
Analysing flow-like problems parameterised by tree-depth

Jack de Jong, 5977843

Supervisor: Prof. dr. Hans Bodlaender
Second supervisor: Dr. Erik Jan van Leeuwen

Jan. 24 2024

Abstract

In the field of parameterised complexity, there has been a significant amount of research into the
parameters treewidth and pathwidth, but not a comparable amount of research into the related
tree-depth parameter. In this paper, we try to expand our knowledge about the hardness of a set
of ‘flow-like’ graph problems when parameterised by tree-depth, similar to work done in [1] and
[2] where the same set of problems was considered for pathwidth and treewidth respectively. We
also provide hardness proofs for the class XSLP, which was defined in [3] by Bodlaender et al., and
is intended to serve as a ‘natural home’ for problems parameterised by tree-depth, similar to how
XALP and XNLP are intended as ‘natural homes’ for problems parameterised by treewidth and foor
pathwidth respectively. Furthermore, by showing that a parameterised reduction exists between any
two problems in the set of flow-like problems we consider when using the tree-depth parameter, we
support a conjecture that this set of problems is in a different complexity class that is distinct from
XSLP.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Tree-depth . 3
2.2 Treewidth . 3
2.3 Pathwidth . 3
2.4 Binary Constraints Satisfaction Problem . 4
2.5 pl-reductions . 4
2.6 Definition of XSLP . 4
2.7 List Colouring and Precolouring Extension . 5
2.8 Flow problems . 6
2.9 Flow-like problem definitions . 6
2.10 Simple graphs vs. Multigraphs . 8

3 Overview of the results 9

4 Problems parameterised by logarithmic tree-depth 11
4.1 Independent Set . 11
4.2 Dominating Set . 13

5 Completing the reduction graph for tree-depth 20
5.1 Existing reductions . 20
5.2 Outdegree Restricted Orientation to All-or-Nothing Flow 21
5.3 Undirected Flow with Lower Bounds to All-or-Nothing Flow 22
5.4 Circulating Orientation to Target Set Selection . 25
5.5 Capacitated Dominating Set to All-or-Nothing Flow 26
5.6 Circulating Orientation to Capacitated Vertex Cover 27
5.7 Capacitated Vertex Cover to All-or-Nothing Flow . 29
5.8 f -Dominating Set to All-or-Nothing Flow . 29
5.9 Circulating Orientation to f -Dominating Set . 31
5.10 Target Set Selection to All-or-Nothing Flow . 32

5.10.1 Graph orderings and branch orderings . 32
5.10.2 Reduction proof of TSS to AoNF . 34

6 Complexity of flow-like problems 40
6.1 W[1]-hardness for flow-like problems parameterised by tree-depth 40
6.2 Flow-like problems and XSLP . 40

7 Conclusion 41
7.1 Conclusion . 41

1

Chapter 1

Introduction

Parameterised complexity is the study of algorithmic complexity with regard to parameters other than
the input size of a given problem. Often, we consider a problem where if a certain parameter k is
fixed at small values, we will have that the time and space requirements of an algorithm to solve the
problem will still be within ‘tractable’ limits. More formally, the class FPT contains those problems
which can be solved in f(k) · nc time for a given input with size n, parameter k, a computable f , and
c a constant. Other well-known complexity classes are XP, which contains the ‘slicewise polynomial’
problems which can be solved in nf(k) time, and the complexity classes of the type W [i] for natural i
in the so-called W hierarchy.

Together, the complexity classes mentioned above are intended to differentiate problems according
their complexity to a finer degree; by providing completeness proofs for various classes, we get a better
intuition of their inherent ‘hardness’, as well as the likelihood of finding algorithms that are faster
than what is currently available.

More recently, classes such as XNLP [4], [5] and XALP [2] have been defined. The class XNLP
contains all problems which can be solved nondeterministically in time f(k)nc and space f(k) log n for
a parameter k. The class XALP is similarly defined as containing the problems which can be solved
in f(k)nc time and f(k) log n space, but with a non-deterministic Turing machine which has access
to an auxiliary stack. Less formally, the classes XALP and XNLP can be seen as ‘natural’ homes for
problems parameterised by the treewidth and pathwidth parameters respectively, as demonstrated by
the great number of completeness proofs for problems using either parameter ([6], [1], [4], [2]).

In addition to XNLP and XALP, a third such class named XSLP has been defined in [3]. This
complexity class is defined around the fundamental Binary Constraints graph problem, referred to as
BinCSP. Similar to XALP and XNLP, the authors of [3] have tried to create a ‘natural home’ for graph
problems which are parameterised by tree-depth. Since this complexity class was only recently defined,
many open questions remain as to which existing graph problems can be shown to be complete for
it, as well as its relationship to other pre-established complexity classes. Additionally, there has not
been much research done into the hardness of problems parameterised by the tree-depth parameter
relative to the parameters treewidth and pathwidth, with which it shares similarities.

In this paper, we provide some of the first hardness and membership proofs for XSLP. We also
consider a class of ‘flow-like’ problems which were shown to be XALP-complete as well as XNLP-
complete in [2] and [1] for the treewidth and pathwidth parameter respectively, and expand the class
with a few more similar flow-like problems. Initially, it was expected that these problems would be
suitable candidates for demonstrating XSLP-hardness and/or membership, but difficulty in providing
these proofs gave rise to the conjecture that they are in fact contained in a complexity class that is
distinct from the XSLP class, casting doubt on the notion that XSLP could be a natural home for
problems parameterised by tree-depth in a manner analogous to XALP and XNLP.

2

Chapter 2

Preliminaries

Before we continue, we provide some definitions of terms and concepts that will be used in the sections
that follow, although we will assume familiarity on the part of the reader with the basic concepts of
algorithmic complexity.

2.1 Tree-depth

Given a graph G = (V,E), the tree-depth of G is the minimum height of a rooted forest F which has
the same vertex set as G, and which has the property that for any pair (v, w) ∈ E we have that v
and w have an ancestor-descendant relationship in F ; that is, adjacent vertices in G do not have do
be adjacent in F , but they cannot be on different branches. Note that, since F is always a connected
tree if G is connected, we will usually denote it as T instead. In the sequel, we will call F (or T) the
tree-depth spanning forest of G, or the tree-depth spanning tree of G if G is connected. Alternatively,
a forest or tree with such properties is referred to as a Trémaux tree, named for the 19th century
mathematician credited with early research into depth-first search.

Before the term tree-depth was introduced [7], it was alternatively known as the vertex rank number
(introduced in [8]), the ordered chromatic number, or the minimum height of an elimination tree (e.g.
in [3]) of a given graph (these properties are defined differently, but their equivalence is proven in [7]).
However, for the purposes of understanding this paper, it suffices to understand the first definition
that we have outlined here.

2.2 Treewidth

Given a graph G = (V,E), a tree decomposition is defined as a tree W , whose vertices are subsets
X1, ..., Xk of the vertices in V (referred to commonly as ‘bags’), such that the following three properties
hold:

1. The union of all sets Xi for i ∈ [1, k] is V ;

2. For every pair Xi, Xj with i, j ∈ [1, k], if Xi and Xj both contain a vertex v ∈ V , then every
bag on the path between Xi and Xj in W contains v as well;

3. If {u, v} ∈ E, then at least one set Xi contains both u and v.

We call the maximum cardinality of any bag of W , minus one, the width of W , and we call the
minimum width of any tree decomposition of G the treewidth of G.

2.3 Pathwidth

Given a graph G = (V,E), we define a path decomposition of G as a sequence of subsets X1, ..., Xk of
V such that:

1. The union of all sets Xi for i ∈ [1, k] is V ;

3

2. If {u, v} ∈ E, then at least one set Xi contains both u and v;

3. For all i, i′, j ∈ [1, k] where i ≤ i′ ≤ j we have that Xi ∩Xj ⊆ Xi′ .

Like with treewidth, the width of a path decomposition is the maximum cardinality of any bag Xi

minus one. The pathwidth of G is then the minimum width across all path decomposition of G.

2.4 Binary Constraints Satisfaction Problem

For this paper, one of the central problems will be the Binary Constraints Satisfaction Problem
(BinCSP). An instance of the Binary Constraints Satisfaction Problem consists of an undirected
graph G = (V,E) called the primal or the Gaifman graph, where each v ∈ V represents a variable
whose value must be assigned, and where each adjacent pair v, w ∈ V has associated with it a list
C(v, w) of possible value combinations for v and w respectively. The problem is solved by deciding
whether an assignment of values to every vertex v ∈ V exists that satisfies all edge constraints.

Formally, we define:

Binary Constraints Satisfaction Problem (BinCSP)
Input: An undirected graph G = (V,E), a set of values D, and for each adjacent pair

v, w ∈ V a set of constraints C(v, w) ⊆ {(c, c′) : c, c′ ∈ D}.
Question: Is there a value assignment γ : V → D such that for adjacent pair u, v ∈ V we have

that (γ(u), γ(v)) ∈ C(u, v)?

In the sequel, we will assume that, for any instance of BinCSP and for any edge {v, w} ∈ E, the
constraint sets C(v, w) and C(w, v) are symmetrical, in the sense that C(w, v) = {(c′, c) : (c, c′) ∈
C(v, w)}. In an instance of BinCSP where this is not the case, we could easily obtain an equivalent
instance of BinCSP where we define a new constraint set C ′(v, w) whose value pairs abide by both
C(v, w) and C(w, v), and subsequently define C ′(w, v) := {(c′, c) : (c, c) ∈ C ′(v, w)}.

2.5 pl-reductions

Given two decision problems Q1 ⊆ Σ∗
1×N and Q2 ⊆ Σ∗

2×N, we say that a function f : Σ∗
1×N → Σ∗

2×N
is a reduction from Q1 to Q2 if for any (x, k) ∈ Σ∗

1 × N we have that (x, k) ∈ Q1 if and only if
(x′, k′) = f((x, k)) ∈ Q2; that is, for any problem instance of Q1, the function f maps it to an
equivalent problem in Q2. Furthermore, we say that f is a parameterised reduction if a computable
function g exists such that k′ ≤ g(k) for any such (x, k).

Lastly, if the above function f has an associated algorithm that computes f(x, k) in logarithmic
space with regard to the input x (i.e., in O(h(k) + log(|x|)) space with h a computable function), we
say that f is a parameterised logspace reduction, or a pl-reduction for short.

Note that a pl-reduction is a weaker reduction than an fpt-reduction, in the sense that the existence
of a pl-reduction given two parameterised problems implies that there exists an fpt-reduction as
well. Here, an fpt-reduction is a parameterised reduction that can be executed in h(k)|x|O(1) for
a computable function h. In this paper, we refer to the reductions that are used as pl-reductions
exclusively, as that matches the definition of XSLP in [3], as well as the definitions of XALP and
XNLP.

2.6 Definition of XSLP

All of the results in this paper relate, in some way, to a complexity class of decision problems named
XSLP, which is defined in [3] as the set of decision problems which can be pl-reduced to the Binary
Constraints Satisfaction Problem when parameterised by the tree-depth of the associated Gaifman
graph.

Apart from this definition, two separate characterisations of XSLP are outlined in [3], and equiv-
alence is proven between the following statements:

1. A parameterised problem Q is in XSLP.

4

2. Q can be decided by an alternating read-once stack machine that for input (x, k) with |x| = n,
uses working space at most f(k) + O(log n), stack size f(k) log n, nondeterminism f(k) log n,
co-nondeterminism f(k) + O(log n), and alternation f(k), for some computable function f .

3. Q can be pl-reduced to the problem of model-checking ∀-guided sentence son forest-shaped
Σ-structures.

For further explanation of these characterisations of XSLP, and for proof of their equivalence, see
[3].

2.7 List Colouring and Precolouring Extension

Aside from BinCSP, there are the List Colouring (LC) and Precolouring Extension (PE) problems,
which are each closely related to BinCSP.

List Colouring (LC)
Input: An undirected graph G = (V,E), a set of colours C, and for each u ∈ V a domain

list L(v) ⊆ C.
Question: Is there a colouring γ : V → C such that for each {u, v} ∈ E we have that γ(u) ∈

L(u) and γ(v) ∈ L(v), while also that γ(u) ̸= γ(v)?

Precolouring Extension (PE)
Input: An undirected graph G = (V,E), a set of colours C, as well as a subset S ⊆ V with

a precolouring function p : S → C.
Question: Is there a colouring γ : V → C such that for each u ∈ S we have that γ(u) = p(u),

and also that for each {u, v} ∈ E we have that γ(u) ̸= γ(v)

With both problems defined, we can prove their XSLP completeness for tree-depth by using well
known reduction from BinCSP to LC, as well a reduction from LC to PC as outlined in [4].

Theorem 2.7.1. Precolouring Extension and List Colouring are XSLP-complete when parameterised
by tree-depth.

Proof. Observe first that any instance of List Colouring (i.e. a graph G = (V,E) and a set of colour
lists {L(v)|v ∈ V }) is essentially a special case of BinCSP, where for every {u, v} ∈ E we have that
the set of constraints C(u, v) is exactly equal to {(c, c′)|c ∈ L(u), c′ ∈ L(v), c ̸= c′}. Similarly, we have
that every instance of Precolouring Extension (i.e. a graph G = (V,E), colour set C and precoloured
subset S ⊆ V) is a special case of List Colouring, where for every u ∈ V \ S we have that L(u) = C,
and for every v ∈ S we have that L(v) = p(v). Membership in XSLP for both List Colouring and
Precolouring Extension follow trivially as a result.

To prove XSLP hardness for both problems, we will start with an instance of BinCSP parameterised
by tree-depth, i.e. a graph G = (V,E), a set of values D, and for adjacent pair v, w ∈ V a constraints
set C(v, w), as well as a tree-depth spanning tree T of G with height td, and we will show how to
reduce this problem instance to an instance of List Colouring, and subsequently to an instance of
Precolouring Extension.

To reduce to List Colouring, we create a new graph G′ = (V ′, E′) which contains every vertex in
G, but in addition to that, for every edge {v, w} ∈ E and for every tuple (c, c′) which is not contained
in C(v, w), we create a new vertex xv,w,c,c′ which we connect to both v and to w with an edge in E′.
For every v ∈ V , we then let L(v) = D, and for every vertex xv,w,c,c′ we let L(xv,w,c,c′) = {c, c′}. It is
easy to see that an assignment of values of G that abides by its binary constraints leads to a valid list
colouring of G′, and vice versa. Additionally, since every vertex of the type xv,w,c,c′ is only adjacent
to v and w, and since v and w are adjacent in G and therefore an ancestor-descendant pair in T , we
can expand T into a tree-depth spanning tree T ′ of G′ by connecting xv,w,c,c′ to whichever vertex
between v and w is a descendant of the other. Doing so will increase the height of the resulting tree
to at most td + 1.

To subsequently reduce to Precolouring Extension, we let C =
⋃

v∈V D(v), and we create a graph
G′′ = (V ′′, E′′) which contains every vertex and every edge in G′. In addition, for every v ∈ V ′, and
for every c ∈ D \ L(v), we create a vertex yv,c which we precolour with c and which we connect to v
via an edge. It is easy to see how the resulting instance of Precolouring Extension is equivalent to the

5

instance of List Colouring, since the precoloured neighbours of v ‘prohibit’ v from selecting a colour
that is outside of its domain. Additionally, since every vertex of the type yv,c is only adjacent to one
vertex v in the original graph G′, we can expand T ′ into a tree-depth spanning tree of G′′ by simply
connecting every vertex of the type yv,c below v in T ′. The height of this tree is at most one greater
than the height of T ′, and therefore the tree-depth of G′′ is at most td + 2.

Having proven XSLP membership and hardness for both problems when parameterised by tree-
depth, we conclude that they are both XSLP-complete when parameterised by tree-depth.

2.8 Flow problems

Although we assume familiarity on the part of the reader with typical flow problems, we will restate
the definition of an integer flow problem here.

Given a directed graph G = (V,E) with vertices s, t ∈ V , as well as a capacity function c : E →
Z>0, we define a flow on G as a function f : E → Z≥0 that maps a flow value to every arc in E.
Furthermore, we say that f is a valid or feasible flow on G given c, if, for every e ∈ E, we have that
f(e) ≤ c(e), and, for every v ∈ V \ {s, t}, we have that the property of flow conservation holds, which
means that the total flow into v is equal to the total flow out of v. Lastly, we define |f | as the total
flow that goes out of the source vertex s, and we call |f | the flow value or simply value of f .

Note that this definition is different from the more ‘classic’ definition of flow problems as outlined
for instance by Cormen et al. in [9], where, if the flow value from a vertex v to w is equal to f(v, w),
there is assumed to be an opposite flow of −f(v, w) from w to v. In this definition, a feasible flow
must have the property that for every vertex v that isn’t a source or sink, the sum of all flow values
moving in and out of v must be exactly 0.

2.9 Flow-like problem definitions

In addition to BinCSP and its related problems, we will consider a class of ‘flow-like’ graph problems
which have a strong adjacency to one another via the tree-depth parameter. Most of the problems
here, with the exception of Target Set Selection and f-Dominating Set, were proven complete for
XNLP and XALP when parameterised by the pathwidth and treewidth parameters respectively [1],
[2]. In this paper, we will show that most of the reductions used in [1] can be adapted to work for
the tree-depth parameter as well, as well as introduce several novel reductions that create a strongly
connected reduction graph between the problems when parameterised by tree-depth.

The first problem we define is All-or-Nothing Flow (AoNF), which will serve as the ‘backbone’ of
many of our reductions, as it is used to reduce to and from many other flow-like problems.

All-or-Nothing Flow (AoNF)
Input: A directed graph G = (V,E) with vertices s, t ∈ V , and with for each e ∈ E a

positive integer capacity c(e) ∈ Z>0, as well as a positive integer R.
Question: Does a flow f from s to t of value R exist such that for each e ∈ E we have that

f(e) = 0 or f(e) = c(e)?

In addition to AoNF, we consider five separate (but closely related) orientation problems for
undirected graphs. For each of these problems, we define an orientation of an undirected graph
G = (V,E) as an assignment of direction for every edge in E.

Target Outdegree Orientation (TOO)
Input: An undirected graph G = (V,E) with a weight function w : E → Z>0, and for each

v ∈ V a non-negative integer dv.
Question: Is there an orientation of G such that for each v ∈ V , the total weight of all edges

directed outwards from v is equal to dv?

Chosen Maximum Outdegree (CMO)
Input: An undirected graph G = (V,E) with a weight function w : E → Z>0, and for each

vertex a non-negative integer mv.
Question: Is there an orientation of G such that for each v ∈ V , the total weight of all edges

directed outwards from v is at most mv?

6

Minimum Maximum Outdegree (MMO)
Input: An undirected graph G = (V,E) with a weight function w : E → Z>0, as well as a

non-negative integer m.
Question: Is there an orientation of G such that for each v ∈ V , the total weight of all edges

directed outwards from v is at most m?

Outdegree Restricted Orientation (ORO)
Input: An undirected graph G = (V,E) with a weight function w : E → Z>0, and for each

v ∈ V an interval Dv ⊆ Z≥0.
Question: Is there an orientation of G such that for each v ∈ V , the total weight of all edges

directed out of v is contained in Dv?

Circulating Orientation (CO)
Input: An undirected graph G = (V,E) with a weight function w : E → Z>0.
Question: Is there an orientation of G such that for each v ∈ V , the total weight of all edges

directed out of v is equal to the total weight of all edges directed towards v.

We also consider two problems involving capacitated dominating sets, whose completeness for
XNLP was proven in [6] when using pathwidth as the parameter, building on the results of [1].

Red-Blue Capacitated Dominating Set (RBCDS)
Input: An undirected bipartite graph G = (R,B,E), as well as a capacity function c :

R → N and an integer k.
Question: Is there a subset S ⊆ R with |S| ≤ k, as well as a mapping f : B → S such that

{u, f(u)} ∈ E for all u ∈ B and |f−1(v)| ≤ c(v) for all v ∈ S?

Capacitated Dominating Set (CDS)
Input: An undirected graph G = (V,E), as well as a capacity function c : V → N and an

integer k.
Question: Is there a subset S ⊆ V with |S| ≤ k, combined with a mapping f : V \ S → S

such that for all u ∈ S we have that {u, f(u)} ∈ E and for all v ∈ S we have that
|f−1(v)| ≤ c(v)?

The concept of introducing a capacitated variant to a well-known graph problem also lends itself
to Vertex Cover, which was first considered in TODO.

Capacitated Vertex Cover (CVS)
Input: An undirected graph G = (V,E), as well as a capacity function c : V → N and an

integer k.
Question: Is there a subset S ⊆ V with |S| = k, as well as a mapping f : E → S such that for

all e = {u, v} ∈ E we have that f(e) = u or f(e) = v, and also that for all v ∈ V
we have that |f−1(v)| ≤ c(v)?

We consider another variant of a classical flow problem, namely Undirected Flow with Lower
Bounds.

Undirected Flow with Lower Bounds (UFLB)
Input: An undirected graph G = (V,E) with a source s and a sink t, as well as a positive

integer R, and with with for each e ∈ E a positive integer capacity c(e) ∈ Z>0 as
well as a non-negative integer lower bound l(e) ∈ Z≥0

Question: Is there an orientation of G such that the resulting directed graph D allows for an
s-t flow f with value R, and which abides by the capacities and lower bounds of
each arc (i.e., l(a) ≤ f(a) ≤ c(a) for every arc in D).

We also consider the Target Set Selection problem, which is a problem that has similarities to both
flow and domination problems.

7

Target Set Selection (TSS
Input: An undirected graph G = (V,E) with for each v ∈ V a positive integer threshold

τ(v), a positive integer k.
Question: Does a subset S0 ⊆ V exist with |S0| = k exist such that either S0 = |V |, or in

the case that k < |V |, we have that a disjoint partition S0, S1, ..., St of V exists for
some positive integer t where for every i ∈ [1, t] we have that Si contains exactly
every vertex v ∈ V \S0∪ ...∪Si−1 which has at least a τ(v) number of neighbours
in S0 ∪ ... ∪ Si−1.

A less formal but more intuitive description of the TSS problem goes as follows: given a graph with
associated threshold values τ(v) for every vertex v ∈ V , we say that v is ‘activated’ when its number
of activated neighbours is equal to or greater than τ(v). The problem is then to decide whether it is
possible to activate an initial k vertices, such that every vertex in the graph is eventually activated in
a finite number of steps.

Lastly we consider another variant of the dominating set problem, which is similar to Target Set
Selection.

f -Dominating Set (f-Dom)
Input: An undirected graph G = (V,E) with a function f : V → Z>0, as well as a positive

integer k.
Question: Is there a D ⊆ V such that |D| = k, and each u ∈ V \ D has at least an f(u)

number of neighbours in D?

2.10 Simple graphs vs. Multigraphs

All the problems defined in Section 2.9 are defined for simple graphs, i.e. graphs that have at most
one edge between any given between every pair of vertices. However, in the sequel when providing
reductions to the All-or-Nothing Flow problem parameterised by tree-depth, we will allow All-or-
Nothing Flow to be defined on multigraphs as well for ease of use, i.e. graphs that can have multiple
arcs between the same pair of vertices. The reason that this does not interfere with our results is that
any instance of a flow problem defined on a directed multigraph G = (V,A) can easily be reduced to
an equivalent problem instance that is instead defined on a simple graph G′ with bounded tree-depth
relative to G. Figure 3.1 shows how to construct G′ by, for every adjacent pair u, v ∈ V , subdividing
each arc between u and v into two arcs with a connecting vertex in between, and which have the
same capacities as the arc from which they were created. Clearly, this results in a flow network that
is equivalent, in the sense that one flow network has a permissible flow with value R if and only if
the other network does as well. Note that, for any new vertex x that was added to G to create G′,
we have that x is only a adjacent to an adjacent pair u, v ∈ V . We can therefore include every such
vertex x in the tree-depth spanning tree T of G to obtain a tree-depth spanning tree of G′, whose
height is at most only one greater than that of T . Via a similar argument, one can also show that G′

has bounded treewidth and pathwidth relative to G.

8

Chapter 3

Overview of the results

Figure 3.1: Example of an adjacent pair u, v in a multigraph with three directed arcs between them,
and respective capacities a, b, and c under a given flow problem. On the right, an equivalent simple
graph is constructed by subdividing each arc with a connecting vertex in between, and retaining the
same capacities for every new pair of subsequent arcs.

Figure 3.2: Pre-existing reduction graph for flow-like problems when parameterised by treewidth,
pathwidth, and tree-depth. A dotted arc indicates that the preceding problem is a special instance of
the succeeding problem.

For this thesis project, the initial goal was to obtain hardness and/or membership results for exist-
ing problems relative to the XSLP class. Several such results were accomplished, with hardness results
following for Independent Set and Dominating Set and a few related problems when parameterised
by logarithmic tree-depth, as seen in Section 4.

The main body of work for this thesis project, however, is the analysis of the flow-related problems
which were defined in Section 2.9. The initial motivation for studying these problems was to find an
‘entry point’ for XSLP-hardness, by providing a tree-depth bounded reduction from BinCSP or its
related problems to one of the flow-related problems, in the hopes that such a result would lead
to XSLP-hardness for the entire class of flow-like problems, similar to how XNLP-completeness was
proven for the entire class in [1] when using the pathwidth parameter, and for the treewidth parameter

9

Figure 3.3: Reduction graph for flow-like problems when parameterised by tree-depth (and by
treewidth and by pathwidth).

in [2]. Despite significant effort, however, no tree-depth bounded reduction was found to prove XSLP-
hardness or membership for any of the flow-related problems, as there appears to be a fundamental
barrier between the problems of assigning colours and of assigning flow to a given graph G when the
tree-depth parameter is used. More specifically, there appears to be a fundamental difference between
assigning a colour to every vertex and checking every edge constraint, and assigning a value to every
edge of a graph such that every vertex abides by constraints that are analogous to flow equilibrium.

This intuition gave rise to the conjecture that the class of flow-like problems, when parameterised
by tree-depth, are in a separate complexity class from XSLP. This conjecture is supported by the
fact that the reduction graph for the flow-related problems parameterised by tree-depth can be shown
to be strongly connected, as shown in Figure 3.3; that is, for every pair of flow-related problems
parameterised by tree-depth, there exists a series of pl-reductions between the two. Section 5 contains
the proofs of these reductions, and Section 6.1 contains a formal statement of this conjecture.

10

Chapter 4

Problems parameterised by
logarithmic tree-depth

Given a graph problem parameterised by tree-depth where G = (V,E) is the associated graph and
td is the tree-depth of G, we call td/ log |V | the logarithmic tree-depth of G. Similarly, if tw and
pw are the treewidth and pathwidth of G respectively, then tw/ log |V | and tw/ log |V | represent the
logarithmic treewidth and logarithmic pathwidth of G respectively.

In this chapter we will consider the Independent Set and Dominating Set problems when parame-
terised by logarithmic tree-depth. The reason that these problem variants are interesting is that these
problems are FPT for tree-depth, and, by the definition of FPT, we therefore have that they are in
XP for the logarithmic tree-depth parameter.

In [4] it was shown that Independent Set and Dominating Set are both complete for XNLP when
parameterised by pathwidth. Similarly, [2] shows XALP-completeness for both problems when pa-
rameterised by treewidth. In [3], the end-of-paper discussion mentions the possibility of proving
completeness for these two problems for XSLP under the logarithmic tree-depth parameter as well.
Indeed, in the preliminary research for this project, it was found that hardness proofs for XSLP exists
for both Independent Set and Dominating Set when parameterised by tree-depth. For these proofs,
inspiration for the use of logarithmic-size ‘selection gadgets’ was taken from the proof of Independent
Set’s completeness for XNLP for logarithmic pathwidth in [4], which in turn used a gadget devised in
[10].

4.1 Independent Set

Theorem 4.1.1. Independent Set parameterised by logarithmic tree-depth is XSLP-hard.

Proof. To demonstrate XSLP-hardness of Independent Set parameterised by tree-depth, we will pro-
vide a pl-reduction from the Precolouring Extension problem parameterised by tree-depth. To that
end, we start with an instance of Precolouring Extension, i.e. an undirected graph G = (V,E), a set C
of colours, as well as a precolouring p : S → C for a subset S ⊆ V , and a tree-depth spanning tree T of
G with height td. We assume that no neighbouring two vertices are precoloured with different colours,
since that would render the problem trivially unsolvable. We can also assume that |C| < n = |V |,
since every vertex has at most n − 1 neighbours, and so having access to n different colours would
allow any vertex to always pick at least one colour, regardless of the colours picked by its neighbours,
which in turn would make the problem trivial. Finally, we assume that |C| is exactly equal to 2l for
some integer l, since, if this is not the case, we can easily amend it by adding ‘duplicate’ colours to C
until we have that |C| = 2l. Doing so only increases the cardinality of C by at most a factor 2, and so
we still have that |C| < 2n, and, given that |C| = 2l for an integer l, we can use l binary bits to assign
every colour c ∈ C its own unique binary bit string sc.

We create a graph G′ = (V ′, E′), on which to define an instance of Independent Set. Intuitively,
we want to construct G′ such that a sufficiently large independent set demands that for every v ∈ V
exactly one colour is picked from C via its associated bit string. To that end, we create for every
v ∈ V exactly 2l vertices xv,1, x̄v,1, ..., xv,l, x̄v,l, and for each pair xv,i, x̄v,i with i ∈ [1, l] we add the
edge {xv,i, x̄v,i} to E′. Figure 4.1 shows how this gadget looks for a given v ∈ V . Intuitively, since

11

each pair xv,i, x̄v,i can contribute at most one vertex to an independent set on G′, it follows that if
we demand an independent set of size |V | · l on G′, and we understand xv,i and x̄v,i to represent
the i-th bit with values 1 and 0 respectively, we will have that every vertex gadget ‘selects’ exactly
one colour from the domain C. Figure 4.2 shows an example of this. Note, however, that a certain
subset of vertices have been precoloured. To that end, we consider every w ∈ S, and remove every bit
vertex that does not correspond to the bit string associated with the colour p(w); more formally, if
sp(w) = b1, ..., bl is the bit string associated with p(w), then for every j ∈ [1, l] we remove from G′ the
vertex xv,j if bj = 0, and we remove x̄v,j if bj = 1. Naturally, we remove the edge between the two
vertices regardless of which vertex is removed.

Now let {v, w} be an edge in E, and let c, c′ ∈ C be two (possibly distinct) elements of C that
indicate the same colour. To ensure that the gadgets of v and w do not pick c and c′ respectively, we
add a gadget ∆(v, w, c, c′) to G which consists of 2l vertices that together form a clique. Then, for
the bit strings sc and sc′ , we have 2l of the type xv,i, x̄v,i′ , xw,j , and x̄w,j′ which correspond to v and
w selecting c and c′ respectively. To complete our construction of the edge gadget, we connect every
such corresponding bit vertex to a unique vertex in ∆(v, w, c, c′) via an edge. Figure 4.3 shows an
example of such an edge gadget, and Figures 4.4, 4.5, and 4.6 show an example of how such a gadget
works in practice.

Lemma 4.1.2. A colouring on G with a precolouring p exists if and only if G′ has an independent
set of size |V |l + |E|R, where R is the number of ordered same-colour pairs in C.

Proof. First we assume that a valid colouring exists on G; i.e., we have a colouring γ : V → C such
that γ(u) = p(u) for every u ∈ S, and such that γ(v) ̸= γ(w) for all {v, w} ∈ E. Then, for every
u ∈ V , we can ‘pick’ from every colour selection gadget in G′ exactly l vertices for the independent
set that correspond to the colour γ(u). Additionally, for every {v, w} ∈ E, and for every same-colour
pair c, c′ ∈ C, we know that at least one of the vertices v and w did not pick either one of the colours
c and c′, which means that among the vertices in ∆(v, w, c, c′), there is at least one vertex y which
does not neighbour any of the 2l vertices selected by the selection gadgets of v and w, and so we can
add y to our independent set. Once we have iterated over every edge and every same-colour pairing
in C, the resulting independent set has a cardinality of exactly |V |l + |E|R.

To prove the lemma in the opposite direction, we can assume that an independent set I exists
on G′ with |I| = |V |l + |E|R. Then, since every colour selection gadget can contribute at most l
vertices to I, and since every ∆(v, w, c, c′) can contribute at most one vertex to I, and since together
these gadgets comprise the entire graph G′, we know that every one of these gadgets contributes its
maximum amount. This means that every colour selection gadget for a given u ∈ V ‘points’ to a
single colour c in C via its accompanying bit string, and we can set γ(u) = c, knowing that c = p(u) in
the case that u ∈ S. Additionally, since for every {v, w} ∈ E and for every same-colour pair c, c′ ∈ C
we have that ∆(v, w, c, c′) is able to contribute one vertex, we know that the combined bit strings
associated with γ(v) and γ(w) are different by at least one bit from the bit strings associated with c
and c′, meaning that γ(v) cannot be the same colour as γ(w). We conclude that γ is a valid colouring
of G given the precolouring function p.

By proving Lemma 4.1.2 we have shown that the problem instance of Independent Set we have
constructed is indeed a valid reduction from the given problem instance of List Colouring. Further-
more, the construction can be performed in logarithmic space, as the graph G′ contains a polynomial
number of vertices and edges relative to the original graph G. What remains to be shown is that the
logarithmic tree-depth of G′ is within a constant factor of the tree-depth of G.

We can construct a tree-depth representation T ′ of G′ by copying the structure of T in the following
manner: for every u ∈ V , we sort the 2l vertices in its associated colour selection gadget in G′ into a
path pu in arbitrary order. Then, for any pair v, w ∈ V where v is a parent of w in T , we connect the
end of v’s path pv to the root of pw. Similarly, for every inequality gadget ∆(v, w, c, c′), we can sort
its 2l vertices into an arbitrary path, and connect its root to the end of pw.

It is easy to verify that the resulting tree T ′ is a valid tree-depth representation of G′. Furthermore,
since T ′ has a height of at most 2l · td + 2l, where l = log2 |C| = O(log |V |), we conclude that we
have a valid pl-reduction from Precolouring Extension parameterised by tree-depth to Independent
Set parameterised by logarithmic tree-depth.

From the simple observation that a graph G = (V,E) has an independent set of size k if and only
if it has a vertex cover of size |V | − k, we can also conclude the following corollary result:

12

Corollary 4.1.2.1. Vertex Cover is XSLP-hard when parameterised by tree-depth.

Figure 4.1: Example of a colour selection gadget for a vertex v in the reduction from Precolouring
Extension to Independent Set.

Figure 4.2: Example of a colour selection gadget for a vertex v in the reduction from Precolouring
Extension to Independent Set, where the l vertices picked for the dominating set correspond to exactly
one colour which can be applied to v.

Figure 4.3: Example of a gadget ∆(v, w, c, c′) where l = 4, and where c, c′ ∈ C have bitstring repre-
sentations 0011 and 1100 respectively. Note that all vertices within the dashed ellipse are part of one
clique.

4.2 Dominating Set

Inspiration for the proof of the following result was also taken from [4], in this case the proof of
Dominating Set’s XNLP-hardness when parameterised by logarithmic tree-depth.

13

Figure 4.4: Another example of a gadget ∆(v, w, c, c′) where l = 4, and where c, c′ ∈ C have bitstring
representations 0011 and 0011 respectively. Note that all vertices within the dashed ellipse are part
of one clique.

Figure 4.5: Example of a gadget ∆(v, w, c, c′), where v and w pick the colours c and c′ respectively.
Note that the clique between the gadgets is unable to contribute any vertices to the independent set.

Theorem 4.2.1. Dominating Set parameterised by tree-depth is XSLP-hard.

Proof. We again provide a reduction from the Precolouring Extension problem, where we start with
an undirected graph G, a colour set C, and a precolouring function p : S → C for some subset S ⊆ V .
We also have T as the tree-depth spanning tree of G with height td. As with the proof of Theorem
4.1.1, we assume that C = 2l for some integer l, and we give each colour c ∈ C its own unique bit
string sc. We can now begin defining an instance of Dominating Set by constructing the accompanying
graph G′.

For every v ∈ V , we create l three-vertex cliques in G′, such that for each i ∈ [1, l] we have a
triangle of vertices xv,i, x̄v,i, and yv,i. During the construction of G′, we’ll ensure that every yv,i is

14

Figure 4.6: Example of a gadget ∆(v, w, c, c′), where v and w do not pick the colours c and c′

respectively. Note that the clique can now contribute exactly one vertex to the independent set.

only adjacent to xv,i and x̄v,i. The intuition for including such a ‘dummy’ vertex is that it ensures
that any dominating set on G′ must include at least one of the three vertices xv,i, x̄v,i and yv,i for
every v ∈ V and i ∈ [1, l]. Figure 4.8 shows an example for such a gadget, and Figure 4.9 shows how
a dominating set of size l on the gadget corresponds to exactly one colour which can be applied to v.

Similar to with the proof of Theorem 4.1.1, we must consider the vertices in S which are pre-
coloured; for those vertices u ∈ S with p(u) = c, we remove any vertex xu,i or x̄u,i which does not
correspond with the i-th bit of sc.

Then, for every {v, w} ∈ E and for every same-colour pair c, c′ ∈ C we create a vertex zv,w,c,c′ ,
which we connect to the ‘complements’ of the bit strings sc and s′c associated with c and c′ respectively;
that is, for every i ∈ [1, l] we connect zv,w,c,c′ to xv,i via an edge if the i-th bit of sc equals 0, and
otherwise we connect zv,w,c,c′ to x̄v,i via an edge. Similarly, we connect zv,w,c,c′ to xw,i via an edge if
the i-th bit of s′c equals 0, and otherwise we connect zv,w,c,c′ to x̄w,i via an edge. Figure 4.10 shows an
example of this. The intuition here is that, if both v and w have picked bitstrings via their associated
gadgets that correspond to the same-colour pair c, c′, the vertex zv,w,c,c′ will not have any neighbours
in the dominating set, and will therefore have to be included in the dominating set itself.

We are ready to state the following lemma:

Lemma 4.2.2. There exists a valid colouring on G given the precolouring p if and only if a dominating
set exists on G′ of size |V |l.

Proof. Assume first that the second statement holds, i.e. there exists a dominating set D on G′ with
|D| = |V |l. Since for every u ∈ V and for every i ∈ [1, l] we have that the clique consisting of xu,i, x̄u,i

and yu,i must contribute one vertex to D, we know that every such clique contributes exactly one
vertex, which we assume to be either xu,i or x̄u,i, since, in the case that yu,i was picked for D, we can
arbitrarily swap it for one of the other two vertices, and retain a dominating set of size |V |l on G′.

It follows then that D can be translated to a colouring γ : V → C on G′ by taking γ(u) = c for
the bit string sc that matches the vertices of the type xu,i and x̄u,j picked by the dominating set (in
the case where u ∈ S, we know that c = p(u) always holds). Furthermore, since for any {v, w} ∈ E
and any same-colour pair c, c′ ∈ C we have that zv,w,c,c′ is not in the dominating set and therefore
adjacent to one of the bit vertices picked by v or w, we know that the bit strings associated with
γ(v) and γ(w) cannot both be the same as the bit strings of c and c′ respectively, and therefore γ(v)
and γ(w) cannot indicate the same colour. We conclude that γ is a valid colouring of G given the
precolouring function p.

15

For the converse proof, assume now that a valid colouring γ : V → C exists on G given p. Then,
for any u ∈ V and i ∈ [1, l], we include xu,i in D if the i-th bit of sγ(u) is 1, and we include x̄u,i if the
i-th bit is 0. Note that this is possible even when u ∈ S given how we constructed G′, and also note
that the resulting set D has a cardinality that is exactly |V |l. Furthermore, we have that every vertex
of the type zv,w,c,c′ is adjacent to a vertex in D, since otherwise it would be the case that γ(v) = c and
γ(w) = c′ are both true, and therefore they are the same colour. We conclude that D is a dominating
set on G′.

With Lemma 4.2.2 proven, we have shown that for every instance of List Colouring an equivalent
instance of Dominating Set exists. Since G′ has a polonymial number of components relative to G,
it follows that it is also a logspace reduction. The only remaning thing to do therefore is to show
that the tree-depth of G′ is within a factor r · log(|V |) of td for some constant r. We will construct a
tree-depth spanning tree T ′ of G′ in an analogous manner as in the proof of Theorem 4.1.1.

For every pair u ∈ V , we sort the vertices xv,1, x̄v,1, yv,1, ..., xv,l, x̄v,l, yv,l into a path pu. Then,
for any pair v, w ∈ V where v is a parent of w in T , we connect the endpoint pv to the root of pw.
Then, for every vertex of the type wv,w,c,c′ , we assume w.l.o.g. that v is an ancestor of w in T , and
we connect wv,w,c,c′ to the endpoint of pw, which increases the total depth of T ′ by at most 1, so that
T ′ is a tree-depth spanning tree of G′ whose height is at most 3l · td + 1.

Note that in the proof of Lemma 4.2.2 the dominating set D that is constructed on G′ is an
independent set as well. The reduction used is therefore also a valid pl-reduction from Precolouring
Extension parameterised by tree-depth to Independent Dominating Set parameterised by tree-depth.
Note also that the proof of the reduction can easily be adapted to work for the pathwidth and
treewidth parameters, and furthemore that Precolouring Extension has already been proven to be
XNLP-complete as well as XALP-complete for pathwidth and treewidth respectively ([4], [2]). We
can conclude the following corollary result:

Corollary 4.2.2.1. Independent Dominating Set is XSLP-hard when parameterised by logarithmic
tree-depth, and XNLP-hard when parameterised by logarithmic pathwidth, and XALP-hard when pa-
rameterised by logarithmic treewidth.

Another variant of the Dominating Set problem is Roman Domination, for which a problem in-
stance consists of an undirected graph G = (V,E), a nonnegative k, and the goal is to decide whether
a function f → {0, 1, 2} with

∑
v∈V f(v) = k exists such that for every v ∈ V we have that f(v) > 0 or

that (v, w) ∈ E for some w ∈ V with f(w) = 2. The problem is named as such because is it analogous
to the problem of utilising a minimum number of Roman legions to pacify a given collection of cities,
where a city is considered pacified if it either contains a legion, or is neighbouring to a city which has
two legions stationed in it.

Theorem 4.2.3. Roman Domination parameterised by logarithmic tree-depth is XSLP-hard.

Proof. For our proof we will use the exact same reduction from Precolouring Extension as shown in
Theorem 4.2.1, except that every bit selection gadget used will consist not of three but of four vertices
xv,i. x̄v,i, yv,i, and y′v,i, where the latter vertices are not adjacent to any vertices except the former
two. The structure of the bit selection gadgets is shown in Figure 4.7. In the case that a given u ∈ S
is precoloured, we remove the bit vertices that do not correspond with the preselected colour of u.
Note that no assignment of fewer than two legions is enough to cover every vertex in the gadget. It
follows that an assignment of |V | · 2l legions exists on G′ if and only if a colouring exists on G given
the precolouring p, via the same proof as in Theorem 4.2.2.

Given that Precolouring Extension is XALP-complete ([2]) and XNLP-complete ([4]) for the pa-
rameters treewidth and pathwidth respectively, we can also conclude two hardness results for Roman
Domination:

Corollary 4.2.3.1. Roman Dominating Set parameterised by logarithmic pathwidth is XNLP-hard,
and Roman Dominating Set parameterised by logarithmic treewidth is XALP-hard.

16

Figure 4.7: Bit selection gadget for the reduction graph from Precolouring Extension to Roman
Domination.

Figure 4.8: Colour selection gadget for a vertex v in the reduction graph from Precoloring Extension
to Dominating Set.

Figure 4.9: Colour selection gadget for a vertex v in the reduction graph from Precoloring Extension
to Dominating Set, where a dominating set of size l corresponds to exactly one colour which can be
applied to v.

Figure 4.10: Example of a ‘gadget’ zv,w,c,c′ where l = 4, and where c, c′ ∈ C have bitstring represen-
tations 0101 and 0011 respectively.

17

Figure 4.11: Another example of a vertex zv,w,c,c′ where l = 4, and where c, c′ ∈ C have bitstring
representations 0011 and 1100 respectively.

Figure 4.12: Example of a vertex zv,w,c,c′ , where v and w pick the colours c and c′ respectively. Note
that zv,w,c,c′ has to be included in the dominating set on G′.

18

Figure 4.13: Example of a vertex zv,w,c,c′ , where v and w do not both pick the colours c and c′

respectively. Note that zv,w,c,c′ can now be excluded from the dominating set on G′.

19

Chapter 5

Completing the reduction graph for
tree-depth

5.1 Existing reductions

We begin this section by proving that the impartial reduction graph shown in Figure 3.2 is correct
when every problem is parameterised by tree-depth. For clarity, we give each reduction its separate
theorem. Note that in the proofs of these theorems, we use G = (V,E) to refer to the graph belonging
to the problem instance from which the reduction is performed, and G′ = (V ′, E′) to refer to the
graph belonging to the problem instance to which the reduction is performed. We use T and T ′ to
indicate the minimum-height tree-depth spanning trees of G and G′ respectively, with td and td′ the
respective heights of both trees.

Theorem 5.1.1. There exists a pl-reduction from All-or-Nothing Flow to Target Outdegree Orienta-
tion, with both problems parameterised by tree-depth.

Proof. On p. 13 of [1], we are given a reduction from All-or-Nothing Flow to Target Outdegree
Orientation. This reduction creates a graph G′ identical to G, but with undirected edges, and where
each arc in G has been subdivided into two edges with a connecting vertex in between. Doing so
increased the tree-depth of G′ by at most 1 relative to G.

Theorem 5.1.2. There exists a pl-reduction from Target Outdegree Orientation to Chosen Maximum
Outdegree, with both problems parameterised by tree-depth.

Proof. On p. 16 of [1], we see a reduction where G remains unchanged in creating G′, which means
that tree-depth is unchanged.

Theorem 5.1.3. There exists a pl-reduction from Chosen Maximum Outdegree to Minimum Maxi-
mum Outdegree, with both problems parameterised by tree-depth.

Proof. On p. 15 of [1], we see a reduction where only two new vertices are added, which means that
the tree-depth cannot increase by more than two.

Theorem 5.1.4. There exists a pl-reduction from Target Outdegree Orientation to Circulating Ori-
entation, with both problems parameterised by tree-depth.

Proof. Also on p. 15, we see a reduction that only adds a source and sink node, and so does not
increase the tree-depth by more than 2.

Theorem 5.1.5. There exists a pl-reduction from Circulating Orientation to Red-Blue Capacitated
Dominating set, with both problems parameterised by tree-depth.

Proof. The reduction outlined on p. 18 of [6] copies every vertex of G to G′, and gives each v ∈ V
a private neighbour v′ which is only adjacent to v. For each edge {v, w} ∈ E, a gadget is created in
G′ whose vertices are only adjacent to each other and to v and w. It is easy to see how these vertices
can be incorporated into T ′ so that T ′ has a height of at most td + 5.

20

Theorem 5.1.6. There exists a pl-reduction from Red-Blue Capacitated Dominating Set to Capaci-
tated Dominating Set, with both problems parameterised by tree-depth.

Proof. In the same proof on p. 18 of [6], a standard reduction from RBCDS to CDS is given which
adds only one new vertex to G′, thereby only increasing the tree-depth by at most 1.

The provided reduction for XNLP-hardness of Red-Blue Capacitated Dominating Set and subse-
quently Capacitated Dominating Set can also be easily shown to have bounded treewidth relative to
the original graph. Since Circulating Orientation parameterised by treewidth is XALP-complete [2],
it follows that Red-Blue Capacitated Dominating Set is also XALP-hard (although this result follows
trivially from [2], it was not explicitly mentioned there).

Corollary 5.1.6.1. Red-Blue Capacitated Dominating Set and Capacitated Dominating Set are XALP-
hard when parameterised by treewidth.

In this part of the section, we give the reductions necessary to complete the strongly connected
reduction graph shown in Figure 3.3.

Figure 5.1: Edge gadget in the reduction graph from Outdegree Restricted Orientation to All or
Nothing FLow

5.2 Outdegree Restricted Orientation to All-or-Nothing Flow

Theorem 5.2.1. A pl-reduction exists from Outdegree Restricted Orientation to All-or-Nothing Flow,
with both problems parameterised by tree-depth.

Proof. We start with an instance of Outdegree Restricted Orientation, i.e. an undirected graph
G = (V,E), as well as a weight function w : E → Z>0, and, for each v ∈ V , an interval Dv ∈ Z≥0.

21

We now create an instance of All-or-Nothing Flow. To that end, let G′ = (V ∪ {s, t}, A) be a
directed graph with the same vertex set as G, as well as a source s and a sink t. We will define the
set of arcs A in the following paragraph.

For every u ∈ V , we create a vertex u′, and for each i ∈ [lu, ru] = Du we create an arc (u, u′) with
capacity i. Additionally, we create a ru arcs from u′ to t, each with capacity 1. Then, for every edge
(u, v) ∈ E, we create an extra vertex xu,v, and we connect it in the graph with (s, xu,v), (xu,v, u),
(xu,v, v), with each arc having capacity w(u, v). Let Du = [lu, ru], and Dv = [lv, rv]. Figure 5.1 shows
this construction. The intuition here is that, for every edge {u, v} ∈ E, an orientation must be chosen
by either sending flow from xu,v to u, or from xu,v to v. Subsequently, every vertex u must siphon
its incoming flow to t, which, by the construction shown in Figure 5.1, is guaranteed to be within the
permitted range [lu, ru].

Lemma 5.2.2. An orientation exists for G such that for every v ∈ V the weight sum of its outgoing
edges is contained in Dv, if and only if an all-or-nothing flow f exists for G′ with flow value

∑
e∈E w(e).

Proof. First suppose we have an orientation G such that for every u ∈ V , the sum of weights of all
its outgoing edges is contained in Du = [lu, ru]. We create a flow f on G′ by first setting f(s, xu,v) =
w(u, v) for every (u, v) ∈ E. If (u, v) is directed to u in G, we set f(xu,v, v) = w(u, v); otherwise, we
set f(xu,v, u) = w(u, v), so that for each u ∈ V , we have that u has an inflow in G′ from f that is
equal to the weight sum of its outgoing arcs in the orientation of G. It follows then, that the total
inflow ι of u by f is contained in [l, u, rv], and therefore we can siphon its inflow to u′ by the arc
whose capacity is exactly ι, and then siphon the inflow from u′ to t′ via 1 capacity arcs, of which we
are guaranteed to have at least ι. The flow f is therefore a valid all-or-nothing flow on G′ which has
a flow value of

∑
e∈E w(e).

To prove the lemma in the opposite direction, suppose we start with a flow f on G′ for which
|f | =

∑
e w(e). It follows then that for every (u, v) ∈ E the flow ‘selects’ either u or v to siphon flow

to via xu,v, which is analogous to directing the edge (u, v) ∈ G towards v or to u respectively; indeed,
if we create such an orientation on G′, we see that every vertex u ∈ V has a weight sum of outgoing
arcs that is equal to the inflow of u from f in G′. Since the lowest-capacity arc from u to u′ has
capacity lu, and since the total sum of all capacities from u′ to t is ru, we must have that the inflow
of u in G′ (and therefore the weight sum of its outgoing edges in G) is contained in Du. We conclude
that a valid outdegree-restricted orientation exists for G.

From the proof of Lemma 5.2 it follows that we have successfully reduced the instance of Outdegree
Restricted Orientation to an instance of All-or-Nothing Flow; what remains to be proven is that the
reduction graph G′ has restricted tree-depth t′ relative to the tree-depth t of G. To that end, let T
be a tree-depth spanning tree of G which has depth t. We construct a tree-depth spanning tree T ′

of G′ by connecting u and u′ via an edge for every u ∈ V , and then by connecting v′ to w for every
pair v, w ∈ V for which v is a parent of w in T . Clearly, this creates a tree-depth spanning tree T ′ of
(part of) G′ with depth 2t. To complete the tree-depth spanning tree, we place s and t at the root
of T ′, and we create an edge from xu,v to v for every (u, v) ∈ E, where assume w.l.o.g. that v is a
descendant of u in T , which increases the depth of T ′ to at most 2t + 3.

5.3 Undirected Flow with Lower Bounds to All-or-Nothing
Flow

Theorem 5.3.1. A parameterised log-space reduction exists from Undirected Flow with Lower Bounds
parameterised by tree-depth to All-or-Nothing Flow parameterised by tree-depth.

Proof. We start with an instance of Undirected Flow with Lower Bounds parameterised by tree-depth,
i.e. an undirected graph G = (V,E) with sink and source nodes s and t, as well as a positive integer
R, and capacity and lower bound functions c : E → Z>0, as well as a tree-depth spanning tree T of
G with height t. We will now construct a directed flow graph G′ on which to define an instance of
All-or-Nothing Flow.

To start with, we create a new sink and source s′ and t′, as well as a spare source s′K which we
connect to s′ via (s′, sK) with capacity |V |, and, for every v ∈ V , we create two vertices vin and vout.
The only exceptions are s and t, for which we only create sout and tin respectively. Additionally, for

22

Figure 5.2: Edge gadget for the reduction graph of Undirected Flow with Lower Bounds to All-or-
Nothing Flow. Note that we have substituted l = l(u, v) and c = c(u, v) for better visual clarity.

Figure 5.3: Vertex gadget for the reduction graph of Undirected Flow with Lower Bounds to All-or-
Nothing Flow, to ensure that inflow and outflow are the same for every vertex v.

every {u, v} ∈ E we create an edge gadget by creating three vertices xu,v, x′
u,v and x′

v,u, which we
connect via the arcs (s′, xu,v), (xu,v, x

′
u,v) and (xu,v, x

′
v,u) with capacity C each, where we define as

the maximum across all capacities C =
∑

e∈E c(e). Then, for every i ∈ [l(u, v), c(u, v)], we create
a vertex x′

u,v,i and a vertex x′
v,u,i, and we connect them via arcs (x′

u,v, x
′
u,v,i) with capacity C, and

(x′
v,u, x

′
v,u,i) with capacity c. We also then connect x′

u,v,i to uout and to vin via arcs with capacity i,
and siphon its excess inflow to t′ via an arc with capacity C − i. Similarly, we connect x′

v,u,i to uin

and vout via arcs with capacity i, and connect it via an arc to t′ with capacity C− i. Figure 5.2 shows
(part of) this construction. Intuitively, we have that sending C flow to x′

u,v,i is equivalent to directing
the edge between u and v in G towards v, and sending an i ∈ [l(u, v), c(u, v)] amount of flow along it.
The vertices vout and vin then represent the outflow and inflow that v receives respectively.

As a small amendment, for edges in G that include s or t as an endpoint, we only include the
vertices in G′ that correspond to sending flow outwards from s, and inwards to t, since any solution
to the UFLB problem must be a valid flow from s to t, and can therefore not have incoming flow to
s or outgoing flow from t.

In the following, let W (v) be the sum of all capacities c(e) of edges incident to v. To ensure that
every v ∈ V \{s} receives an inflow that is equal to its outflow, we create for every k ∈ {0, 2, 4...,W (v)}
a vertex vk, and we create an arc (vin, vk) and (vout, vk) each with capacity 1

2k. Additionally, we create
(s′K , vk) with capacity 1, and (vk, t

′) with capacity k + 1. Intuitively, we have that s′K ‘pre-selects’
a vertex vk for every v ∈ V , so that every v must have the same inflow and same outflow 1

2k.
Additionally, for s and t, we only create the arcs (sout, t

′) and (tin, t
′) with capacity R for each.

23

Lemma 5.3.2. There exists an orientation of G such that a flow f of value R can exist on G given
capacity and lower bound functions c and l, if and only if an all-or-nothing flow f ′ exists on G′ with
value |V |K + |E|C.

Proof. We assume first that an orientation of G exists that allows a flow f of value R, given capacity
and lower bound functions c and l. To create a flow f ′ on G′, we direct a C amount of flow from
s′ to xu,v for every {u, v} ∈ E, and, assuming w.l.o.g. that the edge {u, v} is directed towards v in
the orientation of G, we use i = f(u, v) to refer to the integer flow value that is sent from u to v in
f . We then direct a C amount of flow from xu,v to x′

u,v,i, and we use every outgoing arc from x′
u,v,i

to its maximum capacity. Additionally, for every v ∈ V we compute the value k as the total inflow
of f towards v in G′ (which is necessarily equal to its total outflow), and we direct a K amount of
flow from s′ to vk in G′. It is easy to see that f ′ has a total flow value of |V |K + |E|C as a result.
Additionally, since every v ∈ V has inflow and outflow values that are equal to 1

2k, we have that every
pair vin and vout is able to pass on its collective inflow to the vertex vk, which can in turn pass the
flow on to t′.

For the converse proof, we assume that an all-or-nothing flow f ′ exists on G′ such that |f ′| =
|V |K + |E|C. From the fact that the total sum of capacities of outgoing arcs from s′ is exactly
|V |K + |E|C, we must conclude that for every v ∈ V a single vk is ‘selected’ by f ′ (since every v ∈ V
must have at least one vk for which flow is provided by s′K), as well as that for every {u, v} ∈ E, a
direction of the edge {u, v} with accompanying flow i across the directed arc is chosen via the vertex
x′
u,v,i or x′

v,u,i. If we translate this selection by f ′ into an orientation on G with accompanying flow
f , we can easily see how f must have a total flow value |f | = R (by the fact that both sout and sin
were able to send R flow to t′ in G′), and we can also see that every v ∈ V must receive an equal
amount of inflow as well as outflow k by the fact that every pair vin and vout was able to pass on its
flow to a vertex vk.

With Lemma 5.3.2 proven, we only have to show that the reduction graph G′ has bounded tree-
depth relative to the original graph G. To that end, observe that we can copy the structure of T to a
tree-depth spanning tree T ′ of G′, where s′, s′K, and t′ are placed at the root of the tree, and where
we connect every pair uin, uout in T ′ and by connecting uout to vin for any v ∈ V which is a direct
child of u in T . Then, for every vertex of the type vk, we can add it as a separate child to vout in
T ′. For the edge vertices of the type xu,v, x′

u,v, and x′
v,u, observe that we can simply suspend xu,v

below v in T ′ (assuming w.l.o.g. that u is the ancestor of v in T ′), and that we can then add x′
u,v and

x′
v,u as separate children of xu,v. Lastly, we can connect every vertex of the type x′

u,v,i and x′
v,u,i as

a separate child of x′
u,v and x′

v,u respectively.
By studying the structure of T ′, we can conclude that it has a tree-depth of at most 2t+6, meaning

it has bounded tree-depth relative to the original graph G.

Figure 5.4: Edge gadget for the reduction graph of Circulating Orientation to Target Set Selection.

24

5.4 Circulating Orientation to Target Set Selection

Theorem 5.4.1. A parameterised log-space reduction exists from Circulating Orientation to Target
Set Selection, where each problem is parameterised by the tree-depth parameter.

Proof. We start with an instance of Circulating Orientation parameterised by tree-depth, i.e. a graph
G = (V,E) with a weight function w : E → Z>0, as well as a tree-depth spanning tree T of G
with height t. We construct the reduction graph G′ by moving every v ∈ V to G′, and by creating an
additional edge gadget for every {u, v} ∈ E. This edge gadget is comprised of two adjacent vertices xv,u

and xu,v, as well as 2·w(u, v) unlabelled vertices, half of which we connect on individual paths between
xv,u and u, and half of which we connect on individual paths between xu,v and v. Figure 5.4 shows
this construction. We give xv,u and xu,v each a threshold value of τ(xv,u) = τ(xu,v) = w(u, v) + 1,
and we give every other vertex in the edge gadget a threshold of 1. Lastly we set the threshold value
of every v ∈ V as 1

2W (v), where W (v) is the summed total weight of edges incident to v.

Lemma 5.4.2. There exists a circulating orientation of G given the weight function w, if and only
if a target set S0 of size |E| exists for G′ that activates every vertex given threshold function τ .

Proof. We assume first that a circulating orientation exists for G, and we define our target set S0

for G′ to be comprised of every vertex xv,u for which the edge {u, v} ∈ E is directed towards u, and
of every vertex xu,v for which {u, v} is directed towards v. Clearly, the resulting set S0 has exactly
|E| elements as a result. Furthermore, we can define S1 as the subset of V ′ that contains only those
unlabelled vertices which are connected between u and xv,u for which xv,u ∈ S0, as well as those
vertices connected between xu,v and v for which xu,v ∈ S0. We then define S2 = V , and S3 as the set
of vertices with threshold 1 whose neighbour of the type xu,v was not picked in S0, and S4 as the set
of vertices xu,v which were not picked in S0.

From observing Figure 5.4, we have that the sequence S0, S1, S2, S3, S4 defines a disjoint decom-
position of the vertex set V ′ of G′. Furthermore, since every vertex in S1 has a threshold of 1 and was
picked to have a neighbour in S0, we have that S0 successfully activates S1. Lastly, since we defined
our target set to be analogous to the existing circulating orientation of G, it is easy to see how every
v ∈ V has exactly 1

2W (v) neighbours in S1, which in turn allows it to activate the subsequent set S3

whose vertices all have a threshold of 1. We conclude therefore that S0 is a valid target set of G′.
Given the simple nature of the converse part of the proof, we eschew the formal definition of the

target set problem for the more intuitive informal one. Assume therefore that a target set S0 exists
that successfully activates the rest of G′ where |S0| = |E|. If, for a given {u, v} ∈ E, neither xu,v

or xv,u was picked for S0, we quickly reach a contradiction by noting that neither vertex could then
have been activated in a subsequent stage. We must conclude, therefore, that S0 contains exactly
one vertex xu,v or xv,u for every {u, v} ∈ E, which in turn activates the w(u, v) vertices adjacent to
the vertex u or v respectively. We can easily translate this to an orientation of G by directing {u, v}
towards u in the case that xv,u was picked for S0, and by directing {u, v} towards v if xu,v was picked.
It must then be the case that the resulting orientation is a circulating orientation, since the total
weighted indegree of any u ∈ V is exactly equal to the number of neighbours that u has in S1, and if
any vertex u ∈ V had fewer than 1

2W (u) neighbours in S1 it would not have been activated, and if it
had strictly more than 1

2W (v) neighbours in S1, it would have to be the case that at least one vertex
v does not have sufficient activated neighbours, which would contradict our assumption that S0 is a
valid target set of G′.

To create a tree-depth decompositon T ′ of G′, we can copy the structure of T into T ′, and then
for any edge {u, v} ∈ E we can connect the edge vertices xv,u and xu,v as separate children of v,
assuming w.l.o.g. that v is the descendant of u in T . The remaining edge vertices can then be added
as separate children of xv,u and xu,v, so that the total height of T ′ is at most only td + 2.

Circulating Orientation was already proven to be XNLP-complete when parameterised by path-
width in [1], as well as XALP-complete when parameterised by treewidth in [2]. We can therefore
conclude the following corollary result:

Corollary 5.4.2.1. Target Set Selection is XNLP-hard when parameterised by pathwidth, and XALP-
hard when parameterised by treewidth.

25

Figure 5.5: Reduction graph from Capacitated Dominating Set to All-or-Nothing Flow.

Figure 5.6: Vertex gadget for the reduction graph from Capacitated Dominating Set to All-or-Nothing
Flow.

5.5 Capacitated Dominating Set to All-or-Nothing Flow

Theorem 5.5.1. A pl-reduction exists from Capacitated Dominating Set to All-or-Nothing Flow, with
both problems parameterised by tree-depth.

Proof. We start with an instance of Capacitated Dominating set parameterised by tree-depth, i.e.
an undirected graph G = (V,E) with a tree-depth spanning tree T of depth t, as well as a capacity
function c : V → N and a target integer k. We construct a directed flow graph G′ as follows: first
we create source and sink vertices s and t, and then we create additional sink vertices sd and s¬d,
which we connect to s via the directed arcs (s, sd) and (s, s¬d), which have the capacities k(C + D)
and (|V | − k)(D + 1) respectively, where C = maxv∈V c(v) and D = maxv∈V d(v) + 1. Then, for each
v ∈ V , we create three vertices v′d, vd, and v¬d, and we create the arcs (sd, v

′
d), (v′d, vd), as well as

(s¬d, v¬d), with capacities C + D, c(v) + D, and D + 1 respectively. Additionally, to siphon excess
flow from v′d and vd, we create an arc (v′d, t) with capacity C − c(v), as well as c(v) additional arcs
from vd to t, each with capacity 1.

Then, for every edge (v, w) ∈ E, we create a vertex xv,w, and we connect it via an arc to t with
capacity 2. Additionally, we create the arcs (vd, xv,w), (v¬d, xv,w), (wd, xv,w), (w¬d, xv,w), all with
capacity 1. Figure 5.5 shows this construction.

Lastly, for every w ∈ V , we create a vertex yw, which we connect via an arc to t with capacity D.
Additionally, we create the arcs (w¬d, yw) and (wd, yw), each with capacity D. Figure 5.6 shows this
part of the construction.

26

The intuition for why we built the graph this way goes as follows: if we set the required flow value
high enough such that every arc going out of s has to be used, then the network is forced to ‘select’
a k number of vertices of the type vd by directing flow from them from sd, which in turn can be used
to represent the dominating set. At the same time, the network has to select a |V | − k number of
vertices through s¬d, which together represent the vertices not chosen in the initial dominating set.
If either a w¬d

or wd is chosen, the integer D is sufficiently large that whichever vertex is chosen must
send D flow to the vertex yw, which ensures that no vertex is chosen to be both within and outside
the dominating set. If we do have that w¬d is chosen (and therefore w is not in the dominating set),
then it can still release its inflow through a vertex xv,w, provided that w has a neighbour v which has
been dominated.

We are now ready to state the following lemma:

Lemma 5.5.2. A dominating set of size k exists for G that abides by the capacity function c, if and
only if a flow f exists on G′ with flow value |f | = (|V | − k)(D + 1) + k(C + D).

Proof. Suppose first that a dominating set S ⊆ V exists for G, i.e., a function h : V → S exists such
that {w, f(w)} ∈ E or w = f(w) for all w ∈ V , while also the property holds that |f−1(v)| ≤ c(v) for
all v ∈ S.

We construct a flow f on G′ as follows: we set f(s, s¬d) = (|V | − k)(D + 1), and we set f(s, sd) =
k(C + D). Then, for each w ∈ V \ S, we set f(s¬d, w¬d) = D + 1, and for each v ∈ S, we set
f(sd, v

′
d) = C + D. Since S and V \ S are disjoint, every selected vd and w¬d will be able to send

its excess inflow D to send to yv and yw. Additionally, since every w¬d has a ‘neighbouring’ vd
which can send flow to uv,w, it can siphon its excess flow of 1 through uv,w to t. Since we also have
that |f−1(v)| ≤ c(v) for all v ∈ S, we know that every selected vd has sufficient inflow to supply its
neighbours.

We conclude that a valid all-or-nothing flow exists on G′ with the desired flow value.
For the converse proof, we assume that an all-or-nothing flow f exists on G with value |f | =

(|V | − k)(D + 1) + k(C + D). With similar reasoning as in the previous proof, it is easy to see how
such a flow would ‘select’ exactly a k vertices of the type vd, as well as |V | − k vertices v¬d, which
we can translate into a potentially dominating subset of V of size k. By the fact that every w¬d is
able to siphon its inflow to the sink t, we can conclude that every vertex w not selected to be in the
initial dominating set has a neighbouring v that is selected, and by the fact that vd can send out flow
to at most c(v) neighbouring edge vertices, we know that no dominating vertex exceeds its capacity
for dominating neighbours. The set S = {v ∈ V : f(sd, v

′
d) > 0} is therefore a valid capacitated

dominating set of size k for G.

From the proof of Lemma 5.5.2, it follows that the instance of Capacitated Dominating Set and
the reduced instance of All-or-Nothing Flow are equivalent. What remains to be proven is that the
graph G′ has a tree-depth t′ that is restricted with respect to t.

To that end, note that every vertex v ∈ V has exactly four corresponding vertices v′d, vd, v¬d, and
yw in G′, and that for every edge vertex xv,w we have that it is only adjacent to vertices corresponding
to v and w in G′, which in turn are adjacent in G. We can therefore construct a tree-depth spanning
tree of G′ where s, sd, s¬d, and t are placed at the root, such that its total height becomes 4td+5.

5.6 Circulating Orientation to Capacitated Vertex Cover

Theorem 5.6.1. There is a pl-reduction from Circulating Orientation to Capacitated Vertex Cover,
with both problems parameterised by tree-depth.

Proof. We start with an instance of Circulating Orientation parameterised by tree-depth, i.e. an
undirected graph G = (V,E) with a tree-depth spanning tree T of G whose height is td, as well as a
weight function w : E → Z>0. We construct our reduction graph G′ by including in it every vertex
v ∈ V , as well as an additional dummy vertex v′ which we connect via an edge to v. We set the
capacity of v as 1

2W (v) + 1, and the capacity of v as 0. Here W (v) is the total sum of the weights of
edges incident to v. We also replace every edge {u, v} ∈ E with an edge gadget as depicted in Figure
5.7. In this gadget there are two adjacent vertices xv,u and xu,v, as well as w(u, v) edges which are
each on an individual path between u and v. We then create edges from xv,u to half of the endpoints
of the w(u, v) edges between u and v, and xu,v to the other half of the endpoints as depicted in

27

Figure 5.7. For the capacities of these vertices, we set c(xv,u) = c(xu,v) = w(u, v), and we give all the
remaining vertices in the edge gadget a capacity of 3.

With the construction out of the way, we are ready to state the following lemma:

Lemma 5.6.2. There exists a circulating orientation for G given weight function w if and only if a
vertex cover S ∈ V exists for G′ that abides by the capacity function c and where |S| = |V | + |E| +∑

e∈E w(e).

Proof. Assume first that a circulating orientation exists on G. For our set S ∈ V , we pick every v ∈ V ,
and, for every {u, v} ∈ E we pick xv,u if u is directed towards v, and xu,v if v is directed towards
u. Additionally, we pick the w(u, v) vertices in the edge vertex that are not adjacent to whichever
vertex xv,u or xu,v we picked. Clearly, the set S has an |V | + |E| +

∑
e∈E w(e) number of elements.

Additionally, the way that we selected vertices from every edge gadget means that we can cover every
arc in G′ contained within every edge gadget in a way that abides by the capacity constraints of the
vertices in the edge gadget; the only arcs left to be covered are the ones whose endpoints are the vertex
u towards which the associated edge in G was oriented. By the fact that this orientation constitutes
a circulating orientation, we have that every vertex u has exactly enough capacity (namely 1

2W (u))
to cover these remaining arcs in G′. Therefore, S is a valid capacitated vertex cover.

For the converse proof, assume that a capacitated vertex cover S ⊆ V exists for which |S| =
|V | + |E| +

∑
e∈E w(e). By the fact that every v ∈ V has a ‘dummy’ vertex adjacent to it with

capacity 0, and by the fact that every edge gadget for a given {u, v} between vertices has w(u, v) + 1
arcs that have to be covered (the ones that are not dashed in Figure 5.7)) we can conclude that every
edge gadget for a given e = u, v ∈ E contributes exactly w(e) + 1 vertices to S, such that S contains
exactly one of xv,u or xu,v, and apart from that all the w(e) vertices not adjacent to whichever of
xv,u or xu,v was picked (any other selection of vertices of the edge gadget would not cover every arc
in the edge gadget). We can then translate S to an orientation of G by directing the edge {u, v} to u
if xv,u ∈ S, and towards v if xu,v ∈ S. In such an orientation, every u has a total weighted indegree
that is exactly equal to the number of edges that u has to cover in G′. This number is exactly
equal to 1

2W (u), since otherwise at least one vertex v would have to cover more than its capacity
1
2W (v) number of edges in G′, which contradicts our assumption. We conclude that we have found a
circulating orientation on G.

Now that we have equivalence between the two problem instances, it only remains to be proven
that the reduction graph G′ has bounded tree-depth with respect to G. We can construct a tree-depth
spanning tree T ′ of G′ by copying the structure of T , and expanding every v ∈ V into v and v′ so
that T ′ has height 2 · td. Then, for every {u, v} ∈ E, we can suspend xv,u and xu,v beneath v and
v′ (assuming w.l.o.g. that v is a descendant of u in T), and attach every remaining adjacent pair of
vertices in the edge gadget underneath xu,v, so that the total height of T ′ becomes at most 2 · td + 4.
Every vertex and every edge in G′ is now accounted for in T ′, and so we conclude that G′ has bounded
tree-depth relative to G.

Figure 5.7: Edge gadget for the reduction graph from Circulating Orientation to Capacitated Vertex
Cover. Here u′ and v′ both have capacity 0, u has capacity 1

2W (u) + 1, v has capacity 1
2W (v) + 1,

xv,u and xu,v have the same capacity w(u, v) + 1, and all other vertices have capacity 3.

28

5.7 Capacitated Vertex Cover to All-or-Nothing Flow

Theorem 5.7.1. There is a pl-reduction from Capacitated Vertex Cover to All-or-Nothing Flow, with
both problems parameterised by tree-depth.

Proof. We begin with an instance of Capacitated Vertex Cover parameterised by tree-depth, i.e. an
undirected graph G = (V,E), a tree-depth spanning tree T of G with height td, a target integer k,
and a capacity function c : V → N. We construct a flow graph G′ by introducing source vertices s
and s′, as well as a sink vertex t, and we connect s to s′ via an arc with capacity (|V | − k)C, where
C := maxv∈V c(v). Then, for every v ∈ V , we add it to G′ along with an additional vertex v′, and
we connect s′ to v′ via an arc with capacity C, and v′ to v with capacity c(v). To get rid of excess
flow, we connect v′ to t via an arc with capacity C − c(v), and we also create c(v) arcs with capacity
1 from v to t. Then, for every {v, w} ∈ E, we create a vertex xv,w, and connect s to it via an arc with
capacity 1. We also create arcs from xv,w to both v and to w with capacity 1. Figure 5.8 shows this
construction.

The intuition is that a maximal flow on G′ will be forced to ‘choose’ the |V |−k vertices that are not
part of the vertex cover. Each such vertex v will then have its entire capacity c(v) directed towards
it, so that it cannot receive any more flow from adjacent vertices edge xv,w for its neighbours w. At
the same time, every xv,w corresponding to an edge in G must be able to get rid of its incoming flow
to one of the endpoints v or w, meaning that for every edge {v, w} ∈ E, either one of its endpoints v
or w must be included in the vertex cover.

Lemma 5.7.2. There exists a capacitated vertex cover on G of size k given the capacity function c,
if and only if an all-or-nothing flow with flow value (|V | − k)C + |E| exists on G′.

Proof. If a capacitated vertex cover S exists on G of size k, we can create a flow on G′ by directing
C flow from s′ to v′ for every v ∈ V \ S. If we then direct 1 flow from s to every edge vertex xv,w,
we have the desired total flow value of (|V | − k)C + |E|. Additionally, since every {v, w} ∈ E has
an endpoint in S, we can direct its inflow of 1 to that endpoint. By the fact that S is a capacitated
vertex cover given c, we know that every v ∈ S will have sufficient arc capacity between itself and t
to siphon excess flow.

Conversely, if a valid all-or-nothing flow exists on G′ with flow value (|V |−k)C + |E|, then we can
take S to be the set of k vertices that were not ‘picked’ by s′ to be in the dominating set. Since every
edge {v, w} ∈ E must have a corresponding xv,w in G′ which was able to siphon its 1 flow to one of
its corresponding endpoints in G, we must conclude that S is a valid vertex cover of G. Lastly, since
every v ∈ V could not receive more than c(v) inflow, we can conclude that S is also a capacitated
vertex cover given c.

With Lemma 5.7.2 proven, we only have to show that G′ has bounded tree-depth relative to G.
To that end, we can construct a tree-depth composition T ′ of G′ that copies the structure of T , but
which expands every v ∈ V into a path consisting of v and v′. For every edge vertex xv,w, we can
assume, w.l.o.g., that w is the ancestor of v, and suspend xv,w below w in T ′. If we then place s, s′,
and t at the root of T ′, we have a valid tree-depth spanning tree T ′ of G′ whose height is at most
2td + 4.

5.8 f-Dominating Set to All-or-Nothing Flow

Theorem 5.8.1. There exists a pl-reduction from f -Dominating Set to All-or-Nothing Flow, with
both problems parameterised by tree-depth.

Proof. We start with an instance of f -Dominating Set parameterised by tree-depth, i.e. an undirected
G = (V,E) as well as a threshold function f : V → Z>0, and a positive integer k, and a tree-depth
spanning tree T of G with height t. We will now create a directed graph G′ along with a capacity
function c : V → N, on which we will define our instance of All-or-Nothing Flow.

To begin with, we create the source and sink vertices s and t, as well as an ‘auxiliary’ source sD,
which we connect via (s, sD) with capacity kR, where we define R = maxv∈V (f(v) + d(v)), with d(v)
being the number of neighbours that any v ∈ V has. Then, for every vertex v ∈ V , we add v to G′,
and connect s to v via an arc with capacity 1, and we also connect v to t via an arc with capacity

29

Figure 5.8: Part of the reduction graph from Capacitated Vertex Cover to All-or-Nothing Flow

Figure 5.9: Reduction graph from f-Dominating Set to All-or-Nothing Flow.

f(v) + 1. Additionally, we create vertices v′D and vD, and we connect SD to v′D via an arc with
capacity R, and we connect v′D to w via an arc with capacity f(v), and also we connect v′D to vD via
an arc with capacity d(v). Lastly, we create an arc from v′D to t with capacity R− f(v) − d(v) to get
rid of excess flow, and we also create a d(v) number of 1-capacity arcs from vD to t.

Then, for any neighbouring pair v, w in G, we connect wD to v via an arc with a capacity of 1.
So far, the intuition is that every vertex v ∈ V ‘needs’ to receive its threshold amount of flow f(v)

in order to bridge the arc (v, t) which has capacity f(v) + 1. Via sD, it is ensured that a k number of
vertices receive their requisite inflow directly, while also receiving enough to supply every neighbour
in G with one flow each. Figure 5.8.1 shows part of this construction for a adjacent pair v, w.

Lemma 5.8.2. There exists an f -dominating set on G of size k if and only if an All-or-Nothing flow
with value kR + |V | exists on G′ given the capacity function c.

Proof. We first assume that the former statement holds, i.e. that a set D ⊆ V exists with |D| = k
such that every v ∈ V \ D has at least f(v) neighbours in D. We begin constructing a flow g on
G′ by setting g(s, v) = 1 for every v ∈ V , and setting g(s, sD) = kR. Clearly, this results in a total
outflow from s of value kR + |V |; what remains to be done is to bring the rest of the flow network
into equilibrium.

For every u ∈ D, we set g(sD, u′
D) = R, which allows us to set g(u′

D, u) = f(u), and in turn
g(u, t) = f(u) + 1. We also set g(u′

D, uD) = d(u), and get rid off any excess flow by setting g(u′
D, t) =

30

R−f(u)−d(u). Since uD now has an inflow of d(u), as well as d(u) arcs connecting it to t, we have that
every vertex in G′ has achieved flow equilibrium, except for those v ∈ V \D. For every such v ∈ V \D,
however, we know that f(v) adjacent vertices w exists in D, and therefore we can set g(wD, v) = 1 for
every such w ∈ D, which gives v sufficient inflow such that we can set g(v, t) = f(v) + 1, and achieve
equilibrium across the entire network G′.

For the converse proof, we assume that a flow g exists on G′ which uses every arc of G′ to full
capacity or not at all, and which has a flow value |g| = kR+ |V |. From the way that G′ is constructed,
it follows that exactly a k number of vertices v′D receives R inflow from SD. If we then take those k
vertices to comprise the dominating set D, we can see that any w ∈ V \D has at least f(w) neighbours
in D, since every w ∈ V \D is able to receive f(w) inflow in total from incident arcs in G′.

From the proof of Lemma 5.8.2, we conclude that our reduction from the initial problem instance
of f -Dominating Set is equivalent. What remains to be shown is that the graph G′ has bounded
tree-depth t′ relative to t.

Note that, in G′, every vertex v ∈ V is represented by exactly three vertices v′D, vD and v, and that
every arc in G′ either has an endpoint in s or t (which we can place at the root), or has its endpoints
in vertices corresponding to a pair v, w ∈ V that is adjacent in G. A tree-depth representation T ′ of
G′ can therefore be created by copying the structure of T , and placing s, sD, and t at the root of T ′,
which creates a tree of height 3td + 3.

Figure 5.10: Edge gadget for the reduction graph of Circulating Orientation to f-Dominating Set

5.9 Circulating Orientation to f-Dominating Set

Theorem 5.9.1. There exists a pl-reduction from Circulating Orientation to f -Dominating Set, with
both problems parameterised by tree-depth.

Proof. We begin with an instance of Circulating Orientation parameterised by tree-depth, i.e. an
undirected graph G = (V,E), and a weight function w : E → Z>0. We will now construct an instance
of f -dominating set by defining both an undirected graph G′ = (V ′, E′) and a threshold function
f : V ′ → Z>0.

Firstly, we add every vertex u ∈ V to G′, and we set f(u) = 1
2W (u), where W (u) is the sum total

of weights of edges incident to u. Then, for every edge {u, v} ∈ E, we create two vertices xv,u and
xu,v, each with threshold f(xv,u) = f(xu,v) = 1, as well as a vertex x′

u,v with threshold 1, and we
connect the three total vertices in a clique. Additionally, for i ∈ [1, w(u, v)], we create three vertices
yv,u,i, yu,v,i and y′u,v,i, each with a threshold of 1, and we connect these vertices such that they form
a path from u to v, with y′u,v,i in the middle. Additionally, we connect xv,u to yv,u,i via an edge, and
xu,v to yu,v via an edge. Figure 5.9.1 shows this construction for a given edge {u, v}.

Lemma 5.9.2. There exists a circulating orientation of G if and only if an f -dominating set D exists
on G′ with |D| = |E| +

∑
e∈E w(e).

31

Proof. Suppose first that a circulating orientation exists on G, that is, there exists an orientation
of the edges of G such that every u ∈ V has a total weighted outdegree of 1

2W (u), where W (u) is
the total weight sum of edges incident to u. We construct a dominating set D as follows: for each
{u, v} ∈ E, if {u, v} is oriented towards u, add xv,u to D, and, for every i ∈ [1, w(u, v)], add yv,u,i to
D. If however, {u, v} is oriented towards v, we pick xu,v, as well as yu,v,i for every i ∈ [1, w(u, v)].
Clearly, the resulting set D contains exactly |E| +

∑
e∈E w(e) elements, and it is easy to verify that

every vertex in G′ whose threshold is 1 is either contained in D or has at least one neighbour in D.
Additionally, we have that, for every u ∈ V , that u has exactly w(u, v) neighbours in D for every
neighbour v of u whose shared edge is directed towards u in the circulating orientation, which means
that the total number of neighbours that u has in D is exactly 1

2W (u).
For the converse proof, we assume that an f -dominating set D exists on G with |D| = |E| +∑

e∈E w(e). Observe that, for every {u, v}, the triplet xv,u, xu,v, x′
u,v must contribute at least one

vertex to D, and that every triplet yu,v,i, yv,u,i, y
′
u,v,i must contribute at least one vertex to D. Given

the cardinality of D, we can conclude that every such triplet contributes exactly one vertex to D.
We can assume that every vertex in D is not a ‘dummy’ vertex of the type x′

u,v or y′u,v since, if
any such dummy vertex was picked for D, we can swap it out with either of the other vertices in
its corresponding triplet and retain a dominating set that still has the same number of vertices. It
follows that, for every {u, v} ∈ E, it is either the case that every vertex xv,u,i for every i ∈ [1, w(u, v)]
is contained in D, or it is the case that every vertex of the type xu,v,i is contained in D, since any
other configuration of D would not actually be able to cover the entire edge gadget between u and v.

We create an orientation on G by orienting every edge {u, v} ∈ E towards u if xv,u ∈ D, and by
orienting {u, v} towards v if xu,v ∈ D. From the fact that every u ∈ V has at least 1

2W (u) neighbours
in D, it follows that every u ∈ V has at least 1

2W (u) total weighted indegree, and from that we can
conclude that that every u ∈ V must have exactly 1

2W (u) total weighted indegree, since, if any u ∈ V
had strictly more that 1

2W (u) weighted indegree, another v ∈ V would necessarily have to have less
than that.

With Lemma 5.9.2 proven, all that remains to be shown is that G′ has a tree-depth t′ that is
bounded relative to the tree-depth t of G.

Note that, in our construction of G′, we retained the vertex set of G, and only added vertices for
every edge {u, v} ∈ V . To construct a tree-depth representation T ′ of T ′, we can therefore copy the
structure of T into T ′, and for every {u, v} connect the edge-vertices of the type to v in G′, assuming,
w.l.o.g., that v is a descendant of u in T . The total height of T ′ only increases at most to td + 6 as a
result.

5.10 Target Set Selection to All-or-Nothing Flow

For the proof of the last reduction proof in the reduction graph shown in Figure 3.3, we must first
introduce some new concepts that are going to be used in the sequel.

5.10.1 Graph orderings and branch orderings

Given a directed graph H = (V,A), we say that a sorting s of (a subset of) the vertices V is a
topological ordering if for any v, w ∈ V where v precedes w in s we have that (w, v) ̸= A.

In the following, let G = (V,E) be a graph with a tree-depth spanning tree T of height t of G,
and let r ∈ V be the root of T . We will write tdv for every v ∈ V to indicate the length of the unique
path from the root of T to v (tdv can be seen as the depth of v in T). Lastly, we define σT = (v) as
the set containing v as well as every descendant of v in T .

We then call a function π : {{v, w}|v, w ∈ V,w ∈ σT (v)} → {1, ..., tdw} a branch ordering of G
given T if, for any u, v, w ∈ V where u = v or u is an ancestor of v in T , and w is a direct child of
v in T , we have that π(u,w) = π(u, v) if π(u, v) < π(w,w), and we have that π(u,w) = π(u, v) + 1
otherwise. Given a pair u, v ∈ V where v is a descendant of u in T , we say that u precedes v in
the branch ordering π if and only if π(u, v) < π(v, v); otherwise, if π(u, v) ≥ π(v, v) we have that w
precedes v in π. The intuition here is that, as will become clear through the following lemmas, we can
use a branch ordering π to indicate for every ancestor-descendant pair v, w ∈ V the index i = π(v, w)
that v has on a sorted path from the root of T to w, where the sorting is done via an ordering that
is implicit on the entire graph.

32

Given a graph G = (V,E) and a branch sorting π for a given tree-depth tree-decomposition T , we
define a branch topological ordering as a sorting s of the vertices in V such that for any v, w ∈ V we
have that v precedes w in s if and only if we have that v precedes w in π.

With the definitions out of the way, we are ready to prove a series of lemmas.

Lemma 5.10.1. Given a graph G = (V,E) and a tree-depth spanning tree T of G, if a function
ϕ : V → {1, ..., td} is such that ϕ(v) ∈ [1, tdv] for all v ∈ V , then there exists exactly one branch
ordering π of G such that π(v, v) = ϕ(v) for every v ∈ V .

Proof. For every u ∈ V , we set π(u, u) = ϕ(u). Then, for every u ∈ V , we iterate over every v that is a
direct child of u in T , and set π(u, v) = π(v, v) if π(u, v) < π(v, v), and π(u, v) = π(v, v)+1 otherwise.
Subsequently, we recursively apply the same logic to every child w of v in T to compute π(u,w). By
imagining the process visually, it is easy to see how this process is able to compute every value π(u, v)
for every ancestor-descendant pair u, v in T , resulting in a function π that abides by the criteria of
being a branch ordering of G. Additionally, the process of computing π is entirely deterministic given
ϕ, from which we can conclude that π is indeed unique.

Lemma 5.10.1 essentially shows how a branch ordering π can be entirely defined by its values
π(v, v). In the following, we shall therefore refer to a function ϕ : V → {1, ..., td} that has the
property that ϕ(v) ∈ [1, tdv] for all v ∈ V as a reduced branch ordering of G.

Lemma 5.10.2. Given a graph G = (V,E) with a tree-depth spanning tree T , and a sorting s of the
vertices in V , there exists a branch ordering π of G given T , such that for all ancestor descendant
pairs v, w in T we have that v precedes w in s if and only if v precedes w in π.

Proof. In the following we will use ρv to indicate the sorted path u1, ..., utdv to indicate the tdv vertices
on the unique path from r to t such that ui precedes uj on s for any i, j ∈ [1, tdv] with i < j. Using
this, we can define π(u, v) for every ancestor-descendant pair u, v in T as the index that u has on
the path ρv. It is easy to verify then that, for all u, v, w with u = v or u an ancestor of v in T , and
w a direct child of v, we have that π(u,w) = π(u, v) if π(u, v) < π(w,w), and π(u,w) = π(u, v) + 1
otherwise, since π(w,w) represents the index of w on its own path from r to w, and so we have that w
‘displaces’ v by one position relative to its position on the path ρv if w appears before v on the path
ρw.

Lemma 5.10.3. Let G = (V,E) be a graph with tree-depth spanning tree T , and let pi be a branch
ordering of G given T , and let u, v ∈ V be such that u precedes v in T . Then, for any w ∈ V where
w is a descendant of both u and of v, we have that π(u,w) ≤ π(v, w).

Proof. The proof follows from inductive logic, where we first observe that π(u, v) ≤ π(v, v) (the
induction base) follows trivially from our assumption that u precedes v in π.

For the induction step, assume that π(u,w) ≤ π(v, w) is true for some w ∈ V where w is a
descendant of both u and of v (or, in the fringe case, w = v, assuming w.l.o.g. that u is an ancestor
of v). Then, for any direct child w′ of w, one of the following three cases must apply:

• π(w′, w′) ≤ π(u,w) ≤ π(v, w), therefore π(u,w′) = π(u,w) + 1 and π(v, w′) = π(v, w) + 1;

• π(u,w) < π(w′, w′) ≤ π(v, w), therefore π(u,w′) = π(u,w) and π(v, w′) = π(v, w) + 1;

• π(u,w) ≤ π(v, w) < π(w′, w′), therefore π(u,w′) = π(u,w) and π(v, w′) = π(v, w).

In all three cases, we have that π(u,w′) ≤ π(v, w′) follows.

Lemma 5.10.4. Given a branch ordering π of G = (V,E) for a given tree-depth representation T ,
there exists a branch topological ordering s of G.

Proof. Let {b1, ..., bl} be the l distinct leaves of the tree T sorted in arbitrary order. For all i ∈ [1, l]
We write pi to indicate the path from the root of T to bi.

Claim 5.10.5. If a topological branch ordering sk exists for the vertices in p1 ∪ ... ∪ pk for a given
k ∈ [1, l − 1], then a branch topological ordering sk+1 exists for the vertices in p1 ∪ ... ∪ pk ∪ pk+1.

33

Proof. Let pk+1 = {v1, ..., vm}, such that v1, ..., vm is exactly the ordered path from the root of T
to bk+1. We initiate s′ = sk, and we add the vertices on pk+1 in order to s′. Note that to insert a
vertex vi into s′ correctly, we need only to consider vertices that are already contained in s′ which
share the same branch as vi in T . Note also that the following invariant holds: if s′ is a branch
topological sort for the vertices so far contained within it, then for any vi with i ∈ [1,m], if all the
vertices v1, ..., vi−1 have already been inserted into s′, we have that either vi is already contained in s′

(in which case we can skip it), or we have that vi is not in s′, but neither are any of vi’s descendants
in T (if a descendant of vi were contained in s′, then vi would necessarily have been placed in s′ first).
Let u1, ..., un be the sequence of ancestors of vi as they appear in s′. We can now easily compute
the partition L ∪ R = {u1, ..., un} such that for all u ∈ L we have that u precedes vi in π, and
that for all u′ ∈ R we have that vi precedes u′ in π. Note that for any pair u, u′ where u ∈ L and
u′ ∈ R, we must have that u precedes u′ in π, since otherwise we would have that the contradiction
π(u, vi) < π(vi, vi) ≤ π(u′, vi) ≤ π(u, vi) holds (here the inequality π(u′, vi) ≤ π(u, vi) follows from
Lemma 5.10.3). We can therefore insert vi into s′ between L and R, so that s′ remains a branch
topological ordering of the vertices contained within it.

From the proof of the invariant it follows that we can insert all vertices v1, ..., vm into s′ and retain
a topological branch ordering of the vertices within it. Once all vertices have been inserted, we let
sk+1 = s′.

From the proof of claim 5.10.5, and the fact that s0 exists since the empty set trivially has a
branch topological ordering, we can use inductive logic to conclude that a branch topological s exists
that includes the vertices of every branch in T , and is therefore a branch topological ordering of the
entire graph G.

Lemma 5.10.6. Given a branch ordering π of G = (V,E) for a given tree-depth representation T , if
we let H = (V,A) be the directed orientation of G such that (u, v) ∈ A if and only if {u, v} ∈ E and
u precedes v in π, then there exists a topological ordering s of H.

Proof. It follows from Lemma 5.10.4 that a branch topological ordering s exists for G. Then, for any
adjacent pair v, w ∈ V in G for which v appears before w in s, we have that v must also precede w in
π, which means that there cannot be an arc (w, v) ∈ A. We conclude that s is a topological ordering
of H.

5.10.2 Reduction proof of TSS to AoNF

Theorem 5.10.7. A parameterised log-space reduction exists from Target Set Selection to All-or-
Nothing Flow, where each problem is parameterised by the tree-depth parameter.

Proof. We start with a given instance of Target Set Selection parameterised by tree-depth, i.e. an
undirected graph G = (V,E), a threshold function τ : V → Z>0, a positive integer k, and a tree-depth
spanning tree T of G whose height is td.

We will construct a new directed flow-graph G′ by creating vertices s and t, which represent the
source and sink vertices of G′ respectively. We also create an extra sink node labelled s1, and we
create an arc of capacity |V |D from s to s1, where D := maxv∈V d(v). We also create s2, which we
each connect to s via (s, s2) with capacity kF , where F := maxv∈V τ(v). Then, for every v ∈ V we
add to G′ the vertices v1, v2, vin and vout, and we create the arcs (v1, vin), (v2, vin) and (vin, vout),
which have capacities c(v1, vin) = d(v), c(v2, vin) = τ(v), and c(vin, vout) = τ(v) + d(v) respectively,
where d(v) is the degree of v in G. Furthermore, we create an arc (v1, t) with c(v1, t) = D− d(v) and
an arc (v2, t) with c(v2, t) = F − τ(v), and additionally we create a d(v) + 1 number of arcs from v
to t, whose capacities we increment such that there is an arc of capacity τ(v) + i between v and t
for every i ∈ [0, d(v)]. Figure 5.11 shows this construction. Intuitively, a flow on the graph shown in
Figure 5.11 must ‘choose’ exactly a k number of vertices via s1 by siphoning F flow towards every
vertex chosen for the initial target set. At the same time, every vertex that is not initially chosen
must receive its necessary threshold flow τ(v) in order to be ‘activated’ by bridging the arc between
v′ and v. Once activated, a vertex v (through edge gadgets that we are about to define) will be able
to siphon at most 1 flow to all of its neighbours, and siphon the flow it does not need directly to t.

A naive step would now be to introduce an arc (v, w) with capacity 1 for every neighbouring pair
v, w ∈ V . Doing so, however, would not yield a valid reduction from target set selection. A simple
way to demonstrate this is to suppose that k = 1, and that G is a clique of three vertices u, v, w each

34

with threshold 2. Such a graph clearly does not have a target set of size 1, but the accompanying
flow network G′ would have a solution, as shown in Figure 5.15. Here we have that u is ‘selected’
for the initial target set by the flow network by having d(u) + τ(u) = 2 + 2 flow directed towards u,
while v and w both initially receive d(v) = d(w) = 2 inflow. Figure 5.15 shows how, given these initial
values, we can reach flow equilibrium while using every arc that is used to full capacity. An intuitive
explanation for the problem of our naive reduction method is that it allows for vertices v and w to
activate each other in the reduction graph, even if they do not have sufficient neighbours among the
previously activated vertices.

A possible solution would be to impose an arbitrary ordering on the vertices in V beforehand,
and to subsequently impose restrictions on the flow network such that any vertex v could only siphon
flow to a vertex w if v precedes w in said ordering. If a valid flow then existed on G′, we would
be certain that any vertex v has only received extra flow from the vertices that preceded it in the
arbitrary ordering, which in turn would translate to a valid target set. By iterating over every such
ordering, we would eventually find an ordering that works, or we would be able to conclude that no
such ordering exists, and therefore that no target set exists for G of size k. We could accomplish this
idea of iterating over every ordering of V relatively easily, by siphoning to every vertex a unique flow
value from 1 to |V |. Doing so, however, would increase the tree-depth by too much, since we’d need
a |V | number of extra vertices v′i per vertex v ∈ V , each of which would have to be connected to
every edge gadget corresponding to every neighbour of v in G. The idea then, is to instead impose a
reduced branch ordering ϕ on G, and use the mechanism of the flow network we create to derive from
that an accompanying branch ordering π.

To that end, we create another sink node sϕ, and we connect (s, sϕ) with capacity |V |. Then, for
every v ∈ V , we create ϕv, and for every i ∈ [1, tdv], we create a vertex ϕv,i, and we create an arc
(ϕv, ϕv,i) with capacity 1. Figure 5.12 shows this construction. Intuitively, we choose a starting value
ϕ(v) ∈ [1, tdv] for every v ∈ V .

In the following, for every v ∈ V , we write γ(v) to denote the set of direct children that v has in
T , and α(v) the set of ancestors of v in T . Lastly, we let P be a value that is sufficiently large by
letting P = maxv∈V (|γ(v)|+ |α(v)|+ 1). The choice of these numerical values will become more clear
as we complete the reduction graph. In essence, they are chosen such that every vertex has the exact
right amount of flow at its disposal.

To expand ϕ to a complete branch ordering π as described in Lemma 5.10.1, we consider every
pair u, v ∈ V , where u = v or u is an ancestor of v in T , as well as every corresponding i ∈ [1, tdv], and
we create three vertices π′′

u,v,i, π
′
u,v,i, and πu,v,i. Intuitively, if any flow reaches πu,v,i, we’ll have that

π(u, v) = i. The other two vertices π′′
u,v, and π′

u,v, are there for the ‘administrative’ part of making
sure the flow is correctly distributed throughout the network. Then in the case where u = v, we
connect every ϕui to ϕ′′

u,u,i via an arc with capacity 1, s to π′′
u,u,i with capacity P , π′′

u,u,i to π′
u,u,i with

capacity P + 1, π′
u,u,i to πu,u,i with capacity P + 1−|γ(u)|, and πu,u,i to t with π+ 1−|γ(u)|− |α(u)|.

This construction is depicted in Figure 5.14.
Then, for all u, v, w ∈ V where u = v or u is an ancestor of v, and where w is a direct child of

v, and for all i ∈ [1, tdv], we create the construction depicted in Figure 5.14 with accompanying arc
capacities. Additionally, for all j, j′ ∈ [1, tdw] where j ≥ i and j′ < i, we connect πw,w,j and πw,w,j′

to π′′
u,w,i and π′′u,w, j + 1 respectively via arcs, each with capacity 1. The intuition here is that, via

a distribution of flow through the network, we can recursively compute every π(u,w) as either π(u, v)
or π(u, v) + 1, where v is an ancestor of w in T , the same way as described in Lemma 5.10.1.

Lastly, we consider each edge (v, w) ∈ E. Assume, w.l.o.g., that v is an ancestor of w in T . Then,
for each pair i, j ∈ [1, tdw] for which we have that i < j, we create the vertices x′

v,w,i,j , and xv,w,i,j ,
and we connect them between vout and win as depicted in Figure 5.13. Additionally, we create the
arcs (πv,w,i, x

′
v,w,i,j) and (πw,w,j , x

′
v,w,i,j), each with capacity 1. Intuitively, we have that vout can

only supply flow to win in G′ if v precedes w in the branch ordering that we have imposed on G.
Then, for each pair i′, j′ ∈ [1, tdw] for which i′ ≥ j′, we create x′

w,v,j′,i′ and xw,v,j′,i′ , and we
connect them between wout and win as depicted in Figure 5.13. Additionally, we create the arcs
(πv,w,i′ , x

′
w,v,j′,i′) and (πw,w,j′ , x

′
w,v,j′,i′), each with capacity 1. Intuitively, we have that wout can only

supply flow to vin in G′ if w precedes v in the branch ordering that we have imposed on G.

Lemma 5.10.8. There is a valid target set of size k for G with threshold function τ if and only if an
All-or-Nothing flow exists on G′ with value |V |(D + 1) + kF + (1 +

∑
v∈V |σ(v)|)P , where σ(v) is the

set of descendants that v has in T .

35

Proof. First we assume that a valid target set exists for G; i.e., there exists a subset S0 ⊆ V with
|S0| = k, as well as a partition S0, S1, ..., Sl of non-empty, disjoint subsets of V where for every
i ∈ [1, l] we have that every v ∈ s[i] has at least τ(v) neighbours in S0 ∪ ... ∪ S(i − 1). By sorting
the vertices of every Si with i ∈ [1, l] in arbitrary order, we can also state that an ordering s =
u1, ..., uk, v1, ..., v|V |−k exists such that {u1, ..., uk} = S0 and {v1, ..., v|V |−k} = V \ S0, and we have
that for every j ∈ [1, |V | − k], vj has at least τvj

neighbours in the set S0 ∪ {v1, ..., vj−1}.
We can then create a flow f through G where we direct |V |D from s to s1, as well as kF from s

to s2, resulting (so far) in a flow value of |V |D + kF . This flow can then be siphoned off by directing
the maximum possible flow towards v1 and v2 for every v ∈ S0, which results in vin having an inflow
of τ(v) + d(v) which it can direct towards vout.

From s we can generate an imposed branch ordering π : V → [1, td] as described in Lemma
5.10.2. We set f(s, πu,v,i) = P for every ancestor-descendant pair u, v ∈ V , where i = π(u, v). Let
ϕ : V → {1, ..., td} be the reduced branch ordering of G for which ϕ(v) = π(v, v) for all v ∈ V .
We then set f(s, sϕ) = |V |), and for every v ∈ V , we set f(sϕ, ϕv) = 1 and f(ϕv, ϕv,i) = 1 where
i = ϕ(v). By looking at the structure of the graph in Figure 5.14, we can see that a vertex πu,v,i is
activated by having flow directed towards it if and only if we have that i = p(u, v). The flow graph
G′ therefore ‘copies’ the branch ordering π such that an activated uout can give flow to a vertex vin
if they are adjacent, and u precedes v in the sorting s. The total flow directed out of s is now the
desired |V |(D + 1) + kF + (1 +

∑
v∈V |σ(v)|)P . All that remains to be done is to show that the flow

network can be brought into equilibrium given the flow values chosen so far.
Note that, for every v ∈ V \S0, there exist at least a τ(v) number of neighbours u ∈ V that precede

v in s. For each of these neighbours u we have, via Lemma 5.10.2, that u precedes v in π as well. Let
b be the leaf of the branch of T on which u and v lie. If u is an ancestor of v in T , then we have that
π(u, b) = i < j = π(v, b), and if v is an ancestor of u in T , we have that π(u, b) = i ≤ j = π(v, b). In
either case, we have that uout can supply 1 flow via x′

u,v,i,j and xu,v,i,j to vin. It is therefore the case
that every v ∈ V \ S0 is able to receive its necessary τ(v) flow to vin from other vertices that have
already been activated.

Now we shall prove the lemma in the opposite direction. To that end, assume that a valid flow
f exists on G′ such that f(a) = 0 or f(a) = c(a) for every arc in G′, and which has a flow value of
|V |(D + F) + kT + P

∑
u∈V |σT (u)|.

We let S0 = {u1, ..., uk} be the k number of vertices for which s1 receives D flow from s1.
It follows from the flow value of v that for every v ∈ V exactly one vertex ϕv,i is selected by receiving

flow from ϕv. Following the outflow of ϕv,i in Figure 5.14, we can see how for every pair u, v ∈ V
where u = v or u is an ancestor of v in T , we have that exactly one vertex of the type πu,v,j is selected,
which is analogous to creating a branch ordering π : V → {1, ..., td} as described in Lemma 5.10.1 and
imposing it on G′, such that a vertex uout can only transmit flow to vin if u and v are adjacent in G
and u precedes v in π. This is analogues to turning G into a directed graph H where every {u, v} ∈ E
is directed towards v if and only if u precedes v in π; it follows then from Lemma 5.10.6 that a
topological ordering s′ exists of H, so that we can sort the remaining vertices in V \S0 as v1, ..., v|V |−k

as they appear in s′. It then follows that, in the ordered sequence s = u1, ..., uk, v1, ..., v|V |−k, we have
that every vi with i ∈ [1, |V |−k] must have at least τ(vi) neighbours in the vertices that precede it in
s, since every vertex vi receives its requisite τ(vi) flow from neighbouring vertices in G′, and no flow
can be directed from any of the vertices vj with j ∈ [i, |V | − k]. We conclude that S0 is a valid target
set for G given threshold function τ .

Having proven Lemma 5.10.8, all that remains to do is to show that G′ has bounded tree-depth
relative to G′. To that end, we create a tree-depth spanning tree T ′ of G′ as follows: for each sink
and source node, we simply place them at the top of T ′ in a single path. Then, for each v ∈ V ,
we place the vertices v1, v2, vin, vout, and ϕV on a single path in arbitrary order. Additionally, we
extend the path with every vertex of the type ϕv,i, as well as every vertex of the type πu,v,i, π

′
u,v,i,

and π′′
u,v,i, where u = v or u is an ancestor of v in T , and i ∈ [1, tdv]. Since v has at most a td number

of ancestors and tdv ≤ t, it follows that the chain of vertices for every v is at most a constant factor
of t2 long. This means that if we copy the structure from T onto T ′ by connecting the paths v and w
if we have that v and w are adjacent in T , we end up in with a tree T ′ that has at most O(td3) depth.

Suppose now that {v, w} ∈ E. To include the corresponding edge vertices in G′ into T ′, we can
observe in Figure 5.13 that, for every pair i, j ∈ [1, tdw], we have that the vertices x′

v,w,i,j , xv,w,i,j ,
x′
w,v,j,i, and xw,v,j,i are only adjacent to vertices corresponding to v, w, and b, where b is the leaf of

36

the branch of T on which v and w lie., We can incorporate these edge vertices into T ′ by suspending
them below the chain of vertices corresponding to b, which at most increases the height of T ′ by 4
across all edges {v, w} ∈ E.

By studying the Figures 5.11, 5.12, 5.13, and 5.14, we can see that every vertex in G′ is accounted
for in in T ′, and that every arc in G′ is also accounted for with an ancestor-descendant relationship in
T ′. Since T ′ has a height that is at most O(td3), we conclude that G′ has bounded tree-depth relative
to G.

Figure 5.11: Global reduction graph from Target Set Selection to All-or-Nothing Flow

Figure 5.12: Part of the reduction graph from Target Set Selection to All-or-Nothing Flow that
imposes an arbitrary reduced branch ordering on G via flow distribution.

37

Figure 5.13: Edge gadgets in the reduction graph from Target Set Selection to All-or-Nothing Flow
for {v, w} ∈ E, where v is an ancestor of w in the tree-depth spanning tree T . Here i < j and j′ ≤ i′,
and b is the leaf of the branch that v and w lie on in T .

Figure 5.14: Part of the reduction graph from Target Set Selection to All-or-Nothing Flow, in which
a reduced branch ordering ϕ is translated into a complete branch ordering π.

38

Figure 5.15: Counter example of a permissible flow on the reduction graph of an instance of TSS
that has no solution when reduced to AoNF, assuming that a naive approach is used (source and sink
vertices have been left implicit, as well as arcs that have no flow sent across them).

39

Chapter 6

Complexity of flow-like problems

6.1 W[1]-hardness for flow-like problems parameterised by
tree-depth

In [11], Michael Dom et al. show that Capacitated Vertex Cover is W[1]-hard for the treewidth
parameter. Subsequently, Tatsuya Gima et al. noted in [12] that the proof of W[1]-hardness of
Capacitated Vertex Cover for treewidth could easily be shown to work for tree-depth as well. By
combining this with our results, we can conclude that all the flow-like problems we have discussed in
this paper are W[1]-hard as well when parameterised by tree-depth.

Theorem 6.1.1. All-or-Nothing Flow, Target Outdegree Orientation, Chosen Maximum Outdegree,
Minimum Maximum Outdegree, Outdegree Restricted Orientation, Circulating Orientation, Red-Blue
Capacitated Dominating Set, Capacitated Dominating Set, Capacitated Vertex Cover, Undirected Flow
with Lower Bounds, and Target Set Selection are W[1]-hard when parameterised by tree-depth.

Note that we included Capacitated Vertex Cover in the result for completeness. Similarly, we
included Capacitated Dominating Set, although its W[1]-hardness was also shown in [12] for the
td+ k parameter, where td is the graph’s tree-depth and k is the solution size (hence we could’ve also
concluded W[1]-hardness for all the flow-like problems from this result).

6.2 Flow-like problems and XSLP

As mentioned in Chapter 5, we were unable to provide either an XSLP membership proof or an XSLP-
hardness proof for any of the flow-like problems when parameterised by tree-depth, despite significant
effort. An intuitive reason for this is that the flow-like problems defined in Section 2.9 are all, at
their essence, solved by making a binary choice for every edge in the graph (with the domination-
adjacent problems like Capacitated Dominating Set, it is still a binary state whether a given edge has
a dominating vertex on one side). Conversely, the problems related to BinCSP all involve having to
choose from an O(|V |) number of colours for every vertex. Our intuition is that there is a fundamental
barrier between these two types of problems (selecting binary values for edges and selecting colours
for vertices), such that it is impossible to provide a pl-reduction between BinCSP and one of the
flow-like problems when using tree-depth as a paremetr. Since we have shown these problems to be
a part of a strongly connected reduction graph in Chapter 5 (and, as such, any reduction to or from
BinCSP would immediately give membership or hardness for XSLP for all problems in the graph),
this suggests that the flow-like problems are part of a complexity class that is fundamentally different
from XSLP. More formally, we state our intuition in the following conjecture:

Conjecture 1. There exists a complexity class C such that the flow-like problems defined in Section
2.9 are complete for C when parameterised by tree-depth, and for which we have that C and XSLP are
not subsets of each other; in other words, they are unequal such that they both contain parameterised
problems which the other does not.

40

Chapter 7

Conclusion

7.1 Conclusion

The end-of-paper discussion of [3] conjectures that Dominating Set and Independent Set can be proven
XSLP-complete for the logarithmic tree-depth parameter. We have proven that these problem are
indeed XSLP-hard for that parameter, and we have proven XSLP-hardness for several related problems
when parameterised by logarithmic tree-depth, such as Vertex Cover, Roman Dominating Set, and
Independent Dominating Set.

Our main results are found in Chapter 5, where we show that the flow-like problems defined in
[1], as well as several other existing problems (Target Set Selection, Capacitated Vertex Cover, and
f -Dominating Set) are all part of a strongly connected reduction graph when using tree-depth as the
parameter for every problem, which suggests a strong cohesion between the problems in the graph in
terms of hardness when parameterised by tree-depth. Furthermore, resistance to attempts to show
either XSLP-hardness or XSLP membership for any of the flow-like problems suggests that such a
proof is not possible, and that therefore the problems in the reduction graph are in fact in their own
complexity class when parameterised by tree-depth. We also show W[1]-hardness for the flow-like
problems parameterised by tree-depth in Section 6.1, which provides further insight into the position
of the flow-like problems parameterised by tree-depth in the hierarchy between FPT and XP.

Our proof of the existence of a parameterised reduction from Target Set Selection to All-or-Nothing
Flow we find particularly interesting, since it makes the most use of any of our reduction proofs of
the tree-depth spanning tree of the given target graph.

We end our paper by enumerating a number of open questions:

1. We were not able to prove XSLP membership for the Dominating Set, Independent Set, and
related problems when parameterised by logarithmic tree-depth, since a reduction from a prob-
lem which uses the logarithmic tree-depth parameter to BinCSP parameterised by ordinary
tree-depth seems infeasible (one would have to construct a Gaifman graph that had a number of
vertices smaller by a factor of log(|V |) relative to the instance of Dominating Set or Independent
Set). However, using the machine definition of the class XSLP, it may still be possible to give a
membership proof of Dominating Set and Independent Set when parameterised by tree-depth,
as well as their related problems Roman Domination, Independent Dominating Set, and Vertex
Cover when parameterised by tree-depth.

2. Using the concept of ordering branches relative to the tree-depth composition T of a given
graph G (Section 5.10.1), might there be a way to provide reductions between other interesting
problems when parameterised by tree-depth? As an example, we have tried to apply a similar
technique to the concept of graph colouring, so that for every branch of T only a O(td) number
of choices are available, where td is the height of T . The purpose of this was to attempt a tree-
depth parameterised reduction from BinCSP to AoNF, and, even though we were unsuccessful,
we believe it is possible that the technique may yield more success elsewhere.

41

Acknowledgements

The author of this paper would like to thank Prof. Hans Bodlaender for being the primary supervi-
sor for this thesis project, as well as Dr. Erik Jan van Leeuwen for being the secondary supervisor.
Additionally, the proofs of theorems 5.4.1 and 5.9.1, which provide reductions from the Circulat-
ing Orientation problem to the Target Set Selection problem and to the f -Dominating Set problem
respectively, were initially discovered by Prof. Hans Bodlaender. Additionally, the reduction from
Circulating Orientation to Capacitated Vertex Cover (Theorem 5.6.1) draws its inspiration from these
proofs.

42

Bibliography

[1] Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. 2022. arXiv: 2202.06838 [cs.DS].

[2] Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Micha l Pilipczuk.
“On the complexity of problems on tree-structured graphs”. In: 17th International Symposium on
Parameterized and Exact Computation (IPEC 2022). Vol. 249. Leibniz International Proceedings
in Informatics (LIPIcs), 6:1–6:17. doi: 10.4230/LIPIcs.IPEC.2022.6.

[3] Hans L. Bodlaender, Carla Groenland, and Micha l Pilipczuk. Parameterized complexity of Bi-
nary CSP: vertex cover, treedepth, and related parameters. 2023. arXiv: 2208.12543 [cs.DM].

[4] Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis. “Pa-
rameterized problems complete for nondeterministic FPT time and logarithmic space”. In: 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). 2022, pp. 193–
204. doi: 10.1109/FOCS52979.2021.00027.

[5] Michael Elberfeld, Christoph Stockhusen, and Till Tantau. “On the space and circuit complexity
of parameterized problems: classes and completeness”. In: Algorithmica 71 (2015), pp. 661–701.
doi: https://doi.org/10.1007/s00453-014-9944-y.

[6] Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. “XNLP-
completeness for parameterized problems on graphs with a linear structure”. In: 17th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2022). Vol. 249. Leibniz
International Proceedings in Informatics (LIPIcs). 2022, 8:1–8:18. doi: 10.4230/LIPIcs.IPEC.
2022.8.

[7] Jaroslav Nešetřil and Patrice Ossona de Mendez. “Tree-depth, subgraph coloring and homomor-
phism bounds”. In: European Journal of Combinatorics Volume 27 (6 2006), pp. 1022–1041.
doi: https://doi.org/10.1016/j.ejc.2005.01.010.

[8] Ananth V. Iyer, H.Donald Ratliff, and G. Vijayan. “Optimal node ranking of trees”. In: Infor-
mation Processing Letters 28 (5 1988), pp. 225–229. doi: https://doi.org/10.1016/0020-
0190(88)90194-9.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2022.

[10] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Known algorithms on graphs of bounded
treewidth are probably optimal”. In: ACM Transactions on Algorithms 14 (2 2018), 13:1–13:30.
doi: https://doi.org/10.1145/3170442.

[11] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. “Capacitated domina-
tion and covering: a parameterized perspective”. In: Parameterized and and Exact Computation,
Third International Workshop, IWPEC 2008. Vol. 5018. Lecture Notes in Computer Science.
2008, pp. 78–90. doi: https://doi.org/10.1007/978-3-540-79723-4_9.

[12] Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. “Explor-
ing the gap between treedepth and vertex cover through vertex integrity”. In: Theoretical Com-
puter Science 918 (2022), pp. 60–76. doi: https://doi.org/10.1016/j.tcs.2022.03.021.

43

