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Abstract 

With its ability to investigate the similarity between brain responses to different stimuli, 

representational similarity analysis (RSA) may be a powerful tool to identify distinguishable linguistic 

features for speech BCIs. But despite RSAs potential, its adoption in speech BCI research has been 

somewhat limited and only moderately successful. The current study aims to bridge this gap by 

applying RSA to word production fMRI data – allowing the investigation of neural similarity between 

different words. 11 healthy subjects pronounced 28 words during fMRI image acquisition at 7T. 

Representational Similarity Matrices (RSMs) were computed from activity within the sensorimotor 

cortex, the cerebellum and the superior temporal area. The magnitude and distribution of similarity 

levels within these RSMs suggested inconsistency of neural responses to words. In an attempt to 

improve the quality of our data, various correction methods were applied. These included the 

reduction of general noise by regressing out white matter principal components, as well as accounting 

for pronunciation-related movements by excluding trial-pair comparisons with substantial head 

position divergence and regressing out trial means. None of these correction methods succeeded in 

revealing consistent neural responses to words, rendering further interpretation of word similarities 

inappropriate. The successful cross-validation of our RSA configurations with gesture data indicates 

that our implementation is fundamentally sound, and simultaneously hints towards reasons as to why 

our word dataset may be unsuitable for RSA. The findings of the present study are discussed with 

regards to fMRIs temporal resolution, pronunciation-related motion artifacts, voxel selection, and 

amounts of trial repetitions.  

Keywords: Word Production, Speech, Representational Similarity Analyses, Functional MRI, 

Brain Computer Interface 
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Introduction 

The ability to communicate is fundamental for our existence as social beings, and its loss can 

have detrimental effects on an individual's quality of life. This is the reality for many people who lost 

the control over their motor functions. For these cases, the past decades have generated numerous 

neurotechnological solutions, with Brain-Computer Interfaces (BCIs) emerging as a particularly 

promising one. By letting computer systems execute mental commands, BCIs allow their users to 

interact with the environment without relying on own movements (RSA; Hramov et al., 2021). In the 

context of restoring communication, these mental commands can be retrieved from a range of neural 

responses. However, the most intuitive source may be activity associated with the final stages of 

language production.  

Various imaging techniques are being employed to investigate language representation within 

the brain, with the ultimate goal of optimizing speech BCIs. Among them, functional Magnetic 

Resonance Imaging (fMRI) stands out for its non-invasiveness and exceptional spatial resolution. These 

attributes make it particularly suitable for exploring the intricate pronunciation-related response 

patterns across a large subject pool. Nonetheless, utilizing fMRI for the study of speech production 

presents its unique set of challenges. Speech-related motion (Gracco et al., 2005; Hirsch et al., 2018) 

and respiration (Gracco et al., 2005) during volume acquisition can for instance cause signal changes 

that mimic or mask task-related BOLD responses. Moreover, fMRIs low temporal resolution renders it 

inadequate to capture the dynamics of neural processes during speech (Grootswagers et al., 2013). But 

despite these drawbacks, several fMRI studies have successfully decoded diverse utterances from 

various brain areas: Bleichner et al. (2015) reached for instance 90% accuracy in labelling four mouth 

movements, with a pattern-correlation classifier analysing activity within the left sensorimotor cortex. 

Furthermore, Correia et al. (2020) achieved significant distinction of syllables, using a support-vector 

machine (SVM) that interpreted M1, cerebellum and basal ganglia activity. Likewise, Markiewicz and 

Bohland (2016) effectively employed an SVM, here for the identification of vowels based on activity 

within the bilateral superior temporal sulcus.   
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Speech BCI research commonly utilizes classification-based methods to analyse fMRI data (e.g., 

Bleichner et al., 2015; Correia et al., 2020; Markiewicz & Bohland, 2016; Otaka et al., 2008; Vitória et 

al., 2023). Nevertheless, for the purpose of revealing the information encoded by a region of interest 

(ROI), Representational Similarity Analysis (RSA; Kriegeskorte et al., 2006) may be a more suitable 

choice. By quantifying the similarity of brain responses to different stimuli, RSA holds promise for being 

a powerful tool to identify distinguishable linguistic features (Evans & Davis, 2015) for speech BCIs. But 

despite RSA's potential, its adoption in speech BCI research has been somewhat limited. And while 

performing RSA on syllable production fMRI data led to contradictory findings (Carey et al., 2017; Zhang 

et al., 2020), its application on word production fMRI data has, to date, been unsuccessful (Bailey et 

al., 2021).  

In light of these observations, our study strived to revisit the analysis of word production fMRI 

data using RSA. This was done by having subjects pronounce different words during scanning, followed 

by similarity computations based on their underlying BOLD responses. Importantly, response patterns 

used for the analysis were derived from brain regions known to be involved in late stages of language 

production – namely the bilateral sensorimotor cortex (e.g., Lotze et al., 2000), the superior temporal 

area, and the cerebellum (e.g., Zhang et al., 2020). With this study, we aim to explore the neural 

similarity distribution of words, shed light on novel methodologies for exploring language production 

and in doing so, play a part in the advancement of user-friendly speech BCIs. 

Methods 

Subjects and Task Preparation 

11 Dutch-speaking subjects (mean age: 28, age range: 22-57; 7 males and 4 females) without 

any neurological disease or contraindications to MRI scanning, participated in this study. Informed 

consent in agreement with the Declaration of Helsinki (World Medical Association, 2013) was obtained 

prior to participation. The experimental procedure was approved by the medical-ethical committee of 

the University Medical Center Utrecht.  
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Scanner Protocol 

For data collection, the subjects were positioned in a whole-body 7 Tesla MR scanner (Achieva, 

Philips Health Care, Best, Netherlands) equipped with a 32-channel head-coil (Nova Medical, MA, USA).  

Prior to the main task, a T1-weighted MP2RAGE image of the entire brain was obtained. Functional 

data was collected using a gradient-echo echo-planar imaging (EPI) sequence (TR = 1500 ms; TE = 25 

ms; flip angle = 62°; anterior-posterior phase encoding direction; 33 slices; ascending interleaved slice 

acquisition order; voxel size = 1.75 x 1.586 x 1.586 mm³; FOV = 57.750 AP x 184.000 FH x 226.462 RL 

mm³). The field of view was configured to cover the bilateral superior temporal area, ventral 

sensorimotor cortex, and the cerebellum while minimizing inclusion of major brain-penetrating arteries 

in the phase-encoding direction (see Figure 1). Subjects underwent 253 functional image acquisitions 

per run. 

 

 

Figure 1. Field of View 

 

 

 

 

 

 

 

 

 

 

Note. This figure displays the field of view (57.750 AP x 

184.000 FH x 226.462 FH mm³), laid over the mid-sagittal 

view of the average mean co-registered normalized 

anatomical image of our sample. The field of view was 

configured to cover all areas of interest while minimizing 

the inclusion of major brain-penetrating arteries in the  

phase-encoding direction.

 

 

 

 

 

 

Stimuli and Task Design 

After task practice, subjects were positioned in the scanner, equipped with hearing protection 

and prism glasses. The prism glasses allowed them to view a mirror on top of the coil, reflecting a 

waveguide-projected screen. Subjects were instructed to pronounce words appearing on that screen, 

while restricting any other head movements. Overall 3 runs were completed (two subjects completed 

respectively 4 and 5 runs since their comfort levels allowed longer scanning times) with each run 
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presenting the same set of 28 words (inter-stimulus interval = 13.5 secs). Word orders per run were 

randomly generated, with the same sequences being used for all subjects. The whole procedure, from 

entering the MRI facility to leaving it, took on average two hours, out of which the subjects spend about 

one hour inside the scanner. 

The stimuli for this task were extracted from the DiaArt register - a list of 70 Dutch words 

created by Wieling et al. (2016) to investigate dialectical variance within the Netherlands. Words 

containing more or less than two-syllables were excluded to prevent word similarity from being 

primarily influenced by word length. This resulted in a list of 28 two-syllable words, collectively covering 

various linguistic properties (see Table 1).  

 
 

Table 1. Word Stimuli Extracted from the DiaArt Register  

 

Note. Listed are the 28 two-syllable Dutch 

word stimuli, derived from the DiaArt 

register, covering various linguistic 

properties. The numbering relates to the 

baseline stimulus order, represented in all 

following figures.   

Preprocessing 

The data was pre-processed incorporating tools from FreeSurfer 7.0 (Fischl, 2012), Fsl 6.0 

(Jenkinson et al., 2012) and SPM12 (Friston, 2007), integrated within a MATLAB pipeline (The 

MathWorks Inc, 2022). All functional images were Nordic-corrected to remove signal components not 

distinguishable from thermal noise (Moeller et al., 2021), slice-time corrected (SPM), realigned and 

unwarped to the mean EPI image (SPM) to address head motion, top-up corrected (FSL) to adjust 

geometrical distortions (Andersson et al., 2003; Smith et al., 2004), co-registered to the subjects’ high-

resolution T1 scan, and high pass filtered using a kernel with a cut-off at 75 seconds to eliminate low 

frequency signal drift. The mean activity of each run was subtracted from all time points within that 

run, followed by the standardization of the data across all runs. We chose to forgo smoothing and 

Wordlist 

1. ballen 8. kameel 15. ogen  22. treinen  

2. bellen 9. kersen  16. paarden 23. uilen  

3. bijlen 10. krukken  17. palen  24. vingers 

4. bloemkool  11. lepel 18. peren 25. vlaggen  

5. bogen  12. molen  19. stoelen 26. vogels  

6. brillen  13. muggen  20. taarten 27. wielen  

7. dolfijn 14. negen  21. tollen 28. zagen 
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instead fully leverage the spatial resolution of our data in order to preserve fine-scale distinctions in 

word activity potentially crucial for our investigation (Dimsdale-Zucker & Ranganath, 2018; 

Kriegeskorte et al., 2006; Zhang et al., 2020).   

Representational similarity analysis  

RSA was performed separately for the sensorimotor cortex, the cerebellum and the superior 

temporal area. To identify these ROIs within the individual subject space, cortical surface 

reconstructions were generated from the anatomical images, and ROIs identified using the Desikan-

Killiany atlas as a parcellation scheme (Desikan et al., 2006; FreeSurfer; labels: sensorimotor cortex - 

left and right precentral cortex, left and right postcentral cortex; cerebellum - left and right cerebellum, 

superior temporal area - left and right superiortemporal cortex, left and right temporal pole). Voxels 

within each ROI were further filtered for their task-relevance, with the aim to minimize the influence 

of noise and irrelevant neural activity. Achieving this involved forming a general linear model (SPM), 

with a single task regressor and global mean regressor for each run. The task regressor, representing 

the pronunciation of all 28 words, was convolved with a standard hemodynamic response function. To 

account for pronunciation-related motion artifacts, we additionally introduced regressors that 

modelled the first two volumes of each trial. The implicit masking threshold was set at 50%. The final 

t-values obtained from the analysis were used to identify the voxels with the strongest-task association, 

with the upper 10% of voxels within an ROI being selected for the representational similarity matrix 

(RSM) calculation. In absolute numbers, on average 789 voxels within the sensorimotor cortex, 1429 

voxels within the cerebellum and 340 voxels within the superior temporal area were included in the 

analyses. An example for the distribution of selected voxels per ROI can be viewed in Figure 2.   
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Figure 2. Subject Example of Voxel Selection within each ROI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Displayed is a subject example of the task-association based voxel selection within the sensorimotor cortex (first row; 

selected voxels in red) the cerebellum (second row; selected voxels in green) and the superior temporal area (third row; 

selected voxels in blue). Voxel distributions are presented from a coronal (first column), sagittal (second column) and axial 

(third column) perspective, with viewpoint locations per ROI being indicated by green lines.  
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A subject’s RSM was computed by correlating the activity pattern of all trials with each other 

(using Pearson’s correlation), Fisher Transforming the resulting coefficients and averaging across those 

describing the same word pairs, while leaving out comparisons of trials from the same run. The 

averaged similarity values were then arranged in a 28 by 28 matrix, where each cell represents the 

comparison between two words. Lastly, group-level RSMs were obtained by averaging across all 

individual RSMs per ROI.  

Data quality across the sample was evaluated by inspecting the respective RSMs for a visible 

diagonal (see Figure 3). Since on-diagonal elements represent the average neural similarity between a 

word and its repetitions, high values along the diagonal imply that neural responses to words are 

consistent across runs. And since off-diagonal elements represent the average neural similarity 

between one word and another, increased values within the on- compared to the off-diagonal space 

imply that the variability in neural similarity is at least to some extend driven by word features. Both – 

consistent neural responses and similarity dependent on word features are a prerequisite for making 

subsequent judgments about the dissimilarity between different words. To ultimately determine 

whether the value increase along the diagonal is significantly above zero, one-tailed one-sample t-tests 

on the sample-mean of the on/off-diagonal difference were performed, utilizing IBM SPSS 29 (IBM 

Corp., Armonk, N.Y., USA). Prior to these tests, normality (Shapiro-Wilk test) and the absence of outliers 

was confirmed. The initial alpha level was set at 0.05. However, to account for the familywise error rate 

in multiple comparisons, a Bonferroni correction was applied, resulting in an adjusted significance 

threshold. Follow-up analyses are described within the results section.  
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Figure 3. RSA Configurations  

Note. This figure illustrates the steps taken to compute group-level RSMs per ROI, as described in the Methods section. Activity 

patterns of all trials were derived from word production fMRI data acquired in step 1. Those activity patterns were then 

correlated with one another (step 2), and the resulting similarity values averaged; first across comparisons of the same word-

pair, and eventually across the group (step 3).  
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Results and Follow-Up Analyses 

In order to explore neural similarity between the produced words, group-level RSMs were 

computed per ROI. But before delving into interpretations, data quality was assessed by inspecting the 

plotted RSMs and testing the rise of on-diagonal values for significance. As can be seen in Figure 4 (first 

row), all group-level RSMs exhibit consistently low correlation coefficients, while also lacking a visible 

diagonal. The latter impression is in line with t-test outcomes on RSMs computed from sensorimotor 

cortex [Table 2: M = .010, SD = .019, t(10) = 1.831, p = .048] and cerebellum activity [Table 2: M = .003, 

SD = .012, t(10) = .798, p = .222], but contradicts outcomes describing the superior temporal area RSM 

[Table 2: M = .014, SD = .019, t(10) = 2.50, p = .016]. These findings suggest the presence of word 

feature sensitivity within the superior temporal area, and its absence within the other ROIs. Note 

however that the mean on-diagonal value within the superior temporal area RSM increased on average 

by only .014. The generally low values along the diagonal in all RSMs suggests that word-related activity 

patterns are considerably inconsistent across all ROIs.  
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Figure 4. Group-level RSMs Computed from Word-Production fMRI Data; Separated by ROIs 

 

Note. This figure displays all group RSMs, derived from activity within the sensorimotor cortex (SM; first RSM column), the 

cerebellum (CER; second RSM column) and the superior temporal area (STA; third RSM column). RSMs were computed from 

word-pronunciation data without additional corrections (first RSM row), corrected for noise (second RSM row), and corrected 

for motion (third RSM row). The numbers along the RSM axes indicate the words in comparison (corresponding words can be 

identified within Table 1). Each cell represents a coefficient describing the word-pair similarity. Coefficient values are indicated 

in colours, with the colour-to-value mapping depicted in the colour ramp in the lower right corner. Red stars next to the upper 

left corner of each RSM symbolize a significant mean increase in on-diagonal compared to off-diagonal values. This is the case 

for the RSM computed from uncorrected superior temporal area activity (C), as well as the RSMs computed from noise-

corrected sensorimotor (D) and superior temporal area (F) activity.  
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Noise Exclusion  

The low correlation coefficients along the diagonal of our group-level RSMs point towards 

factors considerably interfering with the word-related BOLD responses. To eliminate these unknown 

noise sources, functional data underwent correction based on white matter activity – a signal assumed 

to be devoid of task-related activity so that artifact-related activity can be extracted. The white matter 

space itself was defined using the FreeSurfer parcellation according to the Desikan-Killiany atlas (labels: 

white matter space - left & right white matter space), and then eroded with a 3D cube-shaped 

structuring element (side length = 3 voxels). Run activity recorded from this space was submitted to a 

principal component analysis. The resulting components were then regressed out of the functional 

data of that respective run. To prevent the exclusion of task-relevant activity, only so many components 

were selected for the regression that they would still collectively account for less than 0.35 of the 

variability within the task-related regressors.  

 Regressing out white matter components changed the RSM landscape slightly but did not lead 

to notably higher correlation coefficients or visually more prominent diagonals (Figure y). T-test on the 

mean on/off-diagonal differences did indeed not reveal a diagonal within the RSM computed from 

cerebellum activity [Table 2: M = .002, SD = .015, t(10) = .466, p = .325], but confirmed their presence 

now not only within the superior temporal area RSM [Table 2: M = .020, SD = .023, t(10) = 2.914, p = 

.008] but also the sensorimotor cortex RSM [Table 2: M = .014, SD = .012, t(10) = 3.868, p = .002].  

Cross-Validating RSA Configuration with Gesture-Formation fMRI Data 

Since our RSM configuration is rather unconventional, the suspicion arose that the adjusted 

implementation may be the reason for our low on-diagonal values. To cross-validate our approach, we 

applied it to a dataset, obtained and preprocessed similarly to our own. fMRI recordings were this time 

acquired from one subject, producing 20 different gestures repeatedly over 10 runs. Other 

methodological distinctions were the field of view (FOV = 226.462 AP x 52.500 FH x 184.000 RL mm³), 

left-sided instead of bilateral motion and the analysis being merely focussed on the right sensorimotor 
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cortex. The RSM computed from this data was visually and statistically inspected. Though since the 

experiment only involved a single subject, a permutation test would now serve to determine whether 

there was a significant rise in on-diagonal values. This involved reshuffling condition labels, reordering 

RSMs accordingly, and calculating mean differences in these newly arranged RSMs. Iterating the 

procedure 1000 times generated a distribution of mean differences under the null hypothesis, and 

allowed to determine the proportion of these mean differences being greater than or equal to the 

observed difference.  

The computed gesture RSM displayed higher correlation coefficients along the diagonal 

compared to word RSMs, but also off-diagonal elements (see Figure 5). This impression was 

substantiated with the outcome of the permutation test [M = .0720, p = .000]. Thus, even when working 

with a limited sample size, our methodology appears to be appropriate – at least for analysing gesture 

data. 

Figure 5. RSM Computed from Gesture-Formation fMRI Data 

  

Note. This figure displays an RSM derived from the 

BOLD activity recorded within the right sensorimotor 

cortex, in response to gesture-formation. The red star 

next to the upper left corner of the RSM symbolizes a 

significant mean increase in on-diagonal compared to 

off-diagonal values.   
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Assessing and Controlling for Head Displacement  

What may have caused the different RSA outcomes for word and gesture data is the presence 

of pronunciation-related movements during word data acquisition. These movements may induce head 

displacements which, once reaching a certain magnitude, will render voxel activity patterns before and 

after pronunciation non-comparable. To assess the severity of head displacements for both datasets, 

we first reconstructed the scanner coordinates of each voxel from motion parameters. Coordinates at 

each time point were then compared with those three timepoints further. The differences were 

subsequently transformed to distances and lastly averaged across ROIs, trials, runs and subjects, to 

obtain the distance change between volumes for an average trial. Plotting these averaged distances 

revealed more pronounced shifts in head position during word compared gesture data acquisition. 

Furthermore, a plateau at the 9th comparison of the word data plot suggests that subjects tend to move 

during word production (volume 1 and 2) without returning to their original position afterwards 

(volume 3).  
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Figure 6. Head Position Change; Averaged by Trial, Run, ROIs and Subjects 

 

 

 

 

 

 

 

 

 

Note. This graph displays the head position change during word data (red line) and gesture data acquisition (blue line). Plotted 

are the distances (y axis) between positions at each volume and those assessed three volumes further (x axis), averaged across 

trials, runs, ROIs and - for the word dataset - across subjects. The shaded area surrounding the word plot (red line) represents 

the standard error of the group mean at each comparison. The graph indicates much more pronounced shifts in head position 

during word compared gesture data acquisition. Furthermore, the word plot trajectory suggests a peculiar distance change 

throughout and across trials: The distance starts high at the 1st to 4th volume comparison, is slightly increased at the 2nd to 5th 

comparison, then rapidly decreases to almost 0 for the next 4 comparisons until rising again at the 7th to 1st and 8th to 2nd 

volume comparison (with the 1st and 2nd volumes being those obtained during the follow-up trial). The two peaks within the 

word plot can be explained with head motion caused by word pronunciation. The plateau at the 9th comparison, suggests that 

subjects do not return to their initial head position after pronouncing a word.  

 

In an attempt to avoid the comparison of trials during which head positions diverged too much, 

only trials pairs with an ROI-averaged divergence of less than a voxel size (1.586mm) were included in 

the analyses. To obtain the divergence values, we first averaged scanner coordinates per voxel across 

the volumes 3 to 9 of each trial and compared them across trials. The resulting trial differences were 

eventually transformed to distances. 15.06% of all word-pairs (across runs and subjects) exhibited 

distances that surpassed the threshold and were consequently excluded from the analysis.  

To additionally exclude motion-related trial mean changes from the analysis input, functional 

images were replaced by maps representing the trial-by-trial task-following of each voxel: The maps 
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were generated through a regression analysis conducted on the 3rd to 9th volumes of each trial (the 

first two volumes were excluded to avoid potential confounding with motion). Resulting regression 

maps per trial depicted to which extend the activity of each voxel follows the shape of a hemodynamic 

response function. Beyond their use for computing RSMs, regression maps were also employed to 

replace the beta t-maps within the voxel selection procedure, since their characteristic to overlook 

motion-related trial mean changes offers enhanced selection accuracy. The new t-maps were 

calculated by conducting a t-test on the regression coefficients across trials. As before, the upper 10% 

of voxels with the highest absolute t-values within each ROI were selected for RSA.  

Resulting RSMs appeared to have overall attenuated coefficients (see Figure 4). T-tests 

performed on the on/off-diagonal difference did not identify an increase of on-diagonal values within 

any of our ROIs [Table 2: sensorimotor cortex - M = .002, SD = .006, t(10) = 1.164, p = .136; cerebellum 

- M = .002, SD = .006, t(10) = 1.261, p = .118; superior temporal area - M = .003, SD = .009, t(10) = 1.373, 

p = .100].  

Discussion 

In this study, we investigated the similarity distribution of word-production fMRI data using 

RSA. Group RSMs computed from the sensorimotor cortex, the cerebellum and the superior temporal 

area, indicated overall low neural similarity between words and their repetitions across runs. Moreover, 

only within the superior temporal area were neural responses to word repetitions more similar to each 

other than to those of different words. A follow-up noise correction based on white matter activity had 

little effect on these RSM landscapes; except for the significant similarity increase for word repetitions 

now being not only present within the superior temporal area but also in the sensorimotor cortex. Our 

findings suggest that in both ROIs, neural similarity varies according to word feature similarity. 

However, since the detected increase is of small magnitude, neural similarities between word 

repetitions remain low across ROIs. We thus conclude that our words did not evoke consistent neural 

responses within any of the ROIs.  
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To address concerns about our methodology, we cross-validated RSA configurations using a 

gesture dataset. The resulting RSM exhibited the desired similarity distributions, implying increased 

consistency in neural responses, with the similarity between them being driven by gesture features. 

The differential suitability of RSA for word and gesture data could be attributed to the presence of 

pronunciation-related movements during word data acquisition. Assessments of head displacements 

indeed revealed more severe head position changes during word compared to gesture data acquisition. 

Subsequent motion corrections, including trial-pair exclusion and regressing out trial means, only 

attenuated similarity values within the RSMs, to the degree that t-tests could not detect a similarity 

increase for word repetitions within any of the ROIs. Thus, motion artifacts do either not explain the 

observed low similarity values for word repetitions or are not fully accounted for. Given that activity 

patterns across runs appear to remain rather inconsistent, independent of extensive noise and motion 

correction, any further interpretation of word similarities is deemed invalid. 

Since it is not common practice for RSA studies to publish their neural RSMs, our ability to 

directly compare results is limited. Instead, we will focus on the frequently reported correlations 

between neural and feature-based similarity distributions, as well as their implications, in order to 

relate our findings to existing literature. For instance, Bailey et al. (2021) searched within various ROIs 

– including the sensorimotor cortex and superior temporal area - for the phonological representation 

of 30 overtly pronounced words. However, none of the ROIs would exhibit word-related activity 

patterns whose similarity varied according to phonological similarity. As past studies have repeatedly 

confirmed the representation of phonological information within several of the investigated ROIs (e.g., 

Schomers & Pulvermüller, 2016), Bailey et al. (2021)’s null results may instead be explained by the same 

neural inconsistency we had encountered within our dataset. Zhang et al. (2020)’s findings, on the 

other hand, suggests no such complications. 19 subjects pronounced 16 different syllables during 

functional data acquisition. As hypothesised, similarity between syllable-related activity varied in 

motor, somatosensory and auditory regions depending on articulatory similarity, as well as in auditory 

regions depending on phonetic similarity.  
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A distinction between the studies, that might explain the varying success of RSA application on 

language-production fMRI data, is the stimulus length. While Bailey et al. (2021) let subjects pronounce 

5 to 10 letter words, and our study employed two-syllable words, Zhang et al. (2020) focussed solely 

on one-syllable pronunciations. Since fMRI’s low temporal resolution leads to neural responses being 

captured as averages across a certain period, longer utterances may introduce a broader range of 

speech features during each period, making words harder to distinguish at the neural level than 

syllables. This reasoning also aligns with our observations regarding the differential suitability of RSA 

for our word and gesture data: Just like syllables, gestures involve shorter and simpler movement 

sequences than words, potentially making them more discernible in the brain.  

Despite the use of short stimuli, Carey et al. (2017) reported findings similarly puzzling to those 

of our and Bailey et al. (2021)’s study. They examined the sensorimotor cortex and anterior cerebellum 

for articulatory representations of four overtly pronounced vowels. In neither ROI did the similarity 

between vowel-related activities vary according to articulatory similarity, contrasting observations on 

articulatory representations within the sensorimotor cortex (e.g., Salari et al., 2019; Zhang et al., 2020). 

The success of RSA application might therefore not only be influenced by the stimulus length, but also 

the impact of motion artifacts. Accordingly, while the subject in the gesture dataset minimally altered 

their head position during acquisition, subjects in the word dataset displayed extensive head 

displacements, likely attributed to pronunciation-related movements. Bailey et al. (2021) confronted 

similar issues, resulting in the exclusion entire runs. And although not explicitly stated, Carey et al. 

(2017)’s data could have been affected by motion too. In all three cases, motion correction post-

acquisition may not have been sufficient to eliminate motion artifacts from the data. Introducing 

additional measures at the time of acquisition, like comfortable head immobilization (Gracco et al., 

2005), could potentially address this issue. A paradigm repeatedly being used in fMRI studies to 

mitigate speech-related motion artifacts (e.g., Achim et al., 2021; Correia et al., 2020; Stefaniak et al., 

2022) is sparse temporal sampling. Motion during scanning can lead to repeated excitation of certain 

regions, leaving others unstimulated. The variation in excitation can impact later scans. Sparse temporal 
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sampling intends to avoid this differential spin history by pausing image acquisition during motion 

periods (Gracco et al., 2005).  

Besides stimulus length and pronunciation-related head displacements, our voxel selection 

method may have been another contributing factor to an incoherent RSA output. The number of voxels 

included in our RSM computations range from 340 to 1429, depending on the ROI. Forming activity 

patterns from such big samples carries the risk of considering noisy voxels. Many studies thus further 

reduce their sample either through a searchlight, where only 11 to 30 adjacent voxels are examined at 

a time (Bailey et al., 2021; Carey et al., 2017; Waters et al., 2021), or - in case of Zhang et al. (2020)’s 

study - by choosing smaller sub areas containing an average of 265 voxels. Considering the relatively 

dense representation of pronunciation-related activity within the sensorimotor cortex (e.g., Tourville 

et al., 2019), and clear-cut functional division within the superior temporal area (e.g., Bhaya-Grossman 

& Chang, 2022), the exploration of a more focused voxel selection strategy may be worthwhile. An 

alternative approach to limit the influence of noisy voxels on RSM landscapes may be voxel weighting. 

According to Kaniuth and Hebart (2022), attributing equal importance to all voxels may lead to an 

underestimation of the informativeness of RSMs. To unveil their potential, one can reweight voxel 

contributions depending on their importance in trial distinction. This approach essentially adopts the 

strategy of some multivariate linear decoding strategies, where the focus lays on data channels that 

carries the signal of interest.  

 A last factor that may have affected the RSM landscape and certainly limited the exploration 

of alternative explanations for our findings, is the number of repetitions. While the gesture dataset 

comprises 10 repetitions, the word dataset features only three. This imbalance was compensated for 

by forming group RSMs, uniting overall more repetitions (3 x 11 subjects) than the gesture RSM (10 x 1 

subject). Nevertheless, group RSMs computed from the word dataset would not exhibit the same 

desired similarity distribution displayed in the gesture RSM. It is debatable whether this is due to 

gesture-related activity being more consistent than word-related activity, implying that the word 

dataset would need many more repetitions to extract similarly robust activity patterns. Notably, at the 
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syllable level, already three repetitions were sufficient for forming sensible similarity distributions 

(Zhang et al., 2020). One way or the other, incorporating additional repetitions would improve our 

understanding and accommodation of subject-specific noise sources. Moreover, it would open up the 

possibility to apply classifiers to the dataset, offering further insights into aspects such as data quality 

and appropriate voxel selection.  

Conclusion 

While classification-based methods remain to be the conventional choice in speech BCI 

research to analyze fMRI data, RSA presents a promising alternative. And although our study did not 

yield the expected results of consistent neural responses to words, it highlights potential pitfalls when 

performing RSA on word production fMRI data, and provides valuable suggestions for future studies. 

Those include the careful selection of stimulus length and number of repetitions, proactive measures 

for mitigation of potentially extensive motion artifacts, and a more focal voxel selection.  
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Table 2. One-Tailed One-Samples T-Test Results Assessing the Significance of the Mean On/Off-

Diagonal Difference; Separated by ROIs 

A Tests on RSMs Computed from Uncorrected Word-Pronunciation Data   

 Descriptive Statistics  T-Test Output  Effect Size 

ROI  N Mean 
Difference 

Std. Deviation  t df Significance 
(One-Sided p) 

95% CI  Cohen’s d 95% CI 

 Lower  Upper  Lower Upper 

SM  11 .01030 .01866  1.831 10 .048 -.0022 .0228  .552 -.097 1.178 

CER  11 .00285 .01184  .798 10 .222 -.0051 .0108  .241 -.365 .835 

STA  11 .01425 .01890  2.501 10 .016 .0016 .0269  .754 .065 1.415 

 

B Tests on RSMs Computed from Noise-Corrected Word-Pronunciation Data   

 Descriptive Statistics  T-Test Output  Effect Size 

ROI  N Mean 
Difference 

Std. Deviation  t df Significance 
(One-Sided p) 

95% CI  Cohen’s d 95% CI 

 Lower  Upper  Lower Upper 

SM  11 .01433 .01229  3.868 10 .002 .0061 .0226  1.166 .373 1.926 

CER  11 .00210 .01491  .466 10 .325 -.0079 .0121  .141 -.457 .731 

STA  11 .02017 .02296  2.914 10 .008 .0047 .0356  .897 .161 1.566 

 

C Tests on RSMs Computed from Motion-Corrected Word-Pronunciation Data   

 Descriptive Statistics  T-Test Output  Effect Size 

ROI  N Mean 
Difference 

Std. Deviation  t df Significance 
(One-Sided p) 

95% CI  Cohen’s d 90% CI 

 Lower  Upper  Lower  Upper 

SM  11 .00216 .00617  1.164 10 .136 -.0020 .0063  .351 -.267 .953 

CER  11 .00221 .00581  1.261 10 .118 -.0017 .0061  .380 -.242 .985 

STA  11 .00385 .00931  1.373 10 .100 -.0024 .0101  .414 -.213 1.022 

 

Note. The tables display the descriptive statistics, t-test outputs and respective effect sizes, corresponding to RSMs computed 

from uncorrected word-pronunciation data (A), noise-corrected word-pronunciation data (B) and motion-corrected word-

pronunciation data (C). One-tailed one-samples t-tests compared the mean on/off-diagonal difference to zero. Normality and 

the absence of outliers is assumed. P-values surpassing the Bonferroni-corrected significance threshold (p < .017) appear in 

bold. 

 


