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Abstract 
Dexamethasone is an anti-inflammatory drug commonly used during treatment of paediatric cancers. 
However, prolonged exposure to dexamethasone can lead to impaired bone development. To study 
the detrimental effect of dexamethasone on the developing bone single-cell RNA sequencing datasets 
were created. The libraries used to create these datasets contained too many cells, which lead to the 
formation of technical artifacts called “doublets”. Doublets cannot be recognized easily and 
compromise the data analysis. This study aimed to evaluate and improve upon existing doublet 
detection methods. So that the single-cell RNA sequencing datasets could be cleaned and the effect of 
dexamethasone on the developing bone could be investigated. Existing doublet detection methods 
such as DoubletFinder and scDblFinder create artificial doublets and look at the distances to real cells 
in principle component space to identify real doublets. The performance of these methods was tested 
on datasets for which a ground truth reference is known. The single-cell RNA sequencing datasets were 
then cleaned of doublets and projected onto a bone reference dataset to refine cell typing. Hereafter, 
differential gene expression and overrepresentation analysis were applied to identify enriched 
processes that might be related to dexamethasone induced bone toxicity. This study reports that 
scDblFinder can be used to predict doublets with great speed and higher accuracy than DoubletFinder. 
Furthermore, scDblFinder annotations and subsequent removal successfully cleaned the single-cell 
RNA sequencing datasets and allowed for improvements to be made in cell typing. Finally, 
dexamethasone negatively affected the chondrocyte, osteoblast, lymphatic endothelial and B-cell 
populations and caused the pre-osteoblast population to have decreased differentiation and bone 
development. In conclusion, this study suggests that the effect of dexamethasone on the developing 
bone is primarily a decrease in bone formation. 
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Introduction 
 

Bone Toxicity 

Dexamethasone is a glucocorticoid used as anti-inflammatory drug during treatment of childhood 
cancers (Ferrara et al. 2019). However, this treatment has serious side-effects, including impaired bone 
development (Oray et al. 2016). Existing studies on dexamethasone treatment have used cell lines or 
skeletally mature mice. However, the effect of dexamethasone on the developing bone might be 
substantially different from mature mice (Ward, 2020). To study the molecular mechanisms of 
dexamethasone induced bone toxicity the Janda group (Warmink et al.) employed single-cell RNA 
sequencing (single-cell RNA-seq) on tissue samples of skeletally immature mice. These mice were 
treated with high dosages of dexamethasone. The single-cell RNA-seq datasets from this study were 
then used to investigate the detrimental effect of dexamethasone on a single-cell level, since the 
effects of dexamethasone treatment might be cell type specific.  
 

Single-cell RNA-sequencing 

Single-cell RNA-seq is a technique used to study the expression profiles of single cells. single-cell RNA-
seq is able to achieve a high-resolution view of cell-to-cell variation. This level of detail cannot be 
obtained by bulk RNA sequencing as this method can only look at the expression profile of an entire 
sample. Consequently, the expression profiles of rare cell populations will be lost in the data. Whereas 
single-cell RNA-seq can discover these cellular differences. 10x genomics is a major provider of single-
cell RNA-seq tools, which will be used throughout this study (10xgenomics.com). One crucial step in 
single-cell RNA-seq is the isolation of single cells. Capture techniques make use aqueous droplets that 
form on contact with an oily suspension to capture single cells together with barcoded gel beads 
(Figure 1). These barcoded gel beads are unique and used to identify the cells. However, sometimes 
not one but two cells are captured, forming a doublet (Germain et al. 2022). The doublet formation 
process depends on the number of cells loaded. To reduce doublet formation, cells are deliberately 
underloaded compared to barcoded gel beads so that on occasion a cell is captured but most droplets 
will be empty, effectively reducing the doublet formation rate (Bloom, 2018). However, the bone 
toxicity libraries used in this study were overloaded and contained a relatively large number of 
doublets. Re-sequencing is expensive, wasteful and not always possible due to the limited availability 
of biological material. Hence, there is a need for doublet removal in these bone toxicity datasets. 
 

 
 

Figure 1: Single-cell RNA-seq capture technique. 10x Genomics approach to capture single cells in droplets containing 
barcoded gel beads. Doublets are formed when not one, but two cells, are captured in a single droplet (Adapted from 10x 
Genomics). 

Doublets 

When two cells are captured together, they are sequenced together as well. The resulting doublet 
consists of a combined expression profile from both cells. Depending on the cell types of the captured 
cells a doublet can be called either homotypic or heterotypic. Homotypic doublets form when two 

http://www.10xgenomics.com/
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cells of the same cell type mix. Homotypic doublets generally do not hamper data analysis, since both 
expression profiles are near identical. However, this characteristic makes it difficult to detect 
homotypic doublets based on solely transcriptomics. Heterotypic doublets form when two different 
cell types mix. The expression profiles of the captured cells are likely to be different and the resulting 
doublet will have a mixture of both. Heterotypic doublets reduce the differences between clusters, 
which compromises the biological analysis. Furthermore, they can easily be mistaken for intermediate 
populations or transitory states (Germain et al. 2022; Amezquita et al. 2022). Thus, it is crucial to 
remove doublets to prevent them from affecting the biological analysis.  
 
Doublets contain on average more mRNA transcripts than single cells, hence it might seem reasonable 
to set an upper threshold based on the number of mRNA transcripts (Stoeckius et al. 2018). And while 
quantitative measure of gene expression is possible with unique molecular identifiers (UMI) which are 
uniquely associated with individual mRNA transcripts (Islam et al. 2014). This approach is insufficient, 
since there is still a large overlap between doublets and single cells, referred to as singlets, which is 
also observed in the intestinal organoid data that will be used throughout this study (Figure 2). 
Furthermore, this approach does not account for technical variability in capture efficiency nor 
biological variability between cell types and individual cells (Kang et al. 2018). Hence, there is a need 
for proper doublet detection and subsequent removal.  
 

 
 
Figure 2: Transcript count distribution across doublets and singlets in intestinal organoid data. Doublets contain on average 
a higher transcript count, however there is a large overlap in the distribution, which confirms that a doublet predictor based 
on solely the transcript count is insufficient. 

Doublet detection methods 

First of all, an attempt was made to apply simple logistic regression as a doublet detection approach. 
Simple logistic regression is a machine learning approach in which a logistic function is fitted to the 
data with the purpose of predicting a dichotomous variable. However, this approach proved inferior 
to existing doublet detection methods, such as DoubletFinder (McGinnis et al. 2019) and scDblFinder 
(Germain et al. 2022). At the time of writing these methods were found to be most promising. 
Furthermore, the scDblFinder paper has performed their own validation and comparison study. This 
study found that the DoubletFinder method was performing better than other doublet detection 
methods. However, they also report that to date no method was found to systematically outperform 
the others, which was their reasoning for creating scDblFinder (Germain et al. 2022). And they report 
that scDblFinder performs better than other methods, including DoubletFinder, on most datasets. 
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Hence, DoubletFinder and scDblFinder were identified as potential doublet removal techniques for the 
bone toxicity data. 
 
These approaches make use of artificial doublets generated by mixing real cells together (Figure 3, 4). 
The logic behind this approach is that doublets are a combination of two real cells and the resulting 
doublet gene expression is likely similar to the gene expression of an artificial cell consisting of two 
similar real cells mixed together. Hence, these artificial doublets will likely cluster together with real 
doublets, which can be used to identify real doublets. This is done by constructing a k Nearest 
Neighbour network, which effectively looks at these distances in principle component space. 
scDblFinder then uses the ratio of doublets in a cells neighbourhood and gathers additional statistics 
to use in gradient-boosted trees to train a classifier (Figure 4) (Germain et al. 2022). Whereas 
DoubletFinder trains a classifier on the proportion of artificial nearest neighbours directly (McGinnis 
et al. 2019). 
 
DoubletFinder and scDblFinder can be run on solely gene expression data and do not require external 
information nor experimental techniques. Hence, DoubletFinder and scDblFinder can be used to 
predict doublets in our datasets. However, these methods first need to be evaluated on their doublet 
detection capabilities. 
 

 
 

Figure 3: DoubletFinder workflow. Original data is used to simulate artificial doublets, which are incorporated in the existing 
data and processed together. Consequently, a cells’ neighbourhood is defined and the proportion of artificial nearest 
neighbours (pANN) is computed. Cells with high pANN values are likely doublets and consequently removed (blue cells). The 
doublets in this dataset represented an artefactual intermediate cell state (McGinnis et al. 2019). 

 

 

Figure 4: scDblFinder workflow. scDblFinder randomly selects cells and adds them together to generate artificial doublets. 
Thereafter a k nearest neighbours (kNN) is constructed. scDblFinder then gathers statistics at various neighbourhood sizes to 
build predictors to use in gradient-boosted trees to train a classifier than can be used to annotate doublets. (Germain et al. 
2022) 
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Ground truth 

To evaluate the performance of DoubletFinder and scDblFinder a ground truth is required. However, 
this is not available for the bone toxicity datasets. Hence, both methods will first be tested and 
compared to one another on datasets where a ground truth is available. Cell multiplexing techniques 
such as 10x CellPlex (Cell Ranger) and genotypically multiplex data (Heaton et al. 2020) can be used 
for this purpose. CellPlex is a technique included in Cell Ranger, which is a set of analysis pipelines from 
10x Genomics. CellPlex works with cell multiplexing oligonucleotides (CMO) attached to lipids (Figure 
5). These lipids embed into the membrane and tag the samples with different CMOs. The samples are 
then sequenced together. During data analysis these samples can be deconvolved based on their 
CMOs. However, if a cell contains CMOs from two different samples it is annotated as doublet. 
Alternatively, genotypically multiplex data is created by combining two different patient samples. 
These patient samples can be distinguished using Souporcell (Heaton et al. 2020). Souporcell remaps 
the reads of the dataset and performs its own single nucleotide polymorphism (SNP) calling. Souporcell 
then identifies patient specific SNPs and uses this to cluster cells by genotypes. However, if a cell 
contains patient specific SNPs from both patients, it is likely a doublet. Therefore, 10x CellPlex and 
genotypically multiplexed datasets can be used to assess the performance of DoubletFinder and 
scDblFinder. However, these methods do have some limitations, they are not able to predict doublets 
within samples of the same CMO or conversely between cells from the same patient. Furthermore, it 
is unsure how well these methods predict doublets.  
 
 

 
 
Figure 5: Ground truth labeling with cell multiplexing oligonucleotides. Cells from different samples are labelled with specific 
oligonucleotides before pooling and sequencing. This allows for deconvolution of sample origin during data analysis (Adapted 
from 10x Genomics). 

Bone toxicity analysis 

Once the optimal doublet detection approach is identified, doublets in the bone toxicity datasets can 
be removed and the data analysed. However, to analyse these datasets, they first need to be 
annotated. Preliminary annotations were available, but after doublet removal cell typing will have to 
be confirmed. Besides, preliminary annotations performed by Warmink et al. were obtained using 
singleR (Aran et al. 2019), which is an automatic reference-based annotation tool for single-cell RNA-
seq data. This approach is limited in its bone marrow references. Hence, cell projection (Stuart et al. 
2019) with a bone marrow reference dataset will be applied to the bone toxicity data to refine cell 
typing. Projection works by first integrating the reference and query dataset into a shared subspace 
defined by a shared correlation structure across the datasets (Figure 6). Within this shared subspace 
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cell pairwise correspondences can be identified between single cells across datasets, these cell 
pairwise correspondences are referred to as anchors. Using these anchors, the labels of a reference 
dataset can be transferred onto the query dataset. After cell typing is refined, the effects of 
dexamethasone will be investigated on a population level. Furthermore, differential gene expression 
will be applied on the bone toxicity datasets to perform overrepresentation analysis with the purpose 
of identifying enriched processes that might be related to dexamethasone induced bone toxicity.  
 

 
 
Figure 6: Projection overview. Dimensionality of the reference and query datasets is reduced. Hereafter, correlation analysis 
is performed and the correlation vectors are normalized. This creates a subspace defined by shared correlation structure 
across the datasets. Within this space cell pairwise correspondences can be identified between single cells. (Stuart et al. 2019). 

Aim 

The aim of this study is to evaluate and improve upon existing methods to identify doublets in single-
cell RNA-seq data. This approach will then be applied to remove doublets from the bone toxicity 
datasets. Subsequently, single-cell analysis will be performed on the bone toxicity datasets with the 
aim of revealing underlying molecular mechanisms of the detrimental effect of dexamethasone on 
bone development in skeletally immature mice.  
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Results 
 

scDblFinder outperforms DoubletFinder on multiplexed intestinal organoid data 

First scDblFinder and DoubletFinder were evaluated to determine the best doublet removal approach. 
To explore the performance of both methods, an existing dataset of intestinal organoids generated 
with the 10x CellPlex technique was used (Cell Ranger). This dataset functioned as ground truth to 
calculate the sensitivity and specificity of these methods. The dataset consisted of 6 pooled intestinal 
organoid samples each tagged with a different oligonucleotide. The ground truth reference consisted 
of 3,331 doublets in 21,347 annotated cells (Figure 7A). This dataset was selected because it contained 
a high number of cells and consequently a large number of doublets.  
 
Both methods were first optimized prior to performance comparison, which will be explained in the 
Methods section. After filtering the intestinal organoid dataset consisted of 21,924 cells, 577 more 
than in the ground truth reference. Cells not present in the ground truth annotations had a transcript 
count below 2,500 mRNA transcripts. These cells were included during doublet annotation by 
scDblFinder and DoubletFinder but were excluded during performance evaluation, since ground truth 
annotations were unavailable. Furthermore, scDblFinder was run multiple times in order to create a 
consensus annotation with cells called at least half of the time. This was done to create a more 
consistent annotation, since there was a 10% variation in doublet calls between independent runs, 
which will be explained in the next chapter.  
 
Hereafter, each prediction method was compared to the ground truth annotations and the Jaccard 
index calculated. The Jaccard index measures the similarity between two different sets by dividing the 
size of the intersection of both sets by that of their union. This works best when both sets are of equal 
size. DoubletFinder identified 2,663 doublets correctly and achieved a Jaccard index of 0.586 (Figure 
7B,F). Whereas scDblFinder identified 2,787 doublets correctly and achieved a Jaccard index of 0.631 
(Figure 7C,F). Furthermore, 2,597 doublets were annotated correctly by both prediction methods. 
However, a set of 772 cells were incorrectly annotated by both scDblFinder and DoubletFinder. These 
cells are likely doublets tagged with the same oligonucleotide and hence not annotated by the ground 
truth. All in all, scDblFinder achieved a higher overlap than DoubletFinder, annotating more doublets 
correctly and fewer singlets incorrectly, based on the ground truth. 
 
Furthermore, the models’ performance was evaluated using the Receiver Operating Characteristic 
(ROC) and the area under the curve (AUC), which is frequently used as a quality measure for classifiers. 
Comparing the ROCs of scDblFinder and DoubletFinder it becomes evident that both models achieve a 
high AUC (Figure 7D). However, the ratio between singlets and doublets is imbalanced. Therefore, a 
Precision-recall curve (PRC) is likely more informative, since it takes class imbalance into account (Saito 
and Rehmsmeier, 2015). scDblFinder consistently outperformed DoubletFinder on both the ROC and 
PRC curves (Figure 7E). Moreover, scDblFinder achieved much greater speed than DoubletFinder, 
requiring only 3 minutes per run as opposed to 10. Furthermore, scDblFinder was much easier to use 
as it did not need dataset specific parameter optimisation whereas DoubletFinder did, this took 45 
minutes. All together, this made scDblFinder the ideal candidate for doublet removal.  
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Figure 7: Overview of doublet predictions in intestinal organoid data. (A-C) UMAP projection of doublet predictions and 
CellPlex ground truth reference. (D) Receiver Operating Characteristic and the area under the curve (AUC) displaying the 
performance of both prediction methods. (E) Precision-Recall curve and the AUC displaying the performance of both prediction 
methods. (F) Venn diagram displaying the doublet calls between both prediction methods and the ground truth reference. 

scDblFinder performance on multiplexed liver organoid data with genotypes 

Next, scDblFinder was evaluated using an existing multiplexed liver organoid dataset. DoubletFinder 
has not been performed on this dataset, because scDblFinder performed consistently better and faster 
than DoubletFinder on the intestinal organoid dataset. And there was no reason to expect a better 
performance of DoubletFinder on the liver organoids. The liver organoid dataset consisted of 12 pooled 
liver organoid samples labelled with CMOs. In addition, Souporcell was run on this dataset, since it 
contained different genotypes. Souporcell uses this information to cluster cells by genotype and 
additionally calls doublets (Heaton et al. 2020). Hence, this dataset contained 2 ground truths. 
scDblFinder was compared to the union of these references (Figure 8A). This approach should reduce 
the limitation of the cell multiplexing approach, which cannot annotate doublets within the same 
sample. Furthermore, the use of 12 pooled samples also reduces the chance of doublets forming 
within the same sample as opposed to the 4 samples used in the intestinal organoid dataset. The 
CellPlex ground truth consisted of 394 doublets and the Souporcell ground truth consisted of 683 
doublets in 7,759 annotated cells. The Jaccard index between the Souporcell and CellPlex reference 
was 0.23 (Figure 8E). This resulted in a total of 876 unique ground truth doublets. The ground truths 
have only a small overlap and hence supplement each other. 
 

B A C 

D E F 
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scDblFinder predicted 910 doublets and identified 628 doublets correctly, resulting in a Jaccard-index 
of 0.54 (Figure 8B,E). Furthermore, scDblFinder achieved an AUC of 0.89 on the ROC curve and an AUC 
of 0.75 on the PRC curve (Figure 8C,D). Performance of scDblFinder on the liver organoid dataset was 
slightly lower compared to the performance on the intestinal organoids. However, the liver organoid 
dataset contained a lot less doublets and the ground truth reference was created by combining two 
approaches. Whilst these approaches complement each other, the limitations also add up, making the 
reference set bigger, at the cost of a lower Jaccard Index, a lower true positive rate (TPR) and a higher 
false positive rate (FPR). All in all, scDblFinder proved a robust performance and could now be 
confidently applied to the bone toxicity datasets, for which no ground truth reference is available. 
 

 
Figure 8: Overview of doublet predictions in liver organoid data. (A-B) UMAP projection of scDblFinder predictions and 
combined ground truth reference. (C) Receiver Operating Characteristic and the area under the curve (AUC) displaying the 
performance of scDblFinder. (D) Precision-Recall curve and the AUC displaying the performance of scDblFinder. (E) Venn 
diagram displaying the doublet calls between scDblFinder and both ground truth references. 

Addressing scDblFinder variability between runs 

So far scDblFinder has shown great potential, identifying about 80% of the ground truth doublets 
correctly. However, these results shown in the previous chapters are only after scDblFinder had been 
optimised for consistency. The scDblFinder doublet calls across multiple runs on the intestinal organoid 
data were not consistent and had on average a 0.10 difference in Jaccard overlap. These differences 
can be explained by the randomness in the generation of artificial doublets as well as in the gradient 
boosted trees approach (Germain et al. 2022).  
 

B A 

C D E 
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scDblFinder was run 9 times to investigate the doublet call distribution across multiple runs. The 
number 9 was chosen for visualization purposes only. This revealed that on average about 78% of the 
doublets calls were unanimous (Figure 9A). However, the remaining 22% was not and about 12% of 
the total doublets were called in less than half of the runs. Next, the ground truth distribution across 
these runs was investigated to identify whether there was a correlation with the number of times a 
cell was called as doublet and this distribution (Figure 9B). This revealed that the majority of ground 
truth doublets were called unanimously. And that there was indeed a correlation between the ground 
truth distribution and the number of times a cell was called as doublet across the independent runs.  
 
Next, the expected doublet frequency was added to the plots as baseline (Figure 9B). This baseline can 
be used to evaluate whether the observed ground truth distribution is significantly different from a 
random sample, since a random sample would contain on average the same number of ground truth 
doublets as the doublet frequency. This revealed that the ground truth frequency is higher than the 
expected doublet frequency for cells annotated at least half of the time and lower for cells annotated 
less than half of the time. This suggests that the observed ground truth frequency is not random. The 
scDblFinder variability between runs can effectively be reduced by creating a consensus annotation, 
since this averages the differences between runs. Putting the threshold for such an annotation at 
doublets called at least half of the time would seem logical as the ground truth contribution is higher 
than the expected doublet frequency up until this point. Furthermore, the doublet probability scores 
of each cell were averaged and plotted against the number of times a cell was called as doublet (Figure 
9C). This revealed a perfect correlation, this meant that either of the two could be used to effectively 
threshold the doublet calls and create a consensus doublet annotation. This consensus doublet 
annotation has been used in the previous chapters and resulted in consistent doublet calls.  
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Figure 9: Overview of scDblFinder doublet calls across 9 independent runs. (A) Barplot of doublet call frequency over 9 runs. 
(B) Ground truth contribution within each doublet call frequency. (C) Violin plots displaying the distribution of cells across the 
doublet call frequency. Furthermore, the correlation between the average doublet probability of cells and the number of times 
the cell was called as doublet. The baseline displays the expected doublet rate based on library size. The threshold displays 
the average cutoff value used by scDblFinder in these 9 runs. 

Doublet detection on bone toxicity data 

The best approach to remove doublets from the bone toxicity datasets has been identified. Hence, the 
bone toxicity datasets, which contained many doublets, could be cleaned. Prior to doublet removal 
the bone toxicity datasets were merged into 1 bone toxicity dataset. This dataset contained a vehicle 
control group and 3 dexamethasone conditions (5, 20 and 50 mg/kg), all sequenced separately.  
scDblFinder was run on the combined bone toxicity dataset with the 4 samples supplied, since doublets 
cannot form between them. This meant that artificial doublet generation and processing was done 
separately for each sample. Nonetheless, the classifier was trained globally but the thresholds were 
optimized per sample (Germain et al. 2022). scDblFinder has also been run numerous times on the 
separate datasets but this resulted in a greater inconsistency in doublet predictions, hence the 
combined approach was used.  
 
scDblFinder annotated 4,212 doublets across the 4 samples, which contained 29,994 cells in total. 
However, the library of dexamethasone condition 50 mg/kg contained only 2,074 cells among which 
120 doublets. Furthermore, the vehicle control library contained 5,934 cells, whereas the other 
conditions contained around 10,000 cells. scDblFinder predictions revealed large doublet densities in 
the UMAP gene expression space. The majority of doublets were associated with the neutrophil 

A B 

C 
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cluster, which was also the largest cluster in this dataset. Furthermore, the doublets are situated at the 
periphery of clusters, which is to be expected. There is one density of neutrophil cells entirely 
annotated as doublet, which is separated from the large neutrophil cluster. Furthermore, there is a 
density of neutrophil cells labelled as doublets positioned on top of the monocyte cluster. 
Furthermore, there are several protrusions or loosely positioned cells next to other clusters, annotated 
as doublets. The doublet probabilities are most distinct in the large libraries, whereas the smallest 
library contained a lot of uncertainties. However, this library contained only 2,074 cells and only few 
doublets are to be expected. All in all, these doublet predictions are in line with the expectation that 
doublets sometimes form clusters themselves but are often found at the periphery of clusters they 
most resemble (Germain et al. 2022).  
 

 
Figure 10: Doublet detection and effect of removal on bone toxicity data. (A) UMAP projection of bone toxicity data, coloured 
by doublet probability score across vehicle control and dexamethasone (DEX) treatment conditions, according to ScDblFinder. 
Mice (n = 10/group) treated with daily dexamethasone injections of 5, 20 or 50 mg/kg for 28 days. (B) UMAP projection of 
bone toxicity data from before and after doublet removal. Clusters colours from before doublet removal are inherited by the 
largest overlapping cluster after doublet removal. New clusters have been given a separate colour. Cell type annotations from 
after doublet removal are final.  

scDblFinders doublet predictions were used to remove doublets from the combined bone toxicity 
dataset. The cleaned dataset was then reprocessed and a new UMAP calculated. This new UMAP 

A 

B 
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consisted of better-defined clusters compared to the old UMAP. Furthermore, the presence of loosely 
positioned cells had been greatly reduced. Lastly, several improvements in cell typing could be made 
after doublet removal which will be explained in the next chapter (Figure 10B). 
 

Projection and cell typing of bone toxicity data 

Cell labels are required to interpret the effect of dexamethasone treatment on a single-cell level. 
Preliminary annotations were available prior to doublet removal. However, the data has been 
reprocessed and cluster composition has changed, rendering the preliminary labels insufficient. In 
addition, 2 extra datasets have been included in the combined bone toxicity dataset. The additional 
datasets consist of one additional vehicle control and one untreated aged control. These datasets 
originated from an earlier bone toxicity project and doublet removal has been performed for both. 
Hence, cell typing had to be revised and these new labels were used in the UMAP from figure 10C.   
Hereafter, projection was used to confirm the new cell typing. The Skeletal Cell Atlas was used as a 
reference, since it is composed of publicly available single-cell RNA-seq datasets (Herpelinck et al. 
2022). However, the Skeletal Cell Atlas consists of primarily data from embryonic and neonatal mice. 
Consequently, the predicted cell types were embryonic, which is not informative for 10 weeks old mice. 
Hence, an existing dataset of bone marrow stroma was selected form the Skeletal Cell Atlas and used 
as reference (Baryawno et al. 2019). This dataset was selected since it consisted of 8-10 weeks old 
mice and was created using the same 10x sequencing platform as the bone toxicity datasets. However, 
the cell type labels in this reference dataset were shallow (Figure 11A). Nonetheless, the labels were 
successfully transferred to the combined bone toxicity dataset, resulting in a predicted cell type based 
on the reference (Figure 11B). The predicted cell types confirmed the new cell typing (Figure 10A) and 
allowed the uncertainties from prior to doublet removal to be refined (Figure 10B). For example, the 
earlier identified chondrocyte population consisted of primarily fibroblasts in the new labeling, which 
was confirmed by the predicted cell types. Furthermore, the projected labels contained a pericyte 
population, which was not identified by the new cell typing. However, this population was small and 
not represented as a separate cluster in the bone toxicity data. Hence, this pericyte label was not 
transferred to the final annotations (Figure 10B). All in all, cell typing improved after doublet removal 
and projection of the bone marrow stroma dataset confirmed the new cell typing.   
 

 
Figure 11: Projection of baryawno dataset on the bone toxicity data. (A) UMAP projection labelled with the cell types of the 
baryawno dataset. (B) UMAP projection of the bone toxicity dataset labelled with the predicted cell types from the baryawno 
dataset.   

A B 
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Effect dexamethasone treatment on a population level 

Next, the effects of various dosages of dexamethasone treatment were investigated on a population 
level. The combined bone toxicity dataset consisted of 8 stromal cell populations and 16 immune cell 
populations (Figure 12A-C). The dataset contained 42,957 cells in total, which were distributed 
unequally across the 3 conditions and 2 controls (Figure S1). The immune cells were most prevalent, 
even though the samples were enriched for stromal cells in a 1:1 ratio pre-sequencing.  
 
Dexamethasone treatment caused a proportional decrease in chondrocyte and lymphatic endothelial 
cells and nearly depleted the osteoblast population compared to the vehicle control (Figure 12A,B,D). 
On the contrary, the proportion of pre-osteoblast cells was increased in all dexamethasone conditions 
compared to the control (Figure 12A,D). The untreated aged group contained no chondrocytes but 
revealed a similar, yet weaker, trend for both the osteoblast and pre-osteoblast populations. However, 
the lymphatic endothelial cells were decreased even more in the aged control group compared to the 
dexamethasone conditions (Figure 12A,D).  
 
Furthermore, dexamethasone treatment caused a proportional decrease of B-cells and depleted the 
pro-B and mixed B/pro-B cell populations compared to the vehicle control (Figure 12A,C,D). The aged 
group had less pro-B and mixed B/pro-B cells compared to the vehicle control but consisted of more 
B-cells compared to the vehicle and dexamethasone conditions. Next, the population of activated 
neutrophils increased proportionally across the dexamethasone conditions (Figure 12A,C,D). However, 
the proportion of activated neutrophils did not increase significantly in the aged group compared to 
the vehicle control. All in all, the osteoblast and pro-B cell populations appear to be most vulnerable 
to dexamethasone treatment, as these populations are nearly or completely depleted. Whereas the 
proportion of activated neutrophils and pre-osteoblast cells increased with dexamethasone treatment.  
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Figure 12: Overview of stromal and immune cell populations across treatment conditions in the bone toxicity dataset. (A) 
Bar plots displaying the proportional cell type composition of the stromal and immune cell subsets across dexamethasone 
treatment conditions and control groups. (B,C) UMAP projection of Immune and stromal cell populations. (D) Bar plots 
displaying the proportional contribution of independent cell types across dexamethasone treatment conditions and control 
groups. 

Differential expression compared to vehicle control 

Several populations have been identified to be affected by dexamethasone treatment based on the  
cell type composition. This includes the (activated) neutrophils, (pro-)B cells, (pre-) osteoblast, 
chondrocytes and lymphatic endothelial cells. These populations were then investigated using the 
single-cell gene expression matrix to obtain molecular insights into dexamethasone induced bone 
toxicity. The differentially expressed genes were identified per treatment condition versus the vehicle 
control. Next, over-representation analysis was performed with Gene Ontology terms on each set of 
significantly up or downregulated differentially expressed genes (Guangchuang et al. 2012).  
 
For the pre-osteoblast cells the top enriched processes were filtered on bone and osteoblast related 
terms to reduce ambiguous processes. This revealed an enrichment of down-regulated genes in bone 
development, osteoblast differentiation and bone mineralization processes (Figure 14A). The down-
regulated genes within this enrichment are Bglap, Bglap2 and Rpl13 (Figure 14B). Bglap and Bglap2 
encode for osteocalcin production, one of the most abundant non-collagenous proteins in the bone. 
Furthermore, osteocalcin is used as a biochemical marker for bone formation. The increase of pre-
osteoblasts cells could be explained by a decrease of pre-osteoblast differentiation, which contributes 
to osteoblast depletion. All in all, the decreased pre-osteoblast differentiation, bone development and 
bone mineralization of the pre-osteoblast cluster together with a depletion of osteoblasts indicate a 
reduced osteoblast activity.  
 
The neutrophil cells had shown increased activation upon dexamethasone treatment. The top 
enriched processes for these clusters revealed a similar pattern (Figure 14B,C). Pattern recognition and 
immune signalling pathway processes are significantly enriched for up-regulated genes in both the 
neutrophil and activated neutrophil cluster. In addition, the neutrophil cluster was significantly 
enriched for leukocyte chemotaxis. Both the neutrophil and activated neutrophil cluster were 
significantly upregulated for the inflammatory related genes Nfkbia and Nfkbiz in all treatment 
conditions (Figure 14F, G). In addition, the neutrophils showed a significant upregulation of Cxcl2, 
encoding for the Cxcl2 chemokine and the activated neutrophils were significantly upregulated for 
Clec4e, which encodes for a pattern recognition receptor. Furthermore, the activated neutrophil 
population was enriched for keratinocyte proliferation and regulation in the 50 mg/kg treatment group 
(Figure 14C). However, in the context of neutrophils, the up-regulated gene within this enrichment, 
Lrg1, was found to relate to granule formation (Figure 14G). All in all, the top enriched processes for 
the neutrophil populations confirm the observed increase in activated neutrophils. 
 
The percentage of lymphatic endothelial cells decreased upon dexamethasone treatment. The down-
regulated genes for this cluster were significantly enriched in protein production processes, such as 
cytoplasmic translation and ribosome biogenesis (Figure 14D). The differentially expressed genes 
involved in these processes were abundant and all ribosomal. To visualize the differential expression, 
a module score of cytoplasmic translation was calculated (Figure 14H). This revealed a decrease of 
cytoplasmic translation across dexamethasone treatment compared to the vehicle control. 
Furthermore, the module score of the aged control group was also found to be decreased (Figure 14H). 
All in all, lymphatic endothelial cells were found to have a decreased function in dexamethasone 
treated conditions compared to the vehicle control.  
 
Pro-B cell and B/pro-B cell clusters were completely depleted in dexamethasone treated conditions. 
Hence, differential gene expression is not possible for these clusters. Furthermore, the B-cell cluster 
consisted of too few cells per condition to obtain insightful results. Instead, the B-cell development of 
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the vehicle condition was investigated to confirm the cell typing and consequently the absence of pre- 
and pro-B cells in the dexamethasone treated conditions. For this purpose, trajectory inference was 
used to determine the pseudotime ordering of B-cells (Figure 13A) (Kelly et al. 2018). Subsequently, 
the genes were correlated against this pseudotime. The top pseudotime correlated genes consisted of 
several MHC class II related genes, which are involved in B-cell affinity, maturation and activation 
(Figure 13B). Furthermore, several genes involved in B-cell receptor development. As well as several 
genes encoding for cluster of differentiation molecules, with some expressed exclusively in pro- and 
pre-B cells (Vpreb1 and Igll1). All in all, the pseudotime ordering correlates with gene expression found 
in adult B-cells and anticorrelates with gene expression found in pro- and pre-B cells. This confirms the 
presence of a B-cell trajectory and consequently confirms the cell typing. The absence of pre- and pro-
B cells in the dexamethasone treated conditions suggest a detrimental effect of dexamethasone 
treatment on B-cell differentiation in the bone marrow.  
 

 
Figure 13: UMAP of B-cell trajectory and heatmap of pseudotime correlated genes. (A) Trajectory of B-cell development 
from pro-B to Mature B-cells. Cells have been assigned a pseudotime score to represents their stage of B-cell development. 
UMAP 1 coordinates has been flipped to represent the development from left to right. (B) Heatmap visualization of the top 
10 pseudotime correlated and anticorrelated genes.  
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Figure 14: Dot plots of enriched processes and associated differentially expressed genes compared to the vehicle control. 
(A-D) Combined overview of the top processes enriched with differentially expressed genes for each treatment condition 
versus the vehicle control. pre-Osteoblast results were filtered on bone and osteoblast related terms. The other results were 
filtered on the top 2 most significantly enriched processes for each treatment condition. The dot size relates to the number of 
differentially expressed genes. The total number of differentially expressed genes is indicated below each treatment condition. 
(E-F) Violin plots displaying the expression of the differentially expressed genes involved in the enriched processes per sample. 
The displayed  genes are significantly expressed in at least 2 of the 3 treatment conditions, with the exception of neutrophils. 
The neutrophil genes are significantly expressed in all 3 treatment conditions. (H) Module score of cytoplasmic translation in 
the lymphatic endothelial cell cluster per sample.  
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Differential expression across treatment groups 

The effects of dexamethasone treatment have now been investigated on a single-cell level per sample 
condition compared to the vehicle control.  The next step was to identify dosage dependent effects by 
looking at the differential gene expression across treatment conditions. This was done by calculating 
the Spearman’s rank correlation of the differential gene expression per treatment condition versus the 
dexamethasone dosage. Hereafter, the significantly up- or down-regulated genes across treatment 
conditions were investigated using over-representation analysis. Furthermore, a module score of these 
genes was calculated to visualize a potential gradient of dexamethasone treatment in the recalculated 
UMAP gene expression space of each cluster. For many cell types the enriched processes were related 
to common cell processes, such as cell cycle, and did not show a clear pattern of dexamethasone 
induced bone toxicity.  
 
However, the up-regulated genes of the neutrophil cluster were again enriched for immune related 
processes, suggesting heightened neutrophil activation across dexamethasone treatment (Figure 15A). 
The module score of up-regulated genes in the neutrophil cluster displayed a gradient from left to right 
In the UMAP space (Figure 15B). However, this gradient was also present in the vehicle control and 
correlated strongly with the cell cycle phase, suggesting that this gradient is likely related to cell cycle 
progression and not to dexamethasone treatment (Figure 15C).  
 
Finally, the down-regulated genes of the B-cell cluster were enriched for DNA damage repair as well 
as G0 to G1 transition (Figure 15D). This could mean that the B-cells are becoming more dormant with 
dexamethasone treatment. However, previous results displayed a rapid decline of B-cells upon 
treatment with 5 mg/kg dexamethasone (Figure 12D). Thus, this result is based on the remaining B-
cells only, since the majority of B-cells have already died. Hence, the remaining B-cells might become 
more dormant and eventually go into apoptosis or were less susceptible because they were more 
dormant. All in all, the cell cycle progression is impaired. Furthermore, there appeared to be no 
gradient related to the module score of down-regulated genes in the UMAP space of the B-cell cluster 
(Figure 15E,F).  
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Figure 15: Differential expression across treatment conditions versus vehicle control. (A,D) Dot plots of the top processes 
enriched for differentially expressed genes per cluster across treatment groups versus the vehicle control. Count displays the 
number of genes associated with each process. (B,E) UMAP visualization of module score created with all the up-regulated or 
down-regulated differentially expressed genes. (C,F) UMAP visualization of treatment condition, cell cycle phase and the 
module scores for up and down-regulated differentially expressed genes.  
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Discussion 
The aim of this study was to first evaluate and improve upon existing methods to identify doublets in 
single-cell RNA-seq data. Secondly, to apply the best approach to remove doublets to the bone toxicity 
datasets. And finally, to perform subsequent single-cell analysis of the bone toxicity datasets with the 
aim of revealing the underlying molecular mechanisms of dexamethasone induced bone toxicity in 
skeletally immature mice.  
 
DoubletFinder and scDblFinder were selected as best candidates for doublet removal at the time of 
writing (McGinnis et al. 2019, Germain et al. 2022). This study revealed that scDblFinder consistently 
outperformed DoubletFinder with higher speed and greater accuracy on the multiplex intestinal 
organoid data. This finding was expected, since the scDblFinder paper reports to outperform 
DoubletFinder on most datasets (Germain et al. 2022). However, since there is no method that 
systemically outperforms the others and since data generation in the Maxima might favour one 
method over the other, this statement had to be investigated. The reason that scDblFinder performs 
better than DoubletFinder is likely because scDblFinder does not use a fixed neighbourhood size but 
allows the downstream classifier to select the most informative size. Furthermore, because 
scDblFinder does not average the expression of artificial doublets, whereas DoubletFinder does. 
Besides, scDblFinder performs consecutive rounds of doublet removal in  which confidently called 
doublets are removed each round to prevent overfitting (Germain et al. 2022). All in all, scDblFinder is 
more optimized than DoubletFinder and achieves a higher accuracy with much greater speed. For this 
reason, scDblFinder was selected as optimal doublet detection approach and was further investigated 
using the liver organoid dataset. 
 
However, the scDblFinder doublet calls were not consistent across multiple runs. There was on average 
a 0.10 difference in Jaccard overlap between independent runs. This difference could effectively be 
reduced by summing scDblFinder calls over multiple independent runs and creating a new annotation 
in which a cell has to be annotated as doublet in at least half of the runs. Using this approach, 
scDblFinder consistently identified well over 80% of the ground truth doublets, which is comparable 
to the performance reported in the scDblFinder paper (Germain et al. 2022). The DoubletFinder paper 
reports that DoubletFinder can accurately predict heterotypic doublets with more than 90% sensitivity 
(McGinnis et al. 2019). This study observed a lower sensitivity. However, the statement of  the 
DoubletFinder paper only considers the heterotypic doublets, hence the performance including 
homotypic doublets is likely comparable. 
 
Both the scDblFinder and DoubletFinder paper imply the clustered doublet generation approach to 
perform best (McGinnis et al. 2019, Germain et al. 2022). However, in this study the random doublet 
generation approach yielded slightly better results. Supposedly the clustered approach ignores 
homotypic doublets, which results in a higher performance as both methods cannot accurately predict 
homotypic doublets due to their insignificant divergence from real cells in gene expression space. Yet, 
the random approach worked best for both the Intestinal and Liver organoid datasets. It is likely that 
both methods can still identify at least part of the homotypic doublets. And since this resulted in a 
slightly higher performance, the random approach was used throughout this study.   
 
However, the ground truth on which these results are based is not perfect, so it is likely that the 
performance of both scDblFinder  and DoubletFinder is slightly higher than observed. The ground truth 
used for the intestinal organoid data was created with the 10x CellPlex technique that makes use of 
oligonucleotides (Cell Ranger). This technique is limited by its inability to annotate doublets within the 
same sample. Whereas the prediction methods can predict doublets within the same sample, if there 
is a significant difference  in gene expression. Yet, these doublets will be wrongly annotated as false 
positives. This likely happened in the intestinal organoid data as there was an observed 772 cell overlap 
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between DoubletFinder and scDblFinder of cells that were not annotated by the ground truth. 
However, it is likely that these cells are doublets since they were confidently called by both approaches.  
 
To overcome this limitation scDblFinder was also tested on a liver organoid dataset for which a CMO 
based ground truth as well as a SNP based ground truth was available. While these ground truths did 
complement each other, the performance of scDblFinder was slightly lower. This decrease in 
performance might be related to the combination of the 2 ground truths, as the limitations of both 
methods add up. The genotypically multiplexed ground truth is limited by its inability to annotate 
doublets with the same genotype (Kang et al. 2018). However, the difference in performance between 
the intestinal and liver organoid dataset could also be biological or technical, since the intestinal 
organoid dataset is twice as big as the liver organoid dataset. All in all, taking into account the 
limitations of both ground truths and the limitation of scDblFinder in its ability to detect homotypic 
doublets, scDblFinder showed a robust performance annotating 73% of the ground truth doublets 
correctly. 
 
The majority of true positive doublets are positioned at the periphery or edges of clusters in the UMAP 
gene expression space, as well as in small doublet clusters. This description fits with the expected 
location of heterotypic doublets (Germain et al. 2022). The majority of false negatives are located 
within clusters, these doublets are likely homotypic. The performance of scDblFinder in detecting 
homotypic doublets is limited, which is to be expected. Perhaps a method like BIRD, which relies on 
heterologous SNPs could be investigated on its ability to detect homotypic doublets (Wainer-Katsir et 
al. 2020). Furthermore, the recently published deep learning SoCube approach could be investigated 
as it reports to outperform scDblFinder, especially on larger libraries (Zhang et al. 2023). The SoCube 
method includes a homotypic-doublets-first simulation, which might result in a better performance on 
homotypic doublets. Nevertheless, scDblFinder achieved great accuracy in detecting heterotypic 
doublets and these doublets are most important, since homotypic doublets are less harmful.  
 
scDblFinder was then applied to the bone toxicity data, this revealed large doublet densities at the 
periphery of clusters, lots of loosely positioned doublets as well as several doublet clusters or 
protrusions on the UMAP projection. All these locations are in line with the expected positions of 
doublets. Furthermore, the number of doublets per library were also in line with the scDblFinder 
expected doublet frequency of 1% per 1,000 cells (Germain et al. 2022). However, on the smaller 
libraries the uncertainty in doublet calls was slightly elevated. Nonetheless, the scDblFinder predictions 
were plausible and annotated doublets were removed from the libraries. Hereafter, clustering of bone 
toxicity data visually improved, with better defined cluster edges and less loosely positioned cells. 
Furthermore, uncertainties in cell typing could be refined after doublet removal. This was confirmed 
by projection of the Baryawno dataset (Baryawno et al. 2019). However, the labels of this dataset were 
only superficial. The Skeletal Cell Atlas is more extensive, but consists of primarily embryonic data, 
which is not the best representation of the bone toxicity dataset. Moreover, the full Skeletal Cell Atlas 
has yet to be published (Herpelinck et al. 2019). Perhaps in the future, the full reference dataset can 
be used to further refine cell typing of the bone toxicity dataset.  
 
Next, the effects of dexamethasone treatment on the developing bone were investigated. This study 
identified a consistent decrease of osteoblasts, chondrocytes, lymphatic endothelial cells and B-cells 
across all dosages of dexamethasone treatment. Furthermore, the proportion of pre-osteoblasts and 
activated neutrophil cells was found to be increased across all dosages of dexamethasone treatment.  
 
The increase of pre-osteoblasts cells however was accompanied by a decrease in bone mineralization, 
osteoblast differentiation and bone development. The corresponding downregulated genes (Bglap and 
Bglap2) encode for osteocalcin, which is used as a marker for bone formation. This suggests that in 
skeletally immature mice dexamethasone treatment causes a diminished bone formation. Diminished 
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bone formation has also been identified in skeletally mature mice (Kim et al. 2007), however skeletally 
mature mice also display heightened bone resorption, which has not been identified in this study. This 
could be a key difference of dexamethasone induced bone loss in skeletally immature mice. 
Furthermore, the decrease in osteoblast differentiation likely contributes to the low osteoblast 
numbers in the dexamethasone treated conditions, since no new osteoblast cells are formed. 
Moreover, the reduction in osteoblasts has been experimentally validated by the Janda group (Figure 
S2). The number of osteoblasts per square millimetre is significantly less in dexamethasone treated 
conditions compared to the vehicle control.  
 
The neutrophil cells demonstrated increased activation upon dexamethasone treatment as well as a 
proportional increase in cell number. This was accompanied by upregulation of immune processes and 
immune related genes. Glucocorticoids such as dexamethasone are known to prevent apoptosis in 
neutrophil cells. Furthermore, glucocorticoids are known to have both anti and pro-inflammatory 
effects on the neutrophil population (Ronchetti et al. 2018). However, a direct correlation between 
dexamethasone induced bone toxicity and neutrophil cells has not been identified in this study. 
Furthermore, the B-cell population decreased significantly and B-cell precursors were completely 
absent in dexamethasone treated conditions. This suggest that dexamethasone has a detrimental 
effect on B-cell development. While differential gene expression was not possible for B-cells due to the 
low cell numbers, differential expression across treatment groups identified a decrease of DNA damage 
repair as well as cell cycle progression in the remaining B-cells. This suggests that these B-cells are 
under stress and are either becoming dormant or going into apoptosis as well. The detrimental effects 
of dexamethasone treatment on developing B-cells have been investigated in a study by Gruver-Yates. 
This studied revealed that immature B-cells abundantly express glucocorticoid receptors (Gruver-Yates 
et al. 2014). This explains the immediate decrease of B-cell precursors upon dexamethasone 
treatment. All in all, dexamethasone treatment disrupted B-cell development and consequently 
impaired the immune system. While this study did not identify a clear relationship between B-cells 
and dexamethasone induced bone development, the bone marrow microenvironment is clearly 
affected by dexamethasone treatment.  

Conclusion 
In conclusion, this study reports that scDblFinder can be used to predict doublets with greater speed 
and higher accuracy than DoubletFinder. However, the randomness in scDblFinders doublet generation 
and machine learning approach causes it to have a high variability between runs. This variability can 
effectively be reduced by summing multiple scDblFinder runs and annotating cells that are called half 
of the time. Using this approach scDblFinder consistently identified about 80% of the ground truth 
doublets. scDblFinder was successfully applied to the bone toxicity data, this cleaned the data and 
allowed for several improvements in cell typing to be made. Furthermore, this study suggests that 
dexamethasone treatment in developing bones resulted in a decrease of several populations, including 
chondrocytes, osteoblasts, lymphatic endothelial cells and B-cells. Next, neutrophil cells increased 
proportionally and displayed increased immune activation. The pre-osteoblast cells also increased 
proportionally but showed decreased differentiation and bone development with reduced osteocalcin 
production. This data suggests that dexamethasone induced bone toxicity in the developing bone is 
caused primarily by a decrease of bone formation. Whereas in adult bone increased bone resorption 
is observed as well. All together, dexamethasone treatment alters the bone marrow microenvironment 
and disrupts healthy bone development.  
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Materials & Methods 
 

Data acquisition 

Bone toxicity datasets used throughout this study were kindly provided by the Janda group (Warmink 
et al.). These datasets were obtained with droplet-based single-cell RNA-seq using the 10x Genomics 
platform. Samples used for single-cell RNA-seq come from the isolated bone of young mice (6-10 
weeks) treated with oral dosages of dexamethasone (5, 20 and 50 mg/kg). Furthermore, a vehicle 
control group as well as an untreated aged group were included. The bone toxicity datasets were pre-
processed and preliminary cluster annotations were available. Clustering was performed with the 
FindNeighbors and FindClusters functions from the Seurat package. And cluster annotations were 
obtained using SingleR (1.10.0) (Aran et al. 2019) with MouseRNAseqData and ImmGenData reference 
datasets. 
 
The intestinal organoid dataset stems from an in-house study on the comparison of human intestinal 
organoids and was kindly provided by the Single-Cell Genomic facility (Prinses Máxima Centrum). This 
dataset was generated with the 10x Genomics CellPlex technique and included 6 CMO’s. 
Demultiplexing was performed during data analysis using Cell Ranger. Cells that were positively 
assigned to different CMO’s were annotated as doublet. This annotation was used as a ground-truth 
reference in this study. 
 
The liver organoid dataset comes from an in-house project  on molecular characterization of 
hepatoblastomas and normal postnatal livers and was kindly provided by the Single-Cell Genomics 
facility (Prinses Máxima centrum). This dataset was genotypically multiplexed (Heaton et al. 2020) and 
also included 12 CMO’s. Demultiplexing was performed using Cell Ranger and Souporcell was used to 
call genotypes. Cells that match two genotypes or are positively assigned to different CMO’s were 
annotated as doublet. This combined doublet annotation was used as ground-truth reference 
throughout this study. 
 

Data processing 

Data processing for the Intestinal and Liver organoid dataset were performed in R (4.3.1) using the 
Seurat package (4.3.0) (Hao et al. 2021). The Read10X_h5 function from Seurat was used to load count 
data. Hereafter counts were filtered on mitochondrial reads and a percentage of mitochondrial 
expression was calculated. Cells with >20% mitochondrial expression were discarded. Next, count data 
was filtered on having more than 200 UMI. This filtering threshold was deliberately kept low to increase 
scDblFinder performance as described in the scDblFinder vignette (Germain et al. 2021). Setting the 
UMI threshold higher will affect the expected doublet rate resulting in an underestimation of doublets 
by scDblFinder. 
 
Next data was normalized and scaled using the NormalizeData and ScaleData function from Seurat 
with the ‘LogNormalize’ method. The top 2000 variable features were identified using the 
FindVariableFeatures function. For visualisation purposes data was also transformed using the 
SCTransform function. Deconfounding was performed by excluding known confounders and correlated 
genes from the variable genelist. Known confounders were identified  with the Cell Ranger reference 
data of GRCh38_3.0.0 included in the SCutils (1.120) package. Hereafter, cell phase was identified with 
the CellCycleSoring function from Seurat. Cell cycle correlated genes were identified with the 
metadataCorrelations function from the SCutils package. Hereafter, the top 30 principal components 
were identified using the RunPCA function and a UMAP was added using the RunUMAP function with 
dims = 20. Next doublets were identified and removed according to the methodology described in the 
Doublet detection section. After doublet removal, data was refiltered on UMI count using a violin plot 
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to determine the optimal threshold and reprocessed in the same manner. Clusters were identified 
using the FindNeighbors and FindClusters functions from Seurat.  
 

Doublet detection and analysis 

DoubletFinder (2.0.3) (McGinnis et al. 2019) was applied to the filtered intestinal organoid data. This 
was done according to the workflow described in the DoubletFinder github page. pK identification was 
performed without ground-truth to test DoubletFinder when no ground-truth is available. The 
parameter sweep identified an optimal pK value of 0.005. The expected doublet rate of 1% per 1000 
cells was used instead of the homotypic doublet proportion estimate since this yielded better results. 
DoubletFinder has not been applied to the filtered liver organoid data, since scDblFinder performed 
better and much faster than DoubletFinder and there was no reason to suspect a better performance 
of DoubletFinder on the liver organoids.  
 
scDblFinder (1.15.1) (Germain et al. 2021) was applied to both the filtered intestinal organoid data as 
well as the filtered liver organoid data. This was done using the optimised default settings of version 
1.15.1, these settings are different from the base settings in earlier versions of scDblFinder (<1.10). The 
optimised settings yielded higher results than the base settings from earlier versions. scDblFinder was 
run on the RNA assay and data slot of the Seurat object using the GetAssayData function from Seurat. 
scDblFinder was run 9 times independently on both datasets. Hereafter, cells annotated in 5 or more 
independent runs were annotated as doublet. This was done to reduce the variability between 
independent scDblFinder calls as explained in the Results section. There was no significant difference 
between running scDblFinder 9 or 10 times, hence 9 was chosen for visualisation purposes. 
 
Hereafter, the doublet calls were compared to the ground truth references. This was done by 
calculating the Jaccard index. Model performance was evaluated using the ROC, PRC and the AUC. 
Furthermore, both models were evaluated on their speed and usability. The metrics of both methods 
were then compared to each other. scDblFinder outperformed DoubletFinder on the intestinal 
organoid data and achieved much greater speed, even when running it 9 times. Furthermore, 
scDblFinder did not require a parameter sweep. Hence, scDblFinder was applied to detect doublets in 
the bone toxicity datasets. 
 

Projection 

Cell typing of the bone toxicity datasets was refined with cell projecting (Stuart et al. 2019) of a 
reference dataset onto the bone toxicity data. This was done with the FindTransferAnchors and 
TransferData functions from Seurat. The mouse bone marrow stroma dataset from Baryawno et al. 
was used for this purpose. This dataset is included in the Skeletal Cell Atlas, which was not used since 
the projected labels were non informative. The Baryawno reference was constructed according to the 
scripts available at the Skeletal Cell Atlas github page (Herpelinck et al. 2022). 
 

Differential gene expression 

Differentially expressed genes were identified using FindMarkers from Seurat with logfc.threshold = 
log2(1.5) and min.cells.group = 10. Differentially expressed genes were identified per cluster and 
condition versus the vehicle. The genes were then filtered on a p.val.adj < 0.1. The top 25 differentially 
expressed genes were submitted to gene ontology overrepresentation analysis using enrichGO from 
clusterProfiler (4.8.2) (Wu et al. 2021). Differential gene expression across treatment groups was 
identified by first calculating the average fold change of genes per cluster in each treatment condition 
versus the vehicle. The features were filtered on a minimum expression of 10 percent in each cluster. 
Hereafter, the Spearman’s rank correlation was calculated over the average fold change of each gene 
per cluster versus the treatment condition group (1:4). Lastly, genes were filtered on a perfect 
Spearman’s rank correlation of +1 or -1. The expression of genes with a perfect rank correlation either 
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increases or decreases across treatment groups versus the vehicle control. These genes were then 
submitted to gene ontology overrepresentation analysis using enrichGO. 
 

B-cell trajectory inference 

The B-cell trajectory was identified by first creating a separate Seurat object for only the B-cells. 
Hereafter, the B-cells were re-clustered  with a Gaussian mixture model using Mclust (6.0.0) (Scrucca 
et al. 2018). Then, Slingshot (2.8.0) (Street et al. 2018)  was used to infer the pseudo time of B-cells. 
Lastly, the Pearson correlation was calculated between gene expression and the pseudo time to 
identify the top 10 pseudo time correlating and anticorrelating genes. These genes were then 
investigated on their involvement in B-cell development.  
 

Code availability 

The source code used to perform the analysis and to generate the figures as well as an html file to 
reproduce the doublet detection of scDblFinder on the intestinal organoids are available from:  
https://github.com/Tristan891/Master-Internship 

  

https://github.com/Tristan891/Master-Internship
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Supplementary Material 
 

Layman’s Summary 

Treatment of paediatric cancer can result in late effects. Late effects are health problems that occur 
after cancer treatment has ended. One drug commonly used during treatment of paediatric cancers is 
dexamethasone. Dexamethasone has an anti-inflammatory effect. However, prolonged exposure to 
dexamethasone can lead to various health problems, including impaired bone development. The 
effects of dexamethasone treatment have been well studied in adult bone but not yet in young bone. 
There might be substantial differences in the effects of dexamethasone treatment between adult and 
young bone. To study this effect in young bone, young mice were treated with various dosages of 
dexamethasone. Hereafter, single-cell RNA sequencing was used on the tissue samples of these mice. 
Single-cell RNA sequencing is a technique used to capture and sequence individual cells. This results 
in cell-specific expression profiles. The expression profiles of dexamethasone treated and untreated 
cells can be compared to identify cell type specific effects of dexamethasone treatment. However, 
single-cell RNA sequencing data contains doublets. Doublets are technical artifacts which form when 
two cells are captured together. The doublet formation depends on the number of cells used during 
sequencing. Too many cells were loaded during the sequencing of the mice tissue samples, hence this 
data contains many doublets. Doublets cannot be recognized easily and compromise the data analysis. 
Therefore, they have to be detected and removed. DoubletFinder and scDblFinder are two existing 
doublet detection methods. These methods create artificial doublets by randomly picking and 
combining two real cells into one. Then these methods look at the gene expression of cells and identify 
the differences between the artificial doublets and the real cells. Cells that are closely related to the 
artificial doublets are likely to be doublets and hence annotated as doublet. DoubletFinder and 
scDblFinder differ in their machine learning approach to annotate doublets as well as in the generation 
of artificial doublets. scDblFinder sums and reweights cells, whereas DoubletFinder averages cells. The 
aim of this study was to evaluate the performance of DoubletFinder and scDblFinder. The best 
approach could then be applied to clean the single-cell RNA sequencing data. This study identified 
scDblFinder to perform better and faster than DoubletFinder on existing datasets for which an 
experimental ground truth reference was available. Hereafter, the single-cell RNA sequencing data was 
cleaned of doublets and the effect of dexamethasone was investigated. This was done by first 
annotating the cell types and then looking at the differences in expression profiles between the same 
cell types in treated and untreated cells. Annotating the cell types was done by comparing the 
expression profiles to a reference dataset for which the cell types are known and then importing the 
known labels of similar expression profiles to the dataset. This study reports that dexamethasone 
negatively affects several cell types, including chondrocytes and osteoblasts, these cells are found 
within the bone and contribute to bone formation. In adult mice dexamethasone has been reported 
to cause both a decrease in bone formation and an increase in bone resorption. The latter has not 
been identified in this study and could be a key difference between adult and young bone. 
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Figure S1: Absolute overview of stromal and immune cell populations in the bone toxicity dataset. (A) Bar plots displaying 
the proportional and absolute cell counts of stromal versus immune cells across dexamethasone treatment conditions and 
control groups. (B) Bar plots displaying the absolute cell counts of stromal and immune cells across dexamethasone treatment 
conditions. 

A 
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Figure S2: Staining of osteoblast cells across treatment conditions. Osteoblast cells were stained and the number of 
osteoblast cells per square millimetre was found to decrease significantly upon dexamethasone treatment.   

 


