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Abstract

In this thesis we calculate and discuss the mass spectrum of two examples of type IIB
flux compactifications. Firstly in the introduction we discuss how string theory leads to
higher dimensional spaces, how we can compactify the extra dimensions on an internal
manifold creating extra massless modes (moduli) and how fluxes can generate a mass for
the moduli. In the last part of the introduction we discuss our setting: four-dimensional
N = 1 supergravity.
In chapter 2 and 3 we calculate the masses of the moduli for the case with one com-
plex structure modulus (h2,1

− = 1), one complex structure modulus in the large-complex-
structure limit and two complex structure moduli (h2,1

− = 2). In chapter 4 we discuss
certain aspects of the masses we found in chapter 2 and 3. For each case we describe
when there can be degeneracies in the masses and we consider the masses in certain limits
of moduli space. In chapter 5 we recap and discuss our results.
In this thesis we find the following features for the masses of the moduli in the cases we
consider:

• For a general flux all moduli receive a mass and are stabilized when turning on these
fluxes. Only for very specific cases the masses of one or a few of the moduli are zero.

• Even having degenerate masses seems to be the exception. For example for all the

masses to be equal we need either h0 or hi to vanish such that H = hiχi + h
j
χj or

H = h0Ω + h0Ω.

• When going to extremes in the parameters that determine the fluxes the masses
approximate degenerate pairs and one pair of masses stays small while the other
masses diverge.

We note that restricting the options for compactifications on the basis of the moduli
masses in these examples is difficult. Possibly these results combined with an analysis
of the stabilisation of the Kähler moduli using KKLT [1] would be able to provide more
restrictions.
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Chapter 1

Introduction

In this section we will discuss a brief overview of the basic concepts of string theory.
We will mostly follow the book by Ralph Blumenhagen, Dieter Lüst and Stefan
Theisen [2] chapters 1, 2, 3, 10, 14 and 17. Note that what is discussed in this
thesis is far from a complete review. For a better understanding of these concepts
I recommend reading [2].

1.1 String theory, the idea

String theory is a theory of quantum gravity. Therefore it is a candidate for a the-
ory that unifies the standard model with a model for gravity and maybe gives us
an understanding of a bigger range of phenomena, for example in regions of space
with very strong gravity such as black holes or the beginning of the universe.

The initial premise of string theory is to not consider fundamental particles as
a 0-dimensional, point like, object but instead as a one dimensional string. These
strings can be either open like a guitar string or closed like a rubber band. The
vibrational modes on these strings then provide the degrees of freedom of the theory.

An interesting feature of this model is that, depending on whether the degrees of
freedom are bosonic or fermionic, self-consistency of the theory requires the space
time that it lives in to be respectively 26- or 10-dimensional. This is not something
we observe in the universe we live in. We only experience a 4-dimensional space-
time. If string theory is to describe the universe we live in we need to explain why
we only experience part of the fundamental dimensions that our universe is build
out of.

The way to do this is to compactify the 26- or 10-dimensional manifold that
is our space-time. This way it is possible to ”roll-up” dimensions so small that
movement in these directions is not noticeable compared to movement in the ”big”
dimensions. A bit like a 2-dimensional sheet of paper that is rolled up so tight that
from a bit of a distance it effectively looks like a 1-dimensional line. More on the
compactifications in section 1.8.

1
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Once the space-time is compactified we can study the now 4-dimensional effective
theory. How exactly the compactification is done has effects on the theory and the
different states and their masses that the effective theory contains. By studying
these states and masses we can try to narrow down what kinds of compactifications
are candidates to describe a string theory that is self consistent and describes the
universe we live in.

1.2 From points to strings

Classically we are used to describe the position of particles, using their coordinates
X i, depending on t in the following way:

t� X i(t). (1.2.1)

These are functions depending on one variable giving us the value of the space-
coordinates of the particle for each moment in time. That way the position of the
particle for each moment in time is given.

Later with the introduction of the theory of relativity it turned out that a more
natural way of describing the trajectories of particles is to incorporate time as a
(zeroth) coordinate and to take not (necessarily) time t but more naturally the
eigentime τ as the parameter for the trajectory of the particle through space-time.
This resulted in

τ � Xµ(τ) (1.2.2)

as the description of such a trajectory. This better reflects the reparameteriza-
tion invariance of space-time and therefore more naturally describes phenomena
related to gravity. But alongside the theory of relativity also quantum theory was
developed into the very successful standard model which describes the fundamen-
tal interactions/forces excluding gravity. To have a complete theory describing
all fundamental forces including gravity we would need to combine both theories
somehow. This turns out to be quite challenging. String theory suggests a solution
by changing the way we look at the trajectory of fundamental particles again.

We introduce the idea that the position of a fundamental particle is not point-like
and 0-dimensional but rather like a 1-dimensional string. This means that it is not
enough to parametrize the trajectory of the particle with a single parameter but
we need a second ”spacelike” parameter to describe not just where one point of the
particle is at every moment in time, but to describe where all parts of this string
are at each moment in time. This leads to the description

σα = (σ, τ) � Xµ(σ, τ). (1.2.3)

We can imagine these strings in two variants. First an open string where τ ∈ R
and σ ∈ [0, l] with l > 0. This means that σα lives on a 2-dimensional sheet that is
unbounded in one direction and is bounded in the other. This corresponds to the
idea that the string has a finite length and 2 endpoints, like a guitar string.
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The other option is a closed string where still τ ∈ R but σ ∈ S1 this corresponds
to imposing conditions on Xµ(σα) such that

Xµ(σ + l, τ) = Xµ(σ, τ). (1.2.4)

This means that the ”ends” of the string always have the same location and there-
fore that the string is closed and has become more of a loop like a rubber band.
In that case σα lives on a cylinder that is unbounded in the τ direction but it is
compact in the σ direction.

1.3 A dynamical theory

To make a dynamical theory out of these strings we need to write down an action
for Xµ. The action we use is the Polyakov action. In this action T is a constant that
can be interpreted as a tension of the string but is not relevant for the dynamics
of Xµ in this case without interactions. hαβ is a new field that is introduced and
it acts as a metric on the world-sheet Σ where σα lives, hαβ is its inverse and h is
the determinant. ηµν is the (Minkowski)-metric on the space-time where Xµ lives.
This then leads to the action being:

Sp =− T

2

∫
Σ

d2σ
√
−hhαβ∂αXµ∂βX

νηµν . (1.3.1)

The action can be simplified by introducing light-cone coordinates on Σ, denoting
contraction with the light-cone metric by · and fixing the symmetries of the action
to arrive at the form

Sp =2T

∫
Σ

d2σ∂+X · ∂−X, (1.3.2)

which is easier to work with.

Varying this action leads to the following solutions for the fields Xµ(σα). First of
all Xµ(σα) splits in two parts: the left (Xµ

L(σ+)) and right (Xµ
R(σ−)) moving part.

Making the solution:
Xµ(σα) = Xµ

L(σ+) +Xµ
R(σ−). (1.3.3)

These left (Xµ
L(σ+)) and right (Xµ

R(σ−)) moving parts of the solution should also
obey certain boundary conditions. We separately consider the open and the closed
string options.

1.3.1 Closed string

The closed string solutions need to satisfy

Xµ(σ + l, τ) = Xµ(σ, τ). (1.3.4)
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This leads to a solution that can be written in a oscillator expansion in the following
way:

Xµ(σα) =Xµ
L(σ+) +Xµ

R(σ−) with

Xµ
R(σ−) =

1

2
(xµ − cµ) +

πα′

l
pµσ− + i

√
α′

2

∑
n∈Z\0

1

n
αµne−

2π
l
inσ− and

Xµ
L(σ+) =

1

2
(xµ + cµ) +

πα′

l
pµσ+ + i

√
α′

2

∑
n∈Z\0

1

n
αµne−

2π
l
inσ+

.

(1.3.5)

Here σ± = τ±σ and cµ are (in principle complex) parameters. To have Xµ ∈ R we
need xµ, pµ ∈ R and also αµ−n = (αµ−n)∗ and αµ−n = (αµ−n)∗ where ∗ denotes complex
conjugation. pµ turns out to be the 4-momentum of the string and xµ the centre
of mass.

1.3.2 Open string

The open string solutions need to satisfy either of two options for the boundary
conditions. The Dirichlet boundary conditions (D)

δXµ |σ=0,l = 0 (1.3.6)

or the Neumann boundary conditions (N)

∂Xµ |σ=0,l = 0. (1.3.7)

Both the right and the left end (σ = 0, l) of the solution can satisfy these condi-
tions independently. This means that we can get both of them to fulfil the same
conditions, (NN) or (DD), or they can fulfil different boundary conditions, (ND)
or (DN). We list the oscillator expansions for all 4 options:

Xµ(σ, τ) = xµ + 2πα′

l
pµτ + i

√
2α′
∑

n∈Z\{0}
1
n
αµne−

π
l
inτ cos

(
nπσ
l

)
(NN),

Xµ(σ, τ) = xµ0 + 1
l
(xµ1 − x

µ
0)σ +

√
2α′
∑

n∈Z\{0}
1
n
αµne−

π
l
inτ sin

(
nπσ
l

)
(DD),

Xµ(σ, τ) = xµ + i
√

2α′
∑

r∈Z+ 1
2

1
r
αµr e−

π
l
irτ cos

(
rπσ
l

)
(ND),

Xµ(σ, τ) = xµ +
√

2α′
∑

r∈Z+ 1
2

1
r
αµr e−

π
l
irτ sin

(
rπσ
l

)
(DN).

(1.3.8)
Note that in principle for each dimensional direction a different one of these op-

tions can be chosen. So for each µ we can pick the open string to have one of these
4 options.

In the rest of this chapter we will mostly consider closed strings to sketch the
idea and again refer for more details on the open string to [2].
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1.4 Gauge fixing Lorenz invariance

To make this theory into a theory of quantum gravity we need to quantize it but
before we do so it is useful to extract the unphysical degrees of freedom such that
we are left with just the physical ones. This will be the easiest way to get the
excitation spectrum and the corresponding masses.

To fix the Lorenz invariance we first go to light-cone coordinates such that

X± =
1√
2

(
X0 ±X1

)
. (1.4.1)

Using these coordinates we can gauge fix such that

X+(τ, σ) =
2πα′

l
p+τ. (1.4.2)

This means that all α+
n = 0 and (due to gauge fixing the translational symmetry)

xµ = 0. Now we remember that originally when we solved the equations of motion
of the action (1.3.2) this action was a gauge fixed version of (1.3.1). We got rid
of hαβ this way. But this means that we also still need to impose the gauge fixed
equations of motion of hαβ on the solutions we find. In short when Ẋ = ∂τX and
X ′ = ∂σX, this means that (

Ẋµ ±X ′µ
)2

= 0. (1.4.3)

Therefore we can also fix X− in therms of the X i where i runs from 2 to d−1 with
d the dimension of the target-space where Xµ lives.

All of this results in the remaining dynamical variables being: p+, p−, pi, αin and
αin.

1.5 Going Quantum

To now promote this to a quantum theory we follow the usual procedure of pro-
moting the degrees of freedom to operators and assigning the commutators. This
results in the following:

[p−, p+] =− i,
[pi, pj] =iδij,

[αim, α
j
n] =[αim, α

j
n] = mδm+n,0δ

ij.

(1.5.1)

Here i, j = 2, . . . , d− 1.

If we now let these operators act on a vacuum state we can build a whole range
of states.
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Using that pµpµ = −m2 we can find the masses of these states depending on the
operators αim and αjn acting on these states.

To give it’s expression we need to define the level operator N . So N is the ”level”
of the state. It is the sum over all the −n of the αin that act on the vacuum state
|0〉 to make up the new state. For example |0〉 has level 0, αi−1α

j
−1|0〉 has level 1

and both αi−2α
j
−2|0〉 and αi−1α

j
−1α

k
−2|0〉 have level 2.

The mass operator turns out to be

α′m2 = 4

(
N − d− 2

24

)
. (1.5.2)

In this way we have found the states and their masses in this theory.

1.6 More dimensions

Now we know what states are available in this theory we can see if they still obey
Lorentz symmetry. After all we started with a Lorentz invariant theory but after
going to Light cone gauge we went away form this symmetry being apparent by
picking out the zeroth and first coordinate to be mixed. This means the Lorentz
invariance is not apparent anymore but our theory should still be.

Let’s look at the level 1 state, αi−1α
j
−1|0〉. This is a 2 tensor with mass α′m2 =

4
(
1− d−2

24

)
. If these are to obey Lorentz symmetry we need to be able to write

them as a decomposition of irreducible representations of SO(d−1) if it is a massive
excitation or of SO(d− 2) if it is a massless excitation. We can write αi−1α

j
−1|0〉 as

αi−1α
j
−1|0〉 =

(
α

(i
−1α

j)
−1 −

1

d− 2
δijαi−1α

i
−1

)
|0〉+ α

[i
−1α

j])
−1|0〉+

1

d− 2
δijαi−1α

i
−1|0〉.

(1.6.1)
As can be found in [2] equation 3.57.
Here the round brackets denote the symmetric part and the square brackets the
anti-symmetric part.
This is a d − 2 dimensional (i, j run from 2 to d − 1) 2 tensor decomposed into a
symmetric traceless part, a anti-symmetric part and a trace. These are the irre-
ducible representations of SO(d− 2). Therefore we find that these excitations are

massless and α′m2 = 4
(
1− d−2

24

) !
= 0 ⇒ d = 26.

This means that for this theory to be consistent we need the dimension of the
space-time, where Xµ lives, to not be the familiar 4 but rather 26 in the case of
the bosonic string. For the superstring, which also contains fermionic degrees of
freedom but which we will not discuss in detail, it turns out that the dimension
space-time needs to take is 10. This is not what we perceive in nature and we
will need to discuss how these higher dimensional spaces can be consistent with
space-time we live in.
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1.7 Mass spectrum

Now we have found the dimension of the target space we can use this to find the
mass spectrum of the bosonic closed string excitations. Plugging d = 26 into the
mass formula we find that

α′m2 =4

(
N − 26− 2

24

)
=4N − 4.

(1.7.1)

The masses we find are:

• |0〉 with mass α′m2 = −4

• αi−1α
j
−1|0〉 with mass α′m2 = 0,

together with a whole ”tower” of (positive) massive states.

Note that there is one state with negative mass. This is the Tachyon. The
tachyon is a feature of this specific theory. The supersymmetric theory that we
will actually adopt in the end does not contain a tachyon. Then there are the
states with zero mass. As we have seen these can be decomposed into a massless
spin-2 particle, the graviton, a anti-symmetric tensor field and a massless scalar,
the dilaton.

1.8 Compactification of manifolds

Now we have seen that for string theory to be self-consistent it needs a space-time
of high dimension (10 or 26). To understand how we still perceive to be living in
a 4-dimensional space time we need to consider a high dimensional manifold that
is compactified in certain directions. This can be imagined as ”rolling up” the
space-time to ”hide” certain dimensions. Next we will discuss an illustration of
this idea.

1.8.1 Paper roll as an intuitive example

We can imagine a sheet stretching infinitely far in both the length and the width
of the paper. This represents a 2-dimensional manifold. Anything that is bound to
this sheet of paper can move in 2 independent directions. Now imagine deforming
this sheet of paper by rolling it up in one direction creating a cylinder like in figure
1.1. This is still a 2-dimensional manifold and anything bound to this paper can
travel along the cylinder as well as around it. Now if the sheet gets rolled tighter
the diameter of the cylinder becomes smaller and so does the distance that some-
thing bound to this surface can travel around the cylinder before ending up at the
same location.

Now imagine an ant that lives on this cylinder. The size of the ant is about 1
cm. In principle the ant can move both along the cylinder and around it. But if
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the sheet is rolled up so tight that the diameter of the cylinder is much smaller
than the size of the ant, say 10−10cm, than if the ant moves around the cylinder it
doesn’t notice any change in position because this change is so much smaller than
anything the ant is used to deal with. The ant feels like the only direction it can
travel in is along the cylinder. Now by rolling this sheet up tight enough it went
from being perceived as the 2-dimensional space it is to being perceived as a one
dimensional space by the observers that live in this space.

This is the idea of rolling up dimensions of a space to ”hide” them. With this
example we can imagine how compactifications of the high dimensional space we
live in can make it so that we only perceive 4 of these dimensions.

Figure 1.1: Visualisation of a 2-dimensional manifold bëıng ”rolled up” to effec-
tively be 1-dimensional.

1.8.2 Compactification and the consequences for the the-
ory

To illustrate the effect of compactifications we will discuss a compactification of
the 26-dimensional bosonic string. We will compactify one of the dimensions of the
target space to a circle. For this we use the coordinate X25. So instead of

X25 : R× S1 → R (1.8.1)

now
X25 : R× S1 → S1. (1.8.2)

Such that we have the boundary conditions:

X25(τ, σ + 2π) = X25(τ, σ) + 2πRL. (1.8.3)

Here R is the radius of the circle into which this dimension is compactified and L
is called the winding number, this is a whole number that counts how many times
the sting is wrapped around this circle.

The mode expansion of X25 is now altered such that

X25(τ, σ) =X25
R (τ − σ) +X25

L (τ + σ),

X25
R (σ−) =

1

2
(x25 − c) +

α′

2

(
M

R
− LR

α′

)
σ− + i

√
α′

2

∑
n∈Z\{0}

1

n
α25
n e−inσ

−
,

X25
L (σ+) =

1

2
(x25 + c) +

α′

2

(
M

R
+
LR

α′

)
σ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
α25
n e−inσ

−
.

(1.8.4)
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Here M is an operator that takes eigenvalues in Z. This is due to the quantization
on a finite space and single-valuedness.

Now if we want to see what the masses are of the states in this theory we use
m2 = −

∑24
µ=0 p

µpµ, note we now do not include µ = 25 in the sum because we want
to calculate what the mass would be in a theory that is effectively 25-dimensional
instead of 26. If we now define NL and NR as the left and right level of the state,
or the level calculated using the n of the αµn or αµn. We can then find:

α′m2 = α′
M2

R2
+

1

α′
L2R2 + 2(NL +NR − 2). (1.8.5)

This is a lot like the mass we have seen in (1.7.1). What has changed is that
there are 2 extra contributions. One from the internal momentum going around
the circle: M2

R2 . The second contribution is due to the energy it takes to wrap the
string L times around the circle: L2R2.

This means that the spectrum has a few extra states. We still have the tachyon
|0〉 with negative mass −4. Then there still are the now 25-dimensional graviton,
anti-symmetric tensor and dilaton αµ−1α

ν
−1|0〉. But there are also new states now.

First, these are the ones with M = L = 0 and mass m2 = 0:

• vector 1: α25
−1α

µ
−1|0〉,

• vector 2: αµ−1α
25
−1|0〉,

• scalar: α25
−1α

25
−1|0〉.

This scalar has eigenvalues that correspond to the radius R of the circle.

Then we also have new states that have non-trivial M and L. Incorporating the
notation |M,L〉 we can list the following examples:

• vector : αµ−1|1, 1〉 with mass α′m2 = α′

R2 + R2

α′
− 2,

• scalar : α25
−1|1, 1〉 with mass α′m2 = α′

R2 + R2

α′
− 2.

Note that the masses of these states are dependent on the features the compactified
manifold and in the case that R =

√
α′ these are massless.

In addition to the extra internal states (Kaluza-Klein modes) there is another
feature of the compactification we can notice. The mass formula is equivalent
under the transformation R → α′

R
. Also the states that we have are symmetric

under the interchange M ↔ L. Combining these we find the so called T-duality of
this theory:

R→ α′

R
and M ↔ L. (1.8.6)

It is therefore enough to have 0 ≤ R ≤
√
α′ instead of 0 ≤ R <∞. This symmetry

is an example of different string theories actually being equivalent.
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1.9 Calabi-Yau manifolds

The compacitfication of a single dimension on a circle illustrates well what kind of
effects compactifications can have on the theory. However this is not a very real-
istic manifold to consider. A more likely candidate is that the compact manifold
is not a circle but a more general compact space. For this we consider Calabi-Yau
manifolds.

The definition of a Calabi-Yau manifold is a compact Kähler manifold that is
Ricci-flat. Ricci-flatness is a condition on the manifold and it’s metric. Via the
Einstein equation this also leads to a condition on the field densities of the fields
that live on this manifold.

We will now discuss what a Kähler manifold is.

1.9.1 Kähler manifolds

A n (complex-)dimensional Kähler manifold is a complex manifold endowed with
a hermitian metric gij such that gij = gji and

J :=i
n∑
i,j

gijdz
i ∧ dzj,

dJ =0.

(1.9.1)

A consequence of this is that the only non-vanishing components of the Riemann
tensor are:

Γkij =gkl∂igjl

Γk
ij

=glk∂iglj
(1.9.2)

So there is no mixing of the i and i components.

Also for a Kähler manifold there exists a Kähler potential K such that

gij = ∂i∂jK (1.9.3)

This K is not unique any K ′(z, z) = K(z, z) + f(z) + f(z), where f is holomorphic
and f anti-holomorphic, also is a Kähler potential for the same manifold [3].

1.9.2 Hodge numbers

On such a Kähler manifold one can define Hodge numbers, hp,q, where p, q ∈
{0, . . . , n}. These numbers are a property of the manifold and contain information
about it’s structure. They are defined as the dimension of the cohomology groups
but we can think of them as a generalization of the Betti numbers, bp, to com-
plex manifolds [3]. These Betti numbers make precise the notion of the amount



CHAPTER 1. INTRODUCTION 11

of p-dimensional holes in a manifold. For example intuitively it is clear that a
annulus is different from a disc because it has a hole in the middle. This would be
a 1-dimensional hole and b1 = 1 for a circle but b1 = 0 for a disc. In the same way
b2 = 0 for a ball and b2 = 1 for a sphere.

The Hodge numbers of Calabi-Yau manifolds are not all independent. There are
the following relations between them:

hp,q =hq,p

hp,q =hn−p,n−q

hn,0 =h0,n = 1,

hp,0 =h0,p = hn−p,0 = h0,n−p,

hp,0 =0 for 0 < p < n.

(1.9.4)

Note that n is the complex dimension of the manifold.

Now because the supersymmetric string theories live in 10 dimensions and we
perceive 4 dimensions in our universe we are most interested in compact manifolds
with real dimension 6. Therefore we are interested in Calabi-Yau manifolds with
complex dimension n = 3. These are called Calabi-Yau three-folds. Due to these
relations between the Hodge numbers we can arrange them in a shape that reflects
their symmetries: the Hodge diamond.

Figure 1.2: Visualisation of the Hodge numbers of the Calabi-Yau three-fold. The
symmetries of the Hodge numbers can be show by arranging them in this diamond
shape. It becomes apparent that there are only 2 independent Hodge numbers for
the Calabi-Yau three-fold. This illustration is taken from [2] page 478.

After getting rid of all the dependent hodge numbers we are only left with the
independent h1,1 and h2,1 for such a Calabi-Yau three-fold. These numbers will be
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interesting for characterizing the manifold. For example an interesting result for
n = 3 Calabi-Yau manifolds and their Euler number χ is the following:

χ = 2(h1,1 − h2,1). (1.9.5)

For us the hodge numbers are especially interesting because they count the ”ex-
tra” massless fields that the theory has after compactification on the Calabi-Yau
threefolds. These are analogues to the internal states α25

−1α
25
−1|0〉 we found in sec-

tion 1.8.2. These states do not have a counterpart in nature like the other massless
states have for example the dilaton. This poses a problem with making a connec-
tion to the real world. Therefore it would be useful if it turns out that these do
actually have a mass such that it is safe to ignore them in effective theories because
the mass is so big, due to the small size of the threefold, that we do not encounter
situations where the energy is high enough to produce them. That would explain
why we have not observed these particles in nature.

1.10 Supersymmetric IIB

Now we have illustrated how we can get the spectrum of (massless) states of a
string theory we can discuss the theory we want to study. Until now we have
only considered bosonic states. A similar discussion can be had for a theory with
fermionic states. The theory we will discuss is the 10-dimensional type IIB super-
symmetric theory. This theory is constructed for both a bosonic and a fermionic
part. The theory is called supersymmetric because the action as well as the rest
of the theory is symmetric under interchanging the bosons and fermions. This is
crucial to get rid of the Tachyon (negative mass state). Therefore this theory is
stable in the space-time vacuum. We will only consider the (originally) massless
states in this theory to get a low-energy effective theory.

The states we will consider to illustrate how internal massless states can be sta-
bilized by receiving a mass are contained in a two form C2.

We start with this theory in a 10-dimensional Minkowski space, R1,9. The states
in this theory have interactions subject to an action S10. To connect to the 4-
dimensional effective theory we compactify 6 of these dimensions on a Calabi-Yau
three-fold X such that R1,9 becomes R1,3 ×X .

1.11 Kähler metric

In this space we consider one therm of the action S10 that contains the 2-form
C2 = cαωα + . . . expanded in a basis where cα are scalars that live on R1,3 and ωα
is a basis of the cohomology group H2(X ) of the Calabi-Yau three-fold. The . . .
indicate terms that we will not discuss here. The term we consider to illustrate
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how this action results is a action for R1,3 is:

S̃10 =

∫
R1,3×X

d(cαωα) ∧ ∗ d(cβωβ)

=

∫
R1,3

dcα ∧ ∗ dcβ
∫
X
ωα ∧ ∗ωβ

=Gαβ

∫
R1,3

dcα ∧ ∗ dcβ.

(1.11.1)

Here M,N = 0, . . . , h1,1 + h2,1
− run over the moduli, α, β = 0, . . . , h1,1.

This shows we can integrate out the degrees of freedom that live on the internal
manifold X and encode the relevant information in a quantity Gαβ which we will
call the Kähler metric. It turns out that this Gαβ has the nice property, as we have
seen in equation (1.9.3), that there exists a real potential K such that

Gαβ = ∂α∂βK. (1.11.2)

This K is the Kähler potential. The information about the manifold X is encoded
in this K when we work in the effective 4-dimensional theory.

1.12 Fluxes

Now we have managed to get an effective theory in 4-dimensions but we still have
the massless states on the internal manifold. We call these moduli. For the the-
ory to be well defined perturbatively and to make sure that we do not have many
more particles than we expect to have from experiments, we need to stabilize these
moduli. We do this by generating a potential and masses for them using fluxes.
The construction of flux compactifications was developed in [4],[5] and applied to
the IIB theory in [6, 7].

The metric of the manifold that our theory lives on, R1,3×X , is a solution to the
Einstein equations. One of the solutions to this is a vacuum expectation value, vev,
that vanishes for the so called fluxes. This leads to Ricci flat solutions. If instead
these fluxes have a non zero vev they carry energy and therefore impact the metric
and the shape of the compact manifold via the Einstein equations. The manifold
is then deformed away form a completely Ricci-flat manifold and is therefore not
exactly a Calabi-Yau manifold anymore. As an example we look at the flux

F3 = dC2. (1.12.1)

If the vev of this flux 〈F3〉 6= 0 then we can redefine C2 such that we can write the
flux as a vev and fluctuations around this. We then get:

F3 = 〈F3〉+ dC2. (1.12.2)
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If we plug this into the action we retrieve the dynamical part for dC2 but we also
get a part containing 〈F3〉. This part together with the parts that contain the vev’s
of the other fluxes are called the scalar potential. These couple to the moduli to
generate a potential for them and therefore (potentially) generate masses such that
the moduli are stabilized.

This way we arrive at an effective theory in 4-dimensions with stabilized moduli.

1.13 Super-potential

By turning on these fluxes, giving them non trivial vev’s, we effectively generate a
potential in the 4-dimensional action. This potential is called the scalar-potential
V or the F -term potential and needs to be of a specific form. We have the following
[6–8]:

V =eK
(
FMG

MNFN − 3|W |2
)

where

FM =∂MW + (∂MK)W.
(1.13.1)

Here GMN is the inverse of the Kähler metric GMN and W is the super-potential.
To match a potential of this form with the potential that comes out of the action
we need the super-potential to be [9–11]:

W =

∫
X

Ω ∧ (F −Hτ). (1.13.2)

Here F = dC2 and H = dB2 are the fluxes in this theory and Ω is the holomorphic
three-form of this Calabi-Yau three-fold. This three-form is build up out of the
moduli in the manner described in (1.14.3).

1.14 Our setting

Now we turn to a more specific discussion that is oriented to finding the masses of
the moduli in specific cases. To this end we follow the paper by Plauschinn [9] and
recommend reading this for more details.

1.14.1 Potential

We will be interested in calculating the masses of the n scalar fields ΦM of a 4-
dimensional N = 1 supergravity theory in the minimum of the F -term potential
V . As we have seen in (1.13.1) this potential is given by:

V = eK
(
FPG

PQFQ − 3|W |2
)
. (1.14.1)

Here P,Q = 0, . . . , h1,1 + h2,1
− run over the moduli, K is the real Kähler potential,

W is the holomorphic super-potential and GMN = ∂M∂NK is the Kähler metric.
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Also the F -therms relate to W and K via FM = ∂MW + (∂MK)W .

Setting ∂NV = 0 shows that a minimum is attained when FN = 0. If we consider
W in this minimum we will adopt the notation W0. This will be the minimum we
are interested in. An interesting observation we can make is that in the minimum
we have [7]:

0 =FN = ∂NW0 + (∂NK)W0

∂NW0 =− (∂NK)W0

∂NFM =∂N∂MW0 +KNMW0 +KM∂NW0

=∂N∂MW0 +KNMW0 −KMKNW0

(1.14.2)

So we see that ∂F is symmetric in the minimum of the potential V .

We can apply this set up to the case of a type-IIB theory that is compactified on
a Calabi-Yau manifold X that is subject to an orientifold projection. This projec-
tion will split the cohomology in to even and odd eigenspaces. This introduces the
need for an extra index (±) for the hodge numbers denoted as a subscript. This
would result in the fields ΦM being the following.

There is one modulus τ = c+ is, a set of moduli we call TA where A = 1, . . . , h1,1

and there are h2,1
− complex structure moduli zi (i = 1, . . . , h2,1

− ). They can be
combined into a holomorphic three-form Ω in the following way:

Ω = XIαI − ∂IFβI with zi =
X i

X0
, (1.14.3)

here I = 0, . . . , h2,1
− and αI and βI form a symplectic basis of the three-forms on

the internal Calabi-Yau manifold X such that [12]∫
X
αI ∧ βJ = δJI = −

∫
X
βJ ∧ αI . (1.14.4)

Also the periods ∂IF depend on zi holomorphicaly.

Having defined the fields we turn to the Kähler potential K. It is real and consists
of 2 parts. It splits up in a part that depends on τ and the Kähler moduli TA and
a part that depends on zi [4, 6, 9]:

K =KK +Kcs,

KK =− log [−i(τ − τ)]− 2 log [V ] ,

Kτ =− log [−i(τ − τ)] ,

Kcs =− log

[
i

∫
Ω ∧ Ω

]
.

(1.14.5)

The bar here denotes complex conjugation. The dependence on the Kähler moduli
TA is hidden in the Einstein-frame volume of X : V . K technically also receives
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corrections due to the slight deformation away from Ricci-flatness but we will ig-
nore these here.

We will take second derivatives of the potential V to find a mass matrix and
compute it’s eigenvalues to find the masses that the moduli τ and zi receive from
the fluxes. Before we do this we can further simplify the expression for V in the
case we are considering. Because K splits in different terms for the dilaton τ , the
complex structure moduli zi and the Kähler moduli TA as we have seen also GMN

splits in different blocks corresponding to these groups of moduli [16, (6.3)]. It
turns out that [8, 9, 12]

V =eK
(
FPG

PQFQ − 3|W |2
)

=eK
(
FτG

ττF τ + FAG
ABFB + FjG

jiF i − 3|W |2
)

=eK
(
FτG

ττF τ + 3|W |2 + FjG
jiF i − 3|W |2

)
=eKFPG

PQFQ.

(1.14.6)

Where now in the last line P and Q only run over τ and i = 1, . . . , h2,1
− . In this

way we find the potential is only dependent on τ and the zi. The other moduli will
be be stabilized in a different way that we will not discuss.

1.14.2 Masses

Now we have the potential we can from this calculate the mass matrix m2 by taking
the second derivatives and evaluating these in the minimum FN = 0.

First we take the first derivative and find:

∂NV =∂N

(
eKFPG

PQFQ

)
=eK(∂NKFPG

PQFQ + ∂NFPG
PQFQ + FP∂NG

PQFQ + FPG
PQ∂NFQ).

(1.14.7)

To find m2
MN

we calculate ∂M∂NV |F=0:

∂M∂NV |F=0 =∂M

[
eK(KNFPG

PQFQ + ∂NFPG
PQFQ

+ FP∂NG
PQFQ + FPG

PQ∂NFQ)
]
|F=0

=∂M

[
eK(∂NFPG

PQFQ + FPG
PQ∂NFQ)

]
|F=0

=eK∂M

[
∂NFPG

PQFQ + FPG
PQ∂NFQ

]
|F=0

=eK
[
∂NFPG

PQ∂MFQ + ∂MFPG
PQ∂NFQ

]
|F=0.

(1.14.8)

To get to the second line we found that all therms coming from the first and third
therm would still have a F in there so will contribute nothing when evaluating in
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the minimum. To then get to the third line we used that when the derivative acts
on the eK all therms still contain an F . To get to the fourth line we only kept the
therms where the derivative acts on the remaining F ’s.

Now to go on we calculate

∂MFN =∂M [∂NW + ∂NKW ]

=∂M∂NKW

=GMNW,

∂NFM =∂N
[
∂MW + ∂MKW

]
=GNMW.

(1.14.9)

Where we used that W is holomorphic.

Now we plug these into (1.14.8) to find:

m2
MN

=eK
[
∂NFPG

PQ∂MFQ +GMPWGPQGNQW
]

=eK
[
∂NFPG

PQ∂MFQ +GMN |W |2
]
.

(1.14.10)

Then using the same principles, dropping therms that will contain F and become
0. We find

m2
MN =∂M∂NV |F=0

=∂M

[
eK(KNFPG

PQFQ + ∂NFPG
PQFQ + FP∂NG

PQFQ + FPG
PQ∂NFQ)

]
=eK

[
∂NFPG

PQ∂MFQ + ∂MFPG
PQ∂NFQ

]
=eK

[
∂NFPG

PQGMQW 0 + ∂MFPG
PQGNQW 0

]
=eKW 0 [∂NFM + ∂MFN ]

=2eKW 0∂MFN .

(1.14.11)

Note that to get to the last line we used a symmetry by equation (1.14.2).

Now we can combine these results with their complex conjugates into the mass
matrix:

m2 =

[
m2
MN

m2
MN

m2
MN

m2
MN

]
=eK

[
∂MFPG

PQ∂NFQ +GNM |W0|2 2∂MFNW 0

2∂MFNW0 ∂NFPG
PQ∂MFQ +GMN |W0|2

]
(1.14.12)

If we want to be able to compare these masses to the literature we have to make sure
that we consider the canonical mass matrix. This is due to different conventions
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that can be chosen for the re-normalization of the fields. To this end we define Γ
using that G is hermitian and positive definite such that we can write:

G = ΓΓ†. (1.14.13)

Using this we define Q as
Q = Γ−1(∂F )Γ−T . (1.14.14)

Using these we can rewrite the canonical mass matrix m2
can to be:

m2
can =

[
Γ−1 0

0 Γ−1

]
m2

[(
Γ†
)−1

0
0 Γ−T

]
=eK

[
QQ† + |W0|2 2QW 0

2Q†W0 Q†Q+ |W0|2
]
.

(1.14.15)

The matrix QQ† has eigenvalues we denote by σ2
α with α = 0, . . . , h2,1

− . The eigen-
values of the mass matrix, m2

can, and therefore the masses that the moduli receive
are then:

m2
α± = eK (σα ± |W0|)2 . (1.14.16)

This is equation (5.5) in the paper[9].

1.14.3 Q

We want to find the eigenvalues of QQ†. To later make contact with the canonical
form of the masses it is useful to transform Q into Q.
Define Q = G−1∂F evaluated at the minimum. There for Q = G−1∂F = Γ−1†Γ−1∂F =
Γ−TΓ−1∂F . Now we show that QQ† has the same eigenvalues as QQ

det
(
QQ† − λ

)
= det

(
Γ−1(∂F )Γ−TΓ−1(∂F )†Γ−1† − λ

)
= det

(
Γ−1†Γ−1(∂F )Γ−TΓ−1(∂F )† − λ

)
= det

(
G−1(∂F )Γ−TΓ−1(∂F )− λ

)
= det

(
QQ− λ

)
.

(1.14.17)

So indeed the eigenvalues of QQ are the same as those of QQ†.
To be able to find an expression for Q we introduce the following.

Di are the covariant derivatives with respect to the zi. Acting with these on Ω
gives a basis χi = DiΩ = ∂iΩ + (∂iK)Ω for the (2,1) forms on X such that we can
express H in this basis in the following way:

H = h0Ω + hiχi + h
j
χj + h0Ω. (1.14.18)

This defines the components of H in this basis. They can also be expressed as

hi = −ieKcsGij

∫
X
χj ∧H. (1.14.19)
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Note that here only the components of GMN that are associated with the zi show
up.

We also need the Yukawa-couplings κijk. These are expressed in therms of Ω:

κijk = −
∫
X

Ω ∧DiDjDkΩ (1.14.20)

With this expression we can write down Q in the following way:

Qτ
τ =0,

Qi
τ =− ie−Kcshi,

Qτ
j =i(τ − τ)2e−KcsGjih

i,

Qi
j =(τ − τ)κijkh

k.

(1.14.21)

Here i, j, k run from 1 to h2,1.
If we now define Rijmn as the Riemann tensor of the complex-structure moduli-

space metric, this leads to QQ being:

(QQ)ττ =e−2(Kτ+Kcs)hiGijh
j,

(QQ)τ
j

=e−(Kτ+Kcs)(τ − τ)2κjmnh
mhn,

(QQ)iτ =− e−(Kτ+Kcs)κimnh
mhn,

(QQ)i
j

=− e−2Kcs(τ − τ)2hiGjkh
k − (τ − τ)2κilkh

kκl
jm
hm

=e−2(Kτ+Kcs)
(
−Ri

jmn
hnhm + δi

j
hmGmnh

n + 2hihj

)
.

(1.14.22)

Note that we have now two expressions for (QQ)i
j
. One in therms of κ and one in

therms of the Riemann tensor. We will later be able to use this to switch between
ways to express our quantities.

This concludes the introduction.
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Calculations on h
2,1
− = 1

In this and consecutive sections we will calculate and discuss the masses which these
moduli receive from the fluxes. We will do so by calculating the eigenvalues of QQ
in 3 cases. In the first case we consider h2,1

− = 1 such that there is only one zi. In the
second case we consider a specialization of the first case: h2,1

− = 1 and we assume
to be in the large-complex-structure limit such that F has a known form. In the
last case we consider F with arbitrary form and h2,1

− = 2 such that there are two zi.

From equation (4.3.1) we have the expression m2
α± = eK (σα ± |W0|)2. This is an

expression of the masses in terms of the eigenvalues of QQ and the super-potential
W0. We can Express QQ = aM . Where a is a scalar and M a matrix. Now note
that for an eigenvector x and an eigenvalue λ of M we have

(M − λI)x =0

a (M − λI)x =0

(aM − aλI)x =0.

(2.0.1)

So if λ is an eigenvalue of M then aλ = σ2
α is an eigenvalue of aM = QQ.

We will use this to first find an expression for the masses in therms of the eigen-
values λ of M . This procedure will be very similar for all the cases we consider.
After this we will find expressions for the λ for each case.

2.1 h2,1
− = 1

For this section it is more convenient to use h = h1, h = h1, G = G11, κ = κ111,
z = zi and R = R1111G

11G11 the Ricci scalar.

2.1.1 Masses in therms of λ

We pick a = e−2(Kτ+Kcs)G|h1|2. We then have σ2
α = e−2(Kτ+Kcs)G|h1|2λ and there-

fore
σα = e−(Kτ+Kcs)

√
G|h1|

√
λ (2.1.1)

20
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This we can plug (4.3.1) to find:

m2
α± =eK

(
e−(Kτ+Kcs)

√
G|h1|

√
λ± |W0|

)2

. (2.1.2)

We want to express the masses in more natural quantities. The quantities we will
use are a prefactor 16eK |W0|2 where |W | should be taken to be in the minimum
FN = 0 and we use the flux number Nflux. We will combine these into a quantity µ
later. The definition of the flux number is the one in [2] equation (17.50) [12, 13]:

Nflux =

∫
F ∧H ∈ N. (2.1.3)

Note that this is a whole number due to F and H being integer fluxes [6].

In order to express G and h in therms of these quantities we use from the litera-
ture: [2] equation 14.128a and page 517 [6]:

?Ω =− iΩ, ?χ = iχ, (2.1.4)

and equation (3.2) in the paper [6, 14]

G = −
∫
χ ∧ χ∫
Ω ∧ Ω

, (2.1.5)

as well as [13]

s =
Nflux∫
H ∧ ?H

. (2.1.6)

and last equation (5.6) in [9]

W =

∫
X

Ω ∧ (F −Hτ), (2.1.7)

Recall that s is the complex part of τ the dilaton.
This last expression we can use to find an expression for |W0|. We use the first line
from (1.14.2) to find in the minimum of V :

0 =Fτ = ∂τW + (∂τK)W

0 =

∫
X

Ω ∧
(
−H +

iF

2s
− iτ

2s
H

)
−2si

∫
X

Ω ∧H =

∫
X

Ω ∧ (F − τH)

W0 =− 2si

∫
X

Ω ∧H

(2.1.8)

Now we can use the expression (1.14.18) we have for H, the expression (1.14.5)
for Kcs as well as the expressions we just quoted from the literature to calculate
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∫
H ∧ ?H. This leads to∫

H ∧ ?H =2i

∫ (
|h0|2Ω ∧ Ω− |h|2χ ∧ χ

)
=2|h0|2e−Kcs − 2i|h|2

∫
χ ∧ χ

=2|h0|2e−Kcs + 2i|h|2G
∫

Ω ∧ Ω

=2e−Kcs
(
|h0|2 + |h|2G

)
(2.1.9)

Now we have related
∫
H∧?H to h0 and h. Using (2.1.6) we can relate

∫
H∧?H

to Nflux and we can relate W to h0 using (2.1.8):

W0 =− 2i

∫
Ω ∧H3s

=− h0e−(Kτ+Kcs).

(2.1.10)

With these relations we can, starting form (2.1.9), express h in therms of Nflux and
W :

|h|2G =
1

2
eKcs

∫
H ∧ ?H − |h0|2,

=eKτ+KcsNflux − e2(Kτ+Kcs)|W0|2.
(2.1.11)

We plug this into (2.1.2) and find the mass in therms of hµ:

m2
α± =eK

(
e−(Kτ+Kcs)

√
G|h1|

√
λ± |W0|

)2

,

=e−Kτ−Kcs−2 log[V]
(√

h1Gh1
√
λ± |h0|

)2

.

(2.1.12)

Now we define

µ2 =
Nflux

eKτ+Kcs |W0|2
. (2.1.13)

This leads to

m2
α± =eK

(
e−(Kτ+Kcs)

√
eKτ+KcsNflux − e2(Kτ+Kcs)|W0|2

√
λ± |W0|

)2

,

=eK

(
|W0|

√
Nflux

eKτ+Kcs|W0|2
− 1
√
λ± |W0|

)2

,

=eK |W0|2
(√

λ
√
µ2 − 1± 1

)2

,

=
Nflux

µ2
e−2 log[V]

(√
λ
√
µ2 − 1± 1

)2

,

=
Nflux

V2

(√
λ

√
1− 1

µ2
± 1

µ

)2

.

(2.1.14)
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2.2 h2,1
− = 1 but not Large-complex-structure limit

h2,1
− = 1 Having found an expression for the masses dependent on λ we will in

this section calculate λ when h2,1
− = 1 or when there is only one complex structure

modulus z1. This means that the i index only takes the value 1 and QQ is a 2 by
2 matrix. Applying this to (1.14.22) we find:

(QQ)ττ =e−2(Kτ+Kcs)h1G11h
1,

(QQ)τ1 =− 4e−(Kτ+Kcs)s2κ111h
1h1,

(QQ)1
τ =− e−(Kτ+Kcs)κ1

11h
1h1,

(QQ)1
1 =4e−2Kcss2h1G11h

1 + 4s2κ1
11h

1κ1
11h

1

=e−2(Kτ+Kcs)
(
−R1

111h
1h1 + h1G11h

1 + 2h1h1

)
.

(2.2.1)

Here we have used that the indices only run over 1 and we have used that τ = c+si.

Now we use h = h1, h = h1, G = G11, κ = κ111, z = zi and R = R1111G
11G11 the

Ricci scalar. This results in

QQ =

[
e−2(Kτ+Kcs)hGh −4e−(Kτ+Kcs)s2κh

2

−e−(Kτ+Kcs)G−1κh2 e−2(Kτ+Kcs) (−RG|h|2 + 3G|h|2)

]
,

=e−2(Kτ+Kcs)G|h|2
[

1 −4eKτ+Kcss2G−1κh
h

−eKτ+KcsG−2κh
h

3−R

]
.

(2.2.2)

So when we take out the factor of a = e−2(Kτ+Kcs)G|h|2 we find

M =

[
1 −4eKτ+Kcss2G−1κh

h

−eKτ+KcsG−2κh
h

3−R

]
. (2.2.3)

Now we set out to find the eigenvalues, λ, of M by calculating the 0-points of the
characteristic polynomial.

0 =(1− λ) (3−R− λ)− 4e2(Kτ+Kcs)G−3s2|κ|2h
h

h

h
,

0 =λ2 + (R− 4)λ+ 3−R− e2KcsG−3|κ|2.
(2.2.4)

We can now use the 4’th and 5’th line of equation (1.14.22) to express κ in therms
of R:

−e−2Kcs(τ − τ)2G|h1|2 − (τ − τ)2G−2|κ|2|h1|2 =e−2(Kcs+Kτ )|h1|2
(
3G−R1111G

−1
)

1 + e2KcsG−3|κ|2 =−R1111G
−2 + 3

e2KcsG−3|κ|2 =2−R,
R = 2− e2KcsG−3|κ|2.

(2.2.5)
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We can now eliminate κ in favour of R. Substituting this into the characteristic
polynomial we find (see figure 2.1:

0 =λ2 + (R− 4)λ+ 1,

λ± =
(4−R)±

√
12− 8R +R2

2
.

(2.2.6)

For a plot of these λ± see figure 2.1. We see that these λ only depend on the Ricci

-2 -1 1 2
R

1

2

3

4

5

6

λ

Figure 2.1: This figure shows both λ− in orange and λ+ in blue dependent on the
Ricci scalar R. These λ± are the rescales eigenvalues of QQ. The case we consider
here is h2,1

− = 1. Note see that for the range R ≤ 2 we have λ± > 0 and that for
the extremum of R = 2 the lambda are degenerate: λ± = 1.

scalar of the complex-structure moduli-space. Note that R is bound to be at most
2, thus ensuring that λ± ≥ 0 and the masses are real.[15] We found two different
λ such that from equation (2.1.14) we find 4 masses. We use notation where m2

±±
represent these masses. The first ± in the subscript corresponds to whether we
take the λ+ or λ− option and the second ± in the subscript corresponds to whether
we take the + or − that shows up in equation (2.1.14).

m2
±± =

Nflux

V2

(√
λ±

√
1− 1

µ2
± 1

µ

)2

. (2.2.7)

For a plot of these masses see figure 2.2.

2.3 h2,1
− = 1 and Large-complex-structure limit

In this section we calculate the masses of the moduli for a special case of the last
section. So h2,1

− = 1 such that there is again only one complex structure modulus z1
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Figure 2.2: This figure shows the V2

Nflux
m2
±± dependent on µ and the Ricci scalar R.

The case we consider here is h2,1
− = 1. Note that all masses are equal when µ = 1.

and again the i index only takes the value 1 as well as QQ being a 2 by 2 matrix.
The new part is that we assume the large-complex-structure limit such that we
have

F = − 1

3!

κ̂111(X1)3

X0
(2.3.1)

This is taken from [9] equation (4.4) also see [11]. In this expression κ̂111 is a con-
stant, this constant is related to κ as we will determine in (2.3.15).

We will now determine the value of R in this case such that we can plug this into
the expressions we found before. We do this by first preparing some relations that
we can then use to calculate a specific value for R in this case.

2.3.1 Calculating
∫
X Ω ∧ Ω

From equation (1.14.3) we find that in this setting we have

Ω = X0α0 +X1α1 − ∂0Fβ0 − ∂1Fβ1. (2.3.2)

Now we use

zi =
X i

X0
⇒ X1 = X0z (2.3.3)

and (2.3.1) to find

F =− 1

3!

κ̂111(X1)3

X0
,

∂0F =
1

3!

κ̂111(X1)3

(X0)2
=

1

3!
κ̂111X

0z3,

∂1F =− 1

2

κ̂111(X1)2

X0
= −1

2
κ̂111X

0z2.

(2.3.4)
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This results in:

Ω = X0

(
α0 + zα1 −

1

3!
κ̂111z

3β0 +
1

2
κ̂111z

2β1

)
. (2.3.5)

Now to calculate
∫
X Ω ∧ Ω we plug in the relations we just found for Ω and Ω

and use the relations in equation (1.14.4). This leads to:∫
Ω ∧ Ω =|X0|2κ̂111

(
− 1

3!
(z)3 +

1

2
(z)2z +

1

3!
(z)3 − 1

2
(z)2z

)
. (2.3.6)

Then we split z into its real and imaginary part such that z = u+ vi. We plug this
in and find: ∫

Ω ∧ Ω = −|X0|2κ̂111
4

3
iv3. (2.3.7)

2.3.2 K and its z derivative

With the result we found for
∫

Ω∧Ω in hand we are ready to express K in therms
of v and s (using τ = c+ is). Recall that from equation (1.14.5) we found that

K =− log [−i(τ − τ)]− 2 log [V ]− log

[
i

∫
Ω ∧ Ω

]
,

=− log [2s]− 2 log [V ]− log

[
|X0|2κ̂111

4

3
v3

]
.

(2.3.8)

Now we have an expression for K we want to also find ∂zK. To this end we first
calculate ∂zv:

z =u+ vi,

v =i
z − z

2
,

∂zv =
−i
2
.

(2.3.9)

With this we can calculate ∂zK. Note that only one of it’s therms is dependent on
z. Therefore

∂zK =∂z

(
− log [2s]− 2 log [V ]− log

[
|X0|2κ̂111

4

3
v3

])
,

=−
∂z
[
|X0|2κ̂111

4
3
v3
]

|X0|2κ̂111
4
3
v3

,

=
3i

2v
.

(2.3.10)

2.3.3 Relating κ and κ̂111

From (1.14.20) we know that in this case where h2,1
− = 1 we have

κ = −
∫
X

Ω ∧DzDzDzΩ (2.3.11)
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where DzΩ = ∂zΩ + (∂zK)Ω.

We can expand DzDzDzΩ using this expression for DzΩ. Then we want to find
expressions for the z derivatives of Ω and K. Using what we found in (2.3.5) we
can calculate the z derivatives of Ω:

∂z∂z∂zΩ =−X0κ̂111β
0. (2.3.12)

Then we calculate the z derivatives of K using equation (2.3.10) to find:

∂zK =
3i

2v
, ∂z∂zK = − 3

4v2
, ∂z∂z∂zK = − 3i

4v3
. (2.3.13)

Next we plug our expressions for the z derivatives into DzDzDzΩ and we find an
expansion of Ω in the αI β

I basis in therms of v and z:

DzDzDzΩ

X0
=α0

[
−15i

2v3

]
− α1

[
15i

2v3
z +

9

v2

]
− κ̂111β

0

[
1 +

9i

2v
z − 9

2v2
z2 − 10i

8v3
z3

]
+ κ̂111β

1

[
9i

2v
− 9

v2
z − 15i

4v3
z2

]
.

(2.3.14)

Substituting this into (1.14.20) we can use the equations relating the αI and βI

(1.14.4) as well as the expansion of Ω in this basis (2.3.5) to relate κ and κ̂111. We
find that

κ = (X0)2κ̂111. (2.3.15)

2.3.4 The Ricci scalar

Now we have this we are almost ready to calculate R in this setting. From equation
(1.11.2), (2.3.10) and (2.3.9) we find an expression for G in therms of v:

G =
3

4v2
. (2.3.16)

Also, using equation (1.14.5), (2.3.15) and (2.3.7) we find expressions for the
exponential of parts of the Kähler potential in therms of v and s such that:

e−Kcs =
X0

X0
κ

4

3
v3 and e−Kτ = 2s. (2.3.17)

With what we just found we can give an expression for the Ricci scalar R. From
(2.2.5) we find

R = 2− e2KcsG−3|κ|2. (2.3.18)

Now we plug in (2.3.17) and (2.3.16). Then we further simplify using (2.3.15) and
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find:

R =2− (X0)2

X0
2 κ−2 9

16
v−6 64v6

27
|κ|2,

=2− (X0)2

X0
2 κ−1 4

3
κ,

=2− (X0)2κ−1 4

3
κ̂111,

=2− 4

3
,

R =
2

3
.

(2.3.19)

2.3.5 Masses

As we have found the value of R in the large complex structure limit we can plug
this into (2.2.6) and find that λ± takes the values:

λ+ = 3 and λ− =
1

3
(2.3.20)

We can use these results and equation (2.1.14) to calculate the masses in the large
complex structure limit:

m2
−− =

Nflux

V2

(
1√
3

√
1− 1

µ2
− 1

µ

)2

,

m2
+− =

Nflux

V2

(√
3

√
1− 1

µ2
− 1

µ

)2

,

m2
−+ =

Nflux

V2

(
1√
3

√
1− 1

µ2
+

1

µ

)2

,

m2
++ =

Nflux

V2

(√
3

√
1− 1

µ2
+

1

µ

)2

.

(2.3.21)

We have to note that this only holds when W0 6= 0. If W0 = 0 then, from (2.1.2)
we know that

m2
−− = m2

−+ =eK
(

1√
3

e−(Kτ+Kcs)
√
G|h|

)2

and

m2
+− = m2

++ =eK
(√

3e−(Kτ+Kcs)
√
G|h|

)2

.

(2.3.22)

Then using what we found in (2.1.11) we calculate for W0 = 0 that

m2
−− = m2

−+ =
Nflux

V2

1√
3

and

m2
+− = m2

++ =
Nflux

V2

√
3.

(2.3.23)

Here V is the Einstein-frame volume we encountered in (1.14.5). This can be
determined during the stabilization of the Kähler moduli.



Chapter 3

Calculations on h
2,1
− = 2

In this section we will again calculate the masses of the moduli. Only this time we
set h2,1

− = 2. This means that we now have an extra modulus, namely the complex
modulus τ and both z1 and z2. So the index i runs over 1, 2. Our calculations will
follow along similar lines as before. Firstly we will simplify the matrix QQ and
calculate it’s eigenvalues. Secondly we calculate an expression for the masses in
therms of the eigenvalues of a matrix M that is a rescaling of QQ. After that we
can discuss under which circumstances there are degenerate masses.

3.1 Eigenvalues λ

3.1.1 Simplifying QQ

To find the σα we need the eigenvalues of QQ. Recall from (1.14.22) that

(QQ)ττ =e−2(Kτ+Kcs)hiGijh
j,

(QQ)τ
j

=e−(Kτ+Kcs)(τ − τ)2κjmnh
mhn,

(QQ)iτ =− e−(Kτ+Kcs)κimnh
mhn,

(QQ)i
j

=− e−2Kcs(τ − τ)2hiGjkh
k − (τ − τ)2κilkh

kκl
jm
hm.

(3.1.1)

To be able to find it’s eigenvalues we will define some other matrix Q̂ with the
same eigenvalues. To this end we introduce the einbein eai and eb

j
together with

their inverses eia and ej
b
. We define this such that

Gij =eai δabe
b
j
,

eai e
i
b =δab .

(3.1.2)

We can now use this to change all the indices from i, j, k to a, b, c which are raised
and lowered by δab and δab instead of Gij. This will simplify the expressions we
will work with. To this end we define

ha =eai h
i,

κabc =eiae
j
be
k
cκijk.

(3.1.3)

29
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These definitions make it possible to get rid of Gij in the matrix and replace it by
the more easily to handle δab. We do this by noting that[

1 0
0 ea

i

]
and

[
1 0

0 ei
b

]
(3.1.4)

are each-others inverse such that if we define

Q̂ =

[
1 0
0 ea

i

]
QQ

[
1 0

0 ei
b

]
(3.1.5)

it has the same eigenvalues σ2
α as QQ.

This leads to Q̂ being

Q̂τ
τ =4s2e−2Kcshaδabh

b,

Q̂τ
a =− 8s3e−Kcsκabch

bhc,

Q̂a
τ =− 2se−Kcsδabκbcdh

chd,

Q̂a
b

=4s2e−2Kcshaδbch
c + 4s2κacdh

dκc
fb
hf .

(3.1.6)

Now we want to define a few things to further simplify this matrix. First we define
the vector h and it’s norm with respect to G:

h =

(
h1

h2

)
and

||h||2 =haδabh
b = |h1|2 + |h2|2.

(3.1.7)

Note that here all the indices are of the a, b, c type.
With these conventions we can define a normal vector of h, namely ê, such that

ê =
h

||h||
and ê =

h

||h||
(3.1.8)

These have the nice property that

ê · ê =êaδab ê
b

= 1. (3.1.9)

Lastly we define the 2 by 2 matrix κ to be

[κ]ad = κacdê
c. (3.1.10)

Now adopting matrix notation instead of index notation and denoting that trans-
pose with T , we find an expression for Q̂:

Q̂ = 4s2e−2Kcs||h||2
[

1 −2seKcs ê
T
κT

− eKcs

2s
κê êêT + e2Kcsκκ

]
. (3.1.11)

Then to simplify even further we note from (1.14.20) that κ is symmetric so there
exist real numbers κ1 and κ2 as well as a unitary matrix U such that

UκUT =

[
κ1 0
0 κ2

]
. (3.1.12)
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With this we can define the matrix q that has the same eigenvalues as Q̂. We set

q =

[
1 0
0 −2sU

]
Q̂

[
1 0
0 −1

2s
U †

]
. (3.1.13)

Note that the matrices right and left of Q̂ are each others inverse such that the
eigenvalues of q are still σ2

α.
This evaluates to

q = 4s2e−2Kcs||h||2
[

1 eKcs ê
T
UTUκU

T

eKcsUκUTUê (Uê)(Uê)T + e2KcsUκUTUκU
T

]
. (3.1.14)

From this we see that we can define ẽ = Uê that has the same kind of property as
ê:

ẽ · ẽ = êTU
T
Uê = ê · ê = 1. (3.1.15)

This means we can write the components of ẽ in their polar coordinates in therms
of the real r, φ1, φ2 or θ, φ1, φ2 in the following way:

ẽ =

(
reiφ1

√
1− r2eiφ2

)
=

(
cos(θ)eiφ1

sin(θ)eiφ2

)
. (3.1.16)

Using this we find q to be:

q =
4s2

e2Kcs
||h||2

 1 eKcsκ1re
−iφ1 eKcsκ2

√
1− r2e−iφ2

eKcsκ1re
iφ1 e2Kcsκ2

1 + r2 r
√

1− r2e−i(φ1−φ2)

eKcsκ2

√
1− r2eiφ2 r

√
1− r2ei(φ1−φ2) e2Kcsκ2

2 + 1− r2


=

4s2

e2Kcs
||h||2

 1 eKcsκ1 cos(θ)e−iφ1 eKcsκ2 sin(θ)e−iφ2

eKcsκ1 cos(θ)eiφ1 e2Kcsκ2
1 + cos2(θ) cos(θ) sin(θ)ei(φ2−φ1)

eKcsκ2 sin(θ)eiφ2 cos(θ) sin(θ)ei(φ1−φ2) e2Kcsκ2
2 + sin2(θ)

 .
(3.1.17)

We can express q = aM . Where a = 4s2e−2Kcs||h||2 is a scalar and

M =

 1 eKcsκ1re
−iφ1 eKcsκ2

√
1− r2e−iφ2

eKcsκ1re
iφ1 e2Kcsκ2

1 + r2 r
√

1− r2e−i(φ1−φ2)

eKcsκ2

√
1− r2eiφ2 r

√
1− r2ei(φ1−φ2) e2Kcsκ2

2 + 1− r2


=

 1 eKcsκ1 cos(θ)e−iφ1 eKcsκ2 sin(θ)e−iφ2

eKcsκ1 cos(θ)eiφ1 e2Kcsκ2
1 + cos2(θ) cos(θ) sin(θ)e−i(φ1−φ2)

eKcsκ2 sin(θ)eiφ2 cos(θ) sin(θ)ei(φ1−φ2) e2Kcsκ2
2 + sin2(θ)

 .
(3.1.18)

a matrix. So if λα is an eigenvalue of M then aλα = σ2
α is an eigenvalue of aM = q

and therefore of QQ.(2.0.1)
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3.1.2 Characteristic polynomial

Now we are ready to calculate λ by setting the characteristic polynomial to 0. We
find:

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcsr2(κ2

2 − κ2
1) + 2e2Kcsκ2

1 + 1
]

− 2e2Kcsr4κ2
2 − 2e2Kcsr2(1− r2)κ1κ2 cos(φ1 − φ2)− κ2

1(1− r2)2eKcs ,

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcs cos2(θ)κ2

2 + 2e2Kcsκ2
1 sin2(θ) + 1

]
− 2e2Kcs cos4(θ)κ2

2 − 2e2Kcs cos2(θ) sin2(θ)κ1κ2 cos(φ1 − φ2)− κ2
1 sin4(θ)eKcs .

(3.1.19)

Now we notice that φ1 and φ2 only appear in the combination φ1 − φ2. Therefore
we define φ = φ1 − φ2 and simplify to:

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcsr2(κ2

2 − κ2
1) + 2e2Kcsκ2

1 + 1
]

− 2e2Kcsr4κ2
2 − 2e2Kcsr2(1− r2)κ1κ2 cos(φ)− κ2

1(1− r2)2eKcs ,

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcs cos2(θ)κ2

2 + 2e2Kcsκ2
1 sin2(θ) + 1

]
− 2e2Kcs cos4(θ)κ2

2 − 2e2Kcs cos2(θ) sin2(θ)κ1κ2 cos(φ)− κ2
1 sin4(θ)eKcs .

(3.1.20)

From these equations we see that λ depends on 4 real parameters: eKcsκ1, eKcsκ2,
r or θ and φ.

3.2 Masses in therms of λ

In this section we will express the masses in therms of the λ we just defined and
analysed. This will be done along the same lines as in section 2.1.1.

Now we have a = 4s2e−2Kcs ||h||2 and σ2
α = 4s2e−2Kcs ||h||2λ. Therefore we have

σα = 2se−Kcs ||h||
√
λ (3.2.1)

This we can plug in to (4.3.1) to find:

m2
α± =eK

(
2se−Kcs||h||

√
λ± |W0|

)2

. (3.2.2)

We want to re-express the masses in more natural quantities. In order to express
Gij and hi in therms of these quantities we use from the literature: equation (3.2)
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in the paper [14]

Gij = −
∫
χi ∧ χj∫
Ω ∧ Ω

. (3.2.3)

Now we can use the expression (1.14.18) we have for H, the expression (1.14.5)
for Kcs, (2.1.6), (2.1.8), (2.1.4) as well as the expression we just quoted from the
literature to calculate

∫
H ∧ ?H. This leads to∫

H ∧ ?H

=2i

∫ (
|h0|2Ω ∧ Ω− |h1|2χ1 ∧ χ1 − |h2|2χ2 ∧ χ2 − h1h2χ2 ∧ χ1 − h1h2χ1 ∧ χ2

)
=2|h0|2e−Kcs + 2ihiGijh

j

∫
Ω ∧ Ω

=2e−Kcs
(
|h0|2 + ||h||2

)
(3.2.4)

Now we have related
∫
H ∧ ?H to h0 and ||h||. With these relations we can, find

the analogous relation to (2.1.11):

||h||2 =
1

2
eKcs

∫
H ∧ ?H − |h0|2

=eKτ+KcsNflux − e2(Kτ+Kcs)|W0|2
(3.2.5)

We plug this in to (3.2.2) and find:

m2
α± =eK

(
2se−Kcs||h||

√
λα ± |W0|

)2

,

=e−Kτ−Kcs−2 log[V]

(√
hiGijh

j
√
λα ± |h0|

)2

.
(3.2.6)

Using the same definition for µ as before:

µ2 =
Nflux

eKτ+Kcs|W0|2
(3.2.7)

leads again to

m2
α± =eK

(
e−(Kτ+Kcs)

√
eKτ+KcsNflux − e2(Kτ+Kcs)|W0|2

√
λα ± |W0|

)2

,

=eK

(
|W0|

√
Nflux

eKτ+Kcs|W0|2
− 1
√
λα ± |W0|

)2

,

=eK |W0|2
(√

λα
√
µ2 − 1± 1

)2

,

=
Nflux

µ2
e−2 log[V]

(√
λα
√
µ2 − 1± 1

)2

,

=
Nflux

V2

(√
λα

√
1− 1

µ2
± 1

µ

)2

.

(3.2.8)
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These masses are shown in figure 3.1.

Figure 3.1: This figure shows the six V2

Nflux
m2
α± dependent on µ and eKcsκ1 for

eKcsκ2 = 5 and θ = φ = 0. The case we consider here is h2,1
− = 2. Note that all

masses are equal when µ = 1 and the masses seem to come in pairs that are close
together.



Chapter 4

Masses analysis

In this section we will discuss some of the features of the masses that stand out.
To this end we first list the cases when there are degenerate masses. Then we will
use this to find interesting features focusing on cases where all masses are equal
and limits of the moduli space.

Before we start recall the definition of µ (2.1.13). Note that we can use equation
(3.2.4) together with (2.1.6) to write µ in two different ways:

µ2 =
Nflux

eKτ+Kcs|W0|2
= 1 +

||h||2

|h0|2
(4.0.1)

With this in hand we will start analysing the masses we found.

4.1 h2,1
− = 1

In the case of only one complex structure modulus z1 we found the following values
for λ± (2.2.6):

λ± =
(4−R)±

√
12− 8R +R2

2
. (4.1.1)

Also see figure 2.1.

The 4 masses we found then are (2.2.7):

m2
±± =

Nflux

V2

(√
λ±

√
1− 1

µ2
± 1

µ

)2

. (4.1.2)

Also see figure 2.2.

Now we can analyse when (some of) these masses are equal.

4.1.1 Equal masses 1

Firstly we consider the case |W0| 6= 0:

35
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• if µ2 = 1 then all masses are equal m2 = Nflux

V2 .

• if R = 2 then λ+ = λ− = 1 and m2
+± = m2

−± = Nflux

V2µ2

(√
µ2 − 1± 1

)2

.

• if
√
λ+ +

√
λ− = 2√

µ2−1
= 2|h0|
||h|| then m2

−− = m2
+−.

• if
√
λ+ −

√
λ− = 2√

µ2−1
= 2|h0|
||h|| then m2

+− = m2
−+.

Now we can also consider the masses when |W0| = 0. In this case we have to go
back to (4.3.1). When we use (2.1.1), (2.1.11) we then find:

m2
±± =eKσ2

±,

=
Nflux

V2
λ±.

(4.1.3)

So the masses m2
±+ = m2

±− are equal anyway and also:

• if R = 2 then λ+ = λ− = 1 and m2
±± = Nflux

V2 .

These are all the options for masses to be equal.

Next we will further analyse some interesting cases.

4.1.2 All 4 masses equal

All 4 masses can only be equal if one of two things are the case. Either R = 2 and
|W0| = 0, this case we will consider below, or µ2 = 1, this case we will discuss now.

1: µ2 = 1

If µ2 = 1 we can see from (2.2.7) that the eigenvalues λ± become irrelevant and all
masses take the value m2 = Nflux

V2 . This case becomes interesting when we consider
(4.0.1). If µ2 = 1 we see from this that h1 = 0. This means that the H-flux

H = h0Ω + h0Ω. (4.1.4)

Thus H can then only be an element of the space span by Ω and Ω.

2: R = 2 and |W0| = 0

The other option for all masses to be equal is to have R = 2 and |W0| = 0. In
this case m2 = Nflux

V2 . When we then consider (2.1.10) we see that this means that
h0 = 0. This makes the H-flux becomes

H = h1χ1 + h
1
χ1. (4.1.5)
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Thus H can then only be an element of the space span by χ1 and χ1.

From these cases we see that all 4 masses are equal if and only if the H-flux is
purely an element of the span of just Ω and Ω or just χ1 and χ1. Equivalently all
4 masses are equal if and only if h0 = 0 or h1 = 0.

4.1.3 Extremes of R

We also want to see what happens if R takes extreme values.

1: R = 2

One option is that it attains it’s maximum: R = 2. In this case we have seen that
λ+ = λ− = 1. This also means that the 4 masses split into two pairs of equal
masses:

m2
+± = m2

−± =
Nflux

V2µ2

(√
µ2 − 1± 1

)2

,

=
Nflux

V2µ2

(
|h1|
|h0|
± 1

)2

,

=
eKτ+Kcs |W0|2

V2

(
|h1|
|h0|
± 1

)2

,

=
e−Kτ−Kcs

V2

(
|h1| ± |h0|

)2
.

(4.1.6)

Note that in this case some of the masses can vanish namely m2
+− = m2

−− = 0 if
|h0| = |h1|. In this case these moduli would not be stabilized.

2: Limit R to −∞

The other extreme for R is the limit to −∞. From (2.2.6) we find that for R very
big and negative we have:

λ+ ≈−R + 4 and

λ− ≈
−1

R
.

(4.1.7)

This means that for R very big and negative the masses split in two pairs the first
pair (see figure 4.1) :

m2
+± ≈ −R

(
1− 1

µ2

)
Nflux

V2
(4.1.8)

and the second pair (see figure 4.2) :

m2
−± ≈

Nflux

V2µ2
. (4.1.9)

Note that two of these masses grow very big in this limit while the other two are
approximately independent of R.
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Figure 4.1: This figure shows the 2 masses m2
+± dependent on µ and R for large

negative values of R. The case we consider here is h2,1
− = 1. Note that both masses

are (almost) equal and linear in R.

Figure 4.2: This figure shows the 2 masses m2
−± dependent on µ and R for large

negative values of R. The case we consider here is h2,1
− = 1. Note that both masses

are (almost) equal and independent of R.

4.2 h2,1
− = 1 in the large complex structure limit

We discuss this special case separately.
From (2.3.21) we know that the 4 masses are:
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m2
−− =

Nflux

V2

(
1√
3

√
1− 1

µ2
− 1

µ

)2

,

m2
+− =

Nflux

V2

(√
3

√
1− 1

µ2
− 1

µ

)2

,

m2
−+ =

Nflux

V2

(
1√
3

√
1− 1

µ2
+

1

µ

)2

,

m2
++ =

Nflux

V2

(√
3

√
1− 1

µ2
+

1

µ

)2

.

(4.2.1)

Except when |W0| = 0 in that case we have (2.3.23):

m2
−− = m2

−+ =
Nflux

V2

1√
3

and

m2
+− = m2

++ =
Nflux

V2

√
3.

(4.2.2)

4.2.1 Equal masses 2

We can use the expressions we found for the masses to analyse when these masses
can be equal. First we consider the case |W0| 6= 0:

• if µ2 = 1 then all masses are equal m2 = eK |W0|2 = Nflux

V2 .

• if µ2 = 7
4

then m2
−− = m2

+− = Nflux

V2
1
7
, m2

−+ = Nflux

V2
9
7

and m2
++ = Nflux

V2
25
7

.

• if µ2 = 4 then m2
+− = m2

−+ = Nflux

V2 , m2
−− = 0 and m2

++ = 4Nflux

V2 .

Note that these are the same options as in 4.1.1 except for the option where R = 2.
That option clearly does not apply here since R = 2

3
.

For the case where W0 = 0 there are no extra options for masses to be equal
other that the paring that always occurs in this case: m2

±− = m2
±+.

Next we will further analyse some interesting cases.

All 4 masses equal

Because R 6= 2 the only way all 4 masses can be equal in this case is if µ2 = 1.
This is the same as in 4.1.2. This means h1 = 0.

This concludes the discussion of the masses for the case with only one complex
structure modulus (h2,1

− = 1). We now proceed to an analysis of the masses in the
next case.
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4.3 h2,1
− = 2

In this case with two complex structure moduli zi we found for λ± a polynomial
equation of third degree (3.1.20):

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcsr2(κ2

2 − κ2
1) + 2e2Kcsκ2

1 + 1
]

− 2e2Kcsr4κ2
2 − 2e2Kcsr2(1− r2)κ1κ2 cos(φ)− κ2

1(1− r2)2eKcs ,

0 =λ3 − λ2
[
2 + e2Kcs(κ2

1 + κ2
2)
]

+ λ
[
e4Kcsκ2

1κ
2
2 + 2eKcs cos2(θ)κ2

2 + 2e2Kcsκ2
1 sin2(θ) + 1

]
− 2e2Kcs cos4(θ)κ2

2 − 2e2Kcs cos2(θ) sin2(θ)κ1κ2 cos(φ)− κ2
1 sin4(θ)eKcs .

(4.3.1)

Note that λ depends on 4 real parameters: eKcsκ1, eKcsκ2, r or θ and φ. We also see
that the λ are unchanged when we simultaneously switch κ1 ↔ κ2 and transform
θ → −θ + π

2
.

With the 6 masses being (3.2.8):

m2
α± =

Nflux

V2

(√
λα

√
1− 1

µ2
± 1

µ

)2

. (4.3.2)

4.3.1 Equal masses 3

Next, with these expressions for the masses, we will analyse when combinations of
these 6 masses are the same. The analysis will be more extensive than before due
to the higher number of different masses. In this section we will list the cases where
different masses have the same value. Each case is characterized with numbers in
brackets. In the brackets we denote the degree of the degeneracy for each distinct
value of the masses.

First we exclude two special cases.

Case 1: W0 = 0

If |W0| = 0 we see from that when we use (2.1.1), (2.1.11) we then find:

m2
α± =

Nflux

V2
λα. (4.3.3)

Note for all α ∈ {1, 2, 3} we have m2
α+ = m2

α−.
This means there are as many distinct masses as there are distinct λα and for each
α there is a 2-fold degeneracy. So the options are

• (6) m2
α± = Nflux

V2 λα and λ1 = λ2 = λ3 and |W0| = 0,

• (4,2) m2
α± = Nflux

V2 λα and λ1 = λ2 6= λ3 and |W0| = 0,

• (2,2,2) m2
α± = Nflux

V2 λα and λα 6= λβ for α 6= β and |W0| = 0.
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Case 2: µ2 = 1

If µ2 = 1 (but |W0| 6= 0) then by (3.2.8) we have:

m2
α± =

Nflux

V2

(√
λ

√
1− 1

µ2
± 1

µ

)2

=
Nflux

V2
. (4.3.4)

So there is a 6-fold degeneracy. This happens only when µ2 = Nflux

eKτ+Kcs |W0|2 = 1. So

when we replace Nflux using (3.2.5) we see that in this case

Nflux =eKτ+Kcs|W0|2

eKτ+Kcs |W0|2 + e−Kτ−Kcs ||h||2 =eKτ+Kcs|W0|2

e−Kτ−Kcs ||h||2 =0

||h||2 =0.

(4.3.5)

So we see that this is only possible if h1 = h2 = 0. This gives one option:

• (6) m2
n± = eK |W |2 and µ2 = 1⇔ h = 0.

Preparations

Now we look at the other cases so we assume |W0| 6= 0 and µ2 6= 1. Because of
the amount of options we consider cases that are the same up to permutations of λα.

First we have a look at the different ways 2 masses can be equal. There are 4
options:

• m2
α+ = m2

α−,

• m2
α+ = m2

β+,

• m2
α− = m2

β−,

• m2
α− = m2

β+.

Where α 6= β.
We will consider these cases separately.
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m2
α+ = m2

α−

First of all we note that
√
λα
√

1− 1
µ2 ≥ 0 so |

√
λα
√

1− 1
µ2 +1| ≥ |

√
λα
√

1− 1
µ2−1|

and m2
α+ ≥ m2

α−. Now we check when the equality holds:

m2
α+ =m2

α−(√
λα

√
1− 1

µ2
+

1

µ

)2

=

(√
λα

√
1− 1

µ2
− 1

µ

)2

√
λα

√
1− 1

µ2
+

1

µ
=±

(√
λα

√
1− 1

µ2
− 1

µ

)
√
λα

√
1− 1

µ2
+

1

µ
=−

√
λα

√
1− 1

µ2
+

1

µ√
λα

√
1− 1

µ2
=−

√
λα

√
1− 1

µ2√
λα =0.

(4.3.6)

To get from the third line to the fourth we picked only one option because the
other option only gives − 1

µ
= 1

µ
.

So in this case we have

m2
α± =

Nflux

V2µ2
. (4.3.7)

m2
α+ = m2

β+

In this case we have

m2
α+ =m2

β+(√
λα

√
1− 1

µ2
+

1

µ

)2

=

(√
λβ

√
1− 1

µ2
+

1

µ

)2

√
λα

√
1− 1

µ2
+

1

µ
=±

(√
λβ

√
1− 1

µ2
+

1

µ

)
√
λα

√
1− 1

µ2
+

1

µ
=
√
λβ

√
1− 1

µ2
+

1

µ√
λα =

√
λβ.

(4.3.8)

To get from the third line to the fourth we picked only one option because the
other option equates a positive and a negative number.
In this case we have

m2
α± = m2

β±. (4.3.9)

So then there are two pairs of equal masses.
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m2
α− = m2

β−

In this case we have

m2
α− =m2

β−(√
λα

√
1− 1

µ2
− 1

µ

)2

=

(√
λβ

√
1− 1

µ2
− 1

µ

)2

√
λα

√
1− 1

µ2
− 1

µ
=±

(√
λβ

√
1− 1

µ2
− 1

µ

)
√
λα

√
1− 1

µ2
− 1

µ
=−

√
λβ

√
1− 1

µ2
+

1

µ

(
√
λα +

√
λβ)

√
1− 1

µ2
=

2

µ√
λα +

√
λβ =

2√
µ2 − 1

=
2|h1|
||h||

.

(4.3.10)

To get from the third line to the fourth we picked only one option because the
other option is the same as we have seen in the last part (λα = λβ).
So in this case we have λα = λβ and m2

α± = m2
β± or

√
λα +

√
λβ = 2√

µ2−1
and

m2
α− = m2

β− < m2
α/β+.

m2
α− = m2

β+

In this case we have

m2
α− =m2

β+(√
λα

√
1− 1

µ2
− 1

µ

)2

=

(√
λβ

√
1− 1

µ2
+

1

µ

)2

√
λα

√
1− 1

µ2
− 1

µ
=±

(√
λβ

√
1− 1

µ2
+

1

µ

)
√
λα

√
1− 1

µ2
− 1

µ
=
√
λβ

√
1− 1

µ2
+

1

µ

(
√
λα −

√
λβ)

√
1− 1

µ2
=

2

µ√
λα −

√
λβ =

2√
µ2 − 1

=
2|h1|
||h||

(4.3.11)

To get from the third line to the fourth we picked only one option because the
other option only gives − 1

µ
= 1

µ
.

So in this case we have
√
λα −

√
λβ = 2√

µ2−1
and m2

β− < m2
β+ = m2

α− < m2
α+.

Recap

We found that masses can be equal in the following cases:
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• m2
α+ = m2

β− ⇔ λα = 0 and m2
α± = Nflux

V2µ2

• m2
α+ = m2

β+ ⇔ λα = λβ and m2
α± = m2

β±

• m2
α− = m2

β− ⇔ λα = λβ and m2
α± = m2

β± or
√
λα +

√
λβ = 2

1
√
µ2−1

= 2|h1|
||h||

and m2
α− = m2

β− < m2
α/β+

• m2
α− = m2

β+ ⇔
√
λα −

√
λβ = 2√

µ2−1
= 2|h1|
||h|| and m2

β− < m2
β+ = m2

α− < m2
α+

Now we can describe all the possible combinations. To avoid redundancy’s we do
not consider perturbations of λ1, λ2, λ3.

6 masses the same

If we want all 6 masses to be the same than m2
α+ = m2

α− for all α so we have
λα = 0 and m2

α± = Nflux

V2µ2 for all α. Inspection of the characteristic polynomial shows

that this is not possible since the coefficient of the λ2 therm in the characteristic
polynomial can not be 0 (3.1.20). Therefore the only option for all the masses to
be equal is:

• (6) m2
α± = Nflux

V2 and µ2 = 1⇔ ||h|| = 0.

5 masses the same

If we want exactly 5 masses to be the same then we need for 2 α’s that m2
α+ = m2

α−
but not all three. Since λα ≥ 0 and m2

α+ = m2
α− ⇒ λα = 0 we have 0 = λ1 =

λ2 < λ3. But this is not possible because the coefficient of the λ therm in the
characteristic polynomial can not be 0 (3.1.20).
We conclude that a 5 fold degeneracy is not possible.

4 masses the same

If we want 4 masses to be the same but not 5 then we need for at least 1 α that
m2
α+ = m2

α− but not all three.

First we look at the case where m2
1/2± = Nflux

V2µ2 .

This means we have 4 equal masses so m2
3± 6= m2

1/2± so we have λ1/2 = 0. This is
again not an option for the same reason as before.

Now we look at the case where just m2
1± = Nflux

V2µ2 .

λ1 = 0 but λ2/3 6= 0. In this case we still need that one of m2
2± and one of the m2

3±
is the same as m2

1±. This can not be either of the m2
2/3+ because this would lead to

all λα = 0 and thus a 6 fold degeneracy. So we need m2
1± = m2

2/3−, m2
2/3+ = 9Nflux

V2µ2 ,

λ1 = 0 and λ2/3 = 4
µ2−1

.
We have:

• (4,2) m2
1± = m2

2/3− = Nflux

V2µ2 and m2
2/3+ = 9Nflux

V2µ2 and λ1 = 0 and λ2/3 = 4
µ2−1

.
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3 masses the same

If we want 3 masses to be the same but not 4 than we have for at most 1 α that
m2
α+ = m2

α−.

First we look at the case where m2
1± = Nflux

V2µ2 .

This means we have 2 equal masses so we need m2
2− = m2

1± (if m2
2+ = m2

1± then
also m2

2± = m2
1±). So λ1 = 0, λ2 = 4

µ2−1
and m2

2+ = 9Nflux

V2µ2 . Then there are 2

options m2
3− = m2

2+ or m2
3− 6= m2

2+.
If m2

3− = m2
2+ = 9Nflux

V2µ2 then λ3 = 9λ2 = 9
µ2−1

and m2
3+ = 16Nflux

V2µ2 but if m2
3− 6= m2

2+

then 0 < λ3 6= 9
µ2−1

Now we look at the case where for none of the α we have m2
α− = m2

α+.
So λα 6= 0. To still have 3 the same masses we then need that all these same
masses have a different α, so for each α one of the m2

α± is in the group. There
are 4 options: m2

1+ = m2
2+ = m2

3+ , m2
1+ = m2

2+ = m2
3−, m2

1+ = m2
2− = m2

3− and
m2

1− = m2
2− = m2

3−.
If m2

1+ = m2
2+ = m2

3+ then λ1 = λ2 = λ3 so m2
1− = m2

2− = m2
3−.

If m2
1+ = m2

2+ = m2
3− then λ1 = λ2 and

√
λ3 −

√
λ2 = 2√

µ2−1
. So m2

1− = m2
2− <

m2
1+ = m2

2+ = m2
3− < m2

3+.
If m2

1+ = m2
2− = m2

3− we have
√
λ2−
√
λ1 = 2√

µ2−1
so
√
λ2 >

2√
µ2−1

so
√
λ3+
√
λ2 6=

2√
µ2−1

because otherwise
√
λ3 < 0. So we are left with just the option that λ2 = λ3

and m2
2+ = m2

3+.
Finally if m2

1− = m2
2− = m2

3− either λ1 = λ2 = λ3 but we have already considered
this case or the second option is

√
λ1 +

√
λ2 =

√
λ2 +

√
λ3 =

√
λ1 +

√
λ3 = 2√

µ2−1

but this also means that λ1 = λ2 = λ3. The third and final option is λ1 = λ2 and√
λ1/2 +

√
λ3 = 2√

µ2−1
. This means m2

1+ = m2
2+.

So we have

• (3,2,1) m2
1± = m2

2− = Nflux

V2µ2 and m2
2+ = m2

3− = 9Nflux

V2µ2 and m2
3+ = 16Nflux

V2µ2 and

λ1 = 0 and λ2 = 4
µ2−1

and λ3 = 9
µ2−1

.

• (3,1,1,1) m2
1± = m2

2− = Nflux

V2µ2 and m2
2+ = 9Nflux

V2µ2 6= m2
3− < m2

3+ 6= 16Nflux

V2µ2 and

λ1 = 0 and λ2 = 4
µ2−1

and 0 < λ3 6= 9
µ2−1

.

• (3,3) m2
1+ = m2

2+ = m2
3+ 6= m2

1− = m2
2− = m2

3− and 0 < λ1 = λ2 = λ3.

• (3,2,1) m2
1− = m2

2− < m2
1+ = m2

2+ = m2
3− < m2

3+, 0 < λ1 = λ2 < λ3 and√
λ3 −

√
λ1/2 = 2√

µ2−1
.

• (3,2,1) m2
1− < m2

1+ = m2
2− = m2

3− < m2
2+ = m2

3+, 0 < λ1 < λ2 = λ3 and√
λ2/3 −

√
λ1 = 2√

µ2−1
.

• (3,2,1) m2
1− = m2

2− = m2
3− < m2

1+ = m2
2+, m2

α− < m2
3+, 0 < λ1 = λ2, 0 < λ3

and
√
λ1/2 +

√
λ3 = 2√

µ2−1
.
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2 masses the same

First we look at the option where m2
1− = m2

1+ = then λ1 = 0 and there are a few
options. Note none of the other α can have m2

α− = m2
α+ = because then more then

2 masses will be the same.
First, m2

1− = m2
1+ = Nflux

V2µ2 and λ2 = λ3 6= 0 then m2
2± = m2

3±.

Second, m2
1− = m2

1+ = Nflux

V2µ2 and m2
2− = m2

3− then
√
λ2 +

√
λ3 = 2√

µ2−1
but

0 6= λ2 6= λ3 6= 0.
Third, m2

1− = m2
1+ = Nflux

V2µ2 and m2
2− < m2

2+ = m2
3− < m2

3+ then
√
λ3−
√
λ2 = 2√

µ2−1

but λ2/3 6= 0.
Fourth, m2

1− = m2
1+ = Nflux

V2µ2 and none of the m2
2/3± are the same, such that

0 6= λ2 6= λ3 6= 0 and
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
.

Now we can consider the cases where for all α we have m2
α+ 6= m2

α−. So λα 6= 0.
First, m2

1± = m2
2± so λ1 = λ2 6= 0 then neither of the m2

3± can be the same as any
other so λ1/2 6= λ3 6= 0 and

√
λ3 ±

√
λ1/2 6= ± 2√

µ2−1
.

Second, m2
1− = m2

2− then
√
λ1 +

√
λ2 = 2√

µ2−1
now the m2

3+ can not be the same

as any of the others (this would also make all m2
α− the same) but the m2

3− can be
so we have m2

1+ = m2
3− then

√
λ3 −

√
λ1 = 2√

µ2−1
or

Third, m2
1− = m2

2− then
√
λ1 +

√
λ2 = 2√

µ2−1
and none of the m2

3± are the same as

any others.

Than we have one more category left where m2
1− < m2

1+ = m2
2− < m2

2+ so√
λ2 −

√
λ1 = 2√

µ2−1
. In this case m2

1/2+ 6= m2
3+ 6= m2

2− and m2
1+ = m2

2− 6= m2
3−.

First, just m2
1− < m2

1+ = m2
2− < m2

2+ this gives
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
.

Second, m2
1− < m2

1+ = m2
2− < m2

2+ = m2
3− < m2

3+ this gives
√
λ3 −

√
λ2 = 2√

µ2−1
.

All other options are the same as a previous option through permutation of the λα.

So we have

• (2,2,2) m2
1− = m2

1+ = Nflux

V2µ2 and m2
2± = m2

3± and λ1 = 0 and λ2 = λ3 6= 0.

• (2,2,1,1) m2
1− = m2

1+ = Nflux

V2µ2 and m2
2− = m2

3− < m2
2/3+ and λ1 = 0 and√

λ2 +
√
λ3 = 2√

µ2−1
but 0 6= λ2 6= λ3 6= 0.

• (2,2,1,1) m2
1− = m2

1+ = Nflux

V2µ2 and m2
2− < m2

2+ = m2
3− < m2

3+ and λ1 = 0 and√
λ3 −

√
λ2 = 2√

µ2−1
but λ2/3 6= 0.

• (2,1,1,1,1) m2
1− = m2

1+ = Nflux

V2µ2 and m2
2− < m2

2+ and m2
3− < m2

3+ and m2
3− 6=

m2
2± 6= m2

3+ and λ1 = 0 and
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
but λ2/3 6= 0.
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• (2,2,1,1) m2
1± = m2

2± and m2
1/2± 6= m2

3− < m2
3+ 6= m2

1/2± and λ1 = λ2 6= 0 and

λ1/2 6= λ3 6= 0 and
√
λ3 ±

√
λ1/2 6= ± 2√

µ2−1
.

• (2,2,1,1) m2
1− = m2

2− < m2
1/2+ and m2

1+ 6= m2
2+ and m2

1+ = m2
3− < m2

3+ and

m2
2+ 6= m2

3+ and λα > 0 and
√
λ1 +

√
λ2 = 2√

µ2−1
and λ3 6= λ1 6= λ2 6= λ3 and

√
λ3 −

√
λ1 = 2√

µ2−1
.

• (2,1,1,1,1) m2
1− = m2

2− < m2
1/2+ and m2

3± 6= m2
1+ 6= m2

2+ 6= m2
3± and m2

3− <

m2
3+ and λα > 0 and

√
λ1 +

√
λ2 = 2√

µ2−1
and λ3 6= λ1 6= λ2 6= λ3 and

√
λ3 ±

√
λ1/2 6= ± 2√

µ2−1
.

• (2,1,1,1,1) m2
1− < m2

1+ = m2
2− < m2

2+ and m2
1/2± 6= m2

3− < m2
3+ 6= m2

1/2± and

λα 6= 0 and
√
λ2 −

√
λ1 = 2√

µ2−1
and
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
.

• (2,2,1,1) 0 < m2
1− < m2

1+ = m2
2− < m2

2+ = m2
3− < m2

3+ and λα 6= 0 and√
λ2 −

√
λ1 =

√
λ3 −

√
λ2 = 2√

µ2−1
.

All masses unique

If none of the masses can be the same then λα 6= 0 for all α. Also λα 6= λβ and√
λα +

√
λβ 6= 2√

µ2−1
for β 6= α. As well as

√
λα −

√
λβ 6= ± 2√

µ2−1
for all α, β.

So we have

• (1,1,1,1,1,1) m2
α− < m2

α+, λα 6= 0 and
√
λα−

√
λβ 6= ± 2√

µ2−1
for all α, β. As

well as λα 6= λβ and
√
λα +

√
λβ 6= 2√

µ2−1
for α 6= β.

Recap

So the full list of options is

• (6) m2
α± = e−K |h|2λα and λ1 = λ2 = λ3 and |W0| = 0.

• (6) m2
α± = Nflux

V2µ2 and µ2 = 1⇔ h = 0.

• (4,2) m2
α± = e−K |h|2λα and λ1 = λ2 6= λ3 and |W0| = 0.

• (4,2) m2
1± = m2

2/3− = Nflux

V2µ2 and m2
2/3+ = 9Nflux

V2µ2 and λ1 = 0 and λ2/3 = 4
µ2−1

.

• (3,2,1) m2
1± = m2

2− = Nflux

V2µ2 and m2
2+ = m2

3− = 9Nflux

V2µ2 and m2
3+ = 16Nflux

V2µ2 and

λ1 = 0 and λ2 = 4
µ2−1

and λ3 = 9
µ2−1

.

• (3,1,1,1) m2
1± = m2

2− = Nflux

V2µ2 and m2
2+ = 9Nflux

V2µ2 6= m2
3− < m2

3+ 6= 16Nflux

V2µ2 and

λ1 = 0 and λ2 = 4
µ2−1

and 0 < λ3 6= 9
µ2−1

.

• (3,3) m2
1− = m2

2− = m2
3− < m2

1+ = m2
2+ = m2

3+ and 0 < λ1 = λ2 = λ3.
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• (3,2,1) m2
1− = m2

2− < m2
1+ = m2

2+ = m2
3− < m2

3+, 0 < λ1 = λ2 < λ3 and√
λ3 −

√
λ1/2 = 2√

µ2−1
.

• (3,2,1) m2
1− < m2

1+ = m2
2− = m2

3− < m2
2+ = m2

3+, 0 < λ1 < λ2 = λ3 and√
λ2/3 −

√
λ1 = 2√

µ2−1
.

• (3,2,1) m2
1− = m2

2− = m2
3− < m2

1+ = m2
2+, m2

α− < m2
3+, 0 < λ1 = λ2, 0 < λ3

and
√
λ1/2 +

√
λ3 = 2√

µ2−1
.

• (2,2,2) m2
α± = e−K |h|2λα and λα 6= λβ for m 6= n and |W0| = 0.

• (2,2,2) m2
1− = m2

1+ = Nflux

V2µ2 , m2
2± = m2

3±, λ1 = 0 and λ2 = λ3 6= 0.

• (2,2,1,1) m2
1− = m2

1+ = Nflux

V2µ2 , m2
2− = m2

3− < m2
2/3+, λ1 = 0 and

√
λ2 +

√
λ3 =

2√
µ2−1

but 0 6= λ2 6= λ3 6= 0.

• (2,2,1,1) m2
1− = m2

1+ = Nflux

V2µ2 , m2
2− < m2

2+ = m2
3− < m2

3+, λ1 = 0,
√
λ3 −√

λ2 = 2√
µ2−1

but λ2/3 6= 0.

• (2,1,1,1,1) m2
1− = m2

1+ = Nflux

V2µ2 , m2
2− < m2

2+, m2
3− < m2

3+, m2
3− 6= m2

2± 6= m2
3+,

λ1 = 0,
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
but λ2/3 6= 0.

• (2,2,1,1) m2
1± = m2

2±, m2
1/2± 6= m2

3− < m2
3+ 6= m2

1/2±, λ1 = λ2 6= 0, λ1/2 6=
λ3 6= 0 and

√
λ3 ±

√
λ1/2 6= ± 2√

µ2−1
.

• (2,2,1,1) m2
1− = m2

2− < m2
1/2+, m2

1+ 6= m2
2+, m2

1+ = m2
3− < m2

3+, m2
2+ 6= m2

3+,

λα > 0,
√
λ1 +

√
λ2 = 2√

µ2−1
, λ3 6= λ1 6= λ2 6= λ3 and

√
λ3 −

√
λ1 = 2√

µ2−1
.

• (2,1,1,1,1) m2
1− = m2

2− < m2
1/2+, m2

3± 6= m2
1+ 6= m2

2+ 6= m2
3±, m2

3− < m2
3+,

λα > 0,
√
λ1+
√
λ2 = 2√

µ2−1
, λ3 6= λ1 6= λ2 6= λ3 and

√
λ3±

√
λ1/2 6= ± 2√

µ2−1
.

• (2,1,1,1,1) m2
1− < m2

1+ = m2
2− < m2

2+, m2
1/2± 6= m2

3− < m2
3+ 6= m2

1/2±, λα 6= 0,√
λ2 −

√
λ1 = 2√

µ2−1
and
√
λ3 ±

√
λ2 6= ± 2√

µ2−1
.

• (2,2,1,1) 0 < m2
1− < m2

1+ = m2
2− < m2

2+ = m2
3− < m2

3+, λα 6= 0 and√
λ2 −

√
λ1 =

√
λ3 −

√
λ2 = 2√

µ2−1
.

• (1,1,1,1,1,1) m2
α− < m2

α+, λα 6= 0 and
√
λα−

√
λβ 6= ± 2√

µ2−1
for all α, β. As

well as λα 6= λβ and
√
λα +

√
λβ 6= 2√

µ2−1
for α 6= β.

Note that in all cases except the second case we need µ2 > 1. Otherwise we will
fall back into (6) m2

α± = Nflux

V2µ2 .

We conclude this with a table of these results.
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4.3.2 Limit κ to ∞
Interesting to note is that from an extension of figure 3.1 we can get an idea of the
structure of the masses for large κ1 and κ2. This extension is shown in figure 4.3.
We see that the masses approximately split in pairs and two pairs diverge while
one pair stays approximately constant.

Figure 4.3: This figure shows the six V2

Nflux
m2
α± dependent on eKcsκ1 and eKcsκ2 for

µ = 3 and θ = φ = 0. The case we consider here is h2,1
− = 2. Note that for big

κ1 and κ2 the masses approximately split in pairs and two pairs diverge while one
pair stays approximately constant.
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Discussion

In this thesis we have analysed the masses of stabilized moduli generated by the
compactification of a 4-dimensional N = 1 supergravity theory in the minimum of
the F -term potential. For other work on this see for example [11].

In the introduction 1 we discussed that string theory is a theory of quantum
gravity. This is achieved by considering particles to be one-dimensional instead of
zero-dimensional. For this to be self consistent we need the space-time that these
particles live in to be 26- or 10-dimensional. If we then want to make contact with
the very successful standard model that describes particle physics as we understand
it today we need to compactify these ”extra” dimensions on an internal manifold.

In section 1.8.2 we see that such compactifications generally lead to more massless
modes in the theory. This creates a discrepancy with conventional particle physics
and therefore constitutes a problem. Massive modes can be ignored in effective
theories when we consider energy scales that are not able to produce these modes
but extra massless modes should be taken into account.

This can potentially be solved by stabilizing these extra massless modes that arise
due to compactification on a internal manifold. This stabilisation can be done by
introducing fluxes. These fluxes change the internal manifold slightly via a version
of the Einstein-equation such that it is not strictly flat anymore. This makes exact
calculations very difficult but it does give masses to these moduli that can then
be ignored in effective theories and contact can be made with the particle physics
that we know.

In section 1.14 we introduce the setting we will work with. We consider a type
IIB-flux compactification with F3- and H3-fluxes. We then assume that the moduli
can be stabilized, explicitly stabilizing them is difficult due to the fluxes taking the
internal manifold away from it being a Kähler manifold, and set out to calculate
the masses of these moduli in this case.

This is done in [9] by calculating the eigenvalues of the mass matrix, hessian
of the scalar potential, in the minimum of the scalar potential. That leads to an

51
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expression (4.3.1) for the masses of the moduli dependent on the eigenvalue σα of
the matrix QQ (1.14.22). These masses are:

m2
α± = eK (σα ± |W0|)2 . (5.0.1)

With these results we set out in chapter 2 and 3 to find explicit expressions for
these masses. As finding the eigenvalues of QQ is challenging we instead consider
some special cases: one complex structure modulus (2.2 h2,1

− = 1), one complex
structure modulus in the large complex structure limit (2.3 h2,1

− = 1 and F known)
and two comlpex structure moduli (3 h2,1

− = 2).

In these cases we are able to find the masses of the moduli 2.2, (2.2.7), (2.3.21),
3.1, (3.2.8). We find that in the case h2,1

− = 1 the masses depend on the flux
number Nflux, the Ricci scalar R, the Einstein-frame volume V and the quantity
µ which we defined in (2.1.13) which also depends on |W0|. Later we find that µ
can be expressed depending on the ratio of h0 and hi (4.0.1). If we also impose the
large-complex structure limit we find that R = 2

3
and we lose the R dependence of

the masses.

If h2,1
− = 2 we found that the masses depend on the flux number Nflux, the eigen-

value λ, the Einstein-frame volume V and the quantity µ. In turn we also found
and equation for λ that depends on 4 real parameters describing the fluxes that
are introduced.

With these expressions for the masses we started analysing them in chapter 4.
First we listed all the options for how different combinations of the masses can be
equal and we pick out interesting examples of these combinations to see when this
actually occurs.

After this analysis we learned that:

• For a general flux all moduli receive a mass and are stabilized when turning
on these fluxes. Only for very precise cases the masses of one or a few of the
moduli are zero.

• Even having degenerate masses seems to be the exception. For example
for all the masses to be equal we need either h0 or hi to vanish such that

H = hiχi + h
j
χj or H = h0Ω + h0Ω.

• When going to extremes in the parameters that determine the fluxes (R →
−∞ or κ1 and κ2 → ∞) the masses approximate degenerate pairs and one
pair of masses stays small while the other masses diverge.

After the findings in this thesis there are some subsequent steps that could be
taken to hopefully find interesting results:



CHAPTER 5. DISCUSSION 53

• The features of the masses that we describe in this thesis are only studied
for explicit examples. It would be interesting to find out if these persist over
more general frameworks. For example with an arbitrary number of complex
structure moduli.

• There are still some moduli left of which we have not considered the masses
here. These are the Kähler moduli. These can be stabilized using KKLT [1,
16]. This gives bounds on W0. This can then in turn be combined with the
findings in this thesis to further restrict the possible masses.

In these ways we will hopefully be able to further restrict the possible compactifi-
cations that help string theory touch on measurements in particle physics.
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