring it on equal footing with Copilot, the exercise

descriptions themselves are completely identical as what is available via the web

resource.
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10.2 Model training

According to Microsoft and OpenAI [20], GitHub Copilot was trained on public

repositories. The vagueness of this statement is understandable, as the nature

of the training dataset has a huge impact on the model, and rival parties will

recreate their own versions should they find out. The problem here is that there

is a chance that the dataset used in this research has been picked up by Copilot.

According to an article on Software Conservancy’s [12] website and Chen et

al. [6]’s evaluation of GitHub Copilot with respect to its code-writing abilities,

the model is trained on public repositories from GitHub. No information is

available on which specific kinds of repositories were used. Whether GitHub

is the only public repository it is trained on is unknown. The currently used

dataset has not been found to be directly replicated in any publicly accessible

GitHub repositories. ChatGPT uses a fine-tuned model of the same GPT-3

series, supposedly trained on simulated conversations amongst other uniquely

generated training data [20], but is most likely also trained on the same initial

set.

Should the exercises be present in the training set directly, it may have

affected the results which challenges the construct and conclusion validity. To

further verify the threat, we searched the web for indications of the dataset

within Github. The main indicators to look for were repositories that contained

the name, description or “math problem” in the title. For exercises originating

from CodeCheck, no such repositories were found - other earlier investigated

datasets were, which have not been included in this research. There is no telling

however what share of the training data comes from Github, and what other

sources or methods were employed to train the models.
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10.3 Non-reproducible code

With GitHub Copilot and ChatGPT as closed-source and the output of the

models being non-deterministic, they are essentially black boxes. As such, there

is no direct reproduction possible of the generated answers [22]. Time or other

factors may change the outcome of identical prompts.

The possibility of the AI models changing their answers challenges the in-

ternal validity of this research: it is possible that, in future experiments with

the same setup, different results will be found. By keeping all of the accessible

parameters for the models at their default values and documenting the nature

of their prompts as well as some of their important features, we aim to mini-

mize the impact of this threat. There is however no way to completely remove

it. Future research may attempt to regenerate the answer to the same prompt

multiple times in order to increase the sample size of solutions and decrease the

amount of randomness involved, but it is not possible to completely control the

output.

10.4 Remembering input

Over the course of reviewing available literature, we grew concerned that Github

Copilot was being asked similar problems repeatedly, and thus was starting to

recognize the question being asked, resulting in different output as a result due to

retaining information between prompts and challenging the conclusion validity

as a result. In preliminary experiments, there were instances where Copilot

suggested snippets from previously written text or code directly, which raised

further suspicions. For ChatGPT, there is a clear border between sessions, and

we expect that information between sessions is not retained as each exercise was

confined to its own session. For Copilot, while Github has a clause clarifying

that Copilot for Business does not retain information between prompts 5, this is

5See https://github.com/features/copilot/#faq. Accessed: 23-3-2023
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not the case for the freely accessible version of Copilot that is being used in this

research. There is thus a possibility that information from prompts may have

carried over to other prompts, which might have affected the model output.

11 Conclusions

This research was aimed to find out whether LLMs could achieve improved per-

formance in attempting to solve Python programming problems using subgoal-

based prompt engineering compared to using none. By expanding the prompts

using our sub-goal method, we have demonstrated that Copilot and ChatGPT

can solve exercises to which they gave incorrect solutions before.

The natural language structure of the sub-goals is derived from the previous

work and is summarized in this work in a set of rules, giving prospective users

a way to reproduce the method. While the nature of LLMs as a concept and

the lack of information on Copilot and ChatGPT’s training means that proving

identical results with different datasets is difficult, it is clear that LLMs benefit

from prompt engineering using this sub-goal-centered approach.

In a zero-shot setting, ChatGPT was shown to generate a higher percentage

of correct solutions to Python programming problems than Copilot, while also

generating additional textual output that may be of essence to the user. When

generating code according to subgoals, it was shown that there was a significant

difference in the length of the code generated between Copilot and ChatGPT.

11.1 Limitations and future work

Even during the short time in which this research was carried out, new LLMs

have been developed, and current versions have been updated. With the amount

of different LLMs accessible today, comparison between them can be very valu-

able on datasets such as this one from CodeCheck in determining their problem-

solving skills in a programming context, which can serve to both give insight
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into the overall capability of such models on a wider scale as well as advising

educational institutions into considering what models to focus on investigating

themselves.

We have limited ourselves to zero-shot prompting with the use of the prob-

lem descriptions provided directly by the dataset. For answer generation we

maintained the approach of focusing on the first displayed answer and forgo-

ing the chance to check any multiple solutions of the models. Evidence from

other works indicates that regenerating responses with the same prompts have a

chance of providing different and perhaps better results. We encourage further

research to consider using this ability .

Finally, during the analysis of the gained data, we made attempts to find

similarities between the code generated by the two models. However, this was

not able to be completed due to time constraints. Particularly, measuring the

similarity would require a template not only for the words used, but also the role

of each code line: lines in generated code for the same exercise may both serve

the same purpose, but not be seen as “equal” in language because the names

used for declared variables may be different, or there might be differences in

the style of writing. An opportunity for future work is to analyze generated

code using characteristic symbols or writing used in particular lines of code,

and reading the similarity between the two models based on that.
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13 Appendix

A CodeCheck example
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