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Abstract

This paper explores the application of machine learning techniques to classify cognitive process-
ing operations using EEG data, contributing to the fields of cognitive neuroscience and machine
learning (ML). The research discussed is rooted in the theory of processing operations, examining
how the brain manages tasks in sequence.

Our methods involve the use of different machine learning algorithms, such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs) and transformer networks, to analyze
complex patterns in electroencephalography (EEG) data. Our methods are supported by a flexible
framework for data collection, processing, and model training, enabling adaptability and integra-
tion of new insights. The goal of this research is to develop a proof-of-concept for finding similar
cognitive processing operations across different contexts, using the supposed onsets of these op-
erations as provided by hidden multivariate pattern (HMP) analysis (Weindel et al., 2024).

We showcase parameter tests aimed at identifying effective strategies for applying machine
learning to EEG data analysis. The results demonstrate the utility of machine learning in decoding
brain functioning and answer some questions around which techniques to use in analyzing EEG
data within the context of this paper.

The results show that all three previously mentioned classes of machine learning models are
able to generalize very well across condition (+ 1% loss in performance), slightly worse across lab
(£30% loss in performance), but do not generalize across task. We believe that these results show
that generalizing across contexts is principally possible and can function as a first step into discern-

ing what makes each cognitive processing operation unique.



Table of Contents

1

Introduction

2 Background

2.1 Models of information processing . . . . .. .. ... ..
2.2 Detecting cognitive processing operations in neuroimagingdata . . . . ... ... ...
2.3 Preprocessing of EEG data for machinelearning . . . . . .. ... ... ... .. .. ...
2.4 Machine learning appliedtoEEGdata . . . . .. .. ... . . .. ... o
2.5 Generalization in machine learning forEEGdata . . ... ... ... ... ... .....

2.6 Featurevisualization . . . . . . . . . e

Methods

3.1 Datagathering. . . . . o o e e e e
3.2 Models . ..
3.3 Performance . . . . ..
3.4 Validation of (hyper)parameter choices . . . .. .. ... .. .. . . ..
3.5 Generalization . . . . . . L e

3.6 Featurevisualization . . . . . . . . . e e

Results

41 Performance . . . . . . .
4.2 Validation of (hyper)parameter choices . . . . . . . . .. ... . . . . . .
4.3 Generalization . . . . . L e

4.4 Featurevisualization . . . . . . . . e
Discussion
Conclusion
References

Model definitions

AT Base . . . . e
A2 Topological . . . . . . . e e
A3 Topological convolution . . . . . . .. . .
Ad DEEP . . .
A5 LSTM o e
A6 GRU . . o

A7 Transformer . . . . . e e e e e

10
10
11
12
13
16
18

19
19
24
26
27
29
29

30
30
32
37
39

41

45

46



B Additional figures
Normalization (CNN)
B.2 Performance (SAT1, 500 Hz)

B.3 Generalization across conditions

B.4 Generalization across labs & task

Feature visualization

60
60
61
61
62



List of Figures

1

10

Graphical representation of a convolutional neural network (Afshine Amidi & Shervine
AMidi, Nud)) . o e e 14
Graphical representation of arecurrent neural network. At each time point the weights

in the internal state (marked RNN) are updated, resulting in an output for that point. 15
Expected processing operations across different labs, task, and conditions visualized.
Lengths not representative of reality, EEG data used as visual aid. UvA: Universiteit

van Amsterdam, AMU: Aix-Marseille Université, CMU: Carnegie Mellon University, PDM:
Perceptual decision-making, AR: Associative recognition . . . . . . ... ... ... ..., . 20
Combined electrodes in SAT and AR experiments, the color red denotes an electrode

that occurs in the SAT electrodes but not in the AR electrodes. The reverse did not

Probability distribution of transition event timings for a single trial, dashed vertical
line denotes the maximum probability time sample. Atthe top avisual representation
of processing operation segmentation is added, colors are chosen to be similar to
FigUre 3. . . . e e 23
Layout of electrodes in a sparse 3-D formulation. . . . .. ................. 28
Results of performance test on SAT2, 100 Hz dataset. The GRU model performs best
overall on this dataset. Left panel: accuracy/F1-scores for each classifier type. Right
panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) dis-
playing the pairwise difference between classifiertypes. . . . . ... ... ... ... .. 31
Results of normalization parameter test. Normalizing to the range [—1, 1] is optimal.
Left panel: accuracy/F1-scores for each normalization method applied. Right panel:
difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying
the pairwise difference between normalization methods. . . . .. ... ... ... ... 32
Results of preprocessing parameter test. Using unprocessed data does not decrease
performance. Left panel: accuracy/F1-scores for the preprocessing methods. Right
panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) dis-
playing the pairwise difference between preprocessing methods. . . .. ... ... .. 34
Results of sampling frequency parameter test. Some differences left out since com-
paring across model type and sampling frequency is not informative. GRU models
improve more by increasing sampling frequency. Left panel: accuracy/F1-scores for
each sampling frequency and model combination. Right panel: difference matrix (top
half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise difference

between sampling frequency and model combinations. . . .. ... ... ... ... .. 35



"

12

13

14
15

16

17

18

19

20

Results of data formulation parameter test. Adding spatial information to the CNN
model does not increase performance. Left panel: accuracy/F1-scores for each for-
mulation method. Right panel: difference matrix (top half: F1-score (x - y), bottom
half: accuracy (y - x)) displaying the pairwise difference between formulation methods. 36
Generalization across conditions in a GRU model. Model trained and validated on
accuracy condition, tested on speed. The GRU model is able to generalize across
conditions. Left panel: accuracy/F1-scores for each condition. Right panel: difference
matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise
difference across conditions. . . . . . ... L 37
Generalization across labs & tasks in a GRU model. The GRU model is somewhat
able to generalize across labs and not across tasks. Left panel: accuracy/F1-scores
for each dataset. Right panel: difference matrix (top half: F1-score (x - y), bottom half:
accuracy (y - x)) displaying the pairwise difference across datasets. . .......... 39
Integrated gradients visualization for the transformer model. . . . . .. ... ... ... 40
Interpolated model attention over stage duration for the transformer model. Y-axis
zoomed in compared to CNN and transformer, original found in AppendixC.3 . ... 40
Results of normalization parameter test on CNN model. Normalizing to the range
[—1,1] is optimal. Left panel: accuracy/F1-scores for each normalization method ap-
plied. Right panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy
(y - x)) displaying the pairwise difference between normalization methods. . . . . . .. 60
Results of performance test on SAT1,500 Hz dataset. . . ... ... ........... 61
Generalization across conditions in a CNN model. Model trained and validated on
accuracy condition, tested on speed. The CNN model is able to generalize across
conditions. Left panel: accuracy/F1-scores for each condition. Right panel: difference
matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise
difference between conditions. . . . . . ... Lo L 61
Generalization across conditions in a Transformer model. Model trained and vali-
dated on accuracy condition, tested on speed. The transformer model is able to gen-
eralize across conditions. Left panel: accuracy/F1-scores for each condition. Right
panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) dis-
playing the pairwise difference between conditions. . . .. ... .. ........... 62
Generalization across labs & tasks in a CNN model. The CNN model is somewhat
able to generalize across labs and not across tasks. Left panel: accuracy/F1-scores
for each dataset. Right panel: difference matrix (top half: F1-score (x - y), bottom half;

accuracy (y - x)) displaying the pairwise difference across datasets. . . ... .. .. .. 62



21 Generalization across labs & tasks in a Transformer model. The CNN model is some-
what able to generalize across labs and not across tasks. Left panel: accuracy/F1-
scores for each dataset. Right panel: difference matrix (top half: F1-score (x - y),
bottom half: accuracy (y - x)) displaying the pairwise difference across datasets.. . . . 63

22 Integrated gradients visualization forthe GRUmodel. . . . ... ... ... ... .... 64

23 Interpolated model attention over stage duration for the GRUmodel. . . . . . ... .. 64

24 Integrated gradients visualization forthe CNNmodel. . . . ... ... ... ... .... 65

25 Interpolated model attention over stage duration for the CNN model.. . . . . ... .. 65

26 Interpolated model attention over stage duration for the transformer model. . . . . . 66

List of Tables

1 Performance of baseline classifiers compared to models from the paper on the SAT2
100 Hz and SAT1 500 Hz datasets. Bolded numbers indicate the highest performance
metrics. Dashes represent repetition of the above column. . . . . ... ... ... ... 31

2 Performance metrics of normalization parameter test (GRU). Bolded numbers indi-
cate the highest performance metrics. . . ... ... ... . .. . .. . . . .. 33

3  Performance metrics of preprocessing parameter test. Bolded numbers indicate the
highest performance metrics. . . . . . . . . . . . e 34

4  Performance metrics of sampling frequency parameter test. Bolded numbers indi-
cate the highest performance metrics. . . ... ... ... ... . .. . . . . ... 35

5  Performance metrics of data formulation parameter test. Bolded numbers indicate
the highest performance metrics. . . . . . . . .. .. . . 36

6  Performance metrics of models generalized across conditions. Bolded numbers in-
dicate the highest performance metrics. Dashes represent repetition of the above
column. . . o 38

7 Performance metrics of models generalized across lab (SAT1) and task (AR). Bolded
numbers indicate the highest performance metrics. Dashes represent repetition of
theabove column. . . . . . . . . e 39

8 Performance metrics of normalization parameter test (CNN). Bolded numbers indi-

cate the highest performance metrics. . . . .. ... ... .. . . . . . o .. 60



1 Introduction

What goes on in the brain has intrigued science for a very long time, as early as 1868 Donders
introduced reaction time (RT)-based experiments (Donders, 1868), laying the groundwork of what
is now known as cognitive science. Donders’ ideas led to many new insights and paths of research.
Since the cognitive revolution in the 1950s (Miller, 2003), the field of cognitive science has focused
increasingly on what drives the brain and which internal processes guide cognitive functioning. Ad-
vances in neuroimaging techniques, along with statistical and computational methods to process
data coming from neuroimaging experiments, have led to greater functional understanding of the
brain and cognition.

There are many theoretical proposals that assume cognition can be understood in terms of
discrete cognitive operations that unfold sequentially through time. These proposals are all based
on Donders’ method of subtraction. Suppose an experiment where one variable differs, creating
an additional cognitive operation. If we then subtract the control condition reaction times from the
condition with the additional cognitive operation, we end up with the time it takes for that added
operation to execute.

The method of subtraction is implicitly present in many works, such as Miller's theory on infor-
mation processing (Miller, 1956), Broadbent's filter model of attention (Broadbent, 1958), Atkinson
& Shiffrin's multi-store model (Atkinson & Shiffrin, 1968), Sternberg's method of additive factors
(Sternberg, 1998), and Zylberberg's human turing machine (Zylberberg et al., 2011). Indirect evi-
dence for these models and methods has been provided in the form of experiments that validate
their predictions. It is also explicitly modelled in cognitive architectures such as Soar (Laird, 2019)
and ACT-R (Anderson, 2007), again validated through experiments compared with model predic-
tions.

These approaches all require theorizing about the cognitive operations under consideration.
This leaves room for error and may not be desired, for example in the case of individual differ-
ences, where different individual strategies may introduce additional operations, or skill learning,
where an operation may shorten in duration or disappear as the individual grows more skilled.
In this paper, we propose a novel method to directly identify cognitive operations based on their

neurophysiological signature. Conceptually, the idea is as follows:

1. ldentify onsets of cognitive operations in a task.
2. Learn the neurophysiological signature of a cognitive operation.

3. Identify those signatures in unseen data.

Here, we discuss a proof-of-concept that implements these steps. We include gathering and
preparing data, selecting methods from the machine learning literature, and visualizing what a
model has learned about the cognitive processing operation. Firstly, we introduce the foundation

of this research, determining cognitive processing operations through neuroimaging techniques.



Despite substantial progress in unraveling the mysteries of the brain and cognition through
neuroimaging techniques, considerable gaps remain in our understanding of the neural mech-
anisms underlying complex cognitive processes like learning, recall, and attention. One cognitive
framework offering promising insights into this domain is the theory of processing operations. This
theory postulates that a series of partially serial operations are the neural foundations of cognitive
tasks (Anderson, 2007; Newell, 1994; Zylberberg et al., 2011). Processing operations have been
integral to models of information processing like ACT-R (Anderson, 2007) and Soar (Newell, 1994).
Neural correlates of processing operations in functional magnetic resonance imaging (fMRI) data
have been found in (Anderson et al., 2008; Borst & Anderson, 2013).

Existing research within this field has mostly operated at a temporal resolution of 0.1 seconds,
aligning with Newell's cognitive band (Newell, 1994). Studies examining processing operations
through neuroimaging data have observed that each operation is characterized by a distinct peak
of neural activity, or an ‘event’ (Anderson et al.,, 2016; Borst & Anderson, 2015, 2021).

Despite extensive research in separate domains—cognitive processing operations, machine
learning, and neuroimaging data analysis—there has been an absence of studies merging machine
learning with cognitive processing operations. We bridge this interdisciplinary gap by addressing

the central research question:

To what extent can machine learning models accurately classify cognitive processing
operations, and how generalizable is such a classifier across different contexts or pop-

ulations?

Through the integration of machine learning techniques with the framework of cognitive pro-
cessing operations, this paper contributes to the ongoing effort to unravel the complex interplay

of neural and cognitive processes.
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2 Background

The exploration of the human mind has always been of great curiosity and interest to the sci-
entific community. Cognitive science offers a unique understanding of mental processes and the
neural mechanisms underlying them. Central to cognitive science is studying how information is
processed by the brain and how these processes can be understood and modelled through com-
putational models. This paper dives into two branches of cognitive science: models of information
processing, and cognitive processing operations. These domains are interconnected and together
provide a comprehensive framework for examining the topics that are relevant to our paper. Within
this context, we will also explore four other topics essential to the research question: preprocess-
ing of EEG data for machine learning (ML), ML applied to neuroimaging data, generalization in ML

for EEG data, and feature visualization.

2.1 Models of information processing

The exploration of models of information processing in this section supports viewing cognition
as an information processing system. The models that will be discussed transform this theory to a
framework that allows for deconstruction and analysis of cognitive processes. By modelling cogni-
tion as an information processing system, we gain valuable insights into how the brain processes
information. This understanding is vital for our research since it provides a foundation for inter-
preting and analyzing EEG data.

Models of information processing also shed light on the mechanisms underlying cognitive oper-
ations. This isimportant when investigating more complex cognitive tasks, where multiple process-
ing operations are involved. Understanding these stages helps with developing accurate machine
learning models that can classify and predict cognitive operations from EEG data. In summary,
the study of information processing models not only enhances our theoretical understanding of
cognitive science but provides practical capabilities in applying techniques like machine learning to
neuroimaging data.

We will discuss several models of information processing that introduce foundational ideas
leading to the theory of cognitive processing operations.

Explicitly identifying processing operations in models of information processing started with
Broadbent in 1958, who introduced the filter model of attention (Broadbent, 1958). He proposed
that information processing involves a series of stages, including an early ‘filter’ stage that allows
only certain information to pass, based on physical characteristics. He theorized that the filter stage
is followed by stages that employ a more in-depth processing approach.

In 1968, Atkinson & Shiffrin developed the Atkinson-Shiffrin, or multi-store model which pro-
posed a series of stages that information passes through in memory, including sensory, short-term,
and long-term memory (Atkinson & Shiffrin, 1968). The sensory memory is where information en-

ters through the senses, holding information for short periods of time. Short-term memory holds
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small amounts (seven plus or minus two (Miller, 1956)) of information, and was at that time as-
sumed to contain conscious thought processing. Information that is in the short-term memory can
either be forgotten or saved to long-term memory. Finally, long-term memory can be seen as a
permanent storage system with essentially unlimited storage capacity. Information in long-term
memory can be brought back into short-term memory through the process of retrieval.

Following up on the multi-store model, Craik & Lockhart (F. I. M. Craik & Lockhart, 1972) and
Baddeley & Hitch (Baddeley & Hitch, 1974) proposed alternative models of information process-
ing. Craik & Lockhart look more closely at memory. They define three tiers of mental processing,
increasing in depth. The depth affects how well information is remembered. Baddeley & Hitch fo-
cus on the ‘central executive’, which acts like a manager of attention, directing it to particular tasks
depending on where attention is needed.

Skipping a few years ahead, we arrive at the concept of Parallel Distributed Processing (PDP).
This idea was introduced by McClelland, Rumelhart, and the PDP research group in 1987 (McClel-
land et al., 1987). PDP is the first model that suggests that cognitive processes occur in parallel
and are distributed across a network of interconnected units. This idea heavily influenced the field
of Al, specifically machine learning, and started a major shift of research towards connectionism.
Learning in PDP models occurs through changes in the strengths of connections between process-
ing units, or weights. PDP employs Hebbian learning, which involves adjusting weights based on
the correlation of activation between nearby connected units. Complex behavior emerges through
the interaction of many simple units and knowledge can be represented as patterns of activation

over the units.

2.2 Detecting cognitive processing operations in neuroimaging data

Reaction time (RT)-based experiments have since as early as the 19th century (Donders, 1868)
been used as guidelines for modelling human cognition in models of information processing and
in cognitive architectures such as Soar (Laird, 2019) and ACT-R (Anderson, 2007). These cognitive
architectures are defined and validated based on the correlation of their simulation-times with
reaction times of experiments.

But what makes up reaction time? Can we view the cognitive aspect of task performance as
atomic, or can it be broken down into smaller parts? This question has interested cognitive scien-
tists for decades. Many researchers (Anderson et al., 2016; Borst & Anderson, 2015, 2021; Stern-
berg, 1998; Zylberberg et al., 2011) have argued in favor of cognitive processing operations as the
basic unit making up task performance.

Cognitive processing operations serve as the brain’s modular approach to handling tasks and
processing information. In cognitive processing, the brain is seen as processing information in a
sequence of steps. This theoretical framework offers a more nuanced understanding of cognitive

functions.
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Depending on the specific task, the composition of these operations can vary significantly. For
instance, during the initial ‘input’ stage, there can be a wide array of sensory inputs, whether au-
ditory, olfactory, or otherwise. As the brain advances to the ‘processing’ stage, the procedures it
employs can differ depending on the intended use of the incoming information. Lastly, the ‘out-
put' stages are dictated by the ultimate action being taken—be it information storage in memory
systems or the initiation of a motor response.

In the last decade, research has been done on finding processing operations in EEG data gath-
ered on humans performing experimental tasks. To illustrate, in (Anderson et al., 2016; Borst & An-
derson, 2015, 2021), Borst and Anderson employ hidden semi-Markov models (HsMM) (Yu, 2010)
combined with multivariate pattern analysis (MVPA) on EEG data. These statistical ML models are
able to model data as a sequence of discrete states with variable duration. Borst and Anderson use
the HsSMM-MVPA method to research the decomposition of reaction time in a specific task into the
processing operations that it contains. The HsSMM-MVPA method is able to locate sinusoidal peaks
(bumps, or events). These events are theorized to occur at the onset of every cognitive processing
operation.

Since 2015, this method has improved and been successfully used to make convincing argu-
ments on which processing operations occur in cognitive experiments. For example, in (Berberyan
et al., 2020, 2021; Borst & Anderson, 2021; van Maanen et al., 2021) the method was used as (part
of) the methodology. HSMM-MVPA is used in these papers for validating the method's performance
or for serving as a baseline of the number and length of processing operations which occur in the
experiment.

To apply the HsSMM-MVPA method to EEG data, the Python package HsMM-MVPy (HMP) (Wein-
del et al., 2024) has been developed. HMP offers varying functionality for analyzing neuroimaging
data using the HsSMM-MVPA method, allowing for customization of parameters and visualization
of results.

Using the discussed theory of HSMM-MVPA, we are able to locate the onsets of processing op-
erations with some confidence and theorize about their purpose. With this information we can

attempt to increase certainty about the type of processing operations in EEG data using ML.

2.3 Preprocessing of EEG data for machine learning

An electroencephalogram (EEG), is a noninvasive procedure that records electrical patterns in
the brain (Schomer & Lopes da Silva, 2017). It is an important tool in the field of neuroscience,
offering valuable insights into many aspects of cognition, including cognitive processing operations
and neurological disorders.

The brain is composed of billions of neurons, which communicate through electrical signals.
When groups of neurons send these signals simultaneously, the activity generates electrical fields

that can be detected from outside the skull. EEG measures these fields to create a record of the
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electrical activity occurring in the brain over time.

To gather EEG data, a set of electrodes is attached to the scalp. These electrodes are typi-
cally placed in a standardized arrangement to ensure consistent data collection across individuals
and studies. They measure the voltage fluctuations resulting from ionic current flows within the
neurons of the brain. This information is then transmitted to a computer, where it is graphically
represented as waveforms.

The way EEG data is preprocessed is important to consider, since slight variance in electrode
position or external factors can cause EEG data to be skewed or even unusable. Since electrodes
are placed on the scalp, and not on the brain itself, only about 5% of the actual brain signal is
recorded. In preprocessing of EEG data, three major steps can be identified (Cohen, 2014). Arti-
fact removal, which attempts to remove uninformative information from the data, like eye-blinks
or muscle spasms. Frequency band selection, for most applications, only a part of the recorded
frequencies is relevant. A frequency band can be selected by applying low-pass and/or high-pass
filters. Finally, EEG channel selection can be used in situations where not all channels or electrodes
are informative for the task.

From (Altaheri et al., 2021; A. Craik et al., 2019), it can be seen that about two-thirds of studies
either explicitly mention leaving artifacts in, or do not address the issue at all. The remaining third
is split between manual removal and automatic removal, using techniques such as Independent
Component Analysis (ICA) (Delorme & Makeig, 2004).

For frequency band selection, (Altaheri et al., 2021) cites many studies that experimented with
different frequency filters. Their conclusion is to use either raw EEG signal, or filtering the EEG
signal with a low-pass (below 38 Hz) filter. This conclusion is however made specifically for motor
imagery tasks, which, according to the paper, utilize very low frequencies (0.5-5 Hz). In studies
examined by (A. Craik et al., 2019) about half of the studies employ a low-pass filter at or below 40
Hz. Both reviews mention a lack of studies explicitly aimed at finding out if the performance of an
ML model drops without filtering signal frequencies.

Channel selection is mentioned as an important step in (Altaheri et al., 2021), less so in (A. Craik
et al., 2019). This is because for applications in motor imagery, it helps to consider only those
channels that correspond to motor imagery activation. The authors even show that one motor
imagery-correlated channel is often sufficient for classification. In (A. Craik et al., 2019), channel
selection is mostly disregarded because sufficiently complex models seem to be able to learn from

multivariate relationships between channels.

2.4 Machine learning applied to EEG data
With the large and varied datasets EEG experiments provide, ML seems a prime solution for
some problems in cognitive science. This opportunity seems to be recognized by the field, as (deep)

ML has been applied to varying problems, such as emotion recognition, motor imagery, mental



14

workload, seizure detection, sleep stage scoring, and event related potential detection (A. Craik et
al., 2019).

Varying types of ML have been used on EEG data, Craik et al. (A. Craik et al., 2019) and Altaheri
et al. (Altaheri et al., 2021) provide an overview of recent research in their reviews. They show that
CNNs take up the largest portion of models used at 43%. When looking at studies in motor imagery,
this percentage goes up to 78%. Both reviews mention that this high percentage is partly due to
the proven success of CNNs in other ML problems, and partly due to the accessibility ML libraries
such as TensorFlow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019) provide for CNNs.

Inspired by the ideas of McClelland and Rumelhart (McClelland et al., 1987), artificial neural
networks (ANNs) and specifically CNNs are networks designed to automatically learn spatial hier-
archies of features from input data. CNNs have shown to be highly effective for tasks in varying
fields, such as computer vision, automated driving, healthcare, and robotics. A CNN consists of
convolution layers (see Figure 1), which learn filters to detect certain features in their input. These
are often followed by pooling layers, which reduce the dimensionality of the input feature map, re-
taining the most important information. Deeper CNNs often consist of multiple modules of these
layers, with different parameters. After one or several of these modules, fully connected layer(s)
are used to classify the input. Besides this, it is important to introduce non-linearity into the model
through the activation function. A linear model would only be able to fit to linear relationships in

data, while non-linear models can capture more complex relationships.

P =2, N
‘

I

Input image Convolutions Pooling Fully Connected

Figure 1: Graphical representation of a convolutional neural network (Afshine Amidi & Shervine
Amidi, n.d.)

Besides CNNs, other approaches have also been used successfully. One example is the RNN,
which uses recurrent layers that have backward (or residual) connections (see Figure 2). These
models are commonly used for extracting time-sensitive information with long-term relationships
inthe data. They have been successfully used in machine translation (Cho et al., 2014) and language
models (Mikolov et al., 2011). A problem with larger models is the vanishing gradient problem
(Hochreiter, 1998) where more and more sequential operations cause values and weights in the
network to become smaller and smaller over time, making the network less effective. Long short-

term memory (LSTM) models (Hochreiter & Schmidhuber, 1997) were created to mitigate the van-
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ishing gradient problem. They can be seen as an extension to RNNs and function by maintaining a
sort of memory, capturing information about what has been calculated earlier. This makes LSTMs
better at learning long-term relationships. Finally, gated recurrent unit (GRU) models (Cho et al.,
2014) were introduced as a computationally more efficient version of the LSTM model. The LSTM
and GRU models introduce new ways to decide which information to keep, giving new versions of
the hidden (RNN) cell as seen in Figure 2. The LSTM cell adds three gating mechanisms (Hochreiter
& Schmidhuber, 1997), which learn to decide which information passes through. The forget gate
decides which information to keep from the previous state, the input gate decides which informa-
tion from a new state to store in the current state, and the output gate considers the previous
and current states to decide which information to output. A GRU, in comparison, does not use an

output gate, but only uses gating mechanisms to learn which features to input and forget.

Figure 2: Graphical representation of a recurrent neural network. At each time point the weights

in the internal state (marked RNN) are updated, resulting in an output for that point.

RNNs have also been used as part of an encoder-decoder architecture. These are used in
sequence-to-sequence prediction problems such as machine translation (Cho et al., 2014) and text
summarization (Sutskever et al., 2014). They consist of two models, generally RNNs are used. The
encoder processes the input sequence and summarizes the information into its internal state. The
encoder’s output is a context vector, describing the input sequence. The decoder then uses the
context vector to start generating the output sequence. During generation, the decoder is influ-
enced by every previous step. An extension to the encoder-decoder architecture is the concept of
attention (Bahdanau et al., 2014). Attention helps the model focus on different parts of the input
when generating output. Instead of encoding the input sequence into a single fixed content vector,
the attention model develops a context vector that is filtered differently depending on the output

step.
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Lastly, in (Vaswani et al., 2017), the concept of attention is taken one step further, disregarding
recurrence entirely. The transformer model was initially designed for translation tasks but has
been widely used, recently popularized as the backbone of large language models such as ChatGPT
(Zhao et al., 2023). A transformer model works by embedding the input sequence into a vector
representation, combining this representation with a positional encoding vector. The information
then goes through a familiar encoder-decoder model with an important distinction. Instead of
residual connections, self-attention is used. Self-attention allows each position in the sequence to
attend to all other positions. This mechanism is useful for creating an understanding of the context
and dependencies of sequence items.

Models with convolutional layers have shown most success for spatially informative data, this
is important to consider when formulating input data for such a network. The process is similar to
feature selection for other datasets, since in this step, it is decided what information the network
has access to. The different types of input formulation that have been used are divisible into four
main categories: raw signal values, extracted features, spectral images, and topological mappings.
In (Altaheri et al., 2021), it is shown that formulating EEG data into a topological mapping of time x
height x width outperforms a simpler mapping of time x channels. The height and width dimensions
should correspond to the electrode layout.

There has also been research into using deep learning for automatic denoising of EEG data,
showing promising initial results (H. Zhang et al., 2021). This could help with some of the more

manual steps in preprocessing EEG data.

2.5 Generalization in machine learning for EEG data

Most research that uses machine learning for EEG data focuses on generalizing to a test set from
the same context (Altaheri et al., 2021), this paper aims to find the model that best generalizes
to data from different contexts. Different generalization methods can be employed to improve
generalization performance within the same context and to a different context. We will cover some
of these methods that are most relevant to EEG data.

Choices that are consequential for generalization performance are made as early as the pre-
processing of data. Normalization is important to create a model that learns equally from all nu-
merical features (Santhakumaran, 2011), different techniques can be used depending on the data.
The simplest of these is min-max normalization where the minimum and maximum of the data are
transformed into a lower bound and upper bound, commonly 0 and 1, respectively. All other values
are squashed between the minimum and maximum. Another method that is perhaps more com-
monly used in EEG research is Z-scoring the data, which measures how many standard deviations
are between any data point and the mean of the data and scales the data accordingly.

A common problem in EEG research is a lack of data, which can be partially solved using data

augmentation. Data augmentation is often used in for example image recognition to increase the
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variability and size of the dataset, making the model more robust. In (Lashgari et al., 2020), the
authors show that different data augmentation techniques offer performance improvement over
the baseline performance, tested on EEG data. Examples include noise addition, which adds some
semi-random (often Gaussian) noise to the data, and using a generative adversarial network (GAN)
that is taught to generate additional training samples resembling the dataset.

Not all ML models are created equal, deciding to add another layer or increasing the amount of
units used in a layer can have a large effect on generalization performance. Careful consideration
of the model architecture based on the complexity of the problem is required to ensure that the
model captures underlying patterns and relationships correctly. Failure to do so means that the
model is unfit to capture these relationships and likely not complex enough. If a model learns the
noise and outliers in a training set instead of general features, we call it overfitted. Preventing
these failures can be done by for example grid search (LaValle et al., 2004) on model architecture
parameters, which finds the best performing configuration by validating performance for each of
the parameter combinations it is given.

After choosing the type of model and deciding on its architecture, there are additional tech-
niques that can increase generalization to a test set, we call these techniques ‘Regularization’. De-
fined by (Kukacka et al., 2017) as:

Any supplementary technique that aims at making the model generalize better, i.e. pro-

duce better results on the test set.

We can examine some of these techniques in turn. Perhaps the easiest to understand method
of regularization is dropout (Srivastava et al., 2014), which randomly (at a provided probability)
drops units from the network during training. This technique essentially simulates an ensemble
network by testing subsets of the main network and combining what is learned from these sub-
sets. A second pair of regularization techniques is L1 and L2 regularization, also known as weight
decay (Schmidhuber, 2015). These techniques both aim to decrease the weights, without losing
information. Both add calculated penalty values to the loss value of the model. L2 regularization
punishes larger weights, which are more likely to be abnormal. L1 regularization decreases all
weights equally. Lastly, there exist also some in-training normalization techniques, batch (loffe &
Szegedy, 2015) and layer (Ba et al., 2016) normalization. These normalization techniques solve the
problem of a changing distribution of layer inputs as the model learns. Batch normalization sets
the mean and variance of layer inputs per-batch. Layer normalization works on a per-sample basis
and calculates the mean and variance over all inputs to a layer. The last method of regularization
that will be discussed is label smoothing (Miller et al., 2020), this method changes the hard (0, 1)
target values to a weighted average of the targets, uniformly distributed across the labels. This

prevents the network from over-fitting to a predominant label class.
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2.6 Feature visualization

Within the context of applying machine learning to EEG data, it is important to look further
than performance metrics. Being able to examine the features learned by the model is critical in
understanding not only the models, but also the cognitive operations that the model is recognizing.
Different types of explanations have been used to make models more interpretable, separable

based on the following taxonomy (Molnar, 2022):

* A model-agnostic method separates the explanation from the machine learning model, no
access to the model's weights is required. These methods can be applied to any model. A
model-specific method works on one model type only.

* A global method describes expected performance averaged over the entire model, a local

method explains individual predictions.

For neural networks specifically, local model-specific methods are often used since the features
a network learns are embedded in its hidden layers and the configuration of its weights. These
local methods are also often more computationally efficient since they can calculate the required
information directly instead of being based on model predictions. We will cover two methods, since
a combination of them is most relevant for feature visualization in EEG machine learning models.

Feature visualization is a method that attempts to reveal information about the features a model
has learned. It does so by finding the input that maximally activates a certain unit, which can be a
single neuron, feature map, or entire layer.

Pixel attribution is often used in image classifier models that tries to explain the prediction a
model makes by attributing importance to each pixel in making that prediction. These methods
are often perturbation-based, making small changes to the input and observing how the model
reacts to those changes. Examples include SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro et al.,
2016).

Specifically for EEG data, feature visualization methods that attribute importance to features
can be used. It is important however to consider the type of data that the feature visualization
method can be used on. Many methods are meant for images and perturb pixel values. These
methods often do not work well with waveform information inherent in EEG data.

A method that works for EEG data is integrated gradients (Sundararajan et al., 2017), this method
calculates the gradients from a carefully selected baseline to the data by considering the path in
feature space from the baseline to the data point. Features, or electrodes, that contribute more to

this path are attributed a higher value.
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3 Methods

In this section, we describe the methodological framework used to determine whether it is pos-
sible to classify cognitive processing operations. Central to our approach is the use of EEG data as
the primary source of information. To dissect this multivariate data, we employed different ma-
chine learning algorithms, including CNNs, RNNs, and transformer networks. Each offers unique
strength in spatial pattern recognition and temporal data analysis. The methods section is orga-
nized as follows: First, we detail the procedures for data gathering and preparation. Then, we
delve deeper into the specifics of each machine learning model employed, explaining choices in
their architecture and the differences that make each model suited to decode patterns in EEG data.
Afterwards, we discuss how we compared the performance of the models to baseline classifiers.
Then, we consider each of the parameter tests that were performed in order to answer ancillary
questions that arose during research. Finally, we examine the methodology applied for testing

generalization across contexts.

3.1 Data gathering

For this paper, we established a flexible data gathering, processing, and model training pipeline,
which can be found at a public GitHub repository (den Otter, 2024). This pipeline was designed to be
easily adaptable to changes in input data or model parameters. This adaptability proved essential
for incorporating new insights and exploring implications.

The primary dataset for our analysis was collected from an experiment on the speed-accuracy
trade-off (SAT1) (Boehm et al., 2014) in perceptual decision-making (see Figure 3, UvA), involving 25
participants. In this task, participants were asked to indicate the direction of motion from a cloud
of moving dots. Participants were instructed to focus on speed in half of the trials, and accuracy
in the other half. The order of speed and accuracy trials was completely randomized. Earlier work
has identified processing operations in this task, which partially overlap across conditions (van
Maanen et al., 2021). The cognitive processing operations were labelled as pre-attentive, encoding,
decision, confirmation, and response, see Figure 3 for a visual representation. In this figure, each
row represents a different context, whether determined by the condition, lab, or task. Each unique
color represents a different cognitive processing operation. The first two rows then represent the
SAT1 experiment, containing the theorized sequential nature of stages within the task. Real data
would contain stages of variable length.

A preprocessed version of this dataset (Weindel, 2021) was used to fit an HMP model. Prepro-

cessing steps included:

+ Bandwidth filtering between 1 and 35 Hz.
+ Artifact removal using ICA (Delorme & Makeig, 2004).
+ Applying autoreject (Jas et al., 2017) to identify and rectify bad epochs.

Both the preprocessed dataset and a new version of the dataset without manual preprocessing
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were used in this paper.

Lab | Task | Condition
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Figure 3: Expected processing operations across different labs, task, and conditions visualized.
Lengths not representative of reality, EEG data used as visual aid. UvA: Universiteit van Amsterdam,
AMU: Aix-Marseille Université, CMU: Carnegie Mellon University, PDM: Perceptual decision-making, AR:

Associative recognition

A second dataset, used to test generalizability over labs, comes from a similar speed-accuracy
trade-off experiment (SAT2) (Weindel et al., 2021) (see Figure 3, AMU). This dataset was chosen
to test whether the models could generalize to a dataset with the same processing operations,
tested at a different lab. The processing operations are expected to be the same as the SAT1
dataset. In this experiment, 20 participants were asked to discern which of two Gabor patches
(sine wave grating) had higher contrast. Participants were instructed to focus on either speed or
accuracy during the experiment and received feedback on their performance after each trial. The
electrodes in this experiment used the same placement, additionally including 32 extra electrodes.
For the purposes of this paper, these electrodes were excluded.

Apart from the difference in experiment design (Gabor patches as opposed to random dot mo-
tion), the SAT2 dataset also included varying force level modifications on the response button. This
was intended to better control for confounding effects of fatigue and learning (Weindel, 2021).
Additionally, the SAT2 dataset manipulated the speed-accuracy condition per-block, instead of a

randomized order.
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The final dataset was used to test generalizability over task contexts and comes from an as-
sociative recognition (AR) experiment (Borst et al., 2013). In this experiment, 20 participants were
asked to remember shown word pairs during the training phase. In the testing phase, three kinds

of word pairs were shown to the participant:

+ Targets, where the exact pair was shown during the training phase.
* Re-paired foils, which contain one word that was shown as part of a pair during the training
phase and one that was not.

+ New foils, which consist of two new words that were not shown during the training phase.

Participants were asked to judge whether word combinations were previously experienced as a
pair.

In an earlier analysis (Borst & Anderson, 2021), HMP was applied to detect processing stages. Six
were found, labeled pre-attentive, encoding, familiarity, memory, decision, and response. See Figure
3, AR for a visual representation. These labels partly overlap with the labels identified for the SAT
tasks, therefore, we predict that a model trained on stages with similar labels in another task will

be able to classify these stages above chance.
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Figure 4: Combined electrodes in SAT and AR experiments, the color red denotes an electrode that

occurs in the SAT electrodes but not in the AR electrodes. The reverse did not occur.

Additional steps were necessary to use the data from the associative recognition experiment,
as the electrode positions differed slightly from the previous experiments. Investigation showed
that each electrode included in the SAT experiments but not in the AR experiment had close elec-

trodes on both sides, meaning that interpolating these signals was feasible. The AR data was also
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mastoid-referenced instead of average-referenced. We interpolated the missing electrodes and re-
moved electrodes that were not present in the AR experiment (see Figure 4) using the MNE-Python

software package (Gramfort et al., 2013). We also average-referenced the AR data using MNE.

3.1.1 Processing

The preprocessed data was used to fit an HMP model (Weindel et al., 2024). We used the
fit_single() method to fit the model since the number of events was known beforehand. The
number of starting points was set to 100 to have a higher chance of finding good event timings.
Default parameters were used for tolerance (0.0001), and max iterations (1000). The width of the
half-sine event to be detected in EEG data was set to 50 milliseconds, and the shape of the gamma
distribution to 2. The fitted HMP model gives us trial-by-trial probability distributions of estimated
event locations. To prepare the data for model training, we took the time sample where the prob-
ability for each individual operation onset is greatest as the ground truth, signifying the transition
event location (see dotted lines in Figure 5).

The EEG data was epoched as part of preprocessing, meaning that each trial starts at stimulus
onset. To prepare this data for use in machine learning models, we have to label it. For every trial,
all samples between stimulus onset and the first observed event are labeled as Operation 1. The
samples between the first and the second observed event are labeled as Operation 2, and so on
until the last operation, which begins at the last observed event and ends at the response time. A
visualization of this can be seen in Figure 5. The order and names of operations are taken from
the literature on the task for which the preprocessing is done. This process results in added labels
for each timestep containing the sequence of cognitive processing operations as a list of words.
Epochs where the maximum probability sample of any onset i occurs later than onseti+1 were dis-
carded, ensuring temporal integrity of the operation sequence. An unordered sequence of events
can occur since HMP only guarantees that the weighted means of the probability distribution are
ordered, not the maximum probability. Finally, the data is split up into separate segments based
on the labels, resulting in a dataset where each epoch is split up into an amount of segments that
equals the amount of expected cognitive operations. Each segment represents a single cognitive

processing operation and is zero-padded to the maximum single sample length in the dataset.
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Figure 5: Probability distribution of transition event timings for a single trial, dashed vertical line
denotes the maximum probability time sample. At the top a visual representation of processing

operation segmentation is added, colors are chosen to be similar to Figure 3.

3.1.2 Training
The next step in the pipeline is made when the dataset is loaded for training. The dataset is

split into partitions based on the participants, ensuring that for any participant that occurs in the
train set, none of their data occurs in the test set. While splitting, the dataset is also optionally
normalized (see Section 3.4.1). Here, normalization is done using information extracted only from
the train set, to prevent information bleeding through from the train set to the test set. Splitting
of the dataset is done in two different ways, the first is a simple train/test/validation split where
60% of participants belong to train, and 20% to both test and validation. This method of splitting
was used for quick iteration and testing different model parameter configurations. K-fold cross
validation was then applied to validate performance. For all parameter tests performed on one
dataset, k was set to the number of participants.

Since the datasets are saved in a sparse manner, any operation that occurs uniquely in one
condition and not in another, is part of the dataset. For example, in the SAT1 and SAT2 datasets,
the confirmation operation is also included as NaN values for trials under the ‘speed’ condition. We
remove all of these trials along with any other trial for which the data is missing, due to for example
electrode malfunction. This ensures that any remaining NaN values are padding values added by
the last step of processing. We replace these by a masking value, to be ignored during training.
Lastly, we shuffle the data to ensure that the model trains on a varying order of participants and
operations. The data is served to the models in batches of 128 segments.

After processing the data and preparing it for training, it is now ready to feed into a model. The
machine learning framework PyTorch (Paszke et al., 2019) was used to create the models. To train,

PyTorch DataLoaders are employed to allow for fast parallel training. Run information is logged to
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event files supported by TensorBoard (Abadi et al., 2015). Class weights are calculated based on
the amount of occurrences of each label and are given to the cross-entropy loss function. When
applicable, the label smoothing parameter was used to regularize model predictions. The NAdam
optimizer is used with weight decay (L2-regularization) when necessary. Training is stopped early
(T. Zhang & Yu, 2005) if validation loss does not decrease for three subsequent epochs, at this
point, the model is very unlikely to improve. After every training run, the epoch with the lowest
validation loss is saved. To decrease variation between runs the random seeds were set before
every run or fold. This was done for the python environment using random.seed(), NumPy using
np.random.seed () and PyTorch using torch.manual_seed().

Training was done on a desktop computer with a single NVIDIA RTX 3090 graphics card and 64
gigabytes of RAM.

3.2 Models

In this section, we introduce the machine learning models deployed to classify cognitive pro-
cessing operations in EEG data. This section provides a comprehensive overview of the models
used, highlighting their differences, functionalities, and the rationale behind their selection for this
paper.

We begin with a detailed description of the CNN models used. This discussion focuses on the
model’s architecture and its ability to discern spatial patterns in EEG data. Following this, we exam-
ine RNN models and their more current variants, containing LSTM and GRU cells. Here, we discuss
how these models’ capabilities in processing sequential data make them particularly suitable for
EEG data analysis, where temporal information plays a significant role. Lastly, we introduce the
transformer model which is a more recent model architecture that encodes sequence information
into internal embeddings and uses attention mechanisms which may prove important to achieve
good generalization across contexts.

Each model's section will introduce their basic definition, some aspects or choices will be ex-
plained later based on parameter test outcomes. Model definitions are included in Appendix A. In
this section, we will often use the term ‘module’, meaning a grouping of layers that can be stacked

on top of each other in a model.

3.2.1 Convolutional neural network

Different variants of a CNN model were used to optimize for varying aspects of the data. The
general reasoning for using a CNN model is to make use of the spatial information present in EEG
data. An important challenge when using CNN models for incomplete data, like images with holes,
or time series where part of the time series is uninformative, is making sure the model does not use
this information (Liu et al., 2018). In this section, we will explain how the CNN models we employed
handle this issue and explain the individual differences among the CNN models.

The base model works on input of shape (batch_size, samples, channels). Al CNN models used
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require adding an extra dimension for the data itself, internally represented as (batch_size, 1, samples, channels).
The base model consists of three modules, each containing a convolution layer, ReLU activation,

and max pooling layer. In the first module, the convolution layer uses partial convolution (Liu et

al., 2018) to ensure the model does not consider the masking values. The output of the final max

pooling layer is then flattened and used in two linear layers, with ReLU activation and dropout in be-

tween. Convolutions in this model apply only to the temporal (samples) dimension, since the input

data does not contain spatial information, meaning that convolutions would be done on spatially

unrelated channels.

To aid in the data formulation parameter test, two other CNNs were created. Firstly the topo-
logical CNN, this model is the same as the base model, except that it works on input of shape
(batch_size, samples, x, y). In this model the convolution still only works on the temporal dimen-
sion. Secondly, the topological convolution CNN was created, which also works on input of shape
(batch_size, samples, x, y). This model includes convolutions over the x and y spatial dimensions.

In the parameter tests where data with a higher sampling frequency was used, deep variants of
earlier models were employed. These have a similar setup, except that they have more modules
and the kernel size of the convolutional layer is greater. These models make use of the higher

temporal frequency and are meant to detect finer-grained patterns in the temporal dimension.

3.2.2 Recurrent neural network

Because RNNs (including LSTM, GRU models) were conceived to find longer-term relationships
in data (Hochreiter & Schmidhuber, 1997), and EEG data is collected over a sequence of time, we
included RNN models in our model comparison. EEG data is both spatially and temporally informa-
tive, but in this case the prediction is that an RNN may perform better than a CNN. Since cognitive
operations are inherently sequential, models that perform well on sequential data could be a better
fit.

Two RNN models were created to classify cognitive processing operations, we decided to focus
on the two more modern variations of an RNN network, LSTM and GRU. RNN models differ from
CNN models by the method they use to determine features. Where CNN models use convolution,
filters, and pooling, an RNN model uses the information in a sequence of information, along with
feedback connections, to learn relationships between different time points. LSTM and GRU models
differ from an RNN in the mechanism they use to decide which information to keep.

The LSTM and GRU implementations are very similar, since they were used to compare the
different RNN units available. They work on input of shape (batch_size, samples, channels), first
masking out the padded values, applying the GRU/LSTM layer, followed by ReLU activation, and
finally two linear layers. The prediction values at the last time sample for each segment are used

to consider the collected internal representation.
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3.2.3 Transformer

A transformer model was created inspired by the work of (Vaswani et al., 2017). The original
transformer architecture was created for sequence-to-sequence modelling in natural language
processing (NLP) tasks. A transformer model consists of an encoder which uses an attention mech-
anism to determine which parts of the input data are important. It embeds input data into embed-
ding space, where a decoder is used to decode the information into another sequence of data. We
expect a transformer model to perform well because of the aforementioned embedding space,
which might improve generalizability across contexts, since a transformer compares within this
space. We have adjusted the existing transformer architecture by removing the decoder part of
the transformer model, creating a model that learns an embedding for incoming information and
classifies based on this embedding. Since transformer models have many hyperparameters which
can greatly impact their performance, we decided to stay as close as possible to proven configu-
rations and leave hyperparameter tuning out of the scope of this paper since we only attempt to
show a proof-of-concept.

The transformer model functions by first truncating segments in a batch, shaped (batch_size, samples, channels)
to the maximum segment length in the batch. We then feed the remaining information through a
fully connected layer, which is added to simulate a feature embedding layer in a traditional trans-
former and converts the sentences into embedding space. This addition should help the model
learn more generalized feature representations. We then add a sinusoidal positional encoding as
described in (Vaswani et al., 2017) to inform the model of the order included in the data. After-
wards a multi-head attention encoder layer receives the data, its output is mean-pooled over the

temporal dimension and decoded into a final classification using a fully connected layer.

3.3 Performance

In this section, we discuss an experiment that tests the performance of the models and com-
pares it to two simple baseline classifiers.

The performance was tested on two datasets, the 500 Hz SAT1 dataset and the 100 Hz SAT2
dataset. These were chosen since they provide two different views of the data. The 500 Hz SAT1
dataset offers more temporal information, whereas the 100 Hz SAT2 dataset provides more train-
ing samples.

We choose two relatively simple classifiers as our baseline, a random forest classifier (RF) (Breiman,
2001), and a support vector classifier (SVC) (Cortes & Vapnik, 1995). These were chosen for being
simple to implement while also being able to learn non-linear relationships. Both RF and SVC use
the default implementations offered by scikit-learn (Pedregosa et al., 2011).

To prepare the data for these classifiers, which do not by default handle 3-dimensional data, we
calculate several numerical features. The mean, standard deviation, minimum, maximum, median

and variance are calculated over the temporal dimension. These features are then aggregated over
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the channels dimension, creating data of shape (batch_size, #channels x # features).
The models and their performance metrics were validated using k-fold cross-validation, where

k equals the number of participants in the dataset used.

3.4 Validation of (hyper)parameter choices

Here, the parameter validation tests that were used to determine which parameters work well
for classifying EEG data within the context of this paper are described. We consider each of the
parameter tests in turn, talking about the setup and hypothesis. These parameter tests were exe-
cuted on a single dataset to find best practices for detecting cognitive operations from EEG using
ML. Performance for each of the parameter tests was validated using k-fold cross-validation, where

k is equal to the number of participants of the experiment used.

3.4.1 Normalization

Machine learning models benefit from having all continuous features in the same numerical
range (Santhakumaran, 2011), meaning that greater numeric values cannot overpower smaller
ones. Even though epoching the data already makes it normalized between [—55, 55|, we expected
the model to perform better at more commonly used ranges like [0, 1], [—1, 1] or Z-scored. Normal-
izing to a different range is done by subtracting the smallest value of the dataset from each data
point, and dividing it by the smallest value subtracted from the largest value. Z-scoring is done by
subtracting the mean and dividing by the standard deviation for each data point. To test which
type of normalization performs best for EEG data, we compared the three discussed methods of
normalization with not normalizing the data at all. The GRU and CNN models were used for this

parameter test, trained on the 500 Hz SAT1 dataset.

3.4.2 Preprocessing

Manual preprocessing is a big part of EEG data analysis. In the case of the SAT1 dataset, indi-
vidual component analysis (ICA) is used to divide the EEG data into components. These are then
manually excluded based on if they include muscle spasms or eye blinks, or other artifacts (Weindel
et al., 2021). If manual preprocessing steps were not necessary in EEG analysis, this would make
a method more widely applicable since no expert is required for manual preprocessing. The goal
of this parameter test is to determine if a model is still able to classify correctly on data that is not
manually preprocessed. The GRU model was used for this dataset, along with a modified version
of the SAT1 dataset, where preprocessing was replicated excluding the manual step of detecting

and removing ICA components.

3.4.3 Sampling frequency
The temporal frequency at which EEG data is gathered differs across experiments. Many anal-

ysis methods downsample EEG data to 100 Hz for reasons of computational feasibility. Since the
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subject at hand is temporal in nature, we expect that using a higher sampling frequency dataset
will result in better performance since more fine-grained temporal patterns can be extracted. To
test this we compared performance of both CNN and GRU models trained on a 100 Hz dataset and
a 500 Hz dataset. The SAT1 dataset was used. The source dataset is 500 Hz, to create the 100 Hz
dataset we first downsampled the EEG data to 100 Hz, then trained an HMP model on the result-
ing data. Finally, we compared performance across the trained models to determine the effect of

sampling frequency on model performance.

3.4., Formulation

The way that data is shaped can have an effect on the performance of a model (Altaheri et al.,
2021), in the case of EEG data the distribution of activity over the scalp may be informative. A CNN
learns from spatial relationships, meaning that the input data should be spatially informative. In
this parameter test, we re-shape the 2-dimensional (samples, channels) data into a 3-dimensional
(samples, z,y) formulation. The positions of the channels within the 2 and y dimension correlate

to the electrode positions on the scalp (see Figure 6).
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Figure 6: Layout of electrodes in a sparse 3-D formulation.

We expect that the CNN model used in this parameter test will perform better when the data
is formulated in 3 dimensions. We compare the base CNN model with a CNN model using 3-
dimensional formulation without convolution over the added dimensions and the same model

with convolution over the added dimensions. The 100 Hz SAT1 dataset was used.
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3.5 Generalization

We will now discuss the methodology used in exploring the generalizability of the different mod-
els across different contexts. We define generalizability in this case as the difference in perfor-
mance of a model that is trained on dataset = and tested on dataset z, versus that same model
tested on dataset y. The context of datasets x and y is what differs, like condition, lab, or experi-
mental task setup.

The initial parameter tests discussed above revealed that the SAT1 dataset was too small for
the transformer model to learn useful features. Therefore, we decided to train the models on
the SAT2 dataset, which is much larger. Firstly we train a model on the SAT2 dataset's accuracy
condition, then we test that model on the speed condition to show generalization across conditions.
Secondly, we train models on the full SAT2 dataset and test the models on the SAT1 dataset and
the AR dataset. This shows generalization across both labs and tasks. Training and testing were
done on 100 Hz versions of the datasets, as the AR dataset is not available at a higher temporal
resolution. When processing the additional datasets, we truncate the samples in those datasets
to the maximum segment length in the original dataset. Additionally, because the transformer
model did not learn well without some regularization techniques added. We set weight decay (L2-
regularization) to 0.001 in the optimizer, and label smoothing to 0.0001 in the loss function. We did

this for all models.

3.6 Feature visualization

To visualize what the models learn, and what, according to the model, makes a processing op-
eration unique, we applied feature visualization to the models. We used the integrated gradients
(Sundararajan et al., 2017) method applied to the test set of a trained model. This gives us the
importance of each channel at each time point for a certain prediction. To more closely inspect
these feature attributions across both dimensions, we introduce two methods to visualize them.
We use the implementation of integrated gradients provided by (Kokhlikyan et al., 2020). We set
the baselines to 0 for every non-masked value as this can also be seen as the ‘no-activity’ value in
EEG data. We calculate 50 gradient steps and use the Riemann trapezoid method as implemented
in (Kokhlikyan et al., 2020).

For the spatial dimension, we take the subset of attributions belonging to a single class and
calculate the activation per time point summed over channels for each segment. The time point
where the summed activation is greatest is selected as the time point that is most indicative of the
prediction. The average of all of these maximally activated time points is visualized as the raw EEG
data and the model attribution at that time. Additionally, these are combined by multiplying the
raw EEG data with the model attribution, creating a visualization showing what levels of EEG data
are important at which location for the model to classify a segment as a given class.

In the temporal dimension, we face the problem of variable length processing operations. To
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circumvent this we linearly interpolate the model attributions for each class and average over these
interpolations to show at what point in a stage the model attention is greatest. To make the inter-

polation more robust, we filter out segments with a length shorter than 3 samples.

4 Results

This section presents the findings from our investigation into classifying cognitive processing
operations using machine learning techniques. We analyzed the obtained EEG datasets to deter-
mine whether a trained classifier is able to recognize similar processing activity across different
datasets. We will begin with discussing the performance of the introduced models compared to
baseline classifiers. Afterwards, we examine the findings from the parameter validation tests and
what their results imply for applying machine learning to EEG data. Finally, we present the gener-

alization results obtained by comparing model performance across datasets.

4.1 Performance

The results of the performance tests show that the model architectures introduced in this pa-
per outperform the selected baseline classifiers. To show differences between the distributions of
performance metrics over folds, we use violin plots. A difference matrix is provided to more closely
inspect the differences in performance between each classifier type. The color blue represents ac-
curacy in both the violin plot and the difference matrix, orange represents F1-score. The difference
matrices are read in two ways, accuracy is read from the x-axis to the y-axis, and the F1-score from
y-axis to x-axis. This method ensures that the intensity of the cell conveys the same meaning across
both metrics. Tables of mean metric values along with their standard deviation are also provided
for exact values.

The results for the 100 Hz SAT2 dataset as shown in Figure 7 show that the GRU model performs
best on this dataset. When compared to the performance results for the 500 Hz SAT1 dataset (visu-
alization of results included in Appendix B.2), we can observe that the SVC, CNN, and transformer
models benefit more from added training samples than a higher temporal resolution. The GRU
model delivers a similar performance on the 500 Hz dataset as on the 100 Hz dataset with more
training samples. This indicates that a higher temporal frequency provides a performance in im-
provement for the GRU model. Additionally, we can see that the GRU models have a more peaked
distribution and a lower standard deviation than any other model, meaning that the variability of

performance over folds is lowest.



31

CLxll 23.698 24.623 w

15.260 16.185 11.240 -

100

7.208

SvVC

21.608

0.925 4.020 -

CNN

T0 H

Metric value (%)

CRIAN 0.961 -1.945

T
GRU

Metric
B Accuracy
I Fl-score

17.825

T T
w S} z =}
o = = o

@ =} o}

Performance change (%)

-3.782 4,743

T
Transformer

50 T T
RF SVC

T T T
CNN GRU Transformer

Classifier type (SAT2, 100 Hz)

Transformer

Figure 7: Results of performance test on SAT2, 100 Hz dataset. The GRU model performs best over-
all on this dataset. Left panel: accuracy/F1-scores for each classifier type. Right panel: difference

matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise difference

between classifier types.

Classifier type Dataset Accuracy F1-Score

RF SAT2,100 Hz 68.57% (SD 3.14) 66.51% (SD 3.41)
SvC - 76.48% (SD 2.49) 74.95% (SD 3.04)
CNN - 90.18% (SD 2.74) 90.21% (SD 2.77)
GRU - 91.14% (SD 2.29) 91.13% (SD 2.29)
Transformer - 86.39% (SD 4.43) 86.19% (SD 4.78)
RF SAT1,500 Hz 66.03% (SD 7.34) 65.02% (SD 8.06)
SvC - 69.72% (SD 5.91)  69.03% (SD 6.52)
CNN - 88.11% (SD 5.82) 88.12% (SD 5.77)
GRU - 91.73% (SD 3.55) 91.72% (SD 3.54)
Transformer - 76.44% (SD 7.66) 76.26% (SD 7.82)

Table 1: Performance of baseline classifiers compared to models from the paper on the SAT2 100
Hz and SAT1 500 Hz datasets. Bolded numbers indicate the highest performance metrics. Dashes

represent repetition of the above column.
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4.2 Validation of (hyper)parameter choices

Here, we report the most important results from each parameter validation test. To show differ-
ences between the distributions of performance metrics over folds, we use violin plots. A difference
matrix is provided to more closely inspect the differences in performance between each parameter

choice.

4.2.1 Normalization

In this parameter test, we attempted to understand how different normalization methods affect
the performance of a classification model on EEG data. We compare the distributions of accuracy
and F1-score metrics across four normalization techniques ‘Control’, ‘0 to 1',*-1 to 1', and ‘Z-score’'.

The results show that the differences are not very large across normalization methods. The
violin plots reveal that the -1 to 1" normalization method, normalizing to the range [—1, 1], generally
leads to higher metric values compared to the control method. The more pronounced peak in the
distribution suggests a tighter distribution of scores. In contrast, the ‘Z-score’ method shows a
broader distribution, indicating more variability in performance.

The same parameter test for the CNN model is included in Appendix B.1, where the results are
similar but show that the ‘0 to 1' method underperforms for the CNN model. These results show
that the normalization method is not something that can be set in stone. When performance is
important, the normalization method should be tested in combination with each dataset and each

model architecture, to find the best performing normalization method under the circumstances.
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Figure 8: Results of normalization parameter test. Normalizing to the range [—1, 1] is optimal. Left
panel: accuracy/F1-scores for each normalization method applied. Right panel: difference matrix
(top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise difference between

normalization methods.
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Normalization method Accuracy F1-Score

Dummy 91.46% (SD 2.78) 91.42% (SD 2.82)
0to1 92.82% (SD 2.58) 92.82% (SD 2.56)
-1to 1 93.47% (SD 2.01) 93.46% (SD 2.01)
Z-Score 93.38% (SD 2.17)  93.38% (SD 2.16)

Table 2: Performance metrics of normalization parameter test (GRU). Bolded numbers indicate the

highest performance metrics.

4.2.2 Preprocessing

This parameter test was designed to evaluate the influence of manual data preprocessing on
the accuracy and F1-score of a classification model. We compare an unprocessed dataset against
the control, our processed dataset.

Although the performance metrics do not differ by much, the plots reveal that the ‘Control’
condition shows a slightly more compact distribution of performance metrics, as indicated by the
narrower shape of its plot. This implies that manual preprocessing generally improves the certainty
of the model.

Interestingly, the difference matrix shows that performance across both metrics increased when
moving to the unprocessed dataset. We think this is because the step of removing ICA components
related to eye-blinking or muscle spasms includes a human decision, introducing uncertainty into

the dataset in both the decision-making and the ICA algorithm itself.



34

100

95

Control

85 1

Metric value (%)

Unprocessed

Metric
B Accuracy
I Fl-score

75

T T
Control Unprocessed Control Unprocessed
Preprocessing method Performance change (%)

Figure 9: Results of preprocessing parameter test. Using unprocessed data does not decrease per-
formance. Left panel: accuracy/F1-scores for the preprocessing methods. Right panel: difference

matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise difference
between preprocessing methods.

Preprocessing method Accuracy F1-Score
Control 93.47% (SD 2.01)  93.39% (SD 2.20)
Unprocessed 93.90% (SD 2.44) 93.88% (SD 2.46)

Table 3: Performance metrics of preprocessing parameter test. Bolded numbers indicate the high-
est performance metrics.

4.2.3 Sampling frequency

In this parameter test we show the difference in performance across model types and sampling
frequency. We compare the sampling frequencies 100 Hz and 500 Hz for two types of models, CNN
and RNN (GRU).

What the results show is that at a higher frequency, performance increases for all metrics and
model types. The distributions are also more peaked at a higher frequency, implying that the model
is generally more certain.

The combination of the violin plot and the performance matrix also shows that the GRU model
improves more by increasing the sampling frequency than the CNN model. This implies that GRU

models are more sensitive to changes in sampling frequency than CNN models.
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Figure 10: Results of sampling frequency parameter test. Some differences left out since compar-
ing across model type and sampling frequency is not informative. GRU models improve more by
increasing sampling frequency. Left panel: accuracy/F1-scores for each sampling frequency and
model combination. Right panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy

(y - x)) displaying the pairwise difference between sampling frequency and model combinations.

Model Sampling frequency Accuracy F1-Score

CNN 100 Hz 88.23% (SD 3.18)  88.35% (SD 3.11)
CNN 500 Hz 91.12% (SD 2.25)  90.91% (SD 2.29)
GRU 100 Hz 89.20% (SD 3.04) 89.38% (SD 3.03)
GRU 500 Hz 93.47% (SD 2.01) 93.39% (SD 2.20)

Table 4: Performance metrics of sampling frequency parameter test. Bolded numbers indicate the

highest performance metrics.

4.2.4, Formulation

In this parameter test, we compare three different methods of data formulation: Control, which
is (batch_size, samples, channels). Topological, which is (batch_size, samples, z, y) without convolu-
tion over the new z and y dimensions, and topological+convolution, which is (batch_size, samples, x, y)
with convolution over the new z and y dimensions added.

The results suggest that introducing the added complexity of a new dimension does not out-
weigh the supposed gain from laying the data out in a spatially informative formulation. This can
mean two things: a CNN model finds spatial relations even without a spatially informative formula-

tion, or the multivariate nature of patterns found in EEG data is difficult to detect by using regular
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convolution. We will return to this point in the discussion.
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Figure 11: Results of data formulation parameter test. Adding spatial information to the CNN model
does notincrease performance. Left panel: accuracy/F1-scores for each formulation method. Right
panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the

pairwise difference between formulation methods.

Formulation method Accuracy F1-Score

Control 88.23% (SD 3.18) 88.20% (SD 3.15)
Topo 88.14% (SD 3.49) 88.09% (SD 3.46)
Topo+Conv 87.06% (SD 3.50) 87.03% (SD 3.42)

Table 5: Performance metrics of data formulation parameter test. Bolded numbers indicate the

highest performance metrics.



37

4.3 Generalization
In this section, we show to what extent the trained models generalize to other contexts. We
again use violin plots to show differences in distributions across conditions. Difference matrices

are included to more closely inspect the differences in values.

4.3.1 Across conditions

What these results show is that each model class performs similar when generalizing across
conditions, the violin plots in Figure 12, Figure 18, and Figure 19 (last two included in Appendix B.3)
show that there seems to be a few participants for which the accuracy condition does not inform
the speed condition. This explains the higher standard deviation for the speed condition. Upon
investigation, we observe two participants where this occurs. In the case of the GRU model, one
performs at or around chance (accuracy: 23.29%, F1-score: 20.52%), the other has an accuracy of
37.40% and an F1-score of 35.28%. We can clearly see that the CNN model loses more performance
than the GRU and transformer models. Since the GRU model starts and ends at a higher perfor-
mance we can say that the GRU model generalizes best across condition, within the constraints of

the given configuration and dataset.
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Figure 12: Generalization across conditions in a GRU model. Model trained and validated on ac-
curacy condition, tested on speed. The GRU model is able to generalize across conditions. Left
panel: accuracy/F1-scores for each condition. Right panel: difference matrix (top half: F1-score (x -

y), bottom half: accuracy (y - x)) displaying the pairwise difference across conditions.
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Condition Dataset Accuracy F1-Score
Accuracy GRU 89.94% (SD 4.46)  89.92% (SD 4.49)
Speed - 88.69% (SD 10.77) 89.74% (SD 9.67)
Accuracy CNN 89.85% (SD 2.82)  89.83% (SD 2.83)
Speed - 85.53% (SD 19.66) 85.92% (SD 20.67)

Accuracy  Transformer 86.22% (SD 5.22) 85.77% (SD 6.57)
Speed - 84.63% (SD 20.07) 86.04% (SD 20.33)

Table 6: Performance metrics of models generalized across conditions. Bolded numbers indicate

the highest performance metrics. Dashes represent repetition of the above column.

4.3.2 Across labs & task

The results visualized in Figure 13 (results for CNN and Transformer model included in Appendix
B.4) demonstrate that the models as implemented in this paper are somewhat able to generalize
across labs, showing a decrease in performance of around 30% for generalizing from the SAT2
dataset to the SAT1 dataset. The results also show that the models are not able to generalize
across tasks, as the performance of the classifiers tested on the AR dataset is not above chance
level (20%).

All models fail to generalize to the SAT1 dataset for one participant, performing around chance
level (accuracy: 29.19%, F1-score: 25.01%, performance metrics taken from the GRU model), while
the models performed well on that participant in the SAT2 dataset (accuracy: 93.87%, F1-score:
93.85%). This participant is the same as one of the two participants for which the same occurs
when generalizing across conditions.

The transformer model starts off with a lower average performance, with higher variance, and
also loses more performance when generalizing. This indicates that the transformer model as im-
plemented is the worst at generalization. The GRU model performs equal or slightly worse than the
CNN model on generalization across labs, but retains a bit more performance when generalizing

across tasks.
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Figure 13: Generalization across labs & tasks in a GRU model. The GRU model is somewhat able

to generalize across labs and not across tasks. Left panel: accuracy/F1-scores for each dataset.

Right panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the

pairwise difference across datasets.

Dataset Accuracy F1-Score

SAT2 GRU 91.17% (SD 2.21) 91.18% (SD 2.22)
SAT1 - 59.20% (SD 7.53) 58.63% (SD 8.32)
AR - 23.46% (SD 1.73) 21.87% (SD 1.55)
SAT2 CNN 90.50% (SD 2.49) 90.51% (SD 2.50)
SAT1 - 61.12% (SD 8.34) 60.12% (SD 8.97)
AR - 16.48% (SD 4.32) 13.59% (SD 3.78)
SAT2 Transformer 86.26% (SD 3.56) 86.16% (SD 3.73)
SAT1 - 49.13% (SD 8.66) 46.25% (SD 10.67)
AR - 20.93% (SD 4.10) 22.03% (SD 2.72)

Table 7: Performance metrics of models generalized across lab (SAT1) and task (AR). Bolded num-

bers indicate the highest performance metrics. Dashes represent repetition of the above column.

4., Feature visualization

We have so far shown that models are able to generalize in some fashion to unseen data. But

what is it that the models are learning? To show this we applied integrated gradients. Shown

in Figure 14 are the visualized features for each of the different processing operations. These

graphs are included for the CNN and GRU models in Appendix C. The values calculated by using
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integrated gradients in the second row are indicative in both directions, so negative (blue) values
are also meaningful. Investigation of the visualizations shows that what the model finds important
to distinguish the processing operations differs among the models. The transformer model as
shown here attends to similar areas for the pre-attentive, confirmation, and response stages, but
the activity it attends to is changing, as seen in the differences in the combined row. Activity in the
occipital area is mostimportant for the model to distinguish the pre-attentive, encoding, and decision

stages, while activity in the parietal area is most important for the confirmation and decision stages.
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Figure 14: Integrated gradients visualization for the transformer model.
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Figure 15: Interpolated model attention over stage duration for the transformer model. Y-axis

zoomed in compared to CNN and transformer, original found in Appendix C.3
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5 Discussion

The goal of this paper was to show that similar cognitive operations occur in different contexts,
as defined by their EEG representation. Moreover, we aimed to train ML classifiers to identify these
representations in unseen data, as a way to substantiate the similarity across contexts.

The results show that ML models are able to recognize and tell apart different cognitive process-
ing operations, but that they are better at recognizing operations in contexts closer to the context
they were trained on. These results serve a couple purposes:

Firstly, they validate HMP as a method used to analyze EEG data. The models are consistently
able to discern the segments of EEG data between HMP-suggested per-trial event timings, mean-
ing that there is something that differs between them. There exists a possibility that the models
would perform equally well during training using a random segmentation. However, random seg-
mentation should perform at chance level across a sufficiently large test set, as no information
about the structure of the data is incorporated in the segmentation. Because our models perform
above chance, we think it is unlikely that random segmentation would perform similarly. This intu-
ition could be tested by comparing performance on the HMP-provided segmentation with random
segmentation, this was left out of the scope of this paper.

Secondly, the presented results serve as a starting-point for further research, showing that gen-
eralization is possible in principle. Further research could for example investigate a dual-task ex-
periment paradigm. The findings from this paper would be used to detect cognitive processing
operation in two single tasks, and verifying whether these operations can be found in data from
the dual-task execution. Often, these dual-task experiments have been executed with the assump-
tion that participants go through the same operations (Van Maanen & Van Rijn, 2010; Van Maanen
et al., 2009), but this has not been validated.

Another interesting research direction is to investigate the types of processing operations that
occur in cognitively impaired individuals. Previous research has shown that reaction time increases
when tasks incorporate areas of the brain that are impacted by cognitive impairment (Anders et al.,
2017; Winkel et al., 2016). We could use HMP to split EEG data collected from these individuals into
segments, and then predict which cognitive operation those segments represent. If we find that a
certain stage differs from a control group, or is missing, we could focus on clinical interventions on
brain functioning connected to that processing operation.

Finally, we can develop a method which can be used to validate theories on processing opera-
tion sequence and duration in unseen data. Often, assumptions are made about these, but with
this method, we can examine each processing operation for its similarity to the operations known
to the model. This can open new avenues for research if we for example find that the sequence of
operations is different for a certain subset of participants, what makes this group different?

A major assumption that was made in this paper is that a processing operation has a defined

end. That is, we assume strict seriality in processing (Anderson, 2007; Atkinson & Shiffrin, 1968;
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Sternberg, 1998). This assumption is not supported by research on parallel processing (McClel-
land, 1979) and has more recently been suggested to be incorrect (Dubarry et al., 2017; Oberauer
& Kliegl, 2004; Stanton, 2002). As a consequence of the strict seriality assumption, we decided
to end the segment at the time sample before the next onset. This assumption was made based
on the idea that besides the event timing and topology, there could be more information hidden
away in the time between two onsets that would assist in correctly classifying a cognitive opera-
tion. Investigating if this assumption is true was outside the scope of this paper but would be an
interesting research direction. Varying the segment length and investigating classifier performance
could provide valuable insights. At which size does the classifier find the greatest variance between
classes? What is the difference in features learned? A downside of this approach is that we are then
defining a cognitive processing operation as only the activity at its beginning. Our intuition was that
a sufficiently complex model might be able to discern the activity of one processing operation from
another, while they are executed in parallel.

Testing generalization showed that performance on other datasets had much greater variability
over folds. This indicates that the models are not consistently able to learn general features which
transfer to other datasets. We interpret this not as a failure of the model, but more as a potential
consequence of the EEG data. Differences in experimental contexts such as the configuration of
the Faraday cage or the exact placement of electrodes can introduce noise that seemingly makes it
difficult for ML models to match its learned features to this data. We believe that introducing tech-
niques used in the research areas of out-of-distribution generalization (Gagnon-Audet et al., 2023)
and domain generalization (Pohjonen et al., 2022) could improve generalization performance. Per-
haps a first step should be to examine the data we have from different perspectives, comparing for
example the different frequency bands in the processing operation segments, to find if similarities
can be found without using a ML classifier. Methods of dimensionality reduction like t-SNE (Maaten
& Hinton, 2008) or UMAP (Mclnnes et al., 2020) could also be applied to the data to cluster similar
processing operations and provide a more informed foundation for how to tune a ML model to
cognitive processing operations.

In the generalization tests, some specific participants failed to generalize, performing around
chance level. When generalizing across condition, one participant's data showed this behavior.
When generalizing across lab, two participants showed this behavior, of which one is the same
as the previously mentioned participant. Had all these participants been different, we could have
argued that these results may just be a consequence of the combination of randomly chosen seed,
optimizer, and loss function in combination with the exact subset of data. However, since this
occurs across both types of generalization, we believe that there may be something to do with
either the EEG recordings for this participant, or their behavior. Perhaps their strategy for the speed
condition is substantially different than other participants, making the HMP timings for this data

unreliable. The easiest way to solve this issue is to disregard this participant entirely, presumably
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resulting in better HMP event timings and thus a better performing model, since variance in the
data has decreased. We think that examining what is different about this participant behaviorally
offers a better approach, since it could teach us more about individual differences in task execution.

This paper did not consider data augmentation, which is a proven method in improving general-
ization (Lashgari et al., 2020). We believe that methods that create new samples based on existing
data such as noise addition or using a generative model that generates additional training sam-
ples could make the model more robust to test data from different contexts. Since the samples
generated using a generative model trained on only that dataset will still resemble data from the
original dataset, we think that methods that augment existing data to resemble out-of-distribution
data are more promising.

The parameter tests undertaken during this paper were aimed at identifying model parameters
that performed best on the specific datasets used and should not be taken as broadly applicable
best practices. Further research is required that tests the hypotheses used in the parameter tests
across multiple datasets. That said, the results of the preprocessing parameter test show that
manual preprocessing of EEG data is not necessarily required, which creates the possibility of on-
line cognitive processing operation prediction. However, HMP is currently needed to segment the
EEG data. The methods introduced do not require a HMP-created segmentation, but can function
on any method that segments EEG data. The sampling frequency parameter test confirmed our
intuition that an RNN would learn more from additional temporal information than a CNN.

We were surprised by the results of the data formulation parameter test, where we expected
the added spatial information to increase performance. We believe that a CNN might not be able to
learn features in EEG data using convolution, as the relationships between electrodes in EEG data
differ from the relationships between pixels in image data. Convolution works well for finding con-
trast, edges, and more abstract features, but perhaps not for finding more complex multivariate
relationships between EEG electrodes. The base CNN model used in this paper included convo-
lution along the temporal dimension, which enabled it to find frequency patterns and amplitude
variations that likely included enough distinctive information to create a classifier that performed
well. We think that the temporal information was more indicative of the prediction than the spa-
tial information added by introducing convolution over the new dimensions. Perhaps this would
change when working with different neuroimaging technologies with a higher spatial resolution,
like fMRI.

Feature visualization was done for the temporal and spatial dimensions separately, but this
does not paint the whole picture, as the activity at one point in time can be important for a model
to make a classification only in combination with activity at another point in time. We think a visu-
alization method that combines both dimensions could provide valuable insights into what makes
each processing operation unique. The simplest version of this would be a sequence of heatmaps,

at certain intervals throughout the cognitive processing operation. This would solve the problem of
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examining only the single most important sample for a prediction, except that it does not provide
any information on how the activation patterns across time are related. To solve this, we would
first need to use a feature attribution method that considers the temporal dimension. The works
of (Enguehard, 2023) and (Héllig et al., 2023) on time series interpretability methods could be used
to create more interpretable feature attributions.

In this paper, the models that were used were left relatively simple, as the comparison between
them was deemed most important. Each of these models can be further adjusted by for exam-
ple grid search, or by adding techniques aimed at improving generalization. This paper does not
provide a conclusive answer on which model is ‘best’ at generalizing for the purpose of classify-
ing cognitive processing operations. It does show that each model is able to generalize, meaning
that model choice should be made based on the dataset used. However, we believe that there is
the most room to grow for the transformer model, as it showed considerable improvement when
giving it more training samples. It is also the model that was most challenging to create a working
version of, so along with having many configurable hyperparameters, it may hold the most promise
as a model that is able to learn a diverse set of cognitive processing operations. Another method
of increasing performance given the models we have, is to build a combined CNN and RNN model,
which first learns a representation of the data at each time step using a CNN, and then feeds that
into an RNN.
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6 Conclusion

Our paper has shown progress in the fields of cognitive neuroscience and machine learning.
While applying machine learning to EEG data has been done before, we have addressed a relatively
untapped area of cognitive neuroscience, the classification of cognitive operations using machine
learning classifiers on EEG data. Our paper addresses the central question: To what extent can ma-
chine learning models accurately classify cognitive processing operations, and how generalizable
is such a classifier across different contexts or populations?

We have shown that an ML model is able to accurately classify cognitive processing operations.
Besides that, they have the ability to decode operations in unseen data without loss of performance
within condition, and with above-chance performance across lab. In the future, with models fine-
tuned for generalizing to EEG data from different contexts, we believe that the same generalization
performance could be reached for each of the contexts used in this paper. A model that is able to
decode cognitive processing operations at such a level could be of use to expand our knowledge of
cognition, assist experiment designers in validating task execution for participants, and potentially
lead to a better understanding of cognitive disorders.

Our approach has initiated new avenues for understanding how the brain handles tasks through
a series of cognitive operations. This has allowed us to acquire more certainty about the order and
kind of cognitive operations taking place in different tasks. The use of EEG as the primary source
of information underscores the importance of neuroimaging techniques in revealing patterns in
brain activation related to cognitive processing operations.

This paper has leveraged various machine learning algorithms, including CNNs, RNNs, and
transformers, to analyze spatial and temporal patterns in EEG data, enhancing our understand-
ing of cognitive operations. The developed methodological framework, supported by a flexible
data gathering, processing, and model training pipeline, has been instrumental in quickly adapting

to new insights and exploring new questions in cognitive neuroscience.
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A Model definitions

Models and model parameters can be further examined at (den Otter, 2024)

A.1 Base

Layer (type) Output Shape Param #
SAT1Base [128, 5] --

+ PartialConv2d [128, 64, 155, 30] 384

+ ReLU [128, 64, 155, 30] --

+ MaxPool2d (128, 64, 77, 30] --

+ Conv2d [128, 128, 75, 30] 24,704
+ ReLU [128, 128, 75, 30] --

+ MaxPool2d [128, 128, 37, 30] --

+ Conv2d [128, 256, 35, 30] 98,560
+ ReLU [128, 256, 35, 30] --

+ MaxPool2d [128, 256, 17, 30] --

+ Flatten [128, 130560] --

+ Linear [128, 128] 16,711,808
+ RelLU [128, 128] --

+ Dropout [128, 128] --

+ Linear [128, 5] 645

Total params: 16,836,101
Trainable params: 16,836,101
Non-trainable params: O

Total mult-adds (Units.GIGABYTES): 22.73

Input size (MB): 2.44

Forward/backward pass size (MB): 875.04
Params size (MB): 67.34

Estimated Total Size (MB): 944.83
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A.2 Topological

Layer (type) Output Shape Param #
SAT1Topological [128, 5] --

+ PartialConv3d [128, 64, 795, 5, 8] 384

+ RelU [128, 64, 795, 5, 8] --

+ MaxPool3d [128, 64, 397, 5, 8] --

+ Conv3d [128, 128, 395, 5, 8] 24,704
+ ReLU [128, 128, 395, 5, 8] --

+ MaxPool3d [128, 128, 197, 5, 8] --

+ Conv3d [128, 256, 195, 5, 8] 98,560
+ ReLU [128, 256, 195, 5, 8] --

+ MaxPool3d [128, 256, 97, 5, 8] --

+ Flatten [128, 993280] --

+ Linear [128, 128] 127,139,968
+ ReLU [128, 128] --

+ Dropout [128, 128] -

+ Linear [128, 5] 645

Total params: 127,264,261
Trainable params: 127,264,261
Non-trainable params: O

Total mult-adds (Units.GIGABYTES): 166.20

Input size (MB): 16.36

Forward/backward pass size (MB): 6199.84
Params size (MB): 509.06

Estimated Total Size (MB): 6725.26




A.3 Topological convolution
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Layer (type) Output Shape Param #
SAT1TopologicalConv [128, 5] --

+ PartialConv3d [128, 64, 795, 3, 6] 2,944

+ RelU [128, 64, 795, 3, 6] --

+ MaxPool3d [128, 64, 397, 3, 6] --

+ Conv3d [128, 128, 395, 1, 4] 221,312
+ ReLU [128, 128, 395, 1, 4] --

+ MaxPool3d [128, 128, 197, 1, 4] --

+ Conv3d [128, 256, 195, 1, 4] 98,560
+ ReLU [128, 256, 195, 1, 4] --

+ MaxPool3d [128, 256, 97, 1, 4] --

+ Flatten [128, 99328] --

+ Linear [128, 128] 12,714,112
+ ReLU [128, 128] --

+ Dropout [128, 128] -

+ Linear [128, 5] 645

Total params: 13,037,573
Trainable params: 13,037,573

Non-trainable params: O

Total mult-adds (Units.GIGABYTES):

Input size (MB): 16.36

Forward/backward pass size (MB): 1349.52

Params size (MB): 52.15

Estimated Total Size (MB): 1418.04




A.4 Deep

Layer (type) Output Shape Param #
SAT1Deep [128, 5] --

+ PartialConv2d [128, 32, 775, 30] 832

+ RelU [128, 32, 775, 30] --

+ MaxPool2d [128, 32, 387, 30] --

+ Conv2d [128, 64, 371, 30] 34,880
+ ReLU [128, 64, 371, 30] --

+ MaxPool2d [128, 64, 185, 30] --

+ Conv2d [128, 128, 175, 30] 90,240
+ ReLU [128, 128, 175, 30] --

+ MaxPool2d [128, 128, 87, 30] --

+ Conv2d [128, 256, 83, 30] 164,096
+ ReLU [128, 256, 83, 30] -

+ MaxPool2d [128, 256, 41, 30] --

+ Conv2d [128, 512, 39, 30] 393,728
+ ReLU [128, 512, 39, 30] --

+ MaxPool2d [128, 512, 19, 30] --

+ Flatten [128, 291840] --

+ Linear [128, 512] 149,422,592
+ ReLU [128, 512] --

+ Dropout [128, 512] --

+ Linear [128, 5] 2,565

Total params: 150,108,933
Trainable params: 150,108,933
Non-trainable params: O

Total mult-adds (Units.GIGABYTES): 243.20

Input size (MB): 12.27

Forward/backward pass size (MB): 3446.08
Params size (MB): 600.44

Estimated Total Size (MB): 4058.79
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A5 LSTM

Layer (type) Output Shape Param #
SAT1LSTM [128, 5] --

+ LSTM [102272, 256] 294,912
+ RelU [128, 799, 256] --

+ Linear [128, 799, 128] 32,896

+ Linear [128, 799, 5] 645

Total params: 328,453
Trainable params: 328,453
Non-trainable params: O

Total mult-adds (Units.TERABYTES): 7.72

Input size (MB): 12.27
Forward/backward pass size (MB): 318.27
Params size (MB): 1.31

Estimated Total Size (MB): 331.86
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A.6 GRU

Layer (type) Output Shape Param #
SAT1GRU [128, 5] --

+ GRU [102272, 256] 221,184
+ RelU [128, 799, 256] --

+ Linear [128, 799, 128] 32,896
+ Linear [128, 799, 5] 645

Total params: 254,725
Trainable params: 254,725
Non-trainable params: O

Total mult-adds (Units.TERABYTES): 5.79

Input size (MB): 12.27
Forward/backward pass size (MB): 318.27
Params size (MB): 1.02

Estimated Total Size (MB): 331.56




A.7 Transformer

Layer (type) Output Shape Param #
TransformerModel [128, 5] --

+ Linear [128, 0, 30] 930

+ PositionalEncoding [128, 0, 30] -

| + Dropout [128, 0, 30] -

+ TransformerEncoder [128, 0, 30] -

| + ModuleList -- --

| | + TransformerEncoderLayer [128, 0, 30] 35,102
| | + TransformerEncoderLayer [128, 0, 30] 35,102
| | + TransformerEncoderLayer [128, 0, 30] 35,102
| | + TransformerEncoderLayer [128, 0, 30] 35,102
| | + TransformerEncoderLayer [128, 0, 30] 35,102
| | + TransformerEncoderLayer [128, 0, 30] 35,102
+ Linear [128, 5] 155

Total params: 211,697

Trainable params: 211,697

Non-trainable params: O

Total mult-adds (Units.MEGABYTES):

Input size (MB): 2.47

Forward/backward pass size (MB): 0.01

Params size (MB): 0.76

Estimated Total Size (MB): 3.24
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B Additional figures
B.1 Normalization (CNN)
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Figure 16: Results of normalization parameter test on CNN model. Normalizing to the range [-1, 1]
is optimal. Left panel: accuracy/F1-scores for each normalization method applied. Right panel:
difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the pairwise

difference between normalization methods.

Accuracy F1-Score

Dummy 89.86% (SD 2.54) 89.84% (SD 2.57)
Oto1 83.29% (SD 5.10) 83.18% (SD 5.23)
-1to 1 91.26% (SD 2.38) 91.25% (SD 2.39)
Z-Score  90.50% (SD 2.79) 90.48% (SD 2.80)

Table 8: Performance metrics of normalization parameter test (CNN). Bolded numbers indicate the

highest performance metrics.
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B.2 Performance (SAT1, 500 Hz)
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Figure 17: Results of performance test on SAT1, 500 Hz dataset.

B.3 Generalization across conditions
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Figure 18: Generalization across conditions in a CNN model. Model trained and validated on ac-
curacy condition, tested on speed. The CNN model is able to generalize across conditions. Left
panel: accuracy/F1-scores for each condition. Right panel: difference matrix (top half: F1-score (x -

y), bottom half: accuracy (y - x)) displaying the pairwise difference between conditions.



62

B.3.2 Transformer
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Figure 19: Generalization across conditions in a Transformer model. Model trained and validated
on accuracy condition, tested on speed. The transformer model is able to generalize across con-
ditions. Left panel: accuracy/F1-scores for each condition. Right panel: difference matrix (top half:

F1-score (x - y), bottom half; accuracy (y - x)) displaying the pairwise difference between conditions.

B.4 Generalization across labs & task
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Figure 20: Generalization across labs & tasks in a CNN model. The CNN model is somewhat able
to generalize across labs and not across tasks. Left panel: accuracy/F1-scores for each dataset.
Right panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the
pairwise difference across datasets.
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B.4.2 Transformer
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Figure 21: Generalization across labs & tasks in a Transformer model. The CNN model is somewhat
able to generalize across labs and not across tasks. Left panel: accuracy/F1-scores for each dataset.

Right panel: difference matrix (top half: F1-score (x - y), bottom half: accuracy (y - x)) displaying the
pairwise difference across datasets.
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C Feature visualization
C.1 GRU
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Figure 22: Integrated gradients visualization for the GRU model.
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Figure 23: Interpolated model attention over stage duration for the GRU model.
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C.2 CNN
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Figure 24: Integrated gradients visualization for the CNN model.
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Figure 25: Interpolated model attention over stage duration for the CNN model.
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Model Attention
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Figure 26: Interpolated model attention over stage duration for the transformer model.
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