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Spine segmentation is the process of delineating the shapes of the vertebrae in medical images, creating a new 

image that indicates the exact location of the vertebrae. Particularly, Magnetic Resonance Imaging (MRI) is a 

highly suitable technique for the assessment of many spinal conditions (e.g., scoliosis, fractures or metastases) 

where spine segmentation is a valuable task, since it is a radiation-free imaging modality that allows for the 

acquisition of three-dimensional (3D) scans at a high resolution. 

Currently, automatic segmentation approaches based on deep learning are gaining more and more popularity. 

These approaches employ neural networks, which are algorithms that mimic the functioning of the human brain 

by recognizing relationships and patterns in the data. To train a neural network for segmentation, it must be 

provided with MR images of the spine and their corresponding segmentation, which is usually named ‘ground 

truth’. During several training loops, the network learns complex features in the data so that, when presented with 

new MR images, it should be able to segment the structure of interest.  

Neural networks frequently face problems to generalize or, in other words, to perform well in new types of data. 

Particularly in this context, networks usually have problems to adapt to the vast variety of contrasts that MR 

images present and to the different patient populations. To attain generalization, deep learning models should be 

trained with abundant and diverse data, but these extensive datasets are often difficult to obtain in the clinical 

setting. One approach that can address this issue and facilitate generalization is data augmentation, a process that 

increases the dataset variation by creating new samples from the available ones. In this work, two data 

augmentation approaches were developed and compared after being applied in the training of a spine segmentation 

network.  

The first one, named SynthMRI, consisted of the generation of synthetic scans with contrasts that simulate those 

encountered in real MR images by utilizing quantitative MRI (qMRI) maps. qMRI is a common approach to 

quantify physical properties of the tissues with MRI. In conventional MR images, these properties collectively 

influence the MR signal. This signal is characterized by a signal equation, which varies depending on the type of 

MR contrast used and contains parameters that reflect these physical properties along with time parameters 

employed in the image acquisition. By putting the values of the qMRI maps into this equation, while modifying 

the time parameters over a specific range, diverse synthetic images resembling real MR scans can be created, with 

varying tissue intensities and contrasts. 

The second augmentation approach, named SynthSeg, consisted of the generation of synthetic images with 

random contrasts and intensities from anatomical label maps. These anatomical label maps have information from 

the real images and segmentation, but are used to create synthetic images unlike any real images. By using these 

label maps and varying the contrasts considerably beyond the real images, the idea is that the neural network 

learns to only look at the shapes inside the images and not the intensities 

Results demonstrated that spine segmentation networks trained with both SynthMRI and SynthSeg exhibited good 

generalization capabilities when presented with data featuring new MR contrasts and spine conditions despite the 

limited initial dataset, comprised of images from only five healthy individuals. Statistical analysis revealed no 

significant differences in performance between the two augmentation strategies overall. However, splitting these 

results by the type of MR image showed that SynthSeg performed worse in a particular type of scan. This was 

due to methodological adjustments made to ensure a fair comparison between both methods, which prevented 

them from being fully optimized. Despite these issues, the primary conclusion of this study was the great potential 

of both SynthMRI and SynthSeg for achieving generalization in spine segmentation tasks. 
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Abstract—Recent advances in deep learning have greatly 

improved the automation of segmentation tasks. However, 

challenges remain in achieving robust performance on new 

domains, evidencing the need for large and diverse training 

datasets. In this study, two approaches, SynthMRI and 

SynthSeg, were implemented to generate new images during 

training, using available magnetic resonance (MR) scans, on a 

lumbar spine segmentation network. The main objective was to 

evaluate and compare their ability to generalize to unseen data. 

SynthMRI followed a physics-based approach that employed a 

set of quantitative MR images and Turbo Spin Echo (TSE) scans 

to synthesize new MR-like images with varied weightings using 

signal equations. In contrast, SynthSeg followed a domain 

randomisation strategy, where new images with random 

contrasts and intensities were generated from a set of 

anatomical label maps derived from TSE scans and the 

vertebrae segmentation by clustering image intensities. The 

evaluation of the predictions generated by the segmentation 

network trained with each approach revealed the ability of both 

SynthMRI and SynthSeg to generalize to images with unseen 

contrasts and patient populations. Specifically, SynthMRI 

achieved a mean Dice Similarity Coefficient (DSC) of 0.843 and 

a mean 95th percentile Hausdorff distance (HD95) of 3.712 mm, 

while SynthSeg obtained a mean DSC of 0.810 and a mean HD95 

of 5.008 mm. Overall, no significant differences in performance 

were observed between the two methods. However, splitting the 

results by modality revealed that SynthMRI exhibited better 

performance than SynthSeg in TSE images. In conclusion, the 

outcomes of this study showed the great potential of both data 

synthesis strategies for achieving generalization in segmentation 

tasks.    

Keywords—deep learning, segmentation, convolutional 

neural networks, Magnetic Resonance Imaging, image synthesis 

 

I. INTRODUCTION  

Spine segmentation, or the precise delineation of the spinal 
anatomy, is a valuable task in several medical contexts and, 
particularly, in the assessment and management of deformities 
such as adolescent idiopathic scoliosis (AIS), where a 
thorough follow-up over time is usually needed for planning 
of treatment approaches. Moreover, an accurate spine 
segmentation can also aid in the evaluation of other spinal 
conditions, such as fractures, metastases, or degenerative 

diseases, highlighting its significance within the scope of 
musculoskeletal health and orthopaedics [1][2].  

For all these cases, magnetic resonance imaging (MRI) 
can play a significant role by providing high-resolution 
images that enable an accurate visualization of the three-
dimensional (3D) nature of many spinal conditions. Although 
MRI provides a rich variety of contrasts that reflect the 
underlying properties of the tissues, its inherent diversity 
poses a challenge for automated segmentation strategies. 
Consequently, manual delineation by trained individuals 
remains the gold standard, despite being time-consuming and 
exhibiting significant inter-expert variability [3]. 

Numerous modern methods for automated segmentation 
focus on the use of convolutional neural networks (CNNs), 
which are capable of learning and extracting hierarchical 
features from the images. However, optimizing the 
performance of these deep learning models requires the 
utilization of extensive and diverse datasets during training, 
which are especially hard to obtain in the clinical setting [4]. 
Within the context of this study, the key is to train a model 
that is able to generalize to diverse MR images. Generalization 
in this setting refers to a network still performing well on new 
types of data, in this case, different MR contrasts or patient 
populations where it has not been trained on. One approach 
capable of improving generalization capabilities is data 
augmentation. Data augmentation increases the dataset 
diversity, so that training the network on more varied data 
facilitates a better generalization. One way of creating more 
variation in the data is by simulating different MR contrasts.  

The inherent properties of the imaged tissues, such as the 
proton density (𝜌) and magnetic relaxation times (𝑇1, 𝑇2, 𝑇2

∗), 
contribute collectively to the formation of the MR signal, with 
the image intensities depending on these factors and being 
non-quantitative in most conventional MR images. However, 
it is possible to decompose the MR signal to obtain the 
contribution of these individual contrast factors and represent 
their spatial distribution in a quantitative way, as 𝜌, 𝑇1, 𝑇2 or 
𝑇2

∗  maps. This technique is known as quantitative MRI, or 
qMRI [5]. Accordingly, having a set of qMRI maps, along 
with a repetition time (TR) and echo time (TE) of choice, 
would enable the generation of a broad range of MR contrasts 
by means of the signal equations.  
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The gold standard MR sequences for obtaining 𝑇1 and 𝑇2 
relaxation maps are Inversion Recovery Spin Echo [6] and 
Multi-echo Spin Echo [7], respectively, as well as Multi-echo 
Gradient Echo for T2* maps [8]. Another strategy was 
developed by In Den Kleef and Cuppen, in which a Multi-
echo Spin Echo sequence, interleaved with Inversion 
Recovery pulses, is utilized to independently derive 𝜌, T1 and 
T2 relaxation values simultaneously [9]. This method has 
been incorporated into Philips scanners as a protocol named 
MIXED, which was used in this study to acquire qMRI maps 
to be used in MR signal simulation as one form of data 
augmentation.   

Besides simulating diverse MR contrasts, a different way 
of creating more variation in the data is SynthSeg [10], which 
involves the generation of synthetic scans following a domain 
randomization strategy, meaning that all the parameters of the 
generative model, including orientation, contrast, resolution, 
etc., are fully randomized. As opposed to MR signal 
simulation, these images do not reflect realistic scan contrasts 
and instead cover a much wider variety of image contrasts 
beyond what would be seen in real MR images. As a result, 
the network is forced to learn high-level features such as 
object shapes, instead of focusing on aspects such as 
intensities or textures. It should also be noted that these 
training images are generated from anatomical label maps that 
are created from the ground truth delineations in an automatic 
way, ensuring a perfect correspondence between the synthetic 
scans and the target segmentations. In addition, the image 
generation process is carried out on the fly, yielding a different 
image at every training step. Ultimately, the authors 
demonstrated SynthSeg's high robustness and generalizability 
to wide variations in contrast and resolution, which was 
evident not only in MR scans from different modalities but 
also in computed tomography (CT) images [10]. 

The authors of SynthSeg proved the generalization 
capabilities of a network trained on synthetic contrasts varying 
beyond real contrasts. They state that having enough diversity 
in the training data by generating random contrasts at every 
training step is paramount for generalizability. This 
counterintuitive result, which showed that synthetic contrasts 
are better than training on real MR images, shows the 
importance of having lots of variation in the training data. The 
question remains: does SynthSeg work better than an 
approach that tries to match its variation by also creating 
synthetic images on the fly, that stay within the range of 
plausible MR contrasts? 

Hence, the aim of this study is to investigate and compare 
two data augmentation approaches, which will be applied for 
the training of a spine segmentation network. The first method 
is based on the generation of spine images with multiple MR-
like contrasts, while the second one employs SynthSeg’s 
strategy to spine images, obtaining volumes with random 
intensities. The ultimate goal is to determine which technique 
yields the most generalizability on the model for different, 
unseen domains.  

This work is structured in the following way: after the 
introduction, chapter II describes the data acquisition, the 
different image synthesis methods, the pre-processing 
techniques, the segmentation network employed, and the 
metrics used for evaluation. Chapter III presents the results of 
the trainings with both strategies. Chapter IV includes a 
discussion on these outcomes and, finally, chapter V provides 
the conclusions of this investigation.   

 

II. MATERIALS AND METHODS 

A. Data 

1) Dataset for image synthesis and training 
The dataset used in this project, aimed at generating new 

MR-like and random-intensities images, consisted of a 
collection of lumbar spine MR images obtained from five 
different volunteers, 2 female and 3 male, aged between 23 
and 25 years old and without any noticeable spinal pathology. 
The subjects were scanned using a clinical 1.5T MR scanner 
(Philips Healthcare, Best, Netherlands, software release 5.7) 
using the base head coil and the built-in posterior coil. For 
each volunteer, the imaging protocol included a set of 
quantitative MRI (qMRI) scans, comprising a  𝑇1 map, a 𝑇2 
map and a proton density (𝜌) map, obtained using the MIXED 
sequence [9]. Additionally, 𝑇1 -weighted and 𝑇2 -weighted 
Turbo Spin Echo (TSE) images were obtained, along with a 
BoneMRI scan, which consists of a 3D 𝑇1 -weighted RF-
spoiled Gradient Echo (GRE) sequence, with two echoes with 
echo times such that one is almost in-phase and the other one 
is almost out-of-phase, considering the water-fat interference. 
Parameter settings for each of these acquisitions are included 
in Table 1. Furthermore, vertebrae segmentations were 
created, outside of this project, from CT-like BoneMRI 
images derived from the GRE scans (BoneMRI V1.6 
Research Version, MRIguidance B.V., Netherlands). 

TABLE I.  ACQUISITION PARAMETERS FOR THE DIFFERENT IMAGES 

Parameter 
Acquisition 

2D MIXED 2D T1-weighted TSE 2D T2-weighted TSE 3D Spoiled GRE 

Repetition time (TR) 
TR SE: 1200 ms 

TR IR: 2000ms 
436 ms 2435 ms 7 ms 

Echo time (TE) [15, 38, 61, 84] ms 8 ms 100 ms [2.1, 4.2] ms 

Number of  Signal Averages 

(NSA) 
1 3 1 2 

Field of View (FOV) 220 × 278 × 101 mm3 220 × 278 × 101 mm3 220 × 278 × 101 mm3 220 × 278 × 100 mm3 

Acquisition voxel size 1 × 1 × 4 mm3 1 × 1 × 4 mm3 1 × 1 × 4 mm3 1 × 1 × 2 mm3 

Reconstruction voxel size 0.7 × 0.7 × 4.4 mm3 0.7 × 0.7 × 4.4 mm3 0.7 × 0.7 × 4.4 mm3 0.7 × 0.7 × 1 mm3 

Acquisition duration 24 min 38 sec 5 min 14 sec 2 min 7 sec 4 min 30 sec 
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2) Dataset for validation and inference 

A different collection of images was employed as validation 

and test data for the spine segmentation network. This dataset 

comprised seventeen 3D spoiled GRE and 2D TSE ( 𝑇1 -

weighted and 𝑇2 -weighted) scans, belonging to seven 

different patients, with a mean age of 54 (ranging from 18 to 

74) years old and presenting a variety of suspected spinal 

pathologies, including fractures, deformities, infections, 

metastases and degenerative conditions. In addition, this 

dataset included corresponding vertebrae segmentations, also 

obtained from CT-like BoneMRI images derived from the 

GRE scans. Note that no data augmentation was applied to 

the validation and test images to create synthetic images, as 

was done for the training images. Four scans were used for 

validation, and the remaining thirteen scans, for training. 

B.  Physics-based synthesis of MR images (SynthMRI) 

This section provides a comprehensive description on 
augmenting the available data through the implementation of 
a physics-based strategy. In particular, the signal equations 
from the turbo spin echo (TSE) sequence were employed to 
achieve a diverse range of weightings and, therefore, a variety 
of MR-like contrasts. This creates more diverse data, 
hopefully yielding better generalizability. For conciseness, 
this strategy is referred to as “SynthMRI” throughout the rest 
of this report.  

For this approach, the set of qMRI scans from the MIXED 
sequence was employed, as well as the TSE images. Several 
ways of synthesizing physics-based contrasts were initially 
evaluated, which are grouped in two main methods: Bloch 
simulations and steady state equations. 

Bloch simulations describe the behaviour of net 
magnetization due to the application of a pulse sequence, 
through three independent dynamics: 𝑇1 -relaxation, 𝑇2 -
relaxation, and precession. After conducting several trials 
using the functions provided in [11], Bloch simulations were 
excluded from this project due to the lengthy computation 
time (the synthesis of a single image slice took approximately 
42 seconds for a  𝑇1-weighted TSE image and 99 seconds for 
a  𝑇2-weighted TSE image, on the other hand, approximately 
1.2 seconds were spent on synthesizing the entire 3D image 
using steady state equations).  

For the second method, the steady state signal equation of 

the spin echo sequence was employed:  

𝑆 = 𝜌 ⋅ (1 − 𝑒−𝑇𝑅/𝑇1) ⋅ 𝑒−𝑇𝐸/𝑇2 (1) 

 
where S is the spin echo signal, 𝜌 is the proton density, 𝑇𝑅 is 
the repetition time, 𝑇1 is the longitudinal relaxation time, 𝑇𝐸 
is the echo time and 𝑇2 is the transverse relaxation time. After 
qualitative evaluation in several tissue of interest (fat, muscle, 
CSF, spinal cord, bone marrow), it was found that similar 
contrasts to real TSE images were achieved by this method.   

The most straightforward way of synthesizing new MR 
images is to directly plug in the 𝜌, 𝑇1 and 𝑇2 values from the 
qMRI maps in the steady state equation. By doing so, a wide 
range of contrasts or weightings (T1-weighted, T2-weighted, 
PD-weighted, combined…) can be simulated based on 
specific combinations of 𝑇𝑅 and 𝑇𝐸 values.  

However, a different use of this equation was ultimately 
reached, that enabled the integration of the acquired (or 

experimental) TSE images to enhance the synthesized images. 
This method consisted of defining two steady state signal 
equations, one corresponding to a real TSE image (𝑆𝑒𝑥𝑝), and 

another one corresponding to a new synthetic image with a 
simulated contrast (𝑆𝑠): 

𝑆𝑒𝑥𝑝 = 𝜌 ⋅ (1 − 𝑒−𝑇𝑅𝑒𝑥𝑝/𝑇1) ⋅ 𝑒−𝑇𝐸𝑒𝑥𝑝/𝑇2 (2) 

 

𝑆𝑠 = 𝜌 ⋅ (1 − 𝑒−𝑇𝑅𝑠/𝑇1) ⋅ 𝑒−𝑇𝐸𝑠/𝑇2  (3) 

 
here, 𝑇1 and 𝑇2 of each tissue of interest can be assumed to be 
the same in both cases. Nevertheless, the signal of the 
experimental/real image may be influenced by different 
factors, such as the hardware of the MR scanner, 
electromagnetic imperfections (B0- and B1- field 
inhomogeneities, RF receive coil sensitivities or gradient 
distortions) or the physical properties of the patient (e.g. RF 
interferences), that are not reflected in the 𝜌 map from the 
MIXED protocol. Such factors were then contained in the 
signal equation inside the term K: 

𝑆𝑒𝑥𝑝 = 𝐾 ⋅ 𝜌 ⋅ (1 − 𝑒−𝑇𝑅𝑒𝑥𝑝/𝑇1) ⋅ 𝑒−𝑇𝐸𝑒𝑥𝑝/𝑇2 (4) 

 
Thus, using this experimental TSE signal, a new proton 

density map was defined that encompassed these factors: 

𝑃𝐷 = 𝐾 ⋅ 𝜌 =  
𝑆𝑒𝑥𝑝

(1 − 𝑒−𝑇𝑅𝑒𝑥𝑝/𝑇1) ⋅ 𝑒−𝑇𝐸𝑒𝑥𝑝/𝑇2
 

(5) 

 
 

Substituting 𝜌  in equation (3) by the estimated 𝑃𝐷  in 

equation (5) yields 

𝑆𝑠 = 𝑃𝐷 ⋅ (1 − 𝑒−𝑇𝑅𝑠/𝑇1) ⋅ 𝑒−𝑇𝐸𝑠/𝑇2  

=  𝑆𝑒𝑥𝑝 ⋅
(1 − 𝑒−𝑇𝑅𝑠/𝑇1)

(1 − 𝑒−𝑇𝑅𝑒𝑥𝑝/𝑇1)
⋅ 𝑒

−(𝑇𝐸𝑠−𝑇𝐸𝑒𝑥𝑝)

𝑇2  

 

(6) 

Therefore, synthetic images were influenced by the signal 
and time parameters of a real TSE experiment, which affects 
their contrast and improves the level of detail, achieving 
realistic results. The noise in the qMRI maps, that would be 
excessive if the 𝜌  map from MIXED was used, was also 
almost entirely mitigated, except for some speckles caused by 
outliers in the maps that, due to the divisions and exponentials 
in the equations, resulted in values that are outside of the 
dynamic range of the image.  

Several intermediate and mixed weightings were 
simulated by choosing a random 𝑇𝐸𝑠 within the range of 5 to 
100 ms, and a random  𝑇𝑅𝑠 within the range of 200 to 3000 
ms. These ranges match those commonly used in conventional 
TSE acquisitions, encompassing various weightings. Since 
𝑇1-weighted images are acquired with short echo times, it was 
decided to couple the random selection of a 𝑇𝐸𝑠 below 50 ms 
with the utilization of a 𝑃𝐷  map estimated from the 
experimental 𝑇1-weighted TSE signal. Conversely, since T2-
weighted images require longer echo times, the choice of a 
𝑇𝐸𝑠 greater than 50 ms would be linked to the use of a 𝑃𝐷 
map defined from the experimental 𝑇2-weighted TSE signal. 
This criterium is graphically depicted in Figure 1. 

 It should be noted that choosing 𝑇𝑅𝑠 and 𝑇𝐸𝑠 equal to the 
experimental ones results in a synthetic image also identical 
to the experimental one, as equation (6) becomes  

𝑆𝑠 =  𝑆𝑒𝑥𝑝  (7) 
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C. Random intensity-based synthesis of images (SynthSeg) 

 This section explores in detail the functioning of 
SynthSeg’s [10] approach and its adaptation to this project, 
with the goal of using the available data to automatically 
generate new spine images with random intensities on each 
training step. In this way, the segmentation model is forced to 
focus only on object shapes, disregarding information related 
to intensity or contrast due to its high variation and 
randomness. For the sake of simplicity, the name “SynthSeg” 
is also utilized throughout this work.  

Synthesizing spine images with random contrasts required 
the utilization of anatomical label maps, derived from the 
ground truth vertebrae segmentations and an MRI image from 
that acquisition, such as a TSE. Section D in this chapter, titled 
“Data pre-processing”, describes in more detail how these 
maps were generated. The label maps contain a variable 
number of clusters within and outside the foreground (i.e., the 
vertebrae), as depicted in Figure 2a, that represent different 
body structures and levels of granularity.  

Label maps take their values from a set of 𝐾  labels, 
𝑆𝑛(𝑥, 𝑦, 𝑧) ∈  {1, … , 𝐾} [10], where 𝐾 represents the number 
of clusters inside the volume. To synthesize the new images, 
a Gaussian Mixture Model (GMM) was used to generate 
random intensities for each of the K labels so that, every time, 
each label 𝑘 ∈ {1, … , 𝐾}  was associated with a Gaussian 
distribution of intensities having mean 𝜇𝑘 , and standard 
deviation 𝜎𝑘 [12]. The function RandomLabelsToImage, from 
the Python library TorchIO, was employed for this task.  

Moreover, spatial augmentations, random bias field 
artifacts, intensity augmentations and resampling were also 
applied to the new images being created on the fly to make 
training robust to such effects and to create even more 
variation. These augmentations were implemented in the same 
way in the images generated by the SynthMRI strategy, to 
make both approaches as comparable as possible. The order in 
which these transformations were executed for each of them 
is depicted in Figure 3 and has slight differences due to 
computational speed considerations. Figures A1 and A2 in the 
Appendix show examples of the final synthetic images 
generated by SynthMRI and SynthSeg after the application of 
these augmentations.  

The spatial augmentations consisted of an affine and an 
elastic transformation. Between them, patches of 80×80×32 
pixels were cropped from the images. To add random bias 
field artifacts, the approach used in [10] was followed, where 
a volume with size 43 was first sampled from a Gaussian 
distribution with zero-mean and standard deviation 𝜎𝐵. This 
volume was then expanded to the full size of the image, and 
an exponential function was used on each voxel to ensure a 
smooth and non-negative field 𝐵 . Subsequently, the 
multiplication of this field 𝐵 by the original image resulted in 
the creation of a biased image. Next, the image was min-max 
normalized to have values between 0 and 1, and the intensity 
distribution of the synthetic scans was further augmented by 

  

                         a                                                   b 

Fig. 2. (a) Label map. (b) Synthetic image with random intensities 

derived from the label map. 

 

 

 
                         a                                              b 

Fig. 3. (a) Order of augmentations for SynthMRI strategy. (b) Order of 

augmentations for SynthSeg strategy. 

 

Fig. 1. Criterion for the automatic synthesis of new MR images. 
Synthetic images are automatically generated by randomly selecting a 

combination of TR and TE values contained inside the shaded area. In 

addition, depending on wether TE is lower or higher than 50 ms, we 

consider K1 or K2, which represent the scanner imperfections arising in a 

real  𝑇1-weighted or  𝑇2-weighted TSE image, respectively. 
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the application of a random Gamma transformation through 
voxel-wise exponentiation. Then, images were smoothed via 
Gaussian filtering and resampled, to simulate low-resolution 
scans. This resampling consisted of a random downsampling 
followed by upsampling, using trilinear interpolation, to return 
to the original patch dimension. Finally, image flips along the 
antero-posterior and left-right directions were randomly 
applied with a 50% probability. Figure 2b illustrates the image 
generated after all these steps, from its corresponding label 
map. For visualization purposes, a bigger patch of 
300×300×32 pixels is depicted.  

D. Data pre-processing 

Pre-processing was required for the 𝑇1  maps and the 𝑇2 
maps from the MIXED sequence, the 𝑇1- weighted and 𝑇2-
weighted TSE scans and the vertebrae segmentations, as well 
as for all the images of the validation and inference dataset. 
This process will be described below. 

Initially, all images were resized to a common resolution 
of 0.7×0.7×2.2 mm3, using 3rd order B-spline interpolation. As 
noted previously, the ground truth segmentations were 
obtained from the CT-like BoneMRI images derived from the 
GRE scans, which had 1 mm slice thickness. While SynthSeg 
could theoretically be applied for training at this resolution, it 
would require upsampling the qMRI maps and TSE images 
for SynthMRI by a factor of 4.4 in the left-right direction. 
Therefore, to ensure a fair comparison between both 
approaches, a slice thickness of 2.2 mm, was chosen as an 
intermediate resolution between that of the 1 mm thick slices 
of the segmentation and the 4.4 mm thick slices of the TSEs. 

1) SynthMRI 
The resized images for the SynthMRI approach were pre-

processed further. First, the 𝑇1  and the 𝑇2  maps from the 
MIXED sequence were filtered to remove the noise in a two-
step process. The first one consisted of a thresholding 
operation applied to the abdominal region containing no 
vertebrae. Voxels exceeding a value of 625 ms, determined 
heuristically, were clipped to this number. The second step 

consisted of the application of a median filter of size 3×3 in 
the sagittal plane, as this provided the best noise reduction 
with minimal blurring.  

After de-noising the maps, two proton density (𝑃𝐷) maps 
were estimated from the 𝑇1  and the 𝑇2  maps and the TSE 
signals, utilizing the experimental TR and TE, following 
equation (5). At training time, the 𝑇1 and 𝑇2 maps, and the 𝑃𝐷 
maps from each volunteer were used to generate a synthetic 
scan with an MRI-like contrast using equation (6) and the 
criterion defined in Figure 1, which determined if the 𝑇1 TSE-
derived map or the 𝑇2 TSE-derived map would be used.  

2) SynthSeg 
The pre-processing steps for the SynthSeg approach 

involved the creation of the label maps, which were obtained 
by clustering MRI intensities following the Expectation-
Maximization (EM) algorithm, as mentioned in [10], where it 
was employed for the same purpose. In this project, the 𝑇1-
weighted TSE scans of each subject were initially separated 
into a vertebrae label map and a background (everything that 
is not vertebrae) label map, using the ground truth 
segmentation as a mask. The EM algorithm was applied to the 
vertebras using the GaussianMixture function from the 
Python library scikit-learn. In three of the volunteers, two 
clusters were determined for the vertebrae label map, 
corresponding to the vertebral cortex and bone marrow. 
However, two of the subjects also presented some 
hyperintensities inside the bone marrow, which were included 
as a third cluster. For the background, eight different label 
maps were generated, determining for each of them a different 
number of clusters, that ranged from 3 to 10. This helps to 
introduce more data variation during contrast synthesis. 
Finally, the vertebrae label maps were combined with the 
background maps to produce the complete label maps. 

E. Segmentation network and training 

A UNet architecture [13] for 3D image segmentation was 
employed, depicted in Figure 4. This architecture was adapted 
from the BasicUNet implementation from MONAI, a deep 

 

Fig. 4. Scheme of the 3D UNet architecture employed in this work, where the blue rectangles represent the feature maps with their corresponding number 

of features after every operation indicated by the arrows. 
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learning framework for medical imaging [14], and it consisted 
of five levels, along which the number of features was 
increased from 32 to 256. Max pooling operations were used 
for downsampling and transpose convolutions for 
upsampling, both using 2×2×2 kernels. Each level contained 
two convolutions with 3×3×3 kernels, followed by an instance 
normalization layer, a dropout layer with probability 0.1 and 
a Leaky ReLu activation function. In the last layer, a 1×1×1 
convolution was employed to map the feature vectors to the 
number of classes which, in this case, is 2 (i.e., 0 for the 
background and 1 for the vertebrae). Same as in [10], the loss 
function employed for training was the soft Dice Loss.  

The UNet was trained twice with both of the data synthesis 
strategies. For each one, all augmentations and image 
generation steps were executed on each learning step to 
generate new training samples. Both approaches utilized a 
learning rate of 0.0001 and a batch size of 40.  

On each epoch, the validation images also underwent 
patch cropping, maintaining the same size as in training 
(80×80×32). During training, the model weights were saved 
periodically, every 560 iterations. The models attaining the 
three best validation metrics were also saved. The UNet 
trained with SynthMRI strategy was trained for 59,920 
iterations, whereas the one trained with SynthSeg strategy was 
trained for 333,200 iterations.  

F. Inference 

To select a model for inference, the last three saved models 
and the three models achieving the best validation metrics 
were used to predict the validation images. Each model was 
evaluated against the ground truths using the Dice Similarity 
Coefficient. The model achieving the best scores was 
ultimately selected for the final evaluation on the test data. 
This procedure was applied to both the UNet models trained 
using SynthMRI and those trained using SynthSeg. For 
SynthMRI, the last saved model (which trained for 59,920 
iterations) was selected, whereas for SynthSeg, the model with 
the second best validation loss (which trained for 329,168 
iterations) was selected.  

For inference, patches of size 80×80×32 were sampled 
from the test images with a stride of half the patch size. The 
overlapping predictions were fused with a Gaussian weighting 
to mitigate potential artifacts near the edges using MONAI’s 
SlidingWindowInferer implementation.  

G. Evaluation metrics and statistical analysis 

The performance of both methods was evaluated on the 
predicted segmentations against their respective ground truths 
by using the Dice Similarity Coefficient (DSC) and the 95th 
percentile Hausdorff distance (HD95), given in millimetres 
(mm). The selection of HD95 over the conventional Hausdorff 
distance was justified by its reduced sensitivity to small 
outliers, which provides a more robust estimate of the 
maximum error or distance between the segmentations. 

A posterior statistical analysis of the values derived from 
these metrics was conducted to investigate the presence of 
significant differences in performance between the SynthMRI 
and SynthSeg approaches. Because the test samples were not 
independent, the non-parametric Wilcoxon signed-ranks test 
was conducted for both the DSC and HD95, considering all 
test images but also per-modality, separately evaluating the 
performance of both methods on the GRE and TSE scans.  

 

III. RESULTS 

The outcomes of the SynthMRI and SynthSeg strategies 
are presented hereafter in both quantitative and qualitative 
terms.  

Boxplots in Figure 5 provide a visual comparison of 
SynthMRI and SynthSeg’s performances, with the 
corresponding mean values shown in Table A1, in the 
Appendix. The DSC and HD95 values attained by both 
approaches are plotted for the GRE and TSE scans separately 
and taken together. Figure 5 shows that, despite both 
SynthMRI and SynthSeg achieving comparable metric values, 
the first one exhibits a greater consistency across all test 
images. This is particularly evident in the DSC values, which 
show less variation than those obtained by SynthSeg. 
However, there is no significant difference in overall 
performance between both strategies. When analysing the 
DSC coefficients per modality, no significant differences are 
observed between SynthMRI and SynthSeg in the GRE 
images, although SynthSeg attained slightly higher DSC 
values. Nevertheless, significant differences can be found in 
the TSE images, where SynthMRI outperforms SynthSeg. 
There is no significant difference between the HD95 of both 
strategies when evaluated on all image types. As with the DSC 
coefficients, a significant difference in HD95 values between 

 
 
Fig. 5. Boxplots representing the DSC and HD95 metric scores attained by SynthMRI and SynthSeg on the test images. The first and third plots depict 

the DSC and HD95, respectively, over all predictions, while the second and fourth plots illustrate the DSC and HD95, respectively, grouping the 

predictions according to test image modality. 
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SynthMRI and SynthSeg is observed when considering only 
the predictions on the TSE images. Lastly, it is worth 
mentioning the disparity in performance exhibited by 
SynthSeg across the different modalities, where inference on 
GRE images achieves better metric scores than on TSE 
images.  

Qualitative results of the two approaches are illustrated in 
Figure 6, which includes sagittal slices of the images with the 
highest and lowest performances of SynthMRI and SynthSeg, 
in terms of both the DSC and HD95. Both strategies achieve 
their best performance on the same test image, with a GRE 
contrast and no spinal pathologies. SynthMRI presents some 
inaccuracies in the vertebral bodies, where a few groups of 
voxels are classified as background. On the other hand, 
SynthSeg attains an almost complete match with the ground 
truth in the vertebral bodies but is less accurate in the spinous 
processes. SynthMRI performs worse in a GRE scan that 
reveals a pathology inside two of the vertebrae. Its prediction 
fails to classify the voxels inside and surrounding this 
pathology as foreground, or vertebra voxels. SynthSeg 
achieves its worst metric values in a TSE image where the 
vertebrae are deformed. SynthSeg fails considerably in the 
delineations of the spinous processes, completely missing 
some of them and merging others. In addition, it introduces 
some incorrect classifications of foreground voxels in 
background areas. 

 

IV. DISCUSSION 

A. Physics-based synthsesis of MR images (SynthMRI) 

The DSC and HD95 values achieved by the network 
trained with SynthMRI data clearly show that the variability 
introduced by this approach was high enough to attain good 
generalization capabilities. While a strong performance of this 
strategy on TSE scans could be expected, as it relied on the 
generation of images with a wide range of weightings for this 
contrast, it is also noteworthy its similar performance in GRE 
scans, which were not observed during training.   

Probably the greatest limitation of this approach is the long 
scanning time of the MIXED sequence from which the qMRI 
maps are obtained, which made it necessary to acquire thick 
slices (4.4 mm), hindering the ability of the network to learn 
detailed features and possibly preventing SynthMRI from 
achieving better results.  

B. Random intensity-based synthesis of images (SynthSeg) 

Following the methodology in [10], SynthSeg was also 
able to achieve a good performance and generalizability in 
spine images. Even though it obtained favourable DSC and 
HD95 values for all test images, the differences between GRE 
and TSE scans are noteworthy. When examining qualitatively 
the predictions performed by SynthSeg on the TSE images, it 
is noticeable how this method fails specially in the 
segmentation of the spinous processes. These predictions are 

 

Fig. 6. Sagittal slices obtained from several predictions by the models trained using SynthMRI and SynthSeg. The green box contains the predictions with 

best metric scores for each method. The red box contains the predictions with worst metric scores for each method.  
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depicted in Figures A3 and A4 in the Appendix, along with 
their respective TSE scans and ground truths.  

It can be observed that the edges between the vertebrae and 
the surrounding tissues are quite discernible in SynthSeg’s 
synthetic images, shown in Figure A2, since the intensities 
inside and outside the vertebrae are always drawn from 
different Gaussian distributions. In contrast, the boundaries 
between these structures in the TSEs are more diffuse, 
especially in the transverse and spinous processes. This is 
likely due to partial volume effects, that average together the 
signals of bone and surrounding tissue due to the spinous 
processes having a smaller width than that of the slice (i.e., 
less than 4.4 mm), as well as the signals from the bone marrow 
and the thin layer of cortical bone, eventually showing almost 
no dark edge around the vertebrae. Moreover, given the 
already similar intensities of these tissues in the TSEs, the 
presence of partial volume effects further complicates their 
discrimination. Hence, this could offer a plausible explanation 
for SynthSeg’s weaker performance in the TSE images and, 
particularly, in the spinous processes. On the other hand, the 
GREs originally presented a thinner slice thickness (i.e., 1 
mm), which results in the cortical bone signal being less 
affected by partial volume effects. In this way, the edges 
between bone and surrounding tissues are clearer, facilitating 
the detection of these shapes and making these images more 
similar to the synthetic training data from SynthSeg.  

The resampling of all images to the common voxel size of 
0.7×0.7×2.2 mm3 could have also affected the creation of the 
label maps used for this strategy, where the ground truth 
segmentations were used as a mask on the TSE images to 
cluster the intensities inside and outside the vertebrae. Since 
these ground truths were computed from the CT-like 
BoneMRI images derived from the GRE scans, it is likely that 
a worse alignment between image and target segmentation 
occurred in the TSE scans. Therefore, parts of these vertebrae 
could have been clustered as background intensities and vice 
versa. Because SynthSeg focuses on learning the object 
shapes and other domain-independent features, not having 
accurate label maps could have prevented this method from 
performing better, overall.  

C. Comparison between SynthMRI and SynthSeg  

As stated in the Results chapter, no significant differences 
were found between SynthMRI and SynthSeg except when 
analysing solely the predictions on the TSE scans. Here, 
SynthMRI demonstrated superior results, mainly due to 
SynthSeg’s worse performance on this type of data in contrast 
to the GRE scans. SynthMRI and SynthSeg’s best prediction 
was made on the same patient, which did not present any 
noticeable spinal pathology and therefore showed vertebrae 
similar to those encountered during training.  

A reason why SynthMRI performed better than SynthSeg 
on the TSE images could be due to the fact that this first 
approach learns from the intensities and contrasts of the 
images, and not just from the object shapes, making it more 
robust to the partial volume effects. Figures A3 and A4 show 
how SynthMRI was better able to segment the spinous 
processes than SynthSeg. 

In addition, the resampling process in all images (training, 
validation and test) not only affected the creation of the label 
maps for SynthSeg, but it could also have impacted the 
learning process and the evaluation of the predictions for the 
two approaches. Both SynthMRI and SynthSeg did not train 

in their original (and probably most optimal) resolution and, 
as mentioned in the previous section, the alignment between 
the TSE scans and the ground truths possibly lacked accuracy. 
Nevertheless, this step was necessary to ensure a fair 
comparison between them.  

Both data synthesis methods present distinct advantages 
and disadvantages, and the choice of using one or the other 
may depend on different factors. If generalization only needs 
to be attained on a specific type of MR sequence, and 
segmentations can be done at the original acquisition 
resolution, then SynthMRI could be more suitable, since 
employing information about the intensities and contrasts of 
these images would be useful in this case. However, qMRI 
maps and one or several MR images from this type of 
sequence, along with their corresponding segmentation, will 
need to be acquired specifically for this purpose. If this is not 
feasible, then SynthSeg would be a better approach, since it 
can be fully applied to existing MR data (as long as it has its 
respective ground truth), which can be more convenient in 
practice. In addition, because the qMRI maps for SynthMRI 
always present thick slices, SynthSeg can be a better fit for 
segmentations at high resolutions, as well as for generalization 
to very diverse MR sequences or, possibly, to other imaging 
techniques such as CT.  

D. Comparison to other spine segmentation methods 

A small and homogeneous training dataset typically presents 
a challenge for achieving generalization in segmentation 
networks. However, SynthMRI and SynthSeg were able to 
generate enough variation from a limited set of MR images 
and train models that generalized successfully to unseen scan 
types, populations and pathologies. This is further evidenced 
when comparing the results obtained by both approaches with 
those achieved by other recently developed spine 
segmentation methods. Latest works have attained mean 
DSCs of 0.828 (averaged over the vertebrae and intervertebral 
discs) [15], 0.93 [16], 0.735 [17] or 0.903 [18]. Note that [15] 
and [16] conduct per-vertebra segmentation, assigning 
different labels to each vertebra. SynthMRI was able to 
outperform [15] and [17], with a mean DSC of 0.843, whereas 
SynthSeg only surpassed [17], with a mean DSC of 0.81.  

It is noteworthy that the datasets employed for training in 
these studies comprised hundreds of labelled spine images 
(except for [17], which employed 6 spine images together with 
189 images from other bones), in contrast to the five images 
SynthMRI used for training in this work. In addition, these 
studies tested their models on similar data as the one used for 
training, in terms of image modalities and patient populations. 
On the other hand, SynthMRI and SynthSeg were trained with 
scans belonging to healthy volunteers with a mean age of 24 
years old and were tested on images from patients with severe 
spinal pathologies and a mean age of 54 years old, still 
achieving good results. Additionally, even though they did not 
see any GRE scan during training, they were also able to 
provide accurate segmentations on these scans on the testing 
phase.  

E. Future research 

Several refinements and corrections can be applied to 
these methods in future research scenarios to address the 
different limitations.  

One direction could involve expanding the variability of 
contrast types incorporated into the SynthMRI strategy 
beyond the current approach of just synthesizing different 
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weightings of a TSE sequence. In other words, this could 
entail introducing more signal equations. This would provide 
even more variation to the synthetic data, potentially leading 
to an improved generalization ability of the network. Note that 
the introduction of new signal equations would also require 
the acquisition of their corresponding real scans to estimate 
their corresponding 𝑃𝐷 maps.  

Further enhancing both the quantity and variability of 
training data would also be favourable. This could entail 
including more images not only from healthy individuals but 
also from patients with diverse spinal conditions. These cases, 
which cannot be accurately reflected by deformations or other 
augmentations applied to the images, could aid in improving 
the robustness and generalizability of the network. 
Unfortunately, this task may be particularly challenging for 
the SynthMRI strategy since obtaining new qMRI scans with 
their respective TSE scans would pose significant logistical 
and time constraints.  

Additionally, it would be advantageous to conduct the 
inference phase across more diverse imaging domains, 
introducing both healthy and pathological test images, as well 
as a wider range of contrasts and image domains. This could 
be especially insightful for SynthSeg, as it would allow to 
observe whether the difference in performance between scan 
domains also extends to other contrasts.  

Furthermore, improving the accuracy of the ground truth 
images, by specially obtaining specific ones for the TSE 
images instead of adapting them from the segmentations 
derived from the GRE scans would be highly beneficial. 
Addressing this limitation could contribute to better learning 
by the network and a more reliable evaluation of the 
predictions.  

Lastly, optimizing image resolution is vital for ensuring 
the efficacy of the segmentation models. While maintaining a 
fixed resolution for a fair comparison of both data synthesis 
approaches was important for this work, future investigations 
should adjust the resolution to suit the strengths of each 
strategy. While the resolution of the qMRI and TSE scans 
employed for the SynthMRI approach could be maintained, 
SynthSeg’s resolution should keep the smallest possible voxel 
size in all three dimensions to enhance the learning of the 
shape features.  

V. CONCLUSION 

This study compared the performance of two approaches 
aimed at synthesizing data on the fly from existing MRI scans 
to train a generalizable spine segmentation network. The 
outcomes of this research revealed that SynthMRI, a physics-
based method generating images within the range of 
weightings of a TSE sequence, demonstrated comparable 
generalizability to unseen domains when evaluated against 
SynthSeg, a random intensity-based data synthesis method. 
Overall, no significant differences in performance were 
observed between both approaches, except when splitting the 
results by modality, where SynthMRI outperformed SynthSeg 
in TSE scans. Nevertheless, the two methods effectively 
augmented the quantity and diversity of a limited training 
dataset, achieving a high generalization capability and 
demonstrating the promising potential of SynthMRI and 
SynthSeg in advancing spine segmentation techniques.  
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APPENDIX 

  

 

 

 

 

 

 

 

 

 
Fig. A1. Representative examples from the physics-based data synthesis approach (SynthMRI). Synthetic data presents variation not only inside the 

plausible range of TSE weightings, but also in terms of resolution, shape or bias field effects.   

 

 

 

Fig. A2. Representative examples from the random intensity-based data synthesis approach (SynthSeg). Synthetic data presents variation not only in 

terms of intensities and contrasts, but also in terms of resolution, shape or bias field effects.  
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TABLE A1.     MEAN VALUES FOR EVALUATION METRICS 

  SynthMRI SynthSeg 

DSC 

All images 0.843 0.810 

GRE 0.838 0.882 

TSE 0.847 0.765 

HD95 (mm) 

All images 3.712 5.008 

GRE 4.100 3.062 

TSE 3.470 6.224 

 

 

 

 

 

 
 

Fig. A3. Predictions made by SynthMRI and SynthSeg on the TSE images, part 1.  
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Fig. A4. Predictions made by SynthMRI and SynthSeg on the TSE images, part 2. 

 

 


