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Layman’s Summary 

To be able to understand how a cell functions, one has to look at the main effectors, which are the proteins. However, 
understanding how they work, could not only be solved by deciphering the set of functions for a single protein, as 
almost all proteins rely for their function on the interaction with others. Several proteins noncovalently bind to each 
other, forming a protein complex, whereby a specific protein can be part of several different complexes, depending 
on the requirement of the cell at a specific moment. The formation and disassembly of these complexes are regulated 
by important cell signaling pathways, for instance by phosphorylation.   

When we want to study these protein complexes, we have to purify them from cells and try to keep them intact. 
Therefore, purification has to be compatible with buffers that don’t disrupt the complexes. One of these methods is 
Size-Exclusion Chromatography (SEC). This technique separates all the different complexes by size into separate 
fractions, making it now possible to study which proteins are part of which specific complex. SEC is already a widely 
used method to measure protein complex formation, and by coupling it to mass spectrometry (MS), it allows us to 
monitor protein complex formation on a systems-wide scale.  

To tell which proteins are present, the different fractions are analyzed by MS. The different proteins are enzymatically 
digested into smaller pieces, the peptides, of which the specific mass could be determined. By fragmenting the 
peptides into their building blocks, the amino acids, sequences could be retrieved. This information can be seen as a 
fingerprint of the protein and allows us to trace back which proteins were present in each fraction. Together with the 

SEC-data, this elucidates which protein complexes were present.  

The strengths of this technique, but also the remaining experimental and technical caveats that have to be addressed, 
are discussed in this review. For example, data analysis becomes more difficult with this amount of data produced, 
whereby the method should also be able to tell which proteins are truly interacting with each other, or which 
coincidentally have approximately the same mass and are therefore separated into the same fraction by SEC. 
Differences in the amount of a complex could be due to changes in the level of expression of a protein, but also due 
to a change of distribution of this protein over several subunits, which data-analysis tools should also be able to 
address. Also, the phosphate groups that are important regulators, are hard to find, because they are less abundant 
and might be missed, for which more specialized approaches are developed.  

Tools like CCprofiler allow for error control to identify true complexes, but also several machine-learning-based tools 
are developed to predict novel protein complexes. Furthermore, several tools and methods are developed to integrate 
information about the cell signaling pathways, like protein phosphorylation states. With COPF it is now possible to 
find specific phosphorylation patterns, belonging to either a specific assembly state of the complex or to a specific 

cellular condition in which this occurs. With the ongoing process in machine-learning approaches, further 
optimizations in the sensitivity of SEC and MS, and the increasing amount of information accessible in databases, but 
also the integration of additional purification steps, it will become less challenging to study these complexes.   

(544 words) 
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INTRODUCTION 

Understanding how cells work, and most importantly 

in the context of certain conditions like disease, can 
be achieved at different levels. We can look at the 
DNA-level, but also at the level of the transcriptome 
to decipher which genes are expressed at a certain 
moment. However, this does not tell us the complete 
story of the cell, as the main effectors are the proteins 
that are expressed. This field is tackled by proteomics, 
whereby the proteins, and the different proteoforms, 
present in the cells are identified and quantified, 
which is used to study protein function and regulation 

in different conditions or even to study changes over 
time (Altelaar et al., 2013; Ludvigsen & Honoré, 2018; 
Mann et al., 2013). Although this proteomics approach 
gives meaningful information about cell function in 
certain specified conditions, the reality is even more 
complex. Most proteins do not act on their own but 
are part of a larger protein complex. Protein function 
is related to the proteins or other molecules they 
interact with or the complexes they are part of. This is 
dynamic, and proteins can interact with different 
proteins and complexes, depending on the demands 
and environment of the cell at a specific moment, 
which is also referred to as ‘modular biology’. 
According to this description, several functional 
‘modules’, the protein complexes, make up the cellular 
organization, and each of these has a discrete 
function, due to either spatial separation, or a 
chemical specificity not shared by the other modules.  

 

For some cellular processes, these modules must be 
insulated from others, to prevent interfering 
interactions, while for other processes they must be 
connected to allow for the integration of information 
inside the cell (Aebersold & Mann, 2016; Altelaar et al., 
2013; Budayeva & Cristea, 2014; Hartwell, 1999). It is 
estimated that most of the proteins are present in an 
assembled state inside the cell (Bludau et al., 2023; 
Heusel et al., 2019). These complexes are fine-tuned to 
perform specific tasks inside the cell, and the 
formation and disassembly of the different subunits 
must be tightly controlled. Some proteins might only 
be able to properly function while they are assembled 

in a specific complex, while other proteins can be part 
of several complexes, whereby their function changes 
when they partake in a different complex (Budayeva & 
Cristea, 2014).  

  One example of this is RIPK1, which can be found in 
different types of complexes, which can either be pro-
cell-survival or pro-cell-death complexes. Cell 
signaling can determine which complex is formed, 
and the involved proteins determine if either the 
kinase domain of RIPK1 is active or not, deciding 
between either cell survival or cell death by apoptosis, 
or necroptosis (Clucas & Meier, 2023). This example 
nicely illustrates that studying cell function on only a 

proteome level is not enough to explain how certain 
tasks inside the cell are performed or why. Studying 
the complexome, also known as the interactome, i.e. 
all of the protein complexes of the cell or organism, is 

ABSTRACT Proteins do not act on their own but form different complexes in the cell, to exert their biological 
function. This dynamic process of protein complex assembly is fine-tuned, in part by post-translational 
modifications (PTMs), like phosphorylation. Elucidating the different complexes of a cell, the complexome, and 
studying these upon perturbations, allows us to understand cellular functions and how they are interrupted in 
certain conditions or diseases, in a systems-wide view. Complexome profiling poses several analytical challenges, for 
which sophisticated methods have been developed to purify and analyze these protein complex mixtures. These 
methods lean heavily on Mass Spectrometry (MS), as it can handle complex samples, with relatively high sensitivity 
and in a high-throughput manner. The protein complexes are obtained by targeted approaches, like IP-MS, AP-MS, 
and Proximity Labelling, or by untargeted approaches, based on the biochemical separation of the complexes, like 
Size-Exclusion Chromatography (SEC). SEC purifies complexes from native conditions, in a high-throughput 
manner, with a smaller risk of interfering with protein function compared to targeted approaches. As complexome 
profiling produces a lot of data, several tools exist to analyze this systematically, additionally providing validation 
tools to minimize the risk of false positives. This review presents some recent literature on SEC-based complexome 
profiling, which data-analysis toolkits have been developed, how assembly- or condition-specific PTMs could be 
studied, which caveats these approaches still possess, and which further improvements are being made or what 

should be an area of interest for follow-up studies.   

March 6th 2024 
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important to gain more insight into cell function. This 
has already been studied quite extensively for 
mitochondrial proteins, and the applied research 
methodology might be adapted to complexome 
profiling in other biological systems.  

  Essential for complexome profiling is the field of 
mass spectrometry (MS). This technique is excellent 
for obtaining high-throughput data, with relatively 
high sensitivity, to identify and quantify proteins in 
complex biological matrices. Furthermore, relatively 
low sample input is needed, and even complex 
samples can be studied by mass spectrometry. In 
addition, multiplexing methods exist, allowing for 
parallel quantitative measurement of several 
experiments or conditions. Specialized techniques are 
invented with which additional structural information 
from the MS data can be obtained, like cross-linking 
MS (XL-MS).  

  Proteins can be measured at the protein level, 
referred to as native MS, or at the peptide level, which 
is known as bottom-up proteomics. For bottom-up 
approaches, the proteins are digested by proteases, 
most commonly Trypsin, to obtain peptides, which 
are separated by reversed-phase chromatography, 
most often using a C18 column, after which they are 
ionized and injected into the mass spectrometer. The 
intact peptides are measured (MS1), after which they 
are fragmented to obtain information about the amino 
acid sequence (MS2). With this information, the 
proteins could be identified and quantified. Different 
measurement approaches exist, which can be 
summarized into either Data-Dependent Acquisition 
(DDA) or Data-Independent Acquisition (DIA). In 
DDA, a select number of precursor peptides are 
selected for fragmentation and measurement in MS2, 
based on for example the top highest-intensity 
peptides, whereas in DIA all precursors are selected 
for fragmentation (Figure 1). Therefore, DIA is overall 
more sensitive as also lesser abundant proteins are 
more intensively measured. On the other hand, the 
spectra from DIA measurements are much more 
complicated to interpret and require specialized 
analysis tools and a predefined spectral library 
containing both chromatographic and mass 
spectrometric information about the peptides, which 
is needed to deconvolute the signals (Krasny & Huang, 
2021).   

 

Before the samples are measured on LC-MS/MS, the 
protein complexes must be purified and separated. 
Nowadays, several techniques are used to achieve this, 
whereby some techniques use targeted approaches, 
where prior information about the proteins of interest 
is necessary to design the experiments, while other 
techniques are untargeted. Targeted approaches allow 
for the enrichment of a specific complex and its 
protein constituents, using experimental strategies to 
pull out possible interaction partners of the target 
protein by adding a ‘handle’  on the protein of interest, 
with which it can be fished out. These are limited by 
the available antibodies, used for Immuno-
Precipitation MS (IP-MS) or the possibilities to use a 

tag or enzyme on the protein of interest, which should 
be ectopically expressed for Affinity-Purification MS 
(AP-Ms), or Proximity Assays (PA), respectively. In 
untargeted methods, protein complexes are 
fractionated first, which can be performed by a set of 
different techniques, based on different biochemical 
properties. These techniques are formerly referred to 
as protein correlation profiling. Separation can be 
achieved by Blue-Native (BN) PAGE gel filtration, 
Density Gradient Centrifugation, or Chromatography 
separation techniques, most often Size Exclusion 
Chromatography (SEC) (Cabrera-Orefice et al., 2022; 
Low et al., 2021; Smits & Vermeulen, 2016).  

 

With this literature review, we want to elucidate how 
complexes can be studied, and which information can 
be obtained by different types of experiments, like 
differences in assembly states upon perturbations, 
possible integration of spatial information, and 
proteoform-specific complex states. The focus will 
mainly be on SEC-based complexome profiling, as this 
technique is suitable for the study of a large set of 
complexes. It does not require ectopic expression of 
protein constructs, using either a tag or enzyme, 
making it also suitable for studying patient-derived 
input materials. Moreover, it is already being 
commonly applied in an MS pipeline, for which 
several high-throughput methods and systematic 
data-analysis tools have been developed. The main 
advantages of SEC-based correlation profiling, the 
common limitations, recent advances, and possible 
improvements for future research will be discussed. 
Some highly promising data-analysis tools that enable 
handling the amount of data common for these types 
of experiments, in a more systematic manner, as well 
as providing validation or error-controls for these 
experiments, are reviewed here. 

 

Figure 1: Figure from Krasny & Huang, 2021. In DDA-MS, 
precursor-ion selection for fragmentation and MS2 analysis 
is based on for example the top abundant peptides of the MS1 
scan. In DIA-MS, a selection window with a predefined size 
selects all precursor-ions within, resulting in the 
fragmentation and analysis of all precursor-ions, including 
lower abundant peptides. 
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COMPLEXOME PROFILING – Targeted 
Strategies 
 
Targeted approaches make use of co-purification of 
proteins that are part of the same complex.  
In IP-MS methods, an antibody specific for a protein 
of interest is conjugated to beads, with which this 
protein and its interactors are concurrently purified. 
This technique is limited by the available antibodies. 
As a benefit, native physiological conditions can be 
used to study the protein-protein interactions, as 
there is no need for the expression of specifically 
designed protein constructs. However, possible 
interaction partners could be missed by this technique 
when the binding epitope coincides with an important 
binding domain, but also unspecific binding proteins 
might be co-purified (Figure 2) (Gnanasekaran, 2023; 
Low et al., 2021; Smits & Vermeulen, 2016).  
 
AP-MS relies on the same principle, by tagging a target 
protein and simultaneously pulling out the 
interaction partners. A specific tagged protein 
construct is designed and expressed, using for 
example a Strep-tag, a GFP-tag, or a FLAG-tag, which 
has affinity for specific beads and is then used to purify 
the complexes. This technique circumvents possible 
limits such as low endogenous expression of the bait-
protein in IP-MS, due to higher ectopic expression of 
the protein. On the other hand, the higher expression 
might not resemble real native physiological 
conditions, and tags might interfere with protein 

function, by for example changing binding affinities or 
subcellular localization (Figure 2) (Low et al., 2021; 
Morris et al., 2014).   
 
Instead of tagging a bait protein with a purification 
tag, an enzyme could be fused to it, which is used in 
proximity-based approaches, like for example BioID. 
The enzyme that is linked to the protein will catalyze 
the addition of specific modifications on the proteins 
that are in close vicinity of the bait protein. For 
example in BioID where a biotin ligase is added, 
decorating the target proteins with biotin moieties, 
which can afterwards be purified by affinity 
purification using streptavidin beads. Due to the 
specific distance restraints of the enzyme, these types 
of techniques allow for high spatial resolution. 
Furthermore, some enzymes might react relatively 
fast, in minutes, while others take several hours, 
thereby allowing for fine-tuning on which time-scale 
interactions are studied, but also allowing for high 
temporal resolution (Kong et al., 2022; Low et al., 
2021).  
  All of these targeted approaches have a relatively 
high risk of the co-purification of unspecific proteins, 
and several control samples or control steps during 
data analysis ought to be added, to determine which 
proteins are true and false positives. Furthermore, it 
can be difficult to discriminate between direct 
binders, indirect binders, and other proximal proteins 
(Figure 2) (Kong et al., 2022; Low et al., 2021; Smits & 
Vermeulen, 2016). 
 

COMPLEXOME PROFILING – Correlation 
Profiling 
 
Untargeted strategies rely on co-fractionation or co-
elution techniques, also known as correlation 
profiling, whereby the protein complexes are 
fractionated under native conditions, based on their 
biophysical properties, assuming that proteins of one 
complex have similar migration or elution profiles 
(Figure 2).  A great benefit of these approaches is that 
the whole complexome is studied simultaneously, 
whereas targeted approaches only look at specific 

complexes one at a time. Furthermore, compared to 
affinity purification MS (AP-MS), where an antibody 
is used to select a protein and its direct interaction 
partners, these methods increase the chance that also 
some indirect interactions can be found, as these will 
still co-elute, but might not have strong enough 
binding to be elucidated with AP-MS.  

 

 

Figure 2: Adapted from Smits & Vermeulen, 2016. Schematic drawing of the different techniques that are commonly used to 
study the complexome. In Immuno-Precipitation, an antibody fused to a bead targets the bait protein and is used to purify this 
protein and its interactors. In AP-MS, instead of an antibody, the bait protein is ectopically expressed with a tag, that has affinity 

for a ligand that is immobilized on stationary material. For Proximity-Assays, an enzyme is fused to the bait protein, which 
enzymatically decorates the neighboring and interacting proteins, like for example biotin for BioID, which can be used for 
purification, like for example streptavidin-beads in the case of BioID. Biochemical Fractionation makes use of the principle that 
proteins of the same complex will separate together, showing similar elution or migration profiles. Created with BioRender.com. 
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Proximity-based approaches also allow for studying 
both direct and indirect interactions.   

One of the oldest methods is using a density gradient 
whereby protein complexes are separated based on 
their sedimentation rates, like in a sucrose gradient. 
These gradients suffer from poor resolution, due to a 
relatively large spread of the proteins over the 
gradient. Also, for this technique, it can be more 
difficult to determine whether the co-migration is due 
to the protein being within the same complex, or 

having similar properties leading to similar 
sedimentation rates (Cabrera-Orefice et al., 2022; 
Salas et al., 2020).  

Another well-known method relies on separation by 
size and electrophoretic mobility using gel 
electrophoresis, called Blue Native-polyacrylamide gel 
electrophoresis (BN-PAGE), as native buffers are used, 
as well as using blue staining of the proteins. This 

method allows for higher resolution, uses relatively 
low amounts of input material (on the microgram 
scale), and can also be used to study membrane 
proteins (Cabrera-Orefice et al., 2022; Salas et al., 
2020; Wittig et al., 2006).  Furthermore, this technique 
is typically suitable for separating proteins from 
0.02MDa to 10MDa, although specialized gels with 
large pores are used to separate proteins up to 45MDa. 
These gels are made by increasing the concentrations 
of the crosslinker bis-acrylamide (Strecker et al., 

2010). Gel electrophoresis can separate the complexes 
with high resolving power, but to be able to retrieve 
this resolution in the following steps, a sufficient 
amount of slices should be picked from the gel. In 
general, up to 70 slices are made per gel-lane.  
  In order to increase the resolution even further, to be 
able to also find less abundant protein complexes, 
super-complexes, and the subunit composition, a 
novel method was developed whereby the gels were 
frozen, and sliced by cryo-microtome slicing. For their 

method, they were able to slice the gel into 230 slices, 
with a slice size of 0.3mm, compared to 1mm slices 
when done manually. The slices were digested and 
analyzed with high-performance LC-MS/MS using 
Label-Free Quantification (LFQ). The peptide 
intensities are then integrated over time to provide 
Peak Volumes, and a mass-calibration step and 
elution time shift correction were applied, which is 
important as 230 datasets have to be combined. The 
peptide PV profiles are normalized across the 

datasets, and the relative protein abundance profile 
could be calculated from the average of at least two 
protein-specific profiles and normalized for their 
abundance. Based on the correlation of peptide and 
protein profiles, the complexes were identified.  To 
determine the apparent molecular mass for each 
protein complex, reference protein complex peaks 
with known masses were also measured and a linear 
regression of their slice numbers was used and applied 
to the experimental slice number of the protein 
complex. The Full-Width at Half Maximum (FWHM) 

indicates the effective resolution that was achieved, 
which was on average 1mm of the gel, corresponding 

to 3 slices, for the best-resolved peaks (Muller et al., 
2016; Müller et al., 2019).  
BN-PAGE methods can also be used with multiplexing 
approaches, to simultaneously measure different 
conditions in one MS run (Guerrero-Castillo et al., 
2021). 

SEC-BASED COMPLEXOME PROFILING 
 
Other co-fractionation methods rely on 
chromatography-based separation techniques. For 
this review, the focus is more in-depth on Size-
Exclusion Chromatography (SEC) approaches as a 
prefractionation method, which is already commonly 
applied in combination with LC-MS/MS. The 

separation of molecules in SEC is based on the 
hydrodynamic radius of the protein or protein 
complex. The stationary phase consists of porous 
beads, whereby smaller particles can access the pore 
of the beads and see the whole column volume, 
whereas the larger particles are less likely to enter all 
pores and spend less time in the pore volume. 
Therefore, the larger molecules can migrate faster 
through the column and will elute first, and the 
smallest molecules elute last (Burgess, 2018).  

  SEC is suitable for the purification of a large range of 
complex sizes due to the choice of several types of 
resin with ranging bead and pore sizes that are 
available, e.g. up to sizes of 40MDa for Sepharose 
resins. In addition, it can be automated for high-
throughput approaches and can provide some 
additional information about the complexome using 
specialized software that was developed recently. 
  In addition, SEC is highly suitable, as native buffers 
are compatible with this separation approach, in 

contrast to for example reversed-phase, which 
requires organic buffers that could denature proteins 
and disassemble the protein complexes. On the other 
hand, the resolution is a bit lower for SEC, compared 
to the other chromatography methods. The resolution 
in chromatography describes the ability to separate 
two peaks based on the difference in retention times 
and the corresponding peak widths. The resolution 
depends therefore on the selectivity of the resin, i.e. 
the differences between retention times, and the 

efficiency with which it can produce narrow peaks. 
The efficiency becomes higher when smaller beads are 
used. The peak capacity describes the maximum 
theoretical number of peaks that can be separated on 
the column, by dividing the gradient time by the 
average peak width. For example, ion exchange 
chromatography (IEC) methods have stronger 
interactions with the column, enhancing the retention 
and thus showing smaller profile widths, thereby 
having a higher resolution compared to SEC. When 

the same gradient time is used, IEC would also have a 
higher peak capacity than SEC.  
  To keep the complexes stable, the columns are run at 
lower temperatures, which increases separation time, 
compared to separations at higher temperatures. 
Important for the separation resolution is the column 
dimension that is used, e.g. column diameter and 
lengths, as well as the beads that are chosen. This also 
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determines the minimal number of fractions that 
should be collected, to retrieve this resolution, like the 
number of slices that should be chosen for BN-PAGE 
methods. A trade-off has to be made between the 
fractionation range, the range of molecular weights 
that have access to the pore, and the resolution, as 
larger beads allow for sufficient separation of larger 
protein complexes, but also lower the resolution that 
can be achieved. For a high-throughput and high-
resolution SEC-SWATH-MS method, the optimal 
bead size was considered to be 3μm with 500Å pores, 
using a 300x7.8 mm column (Bludau et al., 2020; 
Cabrera-Orefice et al., 2022; Heusel et al., 2019; Salas 
et al., 2020).  
Protein elution profiles can correlate due to the 
proteins being within the same complexes, however, 
these results should also be treated with caution 
because it is still likely that co-elution occurs due to 
proteins having similar biophysical properties on 
which the separation was based. The amount of false 
positives could be limited by using high-resolution 
separation, as well as using an orthogonal separation 
approach.  

Additionally, complexome studies produce a lot of 

data, containing the SEC protein elution profiles, and 
MS/MS information obtained at the peptide level, like 
quantitative values, peptide sequences, and the 
corresponding protein groups. Many proteins are 
identified in one MS run, which should be correlated 
and compared to the migration or elution profiles of 
the SEC fractions, to identify the complexes and their 
protein subunits. Several methods have been 
developed to be able to do this in a high-throughput 
and automated manner, like COPAL, ComPrAn, 

ComplexFinder, and CCprofiler.  
  COPAL is developed to compare different BN-PAGE 
gels by using a ‘multiple gel alignment’ with which 
experimental replicates could be compared, and this 

takes biological and technical variations into account, 
like differences in overall migration pattern, enabling 
identification of true variations caused by mutations, 
or other perturbations. A gene set enrichment is used 
to select protein complexes mostly affected by 
mutations or other changes in condition (Van Strien 
et al., 2019).   
  ComPrAn is developed for the analysis of 
complexome data from density gradient studies, but 
can also be applied to other chromatography 
methods, which use heavy/light labeling for two 
conditions, like SILAC (Páleníková et al., 2021). 
We will mainly focus on CCprofiler, as this one is 
especially suitable for SEC data, although it could be 
used for other fractionation methods, and provides an 
error control to limit the number of false-positives. 
CCprofiler is a complex-centric method, developed for 
SEC-SWATH-MS, which includes prior complexome 
information, and allows for higher sensitivity 
measurements, and better signal-to-noise, due to 
filtering possibilities, as well as validation for the 
complexes found (Bludau et al., 2020; Cabrera-Orefice 
et al., 2022; Heusel et al., 2019; Salas et al., 2020). The 
higher sensitivity of this method is mostly due to the 
use of Data Independent Acquirement (DIA), i.e. 
Sequential Window Acquisition of All Theoretical 
Proteins (SWATH), as this also measures less 
abundant peptides, compared to DDA, which focuses 
mainly on higher abundant peptides (Krasny & 
Huang, 2021).  

This method was applied to a HEK293 cell lysate, but 
optimizations could be made for other input material, 
or complexes of interest, as this resin, a Yarra 3-μm 
SEC-4000 column, has a fractionation range up to 

1.5MDa, and might not capture larger complexes 
(Bludau et al., 2020, 2023; Heusel et al., 2019).  

Figure 3: Figure from Skinnider & Foster, 2021. In A) is shown that proteins with higher abundance 
are better covered by most Co-Fractionation-MS (CF-MS) methods, shown for human proteins. B) 
Using longer gradient times shows higher coverage of lower abundant proteins C) The AUC indicates 
the precision with which known complexes are identified from the CF-MS data, with 0.5 being random 
performance. Collecting more than 40 fractions per replicate did not result in large improvements in 
the performance. D) Using more replicates per sample has a large impact on the AUC, shown for both 
the AUC based on the recovery of known complexes, and proteins with the same GO-term.   
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A recent meta-analysis study, which considered 200 
co-fractionation MS studies, highlights important 
considerations for SEC-based complexome profiling 
methods. The SEC-SWATH-MS method was tested 
with the initial 120-minute gradient time, and a short-
gradient SEC of only 30 minutes, the latter making this 
technique more high throughput (Bludau et al., 2020, 
2023; Heusel et al., 2019). However, the meta-analysis 
showed that currently, longer gradient times are 
better in recovering lower-abundant proteins, 
although most co-fractionation MS methods identify 
the more abundant proteins (Figure 3A-B) (Skinnider 
& Foster, 2021). Furthermore, it was estimated that 
collecting more than 40 fractions did not significantly 
improve the identification of the known complexes 
from co-fractionation MS data, which was used as a 
benchmark to test the different methods (Figure 3C) 
(Skinnider & Foster, 2021).  

The SEC-SWATH-MS methods should have collected 
a sufficient amount of fractions according to meta-
analysis studies, as a total of 64 fractions and 81 
fractions for the longer gradient time were collected. 
On the other hand, collecting data for more biological 
replicates, even more than five as considered in the 

meta-analysis, shows great improvement in the 
precision with which protein complexes are identified 
(Figure 3D) (Skinnider & Foster, 2021).  

As it is desirable to use several biological replicates for 
which the same peptides ought to be covered, which 
is especially important in multiplexing studies where 
the peptides should be found in both reporter-
channels to perform a relative quantification, 
carboxylate-modified (para)magnetic beads, like, for 
example, using SP3, should offer great improvements 
in the method. These beads have high peptide 
coverage, also allowing for lower sample input 
amounts. Furthermore, the SP3 method has high 
efficiency, allowing for clean-up and digestion to take 
place in a single tube (Havugimana et al., 2022; 
Hughes et al., 2014; Skinnider & Foster, 2021). 

A further benefit of the SEC-SWATH-MS method, 

using the R-package CCprofiler for data analysis, is the 
possibility to extract also additional information from 
the SEC-data, whereby protein distribution over 
assembled and monomeric states, as well as over 
different complexes could be determined. This 
method approaches the data first from an assembled-
mass level, whereby the distribution of assembled vs 
monomeric mass of proteins is estimated, then also at 
a protein-centric level, and finally at a complex-
centric level (Figure 4).  

  The peptide data is filtered for only proteotypic 
peptides, which are the peptides that are most likely 
confidently quantified in MS studies, which reduces 
the possibility of false-positives. The peptide 

Figure 4: Figure from Bludau et al., 2023, showing the data analysis of CCprofiler. The top boxes contain information about the 
required input for each step. Panel 4.1 shows the principle of the global assembly state analysis. This reports the relative assembled 
fraction of a protein compared to its monomeric state. The assembled state is assigned when a protein elutes at molecular weights two 
times or more than its monomeric molecular weight. Panel 4.2 displays the protein features, whereby a different distribution of a protein 
over different complexes is assessed. In panel 4.3 the differential complex-centric analysis of CCprofiler is depicted. Different complex 
features are compared between different conditions.    
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precursor intensities are summed, to obtain 
quantitative data. To further reduce the chance of 
false-positives, only peptides occurring in a minimum 
of three consecutive fractions are taken into account, 
and they should have a high correlation with at least 
one other peptide originating from the same protein. 
It is assumed that peptide traces correspond to the 
SEC-profiles of the protein they belong to, as this 
should, in theory, be the case. The proteins are 
quantified by summing the top two peptide-traces, 
and normalization by the maximum. As also used for 
Blue-Native approaches, a calibration curve is used 
with standard proteins with a known mass, to 
annotate the fractions with the corresponding 
molecular mass, although this is more precise for 
more globular proteins. When proteins appear at a 
peak apex twice the size of the monomeric mass, the 
protein is considered to be in the assembled state. 
Thereby, it also allows us to elucidate if a protein is 
part of several different complexes. Upon further 
optimization of the method, it is also possible to 
compare the co-fractionation MS data of different 
conditions with each other, also on different levels.        
  This approach also takes into account if a difference 
in the distribution over different assembly states is 
due to a change in protein expression, or due to a 
change in the distribution. This is measured using the 
peptide signal intensities and taking the median of all 
peptides for a protein, allowing it also to perform 
statistical testing.  
  The complex-centric approach requires prior 
information about existing complexes, which could be 
derived from the CORUM database or the Bioplex 
network. This enables a decoy step ensuring that the 
complex-centric results could be FDR-controlled, 
which was not shown before. The downside is that it 
makes it less suitable to discover novel protein 
complexes with this approach. The protein traces are 
searched and tested against the protein co-elution 
features from the provided database. Also, this could 
be compared among the different conditions (Bludau 
et al., 2020, 2023; Heusel et al., 2019).  
 

PREDICTION OF NOVEL PROTEIN 
COMPLEXES 
 
In addition to the many benefits of CCprofiler, its 
major limitation is the unsuitability to identify novel 
complexes, as it requires prior knowledge of the 
complexes in the form of a user-provided database. 
This makes it less applicable for studies in which 
finding novel complexes, or several novel subunits of 
a complex are of interest, or if another organism has 
to be studied, which was not that extensively studied 
before and therefore lacks sufficient prior 
information.  
  Different machine-learning-based methods exist 
that can predict novel complexes from complexome 
profiling data. Some of the machine-learning 
approaches apply peak-centric approaches, whereby 
protein profiles are fitted to a model, e.g. a Gaussian 
model, from which the change in protein levels could 
be compared, as well as protein-protein interactions 

could be predicted using different distance metrics, 
like among others the Pearson correlation, using 
clustering strategies. Examples are PrInCE and 
ComplexFinder, both applicable to label-free and 
labeled data (Nolte & Langer, 2021; Stacey et al., 2017).      
To illustrate the benefits and limitations of these 
techniques, the more recent ComplexFinder will be 
described further, which is a Python-based 
computational approach, that can analyze mainly BN-
PAGE and SEC data for different quantification 
strategies like LFQ, SILAC, or TMT. This method uses 
machine learning to predict protein-protein 
interactions from the fractionation data, whereby a 
peak-centric quantification approach is used to build 
the complexes and compare different conditions, from 
which a connectivity network can be reconstructed. 
Peaks are detected by finding local maxima in the 
protein feature profiles, whereby user-defined 
restrictions can be applied, allowing for peak-centric 
comparisons between samples. Each peak is fitted to 
several models, and after summing the best results, a 
signal profile is obtained. A peak alignment is used to 
correct for shifts within samples. For label-free 
samples, the Area Under the Curve (AUC) of the signal 
profile is used for quantification and identification of 
significantly different protein peaks, whereas for 
SILAC or TMT experiments, the full-width at half-
maximum (FWHM) is used.  Protein-protein 
interactions are predicted based on different distance 
calculations, like for example the commonly used 
Pearson or Spearman correlation among several 
others. Moreover, custom functions could be defined, 
with which external information could be added, for 
example, the subcellular localization. Generating 
additional decoy interactions, a classifier is trained to 
distinguish protein-protein interactions, after which 
for each protein-protein pair the probability of being 
an interaction is also calculated. A connectivity 
network is built, based on the identified protein pairs 
and the corresponding probabilities.  
  This software can predict interactions, and does not 
require the use of a reference database like in 
CCprofiler. However, it can integrate one, like the 
CORUM database to be used to predict protein 
interactions, or to provide additional information 
about the protein complexes, like subcellular 
localization. Important for peak-centric approaches 
like this, is the ability to describe the peak profile by a 
model.  
  If there are several overlapping peaks or the peak is 

at the noise level, thereby no longer resembling a 
Gaussian distribution, model fitting performs poorly, 
and this peak is filtered out based on its low fitting 
score (Nolte & Langer, 2021).  
  EPIC is another machine-learning platform, that uses 
clustering to form a protein connectivity network 
from the identified protein-protein interactions, from 
which complexes could be derived, but doesn’t apply 
a peak-centric analysis as the previously mentioned 
methods do. It also supports additional information 

input, for example, from the CORUM database or 
Gene-Ontology databases, whereby this functional 
evidence might reduce false negatives. As for now, of 
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these toolkits, only ComplexFinder is suitable for the 
analysis of TMT data by a machine-learning-based 
approach (Hu et al., 2019; Nolte & Langer, 2021).   
  A downside of these methods, using clustering on the 
protein-protein interactions to decipher protein 
complexes, is that it is prone to noise-amplification. 
High-throughput strategies used in complexome 
profiling show a lot of ‘noise’, i.e. the biological and 
technical variations, causing errors in the ‘edges’ of 
the networks (the interactions) due to either false 
positive interactions or false negative interactions, 
leading to different outcomes, making these 
techniques less reproducible. An R-package is 
developed to test whether the clusters are more or less 
resistant to iterative rounds of network perturbations, 
whereby more stable clusters are more likely to be 
reproduced by different experiments, and should also 
more likely be biologically relevant (Stacey et al., 
2021).  
 
  Another tool, PCprophet, was introduced to analyze 
co-fractionation MS data, suitable for different 
separation methods and quantification strategies, 
including TMT. This tool can detect novel protein 
complexes but does not depend on clustering analysis 
of protein-protein interactions into networks. As with 
CCprofiler, it uses a complex-centric approach, as the 
tool is trained with co-elution data of protein 
complexes, compared to the peak-centric and protein-
protein-interaction-based approaches of e.g. PrInCE 
and ComplexFinder. In addition, statistical error 
models are performed to reduce false-positives. 
Furthermore, differential analysis between different 
conditions is used to find significant changes in the 
complexome. Besides its application of finding novel 
complexes, this method outperformed EPIC and 
CCprofiler in identifying known CORUM complexes. 
On the other hand, EPIC reported a higher amount of 
average subunits per complex, whereby the average 
reported for CCprofiler and PCprophet is closer to the 
amount in CORUM. Although not stated, this 
resemblance might be due to a bias towards CORUM-
reported complex sizes, as this database is used as 
prior input in both CCprofiler and PCprophet, 
whereby the latter also uses training of the model by 
this database. Also, the ‘node degree’ distributions 
were compared among different networks derived 
from several tools and databases. The node degree 
indicates how many connections a single node has. In 
general, EPIC also shows more connections, thereby 

more closely resembling the STRING database-
derived network instead of CORUM.  PCprophet was 
also able to recover more closely connected proteins 
compared to EPIC. Several of the novel predicted 
complexes consist of a known complex from the 
CORUM database with an additional subunit that was 
not reported in the database before (Fossati et al., 
2021).  
 
  As with CCprofiler, this method can search for 

differences between conditions on a protein- and a 
complex level, being able to differentiate between 
changes in protein abundance and assembly states on 

a protein level, and rewiring of complexes, including 
identification of changes in complex stoichiometries. 
To perform FDR-based controls, PCprophet still needs 
a protein complex or PPI database, like CORUM, as 
input. For this, GeneOntology (GO) terms are 
collected for each protein found in the complex and 
the similarities between each protein are then 
compared in a pair-wise way, resulting in an overall 
GO score for the complex. Of course, a high similarity 
between the GO scores for each protein pair in a 
protein complex is to expect for true positive 
complexes. This is also done for core complexes of the 
CORUM database, and by comparing the GO-score 
distributions for experimentally predicted novel 
complexes and the known database complexes, a GO 
score could then be selected that satisfies a certain 
FDR value and then used as a filtering criterium 
(Fossati et al., 2021).  
 
At this moment there is a set of different machine 
learning-based tools that can be used to analyze co-
fractionation MS data to compare different 
conditions, but also predict novel protein complexes, 
not reported in the literature before, in a high-
throughput manner for the elaborate and complicated 
SEC-MS co-fractionation data. These tools all have to 
decide whether the predicted protein-protein 
interactions are positive interactions, which could be 
achieved by comparing it to information from 
available databases, to either integrate additional 
supporting evidence of the results from these user-
provided databases containing publicly available data 
about reported complexes, to provide decoys or using 
GO scores for FDR-based error control as in 
PCprophet. Although ComplexFinder could be used 
without a database, the results are more accurate 
when additional information is integrated to validate 
the potential protein complexes. Furthermore, there 
still are differences in the output of all these tools, as 
was shown for example by the differences in average 
subunits per complex that could be found. Also, not 
all of the tools are suitable for TMT data. Therefore, 
the choice of data-analysis tool also depends on the 
method used, the availability of prior information, and 
what type of validations are appropriate. Of all these 
tools, PCprophet performed best in identifying known 
complexes from the CORUM database and was able to 
predict novel complexes in an error-controlled 
manner. The performance of PCprophet could be less 
when a less extensively reported organism in CORUM 

is used.   
 

STUDYING PROTEOFORMS IN THE 
CONTEXT OF PROTEIN COMPLEXES 
 
Complexome profiling offers great insight into 
biological systems, and how subtle changes in 
conditions might not only result in differential 
expression of proteins but importantly also enable 
catching changes in the rewiring of complexes. On the 
other hand, small changes that are less abundant, but 
have a major impact on the functionality, specificity, 
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subcellular localization, or assembly state of the 
complexes, might not directly be discovered by the 
techniques mentioned before. Post-translational 
modifications, PTMs, like for example 
phosphorylation, reversibly decorate the proteins and 
allow for fine-tuning cellular functions, whereby a 
protein’s function depends on the specific 
modifications it has acquired at a specific moment. 
Finding the specific PTMs is difficult, especially when 
using SEC where whole lysates are mixed and peptides 
bearing PTMs become further diluted, therefore 
requiring specialized protocols to enrich for these 
peptides and to be able to trace this back to the correct 
proteins. Also, differences in PTM abundances should 
be attributed to either changes in the general protein 
expression or changes in the amount of PTM-
modification events (Altelaar et al., 2013).  
 
In the light of SEC-MS-based complexome profiling, 
different attempts have been made to accomplish this. 
In the earlier approach, a more general pipeline 
consisting of cell lysis, native SEC, and LC-MS/MS, 
was applied. A Superose 6 10/300 GL column was used, 
which accomplished the separation of complexes 
ranging from ~15kDa to approximately 1MDa into 40 
fractions. Complexes were identified by searching for 
co-fractionation of known protein complexes, 
whereby a minimum amount of the proteins known to 
be part of the complex should show co-fractionation, 
or by using hierarchical clustering methods based on 
elution profile similarities and validated by the 
STRING database. The downside of clustering 
strategies is the use of a less objective cut-off, as the 
cut-off in the dendrogram on the number of clusters, 
has to be decided by the user. Additional information 
about possible protein-protein interactions, and 
possible PTMs, the data is integrated into the 
Encyclopedia of Proteome Dynamics database to infer 
protein properties to the proteomics data, like PTMs, 
alternative splicing events, subcellular localization, 
and turnover rates, and to test the likeability of 
potential protein-protein interactions. In addition, 
this method was mainly applicable to the study of 
known complexes, as database information was used 
as validation for the results.  As some proteins can be 
part of several complexes, they elute in several 
fractions during SEC separation and are also found in 
the network in different clusters. Phosphorylation was 
studied by looking at the specific phosphorylated 
peptides that were detected by MS and tracing back to 

which peak fractions it originated and inferring this 
information into the clustering network. Some 
proteoforms of a protein were exclusively found to 
belong to a specific protein complex subset, as the 
phosphorylated peptide was not found in all elution 
fractions of the protein, but only in a specific one, 
whereby the different elution fractions clustered 
together to form different protein complexes. This 
illustrates the function of phosphorylation to regulate 
protein-protein interactions and determine which 

protein complex should be assembled (Kirkwood et 
al., 2013). This strategy was successful in deciphering 
some phosphorylation patterns but didn’t use any 

enrichment strategy, making it highly likely that a lot 
of PTMs are lost in the analysis. Furthermore, the 
lysate contains a mix of all different PTM states of the 
protein, making it difficult to assign a specific 
biological function to a phosphorylation site, as it is 
not known in which condition a certain PTM is 
applicable. Furthermore, it would be interesting to 
also add the information from the  Encyclopedia of 
Proteome Dynamics they used in the context of PTMs, 
by looking at the subcellular localizations of the 
proteins in the cluster containing a specific PTM and 
the cluster without it, and see if there might be 
correlations in PTM-profiles and the subcellular 
localization. This could also be done by looking at the 
turnover rates.  
 
The COrrelation-based functional ProteoForm 
(COPF) assessment tool was developed to detect and 
assign proteoforms more systematically in SEC-MS 
experiments, mainly for DIA-MS experiments, as 
these provide additional sensitivity and coverage of 
distinct proteoforms (Figure 5). This method was able 
to determine cell cycle-, or tissue-specific 
proteoforms. If a protein has no differences in 
proteoforms in the tested conditions, all of the 
peptides derived from this protein should show 
similar quantitative profiles, whereas proteins that 
show differential proteoform expression, show a set of 
different quantitative profiles and distinct proteoform 
groups could be assigned. By taking these 
considerations into account, a strategy is developed to 
calculate a proteoform score that informs whether a 
protein has differentially behaving proteoforms. For 
this, all peptides belonging to a protein are 
hierarchically clustered and divided into two separate 
clusters, containing a minimum of two peptides in 
each cluster, whereby it is assumed that peptides 
belonging to a specific proteoform cluster together. 
Then the Pearson correlation scores are calculated, 
both for all of the peptides and for all peptides within 
a cluster, whereby for the latter the lowest correlation 
value is selected as the within-cluster correlation 
score. The proteoform score is calculated by 
subtracting the within-cluster score from the overall 
cluster score, whereby a higher score indicates 
differentially behaving proteoforms, and also 
corresponding p-values could be estimated. This tool 
can also be integrated into the CCprofiler framework, 
enabling the detection of assembly-specific 
proteoforms. A great benefit of this tool is the 

possibility to compare different conditions with each 
other, provide statistical analysis, FDR estimation for 
proteoform detection, and decipher assembly-, or 
condition-specific proteoform groups. As COPF 
makes use of the inherent variation of the data to test 
for different proteoforms of a protein, it performs less 
for small changes, like proteoforms that differ by only 
one peptide. In a benchmarking study, phosphosites 
could be identified using this approach. Based on 
information from the literature, known phosphosites 

could be selected for a targeted re-analysis of the SEC-
SWATH data, although not all of the possible 
phosphosites could be reliably detected. The ones that 
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were detected, fell into the same proteoform group as 
determined by COPF. Although this approach can 
detect some phospho-specific proteoform groups,  
without the use of phosphatase inhibitors and 
phospho-enrichment, the protocol could still be 
upgraded to find even more phosphosites. To resolve 
more than two proteoform groups, different 
clustering methods should be chosen by the user, 
which are already available in COPF (Bludau et al., 
2021). 
 The progress in data-analysis strategies allows for the 
subtraction of as much data as possible from each 
dataset, and with the use of more sensitive MS 

methods, like DIA, proteins are more reliably 
detected, as well as the discovery of less abundant 
proteins, complexes, or different proteoforms. 
Furthermore, the amount of data that is gathered into 
publicly available databases allows for the 
implementation of additional evidence for protein-
protein interactions, and integration of additional 
information like subcellular localization.  
The integration of COPF into the CCprofiler tool 
enables the detection of different proteoforms, for 
single conditions or multiple conditions tested, and 
assign them to assembly-specific proteoform groups. 
This method also has the benefit of providing FDR 
estimations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B 

Figure 5: Figure from Bludau et al., 2021. COPF 
is based on the concept that for proteins with a 
single proteoform, the peptides show similar 
quantitative profiles. A) Schematic overview of 
COPF. When several proteoforms exist, peptides 
belonging to a specific proteoform should have a 
distinct quantitative profile, shown in orange (Step 
1). This example shows a set of 12 samples, across 
two different conditions. Peptides are correlated in 
a pair-wise way for each protein (Step 2). Based on 
the correlation distance, peptides are hierarchically 
clustered, and separated into two groups (Step 3).  
Peptides derived from the same proteoform should 
cluster together, and show higher correlation 
scores within the cluster. A proteofrom score is 
calculated to compare the overall correlation score, 
with the within-cluster correlation score. Proteins 
containing proteoforms have higher proteofrom 
scores. P-values are calculated (Step 4). B) Using a 
SEC-SWATH-MS analysis workflow, and for 
example CCprofiler, condition- or assembly-
specific proteoforms can be elucidated with this 

technique. 
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DISCUSSION AND CONCLUSION 

 

SEC is very suitable for studying protein complexes in 
a high-throughput way and with CCprofiler even in an 
FDR-controlled way. The native purification with SEC 
has the added benefit of causing less likely 
perturbations from tagging, e.g. disrupting the 
complex by preventing some interactions, disturbing 
its function, or changing its cellular location, which 
might occur in targeted approaches where a tag or 
enzyme is added to the proteins of interest. However, 
limitations from the experimental set-up with SEC 
still exist. Most common SEC approaches use a bit 
more sample input compared to for example BN-
PAGE, requiring around a milligram of material.  
  On one hand, SEC performs highly in its 
identification of native soluble complexes, but a lot of 
membrane proteins and complexes are undetected 
and less likely to be identified. This is due to mild 
detergents being used to keep the soluble protein 
complexes in native conditions, while this is not 
optimal for most membrane proteins, which require 
more hydrophobic environments using detergents not 
compatible with MS analysis. Specialized methods are 

developed to solubilize membrane proteins in native 
conditions, like nanodiscs or peptidiscs. After cell lysis 
using mild detergents, the membrane fraction is 
reconstituted immediately in a membrane-mimicking 
environment, like peptidiscs, that wrap around the 
membrane proteins. This reduces the chance of 
membrane protein dissociation and disassembly, by 
keeping the membrane complexes in their native 
environment. These membrane mimetics are soluble, 
and for the following SEC-fractionation and MS steps, 

no detergent has to be used. This has already been 
shown to give nice results for membrane complexes in 
E. coli (Luke Carlson et al., 2019; Salas et al., 2020; 
Skinnider & Foster, 2021).  
  During lysis in the buffer volume proteins are 
diluted, which might disrupt weaker complexes. This 
problem occurs for all strategies, but in SEC further 
dilution occurs in the chromatography steps where 
the samples are mixed with the native buffer used. 
Furthermore, protein complexes that are more 

thermodynamically labile, having high off-rates, 
might disintegrate more during the SEC procedure, 
limiting their detection (Heusel et al., 2019). Besides 
missing information about more transient 
interactions, which are still highly relevant for 
biological functions, less-abundant protein complexes 
are also more easily missed. In addition, dilution 
increases the spreading of proteins over the column 
thereby reducing the resolution that could be 
achieved. Furthermore, self-oligomers can be formed 
due to protein aggregation, which might influence the 
calculated assembled/monomeric distribution in 
CCprofiler, whereby these artificial aggregations also 
add up to the assembled state mass while they are not 
biologically relevant (Burgess, 2018; Cabrera-Orefice 
et al., 2022; Heusel et al., 2019; Iacobucci et al., 2021; 
Skinnider & Foster, 2021).  

Concerning the preservation of more transient 
interactions, crosslinking MS (XL-MS) has been 
combined with several established complexome 
profiling techniques, like BN-PAGE, Proximity 
Labeling (PL), and SEC. XL-MS stabilizes 
weaker/more transient interactions, although this 
might also capture non-relevant interactions of 
proteins that are nearby by chance (Hevler et al., 2021; 
Larance et al., 2016; Liu et al., 2020; Wang et al., 2022). 
However, in-gel cross-linking showed fewer over-
length cross-links, most often caused by protein 
aggregation, and unspecific cross-links compared to 
in-solution cross-linking. It has the additional benefits 
of having no necessary optimization steps to 
determine optimal crosslinker and protein 
concentrations, thereby using less sample, and being 
able to determine conformation-specific cross-links. 
The latter is important for studying co-occurring 
protein complexes that share subunits, whereby in-
solution cross-linking shows a mixture of all the 
different assembly states, whereas in-gel cross-linking 
is more targeted, enabling the elucidation of distinct 
assembly states of protein subunits into different 
complexes with the cross-links and their related 
distance restraints being provided for each separately. 
This provides assembly- and conformation-specific 
information (Hevler et al., 2021). The benefit of the 
CCprofiler algorithm is the ability to also distinguish 
different assembly states. Cross-linking for in-solution 
samples, which will be fractionated by SEC-SWATH-
MS, combined by analysis with CCprofiler would be an 
interesting approach to obtain high-throughput, FDR-
controlled data of also more transient and less 
abundant complexes, whereby also the different 
assembly states can be elucidated. Another benefit of 
crosslinking is the possibility to also aid in studying 
membrane proteins (Larance et al., 2016).  
 
Moreover, it is very important to keep in mind that it 
is challenging to have a standard to which the 
different complexome profiling techniques could be 
benchmarked and which can be used to determine 
how close to real native conditions our experimental 
outcomes are, as it is almost impossible to define the 
‘ground-truth’ condition. The complexes that are 
formed inside the cell depend on the cell signaling 
events that inform the cell about its environment to 
which it has to adjust. This means that the 
complexome state changes over time, as cells undergo 
different stimuli and cell cycle phases, whereby 

complexes need to adjust to meet the requirements at 
a specific time. Also, the type of cells used could differ 
from other cell types in their complexome state, 
moreover, they could differ from what is happening 
inside the context of organs, or even the whole 
organism. Therefore, it is important to choose the 
correct system to study your topic of interest, and to 
select a proper control to be able to test the different 
conditions, whereby ideally only differences are found 
due to the change of condition and not due to other 

artifacts, like different cell types, or culturing media. 
Furthermore, if several cells are lysed and this mixture 
is analyzed, the results resemble a convolution of all 
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of the different cells and their complexome states. 
Also, protein isoforms are diluted in the context of the 
general most common protein form. In addition, upon 
lysis of whole cells, subcellular localization 
information is lost, while complexes might show 
preference for specific locations inside the cells, or 
might have different functions or stoichiometries 
depending on their location.  
 
To also retrieve localization information and more 
dynamic interactions, several approaches are 
developed. This is more straightforward when using 
targeted approaches, as these methods already select 
specific complexes, compared to SEC, which is mostly 
used to look at the whole proteome and complexome 
at once. Proximity-labeling (PL) approaches can be 
used when only a subproteome, like the nucleus or 
ribosome, is of interest, as these target a specific 
complex and label proteins within a specific range 
around it, capturing proteins within a radius of about 
10-20nm. When using APEX labeling, these 
approaches can achieve a high temporal resolution, 
with labeling times of approximately one minute, 
capturing also highly dynamic interactions (Dionne & 
Gingras, 2022; Ke et al., 2021; Liu et al., 2020). 
Combining proximity labeling with cross-linking also 
provides great opportunities, as proximity labeling 
allows for subproteome-level targeting, whereby XL-
MS delivers information on a smaller scale, about 1nm, 
to distinguish direct and indirect binders from PL 
studies, but are also able to target proteins that are in 
close contact with each other and are also part of the 
complex, but might not be targeted by the bait protein 
of the PL assay directly, resulting in a more 
comprehensive protein network analysis. 
Furthermore, due to the applied XL-MS, the approach 
is less sensitive to nonspecific binding, which is a 
common caveat of targeted approaches (Liu et al., 
2020). Fascinating is the progress in data-analysis 
strategies that are developed, whereby subcellular 
localization information could be implemented for 
SEC data when using custom functions in 
ComplexFinder (Nolte & Langer, 2021). For further 
research, it would be interesting to implement these 
types of calculations in other data-analysis software, 
like CCprofiler to obtain an even more extensive 
overview of the whole complexome state at higher 
spatial resolution. These methods should be 
optimized further to look more specifically at 
complexome differences at subcellular locations for 

SEC data.  
 
To even retrieve a more complete picture of the 
complexome state of the cell upon different 
conditions, methods to also define assembly-specific 
proteoforms are available, like COPF. However, this 
does not apply to the detection of novel protein 
complexes, as it is dependent on CCprofiler, which has 
to use a provided database. Furthermore, it can detect 
changes in proteoform assemblies in changing 

conditions, and GO-terms could be added from 
existing databases to also see differences in subcellular 
localization. The latter is then only possible for cells, 

or organisms and conditions that have been studied 
before. Methods like proximity assays look at 
subcellular localization and provide higher spatial 
resolution to define the localization.  
Furthermore, improvements in the protocol could be 
made to cover more PTMs, like phosphorylation, by 
applying other fragmentation strategies, instead of 
CID or HCD which break weaker bonds first, like ETD 
or ECD, which are better at preserving labile bonds. 
ETD has already been shown to be compatible with 
DIA-MS and should provide higher coverage of the 
less abundant proteoforms (Doll & Burlingame, 2015; 
Schmidlin & Altelaar, 2020) .  
 
A way to improve the detection of phosphopeptides is 
by using AP-MS, which increases the sensitivity to 
detect phosphopeptides by enriching them. However, 
a pitfall of these targeted strategies like AP-MS, IP-MS, 
and proximity labeling is that they show a convoluted 
image of the proteoforms. All of the different 
proteoform-specific complexes might be 
simultaneously purified since the complexes that are 
purified depend on binding to the bait protein or 
antibody, whereby some proteins might show less 
affinity in either the presence or absence of the 
modification, but other proteins of the complex might 
still be able to bind. As a result, it is showing a 
convolution of all subcomplexes that were 
concurrently purified, and also missing the 
information about possible modifications on other 
proteins that are part of the complex. Thereby, the 
specific effect of a set of modifications on protein 
complex formation might be lost and the specific 
proteoform-specific subcomplexes might not be 
correctly elucidated. Furthermore, in AP-MS, specific 
antibodies targeting the specific modifications should 
be used, but these might not be available for all the 
specific sites a protein has.  
 
In correlation-profiling-based approaches, the co-
elution or migration profiles show differences for 
specific proteoform groups, as already shown by 
Bludau et al 2021, which has been implemented in 
COPF. These types of methods can show distinct 
assembly-specific proteoforms, whereby a specific 
modification might only be present in the elution 
profile of one subcomplex. Due to the separation in 
specific subcomplexes, it is possible to determine on 
which modification the formation of a specific 
subcomplex might depend.  

  Phospho-DIFFRAC is also another approach that can 
be used to study phosphorylation-dependent protein 
complex assemblies, which compares elution profiles 
of non-specific phosphatase-treated and phosphatase-
inhibitor treated conditions (Floyd et al., 2021). This 
latter technique does not preserve specific biologically 
relevant phosphorylation patterns and the 
corresponding phospho-specific subcomplexes. This 
is due to the non-specific treatments used, whereby 
complexes dependent on the specific phosphorylation 

of only some of the phospho-sites might be lost.   
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Combining a targeted strategy with correlation 
profiling should allow for a more sensitive approach 
to detect proteoforms, while also preserving the 
association between the modifications and complex-
formation. This was already explored for YAP1 (Figure 
6). In this study, the different YAP1-complexes were 
first purified by AP-MS, in the presence or absence of 
phosphatase inhibitors. A downside of this method is 
that a phosphatase inhibitor is not acting on specific 
phospho-sites, and if more subcomplexes exist, each 
depending on the phosphorylation of a different 
phospho-site, these might not be completely and 
convincingly elucidated by AP-MS. However, via a 
clustering approach, protein-protein interactors are 
indicated that show differential affinity to YAP1 based 
on the serine/threonine or tyrosine phosphatase 
inhibitor that was used.  Therefore, the purified 
complexes are then separated by BN-PAGE and 
analyzed by MS to elucidate the composition of the 
complexes in the different YAP1 phosphorylation 
states. BN-PAGE is better at resolving low-abundant 
co-migrating complexes, like those of phospho-
peptides, than SEC is. Nine different subcomplexes, 
each with a specific phosphorylation pattern, were 
discovered by hierarchical clustering of the BN-PAGE 
migration profiles. Each of the subcomplexes found 
could be linked to different target functions of YAP1. 
To test for different phospho-sites, specific phospho-
mutants have been created, whereby AP-MS and co-
migration data were integrated, showing that several 
phospho-sites regulate subcomplex integrity, whereby 
in almost all of these cases the phospho-site is 
necessary for binding, as confirmed by AP-MS. Several 
Knock-Out (KO) cells were made, each lacking a key 
regulator of the signaling pathway of which YAP1 is 
part. As these KO strategies are less compatible with 
ectopically expressing YAP1, IP-MS was used instead 
of AP-MS. This links the role of several pathway 
regulators to the phosphorylation patterns of YAP1 
and its effect on complex formation. Still, some 
caveats exist within this protocol, as large amounts of 
sample input are needed (Uliana et al., 2023).  
  The use of AP-MS instead of IP-MS might provide 
some limitations for this technique. Suitable 
antibodies are not always available, and antibodies 
might not always interact with different proteoforms, 
or all interaction partners due to the overlap of the 
interacting domain with the antibody epitope, thereby 
adding a possible limit to co-purify some proteo-form 
specific complexes. For AP-MS, the bait protein can 

accumulate different modifications inside the cell in 
which it is expressed, while still being able to bind the 
different subset of interaction partners, and whereby 
the tag is still able to bind to the beads used for 
purification. Thereby, this method increases the 
chance of co-purification of all different proteoform-
specific complex assemblies.   
 
As a major limit, for all strategies applied, there 
remains a risk of complexes that may disintegrate 

during the purification, resulting in partially resolved 
complexes, but also the risk of co-elution due to 
similarity in biophysical properties on which the 

separation is based, or the risk of protein aggregation. 
Therefore, it is important to see if the observed 
complexes represent in vivo conditions, by using 
proper controls, or by using a likelihood prediction, 
which CCprofiler does. That is a great benefit of 
approaches like CCprofiler, but the experimental 
results could also be compared with prior information 
about the complex manually if this information is 
available, although thereby not providing statistical 
evidence. To be able to provide this for novel complex 
prediction, PCprophet was developed, allowing for 
error control based on GO-terms. However, this could 
perform less when it is applied to organisms for which 
no complete GO database exists. Additional testing 
for possible protein-protein interactions could 
nowadays be done by using AI methods, that can 
predict protein complexes by machine learning, 
additionally providing information about the 
structure as a great benefit (Humphreys et al., 2021; 
Shor & Schneidman-Duhovny, 2024). This could be 
integrated as an additional validation tool in programs 
like CCprofiler or PCprophet, in cases where sufficient 
databases do not exist, and might also add structural 
information to the obtained complexes. Of course, it 
still requires an awareness of possible false positives 
or negatives that might then be integrated. In 
addition, prediction-based methods, like PCprophet 
and ComplexFinder, might be better at describing the 
complexome state more accurately for specific 
conditions, whereas the database provided for 
methods like CCprofiler only contains information 
about certain conditions that have been studied 
before, and might not be accurate enough to explain 
the complexome in another cell type or condition. A 
more specific database, in concordance with the 
sample used and the condition that is tested, could 
also improve the accuracy of the results.  
 
Moreover, assembly intermediates might be confused 
with partially disintegrated complexes, while they 
could provide additional information about the 
biological function of a complex. BN-PAGE is better at 
finding assembly intermediate states, compared to 
SEC-based methods, due to its high-resolution 
separation. With CCprofiler some intermediates 
might be found upon manual inspection, which is 
labor-intensive. With ComplexFinder, it is currently 
not possible to find the intermediates, as the analysis 
is performed on the protein level, whereby each 
complex found is treated as a unique complex. For 

future research, it might also be interesting to 
implement strategies to identify the intermediate 
complexes in a more automated method, although 
this increases the complexity of the data analysis and 
requires additional statistical methods to determine 
whether a complex might be an intermediate complex 
or a partially disassembled complex. This is yet also 
information that is missing from AI-based 
approaches, as these predict also the protein 
structure, and the possible complexes, but do not 

show intermediate states, which might also have 
important biological functions, or could be of interest 
as drug targets.  
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To conclude, it is worth mentioning that we should 
keep in mind what kind of complexes need to be 
studied and in which context we want to study it, 
whether we expect to identify novel subunits or 
completely novel complexes, if the interactions are 
transient or highly dynamic, if the protein is highly 
abundant, or if it has a preferred subcellular 
localization. This is important in determining which 
is the optimal strategy to apply. For example, in the 
elucidation of proteoform-specific complex 
assemblies, SEC provides a nice way to separate the 
different subcomplexes and preserve the proteoform-
specific information, although it might not be 
sensitive enough. Therefore, it has been combined 
with targeted approaches like AP-MS or IP-MS.  In 
general, SEC is an ideal method to study native 
protein complexes, which can be adjusted to a high-
throughput manner, and is more cost-effective 
compared to targeted approaches, as no expensive 
antibodies need to be bought, or several proteins need 
to be tagged. Furthermore, with the FDR-controlled 
analysis from CCprofiler, it is ideal to compare 
different conditions and gain an impression of the 
overall complexome state but also to identify different 
subcomplexes, and protein distributions over the 
monomeric state, or different assembly states. 
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