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ABSTRACT

The immersive experience of 360-degree video in virtual reality headsets expands the limits
of innovative human-computer interactions, necessitating a comprehensive understanding
of the intricate interaction process for the optimisation of 360-degree content. Despite its
significance to the user, current research has remained predominantly focused on the tech-
nical challenges, neglecting the impact of content-specific aspects on user behaviour. This
thesis employs a content-aware approach to discern the independent role of spatial- and
temporal properties of a 360-degree video sequence in shaping gaze behaviour. By em-
ploying spatiotemporal image complexity, this work reveals the intricate dynamics between
content-specific attributes, gaze behaviour, cognitive perceptions and usability context. In-
strumental to this thesis was the introduction and formulation of the quadrifactorial explo-
ration index Ny, a novel metric to quantify complex gaze patterns. By integrating computer
vision techniques and eye-tracking data, the index measures gaze patterns based on extent,
intensity, variability and randomness. Moreover, an initial framework, utilising another
unique metric d, was devised to examine the confounding influence of diegetic artefacts in
360-degree videos on user gaze. Utilising a mixed-methods design, 52 participants were
observed viewing six 360-degree videos with varying spatiotemporal image complexities via
a head-mounted display, while seated on either fixed or rotating chairs. The interaction
was captured utilising eye-tracking technology and subjective user evaluations. The re-
sults demonstrated a negative correlation between temporal complexity – the rate of visual
change over time in consecutive frames – and the extent of user gaze. In contrast, spatial
complexity – the level of visual richness in each frame – did not significantly impact the
user gaze, seemingly attributed to underlying cognitive factors. An observed dichotomy
between objective gaze metrics and subjective user experiences further emphasises the role
of cognition in the observed spatial- and temporal e�ects on gaze behaviour. In addition,
it was found that these e�ects were significantly moderated by the di�erent seating types.
The employment of oculesics, computer vision and user-centric evaluations revealed the
autonomous significance of 360-degree video content within the multifaceted interaction
model, while taking into account cognitive and usability influences. The insights provide a
theoretical understanding of gaze dynamics during 360-degree video interaction, as well as
carry significant implications for the development of more engaging 360-degree content and
immersive VR environments.

Keywords: 360-degree video technology, eye-tracking, virtual reality, usability, human-
computer interactions, spatiotemporal complexity, computer vision, gaze behaviour analy-
sis, image segmentation, cognitive perceptions.
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Introduction

The emergence of virtual reality technology has introduced an entirely new digital landscape,
evolving the way users interact with technology and establishing transformative advances in the
way users engage with virtual environments. New forms of interactive media arise and manifest
within the digital landscape of VR, signifying a paradigm shift in content consumption and im-
mersive experiences. Enabled by the increasing accessibility to VR technology and distribution of
omnidirectional content, the rising popularity of omnidirectional video interaction emerges as a key
contributor to the field of human-computer interaction [2]. Unlike conventional two-dimensional
video, 360-degree video enables a three-dimensional view in all possible directions, significantly im-
mersing users in a multi-dimensional experience [64, 375]. The relatively novel 360-degree format
poses a prominent area of research, as the complex interplay of multi-modal interaction, usability
and cognition, coupled with the unique format and expansive boundaries of VR technology, require
a continued and comprehensive understanding of the intricate interaction dynamics.

This new interaction paradigm governs the 360-degree medium, especially through the use of
head-mounted displays [64, 275, 315]. The inherently complex interaction model, which integrates
factors of technological intricacies, cognitive perceptions and content characteristics, elicits a range
of unique challenges within the field of VR research [54, 356] – specifically, since the user experience
of two-dimensional video interaction becomes multifaceted in the domain of 360-degree video
interaction. The vital role of attention guidance in immersive experiences becomes even more
complex, due to the unrestricted control and navigation of the user within the virtual 360-degree
environment. As such, the user simultaneously adapts both roles of participant and observer,
rendering traditional cinematographic techniques and attention guiding mechanisms ineffective
and necessitating a greater level of understanding of the user interaction process in such immersive
virtual environments [193, 223, 262, 306].

The novel nature of the 360-degree format presents challenges both in terms of technology and
in gaining a comprehensive understanding of the intricate user experiences. However, despite its
increased relevance, research on the 360-degree video interaction remains predominantly focused
on the technical aspects, rather than on the adoption of more nuanced content-aware and user-
centric approaches [375]. While technical challenges such as bandwidth, storage, and encoding
requirements remain inherently important to the development of the format, the continued over-
sight of content-specific influence often leads to content-agnostic methodologies, neglecting the
independent role of 360-degree content within the interaction process.

A comprehensive understanding of the dynamic influences of content-specific attributes, cog-
nitive perceptions, and the usability context in which the medium is consumed is essential for
the development of immersive and engaging virtual 360-degree environments, as the intricate in-
terplay between the 360-degree video format and the user’s underlying cognitive processes can
carry behavioural consequences to the user’s gaze and overall interaction experience [21, 290, 356].
Imperative to the understanding and development of immersive virtual 360-degree content is the
examination of the user’s gaze behaviour throughout the 360-degree video interaction process.

This thesis aims to bridge the current gap within the research domain, by approaching the
multi-dimensional interaction model from a content-aware perspective, emphasising the autonom-
ous and independent role of a 360-degree video sequence in the VR interaction process. Motivated
by related literary works and advanced methodologies such as eye-tracking and computer vision
techniques, this work primarily focuses on the complex dynamics between user interaction, cog-
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nitive perceptions and usability context. As such, this work aims to provide a comprehensive
understanding on how users navigate and engage with varying 360-degree video content in the
virtual 360-degree environments.

Central to this thesis is the integration and holistic exploration of related fields of research. This
work explores the fields of human-computer interaction, computer science, cognitive science, and
film studies to approach the main research objective holistically. Primarily, this thesis focuses on
the integration of oculesics and computer vision to elucidate the user’s gaze behaviour during 360-
degree video interactions. In particular, providing a systematic framework to analyse behavioural
patterns by transforming the unique spatial- and temporal properties of 360-degree video sequences
into quantifiable dimensions and integrating quantitative and qualitative methodologies to examine
the dynamics of user gaze behaviour, cognition, cinematography and usability contexts [105, 356,
371].

In conclusion, by integrating oculesics, usability methodologies and computer vision techniques,
this thesis aims to bridge the existing research gaps by considering the 360-degree video sequence as
an autonomous and independent component of the multifaceted interaction model. This content-
aware approach provides a nuanced understanding of how 360-degree content, in terms of space
and time, influences the user interaction in VR. As such, this work not only aims to advance the
theoretical discourse but also provide actionable insight for 360-degree content development.

This thesis adheres to the following structure. Chapter 1 explores the related work by ex-
amining the current existing body of literature from the fields of human-computer interaction,
cognitive science, film studies and computer vision. The chapter presents the foundational scope
of the thesis and explores relevant theoretical frameworks, such as omnidirectional video char-
acteristics, 360-degree user interaction models, oculesics and gaze in VR, quantitative imagery
analysis in computer vision and attention guidance in VR. Importantly, the chapter utilises the
insights gathered from the related work to further refine, formulate and detail the main research
objective and corresponding sub-questions. The research methodology of this thesis is presented
in Chapter 2, detailing the comprehensive approach applied in this study. It presents an overview
of the employed research design and integrated objective, subjective and physiological approaches.
Furthermore, the chapter details the use of required materials, sampled participants and proced-
ures, as well as the analytical framework and data analysis approaches. Chapter 3 is dedicated
to the formulation and introduction of a novel metric to quantify complex gaze behaviour pat-
terns. In this chapter, the integration of both extracted computer vision techniques and oculesics
data to formulate a methodology is detailed. Similarly, Chapter 4 presents a novel methodology
to explore and examine the relevance and confounding influence of cinematographic principles
on gaze behaviour. Both chapters present the utilised principles of computer vision to propose
novel metrics, instrumental to this thesis. In Chapter 5, the results of the conducted analyses
are presented, adhering to the provided analytical framework. The quantitative and qualitative
findings are discussed, of which the statistical analyses, regression models and subjective insights
provide a comprehensive and multi-dimensional perspective of the user interaction. The research
findings are discussed in Chapter 6. Furthermore, this chapter details the theoretical and prac-
tical implications of this work, discusses the limitations and proposes interesting future research
directions. Lastly, a conclusion to this work is presented.
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Chapter 1

Related Work
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This chapter presents the current state of research in the domain of user interaction with 360-
degree video in VR. By taking an holistic approach, this literature study explores the common
research limitations of user behaviour and interaction with 360-degree video content, as well as
includes related fields of oculesics, computer vision, cognition and film theory. The main research
objective of this thesis encompasses the independent influence of spatiotemporal image complexity
in 360-degree video sequences on user behaviour in VR. The related work, as presented in this
chapter, provides an extensive overview of the relevant literature by:

• Introducing omnidirectional video as a format, including current research chal-
lenges and limitations occurring within the domain;

• Providing a construct of 360-degree video aspects and the complex user interac-
tion, such as quality of experience, interaction layers and representative metrics;

• Discussing relevant objective and subjective assessment methods, such as physiolo-
gical methodologies and oculesics to assess user behaviour;

• Presenting relevant mathematical constructs and imagery analysis techniques
within the field of computer vision;

• And exploring the cognitive principles, attentional guidance mechanisms, user
engagement factors and cinematographic concepts related to the perception of
omnidirectional video content.

The literature study is structured as follows: section 1.1 introduces the concept of omnidirectional
video. The characteristics, as well as the challenges and limitations of 360-degree video, are
discussed in section 1.2. Section 1.3 entails the current literature on the user experience and
interaction with 360-degree video content. Furthermore, section 1.4 elaborates on the existing
research in eye-tracking as an instrument to research user gaze and analyse behavioural data in 360-
degree video interactions. Subsequently, section 1.5 presents relevant quantitative imagery analysis
techniques, derived from the field of computer vision research. In addition, section 1.6 encompasses
the overall perception of omnidirectional content by discussing the perceptual differences between
traditional and omnidirectional content, as well as discusses relevant cinematographic principles,
addresses the use of visual attention guidance mechanisms and focuses on user engagement and
immersion in VR environments. Lastly, the literature study is concluded in section 1.7, in which
the main research objective and related sub-questions are formulated.

1.1 Omnidirectional Video
Omnidirectional content, i.e., 360-degree video, has seen an increase in popularity over the recent
years, mainly due to the developments in Virtual Reality (VR) and the arrival of more interactive
displaying systems, such as head-mounted displays (HMDs) and omnidirectional capturing systems
[64]. The emergence of more wireless HMDs, such as the HTC Vive, Daydream and Oculus Rift,
enable more users to interact with this relatively novel form of content. The head-mounted display
(HMD) is a device that positions the displays in close proximity to the user’s eyes, and through
head-tracking technology, the left and right images are adjusted according to the user’s movements
within the virtual environment. The user experiences stereo vision due to both the left and
right images, as well as experiences stereo audio transmitted through earphones. This immersive
setup creates the illusion of navigating through a three-dimensional space with stationary and
moving objects, possibly including representations of other people, whom can either be actual
individuals in remote locations or virtual entities controlled entirely by a computer program.
Additionally, users can interact with the virtual environment through hand-tracking technology
to manipulate objects [275]. It is estimated that the VR market will entail 275 million users in
2025 [315]. This ongoing development and commercialisation of HMDs has ensured a substantial
increase in virtual reality (VR) applications, interest and usage [8, 54, 375], allowing for the
360-degree video format to gain popularity [343]. Furthermore, the availability of commercial-
grade omnidirectional cameras, like the Ricoh Theta X and Insta360, have lowered the entry-level
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requirements of omnidirectional content creation. This increased interest in 360-degree video is
also heavily influenced by the dominance of online video streaming [319, 320]. Video broadcasting
platforms, such as YouTubeVR, support the distribution of 360-degree video, enabling users to
easily create, consume and distribute omnidirectional content. As a format, 360-degree video
can be experiences utilising a variety of interactive displaying systems such as HMDs and mobile
viewports, the latter of which are most commonly achieved through a smartphone or tablet.
The combination of increased levels of physiological-tracking, stereoscopic visuals and wide FOV
displays, achieved through use of HMDs, enable higher levels of immersion among users compared
to other delivery systems [73]. Notably, users tend to respond to virtual stimuli in similar ways as
real-world settings due to the higher levels of immersion. An example of this was found by Wilcox
et al. (2006), which demonstrates that invasion of virtual personal space evokes similar responses
as in real-life settings [13, 352].

Contrary to traditional and two-dimensional video, 360-degree video captures a complete 360-
degree view from wherever the camera is positioned and internally projects it onto a spherical
surface [375]. The user’s field of vision (FOV) is determined by the viewport, which is bound
to the physical limitations of the displaying device or the user’s head orientation. The FOV is
expressed in degrees, which represent the amount of visual angle, and is manipulated by the user
through mouse / finger controls or head movements in a custom video player. There are multiple
devices that act as a viewport, the most common of which are the HMDs, mobile viewports and
static 2D displays. The viewport can be seen as a physical or digital "keyhole" from which the
user perceives the omnidirectional content. As such, the user’s viewport relies on the user’s head
orientation when using a HMD to view a 360-degree video. To display high-quality 360-degree
video, the entire 360-degree frame must support high-quality resolution.

The 360-degree video is projected as a spherical video, captured in all directions from a single
point. Recording setups usually consist of 2-6 separate camera’s, composited in a cubic formation.
Using specialised software, the video files are synchronised and combined into a singular spherical
view. As part of the end-to-end 360-degree video streaming network, capturing and mapping
plays a vital role. After the mapping process, the file is then encoded, and the entire package
is transmitted before it is decoded and played [362]. Traditional video encoders require two-
dimensional imagery, and as such, it is vital to convert the spherical video onto a two-dimensional
plane to enable encoding and transmission [375]. This process of mapping, projecting a sphere
onto a plane, is achieved using a variety of methods [64, 215]. As identified by Yu et al. (2015), the
most applied projection methods for 360-degree video encoding are: equirectangular, cubemap,
pyramid and dodecahedron projection [366]. Equirectangular projection (ERP) is considered the
most adopted projection method of omnidirectional video. During ERP, the spherical image
is projected onto a rectangle, during which both poles of the spheres are stretched to fit the
rectangular shape [115, 206, 370, 375]. The resulting video is compressed into a preferred format,
such as H.264, and uploaded to a server with metadata indicating the 360-degree format and any
special processing requirements. The server can then convert the video into a streaming format,
such as MPEG-DASH, before making it available for playback.

1.2 360-degree Video Characteristics
Omnidirectional video content can be accessed through a variety of different content providers and
streaming platforms. While many 360-degree video content providers are brand-specific, offered
through native HMD apps such as the HTC Viveport or Vuze+, there are also providers and ser-
vices available which are less platform-dependent and that run on multiple platforms through
desktop players (i.e., YouTube VR). User-generated content offers easy access to create and
consume 360-degree video content and is therefore a very popular method of interacting with
360-degree video content. Despite the existence of professional content providers (e.g. NBC),
user-generated content platforms (e.g. YouTube VR and Facebook) remain most accessible and
popular among users. In a study by Afzal et al. (2017), the 360-degree video library of YouTube
was characterised by utilising the aggregate statistics, bit-rate, resolution and duration [2]. By
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analysing the dataset and characteristics of 360-degree video from their study, it is possible to
extract distinct categories in which the majority of the 360-degree video library can be categorised
into. The dataset encompasses a total of 2285 360-degree videos and, through calculating term
frequency, were mapped into one of the following identified categories: animals, cartoon, concert,
documentary, driving, horror, movie trailer, roller coaster, scenery, shark, skydiving, space, sports
and video game [2]. Analysis of video duration across categories indicate a higher mean duration
of 360-degree videos within the categories of concert, driving and documentary, and a lower mean
duration within the categories of roller coaster and movie trailer. Across the entire dataset, it
was found that 360-degree videos contain a mean duration of 143 seconds, which is comparatively
shorter than the non-360-degree videos with a mean duration of 490.5 seconds. Comparing the
duration CDF plots shows a shorter tail of the distribution of 360-degree video duration. The
relative novelty of the 360-degree video format remains one of its biggest limitations. The cur-
rent state of 360-degree video development is still quite experimental, resulting in the distribution
of shorter clips to determine viewer experience and perceptibility. Furthermore, longer videos
increase levels of viewer fatigue and cybersickness, especially when viewing through HMDs. In
terms of resolution, it was found that 360-degree videos have higher maximum resolutions (i.e.,
8192x8192) when compared to traditional videos. However, both formats share similar minimum
resolution of 82x144. This correlates to a higher bit-rate for 360-degree video, yet when compared
using effective resolution [2] are quite similar in terms of bit-rate. As before-mentioned, the study
by Afzal et al. (2017) also examined the motion characteristics of 360-degree video. Motion in
360-degree is of great importance in terms of bit-rate and file transmission (i.e., bandwidth require-
ments). Interestingly, their work hypothesised that reduced motion in 360-degree videos lead to
lower bit-rate variability of the 360-degree videos compared to traditional videos. This is because
the motion in 360-degree video remains an intrinsic part of the scene, rather than being caused
by camera panning or rotation. As such, the camera acts as a static element in the scene which
captures the view in all directions from a single-point perspective. Consequently, in 360-degree
video interactions, the user is able to alter the video angle while watching it, which incites more
network responsiveness to adopt the changes in field of view. The lower bit-rate variability can be
explained by the notion that traditional video contains video during which the camera moves or
the shifts in perspective. The camera motion in traditional video is therefore higher, thus requiring
higher variability. In addition, the categories that are characterised as "high motion", according
to Afzal et al. (2017), are: driving, skydiving, sports and roller coaster. Other categories such
as cartoon, video game, movie trailer and horror vary significantly in level of motion. This effect
is usually caused by the content developer, where cinematographic rules and stylistic preferences
dictate the viewer’s attention and scene direction.

It is important to distinguish specific terminology when it comes to 360-degree video. Om-
nidirectional content refers to content that can be viewed from multiple directions, often times
including panoramic images or 360-degree video. Traditional or conventional video refers to the
standard, two-dimensional video content that is perceived as flat or planar. These videos can only
be viewed from one direction and the terminology flat, planar, 2D, traditional or conventional all
refer to this type of video and will be used interchangeably throughout this thesis. The terms
360-degree video and omnidirectional video are expressed similarly.

Omnidirectional video (OV) provides interesting user experiences and interaction. However,
due to the relatively novel nature of 360-degree video consumption, there exist various challenges
that are unique to 360-degree degree video format. Many of which are technical limitations, tightly-
bound to available delivery systems and quality thereof [375]. Furthermore, streaming 360-degree
video in a high resolution requires ultra-high bandwidth and large storage capabilities. However,
for 360-degree video to gain more popularity as a standardised form of content consumption,
there are more challenges that ought to be studied and addressed [375]. As identified by Zink et
al. (2019), most challenges and limitations within 360-degree video can be categorised under the
following set:

• Ultra-high bandwidth requirements;
• Ultra-large storage requirements;
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• Ultra-low motion-to-photon delay;
• Complex view adaptation;
• Complex rules and metadata for viewing the videos;
• Video Quality of Experience (QoE).

Approaches to solve these technical challenges is a complex area of research, and ongoing studies
on the effectivity of tile-based approaches on common scalability issues are promising [111, 366].
However not mutually exclusive, these limitations are of influence to each other. Subjective and
objective quality of experience are commonly affected by factors in technical limitations, such as
video coding, projection schemes, geometric distortion and 360-degree stream quality, which limit
the overall performance of the system [2, 54, 185]. The quality of experience (QoE) in 360-degree
video is a complex problem that requires content-aware metrics, and analysis thereof remains
relatively unexplored. As identified by Ebrahimi et al. (2009), the following influential factors
encompass multimedia QoE [90]:

• System Influence: technical factors (i.e., device, network, or content format)
• Human / User Influence: task application factors (i.e., usability context)
• Context Influence: social and psychological factors (i.e., environment, user ex-

pectations and content)

Current research remains predominantly focused on traditional video content, with majority
of QoE studies related to omnidirectional video specifically targeting the technical factors and
parameters, such as impact of target bit-rate, encoding schemes and video stream quality [109, 132,
151, 174, 282]. Due to the higher levels of interactivity during omnidirectional video interaction,
user experiences are less predictable and can be different every time. Furthermore, the user-tracked
head movements, when using a HMD, requires for the content to be updated in real-time. Any form
of latency severely affects the immersive adoption of users and negatively impacts the exposure to
rich media content in an immersive environment [362]. The ability to change viewpoints allows the
user to decide and alter their viewing direction whenever they see fit, allowing for high control over
their viewing experience. In addition, the context influential factors that impact 360-degree video
QoE, such as the effect of content, environment and user expectations, remain underrepresented
in current literature, providing a very interesting and promising area of research.

1.3 User Experience and Interaction with 360-Degree Video
Evidently, 360-degree video format offers unique and various forms of interaction. The interact-
ive nature of virtual reality through head-mounted displays allows for the user to interact with
and experience a virtual environment in a way that is otherwise difficult to achieve with tradi-
tional modalities, such as a smartphone or desktop computer. As a result, this advanced form
of interaction composes complex user experiences. As described by Tran et al. (2017), under-
standing 360-degree video user experience is very complex and proves to be a huge challenge [328].
Traditionally, quality of experience (QoE) is a common method to study and measure user ex-
perience, specifically when interacting with video content. Moreover, when viewing planar (2D)
video-content, QoE has been proven to be an effective tool to measure subjective viewer experience
[54].

1.3.1 Quality of Experience in 360-Degree Video
As a concept, Quality of Experience has acquired interest from different areas of research over the
past few decades. Mainly due to the consensus that the objective metrics used in Quality of Service
(QoS) analyses, which has been the de facto standard in quality analysis for a long time, were
not sufficient enough. That is, Quality of service does not include user-specific preferences and
lacks the ability to express overall subjectivity in the assessment. While QoS assessment focuses
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on the performance of a system, QoE is more centred around the user’s assessment of this system,
influenced by user preference and expectations. The gap between human-centric evaluations and
system assessment is a common pitfall for systems with a high QoS, leading to failure in terms
of user adoption [76]. This is where QoE as a concept has gained relevance, specially within
the domain of human-computer interfaces and interactions. However, despite the similarities,
QoE is distinct from user experience (UX), which is centred around "studying, designing and
evaluating the experiences of a user when using a system" [264]. Quality of experience shares
these characteristics, while also extending its analysis to include the content itself as part of the
system interaction [42]. As identified by Brunnström et al. (2013), many dedicated studies failed
to provide a consistent view on the concept of QoE [153, 212, 255]. Their paper defines QoE as a
relevant and applicable concept within most domains. However, this thesis will entail the concept
of Quality of Experience, as defined by Wu et al. (2009):

QoE is a multi-dimensional construct of perceptions and behaviours of a user, which
represents his / her emotional, cognitive, and behavioural responses, both subjective
and objective, while using a system [356].

One of the major influential factors in QoE is its reliance on context of use, which is often determ-
ined by the application domain. Content modalities, such as delivery (broadcasting, streaming) of
content (video, audio), educational and medical, or collaborative applications, all require different
requirement configurations that take into account the user behaviour in both on- and offline be-
haviour as well as the levels of interactivity [42]. Application areas such as multimedia learning,
sensory experiences, haptic communications and cloud-computing all require different metrics,
ranging from unidirectional to bi- / multi-directional services [128, 154, 204, 308, 323]. The over-
arching QoE features can be categorised, classified and assessed on four distinct levels [42]:

• Level of direct perception: refers to perceptual information created during media
consumption, i.e., space, motion, colour, darkness and distortion (video).

• Level of interaction: refers to the human-to-human and human-to-machine inter-
actions i.e., responsiveness, naturalness of interaction and communication effect-
iveness.

• Level of usage situation: focused on accessibility and stability of the service or
application i.e., the physical and social situation.

• Level of service: relating to the usage of a service beyond i.e., joy, usefulness and
ease of use.

In terms of 360-degree video QoE, this chapter focuses on the levels of direct perception, interaction
and usage situation, dealing with user assessment of QoE features such as involvement, motion,
and actions.

1.3.2 QoE Metrics of 360-Degree Video
As a form of multimedia, 360-degree video QoE can be modelled best as a ’multi-dimensional
construct of user perceptions and behaviours’ [356]. The study by Wu et al. (2009) proposes
a theoretical framework for modelling QoE in Distributed Interactive Multimedia Environments
(DIMEs), which introduces a QoE model that is practically generalisable for DIME performance
assessments. The key characteristic of omnidirectional video content is its interactivity, where
users can interact with the virtual 360-degree environment. DIMEs use multi-modality media to
connect different users into a joint interactive space for collaboration, characterised by three key
roles: executant of tasks, user of technology and participant in group telecommunication. While
the latter is not relevant for 360-degree video, the theoretical framework presented in the study
by Wu et al. (2009) still presents a significant framework that is applicable to 360-degree video in
terms of task execution and technology users. The framework consist of a set of representative di-
mensions, defined as cognitive perceptions and behavioural consequences, respectively. Cognitive
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perceptions can be categorised using three sub-dimensions: flow, perceived technology acceptance
and telepresence. This chapter only elaborates on flow and perceived technology acceptance, as
telepresence is not relevant to 360-degree video within the scope of this thesis. The perception of
flow functions as a main intrinsic motivator that drives people to perform certain tasks, without
the promise of a reward [70, 356]. Common metrics to measure flow , i.e., clear goals, feedback,
concentration, distorted sense of time and intrinsic enjoyment, [71] are often defined too broadly
and lack applicability to multi-modality media. Wu et al. (2009) proposes three metrics that are
significantly relevant and applicable to DIMEs: sense of control, concentration, and intrinsic enjoy-
ment. While flow metrics refer to the psychological experience of users, the perceived acceptance
of technology metrics aim to measure the user’s perception and attitude towards a system [356].
Using the Technology Acceptance Model (TAM) [75] as foundation, the two proposed metrics for
measuring acceptance of technology are perceived usefulness and perceived ease of use. As defined
in their study, the behavioural consequences are a subsequent result of the cognitive perceptions
described above. The identified subdomains that are associated with behavioural consequences are
performance gains, technology adoption and exploratory behaviours, each encompassing a variety
of both subjective and objective metrics. Common metrics used to asses performance gains are
closely related to the user’s performance, both subjectively and objectively, which rely on the
actual task application and requirements. Examples of these metrics are completion time and
ratio of successful attempts [252]. Assessing technology adoption can be achieved by utilising
both subjective metrics, such as intention to use [133, 146, 229], and objective metrics, such as
actual usage. For the latter of which, a longitudinal study is highly recommended [335]. Lastly,
the metrics identified for the assessment of exploratory behaviours are application-specific as well.
Common metrics used are both subjective and objective ones and can be defined utilising specific
experiential statements regarding the spontaneous exploration of the system [226, 356].

1.3.3 Subjective QoE Assessment of Omnidirectional Video
Identified by the International Telecommunication Union (1997), common methodologies for sub-
jective QoE assessment are the Absolute Category Rating (ACR) and Degradation Category Rat-
ing (DCR) scoring methods [144]. ACR is usually applied to tests that are predominantly focused
on qualification, where a single stimulus is presented in a way that is very representative of every
day usage of the technology at hand. Also known as the Single Stimulus method, ACR is mostly
tested in a setting where the tests are presented in sequence and rated independently of each other
using a five-level scale. The method presents the stimulus one at a time, usually with a duration of
approximately 10s, after which the subject is asked to evaluate the quality of the entire sequence.
For this, a voting duration of less or equal to 10s is recommended [144]. Notably„ this method
does not test transparency or fidelity usually. For testing the fidelity or transparency, DCR would
be more suited, as it focuses more on the objective quality of a system. The DCR method, also
known as the Double Stimulus Scale method, requires paired test sequences. Applying these meth-
odologies to omnidirectional video often requires adaptation of some sort, since the methodologies
were developed for short, 2D video. The omnidirectional nature of 360-degree video and typical
longer-length viewing sessions on a HMD require adaptation of these current methodologies. The
Modified Absolute Category Rating (M-ACR) is an effective modified method for QoE assessment,
applicable to omnidirectional video [233, 290]. Contrary to ACR, the M-ACR method presents
two sequences twice, enriched with an approximate 8s "blank" sequence in between and a voting
time of less or equal to 20s. This double presentation of a sequence is due to the priming effect of
the subject, users are not adapted to viewing 360-degree video on a regular basis in most cases.
The first presented sequence serves as a primer, allowing the subject to be acquainted with om-
nidirectional video content. By doing so, the rating validity is much higher when the sequence
is presented the second time. Another subjective quality evaluation method for omnidirectional
video is the Double-Stimulus Impairment Scale (DSIS). However, DSIS is less reliable than M-ACR
and is prone to higher levels of cybersickness [144, 293]. As implemented by Singla et al. (2017),
the M-ACR method was used to assess how different quantisation and resolution are evaluated by
users in terms of their perceptual quality [290].
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The approaches for subjective QoE assessment, as defined in current literature, are mostly
studied with respect to perception [105, 371], presence [137, 376], cybersickness [291], usability
[277, 292] and sensor-based [91, 271] aspects of QoE. This emergence of sensor-based metrics,
which utilise physiological data obtained from users, is an intriguing advancement that blurs the
dichotomy between subjective and objective measures [91, 271]. Fore example, the study by Egan
et al. (2016) utilises a Fitbit heart rate monitor and a PIP biosensor to objectively measure user
QoE in terms of heart rate and electrodermal activity (EDA). As such, it is the first work to
focus predominantly on the correlation between the objective metrics and user QoE. The findings
of their study indicate a correlation between the objective EDA measures and subjective self-
reported measures acquired through a post-experience questionnaire. The results from the study
by Egan et al. (2016) also demonstrated higher QoE-values when viewers were using HMDs as
compared to utilising conventional displaying systems (e.g. mobile viewports), which is in line
with the findings from Tran et al. (2017) [328].

Furthermore, the assessment of QoE for 360-degree video can encompass both technical as-
pects as well as content characteristics. The continued work on QoE evaluation focuses mainly
on video [354] and / or audio [260] quality perception. However, the advancements made in
multimedia technology, such as VR and omnidirectional video, require more complex approaches.
The objective metrics from video and audio quality are under-performing as a valid metric to
assess perceptual quality, as the post-test subjective evaluation is heavily influenced by user pref-
erences and external conditions during assessment [9]. Various methodologies have been developed
to evaluate visual quality by using physiological measurements based on electroencephalographic
(EEG), electrocardiographic (ECG) and electromyographic (EMG) signals, which indicated high
levels of correlation with MOS. However, these methods rely on the premise that brain activity
signals hold potential as valid metrics for multimedia QoE assessment [10, 92, 280]. Another inter-
esting approach to evaluate QoE through physiological sensors was made through implementing
eye-tracking technology [10]. As demonstrated by Egan et al. (2016) and Arndt et al. (2014),
utilising physiological sensors to assess subjective QoE metrics and their correlation presents a
very promising area of research [10, 91].

As before-mentioned, 360-degree video quality is heavily influenced by a variety of (technical)
parameters, such as low latency or bit-rate variability. However, while very complex, these para-
meters and their impact on the user interaction in VR have been widely represented in current
literature. Maintaining a strong immersive and engaging environment for 360-degree video is
challenging for a variety of factors, not just because of the technical implementation thereof. The
before-mentioned challenges within the field of 360-degree video research by Zink et al. (2019)
highlights complex view adaptation alongside QoE and other challenges, as well as common lim-
itations [375]. Similar to, and further accentuating these findings, Yaqoob et al. (2020) proposes
a total of 4 additional key challenges, required for maintaining an immersive and engaging en-
vironment: 360-degree live streaming, low latency streaming, Quality of Experience (QoE) and
viewport prediction [362].

The prior sections focused primarily on the limitations and challenging aspects of QoE meas-
urement in 360-degree video. This section focuses more in-depth on the limitation of complex
view adaptation, in particular viewport prediction. Head-mounted displays (HMDs) make use of
the device’s gyroscopic values to precisely accumulate and respond to changes in the user’s head-
movement. These detections are used to correctly translate and render the virtual environment
to match that of the user’s movement. By doing so, the user experiences increased levels of im-
mersion and presence, further emphasising the importance of low latency and rendering quality.
It is crucial to the 360-degree video experience that HMDs correctly identify and process sensor-
based interaction signals to achieve an accurate visual representation in the user’s viewport. As
previously defined, a viewport is the portion of the omnidirectional virtual environment which
is rendered and displayed through the stereoscopic lenses on the head-mounted displays. Accur-
ate viewport rendering is not only essential for enhancing the sense of immersion, but attaining
higher levels of realism also reduces cybersickness, increases presence and elevates the overall user
experience. Therefore, viewport prediction is a common method to achieve this. By utilising the
HMD’s positioning sensors and gyroscopic values, the virtual environments is correctly rendered
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based on the viewing behaviour and orientation of the user. Accurate viewport prediction can be
achieved using either:

• Content-Agnostic Approaches, by predicting future viewport positions based on
previous user behaviour, or

• Content-Aware Approaches, by predicting future viewport positions based on the
video content itself.

Common content-agnostic approaches make use of linear regression models, clustering, encoder-
decoder architecture and machine learning to optimise viewport prediction [22, 85, 136, 203, 247,
365]. The techniques make use of tile-based systems, which utilises the equirectangular frames
and splits them into three distinct regions: viewport, adjacent and outside. The extrapolation of
anterior watch-history allows these models to accurately predict future fixation points and salient
regions. While some of these approaches are highly accurate, the labile nature of user behaviour
requires extensive training for these models to achieve high efficiency.

Content-Aware Approaches As introduced, an alternative approach to optimise viewport
prediction is by anticipating specific viewer behaviour when presented with specific virtual content.
These approaches make use of the content-specific characteristics (i.e., visual features) to generate
viewport predictions. A major contributor to the effectiveness of content-aware approaches is the
use of saliency maps. Most current methods generate significant predictions by analysing saliency
patterns and positional information, acquired through the HMD sensor features [217, 358, 359].
Common limitations of these saliency-based models are their dependency on predictor models and
the exclusion of user behaviour, as evident in the study by Aladagli et al. (2017). Their work in
particular, in which the user’s viewing behaviour was not considered, probes the importance of
understanding the user’s unique visual attention [3]. An alternative approach is the integration
of motion maps to make estimates on future fixation points. As such, the motion maps can be
employed to account for the influence of cinematographic principles present in 360-degree videos,
such as diegetic mechanisms that guide the user’s visual attentions to objects in motion [97].

1.3.4 Cybersickness and Spatial Presence
There exists a need for specifying QoE as much as possible in regards to the specific application
it will be assessing. As described above, the QoE assessment of a system or service contains many
influential factors at play. Even though the framework presented by Wu et al. (2009) is relatively
dated, it is still applicable to the multimedia modality of virtual reality and therefore, could be
considered as serving guidelines rather than an obligatory system. However, within the domain
of 360-degree video, there are more influential factors at play. Aspects such as cybersickness
[137, 158] and presence [91, 307] ought to be equally considered in the evaluation of QoE in
360-degree video interactions. Cybersickness occurs when users experience dizziness or nausea
due to the discrepancy between their own physical movements and the relative motion of the
virtual scene, as displayed in the HMD [126, 138, 166]. In addition, the term presence describes
the experience of feeling present in a digital world [156, 192]. Similarly, as before-mentioned,
current studies on cybersickness and presence also focus primarily on the influence of technical
aspects of omnidirectional video streaming. In the work of Zou et al. (2018), a framework for
assessing spatial presence of omnidirectional video within VR was presented [376]. The three-
layer hierarchical structure was layered from the bottom up as follows: technical influencing
factors layer, perception layer and spatial presence layer. Additionally, the user’s perception
is multi-dimensional and entails the following dimensions: visual, auditory and interactive [94,
152, 337]. Due to the significant impact of the technological parameters of a VR system on
the objective level of sensory realism [297], each of the technical influencing factors (i.e., video
bit-rate, resolution, FOV, audio sampling rate) was linked to one of the following dimensions in
the perception layer: video quality, audio quality, visual realism, acoustic realism, proprioceptive
matching and spatial presence. The findings suggest a linear relationship between traditional
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video and omnidirectional video, indicating that traditional video quality metrics are sufficiently
applicable to assess omnidirectional video quality, even when provided through a HMD. Their
results also indicate a linear relationship between video and audio quality in terms of visual and
acoustic realism. Lastly, high resolution content was found to improve the overall user experience.

A more recent study of Tran et al. (2017) evaluates the different QoE aspects relevant to
360-degree video, and takes into consideration factors of encoding parameters, viewing modes,
rendering devices and content characteristics [328]. Their results were analysed utilising the pre-
viously presented Absolute Category Rating (ACR), which is considered the standard for quality
assessment [54, 144]. By measuring the Mean Opinion Score (MOS), where users provided subject-
ive measurements using Likert scales, their work presented interesting findings. Firstly, Tran et
al. (2017) found that when using HMDs instead of mobile viewports for viewing 360-degree video,
the perceived quality and presence scores were higher on average. Secondly, their results further
indicate that the viewer’s sense of presence is significantly affected by content-specific character-
istics, including camera motion, which is already strongly correlated with the sense of presence
and cybersickness. Videos with moderate amount of camera motion received the highest presence
scores, while videos with fast amount of camera motion scored lower and increased the feeling
of cybersickness. This poses a crucial problem, specifically for 360-degree videos containing high
levels of camera motion. As such, it is imperative to the improvement of the viewing experience to
reduce the risk of cybersickness by taking into account the temporal influences of the 360-degree
video sequences [328].

Utilising techniques to reduce cybersickness is complex. Notably, the before-mentioned tech-
niques of viewport prediction, commonly utilised to employ foveated rendering techniques, can also
be used to reduce cybersickness [145, 237]. However, viewport prediction remains a challenging
technicality and field of research, despite the extensive research on detecting saliency. Current
methods such as motion-based saliency estimation and user behaviour modelling are promising
[101]. However, it is evident there remains plenty of areas for continued development in terms
of long-term viewport prediction. One of these areas is the inclusion of the user’s unique visual
attention by further studying gaze (i.e., through saliency mapping) in regards to visual features,
content characteristics and their independent influence on viewing behaviour.

1.4 Eye-Tracking and Visual Gaze Patterns in VR
The study of eye behaviour – oculesics – poses an important area of research, as the study of eye
movement holds significant implications for many domains. It allows for communication as well
as interaction, functioning as an important tool for perception [5]. Oculesics behavioural studies
enable higher levels of understanding on human perception, complex non-verbal communication
channels and deeper levels of interaction. Existing literature focuses on a variety of related aspects
such as winking, blinking and eyebrow movement. However, this section focuses primarily on the
specific eye-related aspects, such as pupil dilation, pupil position, gaze direction and gaze position.
A quintessential tool in oculesics research is the integration of eye-tracking technology.

1.4.1 Eye-Tracking
Eye-tracking is a method often used for the allocation of visual attention, through recording
eye-motion and gaze location (eye-focus) during varying activities. With eye-tracking technology
becoming more accessible, it poses an established tool in many research domains and in real-world
scenario training [53, 87, 142, 143, 228, 278, 349]. The foundations of eye-tracking are based on
Charles Bell’s discovery, whom demonstrated the physiological connection between neurological-
and cognitive processes and the movement of a person’s eyes [24, 339]. While not absolute, the
eyes reflect the mental processing of a person to some extent [6, 213, 243, 256, 309]. Therefore,
eye-tracking is considered a significantly valuable tool that enables exploration and insight into un-
derlying cognitive processes. Moreover, the human’s inability to remember or perceive involuntary
eye movement raises the importance of measuring eye movement, enabling insight in subconscious
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control and involuntary behavioural responses [58, 169]. Throughout the past century, many at-
tempts have been made to objectively measure eye movement. However, these methodologies
were mostly limited by technology, financially challenging and ethically questionable [45, 77, 363].
Current technology enables more user friendly and affordable solutions. As described by Carter et
al. (2020), most video-based eye-trackers enable highly accurate gaze detection by measuring the
corneal reflection of an infrared light relative to the pupil [49]. The (infrared) light is projected
on the eye, which produces a reflection on the cornea which can be identified by the eye-tracking
software. Many eye-tracking systems require a direct perpendicular orientation between the light
sensor and the user’s eye, necessitating a controlled environment. Furthermore, gaze calibration
is necessary for higher degrees of accuracy, prompting the user to look at a series of points on the
screen to enable the software to take baseline measurements. A brief elaboration on the physiology
of eye movement is provided in the following subsection.

1.4.2 Physiology of Eye Movements
Similar to a camera with an aperture, lens and photosensitive image sensor, the eye gathers and
transduces light through the pupil and focuses it on the retina, utilising the cornea and the lens
[245, 339]. The fovea centralis, a small area in the centre of the retina, is responsible for detailed
and colour vision through its high concentration of colour sensitive photoreceptors (cones) [170].
The rest of the retina, including the parafovea and periphery, is less sensitive to detail and colour
[253, 254]. Visual information is sent to the brain through the optic nerve and then processed in
different areas of the cortex for interpretation and reaction. This visual information is processed,
as soon as the eyes fixate on a single target. Due to the smaller fovea, the eyes move more
frequently to acquire high quality information from the entire visual field, resulting in shorter
fixations [253]. The movement between fixations is called a saccade, during which visual input
is suppressed. This occurrence renders our vision relatively blind [44, 50, 261]. Other various
involuntary movements can occur during fixations, such as tremor, drift and microsaccades [86,
173]. Furthermore, ocular motions can be made deliberately (i.e., smooth pursuit and vergence)
or are reflexive (i.e., optokinetic response [80] and vestibulo-ocular [125]).

A distinction, as defined by Duchowski et al. (2017), can be made in the applicability of
eye-tracking technology. Diagnostic eye-tracking studies make use of the participant’s gaze to
determine duration and viewing order, by recording the eye-position throughout. This method
is particularly effective in studies that rely on visual stimuli as an important variable (i.e., faces,
scenes, text, video and web pages) and is therefore mostly adopted [86]. Interactive eye-tracking
studies are less common, however they focus primarily on the high temporal- and spatial sensitivity
of eye-trackers to use gaze position as an input source to generate preprogrammed responses. An
example of this is by applying display changes based on user gaze position (e.g. revealing a picture
on screen after an x amount of time has passed during the fixation). Some VR applications that
rely on eye-tracking make use of foveated rendering, utilising the position of the eye to ensure
high quality rendering of the exact area the user is looking at, increasing performance by reducing
the render quality of peripheral areas [237]. However, the majority of eye-tracking studies are
performed within the field of psychology (58.13%) [49]. Regardless, eye-tracking is applicable
within most research domains. Notably, eye-tracking studies are less represented in the field of
mathematics and computer science with only 13.51% of eye-tracking publications pertaining to
the field. In the technology field, this percentile is a mere 11.89%.

1.4.3 User Behaviour Analysis and Gaze Tracking
Common practice for system evaluation is through analysing gaze to determine the user’s visual
attention [219]. By measuring and aggregating gaze data from the user, it is possible to extract
valuable insights into viewing behaviour. However, analysis of gaze behaviour remains a complex
and challenging task. A generalisable metrics framework, that can be applied to most studies,
remains limited within the current body of literature. Therefore, many studies which involve gaze
behaviour and gaze patterns as a substantial factor develop specific metrics only applicable to
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their specific study parameters. Common practice of analysing content characteristics to measure
changes in gaze patterns is through the use of Regions / Points of Interest (ROIs / POIs). For
example, Serrano et al. (2017) established an important parameter to achieve this: by measuring
the degree of (mis)alignment of regions of interest (ROIs) [281]. The ROIs were defined as the areas
in the 360-degree frame in which the action takes place (i.e., a character or event). Their use of
calculating the degree of (mis)alignment, baseline measurements, scanpath errors and use of frame-
paths enabled a very targeted approach. By identifying and highlighting ROIs as metrics, their
work was able to study the influence of continuity edits on user behaviour in VR. Their findings
suggest significant changes in gaze behaviour based on the positioning and (mis)alignment of ROIs.
Another approach, made by Singla et al. (2017) and Bao et al. (2016), utilised the gyroscopic
data from the HMD to analyse user behaviour, using the pitch-, roll- and yaw-values to calculate
the absolute difference between two of these values [21, 290]. The analysis on gaze behaviour
by Singla et al. (2017) indicates that video quality has no significant impact on exploratory
behaviour. Moreover, due to content-specific characteristics, it was found that different types of
content can evoke different pitch-values, i.e., some contents have higher pitch-values than yaw-
value. Rewatchability proved an interesting aspect in their study, where participants showed
different behavioural patterns when rewatching the same video. Lastly, Simone et al. (2006) used
the HMD to evaluate the objective and subjective measures of HMD performance and self-reported
user ratings [289]. Their study demonstrated an effective method to evaluate the relationship
between objective sensor metrics and self-reported subjective post-hoc ratings, utilising sensor-
based data to analyse user behaviour.

Visualisation of gaze data is done through aggregated plots, statistical graphs and heatmaps
[29, 88, 195]. Another visualisation technique, contrary to the aggregated plots including tem-
poral information, is the use of timelines and scan path visualisations [225]. While studying user
behaviour without gaze tracking is achievable [15], utilising the eye-tracking data offers an extra
dimension to the analysis of user behaviour when interacting with the three-dimensional scene,
enabling insight into the user’s perception and underlying cognitive processes. Analysis of 360-
degree video is predominantly based on heatmap visualisations which further require subjective
visual interpretation of the data to extract meaningful insights [16]. The heatmap, or saliency
map, is layered on top of the equirectangular projection of the 360-degree video. Also known as
attentional landscapes [246], these heatmap visualise the area of which viewers direct their visual
attention. Early heatmaps were generated by the summation of fixation data points, which were
Gaussian distributed, resulting in a landscape where peaks represented the amount of fixations.
Modern heatmaps still utilise fixation data points to generate a heatmap, but are often visualised
as a three-dimensional height field or superimposed as a modified layer on top of the original
image. This modified layer differs in colour or transparency is used to compose a set of multiple
layers of bitmaps with partially transparent top layers [141]. While there exist many variations of
heatmaps imagery (e.g. deviation map, difference map and significance map), the most common
heatmap is known as the attention map, which represents the distribution of viewer’s attention on
an image. The generation of attentional heatmaps is achieved by constructing the heatmap based
on fixation points in the eye-tracking data [32, 129]. As before-mentioned, a post-test subjective
visual analysis is required to better understand user’s attention, rendering human interpretation
of the heatmaps a less precise method for extracting the nuances in gaze behaviour. While the
eye-tracking analytics serve as an effective analytical platform for 360-degree video interactions
pertaining simple narrative structures, they remain limited in the ability to process and assess
complex narrative structures. There has been some progress in the development for analytical
platforms for 360-degree content which are better suited for complex narrative structures, e.g.
IVRUX [16], however their effectivity remains irresolute.

The immersive nature of 360-degree video poses a particular challenge when it comes to visu-
alisation techniques for gaze data; the assumption that all users observe the exact same stimulus
is not applicable to omnidirectional video interactions [194]. The user’s ability to control FOV
enables a different viewing experience every time. This limits the established gaze visualisation
techniques, which are commonly used for omnidirectional scenes in a virtual environment that
require static three-dimensional stimuli [240, 251, 310, 326]. A promising development has been
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made by Löwe et al. (2015), which proposes new specialised visualisations and an analytical
workflow for the analysis of head movement and gaze data of immersive 360-degree video [194].
In traditional video interactions, viewing behaviour and attentional synchrony are analysed by
annotating ROIs, which is incredibly time-consuming and complex in 360-degree video analyses.
Mostly due to the level of distortion caused by the projection techniques which "flatten" the spher-
ical image (i.e., equirectangular projection), the selection of ROIs is complicated: an ROI that
moves around the observer requires the selected area to transfer over from the right edge border
of the ERP and continue on the left edge side. Therefore, in the study by Löwe et al. (2015),
they base attentional synchrony on the similarity of the individual viewing directions. Atten-
tional synchrony refers to the moments in which the viewing direction of multiple users is drawn
to specific regions within the video [194, 301]. Two main aspects of the user behaviour analysis
entail the FOV joins and FOV branches, which occur when the attention of multiple observers
is synchronised to a common direction or when they are diverged, respectively. The convergence
and divergence of FOV is, therefore, an important tool in the analysis of user behaviour, allowing
for the identification of spatiotemporal agreements between the viewing directions of users. The
implications made by this study indicate that these tools can be utilised to review and enhance
narrative storytelling and immersion in immersive film-making by taking into account different
video genres and their influence on gaze behaviour. However, genre and visual narrative techniques
were not considered in the study. This is not only a limitation in the work by Löwe et al. (2015),
but is commonly overlooked in many studies within the domain. The study by Fearghail et al.
(2019) introduced an interesting study on intended viewing areas (IVAs) and estimated saliency,
which aims to close this gap in current research by taking into account director’s intent [99]. The
saliency models used in the study generated estimates and predictions on areas that ought to
grasp user attention. These saliency models can often be utilised to make estimates about user
behaviour. However, their findings indicate that estimations generated by the saliency models
did not correspond with director’s intended viewing areas, further emphasising the importance of
understanding the content-specific elements and their impact on user behaviour. This has also
been demonstrated by Grindinger et al. (2011) demonstrating the distinction between estimated
saliency and actual gaze behaviour regardless of instructions (tasked viewing vs. free viewing),
suggesting consistent mis-identification of computational saliency models between human ROIs
and artificial ROIs [116].

1.5 Quantitative Imagery Analysis in Computer Vision
Visualisation of gaze data can be achieved through a multitude of techniques, during which the
distribution of data points is exploited [29, 88, 195, 225]. Statistical graphs, aggregated plots, scan
paths and heatmaps are common techniques to achieve this effectively. The implementation of
gaze data visualisation is crucial in the analysis of gaze behaviour, yet a quantifiable comparison
remains a common limitation due to human vision [222]. As an evolutionary system, human vision
enables to sense and process visual stimuli. The human interpretation and processing of visual
stimuli enables sophisticated analyses, i.e., the identification of differences across visual stimuli.

As such, humans are adequately capable of utilising vision to identify distinctions and analyse
imagery. However, achieving a comparable objective image interpretation to the HVS requires
very complex computations. The interdisciplinary field of computer vision enables quantification
methodologies for image processing, i.e., techniques to enhance gaze data analysis. Derived from
scientific contributions within the field of computer science and remote sensing, computer vision
facilitates the interpretation of indexed multi-dimensional spatial data [37, 181, 222]. Algorithms
and techniques are deployed, aimed to emulate the human visual system, allowing for computer
systems to perceive, understand and extract useful information from imagery. While a perfect rep-
lication of the human visual system remains challenging, computer vision techniques can improve
upon the human vision system. Advancements in computational power and machine learning
techniques enable complex image processing, through machine and deep learning methodologies,
such as:
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• Object recognition and detection [159, 231, 312, 330]
• Optical character recognition (OCR) [211, 241]
• Feature extraction [79, 222, 348]
• Motion estimation and tracking [12, 78]
• Stereo vision and depth perception [191, 322]
• Image restoration and enhancement [331, 369]
• Facial and pattern recognition (i.e., support-vector machines and random forest)

analysis [95, 149, 161, 285, 329]
• Mathematical morphology [83, 120]
• Scene reconstruction [303]
• Video analysis and understanding [11, 113, 347]
• Image segmentation, similarity and feature matching [47, 62, 96, 199, 327].

These complex image processing techniques can be implemented in a multitude of research
domains, advancing the development of unique practices and applications. As such, computer
vision techniques have been employed in the development of intelligent application domains, i.e.,
vision algorithm development for intelligent environments [209, 350], enhancing complex processes
in intelligent processes and enabling activity monitoring, content generation and educational tools.
Computer vision as an area of research has made significant progress within the domain of health-
care, further solidifying its complex capabilities and use [165, 201, 208, 210]. Notably, the advance-
ments made in analysing intraoperative video, in which the development of deep neural networks
has allowed for the accurate identification of surgical phases and instruments, even surpass the
accuracy of some surgeons [347].

In recent years, computer vision has emerged as a significant area of research with diverse ap-
plications across various domains, such as human-computer interaction (HCI) and game and media
technology (GMT). Among the numerous techniques in computer vision, image segmentation and
similarity assessments have gained significant attention in these domains. Image segmentation
techniques divide an image into numerous sections, each of which represents an independent area
of the image. The technique can be employed to isolate an image into foreground and back-
ground components, to identify and follow objects, or to extract characteristics for further ana-
lysis [51, 377]. In the field of HCI research, image segmentation has been employed to detect and
classify facial expressions to identify emotions, as well as to segment and track eye movements
for eye-based human-computer interaction purposes [61, 167, 198, 311, 317]. As implied by the
works of Păsărică et al. (2017) and Tesfamikael et al. (2021), image processing techniques have
shown to be effective in improving the accuracy and reliability of eye-tracking systems [235, 317].
Additionally, computer vision facilitates the advancements made in tracking hand gestures and
movements for touch-less interfaces [234, 364].

Image similarity computation involves assessing the degree of similarity between two or more
images. This technique is used in a variety of applications, such as image retrieval, object recog-
nition, and content-based image retrieval. The technique is particularly useful when dealing with
large image datasets, as it facilitates efficient image indexing and retrieval based on similarities
in visual features. Additionally, image similarity techniques can be employed in computer vision
systems to support tasks such as image classification and clustering.

The uniqueness of the 360-degree video format and range of application domains (i.e., enter-
tainment and education) necessitates a higher degree of efficient techniques for imagery analysis
and processing of 360-degree video. Computer vision has shown great potential in analysing 360-
degree video by enabling object recognition, tracking, and activity recognition. While a powerful
tool in image and video analysis, computer vision faces significant challenges in video prediction
and generation. The task of generating accurate and realistic video sequences remains elusive,
despite recent advances in generative models [359, 372].
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The analytical advancements made in computer vision and machine learning have led to signi-
ficant progress in imagery analysis. The deep learning algorithms for image indexing and retrieval,
capable of accurately identifying and quantifying complex patterns in imagery and visual data,
demonstrate the capability of computer vision techniques in conducting complex analyses of visual
data such as heatmaps. While humans are capable of identifying the visual differences between
heatmaps, the exact differences cannot be subjectively expressed in numbers and requires com-
plex computational techniques to quantify these image differences. Therefore, these techniques
can be applied to quantify the similarity of imagery, comparable to the work by Fakheri et al.
(2012), which proposes a method for improving image indexing and retrieval algorithm by utilising
shape and texture properties of the image [96]. Similar methods in computer vision and machine
learning allow for complex imagery quantification, implemented in a variety of applications such
as physiological monitoring, medical diagnostics, and sports analytics [25, 155, 321]. As a result,
research in computer vision provides techniques that can be utilised to analyse and quantify the
viewing behaviour of users in the field of VR and 360-degree video interactions. In addition,
imagery analysis techniques have already been used developed to compute data that can be util-
ised in the analysis of 360-degree scene characteristics [105, 144, 268] and expression of viewing
behaviour [38, 68, 98].

1.5.1 Computation of Spatiotemporal Complexity
The quantification of the spatiotemporal complexity of a video sequence is a common technique
to compute quantitative data representative of the human vision system, which is sensitive to
spatial and temporal changes in a video sequence [4]. The quantification method, as presented
in the framework by ITU-T Rec. P.910, computes the spatial- and temporal image complexities
of a video sequence, enabling spatiotemporal evaluation in video quality assessment [144]. Cui et
al. (2021) studied the effect of gaming genre on the user experience, employing an analysis based
on the resting-state electroencephalogram (rs-EEG) spatial- and temporal image complexity [72].
As such, the rs-EEG micro-state and omega complexity imply significant complexity changes
due to genre characteristics. The spatiotemporal complexity assessment of neuro-imaging further
demonstrates the effectiveness of employing computer vision techniques in imagery analysis [72,
106, 171]. As such, omnidirectional video content also involves sustained cognitive load on various
behavioural systems, indicative of the genre-specific complexity changes as demonstrated in Cui
et al. (2021). Moreover, the work of Yu et al. (2018) utilises spatiotemporal analysis of 360-
degree video to identify highlights (e.g. important moments) from the omnidirectional content,
emphasising the suitability of such analyses in the domain of omnidirectional content [367].

The computed SI- and TI-values provide a frame (i.e., spatiotemporal matrix) for obtained
relevant data analysis, as demonstrated by Konuk et al. (2013) [172]. The location of the video
sequence within the matrix can be utilised to identify the video sequence according to its position
on the spatial and temporal planes, as well as ensure sufficient coverage of the spatiotemporal
matrix. Specifically, the work by Singla et al. (2017) employs the computation of spatiotemporal
complexities to assess the selected sequence of omnidirectional content [290]. Spatial complexity
of a video refers to the visual richness and intricacy of its content, particularly in terms of the
number and complexity of objects, colours, textures, and patterns within each frame and across
consecutive frames. It is a multifaceted concept that can be influenced by various factors, including
image resolution, contrast, dynamic range, noise, scene composition, lighting conditions, visual
effects, and artistic style [55, 59, 72, 134, 288, 344]. Spatial complexity can be quantified using
a range of objective measures, such as entropy, fractal dimension, spatial frequency spectrum,
and compression ratio, as well as subjective assessments by human observers [124, 178, 184]. The
temporal complexity of a video denotes the amount of visual change occurring in a video over time,
reflecting the degree to which the video varies from frame to frame [17, 69, 117]. High temporal
complexities represent significant variations in the visual information over time. Similarly, low
temporal complexity reflects less significant variation in the content. The temporal complexity of
a video sequence can be influenced by changes in camera motion, scene changes, frame rate, video
codec and compression.
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The level of spatiotemporal complexity can have important implications for video processing
and analysis, as well as for viewer engagement, attention, and perception [205, 230]. The spatial-
and temporal image complexity of a video sequence can be measured by computing the spatial
and temporal perceptual information, respectively [144]. These measures provide single-valued
representations of the complexity of each frame in a video sequence. The variability of these
measures over time can also be studied to better understand the spatiotemporal characteristics of
a video scene or sequence.

1.5.2 Spatial Perceptual Information Measurement (SI)
The spatial complexity or spatial perceptual information measure (SI) is determined by applying
a Sobel-filter to each video frame (luminance plane) at time n, Fn. The Sobel-filtered frames
are then used to compute the standard deviation over the pixels in each frame. This process is
repeated for all frames in the video sequence, resulting in a time series of spatial information.
The SI-value is determined as the maximum value of the standard deviations of the Sobel-filtered
frames at time n, represented by the equation:

SI = max
time

{stdspace [Sobel (Fn)]} (1)

The implementation of the Sobel filter involves convolving two 3x3 kernels over the video frame
and obtaining the square root of the sum of the squares of these convolution results. Let the input
image pixel at the i-th row and j-th column be denoted as x(i, j), and let y = Sobel(x). TheGv(i, j)
and Gh(i, j) kernels represent the results of the first and second convolutions, respectively.

Gv(i, j) = − 1 × x(i− 1, j − 1) − 2 × x(i− 1, j) − 1 × x(i− 1, j + 1)+
+ 0 × x(i, j − 1) + 0 × x(i, j) + 0 × x(i, j + 1)+
+ 1 × x(i+ 1, j − 1) + 2 × x(i+ 1, j) + 1 × x(i+ 1, j + 1)

(2)

Gh(i, j) = − 1 × x(i− 1, j − 1) + 0 × x(i− 1, j) + 1 × x(i− 1, j + 1)+
− 2 × x(i, j − 1) + 0 × x(i, j) + 2 × x(i, j + 1)+
− 1 × x(i+ 1, j − 1) + 0 × x(i+ 1, j) + 1 × x(i+ 1, j + 1)

(3)

With calculations performed for all 2 ≤ i ≤ N − 1 and 2 ≤ j ≤ M − 1, where N denotes the
total number of rows and M denotes the total number of columns in the video frame, the Sobel
filtered image output at the i-th row and j-th column is:

y(i, j) =
√

[Gv(i, j)]2 + [Gh(i, j)]2 (4)

1.5.3 Temporal Perceptual Information Measurement (TI)
The measurement of temporal complexity, or temporal perceptual information measure (TI), is
derived from the motion difference feature, Mn(i, j). This feature calculates the difference between
pixel-values (from the luminance plane) at the same spatial location in consecutive frames of a
video sequence. Mn(i, j) is a function of time (n), and is defined by the following formula:

Mn(i, j) = Fn(i, j) − Fn−1(i, j) (5)

Fn(i, j) represents the pixel located at the i-th row and j-th column of the n-th frame in time.
The temporal information (TI) metric is obtained by calculating the standard deviation over space
(stdspace) of the motion difference feature, Mn(i, j), for all i and j. This computation is performed
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for each frame over time, resulting in a time series of temporal information. The maximum value
of this time series (maxtime) is considered to be the TI of the video sequence. As such, a higher
TI-value represents higher levels of motion in adjacent frames of the video sequence.

TI = max
time

{stdspace [Mn(i, j)]} (6)

1.5.4 Structural Similarity Index Measure
Similar to the work of Cui et al. (2021), computations in imagery analysis enable the quantification
of complex dataset visualisations and graphical representations, such as rs-EEG and heatmaps
[72]. Image similarity techniques based on computer vision can be employed to compare graphical
representations of a dataset and determine the degree of similarity between them [18, 214, 249].
A computational model for deriving the structural similarity between two images can be acquired
by utilising the proposed structural similarity index measure SSIM, as introduced by Wang et al.
(2004) [221, 345].

Wang et al. (2004) proposed the use of the structural similarity index (SSIM) as a full-reference
image quality assessment (FR-IQA) measure [345]. This measure is based on the idea that the
human visual system (HVS) is adept at extracting structural information from visual scenes. By
incorporating this characteristic as an intrinsic component of the IQA measure, the authors were
able to outperform not only the measures based on mean squared error (MSE), but also the
existing state-of-the-art perceptual image quality measures. Moreover, the SSIM measure a more
significant correlation with subjective evaluations provided by human observers, such as the mean
opinion score (MOS) [14].

The increased performance, mathematical formulation, differentiability and high degree of
computational parallelisation resulted in SSIM becoming a highly adopted FR-IQA measure within
the scientific community, being utilised as a proxy evaluation for human assessment in image
processing and computer vision applications. The high correlation with human perception of
images enables SSIM to be implemented as a method for image denoising [216, 373], dehazing
[27, 283, 342], artefact-free cloud removal [324], image enhancement [374], raindrop removal [248]
and medical imaging segmentation [26, 266].

The Structural Similarity Index (SSIM) is a commonly used image similarity index measure
that quantifies the degree of similarity between two images by evaluating their structural inform-
ation. SSIM computes the similarities between local image regions by comparing their luminance,
contrast, and structure based on the correlation between pixels [345]. The luminance comparison
measures the brightness similarity of the pixels, while the contrast comparison calculates the dif-
ference in pixel intensity. By modelling the image distortion as a combination of the factors of
correlation loss, luminance distortion and contrast distortion, the SSIM index relies less on con-
ventional error summation techniques and correlates more with the human visual system (HVS)
[131].

SSIM computes a comparison between a reference image x and a version of the same image
y based on the three components of luminance, contrast and structure, extracted at a single
spatial scale (i.e., resolution) [14, 41, 345]. The luminance comparison, as a measure of luminance
closeness between x and y is estimated as the mean intensity:

µx = 1
N

N∑
i=1

xi (7)

The luminance comparison function l(x, y) can be expressed by the mean values µx and µy of
the two images x and y. The standard deviation is utilised as an unbiased estimate of the signal
contrast, measuring the closeness of the contrast, expressed as:
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σx =
(

1
N − 1

N∑
i=1

(xi − µx)2

)1/2

(8)

As such, the contrast comparison function c(x, y) is the comparison between σx and σy. The
structure comparison function s(x, y), measuring the correlation coefficient between images x and
y, is conducted on the normalised signals by dividing by σx and σy, respectively. The function
s(x, y) is then expressed as (x − µx)/σx and (y − µy)/σy. The combination of signal luminance,
contrast and structure results in the following expression for the overall similarity measure:

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (9)

The functions of l(x, y), c(x, y), s(x, y) and f(·) are defined based on the conditions of symmetry
S(x, y) = S(y, x), boundedness S(x, y) ≤ 1 and unique maximum S(x, y) = 1 if and only if x = y
(in xi = yi for all i = 1, 2, ..., N). Subsequently, the luminance comparison is defined as

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1
(10)

where C1 ensures numerical stability when µ2
x+µ2

y nears zero, as C2 and C3 do in the following
equations for contrast and structure, respectively. The constants C1, C2 and C3 avoid the null
denominator. According to Weber’s Law, the human visual system (HVS) is sensitive to relative
luminance change, not absolute [298]. Therefore, the luminance signal is denoted as µy = (1+R)µx.

To quantify the luminance, contrast, and structure of images, the dynamic range of two scalar
constants K1 ≪ 1 and K2 ≪ 1, as well as the of pixel-values L (which is set to 255 for 8 bits / pixel
greyscale images), are used. These quantities are utilised to determine the positive constants C1,
C2, and C3, which are given by C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2. Standard deviation
σ is used to represent signal contrast, defined as:

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2
(11)

The process of structure comparison requires luminance subtraction and variance normalisa-
tion. As such, the mean values of each image are subtracted from their respective pixel-values to
obtain a new set of values representing the differences in luminance. These new values are then
normalised by dividing them by the standard deviation of the original pixel-values. The resulting
normalised values are unit vectors that lie in the hyperplane, defined by:

N∑
i=1

xi = 0 (12)

The correlation between the unit vectors from the normalised values (x−µx)/σx and (y−µy)/σy
is equivalent to the correlation coefficient between x and y, defining the structure comparison as
follows:

s(x, y) = σxy + C3

σxσy + C3
(13)

where σxy, the covariance between x and y in discrete form, can be estimated as:

σxy = 1
N − 1

N∑
i=1

(xi − µx) (yi − µy) . (14)
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The resulting function of SSIM(x, y) can be expressed as a combination of the luminance,
contrast and structure comparison functions, defined as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ . (15)

Substitution of respective functions l(x, y), c(x, y), s(x, y) gives:

=
[

(2µxµy + C1) (2σxy + C2)(
µ2
x + µ2

y + C1
) (
σ2
x + σ2

y + C2
)]α ·

[
2σxy + C2

σ2
x + σ2

y + C2

]β
·
[

2σzy + C3

σ2
x + σ2

y + C3

]γ
. (16)

The expression of the SSIM index is weighted with α, β and γ, where α > 0, β > 0 and γ > 0.
The parameters can be used to adjust for the relative importance of each of the components.
Finally, by setting α = β = γ = 1 and C3/2, the SSIM index expression is simplified in definitive
form as:

SSIM(x, y) = (2µxµy + C1) (2σxy + C2)(
µ2
x + µ2

y + C1
) (
σ2
x + σ2

y + C2
) . (17)

The SSIM index takes on positive values in the range [0, 1]. A value of 0 indicates no correlation
between the images, while a value of 1 signifies that the two images being compared are identical
(x = y). For a comprehensive overview of the mathematical construct of the structural similarity
index measure, please refer to the paper by Wang et al. (2004) [345].

1.5.5 Advanced Structural Similarity Index Computations
Numerous adaptations of the conventional SSIM model have been proposed in the literature, to
enhance the model’s robustness and applicability to diverse visual applications. These adaptations
are often aimed at addressing limitations associated with the single-scale nature of the SSIM model
and include various multi-scale extensions, such as Multi-Scale Structural Similarity (MS-SSIM)
[14, 221, 346], Multi-Component SSIM (MC-SSIM) [187], Colour-Comparison SSIM (CM-SSIM)
[122], Structural Dissimilarity (DSSIM) [110, 276], Complex Wavelet SSIM (CW-SSIM) [107, 273],
and continuous SSIM (cSSIM) [200]. Additionally, other variations of SSIM have been proposed
to improve its performance for specific applications, demonstrating the ongoing efforts to refine
the SSIM model for diverse visual applications and highlighting the importance of customised
adaptations for specific domains.

1.5.6 Multi-Scale Similarity Index Measure
In the domain of eye-tracking research, colour heatmaps are commonly implemented as effective
and reliable graphical representations of gaze data. The data values are encoded as colours on a
two-dimensional plane, in which the colour intensity is indicative of the density of data points.
As such, higher intensity colours represent areas of greater interest, i.e., fixation points. The
saliency detection algorithm, used to generate saliency values to each pixel, are used to visualise
a multi-scale representation of the image. Achieved through a Gaussian pyramid decomposition,
the saliency detection algorithm computes saliency values at each scale of the pyramid, enabling
up-sampling and aggregation of individual heatmaps [1, 180, 334].

An enhanced version of the SSIM index has been developed which operates across multiple
scales of both image signals [122, 250, 265, 304, 336]. The Multi-Scale Similarity Index Measure
MS-SSIM calculates the differences in contrast and structure at each scale, while the comparison
of luminance is only computed at the highest scale M . The highest scale M is obtained after M−1
iterations, of which scale 1 denotes the index of the original signal. During the M − 1 iterations,
MS-SSIM applies a low-pass filter to the input images signals, followed by a down-sampling of the
processed image by a factor of 2. This process results in a revised expression and substitution

23



of the comparison functions of l, c and s in (15). Contrast comparison cj(x, y) and structure
comparison sj(x, y) are calculated at the j-th scale. Subsequently, luminance comparison lM (x, y)
is calculated only at scale M . The MS-SSIM index is expressed as:

MS-SSIM(x, y) = [lM (x, y)]αM

M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj (18)

where the parameters are selected such that αM = βj = γj for all j and
∑M
j=1 γj = 1. The

exponents αM , βj , and γj enable the assignment of different weights to the segmented regions-of-
interest within the image signals.

The different colour intensity levels in heatmap visualisations cannot be disregarded in the
similarity assessment of two heatmap image signals, as the colour intensity represents the density
of gaze data points. Therefore, the use of the multi-scale structure of MS-SSIM generates results
with a higher degree of accuracy and reliability for image and video databases as opposed to single-
scale SSIM [82, 305, 346]. MS-SSIM is capable of incorporating colour information and similarity
on multiple scales, making it a more reliable and accurate computation for the nuances of colour in
heatmap visualisations [336], as well as one of the most precise FR-IQA measures [14]. While both
SSIM and MS-SSIM operate on greyscale image signals, colour image signals require additional
image processing for compatibility with SSIM and MS-SSIM [221, 336, 346]. The conversion of
colour image signals to the YCbCr colour space for MS-SSIM computation generates more precise
results, as opposed to the conversion from the RGB colour space to greyscale for single-scale SSIM
[221, 345].

Gaze tracking poses an important tool in the overall development of omnidirectional content
analyses and development of HMDs, enabling high quality user behaviour analyses and inciting
technical development in areas such as viewport prediction [359]. As established in Zink et al.
(2019), the viewing experience of 360-degree video is dependent on the extent of viewing guidance.
Next-generation HMDs are improving eye-tracking technology and gaze detection, resulting in
more precise predictions and provision of spatial information to guide user focus and viewing
behaviour [375]. However, despite the efforts of optimising oculesics, aspects from related fields
such as cognitive science and film studies still impose significant influence to the overall viewing
experience and guide the viewer while viewing 360-degree video content. Therefore, it is important
to understand the relationship between the perception of conventional video and omnidirectional
content, as well as the cognitive and cinematographic influences in guiding user attention.

1.6 Attention Guidance and User Engagement in VR
Traditional videos can be specifically edited to tailor its target audience. Through complex post-
production processes, camera angles, and cinematography, the viewer’s attention is guided. The
traditional videos often evoke high levels of attentional synchrony, where most viewers look at the
same targets at the same time [193]. During traditional video development, the director aims to
guide the user’s attention in a carefully designed way, either to omit specific plot points or to drive
the narrative. This way, the viewer is taking on a passive role as a static element in the interaction
process. However, with the introduction of VR and 360-degree video, the viewer’s attention is no
longer strictly guided by camera angles and framing of the scene. The unrestricted orientation
allow for exploratory behaviour and freedom [262, 325]. Instead, the viewer acts more like an actor,
able to adjust perspective and viewing angle as they see fit, controlling the camera and adding an
extra dimension to the interaction [281]. As identified by Rothe et al. (2019), traditional attention
guidance mechanisms may not be as applicable to omnidirectional video [262]. The enhanced
perceptual load (i.e., increased amount of visual searches) and potentially missed content bears
weight on the importance of better understanding how omnidirectional video content is perceived
as opposed to traditional video content. Due to the complexity of cinematography as an art-form,
this section will focus specifically on cinematography as a tool to direct and guide user attention,
as well as explores the attention guidance mechanisms in 360-degree video experiences.
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1.6.1 Perception of Conventional and Omnidirectional Content
Since the invention of video, which introduced the projected series of still images, the format has
been revolutionary. The format remains widely adopted today, ranging from cinema to video
games. Traditional cinematography utilises the video format and adapts it to drive a visual
narrative forward, acting as an efficient tool to guide viewer attention. As an art-form, it uses
a set of visual elements such as lighting, framing, composition, camera motion, camera angles,
frames, lens choices, depth of field, zoom, focus, colour, exposure and filtration [202] to achieve
this. Carefully navigating these visual elements allows the cinematographer to ensure the director’s
vision is translated onto the video-format. Specifically, in the interaction with 360-degree video
interaction, the director’s intent and resulting visual attention of the viewer do not usually align
[99]. Hence, the cinematography of a video plays a pivotal role in guiding the attention of the
viewer. Conventional cinematography makes use of continuity editing, a method of editing the
different camera shots into a coherent sequence of events [34]. The result is a sense of situational
continuity in which the flow of non-linear information, which often due to time and location
dependency, is perceived as a single event [232]. Many techniques, such as the 180-degree rule
and action cuts, allow for increased efficiency of spatial perception and the overall success of
continuity editing [300]. While this method has become a complex and well-adapted system for
video editing, describing the vast set of rules, mechanisms behind continuity editing in traditional
cinematography is beyond the scope of this research. However, it is important to highlight the
core components of spatial perception that allows for continuity editing to be very effective. A key
component of this effect is the ability to break up a continuous flow of information into a series
of meaningful events. In the field of cognition and neuroscience, this ability to segment is better
known as event segmentation theory [28]: the cognitive ability to predict the immediate course of
events by creating an memory-based interconnected representation based on the segmented series
of meaningful events [175, 272]. Recent development in film studies suggest that this predictive
process is applicable to the film industry, emphasising the importance of prediction in spatial
perception [197]. Professional film editors tend to utilise editorial cuts to disrupt event continuity
expectations among the viewers [34], which is a direct result of the predictive process suggested
by event segmentation theory. As defined by Zacks et al. (2010), event segmentation theory is
an aspect of our perceptual processing [175, 197, 257, 272, 368]. This process is responsible for
segmenting the flow of information into a hierarchical set of discrete events. These segments are
used to create a mental representation that is used to predict the course of events, and when new
events are registered due to changes in time, space or action, this mental representation is updated
with new information. This allows the viewer to conceptualise events in relation to each other
and is an important aspect in understanding why continuity editing is an effective tool for video
editing and achieving a guided viewing experience for conventional video-content.

However, as previously defined, virtual reality content differs from conventional video, with the
most important distinction being the user’s ability to interact with their point of view (POV). This
takes away an important aspect of continuity editing: camera angles, thus eliciting questions on
the effectivity of continuity editing for guiding viewer attention VR. The before-mentioned study
by Serrano et al. (2017) suggests that various types of edits in VR are equally well understood
in terms of continuity as compared to traditional video content [281]. While other studies related
to editing tools, and their effect on viewing experiences, are predominantly designed for two-
dimensional viewing experiences [56, 150, 355], the study by Serrano et al. (2017) provides a stark
contrast by focusing predominantly on three-dimensional viewing experiences in VR. Notably, the
foundation of event segmentation theory still applies to VR editing and VR content. The study
used a HMD with eye-tracking to study gaze patterns and viewer behaviour, and compared the
data among video edits of three different classes:

• E1: edits that are discontinuous in space or time, and discontinuous in action
(action discontinuities);

• E2: edits that are discontinuous in space or time, but continuous in action (spatial
/ temporal discontinuities);
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• E3: edits that are continuous in space, time, and action (continuity edits).

The study suggests that Regions of Interest (ROIs) attract more attention after an E2 edit than
after type E1. Moreover, a peak in exploration was found at the beginning of each clip and after
an edit, suggesting that users need time to adapt to new visual content. Similar to traditional
cinematography, this study demonstrated that action discontinuities are the strongest predictors
of event boundaries in VR and that continuity edits maintain the perceived continuity despite
visual discontinuity. For instance, aligning ROIs across edits is recommended strongly for fast-
paced action movies, while ROI misalignment evokes more exploratory behaviour. The study
also found an exponential relation between misalignment across edit boundaries and the time
it takes for viewers to fixate, with large misalignments affecting viewer behaviour, even after
they fixated on the new Region of Interest (ROI). The findings of their study provide insights
into the potential responses elicited from certain edit configurations, such as the importance of
aligning ROIs across edits for fast-paced action movies and the effect of misalignments on eliciting
exploratory behaviour. This implies that the effects of event segmentation theory in traditional
video content also apply to virtual reality content.

As a major distinguishing characteristic of 360-degree video, controllable POV and perspectives
are inherent to the user experience. An extra degree of freedom is offered when viewing 360-
degree video content, by enabling the viewer to control POV and / or perspective. Therefore,
it is important to understand the effects of a variable perspective and POV in terms of viewing
experience. The extra degree of freedom elicits the problem in which users can potentially miss out
on content. Specific areas of the spherical projection that are not within the FOV of the user risk
not being seen, which forms a major problem when key events are missed by the user [262]. With
the implications made by Serrano et al. (2011), it is assumable that, in terms of viewing experience,
event segmentation theory still holds place during both virtual reality content as with traditional
video content. Research by Swallow et al. (2018) studied the extent to which perspective and POV
have an effect on the viewer’s ability to segment the content into separate events [313]. The study
focused primarily on the relationship between visual features and segmentation in first-person and
third-person videos. The results show that while the visual features changed across the different
perspectives, they had small and inconsistent effects on the way participants divided the activity
into parts. These findings are contradictory to the visual feature dependent hypothesis, which
states that if segmentation is tied to the low-level visual features of a video, such as actor posture
and visual change, they should be strongly related to segmentation for both first- and third-
person videos [313]. By ruling out the visual feature dependent hypothesis, these results suggest
that segmentation is relatively robust to changes in visual input. Instead, these findings indicate
that segmentation mechanisms appear to flexibly use visual information to identify the underlying
structure of the activity in a manner that is mostly viewpoint invariant. Despite these results
indicating a cause through higher-level cognitive mechanisms that require further research, the
implications made by studying event segmentation theory in the context of viewing experience for
virtual reality content remains extremely valuable. By identifying the similarities of video editing
techniques on the viewing experience in both conventional video and omnidirectional video, the
implication can be made that video-editing techniques used in conventional video content have a
very similar effect on viewing experience and overall perception of 360-degree content in virtual
reality as with traditional viewing experiences. The before-mentioned studies also explore, on
a cognitive level, the mechanisms that enable a similar viewing experience in terms of sense of
continuity in both traditional video-content and virtual reality content. The findings from these
studies indicate that event segmentation theory is responsible for the viewer’s sense of situational
continuity and that this cognitive mechanism is as applicable to virtual reality content as it is to
conventional video content. The study by Serrano et al. (2017) further explores how continuity
editing in virtual reality content can influence gaze patterns and offers guidelines as to how ROIs
can be utilised to provoke specific user behaviour [281]. The implication that event segmentation
and viewing experience are coherent in both traditional video content and virtual reality content
indicate that other effects on viewing experience, using conventional video-content, are to be
expected with virtual reality content as well. The small and inconsistent effect of perspective

26



(first-person vs. third-person) on the participants ability to segment the content into parts made
by Swallow et al. (2018) indicates that perspective does not play a significant role in the viewers
sense of continuity and ability to properly perceive the presented content, which, according to
Serrano et al. (2017), is applicable to virtual reality content as well.

Virtual reality content, specifically 360-degree video, is conventionally viewed in a variety
of ways. One of the key challenges in 360-degree video delivery are the unpredictable delivery
circumstances and usability contexts. Users have the ability to view the omnidirectional content
in different ways and use other viewports that vary in their level of quality [375]. However, as
distinguished by Zink et al. (2019), there exist perceptual commonalities among viewers that are
coherent in spatial, temporal, locational and behavioural ways. Spatial, temporal and locational
coherence all refer to the source file transportation from edge servers to the clients. Proposed
solutions for these distribution challenges include: prefetching and caching of spatially adjacent
tiles and the prediction of a client’s viewport trajectory to reduce the motion-to-photon delay.
While there is a need for more research on how these coherences can be utilised in an efficient and
scalable manner, it is beyond the scope of this thesis. Continuing, behavioural coherence describes
the principle that the viewport of users (e.g. HMD, mobile viewport, display) is correlated to
behavioural responses, regardless of the arbitrary ways in which the user is able to view the content
[23, 63, 375]. This suggests that when using cinematographic rules to guide viewer attention, it
is possible to exploit this principle. As 360-degree videos often have points of interest (POIs) or
areas of interest (AOIs) which tend to grasp viewer attention, it is possible make predictions on
the user’s gaze behaviour.

1.6.2 Attention Guidance Mechanisms in 360-Degree Video Experi-
ences

The lack of a predefined perspective, or view, enables to viewer to experience a close-to-life envir-
onment. The before-mentioned cinematographic rules limit 360-degree video creation, constraining
the director / content creator in their ability to guide viewer attention. A significant amount of
research has been done in the field of attention guidance mechanisms and the effectiveness thereof
[263, 284, 306, 341]. Strongly aimed at guiding viewer attention, current literature also suggests a
strong influence and correlation with overall user experience [220, 262]. With foundation in film
theory literature [114, 299], diegesis, as a construct, is often implemented to improve attention
guidance. A diegetic mechanism implements visual artefacts of the narrative or environment to
guide attention [262, 306]. Similar to cuts in traditional cinematography, the use of these internal
story- / scene elements support attentional continuity by utilising character motion and non-
verbal behaviour to guide the viewer, evoking a natural orientation towards the target of attention
[100, 299]. However, elements that are external to the scene or story (i.e., graphical symbols and
pointing arrows) are prone to be less effective in guiding attention. These non-diegetic mechanisms
usually only guide the user’s attention to a specific POI or AOI, rather than evoking naturally
guided behaviour [262]. Current research explored the inclusion of diegetic mechanisms and com-
pared its effect against non-diegetic mechanisms in terms of user experience, sense of presence
and user preference [48, 220, 306]. It was found that the inclusion of diegetic mechanisms evoked
higher levels of all three aspects. However, in terms of task performance, both mechanisms proved
effective. A study by Norouzi et al. (2021) evaluated the effectiveness of using virtual animals as
diegetic attention guidance mechanisms, which acknowledge the presence of the user within the
360-degree experiences, and compared it to non-diegetic mechanisms [223]. Their findings indicate
that both mechanisms were effective in guiding users towards target events. However, they found
that diegetic artefacts induced a higher sense of presence, and yielded better user experiences over-
all. The user-acknowledging behaviour of diegetic artefacts (i.e., virtual animals) and conspicuous
appearance of non-diegetic artefacts both positively enhances user engagement and influences be-
haviour [224]. This result can be explained through the increased levels of presence, thus reducing
risk of eliciting the Swayze Effect: the sensation of feeling no tangible relationship with the (vir-
tual) environment, despite being present [338]. However, despite the promising results, their study
did not take into account various content types (e.g. educational vs. entertainment), suggesting
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lack of research devoted to the influence of content type on the guidance of user attention in virtual
360-degree environments.

Guiding viewer attention in 360-degree video requires less obtrusive techniques to ensure the
viewers ability to control their gaze. In a study by Sheikh et al. (2016), a variety of unobtrus-
ive techniques for directing attention in VR were evaluated [284]. Their findings suggests that
integrating both audio and visual cues from a target area (POI or AOI) is the most effective tech-
nique for guiding attention in 360-degree video. Separation of audio and visual cues can lead to
a decreased effectiveness, whereas integration of both leads to all participants effectively noticing
the target area. Notably, out of all four techniques implemented, the most unobtrusive technique
entailed a diegetic artefact: a bystander walking across the action towards the target area. In ad-
dition, their study studied the effect of distance at which action occurs on the level of immersion
and viewer enjoyment. Participants avoided invasion of private space, aiming at maintaining a
"safe" distance from the target area as to not be too distant or close. This observation is in line
with the findings from Wilcox et al. (2006), which state that people tend to respond similarly
to invasion of personal space in both virtual as well as real-life settings [284, 352]. Furthermore,
this can be directly linked to Hall’s model of proxemics [119] and the findings of Keskinen et al.
(2019), which studied the effect of camera height on user experience [164]. They found that a close
proximity and low camera placement negatively affected user experience, similar to Saarinen et al.
(2017) [269]. Lastly, in the study by Skeikh et al. (2016), it was found that participants felt more
immersed in the 360-degree video content when diegetic elements of the content interacted with
the participant (i.e., characters making eye-contact). Although diegetic mechanisms are proven
effective in subtly directing user attention, these diegetic artefacts also have a greater likelihood
of being overlooked [48, 220, 262], caused by higher levels of plausibility illusion (Psi) [294].

1.6.3 Place and Plausibility Illusion
Viewing omnidirectional content through a HMD is perceived as an immersive experience. The
level of immersion that the user perceives relies on a variety of parameters. As identified by Slater
et al. (1997), the parameters that are strongly associated with immersion are – but not limited
to – the following: graphics frame rate, extent of physiological tracking, tracking latency, image
quality, field of view, render quality, dynamics, and sensory modalities [297]. The use of such
immersive environments rely heavily on sensorimotor contingencies (SCs): the notion that users
know how to act, in order to perceive. When interacting with a HMD, this relates to the notion
that users are aware that changing head-direction or moving around changes orientation within
the virtual environment [227], mimicking a physical environment. The increased levels of presence
that result from SCs evoke place illusion (PI), defined as "the strong illusion of being in a place in
spite of the sure knowledge that you are not there" [294]. While sharing similar qualities, PI varies
from immersion and is distinguished by Slater et al. (2009) as such that immersion provides the
boundaries within which PI can occur. Immersion can be seen as a property of physics, whereas PI
specifically denotes the sense of "being there". The extent to which users explore the system and
its physical boundaries can evoke disruptions in the occurrence of place illusion [108]. Contrary
to place illusion, plausibility illusion (Psi) denotes the illusion of "perceiving that virtual events
are really happening, even though the you know it is not real". The disruption of place illusion
can be restored through technical adjustments or resumed activities (i.e., corrections in head-
tracking or correctly rendering scenes). In particular, PI refers to how the virtual environment is
perceived, whereas Psi refers to what internal representations are perceived. Psi doesn’t require
physical realism, as was demonstrated by Milgram’s paradigm [30, 295]. Equally applicable to
virtual environments, as demonstrated by Slater et al. (2006), as participants showed physiological
responses when exposed to external events directed at them but not caused by them. Regardless
of physical or virtual realism, events and actions directed at the user (acknowledgement) evoke
physiological responses, similar to how they would respond in real life. The extent of which depends
on the level of realism and virtual acknowledgement of the user. This correlation principle, between
external events and a user’s own interoceptive / exteroceptive sensations, is fundamental for the
occurrence of Psi. Multiple studies have demonstrated this cause-effect relationship [103, 104, 294,
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295, 296, 332] and occurs through the action-reaction interaction between virtual events and the
perceiving user.

1.6.4 User Engagement
The increasing supply and demand of (omnidirectional) video content presses firmly against the
sense of responsibility among content providers to deliver high-engagement and high-quality video
content to the users. This also entails optimising content, further underlining the importance of
effective attention guidance, dictated by attention economics [287]. The similarities in the cognitive
perception of traditional video and omnidirectional video strongly imply external validity from
studies on the impact of traditional video qualities on user engagement. Key quality metrics often
relate to technical attributes, such as bit-rate, buffering ratio, join time, and rendering quality.
However, the development of metrics on autonomous and independent influence of 360-degree
content on the user interaction remains unexplored. Since a higher quality of experience relates to
higher user satisfaction with content quality, common objective metrics for measuring engagement
when viewing video is through play time. Such metrics provide the content creator with precise
information on what type of content receives more overall engagement [81].

The emphasis on understanding beyond usability, within the field of human-computer interac-
tion, is to create more engaging experiences [123, 147, 182]. As demonstrated by O’Brien et al.
(2008), the theoretical foundations that underpin and expand upon the traditional attributes of
engagement (user activities, user attitude, mental models, motor skills, intrinsic interest, atten-
tion and motivation) [52, 157, 270] are based on flow theory, aesthetic theory, play theory, and
information interaction [205, 230]. The work of O’Brien et al. (2008) approaches engagement
as a quality of user experience and as such, takes into account the influential aspects (threads)
of the user engagement experience. Known as the experience threads, the sensual-, emotional-
and spatiotemporal threads pertain to a variety of attributes of the user experience. The sensual
thread entails the visual, auditory and interactive components. The emotional thread comprises
the affective experiences related to the user interaction. Lastly, the spatiotemporal thread involves
the dimensions of time and space in which the interaction takes place. These defined threads of
experience are essential in understanding the attributes that initiate the point of (re)engagement,
maintain engagement and lead to disengagement. Combined with the analysis on different applic-
ation areas of engagement, their synthesis of the theoretical framework has resulted in a model
of engagement that contains the following attributes: aesthetic and sensory appeal, attention,
awareness, control, interest, novelty, challenge, feedback, positive / negative affect, motivation,
usability, perceived time, interruptions, and interactivity. Moreover, the framework encompasses
the behaviours, cognitions and emotions of the user in the context of design, interactive features
and content application.

Many studies suggest that the engagement enhancing quality of 360-degree video increases the
sense of presence, involvement, empathy and enjoyment [274, 286]. However, 360-degree video
can also evoke a sense of apathy, distraction and cybersickness, inhibiting the user experience
[39, 188, 242, 267, 302]. As defined by Wang et al. (2018), current challenges of user engagement
in 360-degree video entail cybersickness [2, 121, 207], physical discomfort [74, 112], cognitive
barriers [39, 267], attention [160, 188, 189, 238, 242], satiation [57] and visual quality [190, 236].
As previously stated, the independent role of content is often an overlooked aspect in 360-degree
video research, despite its significant influence on user engagement and experience [31, 177, 188].
In some cases, these content-related components have a higher impact on the user experience than
the technological factors, highlighting the significant influence thereof [19, 20, 102]. The studies by
Koehler et al. (2005) and Bleumers et al. (2012) demonstrate the complex interaction between the
media format, narrative, and video style, indicating a significant distinction in the suitability of
various genres for 360-degree video [31, 168]. The user’s ability to self-determine their focus calls
for content-specific adaptations. For instance, a slower pace might be more suitable for the viewing
experience of documentaries. Furthermore, the work by Wang et al. (2018) studied the influence
of content genre on audience engagement [343]. Results from their study demonstrated the same
complex interaction effect, previously defined by Koehler et al. (2005), indicating significant
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differences in level of engagement between content genres. For example, genres such as "sports"
and "science" were found to be distinctively engaging than other genres. In general, these findings
suggest that each type of content has different effects on the level of engagement [7, 343]. However,
by only analysing objective measures, they did not take into account the subjective measures that
hold significance in better understanding the influence of 360-degree content on user behaviour
and engagement. Moreover, the unique behavioural actions related to VR system interaction (i.e.,
head movement and gaze) were not included in the studies.

1.7 Conclusion
The literature study explored the current state of research within the field of 360-degree video user
interaction. The body of literature presented in this study emphasises the complex interaction
process between user and 360-degree video in VR, and further presents the underlying theories
and conceptual models that entail the interaction process. The theoretical foundations presented
in this literature study make use of the 360-degree video interaction model as a multi-dimensional
construct to help understand the complex interplay of perceptions, cognition, usability and user
behaviour during 360-degree video interaction [105, 356, 371]. By including cognitive principles,
attentional guidance mechanisms, cinematographic concepts and perceptual attributes of user
engagement, this research closely examines the representative 360-degree video interaction domains
– cognitive perception and behavioural consequences – and explores influential components of
image complexity on user behaviour across the levels of direct perception, interaction and usage
situation [42].

The findings by Singla et al. (2017) demonstrated the distinctive behavioural responses while
interacting with various 360-degree content using a head-mounted display, emphasising the pivotal
role of 360-degree content in evoking behavioural responses [290]. Despite the significant effect
of content-specific attributes on gaze behaviour [31, 177, 188], current research remains predom-
inantly focused on the technical limitations of the 360-degree video format [109, 132, 151, 282],
disregarding the use of content-aware approaches and neglecting the significant effects of content-
specific characteristics on the user interaction [31, 177, 188]. Attributed by complex spatial and
temporal information, the content-specific 360-degree image complexity as an essential part of the
system interaction remains overlooked, similar to the exclusion of user preferences and usability
context [9, 90]. The various output modalities, in which 360-degree content can be consumed and
interacted with (e.g. VR, mobile viewport, seated and standing), further underpin the import-
ance of considering the influential aspect of usage situation and usability context. Essential to
the understanding of behavioural consequences of 360-degree video content is how the usability
context, presence of attention guiding mechanisms and cognitive engagement interact to shape
gaze behaviour [223, 293, 328, 356].

The distinct image complexity across 360-degree video comprise visual changes on both the
spatial and temporal planes, leading to a considerable range of spatiotemporal complexity mani-
fested in diverse visual and cinematographic features, unique to each 360-degree video sequence.
Spatial complexity remains an excluded yet significant aspect of 360-degree video interaction re-
search, attributed to visual richness and cinematographic characteristics associated with distinct
genres [31, 55, 59, 72, 177, 188, 194, 288]. Similarly, the relevance of temporal image complexity is
grounded in the both technical and behavioural implications, such as bit-rate variability and cog-
nitive load [2, 262]. Therefore, it is important to take the nuanced temporal factors, such as camera
motion, into consideration as it denotes content-specific temporal information [17, 69, 117, 328].

Furthermore, this chapter elaborated on the implications and significance of content-aware
approaches, suggesting a higher impact of content-specific characteristics on the user’s gaze beha-
viour compared to technological factors [19, 20, 102]. Moreover, understanding the relationship
between spatiotemporal image complexity of 360-degree video and gaze behaviour could hold
implications that extend beyond the user interaction and which could ameliorate research on tech-
nical challenges of 360-degree video such as optimising viewport prediction and enhancing foveated
rendering techniques [39, 101, 145, 360]. The varying extent to which the viewer perceives the
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360-degree video suggests that each type of content impacts the viewer differently, eliciting distinct
behavioural responses [7, 343]. Unique to the 360-degree video format is the lack of perception
of the entire 360-degree frame, as large areas of the spherical projection reside outside the user’s
FOV. The fear of missed content (FOMC) on specific content increases due to the amount of visual
searches [223, 262]. Consequently, the interaction with 360-degree content significantly stresses on
the user’s cognitive and perceptual load, bearing weight on the importance of better understanding
how 360-degree video content is perceived, as well as the significance role of usability context on
the interaction.

Understanding these effects is imperative to the development of 360-degree video content that
aims to guide user attention [99, 118]. This is further implied by the novel and experimental nature
of 360-degree content development, inciting the proverbial plateau of latent potential when it comes
to optimising and tailoring content to specific user behaviour. Building on this understanding, this
thesis concerns the extent of which the spatiotemporal complexity of a 360-degree video sequence
in VR impacts the user’s gaze behaviour amidst the multifaceted interaction process in which the
complex dynamics of cognition, perception and usability cannot be discarded. Consequently, the
main research objective of this thesis is defined as:

To discern the extent to which spatiotemporal image complexity of a 360-degree video
sequence in VR influences gaze behaviour within the multifaceted interaction model,
while factoring in the complex dynamics of cognitive perceptions and usability context.

A series of sub-questions have been devised to facilitate a more comprehensive research and to
provide additional insights in addressing the primary research objective.

1. How can computer vision techniques, paired with eye-tracking data, be employed
to quantify gaze patterns?

2. To what degree do cinematographic principles and attributes of cognitive percep-
tion impose a confounding effect on the user’s behavioural response?

3. How is gaze behaviour affected by spatial image complexity?
4. How is gaze behaviour affected by temporal image complexity?
5. To what degree is the effect of spatial- and temporal image complexity on gaze

distribution mediated by usability context?
6. How does the user’s self-perception of conscious gaze behaviour compare with

gaze data?

This literature study also presented viable methodologies and relevant mathematical concepts
(i.e., eye-tracking, gaze analysis, M-ACR, MS-SSIM) for physiological, objective and subjective
analysis of user behaviour during the 360-degree video interaction. The latter of which poses a
common limitation in current research, as significant subjective measures are commonly excluded,
despite the equal importance in better understanding the influence of perceptual attributes on user
behaviour [31, 223, 262]. Moreover, developments in the field of computer vision enable quanti-
fication of spatiotemporal complexities and image structures, as well as computational methods
to assess the unique visual characteristics of 360-degree video content, more representative of the
human visual system.

In conclusion, studying user behaviour and visual gaze in 360-degree video is imperative to
the optimisation of 360-degree content. The scope of this thesis and findings hold implications
that are essential for enhancing the overall user experience, improving video design, deepen the
understanding of cognitive processing, and evoking higher user engagement in 360-degree video in-
teractions in VR. Therefore, this chapter emphasises the importance of studying these components
to fully leverage the potential of 360-degree video.
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Chapter 2

Research Methodology
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The research methodology discussed in this section presents the methodologies that were ap-
plied during this study. As described in section 1.7, the aim of this thesis is to discern the extent
to which spatiotemporal image complexity of a 360-degree video sequence in VR influences gaze
behaviour, closing the gap in current literature by considering 360-degree video content as an
autonomous and independent factor in the interaction process. This section elaborates on the
research study that was conducted as a means to approach this. The structure of this chapter is
as follows: firstly, an overview of the overarching aspects and general research design is presented
in section 2.1. The significance of studying both physiological, objective and subjective metrics
[10, 91, 289] was translated into two parts of the study. As for the physiological and objective
analysis, an eye-tracking study was performed and detailed in section 2.2. The second part of
the study focused on the subjective user-centric evaluation and was performed through a post-
test user evaluation, presented in section 2.3. The subsections thereafter encompass overarching
elements of the study, such as population and procedure, and are discussed in sections 2.5 and
2.6, respectively. Lastly, section 2.7 provides insight into the data analysis methods, respective
variables and data preparation, concluding this research methodology chapter.

2.1 Research Design Overview
The main research objective of this thesis is to study how user behaviour is impacted across varying
360-degree video image complexities amidst the multifaceted interaction process. As evident from
the implications from current literature, the complex nature of 360-degree video interaction calls
for an analytical approach which takes into account the multi-dimensional nature of the interaction
process between user and 360-degree video. The assessment of multi-modality media, as defined
by Wu et al. (2009), can be achieved by assessing the representative dimensions of cognitive
perceptions and the subsequent behavioural consequences [356]. As discussed in the related works,
many studies on 360-degree video user experience focus solely on technical parameters such as
video or audio quality [260, 354]. However, research of the user interaction with 360-degree
video require a complex and multifaceted approach, utilising both technical aspects and content
characteristics to achieve a comprehensive analysis that encompasses both cognitive perceptions
and behavioural consequences [9, 91, 289]. The significant influence of user preferences and external
conditions heavily influence the perception of 360-degree video, thus rendering a purely objective
approach ineffective and necessitating the inclusion of a subjective evaluation. User behaviour
can be assessed through objective and subjective metrics, and are application specific [356]. In
this thesis, and as defined by the sub-questions from § 1.7, the approach of this thesis entails
physiological, objective and subjective analyses, as sensor-based physiological data was shown
to be correlated to self-reported subjective measures. By utilising physiological data, the gap
between objective and subjective measures is crossed, adding an extra dimension to the analyses
[10, 91, 271].

The above-mentioned approaches have been translated into two parts that entail the entirety
of the research design. The first part is a physiological and objective approach, employing an
eye-tracking study (see § 2.2) to obtain measurements on the user’s gaze based on fixation data.
Participants were presented a series of 360-degree video content [194, 328], varying in respective
spatiotemporal image complexities, and were prompted to freely interact with the system during
which the eye-tracking software measured gaze data. The selection of content was based on re-
spective spatial- and temporal image complexity of the 360-degree video sequences, selected to
ensure sufficient coverage across the spatiotemporal matrix as detailed in § 2.2.3 [172, 290]. The
eye-tracking study was followed by a user-centric evaluation study (see § 2.3), which enabled sub-
jective analysis of the user’s interaction and perception. As such, the user’s gaze when viewing
varying 360-degree video content, and how it varies depending on respective spatiotemporal com-
plexities, was observed. This was followed by a subjective analysis of users’ perception to gain
further insight into the relationship between seating, gaze patterns and perceptual attributes such
as engagement, attention, and spatial awareness. Moreover, as denoted by Ebrahimi et al. (2009),
the significant influence of usage situation and usability context (i.e., environment) remains of-
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ten disregarded in comparable literature [90, 362]. The unique challenge posed by the immersive
nature of 360-degree videos is that the assumption of all viewers observing the exact same stim-
ulus does not hold true for omnidirectional video interaction. This is further emphasised by the
work of Brunnström et al. (2013), which defines the distinct levels of interaction applicable to
omnidirectional video content in VR [42]. The freedom to choose where to look within the video
results in variations in the visual experience and can potentially lead to different interpretations of
the content [194]. Therefore, the implemented study design employed the inclusion of seating type
as a third variable, as it can potentially influence the viewer’s visual experience and subsequent
interpretation of the content. In particular, the use of a rotating chair omits any limitations in
the participant’s movement, isolating the behavioural effect of variation in spatiotemporal image
complexity. By including a limiting contextual factor, the use of a fixed-position chair, the effect
size of spatiotemporal complexity on gaze behaviour can be compared across different seating
types, adding an extra dimension to the findings. As such, the proposed research methodology
enables user behaviour analysis across the three distinct domains of direct perception, interaction
and usage situation [42].

This approach aims to reconcile the dichotomy between objective and subjective measurements
by integrating both quantitative and qualitative methodologies, thereby providing a more com-
prehensive and nuanced understanding of the user interaction. To accommodate the inclusion of
these variables, a mixed-methods design was implemented, enabling an extensive analysis of both
within-subjects and between-subjects effects. This methodology allows for the manipulation of the
independent variable (i.e., spatial complexity and temporal complexity) within-subjects, while the
other independent variable (seating type) is manipulated between-subjects. The implementation
of a mixed-method design over a 2 × 2 factorial design was decided based on considerations in
generalisability and statistical power.

Due to the time-consuming nature of the eye-tracking study, it was decided to adopt a within-
subjects study design for the sequenced viewing of 360-degree content, in which the participants
viewed an entire sequence of subsequent 360-degree videos in VR. In order to minimise the learning-
/ order effect, prominent in a within-subjects study design due to the transfer of knowledge,
the order of videos in which they were presented was randomised using a Latin square design.
Moreover, by implementing a within-subjects study design, the amount of random noise and
occurrence of confounding variables in the data set was minimised. The participants were split
in two groups, one which viewed the 360-degree video content on a rotating chair while the other
group was seated on a fixed chair, by implementing a between-subjects design method. The
variable chair type was not explicitly disclosed to the participants to avoid any potential bias in
excessive rotating caused by their awareness of it. The specific group division and sequencing
method, as well as content selection process are described in § 2.2.5 and § 2.2.3, respectively.

During the execution of the eye-tracking study, participants were required to wear an head-
mounted display in order to view the 360-degree video sequences. As such, the participants were
exposed to the risk of cybersickness or any other sense of dizziness or nausea caused by the
discrepancy between their own movements and the motion of the virtual scene [40, 126, 328].
Furthermore, participants might experience a sense of fatigue, physical strain or discomfort from
looking around the virtual scene extensively during the viewing sessions. To minimise the risk and
impact of these effects, the following precautions were put in place.

During the recruitment process, participants were asked about risk inducing parameters, such
as sensitivity to motion sickness or similar sense of dizziness, recent medical injuries or surgeries,
and back, neck or other physical conditions that might be of risk to these effects. Participants
with any of these conditions or sensitivities were excluded from participation, see § 2.5 for further
elaboration on the population. The recruited participants were extensively informed on the above-
mentioned physical risks and the potential of them occurring regardless. To further minimise the
risk of these effect occurring during the eye-tracking study, a pre-test parameter study was per-
formed. The main objective of the pre-test parameter study was to establish the parameters of the
main eye-tracking study and minimise a sense of physical strain, discomfort or cybersickness. As
a result, only short VOD content [81] was selected for the eye-tracking experiment. Furthermore,
the eye-tracking experiment was conducted while being seated on an ergonomic chair to avoid

35



unnecessary physical exertion caused by standing up. The seated position on a rotating chair
enabled full 360-degree rotations, while also reducing physical strain on the user’s neck and spine.
The material and apparatus utilised during the study is presented in § 2.4. An ergonomically
adjustable HMD was used throughout the viewing sessions, and users were allowed to take breaks
whenever necessary. Moreover, a short intermission was implemented between the eye-tracking
study and the user evaluation to reduce over-stimulation and provide a moment of relaxation
before conducting the user-centric evaluation. Lastly, only methodologies that were proven to
minimise risk of cybersickness, such as the M-ACR method (see § 2.2.1), were utilised throughout
this study.

2.1.1 Pre-Test Parameter Study
As mentioned, prior to conducting the main eye-tracking study, a pre-test parameter study was
conducted. The pre-test parameter study was considered a pilot study, prior to the main eye-
tracking study, and was primarily designed to define the parameters of the study in regards to
the duration of events. The findings from relevant literature [126, 137, 158] indicate that the use
of a HMD can result in cybersickness, fatigue or any other form of physical strain or discomfort,
prompting the following question:

Is there a realistic risk of a user experiencing physical or psychological harm or dis-
comfort during the proposed experiment design of this research?

As such, it was decided to run the pre-test parameter study to minimise risk of these effects
occurring as much as possible by using a small sample size to determine the optimal parameters.
The pre-test parameter study was conducted as follows.

The pre-test parameter study incorporated the same set-up and procedure from the eye-
tracking study and user evaluation. The complete eye-tracking study design is elaborated in §
2.2, as well as the user evaluation in § 2.3. There was no distinct difference with the main experi-
mental process in terms of study design, procedure, and execution of the pre-test parameter study.
Figure 1 visualises the additional SSQ assessment task as part of the pre-test parameter study, as
well as a compressed version of the entire study procedure (see § 2.6). Firstly, during the recruit-
ment process, users were asked about risk inducing parameters (e.g. motion sickness sensitivity or
other physical conditions that form a risk). Furthermore, users were informed extensively and ex-
plicitly on the exploratory nature of the pre-test parameter study. They were informed about the
exploratory nature of the study in which it was designed to establish the risk-reducing parameters
of the main eye-tracking study, and that, while cautiously designed, participation in the pre-test
parameter study could still result in the before-mentioned effects. They were also ensured that
throughout the duration of the study, they would be closely monitored and that terminating the
viewing session was possible at all times. Furthermore, the users were informed that participation
was completely voluntary and at own risk. Moreover, due to the learning effect, users that parti-
cipated in the pre-test parameter study were excluded from participation in the main study. The
recruitment correspondence and information sheet of the pre-test parameter study can be found in
appendices D13 and D14, respectively. Lastly, they were asked to provide consent, similar to the
main eye-tracking study. This information was also provided during the introduction and start
of the pre-test parameter study. The provided digital consent form and information sheet for the
pre-test parameter study can be found in Appendix E17 and E15, respectively.

M-ACR
assessment

Eye-tracking
study

User
evaluation

SSQ
assessment

Figure 1: Pre-test parameter study procedure.

Following the introduction, users were instructed to perform the main eye-tracking as described
in § 1.4. Throughout the experiment, the total duration of the experiment was monitored. Due
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to the emphasis on free viewing and exploration, the users were free to watch as much of the
360-degree video as they pleased, resulting in distinct total duration times for each user. After
watching the entire sequence of 360-degree video content during the eye-tracking study, and after
performing the user evaluation (see § 2.3), they were instructed to fill out the additional simulator
sickness questionnaire (see Appendix F19) [163]. The simulator sickness questionnaire, from the
work of Singla et al. (2017) [290], was used to assess how much the users were prone to nausea or
similar forms of discomfort when participating in the proposed experiment design. While filling
out the SSQ, users were asked to provide the severity of a list of symptoms they might have
experienced, such as fatigue, headache, eye strain, blurred vision, or increased salivation. Lastly,
users were asked to rate the total duration of the experiment on the 5-point Likert scale presented
in Table 1.

1 2 3 4 5
Too short Short Neutral Long Too long

Table 1: Duration rating scale.

The findings from the pre-test parameter study were used to establish the duration of the ex-
periment and takes into account the results from the SSQ to establish parameters for main study
design to minimise risk of cybersickness, physical strain or other physical discomfort. The result-
ing adjustments made as part of the eye-tracking study design can be found in § 2.2. Additionally,
the pre-test parameter also monitored the duration, relevance and efficiency of the metrics used
as part of the user evaluation (see § 2.3). The evaluation metrics, consisting of questions and
statements, were revised due to observed considerations of redundancy, ambiguity or deviancy.
Any reported unclear or digressive metrics were revised or omitted from the user evaluation ques-
tionnaire (UEQ) and semi-structured interview (SSI). The resulting accommodations as part of
the pre-test parameter study are discussed in § 2.3.

Results The pre-test parameter study was conducted by 9 participants, comprising of 5 male
and 4 female users. Their respective age ranged from 19 to 26 (µ = 22.11 years, σ = 2.09). The
majority of users had some slight experience with VR, with a mean score of µ = 2.11 and σ = 0.81
on a 5-point Likert scale ranging from never (1) to once a week or more (5). All users had normal
or corrected-to-normal vision, and no users reported visual impairments or had any experience
with epilepsy/motion sickness or any physical condition that may be aggravated by using a VR
headset. One user stated previous experience in similar research in the past. All users provided
their informed consent.

The users could indicate the severity of the symptoms that could occur during VR usage
on a 4-point Likert scale as presented in Appendix F19. Overall, the users reported experiencing
minimal discomfort during the pre-test parameter study, as evidenced by the mean score for general
discomfort (µ = 1.67, σ = 0.47). Fatigue (µ = 2.00, σ = 0.94) and eye strain (µ = 1.67, σ = 0.67)
were the subsequent most commonly reported symptoms, followed by headache (µ = 1.67, σ =
0.67), difficulty focusing (µ = 1.67, σ = 0.82) and blurred vision (µ = 1.44, σ = 0.68). The
remaining symptoms were reported less frequently with a relative lower severity. Furthermore,
burping was least frequently reported across all symptoms.

While showing slight discomfort due to the duration of the experiment, the pre-test parameter
study proved useful in identifying the risk-inducing parameters (i.e., fatigue and eye strain) that
occurred while conducting the study. The results from the pre-test parameter study were taken
into account and the eye-tracking part and user evaluation part were accommodated accordingly,
as detailed in § 2.2 and § 2.3, respectively.

2.2 Eye-Tracking Study
The approach employed to acquire physiological and objective measures on the user’s gaze be-
haviour was done utilising an eye-tracking study. As demonstrated by Arndt et al. (2014),
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eye-tracking poses a valuable tool to assess QoE through the use of physiological sensors [10, 91].
Aside from allowing exploration and insight into cognitive perceptions [6, 213, 243, 256, 309],
eye-tracking also enables the measurement of eye movement outside of conscious control [58, 169].
As before-mentioned, the focus of the eye-tracking study was to analyse the users’ gaze behaviour
when presented with a variety of 360-degree video content. The eye-tracking study was designed
utilising the framework established by Carter et al. (2020), which takes into account the reliabil-
ity, validity and technical challenges [49]. Due to the reliability on visual stimuli as an important
variable, it was decided to apply a diagnostic eye-tracking approach to the study design [86].

The eye-tracking study aimed to analyse gaze behaviour as instinctive and naturally occurring
as possible. The implications a comprehensive understanding of the behavioural impact of 360-
degree video has on the future development of omnidirectional content are significant, similar to
the significant influential factor of context in which they content is viewed [90]. Therefore, it
was decided to subsequently study the difference in effect size across different usability contexts,
utilising different seating types. Since the effect of different viewing context is beyond the scope
of this thesis, it was decided to measure the most natural occurring viewing behaviour while
maintaining a contextual continuity, enabling a higher external validity of the thesis. This also
resulted in the eye-tracking study being conducted in a neutral setting, without any changes made
to the location or viewing context. Due to the significant distinction between tasked viewing
and free viewing [116], and to furthermore evoke the most natural occurring viewing behaviour
from the user, it was decided to provide users with as much control over their own actions as
possible. This was further realised by omitting video-specific tasks from the study, meaning that
users were not instructed to complete a specific task (e.g. search-related tasks) other than viewing
the video. As identified by Said et al. (2004), the user’s behavioural actions are manifestations of
engagement. Therefore, the unrestricted exploration of the virtual environment, combined with
the user’s ability view as much of the video as they pleased, addresses the spatiotemporal thread of
engagement in order to provoke gaze behaviour [230, 270]. The other threads of engagement and
cognitive influences are discussed in § 2.3. Lastly, the users were able to stop the viewing session
if they feel disengaged with the video. It was not required to watch the entire video. However, to
enable consistency in the interaction across all users, it was only allowed to terminate the viewing
session. Other controls, i.e., play, pause or playback, were not allowed. The entire procedure,
including the eye-tracking study specifics, is described in § 2.6.

Pre-Test Parameter Accommodations During the eye-tracking part of the pre-test para-
meter study, users were presented content with a duration of 2 to 3 minutes. This led to an
increased duration of the experimental run, increasing fatigue (µ = 2.00, σ = 0.94) among users
and increased risk of physical discomfort (µ = 1.67, σ = 0.47). Moreover, some users (n = 5) spe-
cifically stated not being interested enough in watching the entirety of each video. The majority
of users found the total duration of the experimental run too long (n = 6). To accommodate these
findings, reducing fatigue, physical risks and maintaining engagement, it was decided to limit each
360-degree video to a duration of 60 seconds.

2.2.1 M-ACR
The user’s perception of the video poses an important factor in the eliciting of viewing behaviour.
As established by Singla et al. (2017), exploratory behaviour is not only impacted by different
levels of video resolution quality. As such, video quality of experience remains an important
aspect of the user’s QoE assessment. Video quality, as a term, commonly encompasses attributes
such as video size and resolution. However, during this QoE assessment, this terminology will
be used to define the quality of experience evoked by a 360-degree video. Regardless of the
negligible influence video resolution has on viewing behaviour, the difference in perceived QoE
holds significant impact on levels of immersion and exploratory behaviour (i.e., high quality leads
to more exploratory behaviour) [376]. Furthermore, the subjective assessment of QoE entails
sensor-based, perceptual and usability aspects [91, 105, 271, 277, 292, 371]. Therefore, this study
aims to take into account the difference of perceived QoE of each user across all videos, enabling

38



analysis on the behavioural effects caused by perceived QoE. Moreover, increasing the internal
validity of the study, it was essential to measure the QoE of each video across all users. Measuring
the QoE of each video per user enabled the examination of individual variability in the subjective
experience of each user. This approach is particularly useful in distinguishing how behavioural
consequences are influenced by QoE values at the user-level. By analysing the individual QoE
scores, variations can be identified in how the users respond to different videos, emphasising the
unique distinctions in perception, interpretation and preference of each user.

View 10s Blank 8s View 10s Voting 20s

Figure 2: M-ACR presentation sequence of one fragment stimulus.

The study by Yaqoob et al. (2020) identified various subjective approaches for 360-degree
video with respect to perceptual, cybersickness and sensor-based QoE aspects [362]. An extremely
effective approach with regards to the before-mentioned QoE aspects and the inclusion of content
characteristics, is the utilisation of the Absolute Category Rating (ACR) method, as recommended
by Tran et al. (2017), Yaqoob et al. (2020), and related works [105, 137, 239, 328, 362, 371].
However, ACR is not designed to take into account to the omnidirectional nature of 360-degree
video and longer-length viewing sessions on an HMD. Therefore, it was decided to adopt the M-
ACR scoring method [233, 290], before starting the eye-tracking viewing session, to this study, as
presented in the work by Singla et al. (2017). Users were asked to subjectively assess the videos
they were about to watch.

Traditionally, ACR presents the sequence one at a time, commonly with a duration of approx-
imately 10 seconds, after which the user is asked to evaluate its quality so that the sequences
are rated independently of each other. However, the M-ACR adaptation of the traditional ACR
scoring method presents each fragment twice, enriched with a short blank sequence in between
and followed by the voting time afterwards. After the double presentation of each video fragment,
users were asked "How is your assessment about the perceptual quality of the video on the scale
from 1 to 5?". Users then said aloud their rating, which was noted by the experimenter, allow-
ing the user to continuously wear the HMD throughout the M-ACR assessment, similar to the
study by Singla et al. (2017) [290]. Users were given a maximum of 20 seconds to vote. Voting
scores were acquired through the Mean Opinion Score (MOS), enabling users to give subjective
measurements on a five-level Likert scale, see Table 2 [144]. The M-ACR procedure is visualised
in Figure 2. This repetition of sequences is due to the priming effect, as most people are not
used to watching 360-degree videos regularly. Conducting the M-ACR assessment prior to the
eye-tracking study enabled users to get acclimated to the VR environment, mitigating learning
bias. Since most viewers are not accustomed to watching 360-degree videos frequently, the initial
sequence serves as a primer to familiarise them with omnidirectional video content. This approach
enhances the validity of the ratings obtained when the sequence is shown for the second time. The
M-ACR assessment prior to the longer-length viewing session during the eye-tracking study also
counteracts any unpredictable or curious viewing behaviour evoked from the relative novel experi-
ence of watching a 360-degree video with VR-equipment. The inclusion of M-ACR session and the
entire procedure can be found in the § 2.6. The Modified Absolute Category Rating was designed
and conducted following the guidelines and framework as established by ITU-T Recommendation
P.910 for subjective video quality assessment for multimedia applications [144, 233].

Other approaches were considered during the selection of the subjective assessment method,
namely DCR and DSIS. Degradation Category Rating (DCR) is usually focused on the objective
quality of a system, making it a more suitable method for testing fidelity or transparency, rather
than subjective perception [144]. Alternatively, an approach more applicable to omnidirectional
video is the Double-Stimulus Impairment Scale (DSIS), which is considered less reliable than
M-ACR and increases the risk of cybersickness occurring, which this study aims to minimise
[144, 293]. Due to these reservations, DCR and DSIS were not implemented during this study.
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1 2 3 4 5
Poor Bad Fair Good Excellent

Table 2: ACR subjective quality scale.

2.2.2 Database
The 360-degree content that was presented during the eye-tracking study was acquired from the
YouTubeVR dataset, and was selected using the database categorisation by Afzal et al. (2017),
in which a substantial portion of the YouTube 360-degree video dataset was categorised and
catalogued based on genre [2]. The content characterisation by Afzal et al. (2017) distinguishes
a total of 14 genres across the video dataset. The dataset consists of n = 2285 videos, of which
the genres of roller coaster (n = 325), scenery (n = 315), animals (n = 216), cartoon (n = 197)
and video game (n = 197) account for the top 5 genres in terms of quantity. However, due to
the commercialisation and standardisation of 360-degree content, the categorisation of Afzal et
al. (2017) does not accommodate for the exponential growth of the YouTube video database nor
includes novel genres [8, 54, 319, 320, 375].

EAC to ERP Conversion The 360-degree video content, acquired from the YouTube database,
was by default in the equiangular cubemap (EAC) format. In order to implement it in the iMotions
eye-tracking software and use it throughout this study, the EAC format had to be converted to
equirectangular (ERP) format. To ensure a minimal overhead conversion and elicit high-quality
results, the OpenCV library was implemented, which is a highly optimised computer vision and
image processing library. The conversion of a 360-degree video from the EAC format to ERP
included the implementation of a custom Python script, which utilises the OpenCV library. The
custom Python script for EAC to ERP conversion is provided in Appendix B4.

The script reads the EAC format input video, extracts the cubemap representation from the
top half of the video frames by processing the frames and combining the top and bottom halves,
and writes the resulting equirectangular frames to a new output video file. This is achieved by
resizing the video frames using OpenCV’s resize function and bicubic interpolation. By using
OpenCV’s VideoCapture and VideoWriter classes, the input video file was read and output
video file is written. Moreover, the script checks for each 360-degree video if it adheres to the
EAC format.

Initially, attempts were made to utilise FFmpeg, a widely-used multimedia framework, to
perform the conversion. As supported by FFmpeg, the v360 filter is capable of converting formats,
filters and codecs across the 360-degree video formats. To achieve this, the following command
syntax was used: ffmpeg -i EAC.mp4 -vf "v360=eac:equirectangular" ERP.mp4. However,
due to compatibility issues with the required v360 filter, the FFmpeg approach could not be
successfully executed. Consequently, the custom Python script using OpenCV was implemented.
To ensure compatibility with the iMotions eye-tracking software, the .mp4 files were converted to
.wmv files.

2.2.3 Set of 360º Content and Systematic Selection
The eye-tracking study was designed on the premise of users viewing a selection 360-degree video
content, which represented significant changes in spatial- and temporal complexity. However,
to acquire suitable 360-degree content, adhering to this requirement, a systematic selection was
conducted. This subsection elaborates on the 360-degree video content selection process, in which a
systematic approach based on primary filtering and visual criteria was taken to select six 360-degree
videos, that would isolate and identify videos of varying levels of spatial- and temporal complexity
from the database. The selected 360-degree video sequences utilised during the eye-tracking study
are discussed in this subsection and visualised in Figure 3, containing equirectangular projected
frames from each video. Table 3 presents the identification of each selected 360-degree video.
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(a) A1 (b) A2 (c) B1

(d) B2 (e) C1 (f) C2

Figure 3: Frames of the selected 360-degree content in ERP.

Each video was cut into shorter clips of 60 seconds to adhere to the total experiment duration
parameters of the study (see § 2.2). The visual elements and contents of each of the 360-degree
videos are detailed in Chapter 4. A brief description of the 360-degree video sequences is presented
below:

• A1: A seated perspective while a lion approaches, in an African landscape.
• A2: Fast-paced skiing down a mountain slope covered in snow.
• B1: First-person perspective of the stationary blocks in a game of Tetris.
• B2: Running down the subway tracks in a high-speed video game.
• C1: Slow moving roller coaster-type ride through a canyon landscape.
• C2: High-speed roller coaster during a Californian sunset.

Filter The selection of content based on their respective spatial- and temporal image complexity
was challenging, as computing the spatiotemporal complexity of the entire 360-degree video data-
base proved demanding. As a means to optimise the selection process, the database was filtered
on visual attributes that are indicative of various levels across the spatial and temporal planes.

As found by Cui et al. (2021), significant changes to the spatiotemporal complexity of a
video sequence occur on the spatial and temporal planes, indicated by changes in genre-specific
characteristics [72]. Video genre-specific characteristics display distinct visual styles and structures
that influence the spatial image complexity of a video sequence, closely relating genre and spatial
complexity. Therefore, video genre was used as the primary, initial indicator of significant variation
in spatial complexity. The selection based on distinct genres ensured coverage across the various
levels of the spatial plane. Due to the large number of experimental runs required to extensively
assess each existing genre and respective spatial complexity, it was decided to use a subset of genres.
Consequently, enabling the comparison of the effect of spatial complexity on viewing behaviour,
three indicative genres were used as a primary filter to select videos with enough variation in
spatial complexity. By first filtering the database on genre, the relative position of each video
along the spatial plane could be estimated, as the specific spatial complexity was later computed
to define the specific values across the spatiotemporal matrix (see Figure 4).

Furthermore, enabling comparison of the effect of temporal image complexity on gaze be-
haviour, selection was also based on factors that contribute to the 360-degree video’s temporal
complexity. Movement of the camera, object displacement, altered scenery and new perspectives
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Figure 4: Spatiotemporal Matrix

contribute to the number of visual changes occurring over time in consecutive frames. As such,
these visual changes over time determine the degree of temporal complexity of a video sequence.
However, as described in "Visual Criteria", only type E3 continuity edits were selected, highlighting
movement of the camera as a primary temporal factor. As such, camera movement was used as the
primary, initial indicator of significant variation in temporal image complexity. Camera motion in
this thesis refers to the amount of – relative – motion in which the observer moves throughout the
360-degree video sequence. The filtering based on camera motion enabled representation of sig-
nificant changes on the temporal plane across the 360-degree video selection. Similar to selecting
video sequences of varying spatial complexity, by using distinct levels of camera motion, it was
possible to estimate its position on the temporal plane as the precise temporal complexity was
computed later on. As such, the varying degree of spatiotemporal complexity across the selected
videos was estimated by using distinct genres and amount of camera motion to ensure sufficient
coverage of both spatial and temporal planes within the spatiotemporal matrix. Detailed in §
2.2.4, the selection process utilised the computation of SI- and TI-values to ensure the selected
360-degree video sequences provided sufficient coverage across the spatial and temporal planes
(see Figure 4).

The six selected 360-degree videos, represent sufficient change in spatiotemporal complexity,
were of genres: scenery (A), video game (B) and roller coaster (C), all containing both a relative
low (1) and relative high (2) amount of camera motion. To ensure this representation and a
greater degree of validity and reliability, the following considerations were made in determining
the distinctive coverage of the spatiotemporal planes due to genre variation. For instance, genres
scenery and animals share visual similarities, and were therefore not both included in the final
selection. Scenery provides incredibly rich and detailed image structures, containing high levels
of visual richness (i.e., amount of textures, objects, edges and features). Video game content
contains less detailed textures and objects and varies significantly in the level of camera motion,
thus being a valuable inclusion in the selection due to the variability of the genre and lower
estimates of spatial complexity. Lastly, to include a high-motion type genre, roller coaster videos
were selected, enabling observation of effects with higher relative camera motion as well as high
levels of visual richness.

Similarly, to study the effect size of temporal complexity on viewing behaviour independently
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of any effect offset by change in spatial complexity, two videos were selected from each of the three
genres. Since a relative low camera motion within the roller coaster genre could be considered
a relative high amount of camera motion in other genres such as scenery, the level of camera
motion was considered relative throughout this thesis. The two videos from each genre contained
one video with relative static / low camera motion, and another with relative dynamic / high
camera motion. This approach enabled the cross-examination of the effect of temporal complexity
within each genre-specific video, while controlling for the effect of spatial complexity. The cross-
combination of 360-degree video with varying visual richness and changes over time provides
sufficient representation of variations in both spatiotemporal complexity planes. The position of
each selected video within the spatiotemporal matrix is presented in Figure 4. In total, a set
of six videos were selected for this research, which is in accordance with the ITU-T Rec. P.910
framework [144]. A specification of the six 360-degree videos is presented in Table 3.

ID Title Genre Camera Motion SI-value TI-value
A1 Lion Scenery Low 92.029 2.908
A2 Ski Scenery High 69.156 18.718
B1 Tetris Video game Low 62.489 6.097
B2 Subway Video game High 62.510 24.729
C1 Canyon Roller coaster Low 48.569 12.087
C2 California Roller coaster High 39.143 14.799

Table 3: Selected 360-degree content and their feature specifications.

Visual Criteria In § 1.6, a theoretical foundation on the perception of omnidirectional content,
attentional guidance mechanisms, and user engagement in relation to their significant influence on
viewing behaviour is presented. The resulting implications from relevant literature and comparable
studies were crucial in the selection process, as visual factors (e.g. objects in the scene) signific-
antly influence viewing behaviour. This subsection discusses the considerations made during the
selection process to control for confounding effects of visual artefacts.

Firstly, Serrano et al. (2017) found that the misalignment of ROIs after a cut or edit evoke
higher levels of exploratory behaviour [281]. Therefore, to minimise the effect of cinematographic
principles on viewing behaviour, it was decided to select single-cut videos of a type E3 continuity
edit in which space, time and action are continuous, omitting any potential ROI misalignment.
Importantly, the majority of video content is edited using action discontinuity (type E1). As such,
a significant part of the total database was disregarded.

The study by Tran et al. (2017) demonstrated the effect of camera motion on the user’s self-
reported sense of presence [328]. The linear relationship between presence and user engagement
[156, 192, 230, 376] further necessitated the inclusion of distinct types of camera motion in the
subset of videos. Since a moderate level of camera motion pertains to higher levels of presence,
it was decided to include both static and dynamic video types, specified as fixed camera position
and relative moderate camera motion, respectively.

The work by Zou et al. (2018) furthermore emphasises the positive effect of high resolution
content on the overall user experience and on exploratory behaviour [376]. However, the analysis of
gaze behaviour by Singla et al. (2017) indicates that video quality exhibits no significant impact
on exploratory behaviour [290]. To account for the discrepancies in these publications, and to
induce consistency across all stimuli, all selected videos were FHD (1920x1080p) resolution and
MPEG-4 AAC codecs. Moreover, due to the temporal impact of using varying frame rates, only
360-degree video content with a frame rate of 30 fps was selected.

Lastly, to allow for control over consistency in camera motion and perspective, only egocentric
videos were selected. Egocentric videos, as proposed by Xu et al. (2018), positions the observer
as an action doer [359]. In this first-person perspective, the digital camera is mounted on the
observer’s head or body. The observer poses as an active element, rather than a passive element,
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Figure 5: Spatiotemporal matrix (per-frame distribution).

and either navigates through the environment or observes events in their vicinity [186, 361]. Fur-
thermore, the first-person perspective enables accurate relative visual changes based on the head
and body movements of the observer. The resulting higher levels of presence and immersion eli-
cit a more natural and intuitive user interaction and further attributes the observed behavioural
effect to the changes in genre and camera motion. Consequently, the control over differences in
perspective and camera motion consequently increases the internal validity of the study.

The main aim of the selection process was to isolate as much influential content characteristics
to increase validity of the results and ensure the behavioural effect is induced by variations in
spatiotemporal complexity. While the before-mentioned visual criteria were applied to carefully
select the set of 360-degree video sequences, the selected videos still naturally contain unique
content-specific visual artefacts of influential significance to user behaviour which can not be
neglected. The reliance of user gaze on the amount of guided attention, achieved through content-
specific visual artefacts and diegesis [223, 262, 306], necessitates consideration of present attention
guidance mechanisms in each selected video. In addition, to elicit natural and instinctive viewing
behaviour, it was decided to exclude content pertaining non-diegetic artefacts (i.e., arrows and
text). Furthermore, it was decided to only select content containing minimal diegetic artefacts, as
excluding diegesis in its entirely significantly limited the remainder of available content. Due to this
inextricable nature of diegesis and the influence thereof on presence and user engagement, it was
decided to explicitly highlight and take diegetic artefacts and visual attention guidance mechanisms
into consideration in the analysis of gaze behaviour. Therefore, a separate, extensive diegetic
assessment was performed. The diegetic assessment holistically approaches, codes and analyses
the visual artefacts present in each selected 360-degree video and assesses the potential influence
on gaze behaviour based on attention guiding mechanisms and influential diegetic attributes. The
conducted diegetic assessment is presented in Chapter 4.

2.2.4 Spatiotemporal Complexity Specification
Selection of 360-degree video content was done in consideration with respective spatiotemporal
complexity of each video sequence, in accordance with the defined framework in ITU-T Rec.
P.910 [144]. The quantification framework, as presented by ITU-T Rec. P.910, was employed
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to compute the spatial- and temporal image complexities of each of the six selected 360-degree
video sequences and was used to ensure comprehensive representation across the spatiotemporal
planes [144]. The selected 360-degree videos represent various configurations of both low and high
SI- and TI-values. The computation and mathematical construct for both spatial- and temporal
image complexities of a video sequence is detailed in § 1.5.1. As such, 360-degree content was
selected which sufficiently contained varying complexities across the spatial and temporal planes,
visualised by the spatiotemporal matrix in Figure 4. The location of each selected 360-degree
video sequence in the spatiotemporal matrix represents the degree of image complexity, and is a
quantitative representation of the 360-degree video in terms of space and time.

The spatial image complexity of each 360-degree video sequence was computed using the Spatial
Perceptual Information measure (SI). This approach entails applying a Sobel filter to each frame
of the video at a given time, denoted as Fn, to generate a time series of spatial information.
The Sobel filter implementation involves convolving two 3x3 kernels, Gv(i, j) and Gh(i, j), over
the video frame, where the input image pixel is represented as x(i, j), and the output is y =
Sobel(x). After calculating the standard deviation of the pixels in the Sobel-filtered frames, the
SI-value was determined as the maximum value of these standard deviations (1). By considering
the variations in pixel intensities, which are indicative of the presence of edges and texture in the
video frames, Consequently, the spatial complexity of a video sequence was computed by taking
the variation in pixel intensities, indicative of the presence of edges and texture in the video frames,
into consideration.

Similarly, the temporal complexity of each 360-degree video sequence was computed by lever-
aging the Temporal Perceptual Information measure (TI). This method leverages the motion
difference feature, Mn(i, j), which calculates the difference in pixel values (from the luminance
plane) at the same spatial location in consecutive frames of the video. The feature Mn(i, j), as
a function of time (n), identified variations in pixel intensities across adjacent frames, capturing
the motion present in the video sequence. The computation of the standard deviation over space
(stdspace) of the motion difference feature, Mn(i, j), for all i and j, generated a time series of val-
ues. The maximum value of this time series (maxtime) represents the TI of the video sequence (6).
Therefore, a higher TI-value signifies greater levels of motion between adjacent frames, effectively
quantifying the temporal complexity of the video content.

In total, the SI- and TI-values of 13 360-degree video sequences were computed, of which only
the final selection of six videos ensured sufficient coverage, as other videos did not offer sufficient
variance in spatial- and temporal complexity. A custom Python script was developed to com-
pute the spatial- and temporal complexities of each 360-degree video sequence. The script utilises
OpenCV (Open Source Computer Vision Library) to perform the video processing tasks. OpenCV
is an open-source computer vision and machine learning software library. OpenCV was used to
read each video frame, apply the required Sobel filters and convert each frame to greyscale images.
Furthermore, the script uses NumPy to perform the required array-based operations and calcula-
tions. Lastly, the Matplotlib library was used to plot the spatial- and temporal complexities in
a scatter plot. For each of the six selected 360-degree videos, a minimum of n = 1800 frames have
been processed. The cumulative per-frame plot is presented in Figure 5. The Python script for
calculating the spatial- and temporal complexity of each video sequence is presented in Appendix
B5. The exact value range and spatial- and temporal complexities of the 360-degree videos is
detailed as follows.

A1 The spatiotemporal complexity of video A1 was computed over a total of 1812 individual
360-degree video frames in equirectangular projection. The SImin,max range [86.199, 95.039], with
an average SI-value = 92.029, denotes the degree of image complexity on the spatial plane. The
TImin,max range [0.383, 6.355], with an average TI-value = 2.908, denotes the degree of image
complexity on the temporal plane. Figure 6a presents the per-frame distribution of SI- and TI-
values.
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Figure 6: Spatiotemporal matrices of A1 and A2 (per-frame distribution).

A2 The spatiotemporal complexity of video A2 was computed over a total of 1885 individual
360-degree video frames in equirectangular projection. The SImin,max range [49.658, 98.341], with
an average SI-value = 69.156, denotes the degree of image complexity on the spatial plane. The
TImin,max range [9.747, 31.546], with an average TI-value = 18.718, denotes the degree of image
complexity on the temporal plane. Figure 6b presents the per-frame distribution of SI- and TI-
values.
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Figure 7: Spatiotemporal matrices of B1 and B2 (per-frame distribution).
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B1 The spatiotemporal complexity of video B1 was computed over a total of 1948 individual
360-degree video frames in equirectangular projection. The SImin,max range [46.481, 74.082], with
an average SI-value = 62.489, denotes the degree of image complexity on the spatial plane. The
TImin,max range [0, 35.167], with an average TI-value = 6.097, denotes the degree of image com-
plexity on the temporal plane. Figure 7a presents the per-frame distribution of SI- and TI-values.

B2 The spatiotemporal complexity of video B2 was computed over a total of 1850 individual
360-degree video frames in equirectangular projection. The SImin,max range [22.757, 81.169], with
an average SI-value = 62.510, denotes the degree of image complexity on the spatial plane. The
TImin,max range [0.509, 51.715], with an average TI-value = 24.729, denotes the degree of image
complexity on the temporal plane. Figure 7b presents the per-frame distribution of SI- and TI-
values.
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Figure 8: Spatiotemporal matrices of C1 and C2 (per-frame distribution).

C1 The spatiotemporal complexity of video C1 was computed over a total of 1931 individual
360-degree video frames in equirectangular projection. The SImin,max range [13.794, 106.655],
with an average SI-value = 48.569, denotes the degree of image complexity on the spatial plane.
The TImin,max range [0.316, 30.099], with an average TI-value = 12.087, denotes the degree of
image complexity on the temporal plane. Figure 8a presents the per-frame distribution of SI- and
TI-values.

C2 The spatiotemporal complexity of video C2 was computed over a total of 1812 individual
360-degree video frames in equirectangular projection. The SImin,max range [2.071, 69.406], with
an average SI-value = 39.143, denotes the degree of image complexity on the spatial plane. The
TImin,max range [0.209, 40.278], with an average TI-value = 14.799, denotes the degree of image
complexity on the temporal plane. Figure 8b presents the per-frame distribution of SI- and TI-
values.

2.2.5 Sequencing Method
Due to the within-subjects design of the study, all selected videos were presented in sequence to
each user. Regardless of the priming effect of the M-ACR method, see § 2.2.1, the amount of
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exploratory behaviour is influenced due to the order sequence. This is further emphasised by Ser-
rano et al. (2017), which found peak levels of exploration at the beginning of watching VR content
[281]. To accommodate for the learning and order effect, it was decided to counterbalance the
order of videos across users. During the viewing session, each user was assigned a specific – ran-
domised – order in which the selected 360-degree video sequences was presented. This subsection
discusses the specific sequencing method that was applied to optimise the order randomisation,
and discusses the group specification for the comparison of gaze dynamics across different usability
contexts.

The order of videos was determined using Latin Square Design (LSD), enabling higher levels of
control over the effects of the extraneous variables (i.e., learning effect) [162, 258]. By implementing
a Latin square to the experiment design, the main effects of both spatial- and temporal complexity
were significantly isolated, while also enabling high levels of control for the effect of any confounding
variables that might affect the validity of the results. The order-effect is minimised as each 360-
degree video appears the same amount of times as the first, second, third, fourth, fifth and sixth
in the sequence. The Latin square design resulted in a matrix containing the ordering sequence,
in which each stimulus occurs only once in each row and once in each column. To minimise the
carry-over effect often produced by the Latin square design, the matrix was balanced using the
methodology presented by Bradley et al.(1958), generating a balanced Latin square design matrix,
Ls, in which a stimulus precedes another exactly once [35]. The Latin square matrix Ls was used
to determine the sequencing order as follows:

LsR =


A1 A2 B1 B2 C1 C2
A2 B1 A1 C2 B2 C1
B1 C2 A2 C1 A1 B2
C2 C1 B1 B2 A2 A1
C1 B2 C2 A1 B1 A2
B2 A1 C1 A2 C2 B1


The Latin square matrix randomised the order in which users viewed the videos, ensuring that

each video appeared an equal number of times in each position in the sequence. The resulting
Latin square array is denoted as:

ALsR
= {(A1, A2, B1, B2, C1, C2), (A2, B1, A1, C2, B2, C1), (B1, C2, A2, C1, A1, B2),

(C2, C1, B1, B2, A2, A1), (C1, B2, C2, A1, B1, A2), (B2, A1, C1, A2, C2, B1)}
(19)

The array was used to establish a balanced design with six videos and two factors (video type
and sequence position), ensuring that each video appeared exactly once in each position within a
block of six videos. The array only contains the first six sequences, the array was repeated across
all users, such that the seventh user was presented the first sequence, the eight user the second
sequence, and so forth. Due to the exclusion of results acquired during the pre-test parameter
study, the Latin square was not used to generate a randomised sequence of 360-degree video during
the pre-test parameter study.

For the sequencing of the 360-degree video content, other approaches were considered equally. A
prominent alternative method was to implement an orthogonal array [33, 179, 183] to determine the
sequencing order. This approach was disregarded based on the following considerations. Firstly,
an orthogonal array requires a large sample size and amount of experimental runs to achieve an
equivalent level of precision as the balanced Latin square. Secondly, the Latin square design allows
for a design that controls for the effects of the known nuisance factors, whereas orthogonal arrays
account for a multitude of factors as n > 2, where n is the number of nuisance effects. Lastly,
orthogonal arrays can result in differences in variance between the different combinations of factor
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levels. To ensure homoscedasticity, i.e., homogeneity of variance, it was decided to adopt the Latin
square design.

2.2.6 Group Specification
The moderating effect of usability context was studied using a between-subjects approach, utilising
two different seating types. This was achieved by splitting the sample size into two distinct
groups R and F , each utilising either a rotating chair or a fixed-position chair, respectively. The
identification and distinction of acquired data between both groups was done by using the distinct
group ID R and F , as described in § 2.7.2. Users were split equally amongst the two groups, in
order R, F , R, F . As such, the same Latin square matrix was adopted across both groups, of
which the sequencing order for group R is presented above, where LsR = LsF and ALsR

= ALsF
.

The resulting Latin square matrix, applicable to group F , is denoted as:

LsF =


A1 A2 B1 B2 C1 C2
A2 B1 A1 C2 B2 C1
B1 C2 A2 C1 A1 B2
C2 C1 B1 B2 A2 A1
C1 B2 C2 A1 B1 A2
B2 A1 C1 A2 C2 B1


The resulting Latin square array for group F is denoted as:

ALsF
= {(A1, A2, B1, B2, C1, C2), (A2, B1, A1, C2, B2, C1), (B1, C2, A2, C1, A1, B2),

(C2, C1, B1, B2, A2, A1), (C1, B2, C2, A1, B1, A2), (B2, A1, C1, A2, C2, B1)}
(20)

2.3 User Evaluation
Highlighted by the implications from existing literature, and reiterated in § 1.7, the 360-degree
video interaction encompasses a complex and nuanced interplay of cognition, perception, usability
and user behaviour. As such, the multifaceted interaction process necessitates both objective and
subjective methodologies to adequately assess the complex dynamics thereof.

The objective approach, realised through the eye-tracking study, was fundamental in the gen-
eration of gaze data. However, as emphasised by Wu et al. (2009), the complex assessment
of cognitive perceptions and subsequent behavioural consequences necessitates the inclusion of a
subjective evaluation, as objective approaches remain limited in the ability to encompass a compre-
hensive analysis that takes into account the significant influence of user preference and perception
[9, 356]. As further defined by Wu et al. (2009), the multi-dimensional construct of QoE [76, 356]
represents the cognitive and behavioural responses while watching 360-degree video, which also
require the assessment of context influential factors, such as user expectations and perception [90].
Therefore, the significant influence of these factors in impacting cognitive perceptions, eliciting
behavioural responses, cannot be disregarded in the behavioural assessment.

The inclusion of a subjective evaluation is further emphasised by the work of Holmqvist et al.
(2011), which highlights that generated eye-tracking data (i.e., gaze coordinates and heatmaps)
solely provide information on fixations, lacking the necessary insights into the underlying cognitive
perceptions that influence the user’s gaze [130]. Similar to the work by Egan et al. (2016), which
presents a correlation analysis between objective gaze data and subjective self-reported measures
[91], the subjective data from this study was acquired through the inclusion of a post-test user-
centric evaluation.
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The user evaluation protocol consisted of two parts: the user evaluation questionnaire (UEQ)
and a semi-structured interview (SSI). The questions used were designed to address specific areas
of research foci and sub-foci, as outlined in this subsection. The UEQ and SSI protocol can
be found in appendices F20 and F21, respectively. The entire evaluation protocol is detailed as
follows:

• Introduction: introducing the main objective of the evaluation.
• Part I: the user’s overall experience and well-being after conducting the experi-

ment is evaluated.
• Part II: the user’s experience is evaluated through a set of questions and state-

ments related to attention, engagement, spatial awareness and usability context
(UEQ).

• Part III: the user’s self-perception on viewing behaviour is assessed through a set
of pre-defined questions (SSI).

• Part IV: based on the acquired answers, follow-up questions are provided which
delve deeper into the given answers or provide clarity.

• Conclusion: thanking the user for their time and provide time for additional
questions or suggestions.

The placement of the evaluation within the entire experiment process was taken into consid-
eration during the design process. Specifically, there were several reservations that were taken
into account during the decision-making of when to evaluate users on the presented 360-degree
content. This resulted in the decision to run the evaluation across the entire sequence after the en-
tire presentation of content, rather than after each individual 360-degree video sequence. Firstly,
running the evaluation after each presented video required the disassembly of the HMD setup,
which increases risk of physical discomfort. Secondly, the constant change in virtual orientation
and real-life spatial orientation further increased risk of motion sickness due to the discrepancy in
spatial orientation. Lastly, running the subjective evaluation after the presentation of all content
variations enabled subjective analysis on the correlation and differences across content types, as
users were able to compare across the content sequence. Coupled with the within-subjects design,
this approach enabled the evaluation of various stimuli under the same cognitive perception levels
per user. However, this methodology does depends on stimulated recall across the users, which
is based on a selected interpretation of the content experience, rather than an exact replica of
the experience [205]. Therefore, the subjective measurements rely on the user’s ability to recall.
This limitation, as identified by McCarthy et al. (2004), is further discussed in Chapter 6. How-
ever, during events of intense cognitive activity, such as the proposed eye-tracking experiment in
this study, self-reported measures that relate to highly memorable experiences are significantly
more reliable as compared to alternative methodologies such as think-aloud protocols [93]. While
the evaluation data relies on the user’s recollection and interpretation, the reflective data on their
experience provides valuable insights into the memorable aspects of their interaction. It was there-
fore decided, in the context of this research, to run the evaluation after completion of the entire
eye-tracking study.

The first part of the user evaluation was conducted using a user evaluation questionnaire
(UEQ). In accordance with the framework presented by Wu et al. (2009), the subjective evaluation
of behavioural consequences necessitates the use of metrics tailored to the specific application do-
main. As such, a set of targeted metrics were employed, focusing on the subdomain of exploratory
behaviours [356]. The tailored metrics comprise subjective evaluation on the level of interaction,
level of direct perception and level of usage situation, as detailed in the work of Brunnström et al.
(2013) [42, 308, 323]. The assessment of the level of interaction was based on attributes such as
engagement and attention [230]. Furthermore, the level of direct perception was evaluated based
on the attributes of spatial awareness, i.e., the perceptual information created during content con-
sumption. Lastly, subjective evaluation of the usage situation was conducted with regards to the
usability context (i.e., seating) [90].
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Point of
Engagement Engagement Disengagement

Figure 9: Model of Engagement

The time-consuming nature of the eye-tracking experiment necessitated a time-efficient eval-
uation process, as it was important that users maintained engagement during the experiment
without the risk of boredom or fatigue. Therefore, it was decided to implement a set of state-
ments throughout the questionnaire to acquire subjective measurements, which helped to efficiently
gather insight on the user’s perception and experience in a relative short amount of time, similar
to Norouzi et al. (2021) [223]. The users were able to rate their level of agreement on each of the
statements utilising a 7-point Likert scale, similar to efficient subjective assessment by Wu et al.
(2009) [226, 356]. The UEQ includes a set of questions and statements regarding the perception
and interpretation of the viewed content during the eye-tracking session, and determines – on the
level of perception – how attributes of engagement, attention, spatial awareness, fear of missed
content and usability context contribute to the behavioural impact of spatiotemporal complexity
and seating type.

Pre-Test Parameter Accommodations During the semi-structured interview, users of the
pre-test parameter study were evaluated on the presented questions, statements and duration of
participating in the evaluation. This led to the exclusion and modifications of some questions
and statements to accommodate a more optimal experiment duration, and to avoid unnecessary
ambiguous questioning. As a part of the pre-test parameter study, the UEQ questions pertain-
ing engagement, attention and spatial awareness were measured separately for each 360-degree
video sequence. However, it proved difficult to obtain the nuanced differences of these attributes
between the videos, as users showed difficulty recalling those measures for each video specifically.
Furthermore, repetitive questions about each of the 6 presented videos significantly increased the
duration of the evaluation. Consequently, the UEQ was translated to a more general approach,
and the video-specific evaluation was only done during the semi-structured interview.

2.3.1 Engagement and Attention
As defined by O’Brien et al. (2008), engagement is a part of the user experience and thus poses
an important considerable aspect of the interaction [230]. Viewing behaviour (i.e., gaze distri-
bution) is the result of the process of engagement, where high levels of user engagement incite
more exploratory behaviour. Hence, when analysing the user’s perception of the 360-degree video
content, it is essential to consider the engagement process [205, 230], as illustrated in Figure 9.
The point of engagement is initiated by user interest, accompanied by attributes of motivation,
novelty and aesthetic appeal of the system. Given that this study pertains users evaluating dis-
tinct 360-degree videos, attributes of aesthetics (i.e., QoE) and motivation (i.e., experiential goals)
were not considered in the subjective analysis. Furthermore, since relative experience with VR
or 360-degree video was a part of the inclusion criteria for participation, novelty of the system
was also excluded from the analysis. As a result, initiation of engagement in this experiment
design was sustained by user interest, sensory appeal and aesthetics, until disengagement occurs
by interruption. With the latter two being evaluated through QoE assessment, the user’s level of
engagement was predominantly based on the attributes of interest.

Due to the variety in presented 360-degree video content, the level of user interest in the
specific video was considered a significant influential factor on the level of engagement the users
could experience during that specific video. As implied by the same process of engagement,
content that fails to interest a user is a considerable barrier to engagement [148, 230]. This is
further emphasised by the work of Dobrian et al. (2011) and Davis et al. (1989), demonstrating
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the correlation between level of interest, tolerance and the impact of user preference on user
assessment [76, 81]. While some users may have favoured one genre over the other, others might
have been indifferent to the content. As a result, users were instructed to evaluate how interesting
they found the entire selection of 360-degree videos during the post-test evaluation. Determining
to what extent the presented content accomplishes user interest, to establish engagement, was
done by asking the users to rate each video on a 7-point Likert scale. The users were asked to rate
their level of interest in each of the videos to determine the relationship between gaze behaviour
and how interested they were in the content.

Moreover, as presented in McCarthy et al. (2004), the experiential threads of engagement
denotes various attributes of engagement and encompasses the sensual, emotional and spatiotem-
poral threads of experience [205, 230]. As such, user interest is considered one of many attributes
of engagement. It defines the emotional thread of experience, accompanied by the level of enjoy-
ment. The sensual thread of experience is measured through perceived richness of the graphics, on
which the spatiotemporal complexity of the 360-degree video sequence significantly relies. Lastly,
the spatiotemporal thread of experience denotes the amount of feeling situated in the story, fast
perception of flow of time, sense of being in control and lack of being aware of other people. As
such, to determine the overall level of user engagement, the attributes from each of the experiential
threads were taken into account. A set of questions was devised to measure each of the attrib-
utes from the three before-mentioned threads of experience. The overall level of engagement was
acquired by averaging the 7-point Likert scores from each of the associated questions, resulting
in a singular score. Similarly, acquiring a subjective insight into the user’s level of attentional
focus during the viewing session was done using 7-point Likert scale questions and statements.
In particular, the questions related to attentional focus were aimed at the user’s sense of feeling
drawn to specific AOIs and maintaining attentional focus.

2.3.2 Spatial Awareness and Usability Context
Another measure, to understand the relationship between gaze behaviour and cognitive processing
thereof, was the amount of spatial awareness each user pertains. The study of spatial awareness
and usability context is critical to gaining a deeper understanding of the relationship between gaze
behaviour and cognitive processing while watching 360-degree video. Spatial awareness, defined
as the ability to perceive and understand the spatial dimensions of one’s environment, plays a
crucial role in navigation and orientation within the virtual environment. Furthermore, the user’s
ability to identify spatial dimensions is a significant influential factor in generating a sense of
presence and immersion, as implied by Zou et al. (2018) [376]. Spatial awareness was assessed
using the user’s ability to locate ROIs and understanding of the virtual layout. Similar to the
level of engagement, the scores were averaged across the 7-point Likert scales to generate the
user’s overall level of spatial awareness of the virtual environment. The study of spatial awareness
enabled a comparative analysis of the amount of visual attention required for user’s to perceive and
comprehend the spatial layout of the virtual environment. Additionally, as suggested by Rothe et
al. (2019), the areas of the spherical projection present outside the user’s FOV results in content
being left out of viewer perception, leading to a sense of fear of missed content [262]. The user’s
awareness of this phenomenon strongly stresses both perceptual and cognitive load. Consequently,
the users were asked about the experienced sense of FOMC (fear of missed content) [223].

Furthermore, the influence of usability context – seating type – denotes an important level of
interaction, as identified in the work of Brunnström et al. (2013) [42, 90]. Therefore, to gather
additional insights on the confounding influence of various usability factors on gaze behaviour,
the users were asked about the level of comfort, overall usage enjoyment and limiting influence of
the utilised chair type. In addition, the difference in seating between groups R and F, as well as
the unrestricted exploration of the virtual environment, could result in different interpretations of
the presented content as implied by Löwe et al. (2015) [194]. Therefore, the users were asked to
provide a brief description of each of the videos, and were encouraged to recall distinct elements
from each of the 360-degree videos.
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2.3.3 Perception of Viewing Behaviour
The second part of the evaluation entailed the semi-structured interview (SSI), designed to delve
deeper into thoughts and active gaze behaviour of the user, similar to O’Brien et al. (2008) [230].
The semi-structured interview was used to identify trends in the user’s perception of their own
gaze behaviour, adding an extra dimension to the subjective analysis. As such, this second part of
the evaluation contained a series of open-ended questions aimed at understanding the relationship
between the user’s self-reported perception of conscious gaze behaviour and acquired gaze data.
While the UEQ focused on the general viewing experience, the semi-structured interview contained
video-specific questions about the user’s perception of gaze behaviour during each 360-degree video.
Furthermore, during the semi-structured interview, the users were asked about how they perceived
any behavioural changes across the various presented content. In particular, users were asked to
describe and reflect on their gaze behaviour related to changes in camera motion and different video
genre content, as well as motivate their answers. Moreover, the enhanced perceptual load, as occurs
while interacting with 360-degree content, could result in unconscious behavioural responses and
as such, could go unnoticed by the user [196, 223, 262]. The implementation of a semi-structured
interview enabled insight into key trends of how the user perceived their own viewing behaviour and
examine a potential dichotomy between objective and subjective gaze behaviour. The questions
were oriented at differences in genre and camera motion as representative variations in spatial- and
temporal complexities, ensuring comprehension among users. Depending on the given answers,
follow-up questions were provided to elicit further insights.

The user evaluation utilises the discussed literature and theoretical foundation in Chapter 1 to
expand upon the complex variety of theoretical concepts. As such, the user evaluation comprises
various concepts and theoretical frameworks, found within interrelated research domains. Table
4 presents an overview of the related concepts and theoretical associated with each question and
statement provided during the user evaluation. The SSI protocol is presented in Appendix F21.

2.4 Material and Apparatus
The apparatus utilised during the study and the experiment setting is described in the following
section. The split-part experiment design required different material and apparatus for each of
the two parts. Firstly, the eye-tracking study was conducted using specific hardware and software
to accommodate the main objective of the research, which is described as follows.

The VR environment was developed in HTC Viveport and displayed through the HTC Vive
Pro Eye HMD. The HTC Vive Pro Eye HMD features two 3.5-inch dual-AMOLED displays,
producing a cumulative resolution of 2880x1600 pixels, equating to 1440x1600 pixels per eye. The
HMD utilises a PenTile Diamond subpixel layout, implementing two subpixels per pixel, which
produces a sharp image due to the pixel density of 615PPI. Each display operates at a sample rate
of 90HZ. The advanced tracking capabilities of the HTC Vive Pro Eye supports 6 DOF marker-
based tracking, facilitating accurate motion tracking in the virtual environment. Moreover, the
HMD utilises Tobii eye-tracking technology, which outputs gaze data at 120Hz with an accuracy
and precision between 0.5º - 1.1º. Using a 5-point calibration system, both eyes are tracked.
The HMD renders a 107.06º horizontal FOV, a 107.71º vertical FOV and a 110.48º diagonal
FOV. The visible FOV accumulates to 98º for both horizontal and vertical dimensions. The
device features ergonomically adjustable elements, including adjustments for eye-lens distance,
interpupillary distance (IPD) headphones and a comfortable strap. Lastly, various sensors such
as SteamVR tracking, G-sensor, gyroscope, proximity and and IPD sensor were built-in.

Secondly, the user evaluation required different material to acquire the subjective evaluation
data from each user. After conducting the eye-tracking process, the user evaluation protocol was
followed. This consisted of the UEQ (see Appendix F20) to provide subjective measurements
on the perceived content. Subsequently, a semi-structured interview was conducted between the
researcher and user, based on the questions presented in Appendix F21. The UEQ measurements
and semi-structured interview data were digitally acquired by the researcher using a laptop, and
were developed using Qualtrics software.
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Research Focus Sub-Focus Questions, Statements
Engagement Enjoyment experience How enjoyable did you find the overall 360-degree video experi-

ence?
Graphic quality How would you rate the richness and quality of the graphics in

the 360-degree videos?
Passage of time How quickly did time seem to pass while watching the 360-degree

videos?
Sense of control How much control did you feel you had over your viewing experi-

ence while watching the 360-degree videos?
User Interest How interesting did you find the 360-degree videos?

Plausibility Illusion Narrative immersion To what extent did you feel situated in the story being depicted
in the 360-degree videos?

Place Illusion Awareness of others To what extent were you unaware of the presence of others while
watching the 360-degree videos?

Attention Attentional focus To what extent were you able to maintain your attention on the
360-degree video throughout the entire viewing experience?

Influence of temporal change on attention "I found myself getting distracted by the background elements
when watching the videos with a static camera."
"I found myself more focused on the details of the scene when
the camera was moving slowly."

Spatial awareness AOI identification How well were you able to locate and identify important objects
or landmarks within the virtual environment?

Understanding virtual environment layout How well were you able to understand the layout of the virtual
environment?

Virtual navigation How well were you able to navigate through the virtual environ-
ment?

Influence of camera motion on spatial awareness "I had a better understanding of the layout of the environment
when watching the 360-degree content with a static camera."
"I found it difficult to orient myself and understand the layout
of the environment when watching the 360-degree video with
a moving camera."

Usability context User experience of seating type How comfortable was the use of the [chair type] during the viewing
session?
To what extent did the [chair type] affect your overall enjoyment
of the 360-degree video?

Usability of fixed chair "I felt limited in the amount of exploring I could do due to the
fixed chair."
"I found it harder to keep track of the camera movements because
of the fixed chair."

Usability of rotating chair "I felt more encouraged to look around because of the rotating
chair."
"The rotating chair made it easier for me to follow the camera
movements."

Perception of content Interpretation Can you provide a brief description of each of the videos you
watched in this study? Please provide elements or details you
found interesting or remember vividly from each of the videos.

Fear of Missed Content To what extent did you experience the sense of FOMC, due to
loss of information or missed out content? If so, can you describe
when and why?

Perception of gaze behaviour Awareness of temporal influence Some of the videos were more dynamic, with the camera moving
relatively fast or having more movement. Other videos were more
static, with the camera moving relatively slow or remaining sta-
tionary. Can you describe the effect this had on how you viewed
the content?

Awareness of spatial influence How would you describe your viewing behaviour between the dif-
ferent genres of videos (scenery, roller coaster, video game)? How
was it different and why do you think that was the case?

Table 4: User evaluation research focus and sub-focus areas.

A specific computer setup was used to accommodate the HMD hardware and required software.
The computer used met the minimum CPU and GPU requirements, with an Intel Core i5-4590 or
AMD FX 8350 processor, and an NVIDIA GeForce GTX 970 or AMD Radeon R9 290 graphics
card or better. The HMD setup consisted of the before-mentioned HTC Vive Pro Eye Headset,
two VIVE base stations, two VIVE controllers, as well as the required cables and power adapters.
To record and analyse eye-tracking data, iMotions eye-tracking software [140], including the VR
eye-tracking module, was implemented.
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Setting The study was conducted in the eye-tracking laboratory of the Utrecht University, the
Netherlands. In order to minimise potential sources of interference and distractions, the study was
performed in the dedicated laboratory area with only the user and researcher present. Users were
seated behind the computer, and were placed on an ergonomic chair, depending on the assigned
group. The chair was also adjustable in height and amount of recline, to accommodate the best
and most comfortable seating position for each user. As described in § 2.2, and with regards to
the significant influence of context influence on viewing behaviour [90], it was decided to maintain
contextual continuity across all users to ensure measurements of most natural occurring viewing
behaviour. Furthermore, the researcher was seated close to the computer in order to manually
control the input as well as closely monitor the experiment. There was sufficient space between
the researcher and the user to allow full 360-degree rotations on the dedicated chair type. Other
users, in case present, were seated on the other side of the monitor to ensure they didn’t have
access to the content prior to their experiment session.

Compensation To minimise the risk of users providing false information about their physical
well-being in return for any monetary compensation, it was decided to rely on intrinsic motiva-
tion of the user and not provide compensation of any monetary value. Refreshments were offered
throughout the experiment process, and additional parking expenses were compensated for. Mu-
tual participation in another research, as a quid pro quo for their participation, was offered.

2.4.1 Implementation

Prior to the data collection, the required software components were set up. Implementation re-
quired the installation of the following software packages: Steam VR 1.15.10 [65] and Vive_SR-
anipal SDK 1.3.6.8 [135] in conjunction with iMotions 8.2.2 [140] and the LTS version of
Unity 2020.3 [316]. To enable the communication between the eye-tracking drivers of the HTC
Vive Pro Eye and iMotions software, VIVE eye-tracking SDK and SR Runtime were employed,
as well as the VIVE and SteamVR software. The required VIVE base stations, which use infrared
signalling to track the HTC Vive Pro Eye HMD and controllers, were set up diagonally across
at a distance of 4 meters. Installed at an height of 2 meters and at an angle of 35 degrees, the
base stations individually provide an FOV of 120 degrees. Subsequently, the IP address and TCP
ports from SRanipal SR Runtime were entered in the host address field of the iMotions sensor
and API settings, enabling the connection between iMotions and the eye-tracking sensors. The
capture rate was increased to 30 fps to achieve higher temporal resolution for screen recording, as
well as match the frame rate of the content. The 360-degree video content was converted and to an
equirectangular monoscopic 2D format and uploaded, as supported by the iMotions software. It
is important to note that in iMotions, only certain image formats are supported, including Mono,
Top/Bottom, Side by Side, and Cube EAC. Loading the reference image as a Mono format was
recommended to ensure optimal gaze mapping accuracy. Consequently, and as before-mentioned,
the 360-degree video content in EAC format obtained from the YouTube database was initially
converted into the ERP format. This conversion process is described in § 2.2.2. The reference
image, required for data visualisation, was created from the original monoscopic format 360 stim
image instead of FRAME. The gaze mapping procedure mapped all of the gaze data into this
new reference image, enabling the creation of a single heatmap from the 360 stim image. Since
heatmaps were generated at the aggregate level within the iMotions data visualisation software,
individual heatmap visualisation required separate gaze data tracking for each of the 360-degree
videos across all users. Therefore, a total of 6 eye-tracking runs were performed per user. Lastly,
the system was calibrated at the start of each experimental run to increase reliability and precision
in the gaze tracking data.
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2.5 Population
The following section provides an overview of the population involved in this study. This section
includes a detailed description of the criteria for eligibility, the descriptive statistics of the demo-
graphic information, the sample size, the sampling and recruitment methods used, as well as the
adhered to information provision and consent procedures.

2.5.1 Criteria
The following participation criteria was used to recruit users and provide precise selection:

- Be over 18 years old
- Have normal or corrected-to-normal vision (incl. colour-blindness)
- Have no history of motion sickness or epilepsy
- Have no physical conditions that may limit or be aggravated by using a VR headset
- Haven’t participated in similar research in the past.

Since the eye-tracking study aims to elicit as much natural viewing behaviour as possible, it
was decided to recruit users that had no previous experience with this type of research. This
reduced risk of users behaving differently because they are aware of what is expected of them.
This is further emphasised by the notion that the users would know they are being observed and
as such, a small chance exists that they would behave differently because of that. The inclusion
of these criteria aims to reduce this Hawthorne effect as much as possible [279]. Furthermore, it
was important that users were somewhat experienced with VR, to reduce the novelty effect on
gaze behaviour [281]. The results from Serrano et al. (2017) further underpins this criterion, as
occasional or rare use of VR is unlikely to impact results. People who had undergone eye surgery
or had eye diseases, wear heavy makeup, or had high myopia were excluded from participating in
the study due to the potential effects on eye-tracking performance.

2.5.2 Participants
The participants in this research study comprised a diverse demographic set, as the sample was
primarily characterised by their experience with VR environment and usage, and physical ability to
participate in the experiment. The selection was done during the recruitment using the established
criteria, see Appendix D14. As such, the sample is representative of a subset of a large population
of users whom are interested in using VR technology and not physically impaired to use the
technology.

A total of n = 52 users conducted the proposed experiment, of which n = 33 males and n = 19
females. While an older age was not necessarily considered an exclusion criterion, it was considered
heavily correlated with lower levels of experience with VR usage. Consequently, all users were of
age between 18 to 29 years (µ = 22.5, σ = 2.57).

The selective procedure recruited users whom all had prior experience with VR. As such, the
VR experience frequency was distributed as follows: n = 9 users uses VR once a year or less,
n = 21 a few times a year, n = 17 once a month or more and n = 5 once a week or more. All
users were extensively informed about the research and provided written consent, see Appendix
E16 and E17, adhering to the ethical obligations of research participation.

Notably, the sample size (n = 52) adheres to the minimal sample size for studies containing
video quality assessment, suggested by Konuk et al. (2013) [172]. It is important to highlight
that throughout this work, the terms users and participants are used interchangeably, as the term
’users’ refer to the users of the experimental setup of this research.

2.5.3 Sample Size
The sample was further divided into two equal groups R (n = 26) and F (n = 26), enabling
the between-subjects design for studying usability context. Group R contained n = 19 males and
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n = 7 females. The age ranged from 18 to 28 (µ = 22.9, σ = 2.68). Group F included n = 14 males
and n = 12 females, with their respective ages varying from 18 to 29 years (µ = 22.1, σ = 2.43).

2.5.4 Sampling and Recruitment
For this research, a purposive sampling method was used to recruit users. The purposive sampling
method was chosen to ensure that users who met the eligibility criteria and were available and
willing to participate were selected for the study. Recruitment was predominantly done among
students and other colleagues of the Utrecht University, as well as interested individuals not
affiliated with the Utrecht University. The users were approached via digital platforms, such as
WhatsApp, iMessage, email and social media, to provide them with sufficient time to consider
their participation. The recruitment communication included a brief description of the study and
its purpose, along with an invitation to participate in the research. The complete invitation, as
part of the the sampling correspondence, can be found in Appendix D.

The link embedded in the recruitment text lead an information web-page, containing all in-
clusion criteria and necessary information regarding the research. Interested individuals could
voluntarily provide their email address, enabling correspondence on further details of the study,
such as scheduling of the experimental sessions. The web-page was developed using Qualtrics soft-
ware. Consideration time was included to ensure that potential users had enough time to consider
their participation and make an informed decision. The selected users were then contacted to
confirm their participation in the study.

Initial recruitment was done 4 weeks prior to the scheduled experimental runs. The study was
conducted over a total time period of 27 days with continuous recruitment during this time period,
to ensure a sufficiently large sample size was obtained to accommodate for the between-groups
design.

2.5.5 Information and Consent
To ensure transparency and ethical conduct of the research, informing participants and obtaining
their informed consent was essential. Participants were introduced to the study during recruitment
and were provided extensive elaboration on the research at the start of the study. To avoid any
confusion or misunderstandings, participants were informed extensively on the implications of
their participation in the research. It was also emphasised that the study did not involve any
concealment or deliberate misleading of users in any way. While users were informed on the
fact that the experiment required watching a variety of 360-degree video content, the specific
variation of which (i.e., spatiotemporal complexities) was not stated beforehand, reducing risk
of the Hawthorne effect [279]. Further provision of detailed information about the nature of the
study, the specific procedures involved and the potential risks of participation were provided using
a digital information sheet, which can be found in Appendix E16.

Explicit consent was obtained from all users before participation in the research. The consent
form, as can be found in Appendix E17, presents information about the nature of the study, how
their data will be collected, stored, and analysed, including sensor recordings such as eye-tracking
data. Sufficient time was provided for any questions or concerns before providing consent.

A collection of all information sheets, the consent form used to inform users of the research
objective, participation guidelines, requirements, risks, and terms and conditions can be found in
Appendix E. This includes a modified information sheet used specifically for the pre-test para-
meter study (see Appendix E15). The information sheets and consent form were developed and
distributed using Qualtrics software.

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information
and Computing Sciences was conducted to assess potential ethical and privacy concerns related
to this research, as presented in Appendix C. All provided information and ethical considerations
were processed accordingly. Whilst the Quick Scan identified issues, this project was allowed to
proceed after additional human assessment (see approval email in Appendix C12)
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2.6 Procedure
The experiment design, as before-mentioned in § 2.1, encompasses multiple approaches and meth-
odologies. The inclusion of the M-ACR quality assessment method, eye-tracking study and user-
centric evaluation resulted in an extensive and complex experiment process, which is visualised
in Figure 10. The flowchart utilises geometry to represent processes, input, output and points-of-
decision. The rounded rectangular nodes represent the experiment’s start- and end-points. The
transparent parallelogram nodes define input points in the process, while the greyscaled parallel-
ogram nodes indicate output points. The involved processes are visualised as rectangular nodes.
Furthermore, decisions are represented as a diamond node, containing a prerequisite. Depending
on whether the prerequisite is met during the process, the flow will continue in a predefined direc-
tion. Lastly, the arrows indicate the direction and flow of the processes. This subsection further
elaborates on the experiment process as a whole and the flow of various sub-processes within,
while further elaborating the different stages of the entire procedure. The entire experiment had
an approximate duration of 30 to 40 minutes per user.

2.6.1 Preliminaries
Prior to conducting the experiment, the recruitment process facilitated the sampling of the par-
ticipants. The recruitment of participants and sampling method are described in "Sampling and
Recruitment" (see § 2.5). The experiment could be conducted one participant at a time, and
therefore necessitated efficient scheduling. As such, during recruitment, participants interested
in conducting the experiment were asked to provide a time-slot preference. On the scheduled
experiment time-slot, participants were welcomed to the University and the experiment would
start. The set-up and preparation of the required hard- and software was done beforehand. This
includes the HTC Vive Pro Eye and iMotions eye-tracking software, as well as other apparatus
described in § 2.4.
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complete?

Load 360-
degree
video
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Figure 10: Flowchart of the experiment process.
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Start The start of the experiment contains the introduction of the experiment, gathering of
demographic information, asking of consent and provision of instructions. During the introduction,
the main aim of the study was further elaborated, and the head researcher was introduced. After
the introduction, participants were informed on the terms and conditions of their participation,
as described in "Information and Consent" (see § 2.5). The introduction of the study and all
essential information was presented using a digital information sheet, provided to the participant.
The information sheet can be found in Appendix E16. Furthermore, participants were asked to
provide consent using a digital consent form prior to the experiment. The digital consent form can
be found in Appendix E17. Enough time was provided for each participant to read and understand
the scope of the research, related procedures and potential risks. Lastly, measurements, consent
and demographic information were acquired through a short questionnaire, which can be found in
Appendix F18. The start and introduction of the study took approximately 5 minutes.

Eye-Tracking After the introduction of the experiment, participants proceeded with the eye-
tracking section of the experiment. The researcher carefully placed the HMD on the participants
head, which was ergonomically adjusted including focus lens adjustment. As proposed in the
framework by Carter et al. [49], calibration was performed once at the start of each eye-tracking
run to maintain consistent quality of the fixation data. The first part of the eye-tracking process
included the subjective quality assessment of all stimuli, through the M-ACR methodology. The
participant was presented a 10 second fragment of each 360-degree video that they would be
watching in its entirety later in the experiment. After the 10 second fragment, a short blank
intermission of 8 seconds was presented. After this brief intermission, the participant watched the
same fragment as before again, after which the voting round started. The participant kept the
HMD on throughout, and the researcher asked the participant to give the presented fragment a
rating as described in § 2.2.1. The output data from the voting process generated the MOS of
each participant for each of the 360-degree videos. The M-ACR assessment process was repeated
until all six 360-degree videos were rated by the participant.

After completing the M-ACR assessment process, the participant began watching the entire
sequence of 360-degree video content. The videos had the same maximum duration and the
sequence order was randomised across all participants, as described in § 2.2.5. The researcher
prepared the software for data generation and carefully instructed the participant to use the
HMD. After loading the predetermined video content, the participant watched the presented
content. This process generated eye-tracking data, predominantly gaze origin, gaze direction and
timestamps. The participant continued watching the video until requested to stop watching the
content, or when the video had ended. The subsequent video, as predetermined in the sequencing
for each participant (see § 2.2.5), was then loaded as long as the sequence had not yet been
completed. The software was continuously monitored by the researcher to ensure all generated
data was safely stored accordingly. When all videos from the sequence had been seen by the
participant, the eye-tracking section of the experiment was concluded and all installed hardware
(i.e., the HMD) was removed from the participant. Before proceeding to the user evaluation, a
short intermission was provided to allow participants to adjust from the exposure of the 360-degree
video and the virtual reality environment. The eye-tracking study took approximately 15 minutes,
including the brief intermission.

User Evaluation Once the brief intermission was over, and the participant was ready to pro-
ceed, the user evaluation was performed utilising the user evaluation questionnaire and semi-
structured interview. Firstly, the participant was asked to fill out the digital user evaluation
questionnaire as presented in Appendix F20. The UEQ contained several statements and ques-
tions relating to the perception of presented content, the details of which are presented in § 2.3.
Secondly, the semi-structured interview was conducted with the participant, enabling further in-
sight into the participant’s perception and behaviour. The answers provided by the participant
were digitally written down by the researcher. The SSI protocol can be found Appendix F21.
The output data generated from the user evaluation questionnaire and semi-structured interview
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was registered as evaluation data (i.e., self-reported measures). The post-test evaluation took
approximately 15 minutes.

End As part of the conclusion of the study, a short debriefing period was implemented. During
the debriefing, participants were able to ask additional questions regarding the study, their use of
data or any other related matter. Although the experiment was carefully designed to minimise risk
of cybersickness, physical strain or any form of discomfort, the experiment was still not entirely
risk-free. As such, if necessary, participants were also provided additional information regarding
post-experiment care. Subsequently, participants were thanked for their participation and were
compensated through refreshments provided throughout the experiment and in some cases, mutual
participation in another research as a quid pro quo. Furthermore, contact information of the
researcher was provided to the participant in case any additional questions or concerns would
arise in the future. Lastly, the acquired data was safely stored, transferred and processed in
preparation of the data analysis, finalising the experiment. The conclusion of the experiment took
approximately 5 minutes.

2.7 Data Analysis
The quantitative and qualitative data generated from the study was analysed using a system-
atic approach. In assistance of addressing the main research objective and answering the related
sub-questions, as introduced in § 1.7, tailored approaches were implemented to analyse the sub-
sequent data and derive significant results. This subsection details the identification of present
variables, both independent and dependent, in § 2.7.1. The data analysis approaches required
pre-processing of the acquired data, which is discussed in § 2.7.2. Furthermore, the analytical
framework, statistical approaches and implemented Python libraries are highlighted in § 2.7.3 and
§ 2.7.4, respectively. Lastly, the various data visualisation techniques are detailed in § 2.7.4.

2.7.1 Variables
The eye-tracking study and user evaluation were designed to generate physiological, objective
and subjective data to approach the main research objective of this thesis. As such, the various
variables were used to analyse relationships between these variables to determine how varying spa-
tiotemporal image complexity in 360-degree video influences gaze behaviour in VR, while factoring
in the dynamics of cognition, perception and usability context. This subsection identifies the in-
cluded variables and discusses the respective roles within the thesis. A total of four independent
variables were used in the research study, which were utilised to measure their effect on the de-
pendent variables. A total of 15 dependent variables were measured and identified. An overview
of the variables used in this research is presented in Table 5. Aside from the statement ratings,
the Likert scale data was treated as continuous despite the inherent ordinal nature, enabling the
employment of parametric tests. Due to the increased sensitivity, the analyses provide a more
nuanced interpretation of results. The treatment of Likert scale data as continuous is further
supported by the Central Limit Theorem, which states that the sampling distribution of the mean
reaches normality in sufficiently large sample sizes [127, 176]. The demographic information ac-
quired as part of the demographic questionnaire consists of user-related demographic information.
Each of these measures were considered complementary measures in the analysis of this thesis.
The data of perceptual attributes, usability factors and statement ratings was acquired using the
Qualtrics software.

Spatiotemporal Complexity The spatial- and temporal complexities from each 360-degree
video sequence were the primary independent variables. The respective SI- and TI-values varied,
identified by the spatiotemporal matrix in Figure 4. As such, the SI- and TI-values were used to
assess how variations in these values influence the amount of gaze distribution expressed by each
user. The computation of SI- and TI-values is detailed in § 2.2.4.
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Variable Type
Independent SI Continuous

TI Continuous
SeatingType Categorical
δ Continuous

Dependent Nψ Continuous
Perceptual Attributes Continuous
Usability Factors Continuous
Statement Rating Ordinal

Table 5: Overview of the independent and dependent variables.

Seating Type The sample size was split into two groups, which was done to determine the
influence of usability context on the amount of gaze behaviour. Each group of user conducted the
experiment on an assigned chair type. As such, the independent categorical variable SeatingType
contained two levels: fixed-position chair and rotating chair.

Diegetic Artefact Score δ Each 360-degree video contains visual artefacts that can be of
influence to the amount of exploration done while interacting with the video. Therefore, visual
elements, such as diegetic artefacts and attentional guiding mechanisms, pose influential in the
guidance of attention and eliciting of exploratory behaviour. To control for any confounding cine-
matographic influence, a coding scheme was devised to determine the cinematographic influence
present within each of the utilised 360-degree videos. This is further detailed in Chapter 4, which
elaborates on the use of coding schemes to determine the presence of diegetic artefacts that guide
user attention across the 360-degree videos. Ultimately, points were assigned on the size and dur-
ation of such artefacts, resulting in a Diegetic Artefact Score δ. The δ-value denotes the degree
to which attention guiding visual artefacts are present in the 360-degree video and as such, pose
as a confounding factor in eliciting exploratory behaviour. This preliminary diegetic assessment,
presented in Chapter 4, also examines the complex relationship between the degree of gaze explor-
ation and total δ point-values by utilising logarithmic and polynomial regression models as well as
reciprocate ratio-values. The independent continuous variable of δ was included as a confounding
variable in the statistical analyses, due to the complex association of diegetic artefacts and degree
of gaze exploration.

Quadrifactorial Exploration Index Nψ The normalised quadrifactorial exploration index Nψ
was the primary dependent variable employed in the data analysis, and was specifically constructed
and formulated for the scope of this thesis. The index expresses the measure of exploratory gaze
as a continuous numerical value in range [0, 1]. By utilising gaze distribution heatmap signals,
the exploration index combines area coverage ratio, average pixel intensity, structural dissimilarity
and entropy to quantify gaze distribution. The degree of gaze distribution Nψ was computed for
each individual heatmap across all users. For each user, a total of six heatmaps were extracted
from the advanced eye-tracking software, corresponding to the six presented 360-degree videos
during the study. The resulting dataset containing all computed Nψ-values is presented in Table
A.1, found in Appendix A1. The mathematical construct, formulation and computation of the
quadrifactorial exploration index is detailed in Chapter 3.

Perceptual Attributes The perceptual attributes pertain influential aspects of the user’s inter-
action and perception that were established in the literature study. The variables denote attributes
and aspects of the user’s perception of 360-degree video interaction. As such, the perceptual at-
tributes to models of cognitive processing that elicit behavioural responses not accounted for by
the objective measurements of the eye-tracking study, which did not contain parameters directly
related to the temporal effects of human perception and judgement [9, 305, 356]. As such, the
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subjective evaluation assessed aspects of cognitive perceptions and subsequent behavioural con-
sequences, resulting in the set of perceptual attributes. The set of perceptual attributes include
the levels of QoE, engagement, attentional focus, spatial awareness and fear of missed content (see
§ 2.3). Each of the perceptual attributes is a continuous dependent variable, as measured on a
7-point Likert scale. Some perceptual attributes, such as engagement and attentional focus, entail
multiple aspects and were composed of a multitude of measures. For these attributes, a single
representative score was derived based on the average Likert-scores for each of their associated
questions from the UEQ and SSI, as detailed in 2.7.2.

Usability Factors The assessment of usability factors was done by measuring the level of com-
fort and impact on personal enjoyment of each user regarding the usage of a rotating or fixed-
position chair. These quantitative metrics were used to provide additional insights on the level
comfort and enjoyment of the seating type. These continuous dependent variables were measured
on a 7-point Likert scale.

Statement Rating Lastly, as included in the UEQ and SSI, the users were presented a variety
of statements regarding their viewing behaviour. The level of agreement on each statement was
measured on a 7-point Likert scale across all users. These quantitative metrics were used to
acquire additional insights, used to enhance the qualitative findings. These continuous dependent
variables comprised a set of 7 measures, containing the degree of agreement for each statement.

2.7.2 Data Pre-Processing
A series of pre-processing steps were taken to prepare the raw data for further processing and
analysis. The data and sensor recordings from this research study were acquired utilising the
iMotions software export module, which included general information, metadata, gaze data and
timestamps. The gaze distribution heatmaps were extracted using software analysis module,
utilising the sensor recordings. The generated gaze distribution heatmap image signals were used
in the computation of the quadrifactorial exploration index Nψ. All analyses on image signals
were performed utilising equirectangular projection [16, 54]. A total set of 330 heatmap image
signals were generated. This includes each individual heatmap image for each video across all users
(n = 6 × 52 = 312), a subset of heatmaps using aggregate gaze data from both groups (n = 12),
and all users combined (n = 6).

The pre-processing steps taken in the computation of Nψ are detailed in § 3.1, however, briefly
introduced in this subsection. For the coverage area ratio and normalised average pixel intensities,
the gaze distribution heatmap image signal was superimposed on the white image frame to ensure
consistent computations of Nψ, after which the heatmap image signals were converted to greyscale.
Subsequently, a binary mask was created to identify pixels with varying intensity, denoting the
presence of the gaze distribution heatmap. This same approach of superimposing was applied
to the computation of structural dissimilarity and entropy. Additionally, the probabilities for
each intensity level were computed through the created histogram of each greyscale heatmap
image signal. The white image frame, on which each gaze distribution heatmap image signal was
superimposed, was processed as the reference image for structural dissimilarity. This process was
employed on a total of n = 330 (312 unique and 18 aggregate) gaze distribution heatmap image
signals. The process of computing the degree of gaze exploration Nψ for all n = 52 users across
the 360-degree video set is detailed in Chapter 3.

The long-format dataset was structured using identifiers for each of the users. The identifier
consisted of the groupID (i.e., relating to seating type) and subsequent participant number, in
order. As such, user 1 of group R was identified as R1. Similarly, user 15 of group F was
identified as F15. As part of the data pre-processing, the resulting Nψ-values were included in
order A1, A2, B1, B2, C1, C2 in the resulting dataset (see Appendix A1) to avoid sequencing errors
caused by the Latin square design. This enabled a consistent overview of the data in each column.
All data was pseudonymised to ensure privacy and data security. The selection process ensured
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that each user adhered to the inclusion and exclusion criteria as detailed in § 2.5. Furthermore,
the dataset was checked for missed data, which was not found. Consequently, no data entries were
excluded from the dataset.

Categorical Variable Encoding The categorical variables used in this research study were pre-
processed using encoding strategies. As identified in § 2.7.1, SeatingType as a categorical variable
was included. One-hot encoding was used to assign a new binary variable to each category of the
SeatingType. Consequently, the newly created binary value denoted the specific group in which
the user was assigned. Therefore, SeatingType of value 1 denoted the rotating chair, and 0 denoted
the fixed chair. Consequently, the encoding strategy was implemented to prepare the dataset for
the subsequent statistical analyses.

As before-mentioned, the perceptual attributes of engagement and spatial awareness were meas-
ured on a multitude of 7-point Likert scales during the UEQ. To derive a singular score for each of
these attributes, the scores were averaged across the associated questions. The level of engagement
was a composite score, measured over seven different questions. Similarly, spatial awareness was
measured over three. Due to the 7-point Likert scales used to assess the perceptual attributes,
a normalisation was performed to ensure the MOS scores derived from the QoE 5-point Likert
scales could be compared on the same scale as the rest of the perceptual attributes. Using Min-
Max normalisation, the range of Mean Opinion Scores (MOS) was standardised to a 7-point scale,
aligning the QoE-value range with the other perceptual attributes.

Xnew = (Xold −Xmin_old)
(Xmax_old −Xmin_old) × (Xmax_new −Xmin_new) +Xmin_new (21)

where X = MOS, Xold is the QoE value on scale 1-5, and Xnew is the QoE value on scale 1-7.
As such, Xmin and Xmax denote the minimum and maximum values on the old and new scales.
Consequently, a one-unit change in score is consistent across the perceptual attributes.

Lastly, as detailed in Chapter 4, pre-processing for δ was done utilising the coding scheme of
the diegetic assessment.

2.7.3 Analytical Framework
The research study design comprised two parts, as detailed in § 2.1. The eye-tracking study and
user evaluation generated both quantitative and qualitative data, aimed to elucidate the main
research objective and answer the related sub-questions introduced in § 1.7. As such, a series of
analytical approaches were implemented to help understand the relationships and effect of each of
the influential factors on the user’s gaze behaviour during 360-degree videos in VR. The subsequent
subsections discuss the employed statistical and analytical approaches for both quantitative and
qualitative analyses. Table summarises the research objectives and related analytical approaches.
The results from the quantitative and qualitative analyses are presented in Chapter 5.

Quantitative Approach
The eye-tracking study and user evaluation resulted in a set of variables, as identified in § 2.7.1.
Specific statistical models and tests were employed to help answer the corresponding sub-questions,
devised in § 1.7. In total, a set of 4 statistical objectives were devised to analyse the quantitative
data:

• I: Relationship between the perceptual attributes and gaze exploration;
• II: Determining the influence of spatiotemporal 360-degree video complexity on

gaze exploration;
• III: Assessing the interaction effect of usability context;
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• IV: Defining the general consensus on the experiential statements.
The spatial- and temporal complexities of 360-degree videos were established as the primary

independent variables of this thesis. The SI- and TI- values were used in the primary research
objective, studying how variations in these values influence the amount of gaze distribution (Nψ)
expressed by users.

However, prior to analysing the influence of spatial- and temporal complexity on gaze distribu-
tion, the mediating effect of usability context, and the general consensus, a preliminary analysis
was conducted on each of the perceptual attributes, enabling the identification of significant pre-
dictors of Nψ. The inclusion thereof in statistical analyses further isolates the impact of spatial-
and temporal image complexity and optimises the statistical models. Similar to the presence of
diegesis (δ), as detailed in Chapter 4, as well as usability context (seating type), the attributes of
cognitive perception were included as confounding variables in the statistical models, optimising
the models in their assessment of spatiotemporal complexity on gaze dynamics.

I: Perceptual Attributes on Gaze Exploration
The multi-dimensional interaction process of 360-degree video interactions underpins the eliciting
nature of cognitive and perceptual factors on behavioural responses [9, 76, 356]. The user eval-
uation encompassed a subjective user-evaluation, taking into account the influence of cognitive
perception among users. Perceptual attributes demonstrating a significant association with Nψ
introduce risk of skewed estimations of the relationship between spatiotemporal complexities and
Nψ.

Therefore, to validate its inclusion as confounding variables in the statistical model and ana-
lysis of spatiotemporal complexity on Nψ, the influence of each perceptual attribute on gaze
exploration was analysed. The defined perceptual attributes of a 360-degree video interaction
included QoE, engagement, attentional focus, spatial awareness and fear of missed content. The
continuous, normalised and averaged, values were used as a measure against the quadrifactorial
exploration index Nψ. A linear mixed-effects analysis was conducted to identify significant pre-
dictors among the set of perceptual attributes. While most of the perceptual attributes were
all measured once per user, both QoE and Nψ were measured multiple times per user. A mul-
tiple linear regression model would not suffice due to this mixed structure in the dataset, as
repeated measures from the same user are more prone to correlation than the other percep-
tual attributes. As such, violating the independence assumption of linear regression. The linear
mixed-effects model is more robust against the within-subject correlation in the repeated meas-
ures, which utilises both fixed and random effects. The significant predictors among the set of
perceptual attributes were used in the subsequent statistical models as confounding variables.

The following hypotheses were formulated for the analysis of the association between each of
the perceptual attributes and gaze distribution:

• H0: There is no significant relationship between [perceptual attribute] and degree
of gaze distribution (Nψ).

• H1: There is a significant relationship between [perceptual attribute] and degree
of gaze distribution (Nψ).

By conducting the preliminary analysis, the significance of the relationship between each of the
perceptual attributes on the amount of gaze distribution was assessed. The linear mixed-effects
model validated the inclusion thereof in the primary spatiotemporal complexity analysis of gaze
distribution, reducing unnecessary model complexities. The results of the linear-mixed effects
analysis are presented in § 5.2.1.

II: Spatiotemporal 360-Degree Video Complexity on Gaze Exploration
The main research objective addresses the significance of spatial- and temporal image complexity
on gaze exploration and distribution in 360-degree video user interaction. As such, the primary
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focus of this statistical objective was to analyse the influence of spatiotemporal complexity on
the degree of gaze exploration, imperative to the understanding of the complex dynamics between
360-degree video complexity and user behaviour in VR environments. The computation of spatial-
and temporal complexities of the selected 360-degree videos was detailed in § 2.2.4.

To increase reliability of the study, it was important to ensure the effect size on degree of
exploration was isolated to only variations in spatial- and temporal complexities. Therefore, prior
to the analysis, a series of confounding variables were identified and highlighted. The preliminary
diegetic assessment and linear mixed-effects model identified and validated the presence of diegetic
artefacts and significant attributes of perception as confounding variables. The proposed study
design, and implemented techniques to reduce random effects such as the Latin square design to
minimise order-bias, further increased reliability of the assessment.

A mixed-effects multiple regression model was employed to accommodate the hierarchical struc-
ture of the data and repeated measures, taking into account both fixed and random effects. The
hierarchical data structure was due to the repeated measures design in which each user was ex-
posed to all six 360-degree video, resulting in multiple data recordings per user. The independent
variables employed in the statistical model were the spatial complexity (SI) and temporal complex-
ity (TI). The dependent variable implemented in the model was the quadrifactorial exploration
index Nψ. The mixed-effects multiple regression employed the significant perceptual attributes,
as determined by analytical objective I, the presence of diegetic artefacts δ, and seating type as
control variables.

The following hypotheses were formulated for the analysis of the association between spatial-
and temporal complexities and gaze distribution:

• H0: There is no significant relationship between spatial- and temporal image
complexities and degree of gaze distribution (Nψ).

• H1: There is a significant relationship between spatial- and temporal image com-
plexities and degree of gaze distribution (Nψ).

The direction and magnitude of the relationships were explained through the interpretation of
the coefficients. The R2-value was utilised to assess how respective spatial- and temporal com-
plexities explain the variance in Nψ, taking into account the control variables and random effects.
This analytical approach defines the understanding and facilitated a nuanced understanding of
how spatiotemporal image complexity in 360-degree video impacts gaze behaviour, addressing the
main research objective from § 1.7. The results of the mixed-effects multiple regression analysis
are presented in § 5.2.2.

III: Interaction Effect of Usability Context
The between-subjects design enabled the acquisition of gaze data between two groups, varying
in respective usability context. Motivated by the multi-modal output of 360-degree video, which
highlights the notion that not every 360-degree video will be seen in a similar way, two different
usage situations (i.e., seating types) were compared. Users in group R were seated on a rotating
chair, whereas users of group F were seated on a fixed-position chair. The rotating chair enabled
full control and provided easier usability for viewing the entire 360-degree image. In contrast, the
fixed-position chair limited the user’s movement. Notably, when comparing the resulting aggregate
gaze distribution heatmaps between both groups, a significant difference can be observed in gaze
patterns. This observation further indicates a notable influence due to usability context (i.e.,
seating type). The aggregate heatmaps of group R and F are presented in Figures A.3 and A.4,
respectively (see Appendix A3).

A combination of both a subgroup and interaction analyses were conducted to assess the dif-
ferent influences of spatial- and temporal complexities on gaze distribution across the two seating
types. The spatiotemporal complexities (SI- and TI-values) were employed as independent vari-
ables, and Nψ as the dependent variable.

The subgroup analyses were conducted separately for each group, as the sample was split
into two groups (R and F). The subgroup analysis examined whether the relationship between
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spatiotemporal image complexity and gaze distribution was different across the two groups. For
the subgroup analyses, the following hypotheses were formulated:

• H0: There is no significant difference in the relationship between spatial- and
temporal image complexity and degree of gaze distribution (Nψ) across different
seating types.

• H1: There is a significant difference in the relationship between spatial- and
temporal image complexity and degree of gaze distribution (Nψ) across different
seating types.

Additionally, the interaction analysis specifically assesses how this effect of SI- and TI-values
on Nψ was moderated by seating type. Seating type was a controlled condition in the study,
and depending on the level, could potentially change the nature or strength of the relationship
between image complexity and gaze. This interaction suggests a moderation, resulting in the
proposed moderation analysis rather than a mediation analysis. For the interaction analysis, the
following hypotheses were formulated:

• H0: There is no interaction effect between seating type (R/F) and spatial- and
temporal image complexity on gaze distribution (Nψ).

• H1: There is an interaction effect between seating type (R/F) and spatial- and
temporal image complexity on gaze distribution (Nψ).

The examination of the difference in effect size across groups, as well as the interaction terms,
assesses the underlying mechanisms of the effect of spatial- and temporal image complexity on
gaze distribution and the dependency on seating type. As such, this analytical approach enabled
a better understanding of how the context of use, specifically seating type, interacts with the
spatiotemporal image complexities to affect the user’s gaze distribution. The results of the usability
group moderation analysis are presented in § 5.2.3.

IV: General Consensus on Experiential Statements
The fourth analytical objective was to examine the general consensus across the users on each of
the user evaluation statements. As part of the user evaluation, statements were provided relating
to the user interaction and self-perception of gaze behaviour. In total, each user was given six
statements: two of which were unique to the group they were in. The other four statements were
rated by all n = 52 users. The provided statements are presented in Table 4 (see § 2.3). Users
utilised a 7-point Likert scale to denote their respective level of agreement on each statement. The
general consensuses across users enabled complementary insights in the self-perception of gaze
behaviour during the 360-degree video interaction.

The distributions of the ratings were examined using the descriptive statistics of the statements,
enabling a preliminary understanding of the general consensus. Furthermore, to identify if there
were significant differences in the ratings between group R and F, a series of non-parametric tests
were employed.

The Mann-Whitney U test was utilised to assess the differences between the groups for each
of the four common statements. The choice of non-parametric tests was motivated by the ordinal
nature of the ratings. For each of the four common statements, rated by all users, a test statistic
and p-value was acquired. For each test, the following hypotheses were formulated:

• H0: There is no significant difference in the median rating for a given statement
x between the two seating types.

• H1: There is a significant difference in the median rating for a given statement x
between the two seating types.

The examination of the central tendencies and distribution of the ratings for each of the
experiential statements enabled a more nuanced understanding of the users’ self-perception of
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gaze behaviour during the 360-degree video interaction. The employment of the non-parametric
statistical test enabled further insight in the general consensuses across the independent groups.
The descriptive statistics, as well as the results of the Mann-Whitney U tests, are presented in §
5.2.4.

Qualitative Approach
The user evaluation encompassed the use of a semi-structured interview to acquire qualitative
data on the user’s self-perception of expressed gaze behaviour. This part of the evaluation was
predominantly focused on acquiring subjective information on how the user’s would describe the
behavioural impact of various 360-degree videos. As such, a grounded theory analysis was per-
formed utilising the qualitative data acquired during the semi-structured interview, allowing for
effective categorisation of the transcripts. Consequently, the following analytical objective was
devised:

• V: Defining the key trends in the users’ self-perception of gaze behaviour.

Variations in usability context and the unrestricted orientation of the virtual environment, as
implied by Löwe et al. (2015), could lead to varying interpretations of the content [194]. As such,
during the semi-structured interviews, users were asked to provide a brief description of what they
had seen. This approach enabled the filtering of qualitative data acquired from users who had a
distinctly different interpretations of the content compared to the other users. All n = 52 users
had similar interpretations of the content and therefore no qualitative data was excluded from the
analysis.

V: Key Trends in Self-Perception of Gaze Behaviour
Analysing the acquired qualitative data on the user’s self-behaviour, and to identify the trends
and patterns in the conscious and active gaze behaviour of the users. The qualitative analysis
was performed using emergent coding in alignment with Straussian Grounded Theory [318, 340].
During the grounded theory analysis, the data was systematically coded, categorised and labelled.
It was decided to employ the Straussian Grounded Theory methodology rather than the Glaserian
Grounded Theory, due to the implementation of more explicit coding procedures [333].

The emergent coding was performed utilising three coding procedures: open, axial and select-
ive. The open coding procedure was utilised to assign codes to different strings of text from the
transcripts. This approach enabled the data to be dissected into discrete parts, which could then
be compared for similarities and differences. Each data chunk was labelled subsequently. During
the axial coding procedure, the data chunks were systematically categorised using a combination of
inductive and deductive thinking. This process involved relating the different codes, which encom-
pass the identified categories and concepts, to each other based on causal relationships, context,
consequences and conditions. The labelled data chunks of the same code were combined into
clusters based on their respective commonalities. Lastly, as part of the selective coding procedure,
core categories were identified and linked to each other, serving as the central theoretical concepts
around which other categories are related. As such, the relationships between data chunks, codes
and categories could be closely examined. The culmination of the inter-connected concepts and
relationships, resulted in a theoretical framework of key trends and patterns in the conscious gaze
behaviour of the users.

The results of the grounded theory analysis are presented in § 5.3. The theoretical framework
of key trends and patterns in the conscious gaze behaviour of the users are presented in § 5.3.2.

2.7.4 Python Libraries and Visualisation Techniques
The mathematical computation of spatiotemporal image complexity, formulation of the quadri-
factorial exploration index, diegetic assessment and the statistical analyses were conducted using
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Analysis Sub-Question
I To what degree do attributes of cognitive perception impose a

confounding effect on the user’s behavioural response?
II How is gaze behaviour affected by spatial image complexity?

How is gaze behaviour affected by temporal image complexity?
III To what degree is the effect of spatial- and temporal image com-

plexity on gaze distribution mediated by usability context?
IV How does the user’s self-perception of conscious gaze behaviour

compare with gaze data?
V How does the user’s self-perception of conscious gaze behaviour

compare with gaze data?

Table 6: Analytical Framework

Python. This subsection describes the employed statistical and mathematical Python libraries
and packages.

Data manipulation and analysis was performed using Pandas. The NumPy, SciPy and OpenCV’s
cv2 libraries were employed for various numerical calculations, array manipulations, interpolation
and additional statistical functions. Additionally, the StatsModels library was used for the estim-
ation and inference of the presented statistical models. Various modules, e.g. StatsModels.stats,
were employed to facilitate additional model diagnostics and inferential statistics. Model selection
and validation was done using scikit-learn.

For data visualisation, model checking and assessment of underlying assumptions, a variety of
visualisations were constructed. Primarily, Matplotlib was employed for static and interactive
visualisations and basic plot structures. The Seaborn was used for more complex statistical
graphics. Additional modules, such as Plotly and Axes3D were used for the advanced three-
dimensional visualisations. Each script included specific Python libraries, packages and modules,
tailored to the specific objective of the script or analysis.
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Chapter 3

Quadrifactorial Exploration Index
Nψ
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Research on the behavioural influence of spatial- and temporal complexity on gaze dynamics
in 360-degree video interactions required a comprehensive method to quantify the amount of ex-
ploratory gaze behaviour expressed by users during the eye-tracking study. While traditional gaze
metrics provide information about location and duration of fixations, they fall short in expressing
the complexity of gaze distribution patterns during 360-degree video interactions. Fixation-based
gaze interpretation remain limited in its representation of exploratory gaze behaviour, providing
either coverage area or intensity values. Moreover, due to the susceptibility of fixation points to
saliency bias, these representations are not truly representative of the user’s attention or explor-
ation. The quantification of complex gaze patterns was further motivated by the ambiguity of
subjective human interpretation of fixation heatmaps. While the human visual system is capable
of distinguishing visual differences across various heatmaps, complex statistical analyses on the
influence of spatiotemporal image complexity required a more reliable and quantifiable metric
that encompasses the exact level of gaze distribution rather than categorical (i.e., low vs. high
exploration).

As such, the one-dimensional approach of using traditional gaze data points to interpret gaze
distribution, such as fixations, do not sufficiently capture the underlying structure and distribution
of gaze patterns, nor do they support the variability of gaze behaviour across the different types
of content. Quantifying the complexity of gaze distribution requires a multi-faceted approach
that accounts for the spatial extent and concentration of gaze patterns, as well as for structural
differences and randomness of intensity distribution. As such, this chapter aims to answer the
devised sub-question from section 1.7:

How can computer vision techniques, paired with eye-tracking data, be employed to
quantify gaze patterns?

To achieve this, a structural approach has been employed to develop a novel metric, the Quadri-
factorial Exploration Index Nψ. The metric utilises the gaze distribution heatmaps, extracted from
the eye-tracking software used during this study, to compute an exploration index. This index
value represents the degree of gaze exploration and distribution expressed by the user while watch-
ing the 360-degree video. As such, the index is representative of the amount of exploratory gaze
behaviour, measuring the degree of expressed gaze distribution.

The quadrifactorial exploration index Nψ utilises the generated heatmaps from the iMotions
VR eye-tracking software to quantify the level of gaze exploration based on a set of four factors:
coverage area ratio, average intensity, structural dissimilarity, and entropy. As such, the quadri-
factorial exploration index not only captures the variability in gaze behaviour across different
types of content, but also enables complex analyses on the relationship between spatial- and tem-
poral complexity and gaze distribution. This chapter details the construct and formulation of the
quadrifactorial exploration index Nψ, which quantifies the degree of exploration, enabling complex
computations and an advanced analysis of viewing behaviour.

3.1 Area Coverage Ratio and Average Intensity
The iMotions eye-tracking software was used to generate a gaze distribution heatmap based on
fixation points and duration, which visualises the extent and intensity of viewing exploration
and map the user’s attentional landscape. The quadrifactorial exploration index Nψ uses the
net heatmap coverage area and heatmap intensity as the basis indicators of exploration, as area
and intensity pose important factors in the quantification process of exploration behaviour. The
term area denotes the spatial extent of the gaze distribution heatmap, interpreted as the areas of
the 360-degree video frame that users have seen. A large coverage area suggest that users have
explored more of the 360-degree scene. Similarly, a smaller coverage area in the gaze distribution
heatmap indicates a more concentrated level of exploration.

The average intensity represents the degree of focus in the user’s gaze behaviour. Users who
have looked extensively at specific areas of the 360-degree scene resulted in higher intensity values,
while lower intensity values indicated a more evenly distributed exploration pattern. The heatmap
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coverage area is representative of the distribution of gaze data, with varying levels of intensity
denoting the degree of gaze concentration.

Pre-Processing To ensure uniform and reliable computations, based on gaze distribution heat-
map image signals, pre-processing of the imagery was required. Firstly, the iMotions eye-tracking
software was used to generate individual gaze distribution heatmaps, based on the user’s fixation
points (x and y coordinates) and duration (timestamps). The heatmaps were generated separately
for each video across all users. Gaze distribution heatmaps were superimposed on a uniform white
background (i.e., white image frame). As such, the resulting heatmaps were of the same dimen-
sions across the entire set of heatmaps. The superimposing of the gaze distribution heatmap on a
white image frame enables quantification of the coverage area by implementing binary masks, as
discussed in subsequent sections. Secondly, the heatmaps were converted to greyscale images to
quantify the intensity value of each heatmap pixel. Lastly, as part of the pre-processing of heat-
maps, the intensity values were normalised to scale 0 - 255 to accommodate valid comparisons.

The area coverage ratio A measures the spatial extent of the user’s gaze exploration. To
achieve this, a binary mask was created to identify the non-white heatmap pixels n that are part
of the gaze distribution heatmap and the white pixels as part of the white image frame layer.
The binary mask is an array with the same dimensions as the input heatmap, and sets each pixel
value to true or false based on a pixel intensity threshold value. The threshold was set at 254.
Consequently, any pixel with an intensity value less than the threshold (i.e., any non-white pixel)
was considered part of the heatmap. A is calculated by dividing the number of non-white pixels n
by the total number of pixels N in the heatmap image signals. N is uniform across all heatmaps,
due to the identical dimensions and resolution. To enable normalisation and interpretation of
the final quadrifactorial exploration index Nψ, the heatmap coverage area is expressed as a ratio,
generating a value in [0, 1] and enabling comparison across all heatmap image signals. While
not applicable to the heatmaps used in this study, the use of a ratio expression also accounts for
variations in image size. The resulting area coverage ratio A is expressed as:

A = n

N
(22)

The area coverage ratio calculates the ratio of which pixels are part of the heatmap. As such,
a value of 1 indicates that all the pixels in the image are affected by the heatmap (i.e., all areas
of the 360-degree video scene have been explored). Similarly, and A = 0 indicates that no pixels
are affected by the heatmap (i.e., no exploration has occurred).

Secondly, the intensity values of the heatmap are indicative of gaze concentration, with higher
intensities indicating greater levels of gaze focus. As such, the heatmap coverage area alone does
not suffice in accurately representing the level of exploration. By calculating the average intensity
I of the non-white pixels n from the coverage area, the overall gaze intensity within the heatmap
area can be expressed. To assess the average level of gaze focus, while accounting for the number
of non-white heatmap pixels n and intensity values, the average intensity I can be expressed as
the sum of all intensity values of n, divided by n:

I =
∑n
i=1 Ix
n

(23)

where Ix is the intensity value of the x-th non-white pixel.
The average intensity was normalised, using the maximum intensity value of 255, to ensure

the index is expressed in the same range [0, 1] as the area coverage ratio. Consequently, this was
done for each of the factors to ensure the final expression of the quadrifactorial exploration index
Nψ falls within range [0, 1]. The normalised intensity (Inorm) is expressed as:

Inorm = I

255 (24)
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(a) E1 = .271 (b) E1 = .128

Figure 11: E1 values of heatmaps with relative high (a) and low levels (b) of exploration.

Lastly, the area coverage ratio A and normalised average intensity Inorm were combined to
obtain a single metric E1 that is, to some extent, representative of exploratory behaviour. Using
a multiplicative approach ensured that both area coverage ratio and normalised average intensity
contribute to the final index without neither component dominating the other. As such, E1 can
be expressed as:

E1 = A× Inorm (25)

The expression of E1 provides an initial measure of gaze distribution by considering both area
coverage and intensity values. The E1 initial exploration index was computed using a custom
Python script, which is presented in Appendix B6. As indicated in Figure 11, the amount of gaze
distribution can be expressed as a multiplicative function of A and Inorm. In this figure, the gaze
distribution heatmap signals as superimposed on the white image frame are presented.

3.2 Structural Dissimilarity and Entropy
The combination of heatmap area and intensity denote to the spatial extent of individual gaze
patterns. As such, it can be seen as an initial indicator for gaze distribution. However, the area
coverage ratio does not account for the distribution or variability in gaze patterns. Specifically, a
large area could have a low exploration density and a high exploration density could be identified in
a relative small coverage area. The area coverage ratio provides a general sense of gaze distribution,
but remains limited in capturing the complexity or diversity of gaze distribution. For example,
the metric does not differentiate between a gaze distribution which is spread out and a gaze
distribution that frequently moves between a few specific areas.

Furthermore, while intensity values indicate the duration of gaze points in specific areas, the
intensity values do not account for the complexity and spatial distribution of such gaze patterns
across the heatmap image signal. It provides a general indication of the overall level of gaze
concentration, but it does not distinguish between a gaze distribution which is focused on a
small area and a gaze distribution that is evenly distributed with a lower intensity at each pixel.
Specifically, a user that has explored more of the virtual 360-degree environment has perceived
less detail throughout the scene as compared to a user with a very concentrated gaze. Similarly,
areas with higher intensity values do not always indicate extensive exploration if the gaze was
only concentrated on a few confined areas. Therefore, it is important to account for the nuances
gaze pattern interpretation. To overcome these limitations, image processing techniques form the
domain of computer vision were be implemented.

Firstly, as detailed in § 1.5, advancements made in image segmentation and similarity tech-
niques have led to significant progress in complex imagery analyses. As before-mentioned, the
HVS is capable of identifying visual differences between various heatmap signals. However, it
requires complex computational techniques to exactly quantify such differences. Inspired by the
work of Cui et al. (2021), the quantification of visualisations and graphical representations of data
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can be achieved through complex computations of image similarity techniques, which determine
the degree of similarity between two image signals [18, 72, 214, 249].

Emphasised by Hore et al. (2010), the objective methods to evaluate image signals are com-
monly based on comparisons utilising explicit numerical criteria [46, 131, 218]. As such, assessing
the exact structural differences between the generated heatmap signal and the white image signal
requires computational methods on the per-pixel-level. Consequently, a computational model for
deriving a similarity index between two images was implemented. As introduced by Wang et
al. (2004), the structural similarity index SSIM, as a measure to express similarity between two
images, has been proven effective in various areas of research. SSIM outperforms common metrics
and state-of-the-art perceptual image quality measures, mostly due to its strong correlation with
the human visual system [14, 131, 221, 345]. In situations where traditional error summation
methods are not sufficient, the SSIM index has demonstrated its efficiency. Moreover, its high
correlation with HVS denotes SSIM as an effective tool to analyse the heatmap image signals,
making it a reliable technique to compare complex heatmap image signals. The mathematical
construct and inner workings of the SSIM model is detailed in § 1.5.4.

However, implementing SSIM as a measure to express the amount of gaze distribution based
on a gaze distribution heatmap signal, required a modified approach. The heatmap signals make
use of colour intensity to indicate the density of data points. As such, the coverage area and
colour intensity variation are essential components of interpreting the gaze visualisation in a gaze
distribution heatmap. Due to the single-scale structure of SSIM, the implementation thereof to
compare heatmap signals which contain multiple scales and colours does not suffice. Specifically,
similarity assessments using heatmap image signals, rely strongly on the different intensity levels
of the colours. To account for the the multi-scale representation of the heatmap image, as occurs
through the colour encoding on a two-dimensional plane during heatmap generation, an enhanced
version of SSIM that operates across the multiple scales of coloured heatmaps was implemented
[122, 250, 265, 304, 336]. The Multi-Scale Similarity Index Measure MS-SSIM calculates the
comparison of contrast and structure at each scale, while luminance is only computed at the
highest scale. Particularly, MS-SSIM is more applicable for heatmap analyses than SSIM, as it
incorporates colour information, evaluates similarity at multiple scales and is more sensitive to
changes in the image structure. In the context of gaze distribution heatmap analysis, which contain
multiple levels of details, this approach proves significantly more effective. Another approach,
Complex Wavelet-SSIM was considered, but was disregarded due to its focus on image scaling,
translation and rotation [107, 273]. The multi-scale structure of MS-SSIM provides more accurate
and reliable results in the context of assessing the colour nuances across gaze distribution heatmap
signals [82, 305, 346]. Mathematically, MS-SSIM is expressed as:

MS-SSIM(x, y) = [lM (x, y)]αM

M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj

where the parameters are selected such that αM = βj = γj for all j and
∑M
j=1 γj = 1. The

exponents αM , βj , and γj enable the assignment of different weights to the segmented ROIs in the
image signals. The entire mathematical construct and underlying formulation of the MS-SSIM
model is detailed in § 1.5.6. A custom Python script has been developed to compute the MS-SSIM
value between the two image signals, as presented in Appendix B7.

Utilising MS-SSIM to assess the degree of similarity between the heatmap image signal and
the white image frame (on which the gaze distribution heatmap signal is superimposed) makes
use of the same greyscaled heatmap image signals as previously generated for E1. Due to the
overlay of the heatmap on a white image frame, the change in pixel values is exclusively a result
of the colour changes from the gaze distribution heatmap. While otherwise recommended for
heatmaps superimposed on a video frame [221, 345], conversion to the YCbCr was not necessary
in this context as the gaze distribution heatmap is responsible for all texture- and edge- changes
present in the signal. Furthermore, the white image signal on which the gaze distribution heatmap
is superimposed represents a completely uniform (i.e., no gaze pattern) distribution, enabling a
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comparison which denotes the degree of similarity between the two image signals and enhancing the
overall level of reliability of the metric. Another approach would involve comparing the individual
heatmap signal to an aggregate heatmap signal or a heatmap with a predefined pattern. However,
the MS-SSIM computation would be more focused on the deviation from a predefined or average
gaze pattern, rather than capturing gaze distribution of the user.

Furthermore, MS-SSIM expresses an index that denotes the degree of similarity between the
heatmap image signal and the white image frame. As such, a value of 1 indicates identical images
and 0 indicates no similarity. However, this value does not represent the structural difference
in the image signal as produced by heatmap on the white frame, but rather indicates the white
pixels that are not affected by the heatmap projection. By reversing the scale, the resulting value
represents the amount of dissimilarity and differences between the heatmap images signal and the
white image frame. Calculating the dissimilarity results in a measure that represents the structural
difference due to the presence of the heatmap image signal. The dissimilarity index d is expressed
as:

d = 1 − MS-SSIM (26)

where MS-SSIM = MS-SSIM(x, y), such that:

d = 1 − ([lM (x, y)]αM

M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj )

In this context, d is employed to measure the structural dissimilarity between the white image
frame and the superimposed heatmap signal. In this new interpretation, a value of 0 indicates
no exploration as the heatmap image signal is identical to the white image frame, and a value
of 1 indicates maximum exploration as the heatmap is completely different from the white image
frame.

The motivation for implementing dissimilarity as a metric lies in the sensitivity to spatial
distribution of MS-SSIM. The structural dissimilarity evaluates the degree to which the heatmap
image structure deviates from the uniform distribution (no gaze pattern) of the white image frame.
Moreover, the use of MS-SSIM renders the exploration index robust to variations in intensity,
as changes in brightness and contrast are additionally accounted for. While not applicable to
this study, as all gaze distribution heatmap images are of the same dimensions and generated
the same way, this robustness enables stability even when different visualisation techniques are
combined. Lastly, since MS-SSIM is sensitive to structural information, the comparison with the
white image frame will highlight areas where the heatmap contains more detailed and localised
patterns, enabling a comprehensive understanding of how users explore the 360-degree video scene
at different spatial scales.

However, in constructing an expression that denotes the amount of exploratory behaviour
based on the gaze distribution heatmap, MS-SSIM alone may not be sufficient for quantifying
gaze distribution due to its design to assess perceptual similarity between two images rather than
the extent of exploration. That is, d provides an understanding of the overall difference in gaze
patterns, however it does not capture the distribution or variability of the gaze points within
the heatmap itself. To provide a more comprehensive representation of gaze distribution, it was
decided to incorporate entropy as a factor in the expression.

Entropy offers a measure of the unpredictability and randomness of the gaze distribution
patterns and associated heatmap intensities. Diverse and less predictable exploration patterns,
suggestive of a more broadly distributed gaze pattern, are indicated by high values of entropy.
Similarly, uniform and predictable exploration patterns are indicated by lower entropy values,
suggesting a higher levels of focus on specific regions or AOIs. As such, the entropy value en-
tails valuable information on the diversity of exploration patterns, scene complexity and gaze
distribution variability, enhancing the quadrifactorial exploration index.

As a measure of complexity and randomness of the heatmap signal, entropy is expressed as:
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H(x) = −
L∑
I=1

P (I) log2 P (I) (27)

where L is the number of intensity levels in the heatmap, and P (I) is the probability distri-
bution of intensity level I. As the total number of pixels present in each heatmap image signal is
expressed as N , it was decided to express the total number of possible outcomes in this formula
as L to denote the possible levels of intensity. The probability distribution P (I) of all intensity
levels was computed by normalising the histogram of all intensity levels I:

P (I) = nI
N

where nI is the number of pixels with intensity level I and N is the total amount of pixels in the
heatmap image signal.

The greyscale heatmap image signal ensures that the entropy computation is not influenced by
any additional colour information in the heatmap, as the distribution of gaze points is primarily
represented by the intensity values [0, 255]. By using the before-mentioned greyscaled heatmap
signal for the calculation of the entropy value, the summation is computed over all possible intensity
levels I [0, 255], thereby:

H(x) = −
255∑
I=0

P (I) log2 P (I) (28)

Lastly, the entropy value was normalised to the range of [0, 1] on the maximum possible entropy
for a greyscale image with 256 intensity levels to achieve compatibility with d and the other index
measures:

H(x)norm = H(X)
log2(256) (29)

Similar to the formulation of the initial exploration index E1, the structural dissimilarity d
and normalised entropy H(x)norm of the heatmap image signals were combined to form a comple-
mentary exploration index E2. As such, the complementary index E2 is expressed as:

E2 = w1 · d+ w2 ·H(x)norm (30)

where d = 1 − MS-SSIM and weights w1 and w2 were assigned to each metric based on factor
importance, such that w1 + w2 = 1 to ensure E2 is within range [0, 1]. Non-equal weights were
assigned to d and H(x)norm due to the uncertain extent to which each factor contributes to the
value of E2. As structural dissimilarity was considered a direct indicator of gaze distribution
based on the gaze distribution heatmap signal, the optimal value of w1 = .581 was derived from
the employed Principal Component Analysis on the dataset containing all values of structural
dissimilarity d and normalised entropy H(x)norm. This process is detailed in § 3.4. Consequently,
to adhere to w1 + w2 = 1, w2 was set to .419.

The combination of structural dissimilarity based on the Multi-Scale Structural Similarity In-
dex Measure and entropy provides a complementary metric for the degree of gaze exploration
expressed by the user, focused on the structural dissimilarity, complexity, randomness and un-
certainty of gaze distribution in the heatmap image signals. Thereby, a maximum dissimilarity
index indicates a completely difference heatmap image signal (as compared to the white image
frame). Similarly, the maximum normalised entropy values indicates that the greyscale heatmap
image signal has the highest possible complexity, variability, uncertainty or randomness in its
pixel intensity values, indicating a gaze spread across a large area of the image with no single
dominant region. Consequently, a maximum value of E2 = 1 suggest extensive gaze distribution
and exploration throughout the heatmap image signal.
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(a) E2 = .276 (b) E2 = .104

Figure 12: E2 values of heatmaps with relative high (a) and low levels (b) of exploration.

The E2 complementary measure of gaze distribution was computed using a custom Python
script, which combines the resulting MS-SSIM value from the MS-SSIM script (see Appendix B7)
and the computation of Shannon entropy, as presented in Appendix B8 [357]. The script utilises
the OpenCV library for image processing, the numpy library for numerical operations, and the
skimage library for computing the Multi-Scale Structural Similarity Index Measure and Shannon
entropy. Contrary to the computation of E1, a binary mask was not required to compute MS-SSIM
and Shannon entropy, as they rely on the continuous nature of the pixel intensities.

As a complementary measure to express gaze distribution, based prominently on the structural
dissimilarity and entropy values of the heatmap signals, E2 generated similar results as E1. Figure
12 presents the computed E2 values for the same set of heatmap image signals used in Figure 11,
indicating a similar compatibility as a suitable metric for expressing the amount of exploration
based on gaze distribution heatmap images.

3.3 Formulation of the Quadrifactorial Exploration Index
Nψ

As both suitable metrics to determine the amount of gaze distribution expressed by the user,
E1 and E2 utilise the generated gaze distribution heatmaps to make computations based on pixel
intensity, spatial distribution, randomness, variation, complexity and structural image similarities.
By implementing techniques derived from imagery analysis applications in the field of computer
vision, both the initial exploration index E1 and complementary exploration index E2 use distinct
approaches to index the level of gaze exploration. Demonstrated by Figures 11 and 12, both
approaches produce similar results, indicating the validity of both metrics as measures of gaze
distribution. This indication is further supported by the resulting correlation matrix (see Table
7) of the two metrics, as detailed in § 3.4. However, in case of larger gaze distribution heatmaps,
E1 produces higher index values. Consequently, larger gaze distributions produce a higher degree
of deviation between the two exploration metrics. This deviation can be explained by the use of
the average pixel intensity in the computation of E1, as E2 takes into account all pixel intensities
and variations.

To overcome these limitations, a combination of both metrics was proposed. By combining the
four factors from each metric, area coverage ratio, average intensity, structural dissimilarity and
entropy, the discrepancies produced from E1 and E2 were minimised, while enhancing the overall
reliability of the metric. As such, by combining these four factors, the Quadrifactorial Exploration
Index provides a comprehensive measure of exploration, not only capturing the spatial extent
and concentration of gaze patterns, but also the structural differences and intensity distribution
randomness and variation. The quadrifactorial exploration index encompasses the extent and
depth of exploration as well as complexity and variability of the gaze distribution patterns, denoted
as:

ψ

The name reflects the multi-factorial nature of the metric, which captures various aspects
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of exploratory behaviour in 360-degree video. Using a weighted approach, the quadrifactorial
exploration index is initially expressed as the weighted sum β1 · E1 + β2 · E2, thereby:

ψ = β1 · (A× Inorm) + β2 · (w1 · d+ w2 ·H(x)norm) (31)

where the weighted sum of structural dissimilarity index d (26) and normalised entropy value
H(x)norm (29) are added to the multiplication of area coverage ratio A (22) and normalised average
pixel intensity Inorm (24).

The additive model of ψ = E1 + E2 was motivated by the independent contributions of each
variable. As such, the additive model ensures interpretative ways to combine a multitude of factors.
Furthermore, the model offers computational simplicity and ease of implementation, specifically
due to the use of a single heatmap image signal. The additive model can be adjusted and extended
by adding or removing factors to the expression, enabling flexibility and adaptability for future
research. In contrast, formulating a multiplicative or nonlinear model assumes specific interaction
and relationships, of which the existence has not been established in this thesis, between the
factors. Consequently, any added complexity and potential or overfitting might produce redundant
results. Weights β1 and beta2 were implemented in the formulation of ψ to emphasise the relative
importance of each factor-combination in the exploration index. Thereby, the influence of E1 and
E2 and its relative contribution is controlled, allowing for specific tailoring to this thesis.

3.4 Principal Component Analysis
To obtain an optimal mathematical formulation of the quadrifactorial exploration index Nψ, a
Principal Component Analysis (PCA) was employed, utilised to derive the optimal values for
each of the weights in the expression of ψ. By applying PCA on the dataset containing values
of all four factors, the relative contribution of each variable to the variance in the dataset was
assessed. As a statistical technique, PCA reduces the dimensionality of an interrelated dataset
by using orthogonal transformation to convert the data into a new set of variables, i.e., principal
components. The data-driven approach of employing principal components ensures that the new
set of linearly uncorrelated variables retain as much of the variance present in the original dataset.
In the applicability of this thesis, PCA was employed to obtain the weights β1 and β2, determining
the relative importance of each factor in the exploration index formula. An identical process was
used to derive the optimal weights w1 and w2 as part of the expression of E2. The area coverage
ratio, average pixel intensity, structural dissimilarity and normalised entropy values were computed
for each of the six 360-degree videos across all n = 52 users, resulting a dataset with n = 312 values
for each weighted factor of (31). A custom Python script was developed to perform PCA on this
dataset and calculate the values of ψ for each user and each video, based on the heatmap image
signals. This Python script, uses sklearn library’s PCA function and can be found in Appendix
B9. Given the multi-factorial nature of dataset, PCA was employed to generate a single principal
component, representing the maximum variance of the original data.

In the PCA process, each principal component has an associated eigenvalue, representing the
variance explained by that component. The eigenvalues provide the significance of each component
in explaining the variance in the dataset. By computing the eigenvalues and eigenvectors of the
covariance matrix, which assesses the joint variability of each pair of factors to determine the
direction of maximum variance in the dataset, the principal components that explain the most
variance in the dataset were selected. The eigenvalues can be computed by multiplication of the
explained variance ratios of each of the principal components with the total number of variables.

The explained variance ratio of the employed PCA was [.976, .024], indicating that the first
principal component in the analysis explains 97.6% of the total variance in the dataset. Sub-
sequently, the second component only accounts for 2.4% of the variation. Figure 13a presents the
scree plot, in which this interpretation is supported. Adhering to the Kaiser criterion [36, 60],
only factors with an eigenvalue > 1 were retained. Since the number of variables used in this PCA
equals 2 (E1 and E2), the resulting eigenvalues were [1.9529542, 0.0479458], meaning that only
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(a) Scree Plot (b) Loadings Plot

Figure 13: Scree (a) and loadings (b) plot of the first principal component.

the first principal component (eigenvalue = .1952) adheres to the Kaiser criterion. Consequently,
only the first principal component was retained, justified by the explained variance ratio values,
scree plot (see Figure 13a) and Kaiser criterion.

The loadings (i.e., weights) for the expression of ψ were extracted using the first principal
component. These loadings can be interpreted as the relative importance of each variable in
explaining the variance in the dataset and were used to assign values to weights β1 and β2. The
PCA loadings resulted in weights β1 = .72568339 for the interaction of area coverage ratio and
average intensity values, and β2 = .68802879 for the weighted sum of structural dissimilarity and
normalised entropy values. As such, E1 and E2 contribute almost equally to the value of ψ, as was
previously stated in the comparison of the index values of Figure 11 and 12. A high correlation
of .952 was found between E1 and E2, as presented in the correlation matrix in Table 7. As
such, both the initial exploration index and the complementary exploration index provide similar
information about the degree of gaze distribution as expressed by the users.

E1 E2
E1 1.000000 0.951928
E2 0.951928 1.000000

Table 7: PCA correlation matrix of E1 and E2

Weights β1 and β2 are indicative of how much E1 and E2 contribute to the first principle
component, acting as the coefficients in the expression of the quadrifactorial exploration index ψ.
A similar approach was applied for the computation of optimal weights w1 = .581 and w2 = .419
as part of the expression of E2 (30). The final 3 decimal weights were calculated using the 8
decimal values of each weight resulting from the PCA. Substituting the computed weight values
of β1, β2, w1 and w2 into the formula of ψ (31) as:

ψ = 0.726 · (A× Inorm) + 0.688 · (0.581 · d+ 0.419 ·H(x)norm) (32)

Simplification of the expression gives:

ψ = 0.726 · (A× Inorm) + 0.399 · d+ 0.289 ·H(x)norm (33)

where the area coverage ratio A, normalised average intensity Inorm, structural dissimilarity d
and normalised entropy H(x)norm values of the heatmap image signals are proportionally contrib-
uting to the index ψ. The proportions, as determined by their respective weights β1, β2, w1 and
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w2, were assigned by using the data-driven approach of the principal component analysis. As such,
the factors maximise the variance explained in the dataset. The dataset was not standardised, as
all included factors were already in range [0, 1], ensuring that all factors contribute equally to the
PCA while not influenced by differences in scales.

Due to the implementation of optimal weights, and β1 + β2 ̸= 1, the resulting value of ψ
contains a theoretical maximum value of 1.414. The theoretical maximum value was derived using
the sum of both weights β1 and β2. To ensure ψ remains consistent with all four factors A, Inorm,
d and H(x)norm and is expressed within [0, 1], all values of ψ were normalised to range [0, 1]:

Nψ = ψ

1.414 (34)

where Nψ denotes the final value of the quadrifactorial exploration.
The main objective of performing PCA was to derive the optimal weights in the expression

of the quadrifactorial exploration index such that the weighted sum of E1 and E2 explains the
maximum possible variance in the data. Consequently, by using the loadings as weights, the ex-
ploration index ψ poses a comprehensive and reliable measure of gaze distribution as it mitigates
the risk of over-emphasising one factor over the other three based on arbitrary or subjective de-
cisions. The data-driven approach of PCA ensures an accurate reflection of the inherent structure
and correlations within the dataset of A, Inorm, d and H(x)norm. It is important to adhere to the
normalised value of ψ (Nψ), due to the novel nature of the metric, as well adjust accordingly for
future iterations of the quadrifactorial exploration index. The optimal weights were derived based
on the dataset containing all values for A, Inorm, d and H(x)norm, and as such, are the specific
optimal values of β1 and β2 for this study. Larger datasets or different research applications may
result in a slight alterations of the optimal weights. The normalisation process ensures that despite
alternate weight-values, the index still produces a value in range [0, 1].

E1 E2 Nψ
Low .128 .104 .117
High .271 .276 .272

Table 8: Comparative matrix of E1, E2 and Nψ values.

The resulting value of Nψ, in range [0, 1] indicates the degree of gaze distribution performed by
a user during a particular 360-degree video interaction in VR. A higher value of Nψ suggests that
the user’s gaze was more widely and uniformly distributed across the scene, indicating a higher
level of exploration. Conversely, a lower value of Nψ indicates that the user’s gaze was more
focused on specific regions, suggesting less exploration and more concentrated attention. As such,
the difference in level of exploration can be derived from the Nψ-values, as presented in Figure
14, which uses the same gaze distribution heatmap signals as Figures 11 and 12. A comparative
overview of the three metrics for low and high levels of gaze exploration is presented in Table
8. The required computations made to derive Nψ have been combined in a final Python script,
presented in Appendix B10. The script can be employed to compute the Nψ-value of any heatmap
image signal superimposed on a white image frame.

Reliability Cronbach’s alpha was used to determine internal consistency and assess the reliabil-
ity of the novel metric, imperative to the validation of the quadrifactorial exploration index Nψ as
a reliable metric of gaze distribution [67, 314]. Components E1 and E2 exhibited excellent internal
consistency as predictors of ψ, with a resulting Cronbach’s alpha of .975. This result indicates that
the quadrifactorial exploration index contains highly correlated components and, as such, reliably
measures the same underlying constructs of gaze distribution in an attentional heatmap image.

The normalised quadrifactorial exploration index Nψ enables complex analyses of spatial- and
temporal complexity in relation to gaze distribution of 360-degree videos in VR. The index offers a
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(a) Nψ = .272 (b) Nψ = .117

Figure 14: Nψ values of heatmaps with relative high (a) and low levels (b) of exploration.

comprehensive yet nuanced understanding of gaze distribution, utilising gaze distribution heatmap
imagery.

As the name suggests, the quadrifactorial exploration index incorporates a total of four factors.
Firstly, the relative proportion of the 360-degree video frame that the user has explored indicates
the extent of exploration. Secondly, the average intensity of the heatmap pixels denote the degree
of gaze concentration within the explored areas. Thirdly, by using MS-SSIM, the structural
dissimilarity signifies the diversity of exploration. Lastly, the entropy encapsulates the spread and
complexity of gaze patterns by assessing the randomness or complexity of the gaze distribution
signals. The factors were elegantly combined into a single weighted metric, utilising a data-driven
approach based on the explained variance in the dataset. Furthermore, an internal-consistency
assessment confirms the reliability of the novel metric in capturing and quantifying the exploratory
gaze behaviour based on gaze distribution heatmap image signals.

In conclusion, the index encompasses not only the spatial extent and gaze concentration with
which is explored, but also utilises the structural dissimilarity on multiple scales and entropy
values to include the degree of concentration and diversity of gaze distribution. Therefore, the
quadrifactorial exploration index Nψ accounts for complexity and patterns which may not be
evident through the analysis of traditional gaze metrics alone. Consequently the quadrifactorial
exploration index reduces saliency-bias and is more indicative of the user’s attentional and ex-
ploration patterns, regardless of gaze distribution position within the image frame. Lastly, the
model’s use of gaze distribution heatmap signals as input enables a higher degree of accessibility
and user adoption, as heatmap imagery is more readily available.
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Chapter 4

Diegetic Assessment δ
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The unique format of 360-degree video in VR fundamentally shifts the paradigm of utilising
cinematography to guide viewer attention. The immersive nature of VR and associated output
modalities offer highly immersive viewing experiences, in which traditional use of camera angles,
post-production processes and cinematographic principles are rendered sub-optimal [193, 375].
While traditional video content relies on camera angles to guide viewer attention and achieve
high levels of attentional synchrony, 360-degree video enables complete freedom to explore the
content. Despite the arbitrary methods of consuming omnidirectional content, Zink et al. (2019)
established behavioural coherences across viewers and modalities. Therefore, the principle of
common behavioural responses during 360-degree video interaction can be exploited by analysing
the implemented cinematographic principles to generate predictions and estimates of the user’s
gaze behaviour.

The techniques applied to guide viewer attention in 360-degree environments heavily rely on
the implementation of attentional guidance mechanisms and diegesis [23, 63, 375]. Diegesis, as a
mechanism, has been proven extremely effective in guiding user attention [263, 284, 306, 341]. De-
rived from film theory, the implementation of diegetic mechanisms leverage non-verbal behaviour,
using the internal story- / scene elements, to support the narrative in order to guide attention.
These diegetic artefacts serve as a crucial tool for maintaining attentional continuity and guide
gaze behaviour in 360-degree video.

Similar to edits in traditional cinematography, utilising character motion and non-verbal be-
haviour evokes a natural viewing orientation towards AOIs [100, 299]. Moreover, findings from
current literature suggest that the inclusion of diegetic mechanisms increase levels of presence,
user preference and user experience [48, 220, 262, 306]. Consequently, this positive enhancement
of the viewing experience and high levels of presence elicits significant behavioural responses due
to its correlation with user engagement [205, 230].

Despite the careful selection of 360-degree content, as detailed in § 2.2.3, inherent factors within
the content itself remain influential to the viewer’s sense of presence. In aims of achieving a posit-
ively enhanced user experience, the content adheres to Hall’s model of proxemics by maintaining
a cohesive camera height [119, 269]. Moreover, the selected content displays user-acknowledging
behaviour by specific diegetic artefacts. As such, inherent factors of the selected content reduce
risk of eliciting the Swayze effect, consequently enhancing the user’s sensation of feeling a tangible
relationship with the virtual environment [164, 224, 284, 338, 352]. This sense of presence is fur-
ther emphasised by the heightened levels of place and plausibility illusion, predominantly driven
by the sensorimotor contingencies of using head-mounted displays [227, 295, 296, 297].

Consequently, the cinematographic principles within a 360-degree video itself pose as a poten-
tial confounding factor in eliciting user behaviour. As such, in the study on how spatiotemporal
complexity of a 360-degree video sequence influences gaze behaviour, the varying influence of visual
artefacts was taken into consideration. Despite the systematic selection of the utilised 360-degree
video sequences (see § 2.2.3), the presence of diegetic artefacts and attentional guidance mech-
anisms remain inextricable elements of the visual information and, as such, are inherent to the
narrative world of the 360-degree video.

To account for the potential influence of these diegetic attention guiding mechanisms and
visual artefacts on gaze behaviour, the diegetic assessment – as presented in this chapter – was
performed. It aims to, partially, approach and answer the devised sub-question from § 1.7:

To what degree do cinematographic principles impose a confounding effect on the user’s
behavioural response?

A systematic approach was employed, enabling for the coded identification, categorisation and
quantification of such attributes within each of the six selected 360-degree videos. This chapter
details the diegetic assessment process. A devised coding scheme was utilised to code the diegetic
artefacts and elements (i.e., objects, persons and landmarks), enabling the quantification of how
much attention-guiding content each 360-degree video contains, discussed in section 4.1.

As such, this diegetic assessment discusses the inextricable qualities of each of the selected
360-degree videos. A brief content description of each 360-degree video is presented in section 4.1
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as well. Moreover, the identified attention-guiding content and visual artefacts are highlighted for
each 360-degree video, as well as the resulting Diegetic Artefact Score δ. In section 4.2, an initial
data exploration was conducted based on ratio- and reciprocate-values, to explore the complex
relationship between the δ point-values and degree of gaze distribution Nψ. A series of non-linear
regression analyses were performed to model and assess the complex association of δ and Nψ, as
presented in section 4.3. Lastly, a nuanced interpretation of these findings is presented in section
4.4.

4.1 Coding Scheme
The devised coding scheme was central to the diegetic assessment, as it systematically enabled
quantification of the diegetic artefacts present in each video using predefined and operationalised
criteria. The influence of diegetic artefacts on gaze behaviour was quantified using a coding
scheme, operating on two dimensions: the relative visual size of the artefacts and the duration of
its presence in the 360-degree video. The motivation behind the use of these two dimensions was
as follows: smaller artefacts are less likely to grasp the user’s attention and consequently guide
it, while larger artefacts are more likely to be noticed by the viewer. Similarly, artefacts that are
present longer throughout the video are more likely to have a more significant effect on guiding
attention, as compared to shorter presences. While more classes and criteria could be devised, the
size and duration were binned in only three distinct sizes and intervals to ensure simplicity and
interpretability of the score.

Visual Size:

• Small: an artefact that occupies less than 5% of the equirectangular frame

• Medium: an artefact that occupies between 5% and 15% of the equirectangular
frame

• Large: an artefact that occupies more than 15% of the equirectangular frame

Duration:

• Short: an artefact that is present in the video between 1 and 2 seconds

• Medium: an artefact that is present in the video between 2 and 10 seconds

• Long: an artefact that is present in the video for more than 10 seconds

Each identified visual artefact in the 360-degree video was assigned to one class in each of
the dimensions, based on size and duration. The combination of the two dimensions for each
artefact resulted in a Diegetic Artefact Score δ, which is a composite measure of the visual size
and presence duration of each artefact across the 360-degree video. The δ-value was computed by
assigning point-values to each class in both dimensions:

• Size: Small = 1 point, Medium = 2 points, Large = 3 points

• Duration: Short = 1 point, Medium = 2 points, Long = 3 points

The individual δ-value of each artefact is the product of the size and duration point-values
of said artefact, as detailed in Table 9. The total δ for each 360-degree video was acquired by
summing the individual δ-values of all present artefacts. A manual annotation approach was used
focusing solely on diegetic and visual artefacts that are identifiable from the default POV and which
movement within the virtual space diverges from the default camera trajectory. Consequently, each
artefact was manually annotated using Python, of which the script can be found in Appendix B9.
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Artefact ID Artefact Label Artefact Start Time Artefact End Time Artefact Size Duration Score δ

A1_1 grazing_lion 1.0 60.0 l 3 9
A1_2 drinking_lion 1.0 60.0 s 3 3
A1_3 resting_lion 1.0 60.0 s 3 3
A1_4 bird_flying 27.0 60.0 s 3 3
A2_1 passing_ski1 3.0 6.0 s 2 2
A2_2 passing_ski2 3.0 6.0 s 2 2
A2_3 slalom_ski 18.0 26.0 s 2 2
A2_4 falling_ski 21.0 28.0 s 2 2
A2_5 trees_scenery 29.0 56.0 l 3 9
A2_6 passing_ski3 35.0 44.0 m 2 4
B1_1 block_green 1.0 2.5 s 1 1
B1_2 block_darkblue 4.0 8.5 m 2 4
B1_3 block_yellow 10.0 13.0 m 2 4
B1_4 block_white 18.0 20.0 s 1 1
B1_5 block_red 23.5 27.0 s 2 2
B1_6 block_turqouise 29.0 33.0 s 2 2
B1_7 block_gray 35.0 36.0 s 1 1
B1_8 block_purple 39.0 43.0 m 2 4
B1_9 block_violet 46.5 48.0 s 1 1
B1_10 block_darkred 49.0 52.0 l 2 6
B1_11 block_white2 57.0 59.0 m 1 2
B2_1 police_officer 1.0 60.0 s 3 3
B2_2 stationary_wagons 1.0 60.0 m 3 6
B2_3 second_player 41.5 53.0 s 3 3
B2_4 passing_scenery 1.0 60.0 m 3 6
C1_1 staff_member 1.0 6.5 m 2 4
C1_2 rock_scenery 1.0 47.0 l 3 9
C1_3 trees_scenery 15.0 29.0 m 3 6
C1_4 bridge_scenery 36.0 41.0 s 2 2
C1_5 animatronic1 54.0 57.0 m 2 4
C1_6 animatronic2 58.0 60.0 m 1 2
C2_1 ferris_wheel 0.0 10.5 m 3 6
C2_2 spinning_attraction 1.0 8.0 s 2 2
C2_3 scaffolding_loop 10.0 13.0 l 2 6
C2_4 scaffolding_white 39.0 45.0 l 2 6
C2_5 decor1 48.0 49.0 s 1 1
C2_6 decor2 16.0 18.0 s 1 1
C2_7 ferris_wheel 52.0 60.0 m 2 4

Table 9: Coded diegetic attention guiding artefacts.
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A1 Content
The 360-degree video A1 displays a scenic sunny landscape, set in a savanna grassland. Presum-
ably, it contains several elements that appear to be in the continent of Africa. Throughout the
video, several Lions can be seen grazing, drinking and walking around. The most notable animal
in the scene is a curious lion, which slowly approaches the camera from afar and ends up inspecting
the camera up close. In the distance, a lion can be seen resting while another one grazes. Lastly, a
bird flies into frame through the blue sky. The camera is positioned at eye-level of the observer and
remains stationary throughout the video. The implementation of the established coding scheme
on video A1 resulted in a total point-value of δ = 18. A set of three diegetic artefacts present in
video A1 are displayed in Figure 15.

(a) grazing_lion (b) resting_lion (c) bird_flying

Figure 15: Set of three diegetic artefacts identified in video A1.

A2 Content
The 360-degree video A2 presents a scenic landscape, set in a snowy mountain range. As such, the
observer is a skier that is skiing of the mountain. Along the way, you are passing other skiers. One
of which is slaloming in front of you, and another one falls right in front of you. At the beginning,
the piste is very wide and open. As you ski down the piste, the trail becomes more narrow with
dense trees along both sides. Lastly, another skier is passed. The camera is positioned at eye-level
of the observer and consistently remains aimed in line with the movement of the camera. The
camera is moving fast throughout the snowy environment, due to the speed of the skier. The
implementation of the established coding scheme on video A2 resulted in a total point-value of
δ = 21. A set of three diegetic artefacts present in video A2 are displayed in Figure 16.

(a) slalom_ski (b) falling_ski (c) trees_scenery

Figure 16: Set of three diegetic artefacts identified in video A2.

B1 Content
In the 360-degree video B1, a digital game of Tetris is displayed. The environment was completely
digitally rendered, and as such, the field of play is positioned in a digitally rendered black space.
Notably, the observer is positioned within the field of play. Consequently, the brightly coloured
Tetris-shaped blocks fall from above, on and around the observer. The camera moves around
the x-axis of the field of play to dodge any falling blocks and on the y-axis to stay on top of
the fallen blocks, but the camera remains stationary for most of the duration of the video. The
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implementation of the established coding scheme on video B1 resulted in a total point-value of
δ = 28. A set of three diegetic artefacts present in video B1 are displayed in Figure 17.

(a) block_white2 (b) block_green (c) block_red

Figure 17: Set of three diegetic artefacts identified in video B1.

B2 Content
The 360-degree video B2 is a digital rendering of the game Subway Surfers, developed by SYBO
Games and Kiloo Studios. Similar to B2, the environment was completely digitally rendered.
Throughout the video, the observer acts as the player in the game, who’s main objective is to
out-run the chasing police officer. The observer moves along three subway- and train tracks, while
jumping over or dodging under a variety of obstacles. Coins and miscellaneous items are collected
throughout, while a tertiary character can be seen also running away from the police officer halfway
through. The scenery changes rapidly, as the observer passes many stationary and moving trains.
The camera moves fast through the digital environment due to the speed of the running player.
The implementation of the established coding scheme on video B2 resulted in a total point-value
of δ = 18. A set of three diegetic artefacts present in video B2 are displayed in Figure 18.

(a) second_player (b) stationary_wagons (c) police_officer

Figure 18: Set of three diegetic artefacts identified in video B2.

C1 Content
The 360-degree video C1 displays a scenic car ride through a landscape of canyons. The car is an
attraction-specific vehicle, which contains several people. The attraction is located in a Californian
theme park. The video starts of with the cast member starting the ride. Throughout the video,
the observer stays seated in the vehicle as it moves slowly along the canyon and landscapes. Rock
formations, trees and a waterfall are passed while riding the attraction. At last, a dark tunnel is
entered in which moving animatronic vehicles light up and move around. The camera is positioned
at eye-level and the observer moves with a slow-moving pace due to the speed of the vehicle. The
implementation of the established coding scheme on video C1 resulted in a total point-value of
δ = 27. A set of three diegetic artefacts present in video C1 are displayed in Figure 19.

C2 Content
In the 360-degree video C2, the observer is seated in a roller coaster. The roller coaster is located
in a Californian theme park. The observer is seated between two passengers. The roller coaster
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(a) rock_scenery (b) bridge_scenery (c) animatronic1

Figure 19: Set of three diegetic artefacts identified in video C1.

moves with a fast pace through a variety of twists, turns, tunnels and a loop. Throughout the ride,
miscellaneous objects and elements (i.e., scaffolding and palm trees) can be seen, placed outside
the ride. The roller coaster passes a Ferris wheel, as well as other attractions in the area. The
sky is vivid and prominent, as the video takes place during a sunset. The camera is positioned
at eye-level. The observer moves in a fast pace throughout the video, due to the intensity of the
roller coaster. The implementation of the established coding scheme on video C2 resulted in a
point-value of δ = 26. A set of three diegetic artefacts present in video C2 are displayed in Figure
20.

(a) ferris_wheel (b) spinning_attraction (c) decor2

Figure 20: Set of three diegetic artefacts identified in video C2.

4.2 Dynamics of δ and Nψ

The resulting δ point-value for each of the utilised 360-degree video denotes the degree of visual
artefacts that guide user attention. Specifically, the resulting δ was constructed based on size
and duration of each of the diegetic and attentional guiding artefacts. A higher value suggests a
higher density of visual elements prone to grasp user attention. An initial data exploration was
done on the association between the resulting δ point-values and degree of exploration, to assess
the complexity of the association of δ and Nψ. This data exploration treats the δ point-value as
the independent variable, and Nψ as the dependent variable to explore how changes in Nψ can be
explained by unit increments of δ.

A dual-axis plot was constructed to provide an initial indication of the relationship between the
presence of diegetic artefacts and the difference in degree of gaze exploration across the 360-degree
videos. The histogram (primary y-axis) represents the total δ-values for each video, while the
scatter plot (secondary y-axis) illustrates the variation in the quadrifactorial exploration index
across the videos. To ensure simplicity and interpretability of the plot, only the Nψ-values of
the aggregate heatmaps from Figure A.1 (found in Appendix A2) were included. The aggregate
heatmaps provide a sufficient initial interpretation of any association between δ- and Nψ-values,
as they provide an initial indication of the general degree of gaze exploration relative to height
of the δ point-values across the videos. Utilising the heights within the histogram and Nψ data
points, an interesting pattern emerges. As can be seen in videos A1, B1, B2, C1 and C2, a positive
association can be identified: a higher δ point-value is accompanied by a higher degree of gaze
distribution Nψ. However, video A2 deviates from this general trend. Despite the associated high
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Figure 21: Dual-axis plot of the δ- and Nψ-values across the 360-degree videos.

δ point-value, Nψ remains significantly lower than expected. This interpretation is supported by
calculating the ratios of δ to Nψ:

Ratio for A1 = 18/.443 ≈ 40.6, for A2 = 21/.232 ≈ 90.5.
Ratio for B1 = 28/.421 ≈ 66.5, for B2 = 18/.183 ≈ 98.4.
Ratio for C1 = 27/.417 ≈ 64.7, for C2 = 26/.275 ≈ 94.5.

The ratios provide an indication of the relative magnitude of the δ to Nψ-values. For each
of the videos A1, B1, B2, C1, and C2, the δ point-value is x times larger than the respective
Nψ-values, suggesting the general positive association between the δ- and Nψ-values. For A1,
the δ point-value is approximately 40.6 times greater than Nψ. Similarly, the ratios increase to
approximately 66.5, 98.4, 64,7 and 94.5 for B1, B2, C1 and C2, respectively. This positive increase
further implies the general positive association between δ- and Nψ-values. However, as evident in
Figure 21, A2 contains a disproportionately low Nψ-value, despite having a similar δ-score as A1.
The extremely high ratio of A2, comparable to B2 and C2, is not accompanied by a similarly high
δ point-value. For A2, despite a slight increase in δ, the corresponding increase in Nψ remains
disproportionate. Consequently, this discrepancy suggests that the general positive association
between δ- and Nψ-values is not strictly linear, implying a more complex relationship between
the variables. This characteristic of A2 further indicates an underlying non-linear relationship
between δ and Nψ.

A correlation analysis was performed on the variables δ and Nψ, utilising the resulting dataset
from the experiment including n = 52 participants, as described in § 2.7.2. To ensure reliability
of the models additional data points were not extrapolated. A Shapiro-Wilk test was conducted
to assess the normality assumption prior to the correlation analysis. The resulting p-value .0593
is slightly above the significance threshold α = .05. As such, the null hypothesis was not rejected.
However, the proximity of the p-value to α doesn’t strongly support that the data is normally
distributed. Separate Shapiro-Wilk tests on the distribution of δ and Nψ evince that both variables
are significantly non-normal, with both p-values < .01. Considering the violation of normality,
a non-parametric Spearman’s rank-order correlation was conducted to examine the relationship
between δ point-values and Nψ. There was a weak, positive correlation between presence of
diegetic attention guiding visual artefacts and degree of gaze exploration, which was statistically
significant (ρ(310) = .153, p-value = .007). These findings suggest that while the presence of
diegetic artefacts δ increases, the degree of gaze exploration Nψ increases as well – though not
necessarily at a constant or reliable rate. When violating the normality assumption, a Pearson’s
correlation further emphasises the unreliable linearity of the relationship (r = .10, p-value > .05).
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The weak, positive relationship between δ and Nψ and the violation of normality indicate
that non-linear models could more accurately capture the complexity of the two variables. The
non-linear nature of the relationship and behaviour of δ and Nψ was examined by utilising the
reciprocal-ratios, based on the previously calculated ratio-values:

Reciprocal for A1 = 1/40.6 ≈ .0246, for A2 = 1/90.5 ≈ .0110.
Reciprocal for B1 = 1/66.5 ≈ .0150, for B2 = 1/98.4 ≈ .0102.
Reciprocal for C1 = 1/64.7 ≈ .0155, for C2 = 1/94.5 ≈ .0106.

The reciprocal ratio represents how Nψ changes for a given increase in δ. For A2, the reciprocal
value of .0110 indicates a mere 1.1% increase in Nψ for a one unit increase in δ point-value.
Essentially, in the case of A2, Nψ is not increasing at a similar rate relative to the other videos.
This anomaly suggest a different relationship between δ and Nψ for A2 compared to the others,
as previously implied.

Utilising the reciprocals of the other videos enabled a better understanding of the complex
relationship of δ and Nψ. For A1, utilising the ratio (40.6) and reciprocal (.0246), a unit increase
in δ point-value results in an Nψ increase of approximately 2.46%. For B1 and C1, containing
higher ratios (66.5 and 64.7) than A1, Nψ only increases by approximately 1.5%, implying a less
proportionally growth. This is further evidenced by the reciprocals of B2 (.0102) and C2 (.0106)
associated with significantly higher ratios of 98.4 and 94.5, respectively. As such, for B2 and
C2, a unit increase in δ only results in approximate Nψ increase of 1.0%, indicating an even less
proportional growth in Nψ compared to A1, B1 and C1.

The use of ratio- and reciprocal-values, as well as the findings from the Spearman’s rank-order
correlation on δ and Nψ, indicate an intricate and complex relationship between the variables.
The weak, positive linear relationship, as suggested by Spearman’s rank-order correlation, was
not strongly supported by the violation of normality and ρ = .153 (df = 310). Despite the
p-value < .05, the reciprocal ratios indicate a non-linear relationship. As such, alternative non-
linear regressions were performed to further explore the complex relationship between presence of
diegetic attention guiding artefacts (δ) and degree of gaze exploration (Nψ).

4.3 Non-Linear Regression Analyses of δ and Nψ

The reciprocal-values indicate that for A1, B1, B2, C1 and C2, as δ point-value increases, the
growth of in which Nψ gradually decreases. As such, the δ- and Nψ-values are positively associated,
but contain a disproportionate growth. This general trend strongly resembles the behaviour of a
logarithmic relationship in the form of:

f(x) = a · logb(x) + c

By substituting f(x) and x by Nψ and δ, the logarithmic relationship can be modelled as:

Nψ = a · logb(δ) + c (35)

Constants a and b determine the curvature and c adjusts the curve along the y-axis.
A logarithmic regression was run to determine the goodness of fit of a logarithmic relationship

between the presence of diegetic attention guiding artefacts (δ) and the degree of gaze exploration
(Nψ) across the sampled n = 52 users. The resulting logarithmic regression model, expressed as

Nψ = 0.0607 + 0.0271 · log(δ) (36)

accounts for approximately 0.9% of the variance in Nψ (R2 = .009). The F-statistic of 2.707
was not statistically significant (p-value = .101). Furthermore, the coefficient for log(δ) = .0271
was also not statistically significant (t(310) = 1.645, p = .101, 95% CI [−.005, .060]), suggesting
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(a) Logarithmic Regression (b) Fitted Values vs. Residuals Plot

Figure 22: Logarithmic model of δ and Nψ.

Model Summary
R2 Adj. R2 F-statistic Prob. (F-statistic) MSE AIC BIC
.009 .005 2.707 .101 .0029 -934.8 -927.3

Coefficients
Coefficient Std Error t-Statistic p-value 95% CI

Constant .0607 .051 1.180 .239 [−.041, .162]
x1 (log(δ)) .0271 .016 1.645 .101 [−.005, .060]

Table 10: Logarithmic model statistics.

that the logarithmic model does not significantly explain the relationship between δ and Nψ. The
logarithmic model statistics are presented in Table 10.

As evident in Figure 22a, the data points generally adhere to the logarithmic curve. The shallow
curve is consistent with the low R2 of the model. No data points intercept with f(x), suggesting
that the logarithmic model may not adequately capture the complex relationship. Similarly, the
fitted values vs. residuals plot in Figure 22b shows that the logarithmic model underestimates
the Nψ-values for lower δ point-values, evidenced by the spread of positive residuals between A2,
B2 and C2. Furthermore, the residual plot seems to overestimate Nψ-values for A1, B1 and C1,
visible by the relatively even spread of negative residuals. While the data points generally follow
the logarithmic curve, the regression and residual plots indicate that the relationship between δ
point-value and Nψ might not be purely logarithmic.

A polynomial regression, as a non-linear alternative, was employed to examine whether rela-
tionship between δ and Nψ might be better approximated by a polynomial function rather than
a logarithmic function:

p(x) = β0 + β1x+ β2x
2 + β3x

3 + . . .+ βnx
n + ϵ

By substituting p(x) and x by Nψ and δ, the polynomial relationship can be modelled as:

Nψ = β0 + β1 · δ + β2 · δ2 + β3 · δ3 + . . .+ βn · δn + ϵ (37)

where the β-coefficients determine the parabola of the polynomial, and ϵ represents the error
term.

By conducting multiple polynomial regressions, varying degrees of n could be compared. As
evident in Figure 23, a quadratic polynomial regression (n = 2) captures the relationship between
δ and Nψ more accurately, as the data points are more closely aligned with the quadratic curve
compared to the logarithmic model. However, no data points intercept with the single quadratic
curve. The quadratic polynomial is expressed as:
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Figure 23: Quadratic Polynomial Figure 24: 10th-Degree Polynomial

Nψ = β0 + β1 · δ + β2 · δ2 + ϵ (38)

A quadratic polynomial regression was run to assess the goodness of fit of a 2nd-degree poly-
nomial model on the relationship between δ and Nψ. The resulting quadratic polynomial model,
expressed as

Nψ = 0.87 − 0.07 · δ + 0.0015 · δ2 (39)

accounts for approximately 6.3% of the variance in Nψ (R2 = .063). The linear and quadratic
parameters are statistically significant with coefficients -.0669 (t(310) = -4.069, p < .001, 95%
CI [-.099, -.035]) and .0015 (t(310) = 4.155, p < .001, 95% CI [.001, .002]). The F-statistic
(10.39) was statistically significant (p-value < .001), suggesting that the quadratic polynomial
model significantly explains the relationship between δ and Nψ. The quadratic polynomial model
statistics are presented in Table 11.

Model Summary
R2 Adj. R2 F-statistic Prob. (F-statistic) MSE AIC BIC
.063 .057 10.39∗∗∗ 4.31e-05 .0027 -950.3 -939.1

Coefficients
Coefficient Std Error t-Statistic p-value 95% CI

Constant .8665∗∗∗ .182 4.766 .000 [.509, 1.224]
x1 (δ) -.0669∗∗∗ .016 -4.069 .000 [−.099,−.035]
x2 (δ2) .0015∗∗∗ .000 4.155 .000 [.001, .002]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 11: Quadratic polynomial model statistics.

Contrary to the quadratic polynomial model, a higher-degree polynomial model (n = 10)
contains multiple data points intercepting the curve. As presented in Figure 24, a 10th-degree
polynomial model contains several data points intercepting with the curve, capturing the relation-
ship between δ and Nψ even more accurately. While a 10th-degree polynomial better fits the data
points, the inclusion of three curves indicates that the model is overfitting, capturing noise and
reducing performance on new data points. The 10th-degree polynomial is expressed as:

Nψ = β0 + β1 · δ + β2 · δ2 + β3 · δ3 + . . .+ β10 · δ10 + ϵ (40)

95



A 10th-degree polynomial regression was run to assess the goodness of fit of a higher-degree
polynomial model on the relationship between δ and Nψ. The resulting 10th-degree polynomial
model, expressed as

Nψ = −1.78 × 10−13 − (2.43 × 10−12) · δ − (3.08 × 10−11) · δ2 + . . .− (9.21 × 10−13) · δ10 (41)

accounts for approximately 9.5% of the variance in Nψ (R2 = .095). The F-statistic (8.049)
was statistically significant (p-value < .001), indicating that the 10th-degree polynomial model as
a whole significantly explains the relationship between δ and Nψ. However, none of the individual
coefficients were statistically significant at α = .05. Notably, the higher-degree polynomial para-
meters approach significance with coefficients for δ9 being < 0.01 (t(307) = 1.738, p = .083, 95%
CI [< .01, < .01]) and for δ10 being < .01 (t(307) = -1.912, p = .057, 95% CI [< .01, < .01]). The
10th-degree polynomial model statistics are presented in Table 12.

Model Summary
R2 Adj. R2 F-statistic Prob. (F-statistic) MSE AIC BIC
.095 .083 8.049∗∗∗ 3.50e-06 .0026 -957.2 -938.4

Coefficients
Coefficient Std Error t-Statistic p-value 95% CI

Constant -1.784e-13 1.94e-13 -.920 .359 [-5.6e-13, 2.03e-13]
x1 (δ) -2.427e-12 2.64e-12 -.919 .359 [-7.62e-12, 2.77e-12]
...

...
...

...
...

...
x9 (δ9) 7.848e-11 4.52e-11 1.738 .083 [-1.04e-11, 1.67e-10]
x10 (δ10) -9.21e-13 4.82e-13 -1.912 .057 [-1.87e-12, 2.7e-14]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 12: 10th-degree polynomial regression model statistics.

The initial data exploration in § 4.2 identified A2 as an anomaly, deviating from the general
trend. Therefore, it was decided to run the logarithmic and polynomial regressions on the full
dataset as well as the dataset excluding A2-data. However, excluding A2 yielded only marginal
differences. For the logarithmic and both polynomial regressions, excluding A2 from the dataset
resulted in a decrease in R2, indicating an even weaker fit to the data: R2 = .004, R2 = .033,
R2 = .069, respectively. In the 10th-degree polynomial regression, more significant polynomial
coefficients were present, which could potentially be attributed to overfitting. Moreover, the
majority of coefficients and statistical significance levels remained largely consistent with those in
the models that included A2. These findings suggest that excluding A2 from the data does not
significantly improve the models and as such, the regressions were run utilising the dataset in its
entirety.

Assumptions The assumptions of normality, independence of errors, and homoscedasticity for
the logarithmic, quadratic, and 10th-degree polynomial regression models were assessed.

The assumption of normality was assessed using Q-Q plots. Evident in Figure 25, the Q-Q
plots of all three models align for the majority with a straight line. Slight deviation from the
reference line can be seen in both tail-ends across the Q-Q plots. This observation suggests that
the residuals for all three models are approximately normally distributed. A Shapiro-Wilk test
was used to confirm the normality in both polynomial regressions. The Shapiro-Wilk test statistic
.991 (p-value = .064) for the quadratic polynomial model suggests that the residuals are not
significantly deviated from a normal distribution. The 10th-degree polynomial produced similar
results (p-value = .059)

Durbin-Watson tests were performed to assess the independence of errors in the residuals. The
logarithmic, quadratic and 10th-degree polynomial regressions resulted in 1.702, 1.418 and 1.270,
respectively. The proximity of these results to 2 indicates that the assumption of independence of
error was satisfied.
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Homoscedasticity was assessed by conducting the Breusch-Pagan test. For all three regres-
sions, the assumption of homoscedasticity was violated (p-value < .05), indicating the presence of
heteroscedasticity in the regressions.

The logarithmic, quadratic and 10th-degree polynomial regressions meet the assumptions of
normality and independence of errors. However, the presence of heteroscedasticity suggests caution
in the interpretation of the results.

(a) Logarithmic (b) Polynomial (n = 2) (c) Polynomial (n = 10)

Figure 25: Q-Q Plots.

4.4 Interpretation of Regression Models
This diegetic assessment provides an initial indication on the nature of the relationship between
presence of diegetic artefacts in 360-degree videos and degree of gaze distribution. Utilising log-
arithmic, quadratic polynomial and 10th-degree polynomial models, as well as reciprocate ratios,
enabled a better understanding of the underlying data-structure. A set of regression analyses were
conducted to further assess the proposed non-linear models goodness of fit, statistical significance
and examining the complexity of the relationship between δ and Nψ. The utilisation of non-linear
regression models was motivated by the preliminary results from Spearman’s rank-order correla-
tion ρ = .153 (df = 310). Coupled with the violation of assumptions initiated the use of non-linear
models to capture the relationship between δ and Nψ.

A total of three non-linear regressions were conducted, using δ as a predictor. The logarithmic,
quadratic polynomial and 10th-degree polynomial were assessed in their effectiveness in predicting
Nψ using R-squared and the significance of coefficients. The logarithmic model displayed non-
significant coefficients and a relatively low R2 = .009 (p-value = .101). These findings suggest
that the logarithmic model does not explain much of the variation in Nψ and indicates a much
more complex association between δ and Nψ. Consequently, polynomial models of varying degrees
were employed to better capture the complex relationship. Firstly, the quadratic polynomial
model resulted in a much higher R2 = .063 (p-value < .001), explaining approximately 6.3% of
the variance in Nψ. Secondly, a 10th-degree polynomial model was utilised. The model showed
the highest R-squared (R2 = .095, p-value < .001) across the three non-linear models. However,
none of the coefficients were statistically significant. Notably, the higher-order coefficients x9 and
x10 approach statistical significance with p-value = .083 and p-value = .057, respectively. This
indicates that higher-order complexities may capture more of the variance in Nψ, but it elicits
the risk of overfitting, emphasising the complexity of the relationship. As such, the quadratic
polynomial regression provides a more accurate representation of the relationship as compared to
the logarithmic model without overfitting as the 10th-degree polynomial model. This is further
supported by the lower Mean Squared Error (= .0027), as compared to the logarithmic model
(MSE = .0029), suggesting that the predicted values are on average closer to the actual values
in the quadratic polynomial model. Despite A2 deviating further from the general data trend,
exclusion of subset A2 in the regressions did not substantially impact the model’s performances,
implying that A2 is not an outlier in the dataset. This observation that a higher δ does not
invariably correspond to a higher degree of gaze exploration, emphasises the complex interaction
dynamics between user and 360-degree videos. As such, changes in Nψ can be attributed to factors
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not accounted for, such as cognitive perceptions and usability context. Despite the violation of
homoscedasticity, the diegetic assessment was exploratory in nature, aiming to gain a better
understanding into the underlying association between presence of diegetic artefacts and degree
of gaze exploration. While it is imperative to approach these results critically, the results can be
considered as a preliminary step in understanding the complex relationship between the presence
of diegetic artefacts δ and the degree of gaze distribution Nψ in 360-degree video interactions.

The implications from the linear and non-linear models suggest a complex relationship between
δ and Nψ. As such, the presence of diegetic artefacts within the 360-degree video content (δ) was
considered a confounding variable in the primary analyses of spatiotemporal image complexity on
gaze distribution Nψ, presented in Chapter 5.
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Chapter 5

Results
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The research methodology, as detailed in Chapter 2, employed an eye-tracking study and
subsequent user evaluation to acquire both quantitative and qualitative data. A systematic ana-
lytical framework was devised as a mechanism to elucidate the main research objective and related
sub-questions, defined in section 1.7. The analytical framework in section 2.7.3 established the
following analytical objectives:

• I: Relationship between the perceptual attributes and gaze exploration;
• II: Determining the influence of spatiotemporal 360-degree video complexity on

gaze exploration;
• III: Assessing the interaction effect of usability context;
• IV: Defining the general consensus on the experiential statements;
• V: Identifying the key trends in the user’s self-perception of gaze behaviour.

The results from the quantitative and qualitative data analyses are presented in this section.
Firstly, the descriptive statistics are presented in section 5.1. The descriptive statistics provide

an overview of the central tendencies and distributions of the independent and dependent variables
used, as well as enables insight into the data-characteristics. Section 5.2.1 details the use of a linear
mixed-effects analysis to approach objective I: assessment of the effect of each of perceptual at-
tributes on degree of gaze exploration. The perceptual attributes with a resulting significant effect
were considered as confounding variables in subsequent analyses. In section 5.2.2, a mixed-effects
multiple regression was employed to approach objective II: examine how the varying degrees of
spatial- and temporal image complexity in 360-degree videos impact the degree of gaze exploration.
The mixed-effects model accounts for the presence of diegetic artefacts in each of the videos (δ)
and controls for the significant perceptual attributes from section 5.2.1, as well as for the repeated
measures design by including random effects. The model includes the confounding variables to
further isolate the behavioural effect as induced by changes in spatiotemporal image complex-
ity. Subsequently, section 5.2.3 focuses on objective III, in which a subgroup and moderation
analysis were performed to assesses how the impact of spatiotemporal image complexity on the
degree of gaze distribution might vary across different usability contexts. The analyses examine
whether the effect of spatiotemporal image complexity on gaze exploration depends on seating
type, providing insights into how seating type interacts with the spatiotemporal image complexity
to influence gaze behaviour. Furthermore, section 5.2.4 encompasses objective IV by assessing
the general consensus on the experiential statements from the user evaluation. A combination of
both descriptive statistics as well as a non-parametric comparative analyses were performed. The
descriptive statistics were used to assess the central tendencies and data distribution of ratings
for each of the statements, while a series of Mann-Whitney U tests were performed to assess the
difference in ratings between groups. Lastly, analytical objective V was approached utilising a
grounded theory analysis containing various emergent coding procedures, employed to analyse the
qualitative data for patterns in the conscious gaze behaviour of the users. The qualitative analysis
is presented in section 5.3.

5.1 Descriptive Statistics
This section presents the resulting descriptive statistics for the utilised independent and dependent
variables across all users, as well as for the two distinct groups R and F. The acquired dataset
was coded in long-format as the results include both single-measure variables as well as multiple-
measure variables per user depending on the variables. The perceptual attributes of engagement
(x1), attentional focus (x2), spatial awareness (x3), fear of missed content (x4) were measured
once across all users, similar to the usability factors of comfort (x5) and enjoyment (x6). These
variables, due to the length of their respective terminology, were denoted by variables of x. The
descriptive statistics of the single-measure variables are presented in Table 13. The repeated
measures of mean opinion score (MOS) and degree of gaze exploration (Nψ) were measured six
times for each 360-degree video, across all users. The descriptive statistics of repeated measures
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variables are presented in Table 14. Firstly, the descriptive statistics of the perceptual attributes
are presented. Subsequently, the values of the usability factors are discussed. Lastly, the degree
of gaze exploration across the six videos and between the groups are detailed.

The distribution of data across the attributes of perception resulted in diverse patterns across
the two groups. Most notably, group R demonstrated a higher level of engagement (µ = 5.011, σ =
.305) as compared to group F (µ = 4.462, σ = .331). This trend can be seen for the perceptual
attribute of spatial awareness (x3) as well, observed in group R with µ = 5.796, σ = .638 and in
group F as µ = 4.910, σ = .636. However, group F achieved higher mean values for attentional
focus (x2) and fear of missed content (x4). The attentional focus (x2) in group R had averaged
at µ = 5.885, σ = .993, compared to group F (µ = 5.923, σ = .845). Fear of missed content (x4)
produced a higher mean µ = 4.923, σ = 1.017, as compared to group R (µ = 3.192, σ = 1.297).
Notably, fear of missed content (x4) contained the widest range of data, from 1.000 to 7.000.

Similar to the level of engagement and spatial awareness, the mean scores for quality of ex-
perience were higher in group R. Despite the per-video measurements, the overall mean across
the users in each group was higher in group R (µ = 4.548, σ = 1.688) compared to group
F (µ = 4.413, σ = 1.380). Moreover, and except for video B1 and B2, the mean per-video
MOS were higher in group R than in group F. Video A2 resulted in the highest mean MOS
of µ = 6.048, σ = .788 across all n = 52 users, while video B1 had the lowest mean MOS of
µ = 2.067, σ = .805. This pattern was also observed among both groups R and F. In conclusion,
the data exhibits a dichotomous pattern in the distribution of perceptual attributes among the
two groups R and F. While group R produced higher mean values for levels of engagement, spatial
awareness, and quality of experience, group F displayed higher mean values for attentional focus
and fear of missed content. Attentional focus and level of comfort were relatively high among both
groups.

All Users
Mean Standard Deviation Minimum Maximum

x1 4.736 .420 3.714 5.571
x2 5.904 .913 4.000 7.000
x3 5.340 .766 3.000 7.000
x4 4.058 1.447 1.000 7.000
x5 5.615 1.013 4.000 7.000
x6 5.000 1.085 3.000 7.000

Group R
Mean Standard Deviation Minimum Maximum

x1 5.011 .305 4.286 5.571
x2 5.885 .993 4.000 7.000
x3 5.769 .638 4.667 7.000
x4 3.192 1.297 1.000 5.000
x5 5.769 0.992 4.000 7.000
x6 4.731 0.874 3.000 6.000

Group F
Mean Standard Deviation Minimum Maximum

x1 4.462 .331 3.714 5.000
x2 5.923 .845 4.000 7.000
x3 4.910 .636 3.000 6.000
x4 4.923 1.017 3.000 7.000
x5 5.462 1.029 4.000 7.000
x6 5.269 1.218 3.000 7.000

Note: x1 = engagement, x2 = attentional focus, x3 = spatial awareness, x4 = fear of missed content, x5 = comfort
of seating type, x6 = enjoyment of seating type

Table 13: Descriptive statistics of the perceptual attributes and usability factors.

The usability factors of assessing the user experience of the specific seating type associated
with each group was assessed using the level of comfort (x5) and enjoyment (x6) of the seating
type. Across all users, the level of comfort (x5) and enjoyment (x6) scored high on average, with
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µ = 5.615, σ = 1.013 and µ = 5.000, σ = 1.085, respectively. Group R averaged higher in terms
of comfort (x5) with mean µ = 5.769, σ = .992, compared to group F (µ = 5.462, σ = 1.029).
However, group R averaged higher in terms of enjoyment (x6) with mean µ = 5.269, σ = 1.218,
compared to group R (µ = 4.731, σ = .874).

(a) Box Plots (b) Violin Plots

Figure 26: Distributions of Nψ.

All Users
MOS Nψ

Video ID count mean std min max mean std min max
All 312 4.481 1.540 1.000 7.000 .145 .054 .032 .327
A1 52 4.952 1.189 2.500 7.000 .183 .059 .071 .327
A2 52 6.048 .788 4.000 7.000 .123 .038 .037 .214
B1 52 2.067 .805 1.000 4.000 .159 .057 .046 .291
B2 52 4.952 1.072 1.000 7.000 .111 .041 .032 .198
C1 52 4.144 .904 2.500 7.000 .170 .046 .051 .289
C2 52 4.721 .866 2.500 7.000 .126 .039 .054 .216

Group R
MOS Nψ

Video ID count mean std min max mean std min max
Group R 156 4.548 1.688 1.000 7.000 .165 .057 .042 .327
A1 26 5.038 1.392 2.500 7.000 .225 .043 .144 .327
A2 26 6.019 .842 4.000 7.000 .132 .033 .070 .214
B1 26 1.865 .867 1.000 4.000 .178 .057 .046 .291
B2 26 5.096 1.312 1.000 7.000 .116 .047 .042 .198
C1 26 4.288 1.124 2.500 7.000 .192 .043 .117 .289
C2 26 4.981 .842 4.000 7.000 .149 .034 .076 .216

Group F
MOS Nψ

Video ID count mean std min max mean std min max
Group F 156 4.413 1.380 1.000 7.000 .125 .043 .032 .238
A1 26 4.865 .965 4.000 7.000 .141 .039 .071 .216
A2 26 6.077 .744 5.500 7.000 .114 .041 .037 .188
B1 26 2.269 .696 1.000 4.000 .140 .053 .047 .238
B2 26 4.808 .763 4.000 5.500 .105 .033 .032 .163
C1 26 4.000 .600 2.500 5.500 .147 .036 .051 .199
C2 26 4.462 .824 2.500 5.500 .103 .029 .054 .185

Table 14: Descriptive statistics of MOS- and Nψ-values.
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The degree of gaze distribution was quantified using the quadrifactorial exploration index Nψ.
For video A1, the mean was µ = .183 with a standard deviation of σ = .059. Video A2 had a
lower overall mean µ = .123 and standard deviation σ = .038. The observations for B1 and B2
were µ = .159, σ = .057 and µ = .111, σ = .041, respectively. The observations for videos C1
and C2 averaged at µ = .170, σ = .046 and µ = .126, σ = .039, respectively. Across all users
and within group R, video A1 produced the highest degree of gaze exploration while video B2
elicited the lowest degree of gaze exploration across the 360-degree content set. Notably, group
F produced contrasting results. Among the users in group F, video C1 and C2 resulted in the
highest and lowest degrees of gaze exploration, with µ = .147, σ = .036 and µ = .103, σ = .029,
respectively. However, as evident in the resulting data distributions, group R maintained overall
higher mean degrees of gaze exploration across all six videos compared to group F. Most notable
when comparing the data distributions of Tables 13 and 14, higher mean-values for each of the
perceptual attributes or usability factors did not inherently result in a higher mean degrees of gaze
exploration.

The data distribution of degree of gaze exploration Nψ across each of the 360-degree videos are
visualised utilising box- and violin plots, presented in Figure 26. Figure 26 provides a comprehens-
ive visualisation of the overall patterns in the data, utilising a similar colour palette found within
Figure 5. The box plots in Figure 26a represent the general distribution, while the violin plots
in Figure 26b visualise the data distributions, as well as data clusters and the range of variability
across different Nψ values for each 360-degree video.

5.2 Quantitative Results
A series of analyses were performed on the quantitative set of data, acquired during the study.
This subsection presents the quantitative results of the conducted analyses, based on the before-
mentioned analytical objectives.

5.2.1 Linear Mixed-Effects Model Analysis
A linear mixed-effects model (LMM) was employed to assess the significant associations between
each of the perceptual attributes and degree of gaze distribution Nψ. Utilising fixed and random
effects, the model accounts for both single-measure and repeated-measure perceptual attributes.
The model showed a significant, positive association between x3 (spatial awareness) and Nψ with
coefficient = .019 (z = 3.265, p-value = .001). A significant, negative association was found
between x5 (quality of experience) and Nψ with coefficient = -.006 (z = −3.568, p-value < .001).

Model Summary
Coefficient Std Error z-Statistic p-value 95% CI

Intercept .050 .058 .865 .387 [−.064, .165]
x1 .009 .011 .787 .431 [−.013, .030]
x2 -.000 .001 -.326 .745 [−.002, .001]
x3 .019∗∗∗ .006 3.265 .001 [.007, .030]
x4 -.004 .003 -1.382 .167 [−.010, .002]
x5 -.006∗∗∗ .002 -3.568 .000 [−.010,−.003]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 15: Linear mixed-effects model statistics.

With respective p-values of .001 and .000, there was strong evidence to reject the null hypo-
theses for x3 and x5 and accept the following alternative hypotheses:

• H1: There is a significant relationship between spatial awareness (x3) and degree
of gaze distribution (Nψ).

• H1: There is a significant relationship between quality of experience (x5) and
degree of gaze distribution (Nψ).
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In contrast, the coefficients for x2 (attentional focus) and x4 (fear of missed content) were −.000
and −.004, respectively, but the associations with Nψ were not statistically significant (p-value
> .05). Furthermore, the coefficient = .009 for x1 (engagement) was statistically non-significant
as well (p-value = .431). With respective p-values > .05, there was no sufficient evidence to reject
the null hypotheses for x1, x2 and x4. As such, there was no significant association between these
perceptual attributes and degree of gaze distribution Nψ. The results suggest that among the
perceptual attributes, spatial awareness and quality of experience are significant predictors of Nψ.
The attributes of engagement, attentional focus and fear of missed content did not produce signi-
ficant effects on Nψ, according to the LMM. Figure 27 presents a visualisation of the coefficients,
highlighting the magnitude and directionality of relationship between the perceptual attributes
and degree of gaze distribution. The linear mixed-effects model statistics are presented in Table
15.

Figure 27: Coefficient plot of perceptual attributes as predictors.

Assumptions The assumptions of linearity, homoscedasticity, normality, independence, and
multicollinearity for the linear mixed-effects model were assessed.

The assumptions of linearity and homoscedasticity were assessed using the fitted values vs.
residuals plot, presented in Figure 28a. The scatter plot displays a somewhat asymmetrically
distributed data pattern. As no distinct patterns could be identified, it was assumed that the
relationship between SI, TI and Nψ is approximately linear. As such, assessment of homosce-
dasticity was also done utilising the residuals plot. While no distinct patterns can be identified
in the scatter plot, its slight asymmetry and subtle funnel-like pattern do not strongly evidence
that the assumption of homoscedasticity was met. Homoscedasticity could not be assessed using
a Breusch-Pagan test due to the hierarchical structure of the mixed model.

Normality of the residuals was assessed using the Q-Q plot from Figure 28c. Despite a slight
deviation from the reference line can be seen in both tail-ends, the observation suggests that the
residuals of the linear mixed-effects model are approximately normally distributed. A Durbin-
Watson test was conducted to assess the independence of errors in the residuals. The linear
mixed-effects model resulted in a value of 2.414, and as such indicates that the assumption of
independence was satisfied.

Lastly, the assumption of no multicollinearity was assessed by calculating the Variance Inflation
Factors (VIF). A strong intercorrelation between engagement and spatial awareness was found,
with VIF-values of 69.49 and 57.84, respectively. The model displayed moderate VIF-values for
quality of experience and fear of missed content, suggesting a potential multicollinearity between
these predictors as well. These results posit strong evidence that the assumption of multicollin-
earity was violated.

The linear mixed-effects model’s predictions seem to consistently underestimate the actual
values, as evident in Figure 28b. This suggest that the associations between the predictors and
dependent variable Nψ might not be adequately modelled by a linear function. Coupled with the
slight asymmetry of the scatter plot, suggests cautious interpretation of the results.
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(a) Fitted Values vs. Residuals (b) Actual vs. Predicted Values (c) Q-Q

Figure 28: Linear mixed-effects model plots.

5.2.2 Mixed-Effects Multiple Regression Analysis
A mixed-effects multiple regression was run to assess the significance of spatial complexity (SI) and
temporal complexity (TI) on the degree of gaze distribution Nψ, while controlling for δ (presence
of diegetic artefacts), x3 (spatial awareness), x5 (quality of experience) and C[T.1] (seating type
R/F). The model showed that temporal complexity (TI) was a statistically significant predictor of
Nψ, with a p-value < .001 (z = −5.615). The TI-coefficient −.003 indicates a negative association
with Nψ, in which a unit increase in TI decreases Nψ by .003 units. Consequently, the null
hypothesis for the significance of temporal complexity onNψ was rejected, accepting the alternative
hypothesis:

• H1: There is a significant relationship between temporal image complexity and
degree of gaze distribution (Nψ).

Spatial awareness (x3) also exhibited a statistically significant association with Nψ (coefficient
.012, z = 2.027, p-value = .043), validating its inclusion as a control variable. Furthermore,
the model showed a statistically significant relationship between seating type and degree of gaze
exploration Nψ (z = 3.418, p-value = .001). Specifically, seating type R (T.1) increased Nψ by
.030 units compared to seating type F. In § 5.2.3, this mixed-effects multiple regression model is
extended with interaction terms to evaluate the association between usability context (i.e., seating
type) and degree of gaze exploration across both groups.

In contrast, spatial complexity (SI) did not exhibit a statistically significant association with
Nψ in the mixed-effects multiple regression model (coefficient .000, z = .006, p-value = .995). As
such, there was no sufficient evidence to reject the null hypothesis for the significance of spatial
image complexity on degree of gaze exploration. Moreover, despite the results from § 4.3 and §
5.2.1, δ (presence of diegetic artefacts) and x5 (quality of experience) did not show a statistically
significant association with Nψ (p-values > .05).

Model Summary
Coefficient Std Error z-Statistic p-value 95% CI

Intercept .120 .071 1.698 .090 [−.019, .258]
C[T.1] .030∗∗∗ .009 3.418 .001 [.013, .048]
SI .000 .000 .006 .995 [−.001, .001]
TI -.003∗∗∗ .001 -5.615 .000 [−.005,−.002]
x3 .012∗ .006 2.027 .043 [.000, .023]
x5 -.000 .002 -.054 .957 [−.004, .004]
δ -.000 .001 -.249 .803 [−.003, .002]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 16: Mixed-effects multiple regression model statistics.

The results of the mixed-effects multiple regression model suggest that there is not sufficient
evidence to reject the null hypothesis for spatial complexity, despite its theoretical significance.
Under the current parameters of the model, which controls for x3 (spatial awareness), x5 (quality of
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experience), δ (presence of diegetic artefacts) and seating type, only temporal complexity exhibited
a significant relationship with the degree of gaze distribution. The mixed-effects multiple regression
model statistics are presented in Table 16.

The Nψ-values were visualised as an additional z-dimension to the computed spatiotemporal
matrix in § 2.2.4 (see Figure 29), providing an enhanced understanding of the underlying data
structure. As such, a three-dimensional scatter plot was constructed where the Nψ-values were
mapped within a three-dimensional space, enabling a spatial perspective on the degree of gaze
distribution and respective spatiotemporal complexity coordinates. The 3D scatter plot is presen-
ted in Figure 30. The viewing angle of the plot is configured using a 10º elevation and a rotation
around the vertical axis by an azimuthal angle of 241º. Due to the dependency of Nψ on known
spatiotemporal image complexities, only six vertical data patterns can be observed. Each data
pattern corresponds to each utilised 360-degree video and the respective position on the spati-
otemporal matrix.

However, the six original data patterns were not sufficient to provide an in-depth representation
of the relationships among the three variables. An interpolation was performed on the original
data-frame, which interpolates theNψ-values at all points on the defined grid. The grid was defined
utilising the spatiotemporal matrix containing the same min-max value range for the respective SI-
and TI-values. By utilising a cubic interpolation process, a finer mesh was constructed containing
additional data points across the grid. The mesh was used to construct a three-dimensional
surface plot, representative of how the degree of gaze distribution varies with respect to changes
in both spatial- and temporal image complexity simultaneously. The resulting surface plot in
Figure 31a is configured with a rotation around the vertical axis by an azimuthal angle of 255º.
Figure 31b is rotated by -180º (= azimuthal angle of 75º) along the vertical axis, providing an
additional perspective on the surface plot. Figure 31 presents a dual-perspective view, enabling a
more detailed visualisation of the multivariate relationship between SI, TI and Nψ. Similar to the
three-dimensional scatter plot, the colour of the surface is determined by the respective Nψ-values.

(a) 255º (b) 75º

Figure 31: Surface plots of SI, TI and Nψ.
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(a) Group F (b) Group R

Figure 32: Surface plots of SI, TI and Nψ (per group).

The surface plot illustrates a complex association between SI, TI and Nψ. The curvature of the
surface varies across the spatiotemporal plane, indicative of higher-degree non-linear interactions
between SI, TI and Nψ. The surface appears to be sloped at a downwards angle across the
temporal plane. The surface displays a combination of both convex and concave shapes across the
spatial plane, strongly indicating the intricate and complex relationship between SI, TI and Nψ.
Coupled with the presence of steep slopes, the surface plot suggests that the impact of SI- and
TI-values on Nψ is not consistent throughout the observed data-range. A notable feature includes
a peak in Nψ at a relative low spatiotemporal complexity.

The mixed-effects multiple regression model exhibited a statistically significant relationship
between seating type and degree of gaze distribution (z = 3.418, p-value = .001). As such, two
additional surface plots were constructed to examine the complex multivariate relationship between
spatiotemporal complexity on Nψ across the two usability contexts. The surface plots in Figure
32 were similarly configured, utilising a 10º elevation and a rotation around the vertical axis by
an azimuthal angle of 75º. Notably, the subset of data from group R (rotating chair) resulted in a
very similar surface plot as the primary surface plot in Figure 31b. This indicates that behaviours
and patterns inherent to group R (rotating chair) are, to a large extent, mirrored in group F
(fixed chair). This also suggests that the overall data pattern is less significantly influenced by
the data from group F. It is important to note that, despite structural similarity in both surface
plots, the overall degree of gaze distribution across group F is notably smaller (as indicated by
the z-axis). Furthermore, as apparent by the appearance of parallel ridges, key behavioural trends
found within group R seem to be true for group F as well. However, within group F, higher levels
of spatial- and lower levels of temporal image complexity appear to be curving the surface plot
more convex compared to group R.

Furthermore, a series of parallel ridges can be identified in the surface plots. The parallel
ridges indicate that for certain configurations of both spatial- and temporal image complexity,
repeated patterns in gaze exploration occur. As such, an increase in either spatial- or temporal
complexity, while keeping the other constant, could lead to periodic increases or decreases in gaze
distribution. This observation implies a certain commonality in the degrees of gaze distribution
across the different seating types, despite the structural difference between the two surface plots.

While the cubic interpolation process provides additional data points, it is still limited by
the current parameters of the utilised dataset. As such, the surface plot serves as an indicator
of the multidimensional correlation between spatiotemporal image complexity and degree of gaze
distribution. Additional Nψ-measurements for alternative 360-degree videos with varying spati-
otemporal complexities are vital to the enhancement of the interpolation process.

Assumptions The assumptions of linearity, homoscedasticity, normality, independence, and
multicollinearity for the mixed-effects multiple regression model were assessed.

By utilising the fitted values vs. residuals plot from Figure 33a, the assumptions of linearity
and homoscedasticity were assessed. Despite the absence of clear data pattern, the scatter plot
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does display an asymmetrical distribution of data points. The actual vs. predicted values plot
(see Figure 33b) further emphasises the cautious assumption of linearity, as the model appears to
be slightly underestimating the actual values in its predictions. As such, it was assumed that the
model approximates linearity. Moreover, a subtle funnel-shape can be identified in the distribution
of data points, indicating the presence of heteroscedasticity. This pattern becomes more apparent
when compared to Figure 28a. These findings do not provide sufficient evidence to assume that
the homoscedasticity assumption was met. A connection can be made between the approximate
linearity of the model and the findings of the diegetic assessment (see § 4.3), in which a complex,
non-linear polynomial relationship was identified between δ and Nψ. As such, the insufficient
evidence of linearity could partially be attributed to the inclusion of δ within the mixed-effects
model.

The Q-Q plot from Figure 33c was utilised to assess normality of the residuals. The distribution
sufficiently aligns with the reference line, strongly evidencing a normal distribution. A Durbin-
Watson test was run to assess the independence of errors in the residuals. The resulting value
of 2.154 strongly indicates the observation that the assumption was met. Lastly, the presence of
multicollinearity was examined using Variance Inflation Factors (VIF). Both SI and δ had VIFs of
7.38 and 7.61, respectively, indicating a moderate degree of multicollinearity. However, the other
variables exhibited VIFs below 5, suggesting acceptable levels of multicollinearity.

The insufficient evidence to support homoscedasticity, as well as the slight presence of multi-
collinearity, suggests caution in the interpretation of these findings. However, the results suggest
that further examination in the underlying data structure could be advantageous.

(a) Fitted Values vs. Residuals (b) Actual vs. Predicted Values (c) Q-Q

Figure 33: Mixed-effects multiple regression model plots.

5.2.3 Usability Group Moderation Analysis
The mixed-effects multiple regression model from § 5.2.2 exhibited a statistically significant rela-
tionship between the degree of gaze distribution Nψ and seating type. The underlying mechanisms
and interaction of different usability contexts (i.e., seating type) on this relationship was assessed
using a combination of subgroup and interaction analyses. A separate subgroup analysis was con-
ducted for each group F and R, which included similar confounding variables and parameters of
the mixed-effects model of § 5.2.2. Each model was fitted to the different subgroups.

For group F, a mixed linear model regression was run to assess the significance of spatial com-
plexity (SI) and temporal complexity (TI) on the degree of gaze distribution Nψ, while controlling
for δ (presence of diegetic artefacts), x3 (spatial awareness), x5 (quality of experience). The model
(scale = .009) exhibited a statistically significant relationship between spatial complexity (SI)
and degree of gaze distribution Nψ, with coefficient = .001 (z = 1.963, p-value = .05). Despite
the slightly positive effect of SI, no statistical significance was found among the other predictor
variables (p-values > .05). The model statistics of group F are presented in Table 17.

Similarly for group R, a mixed linear model regression was run to assess the significance of
spatial complexity (SI) and temporal complexity (TI) on the degree of gaze distribution Nψ,
while also controlling for δ (presence of diegetic artefacts), x3 (spatial awareness), x5 (quality of
experience). A statistically significant relationship was found between temporal complexity (TI)
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Model Summary for Group F
Coefficient Std Error z-Statistic p-value 95% CI

Intercept -.022 .083 -.267 .789 [−.184, .140]
SI .001∗ .000 1.963 .050 [.000, .002]
TI -.001 .001 -.873 .383 [−.002, .001]
x3 .012 .009 1.351 .177 [−.006, .030]
x5 -.003 .002 -1.220 .222 [−.008, .002]
δ .003 .002 1.640 .101 [−.001, .006]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 17: Mixed linear model regression results for group F.

and degree of gaze distribution Nψ, with coefficient = −.006 (z = −6.585, p-value < .001).Notably,
the intercept exhibited a positive effect (coefficient = .293, z = 2.635 and p-value = .008). The
intercept coefficient .293 indicates that, when all variables are set to zero within group R, the
model’s predicted value of Nψ will be .293. It’s important to emphasise that this scenario is
mostly theoretical, as a spatiotemporal image complexity of zero and a complete absence of diegetic
artefacts are highly unlikely. The model predictions deviate slightly more from the actual outcomes
Nψ (scale = .0017) compared to group F. No statistically significant results were found among the
other predictor variables. The model statistics of group R are presented in Table 18.

Model Summary for Group R
Coefficient Std Error z-Statistic p-value 95% CI

Intercept .293∗∗ .111 2.635 .008 [.075, .512]
SI -.001 .001 -1.306 .192 [−.002, .000]
TI -.006∗∗∗ .001 -6.585 .000 [−.008,−.004]
x3 .012 .008 1.567 .117 [−.003, .027]
x5 .001 .003 .500 .617 [−.004, .007]
δ -.003 .002 -1.495 .135 [−.008, .001]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 18: Mixed linear model regression results for group R.

Both models exhibit contradictory results. For group F (fixed-position chair), the effect of
spatial complexity on degree of gaze distribution was statistically significant, while the effect of
temporal complexity was not. Contrary, for group R, the effect of temporal complexity on gaze
exploration was statistically significant while the effect of spatial complexity was not. These
findings suggest that the relationship between SI and TI with Nψ depends on the seating type.
As such, there was sufficient evidence to reject the null hypothesis and accept the alternative
hypothesis:

• H1: There is a significant difference in the relationship between spatial- and
temporal image complexity and degree of gaze distribution (Nψ) across different
seating types.

It should be mentioned that the significant differences are specific to either spatial- or tem-
poral complexity. For spatial complexity, the difference was significant in group F. For temporal
complexity, the difference was significant in group R. For the other predictor variables x3 (spatial
awareness), x5 (quality of experience) and δ (presence of diegetic artefacts), there was insufficient
evidence to reject the null hypothesis.

To further examine the interaction dynamics that cause the significant difference in the rela-
tionship across groups, an interaction analysis was conducted. Additional parameters, interaction
terms, were included in the same mixed-effect multiple regression model from § 5.2.2 to evaluate
the interaction terms between both spatial- and temporal complexity and seating type. The exten-
ded mixed-effects multiple regression model includes both respective interaction terms SI : C[T.1]
and TI : C[T.1], while controlling for the presence of diegetic artefacts (δ), spatial awareness (x3),
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and quality of experience (x5). The mixed-effects multiple regression model statistics, including
interaction terms SI : C[T.1] and TI : C[T.1] are presented in Table 19.

Interaction Model Summary
Coefficient Std Error z-Statistic p-value 95% CI

Intercept .098 .069 1.419 .156 [−.037, .233]
C[T.1] .061∗ .023 2.589 .010 [.015, .106]
SI -.000 .000 -0.063 .949 [−.001, .001]
SI : C[T.1] .000 .000 0.315 .753 [−.000, .001]
TI -.002∗∗ .001 -3.069 .002 [−.003,−.001]
TI : C[T.1] -.003∗∗∗ .001 -4.370 .000 [−.004,−.001]
x3 .012∗ .006 2.035 .042 [.000, .023]
x5 .000 .002 0.201 .841 [−.003, .004]
δ -.000 .001 -0.159 .873 [−.003, .003]

(∗) p-value < .05, (∗∗) p-value < .01, (∗∗∗) p-value < .001

Table 19: Mixed linear model regression results for the interaction model.

The model exhibited a significant interaction effect between seating type and temporal com-
plexity (TI), which was statistically significant (coefficient −.003, z = −4.370 and p-value < .001),
signifying that the effect of temporal complexity on gaze distribution Nψ significantly differs
between seating types. As such, a unit increase in TI results in an additional decrease of .003
units in Nψ. Furthermore, the independent effect size of temporal complexity in Nψ was also stat-
istically significant, with coefficient = −.002 (z = −3.069, p-value .002). As such, a unit increase
in temporal complexity results in a .002 unit decrease in Nψ, regardless of seating type.

The model did not show a significant relationship between spatial complexity (SI) and Nψ,
nor did it significantly interact with seating type (coefficients = .000, p-values > .05). The
relationship between x3 (spatial awareness) and Nψ was also statistically significant (coefficient
= .012, z = 2.035, p-value .042). Additionally, the mixed-effects model exhibited a significant
main effect of seating type (C[T.1]) on degree of gaze distribution Nψ (z = 2.589, p-value = .010).
When keeping all the predictor variables constant, the model a .061 unit increase in Nψ when
switching from a fixed-position chair to a rotating chair. No significant effects were observed for
x5 (quality of experience) and δ (presence of diegetic artefacts) (p-values > .05).

Notably, for most of the predictor variables, the inclusion of interaction terms within the
mixed-effects multiple model did not significantly change the relationship with the degree of gaze
distribution (Nψ), When compared to the mixed-effects model without interaction terms (see
Table 16), the inclusion of interaction terms within the mixed-effects multiple model did not
significantly change the relationship with the degree of gaze distribution (Nψ) for most of the
predictor variables. However, a notable increase was observed in the coefficient of seating type
(C[T.1]), from .030 to .061.

The findings from the interaction analysis further support the results from the subgroup ana-
lyses, demonstrating a complex interaction and moderation between spatiotemporal image com-
plexity and seating type in its effect on gaze distribution.

Assumptions The assumptions of linearity, homoscedasticity, normality, independence, and
multicollinearity for both subgroup analyses as well as the interaction analysis using the mixed-
effects multiple regression model were assessed.

The fitted value vs. residuals plots of the three models are presented in Figure 34, which were
used in the assessment of linearity and homoscedasticity. None of the three plots demonstrate a
clear data pattern. As such, it was assumed that the relationships between the IVs and DVs were
approximately linear. However, the fitted values vs. residuals plots in Figures 34b and 34c display
a slight funnel-pattern in the distribution, indicating the presence of heteroscedasticity. This
pattern is less evident in the scatter plot of group F (see Figure 34a). This observation further
supports the previously established notion that group F exhibits a less significant influence on
the overall data pattern, evident in Figures 31 and 32. Furthermore, a slight asymmetry can be
observed across the three plots.
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(a) Subgroup F (b) Subgroup R (c) Mixed-Effects Model (Ext.)

Figure 34: Fitted Values vs. Residuals Plots

The normality of the residuals was assessed utilising the Q-Q plot presented in Figure 35. The
Q-Q plots imply that the residuals of each of the models were approximately normally distributed,
as despite a slight deviation in the tail-ends, the Q-Q distributions align sufficiently with the refer-
ence lines across all three models. Additionally, a Durbin-Watson test was performed to examine
the independence of errors of these residuals. For group F, group R, and the extended mixed-
effects multiple regression model, the resulting values were 2.489, 1.958 and 2.124, respectively.
The values strongly indicate the absence of autocorrelation, thereby meeting the independence
assumption.

For both group F and group R, the VIF values of x3 (spatial awareness) and δ (presence of
diegetic artefacts) were > 5, suggesting the presence of multicollinearity within both models. The
other VIF values were < 5, indicating a lower level of multicollinearity. The interaction terms in
the extended mixed-effects multiple regression model suggest a higher level of multicollinearity.
Specifically, C[T.1] and SI : C[T.1] were above threshold > 10, and TI : C[T.1] was > 5. These
levels of multicollinearity between multiple predictor variables strongly imply that the assumption
of no multicollinearity was violated.

(a) Subgroup F (b) Subgroup R (c) Mixed-Effects Model (Ext.)

Figure 35: Q-Q Plots

Specifically the presence of multicollinearity is indicative that the model’s performance is de-
pendent on the levels of the independent variables and therefore requires cautious interpretation
of the results.

5.2.4 Non-Parametric Comparative Rating Analysis
The ratings for each of the experiential statements were assessed using descriptive statistics, as
presented in Table 20. For reference, each of the statements is presented in Table 21. A series of
non-parametric Mann-Whitney U tests were conducted on statements S1, S2, S3 and S4, which
were rated by all n = 52, to examine the differences between groups.

As evident, users agreed moderately with statements S1 (µ = 4.442, σ = 1.259) and S3 (µ =
4.942, σ = 1.110), indicating that users found themselves to be distracted by background elements
due to the static camera. In contrast, users did perceive an increase in spatial understanding due to
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All users
Mean Standard Deviation Minimum Maximum

S1 4.442 1.259 1.000 6.000
S2 5.731 1.223 3.000 7.000
S3 4.942 1.110 2.000 7.000
S4 3.404 1.287 1.000 6.000

Group R
Mean Standard Deviation Minimum Maximum

S1 4.615 1.359 1.000 6.000
S2 5.769 1.306 3.000 7.000
S3 4.808 1.167 2.000 7.000
S4 3.269 1.430 1.000 6.000
SR1 4.500 1.393 2.000 7.000
SR2 5.962 .871 4.000 7.000

Group F
Mean Standard Deviation Minimum Maximum

S1 4.269 1.151 1.000 6.000
S2 5.692 1.158 4.000 7.000
S3 5.077 1.055 3.000 7.000
S4 3.538 1.140 1.000 5.000
SF1 6.077 .796 5.000 7.000
SF2 4.577 1.027 3.000 6.000

Table 20: Descriptive statistics of the experiential statements.

the static camera. A slight disagreement was observed with statement S4 (µ = 3.404, σ = 1.287),
suggesting that the moving camera did not necessarily impact the spatial orientation of users.
users agreed strongest with statement S2 (µ = 5.731, σ = 1.223), implying that the static camera
evoked a more focused gaze behaviour. Similar distributions were found across both groups.
Regarding the chair-specific statements, users in group R – strongly – agreed on both statements
SR1 (µ = 4.500, σ = 1.393) and SR2 (µ = 5.962, σ = .871). The results suggest that the rotating
chair facilitated more exploratory behaviour and tracking of camera movements. In group F, users
– strongly – agreed on both statements SF1 (µ = 6.077, σ = .796) and SF2 (µ = 4.577, σ = 1.027).
As such, the users agreed on the limiting effects of a fixed-position of the chair on their ability to
explore the virtual environment as well as keeping track of camera movements.

Variable Statement
S1 "I found myself getting distracted by the background elements when watching

the videos with a static camera."
S2 "I found myself more focused on the details of the scene when the camera was

moving slowly."
S3 "I had a better understanding of the layout of the environment when watching

the 360-degree content with a static camera."
S4 "I found it difficult to orient myself and understand the layout of the environ-

ment when watching the 360-degree video with a moving camera."
SR1 "I felt more encouraged to look around because of the rotating chair."
SR2 "The rotating chair made it easier for me to follow the camera movements."
SF1 "I felt limited in the amount of exploring I could do due to the fixed chair."
SF2 "I found it harder to keep track of the camera movements because of the fixed

chair."

Table 21: Statement Variables

A series of Mann-Whitney U tests were performed to assess the significant differences between
both usability context groups for each of the experiential statements S1, S2, S3 and S4. With
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respective p-values: .181, .711, .404 and .404, all four experiential statements failed to reach
statistical significance. Despite observing mean differences between the two groups, the differences
were not statistically significant at threshold α = .05. As such, the observed differences could
potentially be due to random variation. The Mann-Whitney U tests did not provide sufficient
evidence to reject the null hypotheses:

• H0: There is no significant difference in the median rating for statements S1, S2,
S3 and S4 between the two seating types.

• H1: There is a significant difference in the median rating for a given statement X
between the two seating types.

Assumptions The assumptions of independence of observations, ordinal data and equal dis-
tributions for the Mann-Whitney U tests were assessed. All observations (i.e., ratings) were
independent of each other across all n = 52 users. The ratings were measured on an ordinal
7-point Likert scale. Despite slightly deviations in the distributions, there was enough evidence
to support that the assumptions of the Mann-Whitney U tests were met.

5.3 Qualitative Results
The qualitative data, as acquired during the user evaluation, was analysed using a systematic
grounded theory approach, in which a series of emergent coding procedures and graphical rep-
resentations were used to identify key trends in the user’s self-perception of conscious gaze beha-
viour. Important to highlight is the subjective component of the qualitative data. The resulting
key trends of subjective gaze behaviour were based on the, as specifically mentioned by the users,
behavioural responses users experienced when reflecting on their gaze behaviour across varying
360-degree videos.

5.3.1 Grounded Theory Analysis
The transcript data of the user’s self-perception of active gaze behaviour was systematically as-
sessed using the Straussian Grounded Theory methodology [318, 340]. Iterative open, axial and
selective coding procedures were employed to identify and assign codes to discrete strings of text
(i.e., concepts) that encompassed the user experience and perception of gaze behaviour. The
code packages were categorised and combined in clusters, which were assigned to higher-level cat-
egories. Frequent notions of the same behavioural concept were placed in higher-level categories.
The multi-level categories and codes were selectively linked based on causal relationship, context,
consequences and conditions. The resulting inter-connected theoretical concepts and relation-
ships were utilised to construct a framework of recurrent themes and patterns identified from the
responses. An acyclic forest graph was constructed to visualise the inter-connected framework
of codes and categories, as presented in Figure 36. The forest graph contains a series of nodes
(codes) and branches, linking the multi-level categories and corresponding codes. The hierarchical
organisation of theoretical concepts and observations enables an increased understanding of the
self-perception of active gaze behaviour.

However, to ensure comprehensibility during the user evaluation, the questions were oriented
towards changes in genre and camera motion, both of which inherently represent variations in
spatiotemporal complexities. Consequently, the resulting framework (see Figure 36) from the
grounded theory analysis and emergent coding procedures predominantly focuses on the genre
and motion-related distinctions rather than the underlying connections with spatial and temporal
complexities.

To identify key trends of active gaze behaviour in relation to varying levels of spatial and tem-
poral image complexities, it is imperative to interpret the observations as such. The forest graph
from Figure 36 was modified to better reflect the user’s self-perception in relation to varying levels
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Figure 36: Acyclic forest graph of gaze behaviour perceptions.

of spatiotemporal image complexity, see Figure 37. The revised forest graph visualises the inter-
connected framework of relationships and observed patterns within the context of spatiotemporal
image complexity.

5.3.2 Trends in User Self-Perception
General overarching themes were derived from the qualitative transcript data. Elements of engage-
ment, focus, pace, interest, immersion, relatability and anticipation were prominent and frequent
notions within the data. As such, users expressed a variety of both unique as well as common
behavioural responses. Causal relationships between the observations enabled the identification
and definition of a set of key trends found within the active perception of a user’s gaze behaviour
across the sample size n = 52.
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Figure 37: Adapted forest graph of gaze behaviour perceptions.

The following set of key behavioural trends were defined, utilising the forest graph containing
the users’ self-reflected behavioural trends in relation to spatiotemporal image complexity:

1. Adaptive Behaviour and Interest-Driven Engagement;
2. Objective-Focused Behaviour and Anticipation-Driven Engagement;
3. Active Disengagement in Less Complex Content;
4. Augmented Sense of Presence.

It is important to emphasise that the trends represent frequent notions and patterns within
the active gaze behaviour of the users. As such, these are patterns and behavioural choices that
users actively recalled and were aware of. Thereby, these behavioural choices and patterns are
representative of the overall self-perception of the user’s viewing behaviour and how changes in
presented 360-degree videos may have caused active behavioural changes in gaze behaviour. The
trends ought to be interpreted as they were derived from the self-perception of users, and remain
rather subjective notions on self-reflected gaze behaviour.

Adaptive Behaviour and Interest-Driven Engagement Most notably, user mentioned a
certain degree of adaptability in their viewing behaviour depending on the video content. The
users found their focus was impacted by the wide variety (i.e., spatiotemporal complexities) of
the presented content. For instance, users felt more engaged and focused (mentally) during videos
pertaining a higher temporal complexity due to the dynamic camera motion. This resulted in a
decreased tendency to explore, as the users felt more drawn into the action. On the contrary, static
and visually rich videos with a lot of detail resulted in increased exploration, as user’s felt a higher

117



need to observe and appreciate the virtual environment and scenery. Overall, users mentioned
that they were more engaged with content that better aligned with their personal interest.

Objective-Focused Behaviour and Anticipation-Driven Engagement The sense of "feel-
ing drawn" into the action furthermore diminished the user’s tendency to explore. A trend was
observed in users mentioning an enhanced level of focus when viewing 360-degree videos with a
clear objective. The sense of anticipation and adrenaline led to users being concentrated on the
objective in front (e.g. the roller coaster track or following a path). As such, there was a not-
able focus on the objectives and ongoing action, accompanied by a lower tendency to explore, in
dynamic videos.

Augmented Sense of Presence The dynamic videos, due to their higher temporal complex-
ities, further amplified the users’ sense of presence. The ongoing action, sense of anticipation and
strong focus on the objective resulted in an intense sense of involvement among the users. This
increased sense of immersion was experienced in spatially complex videos as well, as the virtual en-
vironment began to mirror the visual richness of real-life experiences, blurring the clear distinction.
The intricate details found in spatially complex videos was perceived to be more inviting.

Active Disengagement in Less Complex Content The before-mentioned trends in behavi-
oural tendencies focused on the impact of spatially or temporally complex videos on active gaze
behaviour, as perceived by the users. However, a lack of complexity in either dimension also
elicited a behavioural response. Users mentioned an active form of disengagement when viewing
360-degree videos that were perceived as uninteresting, or which failed to grasp user attention. A
higher sense of distraction was found, which resulted in a higher tendency to explore as the users
sought out more engaging visual attributes.

Configuration Subjective Behavioural Response
SI high, TI high Augmented sense of immersion coupled with an adaptive gaze behaviour as

exploration tendency was highly dependent on user interest and video objective.
SI high, TI low Increased tendency to explore or focus on details, due to rich spatial details

and fewer changes happening over time.
SI low, TI high Increased focus and limiting extent of exploration, due to the sense of anticip-

ation and objective-oriented gaze.
SI low, TI low Increased tendency to explore and desire for more engaging visual artefacts due

to active disengagement, caused by lack of complexity.

Table 22: Spatiotemporal configurations and subjective behavioural responses.

Notably, users expressed different behavioural tendencies depending on the level of complexity
of either spatial- or temporal dimension. Users experienced a lower tendency to explore during
temporally complex videos, while in contrast, more spatially complex videos encouraged explora-
tion. Despite users feeling actively disengaged with the content, lower complexities (both spatial-
and temporal) still resulted in exploratory tendencies. However, these tendencies were primarily
motivated by the prominent search for visually engaging artefacts within the 360-degree environ-
ment. Users frequently mentioned the pivotal role of user interest and video objective, as their
gaze behaviour depends more those components during highly spatial and highly temporal videos.
Users expressed different subjective behavioural responses depending on the specific spatial- and
temporal configuration of each 360-degree video. Table 22 presents an overview of the subject-
ive behavioural response, as reflected and self-perceived by the users, depending on the specific
configuration of spatiotemporal video complexity.
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Chapter 6

Discussion

121



Motivated by the existing body of literature and research, this thesis presents a systematic
approach to bridge the dichotomous state of research, predominantly focused on the technical
limitations rather than content-aware approaches, by examining the behavioural consequences
inherently imposed by 360-degree video content in VR. As such, the 360-degree imagery acts as
an autonomous factor in the dynamic interaction process. The resulting research objective was
defined as follows:

To discern the extent of which spatiotemporal image complexity of a 360-degree video
sequence in VR influences gaze behaviour within the multifaceted interaction model,
while factoring in the complex dynamics of cognitive perceptions and usability context.

Central to the research, as proposed in this thesis, was the provision, exploration and enabling
of a robust understanding of how 360-degree video sequences, as an independent component,
impact the user’s gaze behaviour. Specifically, the spatiotemporal image complexity of a 360-
degree video sequence was used to quantify the intricacies of the content in terms of space and
time, providing an accurate representation of the human visual system. In the context of a 360-
degree video sequence, spatial complexity (SI) refers to the amount of detail and variation within
each frame, whereas the temporal complexity (TI) measures the amount of change or motion in
consecutive frames [144]. A mixed-methods design was applied to measure user gaze, utilising
measured fixations throughout various 360-degree video sequences in VR and across different
seating types. This work holistically approaches the research objective by employing computer
vision techniques and oculesics to analyse and quantify 360-degree image structures as well as
consequent gaze behaviour in a comprehensive and multi-dimensional manner.

This chapter presents the discussion, in which the main findings are presented and interpreted
against the backdrop of the cognitive perceptions, film theory, and usability context by incorpor-
ating relevant theoretical frameworks from the related fields. This discussion presents the main
findings, as derived from the employed analytical framework (see § 2.7.3), adhering to a similar
structure of the devised sub-questions from § 1.7. Firstly, the systematic employment of computer
vision techniques and eye-tracking data to quantify gaze patterns is discussed. The resulting
quadrifactorial exploration index measure was used to the examine the complex dynamics and
identify the confounding effects of cinematographic principles and cognitive influences, prior to
the primary analysis on the effect of spatial- and temporal image complexity on gaze behaviour.
Following this, the findings of the primary spatiotemporal analysis on the effect of both spatial-
and temporal image complexity on gaze distribution are presented, providing insight in the sig-
nificance of 360-degree image complexity on directing user behaviour in VR. Furthermore, the
degree to which this main effect is moderated by interactions across different usability contexts is
discussed, highlighting the influence of seating type on the behavioural effects. Additionally, the
association between subjective self-perception of gaze behaviour across users and objective gaze
distribution is examined, providing insights into the discrepancies between self-awareness and ac-
tual gaze behaviour. As such, the comparison sheds light on the balance between unconscious
cognitive responses and active gaze. Lastly, the main findings are briefly reiterated and succinctly
presented.

This chapter furthermore discusses the presented findings in relation to higher-level implica-
tions for theory and practice, presented in sections 6.1 and 6.2, respectively. The chapter concludes
by discussing the limitations of this thesis in section 6.3, while the future prospects of potential
research continuation is discussed in section 6.4.

The Quantification of Gaze Patterns Through Computer Vision Tech-
niques and Oculesics
The implementation of oculesics to acquire sensor-based physiological eye-tracking data, enabled
highly detailed insight of the user’s gaze and behavioural responses to various 360-degree stimuli.
Despite its effectiveness, traditional eye-tracking metrics only present a one-dimensional view,
solely encapsulating the location and duration of fixations. A comprehensive understanding of user

122



behaviour and gaze patterns, in the context of 360-degree video interaction in VR, necessitates a
methodological approach to adequately quantify the intricacy of gaze distribution in 360-degree
environments, reducing the need for a separate post-test subjective visual analysis to interpret the
user’s gaze and attention [129]. This work introduced the quadrifactorial exploration index Nψ, a
novel metric formulated to quantify gaze distribution based on heatmap imagery extracted from
advanced eye-tracking software. The heatmap image was constructed by combining both fixation
and duration data to visualise the extent of gaze distribution. By utilising image segmentation
techniques, derived from the field of computer vision, the metric segments four components from
the gaze distribution heatmap image: pixel area coverage ratio, average pixel intensity, structural
image dissimilarity and entropy. A binary map, superimposed on the heatmap image signal,
enabled the identification and computation of each individual pixel as part of the heatmap. As
such, the surface area of all heatmap pixels and the average pixel intensity were used to compute the
extent of gaze exploration. Despite providing a sufficient indication of exploratory extent, those two
factors alone did not take into account the complex patterns of gaze distribution. Consequently, the
index was enhanced by computing the structural dissimilarity between a blank reference image
(representative of zero gaze exploration) and the superimposed heatmap image. The approach
combines a modification to the Multi-Scale Structural Similarity Index Measure from Wang et
al. (2004) and integrates Shannon entropy to account for the variability of the gaze patterns,
enhancing the index with comparable factors of the human visual system [131, 345, 357]. A data-
driven approach was applied to mathematically formulate and derive the relative contribution of
each of the four factors to the overall degree of gaze exploration, resulting in a nuanced index
that denotes the degree of gaze exploration. The internal consistency was assessed and achieved,
validating the inclusion of highly correlated components which consistently reflect the spatial
extent, concentration, diversity and randomness of gaze distribution patterns.

The Confounding Cinematographic and Cognitive Influences
The quadrifactorial exploration index Nψ was furthermore employed to ensure internal validity of
the primary spatiotemporal analyses. The index was utilised to identify and examine potential
influences from other influences, as implied by research insights from cognitive science and film
theory [9, 23, 42, 63, 263, 284, 356, 375]. As such, the versatility of the quadrifactorial explor-
ation index Nψ extended beyond the primary analysis of spatiotemporal image complexity on
gaze behaviour, as it was furthermore employed to identify potential confounding effects on gaze
distribution. Specifically, the index served as a crucial tool in the assessment of cinematographic
principles and influence thereof on guiding user attention. One of the key challenges in achieving
external validity was the unique nature of the content, as no two 360-degree video sequences are
identical. Therefore, it was decided to assess the confounding effect of the internal story- and
scene elements that support the narrative structure (i.e., diegesis) in 360-degree environments.
The diegetic assessment takes into account the internal presence of diegetic artefacts within the
utilised 360-degree video sequences, as it was proven to guide user attention in traditional video
format [23, 63, 263, 375]. The conducted diegetic assessment enabled the identification and as-
sessment of the presence of diegetic artefacts in the employed 360-degree video sequences. The
diegetic assessment introduced another novel metric, δ, which utilised a devised coding scheme to
quantify the presence of such visual artefacts based on size and duration for each of the 360-degree
video sequences. The metric δ denotes the presence of visual artefacts, representing the extent to
which inherent narrative story- or scene elements guide user attention and impact user gaze. The
assessment was driven by this exact understanding: that a higher presence of diegetic artefacts
δ influences exploratory tendencies. The data exhibited non-linear behaviour, as an increase in
diegetic artefacts did not invariably correspond to a higher degree of gaze distribution, under-
pinning the complexity of the relationship between δ and Nψ. It was found, through a series of
non-linear regression models, that a significant variation in gaze distribution could be explained
utilising a quadratic polynomial model. These findings evince the notion that internal story- or
scene elements within the 360-degree video sequence act as a confounding variable, and as such,
was included in the primary analytical models. However, despite exhibiting significant results,
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a substantial proportion of the variation remained unaccounted for, as the presence of diegetic
artefacts only accounted for a marginal proportion of the observed variation in gaze distribution.
These observations emphasised the necessity of incorporating influential factors from other related
fields, such as cognition and usability.

As such, the quadrifactorial exploration index Nψ furthermore enabled the examination of in-
dependent influences for each of the devised attributes of perception on gaze behaviour. Founded
by research insights from literary works in the field of cognitive science, the perceptual attributes
included the levels of QoE, engagement, attentional focus, spatial awareness and fear of missed
content [81, 90, 205, 223, 230, 376]. The independent effect of each attribute on gaze behaviour
was individually examined using a linear mixed-effects model. Most notably, only two attributes
exhibited a significant effect. Firstly, a positive association was observed between spatial aware-
ness and extent of gaze exploration, suggesting that users increasingly navigated the 360-degree
environment when more aware of their spatial surroundings. Secondly, a slightly negative asso-
ciation between quality of experience and gaze distribution was found, suggesting that a higher
quality of experience may lead to users focusing more on specific AOIs and reducing the overall
gaze extent. The attributes of engagement, attentional focus and fear of missed content did not
demonstrate a significant independent effect on gaze distribution, suggesting that their influence
on gaze behaviour may be less direct, despite their theoretical significance. Consequently, the pres-
ence of diegetic artefacts, as well as both attributes of cognitive perception and usability context
were validated as confounding effects. The specific influence of usability context is later discussed
in this chapter.

The formulation and employment of the quadrifactorial exploration index Nψ was evidently
pivotal in understanding the complexity of gaze behaviour in virtual 360-degree environments.
The index utilised computer vision techniques and oculesics to encapsulate the multidimensional
nature of gaze behaviour in which it reflects not just the extent and intensity of user gaze, but also
its variability and unpredictability. As such, the index was further employed to detect confounding
effects from various domains, reiterating the versatility of the multifaceted measure and ensuring
a higher degree of internal validity. This approach resulted in a reliable and nuanced measure of
gaze patterns, enabling more intricate exploration of user interactions in VR.

The Dynamics of Spatial- and Temporal Image Complexities on Gaze
Distribution
Consequently, the quadrifactorial exploration index Nψ was utilised in the primary spatiotemporal
analysis, adhering to the main research objective of discerning how gaze distribution is influenced
by spatiotemporal 360-degree image complexity in VR. The primary spatiotemporal analyses con-
trolled for factors of diegesis, cognitive perception and usability context, as well as respective
spatial- or temporal dimensions.

The primary spatiotemporal analyses revealed that spatial image complexity (SI) did not sig-
nificantly impact the user’s gaze when watching the 360-degree video sequence. This suggest that
the users’ gaze exploration remained relatively unaffected, irrespective of the visual richness within
each frame of the video. This finding challenges the theoretical significance of spatial complexity
in traditional videos [28, 202], which notes that more complex imagery would inherently elicit
a more distributed gaze as users aim to capture as much visual information. In contrast, these
findings imply that the spatial richness of a 360-degree video sequence might not be a critical
factor in eliciting gaze behaviour, and emphasise that other factors such as usability context or
cognitive load might override the significance of spatial complexity on gaze behaviour.

In contrast, temporal image complexity (TI) was found to be a significant predictor of gaze
distribution. The results indicate a negative association between TI and Nψ, where for every unit
increase in temporal complexity, a decrease in the extent of gaze distribution was observed. This
suggests a behavioural tendency among users to concentrate their focus on specific AOIs when
prompted with rapidly changing visual information. These finding highlights the pivotal role of
time and temporal dynamics in guiding attention. It emphasises that time and change of visual
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information over time are important dimensions in the understanding of gaze behaviour in virtual
360-degree environments.

The relationship between spatiotemporal image complexity in 360-degree video sequences and
gaze distribution was found to be complex and nonlinear. While temporal complexity significantly
impacts gaze behaviour, the independent effects of spatial complexity were found to be non-
significant. However, the lack of a significant independent effect of SI does not diminish the impact
of spatial image complexity. In fact, when spatial complexity is coupled with temporal complexity,
intricate gaze distribution patterns emerge, emphasising the complex interaction between the two
dimensions.

The generated three-dimensional surface plot visualise the complex interaction between SI, TI
and Nψ (see Figures 31 and 32). The surface plots reveal intricate patterns, as the curvature of the
surface varies across the spatiotemporal plane. As such, the plots indicate higher-degree non-linear
relationships between spatial complexity, temporal complexity and degree of gaze distribution.
Parallel ridges in the surface plots were observed for specific configurations of spatiotemporal
image complexity, strongly indicating repeated patterns in gaze exploration. Furthermore, the
surface plot demonstrated that different configurations in the spatiotemporal matrix can elicit
different behavioural patterns. Most notably, a significant peak in gaze distribution was found
at relatively low levels of spatiotemporal complexity, predominantly impacted by the negative
association with temporal image complexity. The surface plot exhibited a downward slope across
the temporal plane, indicative of the significant negative association, while periodic curvature
across the spatial plane can be observed. The periodic increase and decrease in gaze distribution,
as indicated by the slopes and parallel ridges in the surface plots, further support the interaction
effects between spatial- and temporal image complexity in virtual 360-degree environments. As
such, the influence of spatial- and temporal complexity on gaze behaviour is not simply additive,
but interacts in more complex ways. Therefore, despite the insignificant independent effect of
spatial complexity, it is vital to consider both spatial- and temporal image complexity as a whole,
as opposed to separately. The importance of this notion is discussed in more detailed in the
subsequent section.

Notably, the presence of spatiotemporal image complexity was found to dominate the significant
independent effects of presence of diegetic artefacts δ and quality of experience. In isolation, these
confounding factors were observed to be significant predictors of gaze distribution. However, the
independent effects became less pronounced when coupled with spatiotemporal image complexity,
emphasising the significance of spatiotemporal image complexity and its interactions in impacting
user behaviour. As hypothesised, both spatial awareness and usability context (i.e., seating type)
remained significant predictors of Nψ in the presence of spatiotemporal image complexity.

The Effects of Spatiotemporal Image Complexity on Gaze Behaviour
Across Usability Contexts
The use of a different usability contexts (i.e., seating types) was found to significantly impact gaze
behaviour during the 360-degree video interactions, which supports the findings of Ebrahimi et
al. (2009) and Brunnström et al. (2013) [42, 90]. Two seating types were utilised in the study:
a fixed-position chair and a rotating chair, representative of two common contexts in which the
user interacts with 360-degree video in VR. The users perceived both seating types as sufficiently
comfortable and enjoyable, ensuring that usability factors did not introduce additional confounding
usability effects or influence the results due to discomfort. This approach enabled the examination
of to what extent the effects of spatiotemporal image complexity on gaze behaviour are impacted
across usability contexts, adding an extra dimension to the thesis. The overall gaze distribution
across users was significantly smaller when utilising a fixed chair compared to a rotating chair.

Evidently, the before-mentioned overall spatiotemporal effects on gaze behaviour across all
n = 52 users were primarily reflected in the gaze behaviour of users utilising the rotating chair.
This notion is further supported by the extreme similarities between the two respective surface
plots (Figures 31b and 32b). Furthermore, the group-specific surface plots from Figure 32 reveal
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that the behavioural patterns inherent to using the rotating chair were to a large extent mirrored
in the behavioural patterns of using a fixed chair.

Due to the significant impact of seating type on the overall effect of spatiotemporal image
complexity on gaze behaviour, it was decided to examine this effect separately between groups.
Consequently, a subgroup and interaction analysis examined the mediating effect of seating type.
Most notably, depending on the seating type, the spatiotemporal effects were significantly dif-
ferent. For instance, when using a fixed-position chair, spatial image complexity (SI) exhibited
a statistically significant positive relationship with gaze distribution Nψ, while temporal image
complexity (TI), spatial awareness, quality of experience and presence of diegetic artefacts δ did
not. In contrast, when using a rotating chair, only temporal image complexity (TI) demonstrated
a significantly negative association with gaze distribution and the other predictors did not demon-
strate any significant effects. These findings suggest a different effect of either spatial- or temporal
image complexity depending on the seating type. When using a fixed-position chair, spatial im-
age complexity significantly affects gaze distribution, while in a rotating chair, temporal image
complexity does.

To further examine the significance of this usability context group-dependent variation, ad-
ditional interaction terms between both spatial- and temporal complexity and seating type were
included in the mixed-effects multiple regression model of the primary spatiotemporal analysis.
A significant interaction effect was found between seating type and temporal image complexity
(TI), indicating that the effect of temporal complexity on gaze distribution Nψ significantly var-
ies depending on the seating type. Furthermore, the independent effect of temporal complexity
remained significant, suggesting that an increase in temporal complexity leads to a decrease in
gaze distribution, irrespective of seating type. However, the interaction and independent effects
of spatial image complexity (SI) were not significant.

The primary spatiotemporal analysis already revealed that the significance of spatial complex-
ity on gaze behaviour might be overriden by other factors such as usability context. The interaction
analysis further supports this notion, as it revealed that users adopt different approaches to navig-
ate the spatially complex environments i.e., by using a rotating chair. The ability to rotate more
easily and consequently change viewing direction more conveniently enables the users to better
handle a spatially complex 360-degree environment, mitigating the independent effect of spatial
complexity on gaze behaviour. This finding indirectly points to the earlier notion of relevance of
spatial image complexity.

Despite these findings, it is important to emphasise that the interaction effect between spatial
complexity and seating type might only be significant within specific groups. This is strongly
suggested by the findings from the subgroup analysis of using a fixed chair, in which spatial
complexity was found to be a significant predictor. Therefore, while spatial image complexity
might not exhibit a significant interaction effect with seating type on gaze behaviour across the
entire sample, the interaction analysis strongly indicates the possibility that it still could within
specific usability contexts. Notably, the interaction analysis also revealed a significant main effect
of seating type on the degree of gaze distribution Nψ, where a switch from a fixed chair to a
rotating chair was associated with a .061 unit increase in Nψ when all other predictor variables
were kept constant. This is a substantial increase when taking into account the value range [0,
1] of the quadrifactorial exploration index Nψ and is double the effect size found in the model
without interaction terms. The inclusion of interaction terms in the model did not significantly
change the relationships between the predictor variables and degree of gaze distribution Nψ when
compared to the model without interaction terms.

These findings highlight the complex relationship between spatiotemporal image complexity,
gaze distribution and usability context. Both the fixed and rotating seating types, representative of
various usability contexts, appear to significantly moderate the effect of 360-degree spatiotemporal
image complexity on gaze behaviour, emphasising the pivotal role of usability context in the
interaction process.
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The Dichotomy Between Objective and Subjective Gaze Behaviour
A comprehensive understanding of the intricate 360-degree video user interaction and imposed
behavioural responses due to variations in spatiotemporal image complexity necessitates a holistic
perspective which integrates both objective and subjective angles. Motivated by the works of
Holmqvist et al. (2011) and Egan et al. (2016), this thesis employed a combination of both quant-
itative and qualitative methodologies [91, 130]. This approach was further driven by the notion
that the enhanced perceptual load, inherent to 360-degree user interactions in VR, could trigger
unconscious behavioural responses [196, 223, 262]. As such, the employed research methodology
exceeds the limited perspective, offered by purely focusing on objective gaze data, integrating the
underlying subjective motivations and perceptual experiences that guide gaze behaviour. This
holistic and empirical approach, which includes the integration of experiential statement results
and qualitative interview transcript data on self-reflected gaze behaviour, not only highlights the
dichotomy between objective gaze behaviour and subjective perception of gaze behaviour but also
enables a deeper understanding in the underlying motivation behind the observed gaze patterns.

The qualitative analysis resulted in a set of four key behavioural trends that delineate the sub-
jective experiences and perceptions of the users. Derived from the perceived senses of engagement,
interest, focus, pace, relatability, anticipation and immersion, the key behavioural trends provide
insights in the behavioural responses on a subjective and cognitive level, providing a holistic per-
spective in conjunction with the objective findings. To reiterate, the objective findings derived
from the primary spatiotemporal analyses revealed that temporal image complexity significantly
affects gaze behaviour, which were negatively correlated. However, despite the theoretical implic-
ations, no significant independent main effect was found between spatial image complexity on gaze
distribution.

The subjective findings, indicative of the user’s self-perceived gaze behaviour, provided further
insight into this observation as they revealed an interesting discrepancy: users still experienced an
increased tendency to explore the more spatially complex environments. This notable discrepancy
could be attributed to the increased cognitive efforts involved in processing spatially complex 360-
degree scenes, leading users to believe that they are exploring more than they objectively are.
Moreover, users also experienced an increased tendency to focus on details, directly contradicting
the previous observation. This dual observation of both increased exploration and focus was found
during low temporally complex videos, as users reported that the static behaviour of the camera
enabled them to both explore the background elements more extensively, as well as allowed for
them to focus on the visually rich details of a specific area. These findings suggest that the user
navigates the spatially complex virtual 360-degree environment in nuanced ways. The enhanced
level of detail could lead to more exploratory behaviour for some users, while others might adopt
a more focused gaze. A similar contradiction was found in less spatially complex environments,
as the users’ active disengagement (i.e., sense of boredom) elicited an increased search for more
engaging visual attributes, counterbalancing the hypothesised decrease in gaze distribution due
to low spatial image complexity. This adaptive gaze behaviour could result in an insignificant
average effect and strongly supports the before-mentioned notion that cognitive load overrides the
independent effect of spatial complexity on gaze behaviour. These findings furthermore highlight
the relevance of taking into account spatial image complexity, as it, in conjunction with temporal
image complexity, results in various distinct behavioural tendencies.

On the other hand, subjective perceptions of the impact of temporal image complexity were in
line with the objective findings as users experienced an increased difficulty orienting and under-
standing the virtual layout during temporally complex 360-degree videos. The subjective findings
reflect the significant negative relationship found between temporal image complexity and degree
of gaze distribution, suggesting that the rapid visual changes in adjacent frames forces users to
focus on the movement to maintain spatial orientation, limiting gaze exploration and reducing
risk of cybersickness [2, 121, 207, 267]. This finding also strongly validates the statistically sig-
nificant confounding influence of spatial awareness on the degree of gaze distribution. Notably,
despite the controllable POV during the 360-degree video interaction, the temporal complexity in
the 360-degree video still resulted in a narrower focus, seemingly rendering the additional degree
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of freedom obsolete. The combined risk of potentially missing out content with rapidly changing
visual information significantly enhances cognitive load, resulting in less demanding behavioural
consequences in order regulate cognitive processing [262, 281, 313]. This observation can also be
attributed to the theoretical underpinnings of event segmentation theory, the cognitive process of
breaking information into meaningful and comprehensive events [28, 175, 197, 272]. In addition,
the higher temporal complexity also evoked a sense of anticipation which made users feel more
absorbed in the action, especially in objective-based videos.

The subjective influence of seating type also aligns with the significant effect of usability context
on gaze behaviour as users found the rotating chair to facilitate more exploratory behaviour and
camera-tracking, while the fixed-position chair limited this ability. This subjective perception
explains the higher degree of gaze distribution found among users utilising the rotating chair
compared to the users utilising the fixed chair. However, it is important to note that users might
not be fully aware of the extent to which their physical context (i.e., their ability to move and
look around) impacts their gaze behaviour.

The subjective user experiences provided deeper insights into the users’ self-perception of gaze
behaviour, distinctly highlighting the various behavioural tendencies and patterns depending on
the level of complexity of spatiotemporal dimensions. The behavioural tendencies support the
previous observation that specific configurations of spatial- and temporal image complexity in
360-degree videos elicit specific patterns in gaze distribution, as evinced by the three-dimensional
surface plots in Figures 31 and 32. The surface plots display repeated patterns of periodic increase
and decrease in gaze distribution, indicated by parallel slopes and ridges in the surface plots. The
insights from the subjective user experiences suggest that the repeated and periodic patterns
in gaze behaviour could be attributed to the perceptual implications of specific spatiotemporal
configurations, emphasising the pivotal role of underlying subjective perceptions in facilitating
adaptive gaze behaviour.

The integration of both quantitative and qualitative research methodologies enabled the iden-
tification of a substantial dichotomy between objective gaze data and subjective user experiences,
often found between computational saliency models and actual gaze behaviours [86, 99, 116, 237].
The subjective findings enabled the identification of key behavioural trends, such as adaptive gaze
behaviour, interest-and anticipation-driven engagement, objective-focused behaviour, active dis-
engagement and augmented sense of presence, providing valuable insights on the emergence of
specific gaze patterns. In particular, as they elucidate the complex cognitive processes involved in
the experienced sense of immersion in VR environments. Furthermore, the subjective experiences
aid in contextualising the objective findings as they reveal the nuances in behavioural responses
not immediately evident from the objective gaze data. In addition, the subjective findings also
facilitating a better understanding of the insignificant independent effect of spatial complexity and
significant negative impact of temporal complexity on gaze behaviour on the level of cognitive per-
ception. The insights gathered from the subjective experiences also enabled a better understanding
in the intricate and complex patterns found in the three-dimensional surface plots, as the users
unconsciously adapt their gaze depending on the specific configurations of spatial- and temporal
complexity in the 360-degree video sequence as well as their subjective experiences and percep-
tions. These findings provide a holistic understanding of the user interaction, emphasising on how
perception contributes to the complex gaze dynamics elicited by spatiotemporal complexities in
360-degree video sequences in VR.

Retrospective: Understanding Gaze Dynamics in VR through Spati-
otemporal Image Complexity, Cognition and Usability Context
In retrospect, the research presented in this thesis discerns the extent to which spatiotemporal
image complexity of a 360-degree video sequence in VR influences gaze behaviour within the
multifaceted interaction model, while factoring in the complex dynamics of cognitive perceptions
and usability context. This work predominantly focused on the behavioural consequences imposed
by spatiotemporal image complexity, as representative dimensions of space and time, of 360-
degree video sequences in VR. As such, this content-aware approach bridges the dichotomous
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state of current research. It shifts the predominant focus on the technical limitations of 360-
degree video interaction in VR, and instead signifies 360-degree video content as an autonomous
and independent factor in the interaction process.

The findings revealed an intricate and complex relationship between spatial- and temporal im-
age complexities and gaze behaviour. Temporal image complexity exhibited a significant negative
effect on gaze behaviour, indicating that rapidly changing visual information over time leads to
a more narrow and concentrated focus of gaze. However, spatial image complexity was found to
not significantly affect gaze behaviour, implying that the visual richness and level of detail of the
360-degree video alone does not inherently increase the user’s extent of gaze exploration. In addi-
tion, the findings attributed this lack of independent effect of spatial complexity to confounding
factors of usability context and cognitive load.

This implication was supported by the qualitative analysis, as the increased cognitive efforts
involved in processing the richness of a more spatially complex environment resulted in users sub-
jectively reporting higher levels of exploration than was objectively measured. The integration
of both quantitative and qualitative methodologies enabled the identification of this substantial
dichotomy between objective gaze data and subjective user experiences, highlighting the substan-
tial cognitive influence involved in the sense of immersion in VR environments and 360-degree
video interaction. While spatial image complexity did not significantly impact gaze behaviour
independently, it did impose a perceptual impact on the users’ gaze behaviour. Its interaction
with temporal complexity generates intricate patterns in gaze behaviour, emphasising the import-
ance of considering both dimensions of spatiotemporal image complexity in 360-degree video user
interaction. Furthermore, the subjective findings provided additional insights into the negative
correlation between temporal complexity and gaze behaviour, aligning with the objective findings.
The users’ difficulty in maintaining spatial orientation during the rapid visual changes associ-
ated with a temporally complex 360-degree video reflects the observed significant negative effect
of temporal image complexity, as well as the observed significant independent effect of spatial
awareness.

As such, the deployed research methodology enabled the exploration of behavioural tendencies
that not only validate the objective observations, but also elucidated the underlying cognitive
processes that shape gaze behaviour. Most notably, the users’ adaptive gaze behaviour, which
is guided by their interest, sense of presence, anticipation, and immersion, highlights how users
navigate the spatiotemporally complex virtual environments on a cognitive level.

Furthermore, the findings reveal that the complex and non-linear interactions between spatial-
and temporal image complexities elicit discrepancies in the gaze patterns, further moderated by
usability context such as seating types. As such, it was found that the specific usability context
(i.e., seating types), in which the user watches the 360-degree video, significantly impacts gaze
behaviour. Additionally, a more extensive gaze distribution was observed among users utilising
a rotating chair as opposed to users utilising fixed-position chairs. Moreover, a variability in the
effect of spatiotemporal complexity on gaze behaviour was observed across the seating types, as
usability context moderates the independent effects of either spatial- and temporal image com-
plexity. Specifically, when utilising a fixed chair, spatial image complexity exhibits a significant
independent effect, whereas temporal image complexity does not. In contrast, when utilising
the rotating chair, only temporal image complexity significantly impacts gaze behaviour. These
findings suggest that the influence of spatial image complexity is inherently dependent on the
users ability to navigate the spatially complex environment and underlying cognitive influences,
mitigating the overall impact thereof.

The employment of oculesics and image segmentation techniques, derived from the field of
computer vision, played an integral part in the quantification of gaze patterns and execution of
the analyses. The formulation of the quadrifactorial exploration index Nψ, which captures not only
the extent and intensity of gaze but also the variability and randomness of gaze patterns, provided a
reliable approach to quantify the degree of gaze distribution found in attentional heatmap imagery.
Moreover, the versatility of the novel metric facilitated the detection and assessment of confounding
influences from the domains of cognitive science and film theory, ensuring a higher degree of
internal validity. The index facilitated a comprehensive diegetic assessment, which introduced
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another novel metric δ, in which the confounding influence of diegetic artefacts on gaze behaviour
was assessed. In addition, the versatility of the index furthermore detected the significant impact
of specific perceptual attributes such as spatial awareness and quality of experience (QoE) on gaze
distribution.

In conclusion, this thesis provides a significant and comprehensive understanding of gaze dy-
namics during 360-degree video interactions in VR. By quantifying the 360-degree video content
in terms of its spatiotemporal image complexity, the properties of the content were represented
in distinct dimensions of space and time, ensuring a higher external validity. The employment
of computer vision techniques, oculesics and both quantitative and qualitative research methodo-
logies revealed the nuanced interplay of confounding cognitive perceptions, usability context and
cinematography in shaping gaze behaviour. The findings emphasise the importance of the 360-
degree content’s autonomous role in the user interaction process, and reinvigorates the significant
contribution of content-aware approaches to modern research. The insights derived from this
work holds significant implications for advancing not only advancing theoretical research within
the field, but also the practical applications related to the development of immersive 360-degree
environments in VR.

6.1 Implications for Theory
One of the most profound theoretical implications of this work is related to the significance of
spatiotemporal image complexity on gaze behaviour. The work highlights the importance of a
content-aware, interdisciplinary approach and reveals the complex influences of spatiotemporal
image complexity, usability, cinematography and cognitive perceptions. The significant effect of
content, as an autonomous and independent factor in the interaction process, signifies the import-
ance of content-specific theoretical frameworks that encompass the intricacies of 360-degree video
interactions [9, 90, 132, 151]. In addition, this work also emphasises the significance of contex-
tual factors, such as different seating types, in influencing gaze behaviour during 360-degree video
content in VR. It demonstrates significant role of physical and environmental contexts within
the multifaceted interaction process. Moreover, the demonstrated contrast between objective
gaze behaviour and subjective perception thereof adds to the understanding of the complex rela-
tionship between cognition and behaviour. This reciprocal relationship, where cognition shapes
user behaviour and user behaviour informs cognition – through the use of different physical and
environmental contexts – emphasises the relevance of comprehensive theoretical frameworks that
encompass both behavioural responses and cognitive processes. This not only reduces saliency bias
and optimises visual attention modelling, but furthermore provides a multifaceted understanding
of the observed behavioural responses and gaze dynamics in VR. In addition, the insights gathered
on the significant influence of temporally complex 360-degree video carries significant implications
for the challenges of bit-rate variability in temporally complex videos, as implied by Afzal et al.
(2017) [2].

As before-mentioned, the implications for the use of the index transcends the scope of this thesis
as it is a universally adaptable tool for gaze behaviour analysis, applicable to any heatmap image
signal. Specifically in the field of human-computer interaction and cognitive science, the index
reduces saliency-bias by providing a more accurate representation of a user’s visual attention and
fixation patterns [217, 358, 359]. As such, the index can contribute significantly to the enhancement
of foveated rendering techniques and could be instrumental in addressing the challenges of viewport
prediction in VR research [39, 101, 145, 237, 360]. Furthermore, the technical advancements that
could be made in foveated rendering techniques and viewport prediction ensure higher sensorimotor
contingencies, which aids in restoring any potential disruption of place and plausibility illusion
[108, 227, 294, 297]. As such, the implications extend to practical applications as well to ensure
more more immersive and engaging virtual 360-degree environments. The practical implications
of this thesis are discussed in § 6.2.

Furthermore, the quadrifactorial exploration index Nψ could be employed within the field of
machine learning and utilised for artificial intelligence applications that focus on image recognition
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and computer vision, as the index can be utilised to improve model prediction to better capture
human visual attention. As such, this thesis demonstrates the efficacy of integrating various related
domains, such as computer vision, human-computer interaction, cognitive science and film studies,
into a singular holistic approach.

This work also contributes to instrumentation within the field of human-computer interaction.
A key contribution from this thesis is the novel formulation of the quadrifactorial exploration index
Nψ. The index enables a more advanced and comprehensive understanding of gaze behaviour in
virtual 360-degree environments. As opposed to traditional gaze metrics, predominantly focused on
the duration and location of fixations, the quadrifactorial exploration index utilises the heatmap
imagery as extracted from advanced eye-tracking software. The provision and development of
a singular Python script (see Appendix B10), which integrates and implements various image
segmentation techniques, enhances accessibility to conducting research within the field of oculesics.
The index enhances the interpretation and application of heatmaps in eye-tracking studies and
provides a quantitative interpretive framework, reducing the technical barrier and elevating the
field.

Moreover, this thesis introduced an initial quantification methodology to measure the influ-
ence of diegesis on user attention. The novel metric δ represents the presence of visual artefacts
that are inherent to the internal story- or scene structure of the 360-degree video sequence, based
on visual size and duration. Coupled with the quadrifactorial exploration index Nψ, this work
provides an initial understanding of how the narrative mechanisms in 360-degree video sequences
guide user attention in VR. The diegetic assessment revealed the confounding influence of cine-
matographic principles on shaping gaze behaviour. The initial insights on the behavioural impact
of diegesis could motivate further research into the complex dynamics of cinematography and
human-computer interaction. It informs cinematographers and researchers within the field of film
studies on the significant behavioural impact of internal story- or scene elements on users in VR.
Moreover, the use of manual annotation in the current methodology necessitates the development
of an apt computer vision-based framework capable of modelling the specific cinematographic
visual influences more accurately. As a result, a real-time diegetic assessment could be realised
and the framework could provide more nuanced assessments, not solely focusing on the influence
of diegesis but take other cinematographic principles into account. Such a framework could en-
courage more interdisciplinary collaboration between the fields of human-computer interaction,
computer science, cognitive science and film theory.

Ultimately, this work emphasises the importance of content-aware and interdisciplinary ap-
proaches in VR- and 360-degree research, and introduces instrumental tools such as the quadri-
factorial exploration index Nψ and the diegetic metric δ. This thesis provides a comprehensive
understanding of the interplay of content, usability and cognition to elicit behavioural gaze re-
sponses. As such, it carries a multitude of implications that could set new theoretical directions
in VR research. Interesting possibilities for future research, based on this thesis, are discussed in
§ 6.4.

6.2 Implications for Practice
The findings and insights derived from this thesis carry significant implications for practical applic-
ations in the various related domains. One of the most prominent contributions of this work lies
in the development and creation of 360-degree video content in VR, as the use of spatiotemporal
image complexity to quantify 360-degree content is not limited to the specific videos used in this
research, but is applicable to any 360-degree video sequence. The demonstrated significant role
of spatiotemporal image complexity on gaze dynamics can be utilised to improve user attention
guidance. The discerned negative correlation of temporal image complexity with gaze behaviour
can be employed in the design of videos that effectively direct attention, as the users tend to
concentrate their focus when viewing rapidly changing visual information such as fast camera
motions. Omnidirectional video content developers ought to take into account this information
during development, as users tend to be less exploratory in temporally complex environments.
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Moreover, this work demonstrated that spatial image complexity does not significantly impact
gaze behaviour as an independent factor, implying the cautious consideration of spatially complex
environments since an increase in exploration is not guaranteed. Importantly, employing more
spatially complex environments could potentially be detrimental to the overall user experience,
due to the increased cognitive load. As such, this finding could potentially reshape the design
and composition of spatially complex virtual environments. Another significant contribution of
this work was the demonstration of the significance and important role of usability context, as the
findings illustrate the interaction effects between using a different seating type and the impact of
spatiotemporal image complexity. These findings were utilised to devise a set design principles for
360-degree content development and creation, which are presented in § 6.2.1.

Moreover, the practical implications transcend beyond the scope of this thesis as professionals
can utilise these insights into how users interact with the virtual 360-degree environment and
use it to optimise the design of virtual environments aimed at impacting the users sense of pres-
ence and immersion. As such, this work carries substantial implications for other domain-specific
applications aside from 360-degree video content creation and development as well. Despite enter-
tainment and gaming being the most popular domains, the use of 360-degree video also becomes
more prominent in other domains, such as education, telepresence and infotainment [343, 351].
Omnidirectional video is currently utilised within a range of different domains. As identified
by Pirker et al. (2021), the vast majority of 360-degree video is applied in medicine healthcare
(28.1%), 20.3% is used in STEM subject, 7.8% is in engineering and 4.7% is in computer science
[244, 362]. Geology, history and social studies and general education adds up to 18.8% of 360-
degree video application. Additionally, the use of 360-degree video in career training and teacher
education accumulates to approximately 9.3%.

Specifically, in the domain of education, 360-degree videos could enhance the learning process,
leading to increased levels of performance, motivation and knowledge retention [160, 244, 259]. As
such, the findings of this thesis could be utilised the tailor the presentation of information and
guide the user’s attention to specific information. For instance, these insights could lead to a more
optimised design of virtual classrooms, which present the information in the most optimal way.
Similarly, when employed in the field of healthcare, could lead to more effective and beneficial
therapy sessions by designing more immersive experiences. In particular, the findings could be
used to control where patients look and help manage the exposure to triggering content in exposure
therapy for PTSD or phobias.

Moreover, this work adds to the overall understanding how users interact with virtual 360-
degree environments, which could inform the development of more immersive and engaging virtual
reality experiences in the field of gaming and entertainment. As such, it could lead to enhancement
of existing instructional guides for storytelling in virtual reality such as "The Storyteller’s Guide
to the Virtual Reality Audience" or other comparable (frame)works [43, 66, 84, 89, 139, 353].

6.2.1 Set of Design Principles
Utilising the findings of this thesis, a set of design principles was devised to provide actionable
insights for the creation of 360-degree content development and creation. The design principles
emphasise the role of both temporal- and spatial complexity, as well as usability context, spatial
awareness, quality of experience and cognitive load. Most importantly, the principles can be
utilised to adhere to the director’s intent: ensuring the visual information is conveyed to the users
as intended [223, 262]. The design principles provide a comprehensive understanding on how the
director can regulate the visual elements of a 360-degree scene and adjust the visual properties to
facilitate a more salient area in the preferred direction [99, 118].

• Guide user attention through temporal complexity; the negative correlation between tem-
poral complexity and distribution of gaze behaviour can be exploited to both encourage
exploration of the 360-degree environment, as well increase the user’s focus on specific areas.
The exploration of 360-degree of content can be encouraged by limiting the amount of visual
change happening over time, such as camera motion and scene changes. On the other hand,
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by increasing the temporal complexity of a 360-degree video sequence, the user’s gaze will be
more concentrated and centred. This principle can be utilised to increase focus on specific
area’s of visual information.

• Regulate spatial complexity to mitigate (cognitive) overload; the non-significant independ-
ent impact of spatial image complexity on gaze behaviour emphasises the need to cautiously
regulate and balance 360-degree video scenes, as gaze exploration is not merely encouraged
by enhancing the scenes with more visual details. The identified dichotomy between object-
ive and subjective gaze behaviour also emphasises the cautious regulation of spatial image
complexity, as users already feel that they explore more than they objectively do in spatially
complex virtual 360-degree environments. However, it’s important not to underestimate the
importance of spatial complexity, as in conjunction with usability, physical, environmental
and cognitive factors, spatial complexity does leverage a certain effect on gaze distribution.
For instance, in case of viewing both scenery and video game 360-degree video sequences:
despite the less spatially complex environment of the computer-generated video game graph-
ics, underlying preference and user interest may still result in an unexpected increase in gaze
exploration. Therefore, it is important to focus on the interplay between spatial complexity,
usability context and cognitive load to optimise user engagement.

• Tailoring usability context to accommodate user behaviour; the significant impact of a spe-
cific seating type on gaze behaviour can be utilised to encourage or guide user attention.
Specifically, rotating chairs can be utilised to enable and encourage users to explore more of
the virtual 360-degree environment. In contrast, a fixed-position chair could be utilised to
limit the users range of motion and to realise a higher degree of focus on specific AOIs. As
such, different usability contexts can be utilised to evoke specific user behaviour. Moreover,
the independent influence of spatial image complexity is moderated by different usability
contexts. For example, when utilising a fixed chair, increasing spatial complexity could
encourage more gaze exploration.

• Facilitating higher spatial awareness and QoE; the significant effect of spatial awareness and
quality of experience on gaze behaviour could be exploited to encourage more exploratory
behaviour. For instance, the use of visual cues to guide users through the virtual 360-degree
environment could be used to create content that enhances spatial awareness. Similarly, user-
friendly interfaces and high-quality graphics could generate a higher quality of experience
among users. As such, by taking into account the factors of spatial awareness and QoE,
these techniques could aid in encouraging more exploratory gaze behaviour.

The research, as presented in this thesis, provides insights into optimising 360-degree content in
VR, emphasising the intricate impact of spatiotemporal image complexity, cognition, and usability
context on shaping gaze behaviour. The devised set of design principles can be utilised to guide
the development of 360-degree videos and in the design of more immersive and engaging virtual
360-degree environments. As such, the practical implications apply significantly within the field
of human-computer interaction and resonate to a range of application domains such as education,
health care, entertainment, engineering, marketing, cognition and cinematography.

6.3 Limitations
The multifaceted research methodology introduced aided in discerning the extent of which spa-
tiotemporal image complexity of a 360-degree video sequence in VR influences gaze dynamics.
However, in the context of interpreting the results, it is important to acknowledge the limitations
of the employed methodologies and novel metrics of this thesis.

One of the most notable limitations of this thesis is regarding the novel methodological chal-
lenges. The quadrifactorial exploration index Nψ, as introduced in this work, remains a novel
instrument to quantify gaze patterns based on heatmap image signals from advanced eye-tracking
software. Despite the assessment of its reliability in § 3.4, the overall adaptability and external
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validity of the metric is still irresolute due to its novel nature. Moreover, its novel nature means
its sensitive to biases and oversights. In addition, the use of MS-SSIM depends on high quality
image signals, which should be considered in the adoption of the index in future studies. Simil-
arly, the dimensions chosen for the diegetic assessment coding scheme were arbitrary. While the
examination of the association between diegetic artefacts and gaze distribution was exploratory
in nature, the use of visual size and duration to quantify the presence of diegetic artefacts might
not be sufficient for larger scale and in-depth diegetic analyses, as it does not take into account
the nuances of VR cinematography.

Furthermore, the subjective evaluations were conducted after the viewing session of all six 360-
degree video sequences to omit the need for users to switch between virtual reality and real-life.
This methodology heavily relies on the user’s ability to recall experiences, and also prevented any
video-specific subjective evaluations. As implied by McCarthy et al. (2004), this stimulated recall
presents limitations to the interpretation, specifically in situations of intense cognitive activity as
it might not reflect the exact nature of the experience [93, 205]. In addition, the employment
of the M-ACR methodology to measure the QoE for each participant across all six 360-degree
videos introduces potential bias. Given that the user was exposed to a short fragment of each
utilised 360-degree video beforehand, there was a risk of priming that may have influenced their
subsequent interaction and evaluation. Furthermore, cautious interpretation is advised in terms of
model performance and interpretation of the results, as some of the statistical assumptions were
not met. The statistical model’s performance did also rely on the level of independent variables,
indicating a need for additional non-linear models to better assess the goodness of fit.

Another limitation of this thesis relates to the database of the selected 360-degree videos. While
the content was carefully filtered and selected, as detailed in § 2.2.3, the use of self-produced 360-
degree content would have enabled a more controlled examination of the influence of specific spati-
otemporal image complexities and configurations. Moreover, despite their efficiency in providing a
sufficient coverage of the spatiotemporal matrix (Figure 4), it is important to emphasise that genre
and camera motion should be considered basic indicators. This method might be oversimplified
for spatiotemporal indication and filtering of 360-degree video databases based on spatiotemporal
image complexity.

Lastly, the use of the purposive sampling method introduces potential selection bias and could
limit the external validity of the results. Additionally, the research design did not take into
account any cultural or demographic differences, remaining predominantly focused on the level of
experience with VR. Moreover, the individual differences, such as different experiences with VR
and susceptibility to motion sickness could result in varied gaze behaviour. Despite the efforts
made to mitigate the risk of cybersickness or physical discomfort, by the implementation of a
separate pre-test parameter study (see § 2.1.1) and selective sampling, the potential of such risks
occurring during the experimental procedure still remains.

In conclusion, the discussed limitations emphasise the areas of consideration and provides a
context in which the findings of this thesis can be interpreted. The detailed limitations also present
opportunities for refinement and potential directions for future research.

6.4 Future Research
The research findings and implications from this thesis contribute various insights to the field,
as well as a comprehensive understanding of the impact of 360-degree content as an independent
factor in the VR user interaction process. This section discusses the potential directions for fu-
ture research, building on the findings and presented limitations of this work. In particular, this
section discusses future research in the variability of spatiotemporal image complexities, the diver-
sification of usability contexts, employment of longitudinal studies, in-depth examinations of the
cinematographic and cognitive influences and the enhancement of the quadrifactorial exploration
index.

This research utilised a specific set of six 360-degree videos, which varied in spatiotemporal
image complexity, representing sufficient coverage of the spatiotemporal matrix. However, fu-
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ture research could expand the analysis by examining the gaze dynamics by leveraging additional
spatiotemporal image complexities. By increasing the variability of spatiotemporal image com-
plexities, the gaze dynamics could be more accurately analysed, mapping the nuances of gaze
behaviour across more spatiotemporal configurations and exceeding the specific spatial- and tem-
poral complexity value-ranges of this work. In addition, building upon the work by Cui et al.
(2021) which illustrated correlations between variations in spatiotemporal complexity and specific
genre-characteristics, future research could exploit the spatiotemporal matrix to devise a compre-
hensive framework which systematically catalogues particular spatiotemporal configurations with
respective genre-characteristics [72, 172, 290].

The significant influence of usability context on the effect of spatial- and temporal image com-
plexity on gaze behaviour also presents interesting possibilities for future research. In particular,
the nuanced influence of spatially complex virtual 360-degree environments could be further ex-
amined by focusing on elucidating the intricacies between various spatially complex environments
such as natural landscapes or computer-generated graphics. By examining how differences in
spatial complexities influence gaze patterns, a more comprehensive understanding on the variable
significant influence of spatial image complexity on gaze behaviour could be provided. Further-
more, the different usability contexts in this research were represented by two seating types:
rotating and fixed-position. Expanding the usability context to involve physical movement, such
as walking, can provide valuable insights. This presents research opportunities in diversifying the
current study parameters, such as taking varying age groups and multi-modal output devices into
consideration.

Since the research conducted in this thesis was a cross-sectional study, it could be very inter-
esting for future research to conduct longitudinal studies. Specifically, longitudinal studies could
focus on the learning and technology adaptation processes in repeated 360-degree viewing sessions
in VR, examining how gaze dynamics vary over multiple sessions [133, 146, 229, 335]. Adding
to this, future research could study in-depth the effects of cognitive fatigue and deploy different
strategies to mitigate this fatigue and maintain engagement in longer-length VR viewing sessions.
The influence of cognitive perception in this research also presents other potential research op-
portunities, as future research could try to better understand the underlying cognitive influences
on gaze patterns. In particular, this could help elucidate the observed non-significant impact of
the level of engagement as well as the negative association between QoE and gaze behaviour,
which are in stark contrast with theoretical indications [205, 230, 376]. In addition, future studies
could focus on how gaze dynamics are impacted by user fatigue when exposed to longer-length
360-degree videos, extending beyond the maximum 60 seconds duration of each 360-degree video
in this research. Another interesting research direction could be to implement rewatchability in
the study, similar to the work by Singla et al. (2017) [290]. Consequently, the longevity of the
effect size of specific spatiotemporal complexities on gaze dynamics over repeated viewing sessions
could be examined. In particular, how the effect size increases or decreases when users are more
familiarised with the content.

Lastly, this work introduced the novel metric Nψ, the quadrifactorial exploration index, which
was instrumental in the quantification of gaze patterns in VR. By utilising image segmentation
techniques and data-driven approaches, the index proved a reliable and elegant metric to represent
the degree of gaze distribution based on heatmap image signals extracted from advanced eye-
tracking software. Future research can exploit this metric with further refinement and by studying
its adaptability to different research contexts, as it has already demonstrated its potential in
quantifying gaze behaviour in VR. The novel nature of the metric enables future research to further
iterate its formulation, providing a range of potential future research direction. For instance,
the metric could be augmented by utilising it in conjunction with advanced computer vision
techniques for automatic 360-degree scene analysis. By automatically extracting features from
the 360-degree video frames, such as colour, texture, edges, or other visually salient elements, the
index could be utilised to examine the gaze dynamics more in-depth and take into account even
more complex narrative- and scene structures. Additionally, the index could be integrated with
complementary physiological measures such as EEG signals and heart rate. Furthermore, neural
networks could be utilised to analyse and improve model predictions on gaze behaviour based
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on the respective spatiotemporal image complexities of 360-degree video content. Aside from the
multi-modal integration and deep learning possibilities, future research should predominantly focus
on the improvement of the metric due to its relatively novel nature. By studying the variability of
the index more in-depth, across a larger sample size and additional respective spatiotemporal image
complexities, the quadrifactorial exploration index Nψ could become even more comprehensive
and versatile in capturing the complexity of gaze behaviour patterns during 360-degree video
interactions.
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Conclusion

Over recent decades, virtual reality technology has significantly transformed the domain of inter-
active virtual experiences, shifting the paradigms of human-computer interaction. The emergence
and ongoing commercialisation of 360-degree video technology, coupled with the substantial ad-
vances of multi-modal interaction methods, has presented an intriguingly diverse field of study.
Motivated by its relative under-representation within the existing body of literature, in which re-
search on the 360-degree interaction process resides within the boundaries of technical limitations,
this work elucidated the pivotal role of 360-degree content as an independent factor within the
interaction model. This thesis studied the 360-degree video sequence in terms of its spatiotemporal
image complexity, as quantifiable representations of the content in dimensions of space and time,
where the spatial complexity denotes the visual richness of the 360-degree video sequence and the
temporal complexity reflects the change in visual information over time.

The primary research objective was to discern the influence of spatiotemporal image complex-
ity on gaze behaviour in VR, while factoring in the complex dynamics of cognitive perceptions and
usability context. A content-aware and user-centric approach was adopted, further enhanced with
theoretical insights from the related fields of cognitive science, computer vision and film studies.
This holistic approach, bridging both theoretical foundations and practical applications, integ-
rated advanced methodologies from the field of computer vision, oculesics, and human-computer
interaction to examine the autonomous and independent role of 360-degree video sequences within
the multifaceted interaction model.

As such, this thesis employed physiological HMD eye-tracking, objective computer vision tech-
niques, and subjective evaluations to reveal the significance of spatiotemporal complexity on gaze
dynamics in VR. Despite theoretical implications, spatial image complexity demonstrated a nu-
anced interaction effect, primarily governed by underlying cognitive influences as highlighted by
the observed dichotomy between objective gaze data and subjective experiences. The temporal
complexity of a 360-degree video sequence emerged as a significant factor, negatively impacting
the extent of user gaze. The usability context, as assessed through different seating types, further
modulated these effects.

Instrumental to this thesis was the formulation and introduction of the novel quadrifactorial
exploration index Nψ, a measure of the degree of gaze distribution during the 360-degree video in-
teraction. The index elegantly integrates image segmentation techniques from the field of computer
vision with gaze distribution heatmap imagery, acquired from advanced eye-tracking software, to
quantify complex gaze patterns. The index encapsulates the spatial extent, concentration, diversity
and randomness of gaze distribution patterns, transforming traditional eye-tracking heatmaps into
a quantifiable, multi-dimensional perspective of gaze behaviour and alleviates the need for sub-
jective interpretations. In addition, grounded by the theoretical significance of cinematographic
influence, this work also provided an initial framework – symbolised by δ – for examining the
confounding influence of diegetic artefacts in 360-degree video sequences on gaze behaviour.

In conclusion, this work contributes to the field of VR research by providing a comprehensive
understanding of the pivotal role of 360-degree content within the multi-dimensional interaction
process. By employing spatiotemporal image complexity, this thesis elucidates the autonomous and
independent influence of 360-degree content on eliciting specific gaze patterns. Evaluated against
the backdrop of cognitive and cinematographic influences, as well as across usability contexts, the
findings not only highlight the complex interplay of content-specific attributes, cognition, usability
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and gaze dynamics in VR, but also reveal the potentiality of integrating oculesics and computer
vision.

The theoretical and practical implications from this work provide a substantiated framework
for the development and optimisation of immersive 360-degree videos and virtual environments.
Additionally, they offer actionable insights into tailored strategies that exploit the dynamics of
spatiotemporal image complexity to effectively guide user attention. By emphasising the intricate
dynamics of content-specific attributes, cognitive perceptions, and usability contexts, this work
revealed the interdisciplinary research possibilities of content-aware approaches, as well as sets a
precedent for exploring the unique properties of 360-degree video content within the domain.
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Appendices

The research as conducted in this thesis utilised a variety of methodologies, material and data-
sets. Relevant content and supporting materials, such as developed Python scripts, advanced
eye-tracking imagery, documentation, utilised questionnaires and other complementary material
is presented in the subsequent appendices. The appendices were referenced accordingly within
this thesis to ensure comprehensiveness and conciseness. This addendum is structured as follows:

• Appendix A: Eye-Tracking Data Appendix, presented on page 171.

• Appendix B: Python Repository, presented on page 175.

• Appendix C: Ethics and Privacy Quick Scan, presented on page 187.

• Appendix D: Sampling Correspondence, presented on page 193.

• Appendix E: Information and Consent, presented on page 197.

• Appendix F: Questionnaires, presented on page 205.

It is important to note that each of the above appendices contain one or more sub-appendices.
The specificity of which are detailed separately per Appendix.





Appendix A

Eye-Tracking Data Appendix

This Appendix comprises the resulting dataset containing the computed values of Nψ (degree of
gaze distribution) across all participants. Furthermore, the aggregate gaze distribution heatmaps
for each of the utilised 360-degree videos are presented, as well as the aggregate gaze heatmaps
per group. This Appendix is structured as follows:

• Appendix A1: Dataset of Nψ, presented on page 172.

• Appendix A2: Aggregate Gaze Distribution Heatmaps, presented on page 173.

• Appendix A3: Aggregate Gaze Distribution Heatmaps (Per Group), presented on page 174.

Important: the aggregate heatmaps were generated based on the cumulative eye-tracking data
of the corresponding groups (i.e., all users, group R and group F). As such, the aggregate heatmaps
provide an initial indication of overall exploration, but do not represent mean µ degrees of gaze
distribution nor do they contain the nuances of individual computation. Thereby, the individual
computations of Nψ per participant for each of the 360-degree videos is detailed in Table A.1.
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A1 Dataset of Nψ

Degree of Gaze Distribution Nψ

A1 A2 B1 B2 C1 C2
R1 .272 .122 .190 .086 .219 .109
R2 .223 .132 .106 .064 .175 .216
R3 .209 .158 .198 .198 .199 .189
R4 .327 .175 .199 .143 .162 .145
R5 .209 .158 .198 .198 .199 .189
R6 .209 .158 .198 .198 .199 .189
R7 .251 .149 .190 .075 .215 .185
R8 .236 .083 .291 .096 .181 .134
R9 .144 .141 .158 .128 .255 .174
R10 .255 .142 .175 .182 .206 .145
R11 .185 .139 .216 .116 .212 .154
R12 .221 .086 .178 .116 .272 .181
R13 .227 .117 .161 .149 .177 .139
R14 .275 .140 .189 .122 .136 .189
R15 .195 .141 .181 .103 .176 .147
R16 .204 .134 .141 .093 .253 .151
R17 .211 .121 .163 .136 .144 .146
R18 .211 .115 .046 .050 .117 .127
R19 .293 .185 .245 .085 .226 .076
R20 .150 .111 .259 .060 .166 .168
R21 .211 .087 .216 .120 .209 .161
R22 .303 .137 .147 .185 .289 .132
R23 .180 .103 .095 .042 .146 .095
R24 .209 .104 .174 .101 .150 .115
R25 .226 .214 .255 .112 .156 .120
R26 .216 .070 .064 .054 .165 .110
F1 .071 .045 .047 .032 .074 .054
F2 .083 .057 .134 .082 .115 .079
F3 .141 .074 .090 .110 .051 .127
F4 .118 .062 .131 .060 .117 .095
F5 .153 .037 .12 .087 .126 .105
F6 .100 .093 .125 .072 .105 .088
F7 .167 .109 .130 .146 .165 .103
F8 .085 .069 .097 .114 .165 .066
F9 .111 .130 .124 .091 .141 .107
F10 .124 .179 .071 .079 .161 .104
F11 .116 .109 .078 .117 .179 .068
F12 .132 .141 .116 .083 .168 .091
F13 .112 .090 .077 .059 .146 .066
F14 .115 .121 .097 .095 .151 .072
F15 .115 .127 .144 .115 .168 .134
F16 .127 .171 .159 .147 .151 .103
F17 .187 .188 .105 .112 .198 .113
F18 .204 .143 .226 .124 .199 .147
F19 .175 .102 .175 .151 .158 .094
F20 .194 .134 .187 .105 .165 .134
F21 .147 .129 .224 .127 .153 .185
F22 .190 .093 .213 .091 .117 .091
F23 .159 .161 .238 .125 .190 .116
F24 .169 .150 .210 .163 .146 .127
F25 .216 .130 .163 .162 .192 .119
F26 .149 .125 .164 .087 .118 .081

Table A.1: Nψ Dataset
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A2 Aggregate Gaze Distribution Heatmaps

(a) A1: Nψ = .443 (b) A2: Nψ = .232 (c) B1: Nψ = .421

(d) B2: Nψ = .183 (e) C1: Nψ = .417 (f) C2: Nψ = .275

Figure A.1: Aggregate gaze distribution heatmaps.

(a) A1: Nψ = .443 (b) A2: Nψ = .232 (c) B1: Nψ = .421

(d) B2: Nψ = .183 (e) C1: Nψ = .417 (f) C2: Nψ = .275

Figure A.2: Aggregate gaze distribution heatmaps (projected).
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A3 Aggregate Gaze Distribution Heatmaps (Per
Group)

(a) A1: Nψ = .461 (b) A2: Nψ = .243 (c) B1: Nψ = .403

(d) B2: Nψ = .188 (e) C1: Nψ = .415 (f) C2: Nψ = .309

Figure A.3: Aggregate gaze distribution heatmaps (group R).

(a) A1: Nψ = .301 (b) A2: Nψ = .188 (c) B1: Nψ = .340

(d) B2: Nψ = .166 (e) C1: Nψ = .301 (f) C2: Nψ = .183

Figure A.4: Aggregate gaze distribution heatmaps (group F).
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Appendix B

Python Repository

This Appendix comprises the repository of written and devised Python scripts to conduct the
following computations: format conversion, image segmentation, image structure analyses, coding
and mathematical calculations. This Appendix is structured as follows:

• Appendix B4: EAC to ERP Conversion, presented on page 176.

• Appendix B5: Computation of Spatiotemporal Complexity, presented on page 177.

• Appendix B6: Multiplicative Index E1 of A and Inorm, presented on page 179.

• Appendix B7: MS-SSIM, presented on page 180.

• Appendix B8: Weighted Sum E2 of d and H(x)norm, presented on page 181.

• Appendix B9: Principal Component Analysis, presented on page 182.

• Appendix B10: Quadrifactorial Exploration Index Nψ, presented on page 183.

• Appendix B11: Diegetic Coding, presented on page 185.

The Python scripts provided in this repository are designed for execution within suitable
Python interpreters or development environments. It is important to note that the input and
output file paths in each script are replaced by placeholders to ensure readability. When running
the scripts, please take caution in substituting the correct file paths.
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B4 EAC to ERP Conversion
import cv2
import numpy as np
import sys

de f main ( i n p u t _ f i l e , o u t p u t _ f i l e ) :
cap = cv2 . VideoCapture ( i n p u t _ f i l e )
i f not cap . isOpened ( ) :

p r i n t ( f " Error : f i l e { i n p u t _ f i l e } not compatible " )
sys . e x i t (1 )

f p s = i n t ( cap . get ( cv2 .CAP_PROP_FPS) )
width = i n t ( cap . get ( cv2 .CAP_PROP_FRAME_WIDTH) )
he ight = i n t ( cap . get ( cv2 .CAP_PROP_FRAME_HEIGHT) )
f o u r c c = i n t ( cap . get ( cv2 .CAP_PROP_FOURCC) )

out = cv2 . VideoWriter ( output_f i l e , fourcc , fps , ( width , he ight // 2) )

whi l e cap . isOpened ( ) :
ret , frame = cap . read ( )
i f not r e t :

break

top = frame [ : he ight // 2 , : ]
bottom = frame [ he ight // 2 : , : ]
erp = cv2 . r e s i z e ( top , ( width , he ight // 2) ,
i n t e r p o l a t i o n=cv2 .INTER_CUBIC)
∗ 0 .5 + cv2 . r e s i z e ( bottom , ( width , he ight // 2) ,
i n t e r p o l a t i o n=cv2 .INTER_CUBIC) ∗ 0 .5

out . wr i t e ( erp . astype ( np . u int8 ) )

i f cv2 . waitKey (1) & 0xFF == ord ( ' q ' ) :
break

cap . r e l e a s e ( )
out . r e l e a s e ( )
cv2 . destroyAllWindows ( )

i f __name__ == "__main__" :
i f l en ( sys . argv ) != 3 :

p r i n t ( " python eac_to_erp . py i n p u t _ f i l e o u t p u t _ f i l e " )
sys . e x i t (1 )

i n p u t _ f i l e = sys . argv [ 1 ]
o u t p u t _ f i l e = sys . argv [ 2 ]
main ( i n p u t _ f i l e , o u t p u t _ f i l e )
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B5 Computation of Spatiotemporal Complexity

import cv2
import numpy as np
from tqdm . notebook import tqdm
import matp lo t l i b . pyplot as p l t

de f s o b e l _ f i l t e r ( frame ) :
grey_frame = cv2 . cvtColor ( frame , cv2 .COLOR_BGR2GRAY)
sobel_x = cv2 . Sobel ( grey_frame , cv2 .CV_64F, 1 , 0 , k s i z e =3)
sobel_y = cv2 . Sobel ( grey_frame , cv2 .CV_64F, 0 , 1 , k s i z e =3)
s o b e l = np . s q r t ( np . square ( sobel_x ) + np . square ( sobel_y ) )
re turn s o b e l

de f mot ion_di f f e rence_feature ( frame1 , frame2 ) :
grey_frame1 = cv2 . cvtColor ( frame1 , cv2 .COLOR_BGR2GRAY)
grey_frame2 = cv2 . cvtColor ( frame2 , cv2 .COLOR_BGR2GRAY)
mot ion_di f f e rence = np . abs ( grey_frame2 . astype ( np . in t16 )
− grey_frame1 . astype ( np . in t16 ) )
re turn mot ion_di f f e rence

de f c a l c u l a t e _ c o m p l e x i t i e s ( video_path ) :
cap = cv2 . VideoCapture ( video_path )
tota l_frames = i n t ( cap . get ( cv2 .CAP_PROP_FRAME_COUNT) )

ret , prev_frame = cap . read ( )

s i_va lues = [ ]
t i_va lue s = [ ]

f o r _ in tqdm( range (1 , tota l_frames ) , desc=f " Proce s s ing { video_path } " ) :
ret , frame = cap . read ( )

i f not r e t :
break

# S p a t i a l complexity
sobel_frame = s o b e l _ f i l t e r ( frame )
current_std_spat ia l = np . std ( sobel_frame )
s i_va lues . append ( current_std_spat ia l )

# Temporal complexity
motion_di f f = mot ion_di f f e rence_feature ( prev_frame , frame )
current_std_temporal = np . std ( motion_di f f )
t i_va lue s . append ( current_std_temporal )

prev_frame = frame

cap . r e l e a s e ( )

re turn np . array ( s i_va lues ) , np . array ( t i_va lue s )

de f plot_per_frame_complexit ies ( v ideo_complex i t i e s ) :
p l t . f i g u r e ( f i g s i z e =(12 , 6) )
p l t . t i t l e ( ' S p a t i a l and Temporal Complexity o f Videos ( Per Frame ) ' )

f o r video_name , ( s i_values , t i_va lue s ) in v ideo_complex i t i e s . i tems ( ) :
p l t . s c a t t e r ( s i_values , t i_values , l a b e l=video_name , marker= ' o ' ,
s =50, alpha =0.5)

p l t . x l a b e l ( ' S p a t i a l Complexity ( SI ) ' )
p l t . y l a b e l ( ' Temporal Complexity ( TI ) ' )
p l t . l egend ( )
p l t . g r i d ( True )
p l t . show ( )
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# Video p l o t s
f o r video_name , ( s i_values , t i_va lue s ) in v ideo_complex i t i e s . i tems ( ) :

p l t . f i g u r e ( f i g s i z e =(12 , 6) )
p l t . t i t l e ( f ' S p a t i a l and Temporal Complexity o f {video_name}
( Per Frame ) ' )

p l t . s c a t t e r ( s i_values , t i_values , l a b e l=video_name , marker= ' o ' ,
s =50, alpha =0.5)

p l t . x l a b e l ( ' S p a t i a l Complexity ( SI ) ' )
p l t . y l a b e l ( ' Temporal Complexity ( TI ) ' )
p l t . l egend ( )
p l t . g r i d ( True )
p l t . show ( )

video_paths = [
" /path/ to / video " ,

]

v ideo_complex i t i e s = {}

f o r video_path in video_paths :
video_name = video_path . s p l i t ( ' / ' ) [ −1]
s i_values , t i_va lues = c a l c u l a t e _ c o m p l e x i t i e s ( video_path )
v ideo_complex i t i e s [ video_name ] = ( s i_values , t i_va lues )
p r i n t ( f " {video_name } : " )
p r i n t ( " S p a t i a l Complexity ( SI ) : " , np . mean( s i_va lues ) )
p r i n t ( " Temporal Complexity ( TI ) : " , np . mean( t i_va lue s ) )
p r i n t ( )

p l o t_complex i t i e s ( v ideo_complex i t i e s )
plot_per_frame_complexit ies ( v ideo_complex i t i e s )
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B6 Multiplicative Index E1 of A and Inorm

import cv2
import numpy as np

de f area_intens i ty_index ( heatmap ) :

img = cv2 . imread ( heatmap )

# Greysca le
grey_img = cv2 . cvtColor ( img , cv2 .COLOR_BGR2GRAY)

t h r e s h o l d = 254

# Binary mask f o r non−white p i x e l s
non_white_mask = grey_img < t h r e s h o l d

# Weighted sum of non−white p i x e l i n t e n s i t i e s
weighted_sum = np . sum( grey_img [ non_white_mask ] )

non_white_pixels = non_white_mask . sum ( )
t o t a l _ p i x e l s = grey_img . s i z e

# Average i n t e n s i t y o f non−white p i x e l s
ave rage_intens i ty = weighted_sum / non_white_pixels i f non_white_pixels > 0

e l s e 0

area_coverage = non_white_pixels / t o t a l _ p i x e l s

E1 = ( area_coverage ∗ ( ave rage_intens i ty / 255) )

re turn E1

image_path = ' /path/ to /heatmapimage '
E1 = area_intens i ty_index ( heatmap )
p r i n t ( f " Area Ratio and Avg . I n t e n s i t y Index E1 : {E1 : . 2 f } " )
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B7 MS-SSIM
import cv2
import numpy as np
from skimage . met r i c s import s t r u c t u r a l _ s i m i l a r i t y as compare_ssim

de f ms_ssim ( img1 , img2 , max_val=255 , f i l t e r _ s i z e =11, f i l t e r _ s i g m a =1.5 , k1 =0.01 , k2
=0.03) :
weights = np . array ( [ 0 . 0 4 4 8 , 0 .2856 , 0 .3001 , 0 .2363 , 0 . 1 3 3 3 ] )

# Imgs to f l o a t s
img1 = img1 . astype ( np . f l o a t 6 4 )
img2 = img2 . astype ( np . f l o a t 6 4 )

# Downsampling
mssim_values = [ ]
f o r _ in range ( l en ( weights ) ) :

ss im = compare_ssim ( img1 , img2 , win_size=f i l t e r _ s i z e , sigma=f i l t e r _ s i g m a ,
data_range=max_val , use_sample_covariance=False ,
K1=k1 , K2=k2 , f u l l=True ) [ 0 ]

mssim_values . append ( ssim )

img1 = cv2 . r e s i z e ( img1 , (0 , 0) , fx =0.5 , fy =0.5)
img2 = cv2 . r e s i z e ( img2 , (0 , 0) , fx =0.5 , fy =0.5)

ms_ssim = np . prod ( np . power ( mssim_values , weights ) )

re turn ms_ssim

img1 = cv2 . imread ( " /path/ to /heatmapimage " , cv2 .IMREAD_GRAYSCALE)
img2 = cv2 . imread ( " /path/ to / r e f e r en ce ima ge " , cv2 .IMREAD_GRAYSCALE)

ms_ssim_value = ms_ssim ( img1 , img2 )
p r i n t ( "MS−SSIM : " , ms_ssim_value )
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B8 Weighted Sum E2 of d and H(x)norm
import cv2
import numpy as np

de f ca l cu la te_entropy ( image ) :
# Convert image to g r a y s c a l e
gray_image = cv2 . cvtColor ( image , cv2 .COLOR_BGR2GRAY)

# Histogram and n orm a l i s a t i on
h i s t = cv2 . c a l c H i s t ( [ gray_image ] , [ 0 ] , None , [ 2 5 6 ] , [ 0 , 2 5 6 ] )
h i s t /= h i s t . sum ( )

#Entropy
entropy = −np . sum( h i s t ∗ np . log2 ( h i s t + np . f i n f o ( f l o a t ) . eps ) )

re turn entropy

heatmap_image_path = ' /path/ to /heatmap '
heatmap_image = cv2 . imread ( heatmap_image_path )

entropy = ca lcu la te_entropy ( heatmap_image )

# Normalise entropy
normalised_entropy = entropy / np . log2 (256)

ms_ssim_value =

E2 = (1 − ms_ssim_value ) + normalised_entropy

p r i n t ( ' Entropy : ' , entropy )
p r i n t ( ' Normalised Entropy : ' , normalised_entropy )
p r i n t ( ' D i s s i m i l a r i t y and Entropy Index E2 : ' , E2)
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B9 Principal Component Analysis
import pandas as pd
import numpy as np
from s k l e a r n . p r e p r o c e s s i n g import MinMaxScaler
from s k l e a r n . decomposit ion import PCA
import matp lo t l i b . pyplot as p l t
import seaborn as sns

data_path = ' /path/ to / database '
df = pd . read_excel ( data_path )

X = df [ [ 'AREA_INTENSITY ' , 'D_ENTROPY ' ] ] . va lue s

# PCA
pca = PCA( n_components=2)
X_pca = pca . f i t_t rans fo rm (X)

weights = pca . components_
p r i n t ( f " Weights : { weights } " )

# PSI c a l c u l a t i o n
df [ ' PSI ' ] = np . round ( weights [ 0 , 0 ] ∗ df [ 'AREA ' ] + weights [ 0 , 1 ] ∗ df [ 'E2 ' ] , 3)

df . to_exce l ( ' /path/ to / newdatabase ' , index=False )
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B10 Quadrifactorial Exploration Index Nψ

import cv2
import numpy as np
from skimage . met r i c s import s t r u c t u r a l _ s i m i l a r i t y as compare_ssim

de f area_intens i ty_index ( heatmap ) :
img = cv2 . imread ( heatmap )
grey_img = cv2 . cvtColor ( img , cv2 .COLOR_BGR2GRAY)
t h r e s h o l d = 254
non_white_mask = grey_img < t h r e s h o l d
weighted_sum = np . sum( grey_img [ non_white_mask ] )
non_white_pixels = non_white_mask . sum ( )
t o t a l _ p i x e l s = grey_img . s i z e
ave rage_intens i ty = weighted_sum / non_white_pixels i f non_white_pixels > 0

e l s e 0
area_coverage = non_white_pixels / t o t a l _ p i x e l s
E1 = area_coverage ∗ ( ave rage_intens i ty / 255)
re turn E1

de f ca l cu la te_entropy ( image ) :
gray_image = cv2 . cvtColor ( image , cv2 .COLOR_BGR2GRAY)
h i s t = cv2 . c a l c H i s t ( [ gray_image ] , [ 0 ] , None , [ 2 5 6 ] , [ 0 , 2 5 6 ] )
h i s t /= h i s t . sum ( )
entropy = −np . sum( h i s t ∗ np . log2 ( h i s t + np . f i n f o ( f l o a t ) . eps ) )
re turn entropy

de f ms_ssim ( img1 , img2 , max_val=255 , f i l t e r _ s i z e =11, f i l t e r _ s i g m a =1.5 , k1 =0.01 , k2
=0.03) :
weights = np . array ( [ 0 . 0 4 4 8 , 0 .2856 , 0 .3001 , 0 .2363 , 0 . 1 3 3 3 ] )
img1 = img1 . astype ( np . f l o a t 6 4 )
img2 = img2 . astype ( np . f l o a t 6 4 )
mssim_values = [ ]
f o r _ in range ( l en ( weights ) ) :

ssim , _ = compare_ssim ( img1 , img2 , win_size=f i l t e r _ s i z e , sigma=f i l t e r _ s i g m a
,

data_range=max_val , use_sample_covariance=False ,
K1=k1 , K2=k2 , f u l l=True )

mssim_values . append ( ssim )
img1 = cv2 . r e s i z e ( img1 , (0 , 0) , fx =0.5 , fy =0.5)
img2 = cv2 . r e s i z e ( img2 , (0 , 0) , fx =0.5 , fy =0.5)

ms_ssim = np . prod ( np . power ( mssim_values , weights ) )
re turn ms_ssim

heatmap_image_path = ' /path/ to / heatmapimagesignal '
reference_image_path = ' /path/ to / whitebackground '

# Calcu la te E1
E1 = area_intens i ty_index ( heatmap_image_path )
p r i n t ( f " Area Ratio and Avg . I n t e n s i t y Index E1 : {E1 : . 2 f } " )

# Calcu la te E2
heatmap_image = cv2 . imread ( heatmap_image_path )
entropy = ca lcu la te_entropy ( heatmap_image )
normalised_entropy = entropy / np . log2 (256)
img1 = cv2 . imread ( heatmap_image_path , cv2 .IMREAD_GRAYSCALE)
img2 = cv2 . imread ( reference_image_path , cv2 .IMREAD_GRAYSCALE)
ms_ssim_value = ms_ssim ( img1 , img2 )
d = (1 − ms_ssim_value )
E2 = 0.388 ∗ d + 0.289 ∗ normalised_entropy
p r i n t ( ' Entropy : ' , entropy )
p r i n t ( ' Normalised Entropy : ' , normalised_entropy )
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p r i n t ( ' D i s s i m i l a r i t y and Entropy Index E2 : ' , E2)

# Calcu la te p s i
p s i = 0.726 ∗ E1 + E2

# Calcu la te N_psi
N_psi = p s i / 1 .414
p r i n t ( f " N_psi : {N_psi : . 3 f } " )
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B11 Diegetic Coding
import pandas as pd

columns = [ ' Ar te f ac t ID ' , ' Ar te f ac t Label ' , ' Ar te f ac t Sta r t Time ' , ' Ar te f ac t End
Time ' , ' Ar te f ac t S i z e ' , ' Ar te f ac t Duration Score ' , ' Ar te f ac t DAS Score ' ]

d f = pd . DataFrame ( columns=columns )

# S i z e c l a s s e s and po int va lue s
s i z e _ v a l u e s = { ' s ' : 1 , 'm ' : 2 , ' l ' : 3}

# Duration c l a s s e s and po int va lue s
de f durat ion_score ( durat ion ) :

i f durat ion <= 2 :
re turn 1

e l i f durat ion <= 10 :
re turn 2

e l s e :
r e turn 3

video_name = ' video '

a r t e f a c t _ i d = 1

# Manual annotat ion loop
whi l e True :

start_time = input ( " t_star t ( in s ) : " )
i f s tart_time . lower ( ) == ' q ' :

break
end_time = input ( " t_end ( in s ) : " )
s i z e = input ( " s i z e ( s /m/ l ) : " )
artefact_name = input ( " l a b e l : " )

durat ion = f l o a t ( end_time ) − f l o a t ( start_time )
durat ion_points = durat ion_score ( durat ion )
arte fact_das_score = s i z e _ v a l u e s [ s i z e . lower ( ) ] ∗ durat ion_points

df = df . append ({ ' Ar te f ac t ID ' : a r t e fac t_id ,
' Ar te f ac t Label ' : artefact_name ,
' Ar te f ac t Sta r t Time ' : f l o a t ( start_time ) ,
' Ar te f ac t End Time ' : f l o a t ( end_time ) ,
' Ar te f ac t S i z e ' : s i z e ,
' Ar te f ac t Duration Score ' : durat ion_points ,
' Ar te f ac t DAS Score ' : a r te fact_das_score } , ignore_index=True )

# Increment
a r t e f a c t _ i d += 1

tota l_das_score = df [ ' Ar te f ac t DAS Score ' ] . sum ( )
p r i n t ( f ' Total DAS {video_name } : { tota l_das_score } ' )

df . to_csv ( f ' {video_name} _annotations . csv ' , index=False )
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Appendix C

Ethics and Privacy Quick Scan

This Appendix comprises the Ethics and Privacy Quick Scan of the Utrecht University Research
Institute of Information and Computing Sciences was conducted to assess potential ethical and
privacy concerns related to this research, as well as the approval correspondence. The ethical
approval can be found in Appendix C12, on page 192.
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The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information
and Computing Sciences:

• P1. Does your project involve human participants? This includes for example use of obser-
vation, (online) surveys, interviews, tests, focus groups, and workshops where human par-
ticipants provide information or data to inform the research. If you are only using existing
data sets or publicly available data (e.g. from Twitter, Reddit) without directly recruiting
participants, please answer no. | Yes.

• P2. Does your project involve participants younger than 18 years of age? | No.

• P3. Does your project involve participants with learning or communication difficulties of a
severity that may impact their ability to provide informed consent? | No.

• P4. Is your project likely to involve participants engaging in illegal activities? | No.

• P5. Does your project involve patients? | No.

• P6. Does your project involve participants belonging to a vulnerable group, other than those
listed above? | No.

• P8. Does your project involve participants with whom you have, or are likely to have, a work-
ing or professional relationship: for instance, staff or students of the university, professional
colleagues, or clients? | Yes.

• P9. Is it made clear to potential participants that not participating will in no way impact
them (e.g. it will not directly impact their grade in a class)? | Yes.

• PC1. Do you have set procedures that you will use for obtaining informed consent from
all participants, including (where appropriate) parental consent for children or consent from
legally authorised representatives? (See suggestions for information sheets and consent forms
on the website. | Yes.

• PC2. Will you tell participants that their participation is voluntary? | Yes.

• PC3. Will you obtain explicit consent for participation? | Yes.

• PC4. Will you obtain explicit consent for any sensor readings, eye tracking, photos, audio,
and/or video recordings? | Yes.

• PC5. Will you tell participants that they may withdraw from the research at any time and
for any reason? | Yes.

• PC6. Will you give potential participants time to consider participation? | Yes.

• PC7. Will you provide participants with an opportunity to ask questions about the research
before consenting to take part (e.g. by providing your contact details)? | Yes.

• PC8. Does your project involve concealment or deliberate misleading of participants? | No.

• D1. Are you gathering or using personal data (defined as any information relating to an
identified or identifiable living person)? | Yes.

• DR1. Will you process personal data that would jeopardise the physical health or safety of
individuals in the event of a personal data breach? | No.

• DR2. Will you combine, compare, or match personal data obtained from multiple sources,
in a way that exceeds the reasonable expectations of the people whose data it is? | No.

• DR3. Will you use any personal data of children or vulnerable individuals for marketing,
profiling, automated decision-making, or to offer online services to them? | No.
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• DR4. Will you profile individuals on a large scale? | No.

• DR5. Will you systematically monitor individuals in a publicly accessible area on a large
scale (or use the data of such monitoring)? | No.

• DR6. Will you use special category personal data, criminal offence personal data, or other
sensitive personal data on a large scale? | No.

• DR7. Will you determine an individual’s access to a product, service, opportunity, or benefit
based on an automated decision or special category personal data? | No.

• DR8. Will you systematically and extensively monitor or profile individuals, with significant
effects on them? | No.

• DR9. Will you use innovative technology to process sensitive personal data? | No.

• DM1. Will you collect only personal data that is strictly necessary for the research? | Yes.

• DM4. Will you anonymise the data wherever possible? | Yes.

• DM5. Will you pseudonymise the data if you are not able to anonymise it, replacing personal
details with an identifier, and keeping the key separate from the data set? | Yes.

• DC1. Will any organisation external to Utrecht University be involved in processing personal
data (e.g. for transcription, data analysis, data storage)? | No.

• DI1. Will any personal data be transferred to another country (including to research collab-
orators in a joint project)? | No.

• DF1. Is personal data used to recruit participants? | No.

• DP1. Will participants be provided with privacy information? (Recommended is to use
as part of the information sheet: For details of our legal basis for using personal data
and the rights you have over your data please see the University’s privacy information at
www.uu.nl/en/organisation/privacy.) | Yes.

• DP2. Will participants be aware of what their data is being used for? | Yes.

• DP3. Can participants request that their personal data be deleted? | Yes.

• DP4. Can participants request that their personal data be rectified (in case it is incorrect)?
| Yes.

• DP5. Can participants request access to their personal data? | Yes.

• DP6. Can participants request that personal data processing is restricted? | Yes.

• DP7. Will participants be subjected to automated decision-making based on their personal
data with an impact on them beyond the research study to which they consented? | No.

• DP8. Will participants be aware of how long their data is being kept for, who it is being
shared with, and any safeguards that apply in case of international sharing? | Yes.

• DP9. If data is provided by a third party, are people whose data is in the data set provided
with (1) the privacy information and (2) what categories of data you will use? | N/a.

• DE1. Will you use any personal data that you have not gathered directly from participants
(such as data from an existing data set, data gathered by a third party, data scraped from
the internet)? | No.

• DS1. Will any data be stored (temporarily or permanently) anywhere other than on password-
protected University authorised computers or servers? | No.
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• DS4. Excluding (1) any international data transfers mentioned above and (2) any sharing
of data with collaborators and contractors, will any personal data be stored, collected, or
accessed from outside the EU? | No.

• H1. Does your project give rise to a realistic risk to the national security of any country? |
No.

• H2. Does your project give rise to a realistic risk of aiding human rights abuses in any
country? | No.

• H3. Does your project (and its data) give rise to a realistic risk of damaging the University’s
reputation? (E.g., bad press coverage, public protest.) | No.

• H4. Does your project (and in particular its data) give rise to an increased risk of attack
(cyber- or otherwise) against the University? (E.g., from pressure groups.) | No.

• H5. Is the data likely to contain material that is indecent, offensive, defamatory, threatening,
discriminatory, or extremist? | No.

• H6. Does your project give rise to a realistic risk of harm to the researchers? | No.

• H7. Is there a realistic risk of any participant experiencing physical or psychological harm
or discomfort? If yes, provide detail on how you will minimise risks. | Yes, see below.

• H8. Is there a realistic risk of any participant experiencing a detriment to their interests as
a result of participation? | No.

• H9. Is there a realistic risk of other types of negative externalities? | No.

• C1. Is there any potential conflict of interest (e.g. between research funder and researchers
or participants and researchers) that may potentially affect the research outcome or the
dissemination of research findings? | No.

• C2. Is there a direct hierarchical relationship between researchers and participants? | No.

• Z10. In case you encountered warnings in the survey, does your supervisor already have
ethical approval for a research line that fully covers your project? | No.
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The potential physical discomfort the participant may experience is cybersickness. During the
study, participants will be asked to wear a head-mounted display (Virtual Reality headset). The
usage of this type of device can potentially result in the sensation of cybersickness, which a cluster
of symptoms that occur in the absence of physical motion, similar to motion sickness. Also, while
interacting with the HMD, the participant might experience physical strain of looking around
extensively when viewing a 360-degree video. To minimise the risk and impact of these effect, a
series of precautions will be put in place:

- During the recruitment process, participants will be asked to fill out a survey in which
they are asked about risk inducing parameters, such as: sensitivity to motion sickness
or dizziness, recent surgery, back, neck or other physical conditions and other related
factors that are a risk. Participants with any of these conditions/sensitivity limitations
will be excluded from participation.
- A pilot study will be conducted with a small sample size to determine optimal dura-
tion of the main user study. During the pilot study, the participants will be informed
about the exploratory nature of the pilot study and that the main goal is to determine
the parameters of the main study so that participants do not experience a sense of
physical strain, discomfort or cybersickness.
- After the pilot study, participants will be asked to fill out the SSQ (simulator sickness
questionnaire) which will be used to determine the level of sickness and dizziness the
participants have experienced. This data will be used to determine the duration and
other parameters of the main study so that cybersickness or physical discomfort is
minimised.
- Only study designs will be utilised that are proven to minimise the risk of cybersick-
ness, such as the M-ACR methodology for QoE assessment.
- Participants will be seated on an ergonomic, (rotational) chair to relieve any stress
on the participant’s spine or neck and minimise risk as much as possible.
- Constant monitoring of the participant’s well-being and mandatory breaks.
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C12 Ethical Approval

Dear Rik Hazekamp,

Thank you for completing the ethics scan. Based on the information provided below,
I can tell you that the research can go ahead.

Best wishes,
Maartje

Dr. M.M.A. (Maartje) de Graaf
Assistant Professor of Human-Computer Interaction
Coordinator of HCI Master Graduations

Utrecht University
Faculty of Science
Department of Information and Computing Sciences
Princetonplein 5
3584 CC UTRECHT

Visiting: Buys Ballot Building - Room 4.21
Contact by phone +31 6 4851 2017 or email m.m.a.degraaf@uu.nl
https://robonarratives.wordpress.com/
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Appendix D

Sampling Correspondence

This Appendix comprises the written correspondence utilised during the sampling and recruitment
of participants for the study. This Appendix is structured as follows:

• Appendix D13: Written recruitment for the pre-test parameter study, presented on page
194.

• Appendix D14: Written recruitment for the eye tracking study, presented on page 195.
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D13 Recruitment Pre-Test Parameter Study

Dear [Participant],

As part of my master’s degree thesis, I am conducting oculesics research to study eye
movement while viewing 360-degree videos in a virtual reality environment. Before
conducting the main study, I am running a pilot study to determine the parameters
and identify potential risks. The pilot study will involve performing the entire main
study, but with the main goal of assessing the duration, the potential for cybersickness,
and any other risks associated with the study.
I am currently seeking participants for the pilot study, in which you will view a se-
quence of 360-degree videos in a virtual reality environment, while your eye movements
and gaze data are acquired using eye tracking technology. Afterwards, you will be in-
terviewed about your experience. Your participation in this pilot study will help me
ensure that the experiment design minimises risks as much as possible.
If you are interested in participating in the pilot study, please note that participation
is not free of risk, and you may experience physical discomfort such as motion sickness
or dizziness. The study will take approximately 30-60 minutes to complete. To parti-
cipate in the study, you must meet the following criteria:

- Be over 18 years old
- Have normal or corrected-to-normal vision (incl. color-blindness)
- Have no history of motion sickness or epilepsy
- Have no physical conditions that may limit or be aggravated by using a VR headset
- Haven’t participated in similar research in the past.

Please note that individuals who have undergone eye surgery or have eye diseases, wear
heavy makeup, or have high myopia may be excluded from participating in the study
due to potential effects on eye tracking performance.

If you meet the criteria and would like to participate, please click on the following link
[LINK] to let me know your availability. The pilot study will be conducted in a lab
setting, at the Utrecht University.
Please note that participation in the pilot study is voluntary, and you may withdraw
from the study at any time. Your data will be kept confidential, and only used for
research purposes.
Thank you for considering participation in my study. If you have any questions, please
do not hesitate to contact me.

Sincerely,
Rik Hazekamp
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D14 Recruitment Eye Tracking Study

Dear [Participant],

As part of my master’s degree thesis, I am conducting oculesics research to study eye
movement while viewing 360-degree videos in a virtual reality environment. I am cur-
rently seeking participants for an experimental study in which you will view a sequence
of 360-degree videos in a virtual reality environment, while your eye movements and
gaze data are acquired using eye tracking technology.
Your participation in this study will help me gain insights into how people interact with
360-degree videos in a virtual reality environment and how different content factors
can affect user behaviour. The study will take approximately 30 minutes to complete.

To participate in the study, you must meet the following criteria:
- Be over 18 years old
- Have normal or corrected-to-normal vision (incl. colour-blindness)
- Have no history of motion sickness or epilepsy
- Have no physical conditions that may limit or be aggravated by using a VR headset
- Haven’t participated in similar research in the past.

Please note that individuals who have undergone eye surgery or have eye diseases, wear
heavy makeup, or have high myopia may be excluded from participating in the study
due to potential effects on eye tracking performance.

If you are interested in participating in this study, please click on the following link
[LINK] to read more about this research and to get in contact. The study will be
conducted in a lab setting, at the Utrecht University.
Please note that participation is voluntary, and you may withdraw from the study at
any time. Your data will be kept confidential, and only used for research purposes.
Thank you for considering participation in my research. If you have any questions,
please do not hesitate to contact me.

Sincerely,
Rik Hazekamp
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Appendix E

Information and Consent

This Appendix comprises the research participation information sheets of the pre-test parameter
study and eye tracking study which was conducted as part of this thesis. Furthermore, the consent
form used to acquire written consent is presented as well. This Appendix is structured as follows:

• Appendix E15: Information Sheet Pre-Test Parameter Study, presented on page 198.

• Appendix E16: Information Sheet Eye Tracking Study, presented on page 200.

• Appendix E17: Consent Form, presented on page 202.
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E15 Information Sheet Pre-Test Parameter Study

Research Participant Information Sheet
"The Significance of Spatiotemporal Image Complexity on Gaze Dynamics in

VR-based 360º Video Interactions: An Integrated Oculesics and Computer Vision
Approach"

May, 2023

1. Introduction This information sheet is presented as part of participation in sci-
entific research at Utrecht University. In this information sheet, information about the
nature of the research, the background thereof, the researchers involved, the research
activities, data acquisition and usage, ethical approval and contact information are
presented.

2. What is the background and purpose of this study? The objective of the
research is to determine the risk-reducing parameters of an upcoming research project
on how spatiotemporal complexities affect user behaviour in 360-degree videos. To
do so, you will conduct the experiment of this research project, and are afterwards
evaluated on the physical risks of conducting the experiment. Background informa-
tion on the research scope is as follows. While previous research mainly focused on
technical aspects, this study takes a more holistic approach that takes into account
content characteristics to investigate how users perceive and behave when interacting
with 360-degree video content. User behaviour is assessed through both objective and
subjective metrics: the first part of the research design involves an eye-tracking study
that utilises gaze data to measure the user’s gaze while viewing a variety of 360-degree
video content. The second part is a user evaluation study that enables subjective ana-
lysis of the user’s interaction and perception. The main aim of this study is to evaluate
the duration and how aspects of cybersickness or physical discomfort are present in
the current study design to ensure participant comfort and prevent physical discomfort.

3. Who will carry out the study? This study is carried out by R. Hazekamp
(r.hazekamp@students.uu.nl) as part of my master thesis under supervision of W. Hürst
(huerst@uu.nl). The research project is conducted as part of the Human-Computer
Interaction research curriculum in the Research Institute of Information and Comput-
ing Sciences of Utrecht University.

4. How will the study be carried out? In this study, you will perform a series
of tasks. Firstly, you will be asked to fill out a demographic survey. After the demo-
graphic survey has been filled out, you will view a sequence of 360-degree videos using
a VR system. After the viewing session, you will be evaluated on the experience of
viewing those videos in an evaluation. This consists of a short survey and small inter-
view regarding your perception and experience of the 360-degree videos. Important;
you will not be interviewed on the content of the videos, therefore it is not required to
memorise the content. Lastly, you will be asked to fill out a questionnaire regarding
cybersickness and physical discomfort, and you are evaluated on the duration of the
experiment. The experiment will take about 40 to 45 minutes. During the experiment,
refreshments are provided and short breaks are implemented. You will not receive any
monetary compensation for participating, however mutual participation in research as
a quid pro quo can be discussed with the researcher.
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5. What will we do with your data? If you consent to this, audio, photo,
video, eye tracking and sensor recordings will be acquired. The data acquired will only
be used to set parameters of the upcoming research. Sensory recordings will not be
further analysed in this thesis. The recordings will be stored on a secure university
server. The recordings will be transcribed so that participants’ opinions are captured
into text. All recordings will be securely deleted after analysis (within 3 months of the
study). The transcribed text and recordings will be anonymised so that you will not
be identifiable. All data will be processed using pseudonymisation techniques, using
a pseudonym to link the constituted personal data and all data recordings, ensuring
that your data will be completely anonymised. The pseudonym will be deleted within
3 months of the study. The data will become part of my thesis and will also be stored
in a data repository for use by other researchers and research users. My thesis, any
publications based on this research, and the data repository will not include your name
or any other individual information by which you could be identified.

6. What are your rights? Participation is voluntary. We are only allowed to col-
lect your data for our study if you consent to this. If you decide not to participate, you
do not have to take any further action. You do not need to sign anything. Nor are you
required to explain why you do not want to participate. If you decide to participate,
you can always change your mind and stop participating at any time, including during
the study. You will even be able to withdraw your consent after you have participated.
However, if you choose to do so, we will not be required to undo the processing of your
data that has taken place up until that time. The personal data and sensor recordings
we have obtained from you up until the time when you withdraw your consent will be
erased (where personal data is any data that can be linked to you, so this excludes any
already anonymised data).

7. Approval of this study The exploratory nature of this study necessitates the
notion that risks are not yet minimized during this study. Therefore, risk of cyber-
sickness or physical discomfort are present. Please contact the researcher in case of
need. This study has been allowed to proceed by the Research Institute of Informa-
tion and Computing Sciences on the basis of an Ethics and Privacy Quick Scan. If
you have a complaint about the way this study is carried out, please send an email
to: ics-ethics@uu.nl. If you have any complaints or questions about the processing of
personal data, please send an email to the Faculty of Sciences Privacy Officer: privacy-
beta@uu.nl. The Privacy Officer will also be able to assist you in exercising the rights
you have under the GDPR. For details of our legal basis for using personal data and
the rights you have over your data please see the University’s privacy information at
www.uu.nl/en/organisation/privacy.

8. More information about this study? If you have any questions or concerns
about this research please contact R. Hazekamp at r.hazekamp@students.uu.nl or the
research supervisor W. Hürst at huerst@uu.nl.

9. Appendices The included Appendix, the consent form, can be found in Appendix
E17.
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E16 Information Sheet Eye Tracking Study

Research Participant Information Sheet
"The Significance of Spatiotemporal Image Complexity on Gaze Dynamics in

VR-based 360º Video Interactions: An Integrated Oculesics and Computer Vision
Approach"

May, 2023

1. Introduction This information sheet is presented as part of participation in sci-
entific research at Utrecht University. In this information sheet, information about the
nature of the research, the background thereof, the researchers involved, the research
activities, data acquisition and usage, ethical approval and contact information are
presented.

2. What is the background and purpose of this study? The objective of the
research is to examine how spatiotemporal complexities affect user behaviour in 360-
degree videos. While previous research mainly focused on technical aspects, this study
takes a more holistic approach that takes into account visual content characteristics to
investigate how users perceive and behave when interacting with varying 360-degree
video content. User behaviour is assessed through both objective and subjective met-
rics: the first part of the research design involves an eye-tracking study that utilises
gaze data to measure the user’s gaze while viewing a variety of 360-degree video con-
tent. The second part is a user evaluation study that enables subjective analysis of the
user’s interaction and perception. To ensure participant comfort and prevent physical
discomfort, precautions were taken during the viewing sessions.

3. Who will carry out the study? This study is carried out by R. Hazekamp
(r.hazekamp@students.uu.nl) as part of my master thesis under supervision of W. Hürst
(huerst@uu.nl). The research project is conducted as part of the Human-Computer
Interaction research curriculum in the Research Institute of Information and Comput-
ing Sciences of Utrecht University.

4. How will the study be carried out? In this study, you will perform a series
of tasks. Firstly, you will be asked to fill out a demographic survey. After the demo-
graphic survey has been filled out, you will view a sequence of 360-degree videos using
a VR system. After the viewing session, you will be evaluated on the experience of
viewing those videos in an evaluation. This consists of a short survey and small inter-
view regarding your perception and experience of the 360-degree videos. Important;
you will not be interviewed on the content of the videos, therefore it is not required
to memorise the content. The experiment will take about 30 minutes. During the ex-
periment, refreshments are provided and short breaks are implemented. You will not
receive any monetary compensation for participating, however mutual participation in
research as a quid pro quo can be discussed with the researcher.

5. What will we do with your data? If you consent to this, audio, photo, video,
eye tracking and sensor recordings will be acquired. The recordings will be stored on a
secure university server. The recordings will be transcribed so that participants’ opin-
ions are captured into text. All recordings will be securely deleted after analysis (within
3 months of the study). The transcribed text and recordings will be anonymised so
that you will not be identifiable. All data will be processed using pseudonymisation
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techniques, using a pseudonym to link the constituted personal data and all data re-
cordings, ensuring that your data will be completely anonymised. The pseudonym will
be deleted within 3 months of the study. The data will become part of my thesis and
will also be stored in a data repository for use by other researchers and research users.
My thesis, any publications based on this research, and the data repository will not
include your name or any other individual information by which you could be identified.

6. What are your rights? Participation is voluntary. We are only allowed to col-
lect your data for our study if you consent to this. If you decide not to participate, you
do not have to take any further action. You do not need to sign anything. Nor are you
required to explain why you do not want to participate. If you decide to participate,
you can always change your mind and stop participating at any time, including during
the study. You will even be able to withdraw your consent after you have participated.
However, if you choose to do so, we will not be required to undo the processing of your
data that has taken place up until that time. The personal data and sensor recordings
we have obtained from you up until the time when you withdraw your consent will be
erased (where personal data is any data that can be linked to you, so this excludes any
already anonymised data).

7. Approval of this study This study has been allowed to proceed by the Re-
search Institute of Information and Computing Sciences on the basis of an Ethics and
Privacy Quick Scan. If you have a complaint about the way this study is carried out,
please send an email to: ics-ethics@uu.nl. If you have any complaints or questions
about the processing of personal data, please send an email to the Faculty of Sciences
Privacy Officer: privacy-beta@uu.nl. The Privacy Officer will also be able to assist you
in exercising the rights you have under the GDPR. For details of our legal basis for
using personal data and the rights you have over your data please see the University’s
privacy information at www.uu.nl/en/organisation/privacy.

8. More information about this study? If you have any questions or concerns
about this research please contact R. Hazekamp at r.hazekamp@students.uu.nl or the
research supervisor W. Hürst at huerst@uu.nl.

9. Appendices The included Appendix, the consent form, can be found in Appendix
E17.
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E17 Consent Form

Consent Form for Participation in the Research Project:
"The Significance of Spatiotemporal Image Complexity on Gaze Dynamics in

VR-based 360º Video Interactions: An Integrated Oculesics and Computer Vision
Approach"

Please read the statements below and tick the final box to confirm you have read and understood
the statements and upon doing so agree to participate in the project.

I confirm that I am 18 years of age or over.

I confirm that the research project "The Significance of Spatiotemporal Image Complex-
ity on Gaze Dynamics in VR-based 360º Video Interactions: An Integrated Oculesics
and Computer Vision Approach" has been explained to me. I have had the opportunity
to ask questions about the project and have had these answered satisfactorily. I had
enough time to consider whether to participate.

I consent to the material I contribute being used to generate insights for the research
project "The Significance of Spatiotemporal Image Complexity on Gaze Dynamics in
VR-based 360º Video Interactions: An Integrated Oculesics and Computer Vision Ap-
proach".

I consent to audio, video, photo, eye tracking and sensor recordings being used in this
study as explained in the information sheet. I understand that I can request to stop
recordings at any time.

I understand that if I give permission, the audio, video, photo, eye tracking and sensor
recordings will be held confidentially so that only R. Hazekamp has access to the record-
ing. The recordings will be anonymised and stored on a secure, password protected
server and anonymised for up to 3 months after which period they will be securely
destroyed, fully anonymised, transcribed/encoded in an anonymous form and the ori-
ginal securely destroyed. In accordance with the General Data Protection Regulation
(GDPR) I can have access to my recordings and can request them to be deleted at any
time during this period.

I understand that in addition to the recordings, other personal data will be collected
from me and that this information will be held confidentially so that only R. Hazekamp
has access to this data and is able to trace the information back to me personally. The
information will be anonymised and stored on a secure, password protected server and
anonymised for up to 3 months after which period if will be deleted. In accordance with
the General Data Protection Regulation (GDPR) I can have access to my information
and can request my data to be deleted at any time during this period.

I understand that my participation in this research is voluntary and that I may with-
draw from the study at any time without providing a reason, and that if I withdraw
any personal data already collected from me will be erased.

I consent to allow the fully anonymised data to be used in future publications and
other scholarly means of disseminating the findings from the research project.
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I understand that the data acquired will be securely stored by researcher(s), but that
appropriately anonymised data may in future be made available to others for research
purposes. I understand that the University may publish appropriately anonymised
data in appropriate data repositories for verification purposes and to make it access-
ible to researchers and other research users.

I understand that I can request any personal data collected from me to be deleted.

□ I confirm that I have read and understood the above statements and agree to
participate in the study (Check the box).
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Appendix F

Questionnaires

This Appendix comprises the set of questionnaires developed as part of the research experiment.
This Appendix is structured as follows:

• Appendix F18: Demographic Questionnaire, presented on page 206.

• Appendix F19: Simulator Sickness Questionnaire, presented on page 207.

• Appendix F20: User Evaluation Questionnaire, presented on page 208.

• Appendix F21: Semi-Structured Interview, presented on page 209.
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F18 Demographic Questionnaire
The demographic questionnaire was used at the start of the experiment to assess eligibility, ac-
quire written consent and obtain demographic information from each of the participants. The
questionnaire contains the following set of questions:

What is your age?

What is your gender?
Male / Female / Other

Have you ever used a virtual reality headset before?
Yes / No / Not sure

On a scale of 1 to 5, how often do you use a VR headset?
1. Never
2. Once a year or less
3. A few times a year
4. Once a month or more
5. Once a week or more

Do you have normal or corrected-to-normal vision?
Yes / No / Not sure

Do you have any visual impairments that affect your ability to see clearly or use VR
technology?
Yes / No

Have you ever experienced motion sickness or epilepsy?
Yes / No / Not sure

Do you have any physical conditions that may limit or be aggravated by using a VR
headset?
Yes / No / Not sure

Do you have any back, neck or similar physical conditions, or have you undergone
recent surgery that may limit your ability to wear a VR headset or move your head?
Yes / No

Have you participated in similar research in the past?
Yes / No

Have you read and understood the information sheet and do you agree with the terms
and conditions of participating in this research?
Yes / No / Not sure

Do you give consent with the researcher and Utrecht University using any anonymised
data and sensor recordings for the duration of this experiment?
Signature
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F19 Simulator Sickness Questionnaire
The Simulator Sickness Questionnaire (SSQ) [163] utilised during the pre-test parameter study,
and functions as an important tool in establishing the parameters on minimising cybersickness
during the eye tracking experiment. The participants were asked to rate the amount of effect on
each of the following, potential, symptoms:

None Slight Moderate Severe
1. General discomfort
2. Fatigue
3. Headache
4. Eye strain
5. Difficulty focusing
6. Salivation increasing
7. Sweating
8. Nausea
9. Difficulty concentrating
10. "Fullness of head"
11. Blurred vision
12. Dizziness with eyes open
13. Dizziness with eyes closed
14. * Vertigo
15. ** Stomach awareness
16. Burping

Table F.1: Simulator Sickness Questionnaire

* Vertigo entails the sensation of loss of orientation from respect to a vertical position.
** Stomach awareness entails the sensation of discomfort in the stomach area, com-
monly prior to nausea.

The rating was done using the following 4-point scale: none - slight - moderate - severe.
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F20 User Evaluation Questionnaire
User Evaluation Questionnaire (UEQ) was used during the experiment phase of the thesis, and
was used to acquire subjective measurements on the viewing experience across all participants.
The UEQ comprises closed-ended questions and statements entailing attributes of engagement,
attention, spatial awareness and usability context in regards to viewing behaviour. The UEQ
contains the following set of questions and statements:

Engagement and Attention (scale 1-7):
How enjoyable did you find the overall 360-degree video experience?
How would you rate the richness and quality of the graphics in the 360-degree videos?
How quickly did time seem to pass while watching the 360-degree videos?
To what extent did you feel situated in the story being depicted in the 360-degree
videos?
How much control did you feel you had over your viewing experience while watching
the 360-degree videos?
To what extent were you unaware of the presence of others while watching the 360-
degree videos?
To what extent were you able to maintain your attention on the 360-degree video
throughout the entire viewing experience?

"The fast and dynamic camera motion in some of the videos made it difficult for me
to focus on a particular area of the scene."
"I found myself getting distracted by the background elements when watching the videos
with a static camera."
"I found myself more focused on the details of the scene when the camera was moving
slowly."

Spatial Awareness and Usability Context (scale 1-7):
How well were you able to locate and identify important objects or landmarks within
the virtual environment?
How well were you able to understand the layout of the virtual environment?
How well were you able to navigate through the virtual environment?

"I had a better understanding of the layout of the environment when watching the 360-
degree content with a static camera."
"I found it difficult to orient myself and understand the layout of the environment when
watching the 360-degree video with a moving camera."

How comfortable was the use of the [chair type] during the viewing session?
To what extent did the [chair type] affect your overall enjoyment of the 360-degree
video?

Fixed chair:
"I felt limited in the amount of exploring I could do due to the fixed chair."
"I found it harder to keep track of the camera movements because of the fixed chair."
Rotating chair:
"I felt more encouraged to look around because of the rotating chair."
"The rotating chair made it easier for me to follow the camera movements."

The rating was done using the following 7-point Likert scale.
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F21 Semi-Structured Interview
The semi-structured interview (SSI) was used during the experiment phase of the thesis, and was
used to acquire subjective measurements on the viewing experience across all participants. The
SSI comprises a series of open-ended questions relating to the participant’s perception of viewing
behaviour, content and interpretation of both. The SSI contains the following set of open-ended
questions:

On a scale of 1 to 7, with 1 being ’not at all interesting’ and 7 being ’extremely inter-
esting’, how interesting did you find the 360-degree videos?

On a scale of 1 to 7, with 1 being ’not at all’ and 7 being ’extremely’, how much
did you experience the sense of FOMC, due to loss of information or missed out con-
tent? If so, can you describe when and why?

Can you provide a brief description of each of the videos you watched in this study?
Please provide elements or details you found interesting or remember vividly from each
of the videos.

Some of the videos were more dynamic, with the camera moving relatively fast or
having more movement. Other videos were more static, with the camera moving rel-
atively slow or remaining stationary. Can you describe the effect this had on how you
viewed the content?

How would you describe your viewing behaviour between the different genres of videos
(scenery, roller coaster, video game)? How was it different and why do you think that
was the case?
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