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Abstract

A major goal of astrophysics involves the study of neutron stars to determine their nuclear matter
equation of state. The first detection of gravitational waves from a binary pair neutron star merger,
GW170817, in 2017 opened a new channel for the way in which the equations of state may be con-
strained or eliminated. This is namely through the extraction of the binary system’s tidal Love number,
which encodes how the neutron stars statically respond to tidal fields. It is possible, however, that
deviations from general relativity in strong gravity regimes could lead to differences in measurements
that are consistent with uncertainties in the equation of state. To accurately untangle these differences
means that efficient modelling of neutron stars in modified theories of gravity is essential.

In this thesis, we review some recent work in calculating neutron star properties - namely the mass,
radius and tidal Love number - in scalar-tensor gravity before attempting to extend this work for
a larger class of theories - generalized scalar-tensor theories. We will do this through the use of an
effective action, which in the so-called Einstein frame allows for a decoupling of the scalar field from
the gravitational part of the action. We find that the formalism for extracting the Love number is
not straightforward to extend, due in part to the generic nature of the theory. We finally focus on
a numerical case study which involves solving for the equilibrium configuration of the neutron star,
such that we can examine how generalized scalar-tensor theories impact the mass and radius. The
case study has a successful preliminary calculation, but results in a degeneracy of the mass-radius
curves that also correspond to so-called f(R) gravity. We conclude that further analysis is needed
to determine the authenticity of this degeneracy. Nevertheless we have still paved the way for future
neutron star calculations in generalized scalar-tensor theories, such that they can be better included
in the constraining of the neutron star equation of state.
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Chapter 1

Introduction

Gravity is everywhere. Of the four fundamental forces of nature, it is the most apparent in our daily
lives. It holds us to the floor, keeps the moon in orbit around the Earth, the Earth in orbit around the
Sun, and the Sun in orbit around the centre of the galaxy - at which lies a supermassive black hole.
All of this exists in a universe that is expanding due to gravitational effects. Therefore, if one expects
to understand the working structure of the universe, an accurate theory of gravity is crucial.

The first successful theory of gravity emerged in the 17th century. Developed by Sir Isaac Newton, it is
appropriately referred to as Newtonian gravity. His theory described gravity as a universal attractive
force between all massive objects and began the first mathematical study of gravitational effects, lead-
ing to far-reaching consequences on the 17th century understanding of the world. Newton’s one simple
equation, describing gravity as a force, allowed for an almost complete description of motion within the
solar system. The successful predictive capabilities of Newtonian gravity allowed it to remain as the
dominant gravitational paradigm for the next three centuries. Newtonian gravity worked exceptionally
well in most circumstances but did not come without its own shortcomings - namely the instantaneous
transmission of the gravitational field, as well as its inability to account for the perihelion precession
of Mercury’s orbit.

These shortcomings were overcome in the next gravitational revolution by Einstein in 1915. Einstein’s
theory of gravity, referred to as General Relativity (GR), radically changed the way gravity was un-
derstood - objects no longer experienced a universal force drawing them together, but instead followed
the natural path set out for them by the curvature of spacetime. Einstein’s theory was vastly unlike
its predecessor, yet successfully filled in the gaps left behind by Newtonian theory. GR brought a
wealth of new gravitational phenomena with it. Black holes, gravitational waves, gravitational lensing,
expanding universe, the big bang, time dilation and parallel universes are only some examples of the
rich phenomena unaccounted for by Newtonian theory. Despite the major successes of GR, it again
had shortcomings of its own.

Several gravitational related phenomena still remain unexplained or unaccounted for even today. Some
examples include dark matter, dark energy, cosmic inflation, and the lack of a fully consistent quantum
theory of gravity. Furthermore, the singularities predicted at the centre of black holes strongly moti-
vate that GR is incomplete. Just as Einstein revolutionised the gravitational framework that preceded
him, it is expected that another gravitational revolution may produce a theory that supersedes GR.
This expectation has incentivized research into modified theories of gravity. These theories extend the
framework of GR, but still reduce to Einstein’s theory in low-energy regimes. An instructive approach
to modifying GR is possible and is the basis for the theories examined in this thesis. The approach
is to violate Lovelock’s theorem - the theorem that guarantees GR as the unique theory of gravity
under certain assumptions. Breaking one of these assumptions opens new possibilities for the nature
of gravity.

For this thesis, we are primarily interested in three classes of modified gravity theories, the first two
being scalar-tensor theories and f(R) theories. Scalar-tensor theories involve introducing a second
dynamical gravitational field, a scalar field, into the action in addition to the metric tensor of GR.
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This is motivated by results in string theory, a potential quantum theory of gravity, which predicts a
coupling of the Ricci scalar of GR to another independent scalar field. Meanwhile, f(R) theories have a
Lagrangian that goes beyond linear order in the Ricci scalar, in contrast to GR. As we will demonstrate
later, f(R) theories can be recast as scalar-tensor theories, further incentivizing both classes of theories
for study. One may even be so ambitious as to study f(R) theories coupled to scalar-fields, which we
refer to as generalized scalar-tensor theories and are the third class of modified gravity theories of
interest in this work. The study of modified gravity is futile however if we cannot determine which, if
any, corresponds to nature. To give credibility to a theory, its predictions must be comparable with
observation. Therefore, computing observables is a key step in constraining the correct theory. In
the case of GR, these observables must be compatible with what has already been observed, but also
diverge in stronger, untested, regimes of gravity.

A key class of observables are those related to tidal effects. Tidal effects apply to bodies of mass with
a finite size i.e., a body that is not a point mass. Due to its finite size, a body will not experience a
homogeneous gravitational field. An example is best seen in the tides on the Earth, which are induced
by gravitational interactions with the Moon. For this reason, such effects are appropriately referred
to as tidal effects. Similar phenomena may occur in neutron stars or other astrophysical objects. An
inhomogeneous gravitational field can cause a neutron star to deform, as the matter throughout the
star is unevenly influenced by the gravitational field. The characteristics of this tidal deformation are
accurately encapsulated within a single number, referred to as the body’s Love number (named after
British scientist Augustus E.H. Love [1]).

Love numbers are extremely interesting as they are encoded in the gravitational waves emitted by a
binary system, offering a cleaner channel of information for neutron star observations. Measuring the
gravitational waves and extracting the Love number can give insight into the star’s internal structure.
This is done by choosing a theoretical model (an equation of state) for the star’s interior structure and
calculating its respective Love number. The theoretically calculated Love number may be compared
with the observed one from the gravitational wave, putting constraints on the possible equations of
state that can correspond to the interior structure. This has already been done for [2], which was
successful in using Love number measurements from the binary neutron star merger GW170817 to
rule out particular equations of state at a 90% confidence.

As useful as gravitational waves are for the extraction of a Love number, they are limited in the
additional information they can obtain about the system. For example a gravitational wave cannot
determine the radius of a neutron star. Another project for measuring properties of neutron stars is the
Neutron Star Interior Composition Explorer (NICER) which uses electromagnetic means to measure
the mass and radius. NICER has already been successful in measuring the mass and radius of two
neutron stars [3, 4], making these physical quantities a valuable part of the union between theory and
experiment.

However, to properly probe the neutron star equation of state, one must take into account potential
deviations from general relativity. The intention of this thesis is to model neutron stars in modified
theories of gravity such that their mass, radius and tidal Love numbers can be computed. Some work
has already been done [5] in computing the tidal Love number in f(R) gravity, and several works have
been conducted for computing the tidal Love number in scalar-tensor gravity [6, 7, 8]. For this work,
we will primarily review the formalism developed in [6], and attempt to generalized it for the case of
generalized scalar-tensor theories.

In chapter 2 we start with a review of tidal effects in Newtonian binaries. We give a pedagogical intro-
duction to the Love number in Newtonian gravity and demonstrate how it can be used to encapsulate
finite size effects in an effective action for a binary system on the orbital scale. The chapter concludes
with the basic recipe for computing the Love number in Newtonian gravity.

In chapter 3, we take the relevant parts of chapter 2, namely the effective action and the recipe for
computing the Love number, and put them in a relativistic context.
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Chapter 4 then gives an introduction to modified theories of gravity. We motivate why such theories
warrant study and explain a systematic way in which general relativity may be modified. We then
choose to focus on a particular class of theories, scalar-tensor theories. We conclude with an introduc-
tion to the Einstein frame, which allows one to decouple the scalar field from the Ricci scalar through
a conformal rescaling of the metric.

With the necessary tools introduced for studying scalar-tensor theories, chapter 5 then reviews how to
generalize the effective action from chapter 3 to a scalar-tensor context. We follow closely the approach
of [6]. This will allow us to relate Love numbers from the Einstein frame back to the physical frame as
well as shed light on how the Einstein frame Love number can be extracted. We conclude the chapter
with a review of the results in [6].

After this, we then attempt in chapter 6 a final extension to examine tidal effects in generalized scalar-
tensor theories, in particular we attempt to generalize the formalism of [6] to see how the Love number
may be extracted in the Einstein frame.

Finally, in chapter 7 we perform a numerical case study for the neutron star background (equilibrium)
spacetime in generalized scalar-tensor gravity, which allows for a theoretical extraction of the mass
and radius of the neutron star in this modified gravity theory.
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Chapter 2

Tidal effects in Newtonian binaries

In this chapter, we will give a brief introduction to the study of tidal effects in Newtonian binaries.
We begin with a multipolar expansion of the gravitational potential, analogues to electromagnetism,
and define the relevant mass and tidal multipole moments. We will then go on to derive the full action
representing finite-size effects in the so-called adiabatic limit, and treating one of the bodies as a point
mass. Lastly we introduce the concept of the Love number, which encapsulates the finite size effects
of a body, and motivate its relevance for study.

We will primarily follow Chapter 10 of reference [9]. A similar, but more brief, introduction to tidal
effects can also be found in [10]. Lastly, an extensive treatment on Newtonian tidal effects can be
found in Chapters 1 & 2 of [11].

2.1 Multipoles and definitions

2.1.1 Multipole moments QL

The natural starting point for discussing the effects of Newtonian gravity is the Poisson equation

∇2U = −4πρ. (2.1.1)

It represents the gravitational potential, U(t,x), generated by a continuous mass distribution ρ(t,x),
where the bold symbol denotes a 3-vector. The solution for the potential U(t,x) can be obtained with
the use of a Green’s function and is given by

U(t,x) =

∫
d3x′ρ(t,x′)

1

|x− x′|
. (2.1.2)

It is also possible to verify by substitution that (2.1.2) is indeed a solution of (2.1.1). Outside the mass
distribution ρ, one can Taylor expand the potential around some (dynamical) reference point z(t)

U(t,x) =

∫
d3x′ρ(t,x′)

∞∑
ℓ=0

1

ℓ!
(x′ − z)L

(
∂

∂x′L

1

|x− x′|

)∣∣∣∣
x′=z

, (2.1.3a)

=

∫
d3x′ρ(t,x′)

∞∑
ℓ=0

(−1)ℓ

ℓ!
(x′ − z)L∂L

1

|x− z|
, (2.1.3b)

were we have introduced a symmetric notation for tensors, denoted by a capital L, which represents
a string of indices. To demonstrate the notation, take for example xL and ∂L in the case that ℓ = 3.
One has

xL=3 ≡ xixjxk, ∂L=3 ≡ ∂i∂j∂k. (2.1.4)

To go to the second line of (2.1.3), a direct evaluation of ∂L on 1
|x−x′| shows the equivalence(

∂

∂x′L

1

|x− x′|

)
|x′=z = (−1)ℓ∂L

1

|x− z|
, (2.1.5)
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so long as x > z. From here, one can group together the x′ dependent terms in (2.1.9) to define the
Newtonian mass multipole moments:

QL =

∫
d3x′ρ(t,x′)(x′ − z)L . (2.1.6)

For L = 0, we have

Q0 =

∫
d3x′ρ (t,x′) =M, (2.1.7)

and merely recover the total mass of the body. Also, if z is taken to be the body’s center of mass, the
QL for L = 1 vanish by the definition of the centre of mass

Qi =

∫
d3x′ρ (t,x′) (x′ − z)i = 0. (2.1.8)

Thus the Newtonian potential can so far be written as:

U(t,x) =

∫
d3x′ρ(t,x′)

∞∑
ℓ=0

(−1)ℓ

ℓ!
(x′ − z)L∂L

1

|x− z|
,

=

∞∑
ℓ=0

(−1)ℓ

ℓ!
QL∂L

1

|x− z|
,

=
M

|x− z|
+

∞∑
ℓ=2

(−1)ℓ

ℓ!
QL∂L

1

|x− z|
. (2.1.9)

We can further simplify the Newtonian potential using the relationship

∂L
1

|x− z|
= (−1)ℓ(2ℓ− 1)!!

n⟨L⟩

|x− z|
. (2.1.10)

Here, the ni ≡ xi/r denote unit vectors, such that nini = 1. The angular brackets in n⟨L⟩ denote that
we take only the Symmetric Trace Free (STF) part. As an example, consider n⟨L⟩ for L = 2. Similarly,
to (2.1.4), we begin by make ni symmetric in 2 indices, but also remove the trace:

n⟨ij⟩ = ninj − 1

3
δij . (2.1.11)

,
One can then see that n⟨ij⟩ is symmetric in its indices ij such that n⟨ij⟩ = n⟨ji⟩, and also trace-free

δijn
⟨ij⟩ = 1− 1

3
(3), (2.1.12)

= 0. (2.1.13)

For a more comprehensive introduction to STF tensors, the reader is referred to [12, 13]. One should
recall that from here on, any tensors defined in terms of angular brackets are STF.

With (2.1.10), the gravitational potential of a body with finite size becomes:

U(t,x) =
M

r
+

∞∑
ℓ=2

(2ℓ− 1)!!

ℓ!

QLn
⟨L⟩

rℓ+1
. (2.1.14)

The tensors QL also takes on the properties of an STF tensor. This is a result of its contraction
with n⟨L⟩, another STF tensor. The contraction of a tensor with an STF tensor, leaves only the STF
part of the original tensor. Thus QL ≡ Q⟨L⟩. The meaning of the mass multipole moments should
hopefully be more apparent with (2.1.10). They are coefficients in the correction to the gravitational
potential, resulting from the body’s finite size. An easy consistency check is for the case of a point
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mass, with density profile ρ(x) =Mδ(x−z). A direct calculation for ℓ > 2 verifies that the QL vanish.

One can similarly look at the case of a body with spherical symmetry i.e. ρ ≡ ρ(r). Evaluating QL

in spherical coordinates shows that the angular integrals vanish, giving the equivalent contribution to
U(t,x) as that of a point mass. In this way, one can also think of QL as coefficients in the correction
to the body’s potential energy as it is perturbed from the shape of a sphere.

2.1.2 Tidal moments EL

Consider the case where a body also experiences a potential due to an external source such as an
orbiting companion. Denote this potential by U ext(t,x). One can again expand the potential around
the body’s centre of mass z:

U ext(t,x) = U ext(t, z) + (x− z)i
[
∂iU

ext(t,x)
]
x=z

−
∞∑
ℓ=2

1

ℓ!
(x− z)LEL. (2.1.15)

Here we have defined the body’s tidal multipole moments as

EL = −
(
∂LU

ext(t,x)
)
x=z(t)

. (2.1.16)

For example, if we look at the L = 2 tidal moment, for an external gravitational potential Φ, we have

Eij = −∂i∂jΦ. (2.1.17)

When we go on to discuss tidal effects in the context of GR, we will use (2.1.17) as a reference to
ensure that we have obtained the correct non-relativistic limit.

We can also combine the expression (2.1.16) for the external potential in terms of EL with the potential
(2.1.14) due to the body’s finite size to get the full potential for the body as

U(t,x) =
M

r
+

∞∑
ℓ=2

1

ℓ!

[
(2ℓ− 1)!!

QLn
⟨L⟩

rℓ+1
− n⟨L⟩EL rℓ

]
, (2.1.18)

where we have used

(x − z)L = nLrℓ. (2.1.19)

2.2 Constructing the action

2.2.1 Lagrangian approach
We wish to construct the relevant action for a binary system, using the mass and tidal moments defined
previously. Consider 2 bodies, A and B, in orbit around one another. The Lagrangian for any system
is constructed according to:

L = T − V, (2.2.1)

where T and V respectively are the total kinetic and potential energies of the system. The motion of
each body can be decomposed into the motion of its centre of mass plus internal contributions denoted
by “int”. The relevant kinetic and potential energies for body A are thus:

TA =
1

2
MAż

2
A + T int

A , VA =
1

2

∫
A

d3xρAUB + V int
A . (2.2.2)

The expression for body B is similar with A and B interchanged in (2.2.2). Note the factor of 1
2 for VA

in (2.2.2). This factor may at first appear unfamiliar in the continuum limit, but we can quickly check
that it is to avoid double counting the interactions between the bodies. We can do this by treating
each body as if they were composed of discrete point particles.

8



For example, take body A to have a density profile consisting of several point masses ρ(x) =
∑

imiδ
(3)(x−

xi), and body B to be a single point mass with potential UB(x) = − GMB

|x−zB | . Filling these into (2.2.2)
(and ignoring the V int

A ), one finds:

VA = −1

2

∫
B

d3x
∑
i

miδ
(3)(x− xi)

GMB

|x− zB |
, (2.2.3)

= −1

2

∑
i

GmiMB

|xi − zB |
, (2.2.4)

which is simply the potential energy for a system of point particles interacting with a point mass MB

(up to a factor of 1
2 ).

Similarly for VB , one can fill in ρB(x) = MBδ
(3)(x − zB) and UA(x) =

∑
i

Gmi

|x−xi| . This leads to an
explicit expression for VB as:

VB = −1

2

∫
A

MBδ
(3)(x− zB)

∑
i

Gmi

|x− xi|
, (2.2.5)

= −1

2

∑
i

GmiMB

|zB − xi|
. (2.2.6)

Adding VA and VB together gives the total interaction energy between the bodies as:

V = VA + VB , (2.2.7)

=
∑
i

−GmiMB

|zB − xi|
, (2.2.8)

which is exactly the total potential energy expected from a discrete system of interacting point parti-
cles. We can thus see that the 1

2 in (2.2.2) is essentially an overcounting factor.

We can now assemble all terms to construct the total Lagrangian. To simplify the analysis, and to
better eludicate the finite size effects that emerge, we will specialize to the case in which body B is a
point mass. From (2.2.1) and (2.2.2), the total Lagrangian is therefore

L =
1

2

(
MAż

2
A +MB ż

2
B

)
−
∫
A

d3xρAUB + Lint, (2.2.9)

where all internal interactions are contained in Lint. One can further expand UB in a similar way to
the multipole expansion in (2.1.15). By filling in the definitions (2.1.6) and (2.1.16) for QL and EL

one finds

L =
1

2

(
MAż

2
A +MB ż

2
B

)
+MAUB |x=z −

∞∑
ℓ=2

1

ℓ!
QLEL + Lint, (2.2.10)

where the ℓ = 1 term has vanished by definition of the centre of mass. The problem may further be
simplified by working in the barycentric frame. We can define:

M =MA +MB , µ =
MAMB

M
, r = zA − zB , (2.2.11)

as the total mass, reduced mass and relative separation vector respectively. Filling in UB = −MB

r and
defining r ≡ |r|, we can work out the total Lagrangian (2.2.10) to be

L =
1

2
µv2 − µM

r
−

∞∑
ℓ=2

1

ℓ!
QLEL + Lint. (2.2.12)

Summarising the final Lagrangian, we have
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L = Lpp + Lint −
∞∑
ℓ=2

1

ℓ!
QLEL, (2.2.13)

where
Lpp ≡ 1

2
µv2 − µM

r
, (2.2.14)

encapsulates the point-particle-like dynamics of each body’s centre of mass, and Lint, encoding the
internal dynamics, is yet to be specified.

To conclude, we have neatly summarized all dynamics within three concise terms. One term repre-
senting the centre of mass motion of each body; one term representing internal dynamics for body A;
and one term representing the interaction energy between the induced deformations of body A with
the tidal fields of body B. Equation (2.2.13) is so far exact, the only assumption made being body B
is a point mass.

2.2.2 Internal dynamics
To complete the Lagrangian in (2.2.13), we must specify the term corresponding to the internal dynam-
ics. We assume that body A is spherically symmetric, and that its multipole moments QL are induced
by the externally perturbing tidal moments EL. For a star made of a fluid undergoing perturbations,
it has been demonstrated that the tidally induced multipole moments behave in a way resembling a
harmonic oscillator [14, 15, 16, 17]. For this case, the internal Lagrangian takes the form:

Lint =
∑
ℓ=2

1

2ℓ!λℓω2
0ℓ

[
Q̇LQ̇

L − ω2
0ℓQLQ

L
]
, (2.2.15)

The above Lagrangian introduces two constants ω0ℓ and λℓ which we will soon address.

As seen in [18], the multi-pole moments QL now represent the dynamical degrees of freedom of the
theory, and so may be treated as independent fields. Thus we can take the equation of motion for a
single QL from the total Lagrangian made up by equations (2.2.13) and (2.2.15). Varying the action
(2.2.13) with respect to QL results in the equation of motion

Q̈L + ω2
0ℓQL = −ω2

0ℓλℓEL. (2.2.16)

We can see that the mass multipole moments behave as nothing more than a harmonic oscillator (as
postulated in the Lagrangian), with an analogues driving force generated by the tidal moments EL.
The constants ω0ℓ simply characterize the frequency of the oscillations and the constants λℓ act anal-
ogously to an inverse spring constant. More discussion will be given to the λℓ soon. We will now go
on to simplify (2.2.15), by making further assumptions on the nature of the mass multipole moments,
and allowing for a more concise representation of the action (2.2.13).

2.2.3 Adiabatic limit
If the internal timescales of the body, τ int ∼ ω−1

0ℓ ∼
√
R3MA are fast relative to the time-scale of tidal

variations, τorb ∼
√
r3/(MA +MB), we may treat the multi-pole moments QL as essentially time

independent i.e. Q̇L = 0.
With this, we see that the EoM (2.2.16) further reduces to:

Qadiab
L = −λℓEL . (2.2.17)

The meaning of λℓ now becomes clear. It characterises the strength of the induced mass moments QL

by the tidal moments EL, in the adiabatic limit.

We can go one step further to simplify our total Lagrangian. By re-substituting the EoM (2.2.17) back
into the Lagrangian (2.2.13), one can in essence “integrate out” the internal degrees of freedom QL.
Doing so, and integrating the resulting Lagrangian over time, gives the final action:
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Sadiab = Spp +

∫
dt

[
λℓ
2ℓ!

ELEL

]
, (2.2.18)

where the summation over ℓ is implicit and Spp =
∫
dt Lpp, with Lpp given by (2.2.14).

The multi-pole moments QL have been completely eliminated from the action. The importance of λℓ
in the study of finite size effects should now be apparent. They completely characterize the internal
dynamics on the orbital scale and are appropriately dubbed the tidal deformability coefficients. The
advantage here is that all finite-size effects in (2.2.18) are now described by only the tidal field EL and
the tidal deformability coefficients λℓ. Setting either to zero merely reduces the system to a pair of
orbiting point particles. We will go on to give some further attention to the λℓ as well as elaborate on
their usefulness.

2.3 Love numbers

2.3.1 Relation to λℓ

We devote the remainder of this section to the discussion of the tidal deformability coefficients and
further introduce the concept of the Love number. Recall from (2.2.17) that the tidal deformability
coefficient is given as:

λℓ = −Q
adiab
L

EL
, (2.3.1)

that is, it is the ratio of the induced mass moments to the tidal moments in the adiabatic limit.

A body’s tidal deformability coefficient can be explicitly expressed in terms of the body’s tidal Love
numbers, kℓ, and its radius, R as:

λℓ =
2

(2ℓ− 1)!!
kℓR

2ℓ+1. (2.3.2)

The Love number was first introduced by its namesake, British scientist A.E.H. Love, in [1]. Although
the Love number kℓ and tidal deformability coefficient λℓ are distinct quantities, they encapsulate the
same information about the body. For this reason, the tidal deformability coefficient λℓ is sometimes
referred to as the Love number. We will adopt that practise for the remainder of this thesis.

2.3.2 Relation to gravitational Waves
The importance of the Love number λℓ should be clear from the work seen in the previous section.
It allows one to completely characterize the effects of the internal body structure on the two-body
dynamics in the adiabatic limit.

Furthermore, if the Love number is known, it can further allow one to constrain the equation of state
(EoS) of the body. This is done by choosing a particular EoS, computing the Love number and then
constraining the EoS based on the actual observed Love number for the body. In order to do this, one
obviously needs the Love number of the body itself, which begs the question - how is the Love number
for a body experimentally measured? The answer lies with gravitational waves.

First, one can define a dimensionless Love number for a body, A, through:

ΛA
L =

λℓ

M2ℓ+1
A

=
2

(2ℓ− 1)!!
kℓ

(
MA

R

)−(2ℓ+1)

, (2.3.3)

where MA is the mass of the body. Next, we assume that the binary system emits gravitational waves.
In the TaylorF2 waveform template [19], the amplitude of the corresponding gravitational waves in
frequency space is given by:
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h̃(f) = Af− 7
6 exp [i(ψpp + ψtidal)] , (2.3.4)

where f is the GW frequency, A ∝ M 5
6 /D, where M = µ

3
5M

2
5 is the chirp mass, and D is the distance

between the GW detector and the binary. ψpp represents the point mass contribution to the phase
and ψtidal is the contribution from tidal effects. In the adiabatic limit, the contribution to ψtidal from
the mass quadrupole, Qij , of a non-spinning neutron star binary with equal masses is

ψtidal =
3M Λ̃

128µx5/2

[
−39

2
x5 − 3115

64
x6
]
. (2.3.5)

Here, Λ̃ = (ΛA + ΛB)/2, and x = (MΩ)2/3, with Ω the angular frequency of the orbit. One can
see that the Love number of each neutron star is clearly recoverable from the phase of the GW. This
indeed demonstrates GWs as a valuable resource for the probing of astrophysical phenomena. We can
also see why the Love number is such a quantity of interest, and indeed it shall remain as such for the
duration of this thesis.

2.3.3 Computation
The action (2.2.18) is useful for highlighting how the Love numbers λℓ encapsulate finite size effects
at the orbital scale in the binary system. However, this is only an effective action, and is not where
the actual computation for the Love number is done. Heuristically, the Newtonian Love number is
computed by first specifying an EoS for the neutron star. Then, the star is taken to be spherically
symmetric in an equilibrium state, and in the absence of perturbations. One then solves the Poisson
equation, the continuity equation, and the Euler equation to obtain the background configuration of
the star;

∇2U = −4πρ,
∂ρ

∂t
+∇ · (ρv) = 0,

∂vi

∂t
+ (v · ∇)vi = −∂

ip

ρ
+ ∂iU. (2.3.6)

The star is then assumed to be perturbed by the tidal field, EL, from a companion, resulting in
perturbations to the potential, pressure and density

p = p0 + δp, ρ = ρ0 + δρ, U = U0 + δU, (2.3.7)

where the background quantities are denoted with a subscript 0. The potential perturbation can be
expanded as

δU = Hℓ(r)Yℓm (θ, ϕ) , (2.3.8)

and a master equation for H(r) obtained by substituting (2.3.7) back into (2.3.6) and eliminating the
other quantities. A more detailed derivation is presented in [9]. The resulting equation is

H ′′
ℓ +

2

r
H ′

ℓ −
l(l + 1)

r2
Hℓ = −4π

(
1

ρ0

dp0
dρ0

)−1

Hℓ, r ≤ R. (2.3.9)

To proceed further, an equation of state must be specified. We assume a cold, barotropic EoS such
that the pressure is only a function of the density i.e. p = p(ρ). The master equation (2.3.9) is then
integrated numerically up to the surface at r = R. For the vacuum region r > R, the pressure and
density vanish, and (2.3.9) can be solved exactly

Hext
ℓ =

Qℓm

rℓ+1
− 1

(2l − 1)!!
Eℓmrℓ. (2.3.10)

We wish to extract the Love number λℓ by computing the ratio

λℓ = −Qℓm

Eℓm
, (2.3.11)

which represents (2.3.1), expressed in a spherical harmonic basis [9]. We can do this by first considering
the so-called logarithmic derivative
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yℓ(r) =
r

Hext
ℓ

dHext
ℓ

dr
, (2.3.12)

and seeing that

λℓ =
R2l+1

(2l − 1)!!

ℓ− yℓ(R)

ℓ+ 1 + yℓ(R)
, (2.3.13)

= −Qℓm

Eℓm
. (2.3.14)

Given that the numerical and analytical solutions solutions should match at the surface, we can then
evaluate (2.3.14) using the numerical solution, which extracts the Love number.

However, this solution for the Love number pertains to the Newtonian case. In order to account for the
full effects of gravity, we wish to discuss Love numbers in a relativistic context. In the next chapter,
we will start building our machinery for the analysis of tidal effects in GR, and present how the above
computation may be generalized for a relativistic context.
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Chapter 3

Tidal effects in General Relativity

In the previous chapter we discussed the formalism for tidal effects in Newtonian gravity. We would
now like to generalize this formalism to a relativistic context, to better understand tidal effects in GR.
We begin this chapter by generalizing the Newtonian action of the previous chapter to a relativistic
one, through the equivalence principle (also called the principle of covariance or “comma to semi-colon”
rule). The form of this action will be the basis for the effective field theory (EFT) action that we make
use of in later chapters. Afterward, we present the basic recipe, following [20] and [9], for computing
the Love number λℓ using perturbation theory in GR.

3.1 Effective action for relativistic binaries

3.1.1 Equivalence principle
Recall the action (2.2.18), which encodes Newtonian tidal effects in the adiabatic limit

Sadiab = Spp +

∫
dt

[
λl
2l!

ELEL

]
, (3.1.1)

where Spp denotes the same point particle action. One can intuitively make this action relativistic by
replacing each term with its relativistic counterpart, through the equivalence principle. Recall that
the above action described a binary system, consisting of a finite body and a point mass. This system
was then reformulated in terms of the motion of a single particle with reduced mass µ. The relativistic
action takes a similar form and describes the system as a point particle (plus tidal multipole moments)
moving along a worldline x(τ). The tangent to the wordline is the four-velocity uµ = dxµ

dτ , and τ
parameterizes the evolution of the point particle along xµ. This is also referred to as the “skeletonized
worldline” approach.

The relativistic analogue of (3.1.1) can be obtained through making the covariant replacements

dt→ z dτ, (3.1.2)

Spp → −m
∫
z dτ = −m

∫
z dτ

√
−dz

µ

dτ

dzν

dτ
gµν . (3.1.3)

(3.1.4)

Here z =
√−uµuµ is the redshift factor, which ensures the invariance of the integration measure dτ

under reparameterization. The tidal moments also take on a different definition in the relativistic
context. For ℓ = 2, the relativistic tidal moments are given as

Eµν =Wµανβ
uαuβ

z2
, (3.1.5)

where Wµανβ is the Weyl tensor, defined as the trace-free part of the Riemann tensor. It is possible
to check, by decomposing the metric as
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gµν = ηµν + hµν , |hµν | ≪ 1, ∂0hµν = 0, (3.1.6)

and identifying h00 = −2Φ, that (3.1.5) reduces to the Newtonian tidal moment (2.1.17)

Eij = −∂i∂jΦ, (3.1.7)

for weak, static gravitational fields. Analogously to the Newtonian case, higher order tidal moments
are obtained by taking covariant derivatives of the lower order moments

EL =
1

(l − 2)!
∇⟨L−2EL1,L2⟩, (3.1.8)

where angular brackets denote the STF part. We will often omit the angular brackets when talking
about tidal multipole moments, however the reader should be aware that they are implied. As a
demonstration of the notation, the ℓ = 4 tidal moments look like

Eαβµν =
1

2
∇⟨α∇βEµν⟩. (3.1.9)

To summarize, we have generalized the Newtonian point particle action to a relativistic one

S = −m
∫
z dτ +

∫
z dτ

[
λl
2l!

ELEL

]
, (3.1.10)

with the new tidal moments EL given by (3.1.8) and (3.1.5).

3.1.2 Comments on the effective field theory approach for relativistic bi-
naries

Although the non-minimal coupling technique applied in the previous section was sufficient to obtain
the effective action for relativistic binaries (3.1.10), this was only one possible way to do so. We did
this by first writing down the Newtonian action and promoting the relevant terms to their relativistic
counterparts. We would like to be able to generalize this procedure for relativistic actions which do
not have a distinct Newtonian counterpart, namely modified theories of General Relativity.

We will be specifically interested in studying tidal effects in scalar-tensor theories of gravity in sub-
sequent chapters, for which an EFT description of the system will be needed and for which there
is no Newtonian analogue to build from. The basic recipe for obtaining the effective action in such
theories, is to first write down an action that contains all terms satisfying the relevant symmetries
for Newtonian gravity and GR: general coordinate invariance, time reversal invariance and spacetime
parity invariance among others. A more detailed discussion can be found in [21]. The action may then
be further simplified using equations of motion and field redefinitions, and the form factors may be
determined by matching the action onto its low energy counterpart. This is similar to the Wilsonian
EFT approach often employed in quantum field theories [22].

For unmodified GR, this process is carried out in [23] and results in the effective action identical to
(3.1.10) for the adiabatic limit.

3.2 Computing Love numbers in relativistic binaries
Now that we have discussed the basic effective action for describing the binary system at the orbital
scale, we would like to again proceed with a computation of the Love number in GR, similarly to how
we did previously in the Newtonian case. We will begin this section by defining the mass and tidal
multipole moments in GR, and how they can be extracted from the metric. After this we will show
explicitly the recipe for computing the Love number of a perturbed body using perturbation theory.
In what follows we will we use geometrical units such that G = c = 1.
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3.2.1 Defining the multipole moments and the Love number
As we saw in the previous chapter, the multipole moments in Newtonian theory were obtained by
expanding the Newtonian potential and identifying the mass moments QL with the terms that run as
rℓ+1 and the tidal moments EL as those that run as rl. We can make use of this approach in order
to define QL and EL in the GR context. The time-time component of the metric is analogous to an
effective Newtonian potential Ueff

gtt = − (1− 2Ueff) . (3.2.1)

For example, in the Schwarzchild spacetime, which is valid for a point mass or in the vacuum region
of a spherically symmetric object, one intuitively has Ueff = M/r. If we expand Ueff sufficiently far
away from the source for a non-spherical object, we should expect it to run similarly to the Newtonian
potential

lim
r→∞

Ueff =
M

r
+

3n⟨ij⟩Qij

2r3
+O(r−4)− 1

2
n⟨ij⟩Eijr2 +O(r3). (3.2.2)

Thus, if one can write down the Einstein equations for a non-spherically symmetric spacetime, and
solve for the gtt component of the metric, they should be able to expand the metric according to (3.2.2)
and extract the Love number through the ratio

λℓ = −QL

EL
. (3.2.3)

With the basic outline explained, we now give the detailed explanation of how this computation may
be done.

3.2.2 Background configuration and mass-radius curves
The TOV equations

We begin with the background metric for a spherically symmetric non-rotating spacetime

ds20 = −eν(r)dt2 + eγ(r)dr2 + r2(dθ2 + sin2 θdϕ2), (3.2.4)

where ν(r) and γ(r) are yet to be determined functions. The mass of the star is defined as

m(r) ≡
[
1− e−γ(r)

]
r

2
, (3.2.5)

which can be equivalently stated as

e−γ(r) =

(
1− 2m(r)

r

)
. (3.2.6)

This is in analogy with the rr component of the Schwarzchild metric for which m(r) =M . The neutron
star matter is also modelled as perfect fluid, through the energy-momentum tensor

Tµν = (p+ ρ)uµuν + pgµν , (3.2.7)

where p and ρ are the neutron star pressure and energy density respectively. The fluid’s four-velocity
is represented by uµ. We will work in the rest frame of the fluid, such that the average velocity is 0,
for which the four-velocity looks like

uµ = (u0, 0, 0, 0). (3.2.8)

We can determine the value of u0 through the normalization condition uµuµ = uµuνgµν = −1. Plugging
in the metric (3.2.4) tells us that

u0 = e−
ν
2 . (3.2.9)

Beginning with the Einstein equations

Gµν = 8πTµν , (3.2.10)

16



we can also plug in the ansatz metric (3.2.4) as well the form of the energy momentum tensor (3.2.7).
Looking at the tt and rr components, we get differential equations for γ(r) and ν(r)

1

r2
d

dr

[
r(1− e−γ(r))

]
= 8πρ, (3.2.11)

e−γ(r)

r

dν

dr
− 1

r2

(
1− e−γ(r)

)
= 8πp. (3.2.12)

We can also use the conservation of the energy-momentum tensor

∇µTµν = 0, (3.2.13)

to get an additional differential equation for p

dp

dr
= −p+ ρ

2

dν

dr
. (3.2.14)

To rewrite these equations in terms of more familiar quantities, we can replace γ(r) with m(r) in
(3.2.11) and (3.2.12) to yield

dm

dr
= 4πr2ρ, (3.2.15)

dν

dr
= 2

4πr3p+m

r(r − 2m)
. (3.2.16)

We can also simplify the energy conservation equation (3.2.14) by replacing dν
dr with equation (3.2.16)

to get

dp

dr
= − (4πr3p+m)(ρ+ p)

r(r − 2m)
. (3.2.17)

To summarize, we have 2 coupled differential equations for the mass m(r) and pressure p(r) of the
system

dm

dr
= 4πr2ρ,

dp

dr
= − (4πr3p+m)(ρ+ p)

r(r − 2m)
, (3.2.18)

as well as a third differential equation for the metric component ν(r)

dν

dr
= 2

4πr3p+m

r(r − 2m)
. (3.2.19)

Together, these 3 equations comprise the Tolman-Oppenheimer-Volkoff (TOV) equations. To solve
them, it is only necessary to integrate equations (3.2.18). The solutions can be substituted into
(3.2.19) to obtain ν(r).

The background spacetime is completely specified by solving these 3 equations. To do so, one must
first specify an equation of state p = p(ρ), relating the pressure and density for the neutron star matter.
The initial conditions close to the center of the star, r → 0, are given by

ρ = ρc +O(r2), p = pc +O(r2), m =
4π

3
ρcr

3 +O(r5). (3.2.20)

Here, ρc is referred to as the central density. It is typically chosen to be on the order of ∼ 1018kg/m3, in
accordance with observational constraints. We will usually integrate the TOV equations for a variety
of central densities. When a central density is chosen, the TOV equations are integrated from the
center of the star (which we numerically take to be rmin ∼ 10−10km). The surface of the star is
defined to be the radius for which the pressure vanishes i.e.

p(r = R) = 0. (3.2.21)
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When the pressure (and thus the density) are zero, the vacuum TOV equations are merely

dm

dr
= 0,

dp

dr
= 0,

dν

dr
= 2

m

r(r − 2m)
, (3.2.22)

implying a constant mass and pressure. The mass of the star may thus be evaluated as

m(R) =M. (3.2.23)

Similarly the differential equation for ν can be solved as

ν(r) = ln

(
1− 2M

r

)
, (3.2.24)

implying that ν(r) = γ(r) in the vacuum.

Mass-radius curves

We can solve the TOV equations numerically in Mathematica. As discussed previously, the radius of
the star is determined by the vanishing of the pressure, and the mass can be extracted by evaluating
m(r) at the surface. We present a solution of the TOV equations in 3.1for the SLy equation of state,
which is popular in the literature. We use a central density of ρc = 1017.59kg/m3.

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r/r0

m/M
⊙

1 2 3 4 5 6 7
0.000000

5.×10-6

0.000010

0.000015

0.000020

r/r0

p/p0

Figure 3.1: Mass and pressure as a function of radius for the SLy equation of state with a central
density of ρc = 1017.59kg/m3. The radius of the neutron star can be determined from where the
pressure goes to zero. The radius is plotted in geometrical solar units, where r0 = GM·/c

2 ≃ 1.5km.
The pressure is plotted in dynes per centimetre squared such that p0 = 1 dyn/cm2.

Furthermore, by varying the central density and successively calculating each M and R, we may plot
the mass against the radius for various neutron star equations of state. The resulting diagrams are
referred to as mass-radius diagrams or mass-radius curves. Some simple examples for the SLy, H4 and
AP44 and WFF1 equations of state1 are presented in Figure 3.2. As we can see, the various equations
of state allow for slightly different ranges of the masses and radii of the neutron stars.

The maximum mass of such stars appear to be on the order of two solar masses. As the radii are
decreased (or the compactness C = M/R is increased), the mass of the neutron star will reach a
maximum and then begin to decline. This maximum mass represents the point at which the neutron
star configuration becomes unstable and begins to collapse to a black hole (this is the result of a time
dependent analysis however, beyond the scope of this thesis). As a result the parts of the curves with
radii smaller than the radii corresponding to the maximum masses are rarely of interest.

We will later go on to modify the TOV equations in the presence of a scalar field ϕ and numerically
calculate the mass-radius curves. Thus the plots in Figure 3.2 serve as a benchmark for comparing our
results in modified gravity to GR.

1Credit to existing code from Frank Visser and Gastón Creci Keinbaum.

18



8 9 10 11 12 13 14
0.0

0.5

1.0

1.5

2.0

R[km]

M
/M

⊙

Mass-Radius

SLy H4WFF1 APR4

Figure 3.2: Mass radius curves for various popular equations of state in the literature. The central
densities start from 1017.3kg/m3 on the right hand side and are slowly increased until the maximum
mass configuration is reached. The solutions to the left of the maximum mass then correspond to un-
stable configurations. The total range of the central densities here is 1018.3kg/m3 ≤ ρc ≤ 1021.5kg/m3.

3.2.3 Perturbations and extracting the Love number
To compute the neutron star Love number we continue by considering linear, static perturbations to
the equilibrium metric (3.2.4)

ds2 = ds20 + hµνdx
µdxν , (3.2.25)

where ds20 denotes the metric (3.2.4). We will usually refer to the unperturbed spacetime ds20 as the
background spacetime. Working in the Regge-Wheeler gauge [24, 25, 26], hµν can be decomposed
into tensorial spherical harmonics, which are characterized by mode integers (l,m), and a parity π
which is either (−1)l or (−1)l+1. Here we consider the even-parity (also known axial or electric-type)
perturbations π = (−1)l. With this, hµν takes the form

hµν =
∑
ℓ,m

Y m
ℓ (θ, ϕ)× Diag

[
−eνHℓm

0 (r), eγHℓm
2 (r), r2Kℓm(r), r2 sin2(θ)Kℓm(r)

]
, (3.2.26)

where Y m
ℓ (θ, ϕ) are the spherical harmonics and Hℓ

0, Hℓ
1, and Kℓ are functions of r which characterize

the perturbations. Similarly we can perturb the other physical quantities, including the pressure and
density as

p = p0 + δpY m
ℓ (θ, ϕ), (3.2.27a)

ρ = ρ0 +
dρ

dp
δpY m

ℓ (θ, ϕ), (3.2.27b)

uµ = uµ0 + δuµ. (3.2.27c)

By re-substituting the now perturbed metric, pressure, density and four-velocity back into the Einstein
equations, it is possible to derive equations of motion for the perturbations. This is done by expanding
(3.2.10) to first order in the perturbations, and cancelling off the background TOV equations (3.2.18)
and (3.2.19), which constitute the “zero order” contributions. This leaves behind differential equations
for the linear perturbations. Using the various components of the Einstein equations as well as the
conservation of the energy-momentum tensor, it is then possible to obtain the relations

Hℓ
0 = −Hℓ

2 ≡ Hℓ,
δp

ρ+ p
= −1

2
Hℓ. (3.2.28)
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The function Kℓ and its derivative may be eliminated in favour of Hℓ and its derivatives using the
rr and rθ components of the Einstein equations. Lastly, the tt component leads to the differential
equation

0 =
d2Hℓ

dr2
+

{
2

r
+ eγ

[
2M

r2
+ 4πr(p0 − ρ0)

]}
dHℓ

dr

+

{
eγ
[
− l(l + 1)

r2
+ 4π(ρ0 + p0)

dρ0
dp0

+ 4π(5ρ0 + 9p0)

]
−
(
dν

dr

)2
}
Hℓ, (3.2.29)

for the metric perturbation Hℓ(r). This equation represents the relativistic counterpart to the master
equation from the Newtonian case (2.3.9). Such as in the Newtonian case, the master equation (3.2.29)
is solved numerically inside the star. The initial conditions [20], close to the center of the star r → 0,
are

Hℓ ∝ rℓ, H ′
ℓ ∝ ℓrℓ−1. (3.2.30)

These ensure the regularity of the solution at the origin. The proportionally constant in (3.2.30) is
irrelevant and can be chosen arbitrarily, as it will drop out when extracting the tidal deformability
coefficients.

Outside the star, we have ρ = p = 0 by definition of the vacuum. This means that (3.2.29) can be
further simplified to

0 =
d2Hℓ

dr2
+

[
2

r
+ eγ

2M

r2

]
dHℓ

dr
−

[
eγ
l(l + 1)

r2
+

(
dν

dr

)2
]
Hℓ. (3.2.31)

The above equation can be further simplified using the fact that m(r) and ν(r) are constant in the
vacuum. Using the relationship (3.2.5) between γ(r) and m(r), and the vacuum form (3.2.24) for ν(r),
the master equation (3.2.31) becomes

0 =
d2Hℓ

dr2
+

[
2(M − r)

r(2M − r)

]
dHℓ

dr
+

[
l(l + 1)r(2M − r)− 4M2

r2(2M − r)2

]
Hℓ. (3.2.32)

By defining a new variable x = r
M − 1, the above equation can be written as an associated Legendre

equation. The result is

0 = (x2 − 1)H ′′
ℓ (x) + 2xH ′

ℓ(x)−
(
ℓ(ℓ+ 1) +

4

x2 − 1

)
Hℓ(x). (3.2.33)

This equation has an exact solution (conveniently obtainable with Mathematica) that looks like

Hℓ = cQl Ql2 (x) + cPl Pl2 (x) . (3.2.34)

Here Pℓ2(x) and Qℓ2(x) are the normalized associated Legendre functions of the first and second kind
respectively, and cQℓ and cPℓ are integration constants. The leading order terms of Pℓ2(x) and Qℓ2(x)
in the limit of r → ∞ is

Pℓ2

( r

M
− 1
)
∼ rℓ, (3.2.35)

Qℓ2

( r

M
− 1
)
∼ r−(ℓ+1), (3.2.36)

which ensures that the solution Hℓ(r) asymptotically behaves like the Newtonian potential (3.2.2).
The integration constants cQℓ and cPℓ are then determined by matching the analytical exterior solution
(3.2.34) to the numerical interior solution at the surface of the star r = R. The Love number λℓ is
then extracted by comparing the solution for Hℓ(r) with the tt component of the metric (3.2.1) using
the expression (3.2.2) for Ueff. As an instructive example we demonstrate how the ℓ = 2 Love number
can be extracted. Combining equations (3.2.1) and (3.2.2), one finds the asymptotic behavior of the
metric to be
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lim
r→∞

gtt = −(1− 2Ueff),

= −
(
1− 2M

r
− 3

r3
n⟨ij⟩Qij +O(r−4) + r2n⟨ij⟩Eij +O(r3)

)
. (3.2.37)

Similarly, using the vacuum solutions for the metric function ν(r) (3.2.24) and perturbation Hℓ(r)
(3.2.34) we find

lim
r→∞

gtt = −eν(r)
(
1 +Hℓ=2(r)

)
,

= −
(
1− 2M

r
− cQℓ

8M3

5r3
+O(r−4)− r2

3cPℓ
M2

+O(r)

)
. (3.2.38)

Comparing powers of r in both equations (3.2.37) and (3.2.38), we can deduce that the expression for
the Love number is

λ2 = −Qij

Eij
, (3.2.39)

=
8

45

cQ2
cP2
M5. (3.2.40)

Furthermore, a generic expression for the Love number λℓ at any ℓ can be written as

(2ℓ− 1)!!

M2ℓ+1
λℓ = −

P ′
ℓ2(x)− M

R yℓPℓ2(x)

Q′
ℓ2(x)−

M
R yℓQℓ2(x)

∣∣∣∣∣
x= R

M −1

, (3.2.41)

where yℓ(r) denotes the logarithmic derivative

yℓ(r) ≡=
r

Hℓ

dHℓ

dr
. (3.2.42)

We include some plots for the Love numbers λℓ for ℓ = 2 in Figure 3.3. Plots for the Love numbers
kℓ, defined through (2.3.2), and the dimensionless Love number Λℓ (2.3.3) can be found in Figures 3.4
and 3.5 respectively.

We can use the plots from the mass-radius curves in Figure 3.2 to get some insight into the behavior of
the Love number. We can see that the H4 equation of state has a larger radius for its masses compared
to the other equations of state. This implies a smaller compactness C = M

R . Similarly, we can see
that H4 in Figure 3.4 has the largest Love number of the other equations of state. We can get some
qualitative understanding from this by seeing that as a neutron star becomes more compact, it’s Love
number decreases. This would be in accordance with our understanding of a black hole, which has the
largest possible compactness C = 1

2 (in geometrical units) and a vanishing Love number λℓ = 0.
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Figure 3.3: Tidal deformability coefficients λℓ (“Love numbers”) for for ℓ = 2. We use the various
equations of state shown previously. The central densities range from 1017.3kg/m3 ≤ ρc ≤ 1018.5kg/m3.
One can compare with the mass-radius curves in Figure 3.2 to see that smaller compactness C =M/R
usually results in a larger Love number.
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Figure 3.4: Love numbers kℓ for ℓ = 2. The central densities range from 1017.3kg/m3 ≤ ρc ≤
1018.5kg/m3.
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Chapter 4

Scalar-tensor theories of gravity

4.1 Introduction to modified theories
For this chapter we provide a brief introduction to modified theories of general relativity. We start
with motivation for why such theories warrant study and discuss a systematic way in which one may
modify general relativity - namely by violating Lovelock’s theorem. Following this, we will specialize
to a particular class of modified gravity theories - scalar-tensor theories. We will further break down
scalar-tensor theories into their many sub-classifications. Finally, we will give a brief mathematical
introduction to the Jordan and Einstein frames of scalar-tensor theories, and discuss the mathematical
tools that one will need to pass between them - conformal transformations.

An introduction to scalar-tensor theories in the context of cosmology can be found in [27, 28]. A more
broad overview of modified gravity theories can be found in [29], which also dedicates an entire chapter
to the various motivations. Lastly, suitable reviews of the many various modified theories can also be
found in [30, 31].

4.1.1 Why do we need modified gravity?
Einstein’s theory of General Relativity (GR) is currently the most accepted theory of gravity. It de-
scribes gravity as a consequence of the curvature of space and time, which is induced by the presence
of matter and energy. It has remained the dominant theory of gravity for over 100 years and has been
used to study phenomena across all scales of the macroscopic world, ranging from planet Earth to
the entire universe itself. Despite being tested to ultra-high precision within the solar system (and
passing), GR has not come without its shortcomings. These problems mainly arise when one studies
the universe in cosmological contexts i.e. on large length and time scales, or when one studies gravity
in very small regimes i.e. attempts at quantizing gravity.

Despite the success of General Relativity with regard to experimental testing, these tests have been
largely confined to what can be conducted within the solar system. GR so far remains largely untested
for stronger regimes of gravity. Furthermore, some problems that arise when studying GR at a cos-
mological scale include the Big Bang singularity and the flatness, horizon, and monopole problems.
As well as this, GR, is not seen to incorporate Mach’s principle (a search for which lead to the birth
of the first modified GR theories). GR in its original formulation also does not account for the rapid
present-day expansion of the universe, the source of which has been dubbed “dark energy”. Even the
simplest dark energy model, the cosmological constant Λ, requires a modification to the Einstein equa-
tions. Despite its success in matching to observation, the cosmological constant also comes with its own
problem, namely the coincidence problem. As a result, even more complex models have been proposed
such as quintessence, which instead incorporates a dynamical Λ in the form of a scalar field. Such
a theory is a simple example of a scalar-tensor theory, and demonstrates how such modified theories
of gravity see use in mainstream physics. More-over, scalar tensor and f(R) theories also naturally
exhibit inflationary properties, making them natural choices for the study of cosmological inflation -
where they indeed find frequent application.
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On the other extreme scale one also runs into trouble when attempting to quantize gravity. The re-
sulting quantum theories of gravity are only semi-renormalizable i.e. at the first loop level. In order to
provide a fully renormalizable theory, an infinite number of higher order counter terms are necessary
in the action. Including higher order terms in the in the Ricci scalar, R, into the action results in
equations of motion that are at least 4th order in derivatives of the metric gµν (as opposed to 2nd order
in GR), adding vast complexity to the task of solving such equations. The problem with quantizing
gravity lies with the fact that, in a quantum theory of gravity, the metric tensor gµν acts as both the
matter field for the graviton as well as a way of representing the curvature of the background space
time on which the graviton propagates. This apparent contradiction is at the heart of many of the
problems with quantizing gravity and further motivates why a revised theory might be needed at the
quantum level. Other attempts at producing a quantum theory of gravity, for example example string
theory, should also reduce to the equations of General Relativity in the low-energy limit. This in
general does not happen with string theory, and instead a Brans-Dicke [28] like theory, emerges. Thus
we are forced to conclude that GR might not be the final word on gravity. Further work needs to be
done in order to allow a fully consistent quantum theory of gravity and also explain the unaccounted
for phenomena that emerge at cosmological scales.

4.1.2 How to modify gravity?
As we will see, there are many possible ways in which one can construct a modified theory of GR.
The most systematic way involves studying Lovelock’s theorem [32, 33]. Originally presented by David
Lovelock, in 1971, it proposes that the Einstein equations are the unique field equations for gravity
under certain assumptions. Informally, the theorem can be described as saying that the metric tensor
gµν , and the Einstein tensor Gµν are the only rank-2, divergence free, symmetric tensors that can be
constructed from the metric in 4 space-time dimensions, using no more than 2 derivatives of the metric
tensor.

In order words the Einstein equations are uniquely determined as

aGµν + bgµν = 0, (4.1.1)

under the previous assumptions, and in the absence of matter. Thus, to ensure that we obtain field
equations that differ from (4.1.1), one must break one or more of the previously listed assumptions -
that is we must violate Lovelock’s theorem. Such violations should result in a theory which is distinct
to GR. We can provide a systematic way in which one can modify GR, by listing all of the possible
ways in which these assumptions can be broken:

1. Include fields other than the metric tensor gµν .

2. Work in greater or fewer than 3 + 1 spacetime dimensions.

3. Allow for tensors in the field equations that go beyond second-order in the derivatives of the
metric.

4. Allow for terms that violate locality.

5. Allow for a violation of energy conservation i.e. ∇µGµν ̸= 0

4.2 Scalar-tensor theories

4.2.1 Classification of theories
The primary modified gravity theory of choice for this thesis are scalar tensor theories. As suggested,
these involve introducing an additional scalar field into the gravitational sector of the action. There
are different forms in which the scalar-tensor theory can take, and here we settle some dispute on
conventions and discuss in which form we will be studying the scalar-tensor theory.

25



Figure 4.1: Diagram [34] showing the different modifications that one can make to GR and a classifi-
cation of the different theories that emerge.

Brans-Dicke theory

The original scalar-tensor theory, as introduced by Brans and Dicke in 1961 [35], involves non-minimally
coupling a scalar field ϕ to the Ricci scalar, R. The action takes the form

SBD =
1

16πG

∫
d4x

√
−g
[
ϕR− 2

ω

ϕ
∂µϕ∂

µϕ− V (ϕ)

]
+ Smatter [ψm, gµν ] . (4.2.1)

Here ω is a parameter of the theory, and in the classic Brans Dicke (BD) theory is taken to be a
constant. The ψm denote matter fields. The equations of motion in the absence of matter for gµν and
ϕ respectively are

ϕGµν = 2
ω

ϕ
∇µϕ∇νϕ+∇ν∇µϕ− gµν

[
∇α∇αϕ+

ω

ϕ
∇αϕ∇αϕ+

1

2
V (ϕ)

]
, (4.2.2)

ω

ϕ
□ϕ =

ω

2ϕ2
∇αϕ∇αϕ

1

4
V ′(ϕ)− R

4
, (4.2.3)

where the coupling between the scalar field and the Ricci scalar has made itself more apparent through
the complexity of the equations.

One can alternatively express the BD action (4.2.1) in a canonical form by redefining the scalar field
ϕ in terms of a new scalar field φ as

ϕ =
φ

4ω
. (4.2.4)

The BD action then becomes

SBD =
1

16πG

∫
d4x

√
−g
[
1

4ω
φ2R− 2∂µφ∂

µφ− V

(
φ2

4ω

)]
+ Smatter [ψm, gµν ] . (4.2.5)

This field redefinition has given a canonical kinetic term for the scalar field, but indeed has done little
to simplify the coupling between φ and R. We will soon seek a redefinition that can do both, and will
find that the answer lies with a rescaling of the metric tensor - indeed a conformal rescaling.

Scalar-tensor theories - F (ϕ)R

The action (4.2.1) can be generalized further generalized by taking ω to be a function of the scalar
field ϕ, and by making a more arbitrary coupling of the scalar field to R. Such an action looks like
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SST =
1

16πG

∫
d4x

√
−g
[
F (ϕ)R− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ− V (ϕ)

]
+ Smatter [ψm, gµν ] , (4.2.6)

and is what we will later refer to as scalar tensor theories or F (ϕ)R theories. The equations of motion
for gµν and ϕ increase in intricacy again

F (ϕ)Gµν =2
ω(ϕ)

ϕ
∇µϕ∇νϕ+ F ′(ϕ)∇µ∇νϕ+ F ′′(ϕ)∇µϕ∇νϕ

− gµν

[
ω(ϕ)

ϕ
∇αϕ∇αϕ+ F ′(ϕ)□ϕ+ F ′′(ϕ)∇αϕ∇αϕ+

1

2
V (ϕ)

]
,

(4.2.7)

ω(ϕ)

ϕ
□ϕ =

[
ω(ϕ)

2ϕ2
− ω′(ϕ)

2ϕ

]
∇αϕ∇αϕ+

1

4
V ′(ϕ)− 1

4
F ′(ϕ)R. (4.2.8)

As we can see, the equations of motion become more coupled for ϕ and gµν . To simplify the action
(4.2.6), one might try to canonicalize the scalar field ϕ through a redefinition, similarly to how was
done in the Brans Dicke action. However, this will depend on the differential relation

dφ

dϕ
=

√
ω(ϕ)

ϕ
, (4.2.9)

being integrable, allowing for a substitution of

∂µφ =

√
ω(ϕ)

ϕ
∂µϕ, (4.2.10)

in the action. This is not always possible for particular choices of ω(ϕ), as we will encounter later in
chapter 7.

Generalized scalar-tensor theories - f(ϕ,R)

Finally, we will generalize the BD action one more time. This will be to include arbitrary couplings of
both ϕ and R within the action. Thus the action looks like

S =
1

16πG

∫
d4x

√
−g
[
f(ϕ,R)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
+ Smatter [ψm, gµν ] , (4.2.11)

where f(ϕ,R) is an arbitrary, algebraic coupling of ϕ and R - meaning it contains no derivatives of ϕ
or R. We will from here refer to such theories as generalized scalar-tensor theories or f(ϕ,R) theories.
Note that the function f(ϕ,R) has also absorbed the scalar field potential V (ϕ). In order to recover
the scalar-tensor action (4.2.6), one can set

f(ϕ,R) = F (ϕ)R− V (ϕ). (4.2.12)

Alternatively one can set ϕ = 1 in f(ϕ,R) to recover so called f(R) theories

f(ϕ,R) = f(R), (4.2.13)

which are another class of modified gravity theories. As we will see in chapter 6, f(R) theories are
equivalent to scalar-tensor theories. The equations of motion for the generalized scalar-tensor action
(4.2.11) are given by

∂f

∂R
Gµν =2

ω(ϕ)

ϕ
∇µϕ∇νϕ+∇µ∇ν

(
∂f

∂R

)
(4.2.14)

− gµν

[
ω(ϕ)

ϕ
∇αϕ∇αϕ− 1

2

(
f − ∂f

∂R
R

)
+□

(
∂f

∂R

)]
,

ω(ϕ)

ϕ
□ϕ =

[
ω(ϕ)

2ϕ2
− ω′(ϕ)

2ϕ

]
∇αϕ∇αϕ− 1

4

∂f

∂ϕ
. (4.2.15)
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Due to the potential higher order terms of the Ricci scalar in f(ϕ,R), the equation (4.2.14) is not
necessarily of second order in derivatives of the metric. This can be made more apparent by noting
that

∇µ

(
∂f

∂R

)
=

(
∂2f

∂R2

)
∇µR+

(
∂2f

∂R∂ϕ

)
∇µϕ. (4.2.16)

Substituting this into (4.2.14) convolutes the equations considerably and leads to terms which are
proportional to ∇µ∇νR, and thus are fourth order in the derivatives of the metric.

As a final note, it is intentional that the generalized coupling between ϕ and R be only algebraic, and
contain no derivatives of R. As seen above, introducing higher orders of R into the action, will result
in equations of motion that are fourth order in the metric, essentially introducing additional degrees
of freedom into the theory. This can be generalized to say that for every 2 derivatives of the metric
that are introduced into the action, an additional degree of freedom is present in the theory. What we
mean by “degree of freedom” in this context, will become clearer after we have introduced the concept
of the Einstein frame, and in chapter 6 where we demonstrate how to transform the above action into
this Einstein frame.

4.2.2 Introducing the Einstein frame
As discussed previously, the scalar-tensor equations of motion are made increasingly more intricate by
the coupling of the scalar field to the curvature sector of the action. This has immediate consequences
on the equations of motion. To later compute the Love number in scalar-tensor gravity, it is important
that the equations of motion be in a more convenient form to work with. The solution to this problem
is found by employing a commonly used trick in the study of scalar-tensor theories - the Einstein frame.
We can do this by taking the scalar-tensor action (4.2.6),

SST =
1

16πG

∫
d4x

√
−g
[
F (ϕ)R− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ− V (ϕ)

]
+ Smatter [ψm, gµν ] , (4.2.17)

(which is said to be in the physical frame), and rescaling the metric according to

gµν = Ω−2g̃µν , (4.2.18)

where Ω ≡ Ω(x) is an arbitrary spacetime function. Such a rescaling is a conformal rescaling. The
consequence of this conformal rescaling, is that the scalar-tensor action (4.2.17) may be neatly written
as

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2∂̃µφ∂̃

µφ− U(φ)
]
+ Smatter

[
ψm,Ω

−2(φ)g̃µν
]
, (4.2.19)

where quantities with a tilde denote that they depend on the Einstein frame metric g̃µν and the scalar
field φ is a yet to be specified function of the Jordan frame scalar field ϕ. The action (4.2.19) is said to
be in the Einstein frame, for the reason that it’s curvature sector resembles that of GR i.e. it is linear
in R̃ and minimally coupled to the scalar field. There are in principle an infinite number of frames one
can transform to, depending on the choice of the conformal factor Ω, however the Jordan and Einstein
frame are the ones of most interest and so receive their own names. The vacuum equations of motion
for the newly obtained Einstein frame action are

G̃µν = 2∇̃µφ∇̃νφ− g̃µν2∇̃αφ∇̃αφ− 1

2
g̃µνU(φ), (4.2.20)

∇̃α∇̃αφ =
1

4
U ′(φ), (4.2.21)

where we emphasize the simplicity of these equations compared to Jordan frame scalar-tensor equations
(4.2.7) and (4.2.8). We will go on to derive the Einstein frame action (4.2.19) shortly, but first discuss
its most important consequence.
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The coupling to matter

While the transformation to the Einstein frame has given us the advantage of decoupling the curvature
sector from the scalar field, there is a trade off to this benefit. One can now see from equation (4.2.19),
that the scalar field φ has coupled to the matter section of the action through Ω(φ). In this sense, we
merely traded the coupling to gravity for a coupling to matter.

This coupling of φ to the matter sector of the action will have consequences for particle motion in the
Einstein frame. For example, the energy momentum tensor of the Einstein frame T̃µν will have explicit
dependence on φ, as will the physical quantities that it depends on. We will shortly see this for the
case of a perfect fluid.

An additional interesting consequence of this coupling to matter, is that test particles no longer follow
geodesics in the Einstein frame - in other words the weak equivalence principle (WEP) has been
violated. In the Einstein frame, the geodesic equation changes from

duµ

dτ
+ Γµ

νλu
νuλ = 0, (4.2.22)

to

dũµ

dτ̃
+ Γ̃µ

νλũ
ν ũλ =

ũν

Ω(φ)

(
∂νΩ(φ)ũ

µ − ũν ∂̃
µΩ(φ)

)
. (4.2.23)

Given that Ω is a function of φ, this now implies a scalar-dependent correction to the geodesic equation.
This apparent “fifth” fundamental force, present only in the conformally transformed frame, violates
the universality of free fall. The trajectory of a massive body in free-fall is no longer only determined
by it’s initial position and velocity, but also influenced by the presence of the scalar field.
This scalar-dependent correction to the geodesic equation manifests from the fact that, in the new
frame, the conservation of the energy-momentum tensor

∇µTµν = 0, (4.2.24)

changes [27] as

∇̃µT̃µν =
Ω′(φ)

Ω(φ)
T̃ ∇̃νφ, (4.2.25)

where T̃ is the trace of the Einstein frame energy-momentum tensor. This is the trade-off for the
neater equations of motion (4.2.21). As we can see from this discussion, the Einstein and Jordan frame
are not physically equivalent due to how the scalar field couples to matter. As for which frame is the
true physical one, this is outside the scope of this thesis. For the purposes of this work, we merely
employ the Einstein frame as a mathematical tool and are not interested in the philosophy of frames.

4.2.3 Performing the conformal rescaling
With the Einstein frame action previously presented, we now like to discuss the basic recipe for trans-
forming from the Jordan to Einstein frame. The results of this subsection will be summarized in
(4.2.68), such that they can easily be made reference to in future chapters.

We begin with the conformal rescaling of the metric tensor

gµν = Ω−2g̃µν . (4.2.26)

With this scaling, we work in a convention that keeps our coordinates unchanged such that

dxµ = dx̃µ. (4.2.27)

The invariant line element ds2 = gµνdx
µdxν then changes as

ds2 = Ω−2(x)ds̃2. (4.2.28)
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This allows us to relate the proper time τ between frames as

dτ = −ds = −Ω−1ds̃ =
1

Ω
dτ̃ . (4.2.29)

We can then deduce that the four-velocity uµ changes as

uµ =
dxµ

dτ
, (4.2.30)

= Ω
dx̃µ

dτ̃
, (4.2.31)

≡ ũµ. (4.2.32)

To obtain the relationship between the inverse metrics, we make the ansatz

gµν = Cg̃µν . (4.2.33)

We can solve for the constant C by using the invariance of the Kronecker delta δµν , giving

δµν = δ̃µν ,

= g̃µρg̃ρν ,

= CΩ−2gµρgρν ,

= CΩ−2δµν ,

and so we can deduce that C = Ω2. Next, we would like to find how the metric determinant g changes
between frames. Using the determinant formula det(cA) = cndet(A), for an n × n matrix A and
constant c, we can see that the metric determinants are related as g̃ = Ω8g, which further implies that
their square roots change as √

−g̃ = Ω4√−g. (4.2.34)

Next, we would like to see how the Ricci scalar will change upon conformally rescaling the metric. To
do this however, we will first need to transform the Christoffel symbols Γµ

αβ . This calculation is carried
out in Appendix A and results in

Γµ
αβ = Γ̃µ

αβ −
(
δµαfβ + δµβfα − g̃αβ f̃

µ
)
, (4.2.35)

where Γ̃µ
αβ are the Christoffel symbols defined in terms of the Einstein frame metric

Γ̃µ
αβ =

1

2
g̃µρ (∂αg̃βρ + ∂β g̃ρα − ∂ρg̃αβ) . (4.2.36)

We have also introduced some shorthand notation for lnΩ and its derivatives in terms of the variable
f :

f ≡ lnΩ, fµ ≡ ∂µf, f̃µ ≡ g̃µν∂νf. (4.2.37)

Using the transformed Christoffel symbols (4.2.35), we can now go on to find how the Ricci will change
between frames. The calculation is again shown explicitly in Appendix A and results in

R = Ω2
(
R̃+ 6□̃f − 6f̃2

)
, (4.2.38)

were we have defined another shorthand notation f̃ ≡ g̃µνfµfν . The second term in the the transformed
Ricci scalar (4.2.38) contains the D’Alembertian in curved spacetime □̃ ≡ ∇̃µ∇̃ν acting on f . As f is
a scalar, this term is proportional to

1√
−g̃

∂µ

(√
−g̃g̃µν∂νf

)
. (4.2.39)
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Thus, when it is multiplied by
√
−g̃ in the action, it will amount to nothing more than a boundary

via term Stokes’ theorem. For this reason, □̃f can mostly be ignored.

With the transformation rules for the metric, metric determinant, and the Ricci scalar obtained, we
are now ready to begin transforming the scalar-tensor action (4.2.17) to the Einstein frame. Applying
the previously derived transformation rules to (4.2.17), and omitting the matter action, we find

S =
1

16πG

∫
d4x

√
−g
[
F (ϕ)R− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ− V (ϕ)

]
,

=
1

16πG

∫
d4x
√
−g̃Ω−4

[
F (ϕ)Ω2

(
R̃+ 6□̃f − 6f̃2

)
− 2

ω(ϕ)

ϕ
Ω2g̃µν∂µϕ∂νϕ− V (ϕ)

]
,

=
1

16πG

∫
d4x
√
−g̃
[
F (ϕ)Ω−2

(
R̃+ 6□̃f − 6f̃2

)
− 2

ω(ϕ)

ϕ
Ω−2∂̃µϕ∂̃

µϕ− Ω−4V (ϕ)

]
. (4.2.40)

We see that there is now an explicit coupling between ϕ and R̃. We can cancel this coupling by freely
choosing

Ω2(ϕ) = F (ϕ), (4.2.41)

such that

F (ϕ)Ω−2 = 1. (4.2.42)

By filling in the choice for Ω, we can further rewrite the Einstein frame action (4.2.40) as

S =
1

16πG

∫
d4x
√
−g̃
[(
R̃− 6f̃2

)
− 2

ω(ϕ)

ϕF (ϕ)
∂̃µϕ∂̃

µϕ− V (ϕ)

F 2(ϕ)

]
, (4.2.43)

where we have dropped the previously mentioned boundary term that was proportional to
√
−g̃□̃f .

We can further simplify this action by evaluating f̃2 for our choice of coupling (4.2.41). Using that
the derivative of the logarithm can be written as

∂µ lnΩ =
1

2Ω2
∂µΩ

2, (4.2.44)

we find that f̃2 may be written as

f̃2 = g̃µν∂µ (lnΩ) ∂ν (lnΩ) , (4.2.45)

=
g̃µν

4Ω4
∂µΩ

2∂νΩ
2. (4.2.46)

We can now plug in our choice (4.2.41) for Ω2 to find that f̃ takes the form

f̃2 =
1

4

(
F (ϕ)

F ′(ϕ)

)2

∂̃µϕ∂̃
µϕ, (4.2.47)

where we have used the chain rule ∂µF (ϕ) = ∂µϕ
∂F
∂ϕ .

We can now return to our Einstein frame action (4.2.43) and plug in our expression (4.2.47) for f̃2.
The resulting action looks like

S =

∫
d4x
√
−g̃

[
R̃−

(
2
ω(ϕ)

ϕF (ϕ)
+

3

2

(
F ′(ϕ)

F (ϕ)

)2
)
∂̃µϕ∂̃

µϕ

]
. (4.2.48)

We would like to further simplify this action by writing it in terms of a canonicalized scalar field. We
can do this by defining a new scalar field φ through the differential relation
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dφ

dϕ
=

√
∆(ϕ)

2
, (4.2.49)

where the function ∆(ϕ), is given by

∆(ϕ) = 2
ω(ϕ)

ϕF (ϕ)
+

3

2

(
F ′(ϕ)

F (ϕ)

)2

. (4.2.50)

Rewriting the action in terms of the new scalar field φ, and restoring the previously omitted matter
action Smatter [ψm, gµν ], we find that the final Einstein frame action takes the form

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2∂̃µφ∂̃

µφ− U(φ)
]
+ Smatter

[
ψm,Ω

−2(φ)g̃µν
]
, (4.2.51)

where the potential U(φ) is given by

U(φ) ≡ V (ϕ)

F 2(ϕ)
. (4.2.52)

Comments on additional conventions

Initially we have specified our conformal rescaling in the Jordan frame according to (4.2.26). In the
literature, it is sometimes common to define the conformal rescaling instead as

gµν = A2(φ)g̃µν . (4.2.53)

This new conformal factor is a function of the Einstein frame scalar field φ, but is related to our original
conformal factor Ω through A = −1/Ω. Specifying a form for ω(ϕ) and F (ϕ) defines a scalar-tensor
theory in the Jordan frame. Alternatively, one can define a scalar-tensor theory in terms of its Einstein
frame counterpart by specifying A(φ) along with F (ϕ). The two can then be related through (4.2.41)
such that

A(φ) = F−1/2(ϕ). (4.2.54)

Solving this equation gives φ as a function of ϕ or vice versa. One can then use (4.2.49) to substitute
for ∆(ϕ) in (4.2.50), and then solve for ω(ϕ). Thus one can recover the Jordan frame action frame
action from one which has been originally specified in the Einstein frame. This will be a useful aid for
our case study of generalized scalar-tensor theories in chapter 7.
Furthermore, using equations (4.2.49) and (4.2.54), we can relate A(φ), F (ϕ) and ∆(ϕ) as

∆ =

(
F ′

2Fα

)
=

(
A2F ′

2α

)
, (4.2.55)

where F ′ denotes a derivative of F with respect to ϕ. The function α(φ) is another commonly used
convention in the literature, defined as

α(φ) ≡ − 1

A

dA

dφ
. (4.2.56)

Energy momentum tensor

So far in our demonstration of Einstein frame transformations, we focused purely on transforming the
gravitational part of the the action. It is now time to turn our attention toward the Einstein frame
energy-momentum tensor T̃µν , such that the full Einstein equations can be specified. As discussed
in chapter 3, we are interested in modelling neutron stars that have an energy momentum tensor
described by a perfect fluid

Tµν =
−2√
−g

δSmatter

δgµν
, (4.2.57)

= (ρ+ p)uµuν + pgµν . (4.2.58)
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We demand that the energy-momentum tensor in the Einstein frame T̃µν have a similar form

T̃µν =
−2√
−g̃

δSmatter

δg̃µν
,

= (ρ̃+ p̃)ũµũν + p̃g̃µν , (4.2.59)

where the Einstein frame density ρ̃ and pressure p̃ are distinct from their Jordan frame counterparts ρ
and p. When solving the Einstein equations later on, it will be convenient to be able to express them
in terms of the Jordan frame quantities ρ and p. Beginning with the previously derived identities for
the metric and four-velocity

√
−g = Ω−4

√
−g̃, δgµν = Ω2δg̃µν , uµ = Ω−1ũµ, (4.2.60)

we can relate the Jordan and Einstein frame energy-momentum tensors

Tµν =
−2√
−g

δSmatter

δgµν
,

=
−2Ω2

√
−g̃

δSmatter

δg̃µν
,

= Ω2T̃µν . (4.2.61)

Next we can take the relationship for the energy-momentum tensors between frames (4.2.61) and
replace the four-velocity ũµ with its Jordan frame counterpart Ω uµ to get

Tµν = Ω2T̃µν ,

= Ω2 [(ρ̃+ p̃) ũµũν + pg̃µν ] ,

= Ω2
[
(ρ̃+ p̃) Ω2uµuν + pΩ2gµν

]
,

=
(
Ω4ρ̃+Ω4p̃

)
uµuν +

(
Ω4p̃

)
gµν . (4.2.62)

Comparing the form of the energy momentum tensor (4.2.62) with its original Jordan frame counterpart
(4.2.58), we can deduce that the pressure and density change between frames as

ρ = Ω4ρ̃, p = Ω4p̃. (4.2.63)

We can now use these relationships in the Einstein frame energy-momentum tensor (4.2.59) to replace
ρ̃ and p̃ with their Jordan frame counterparts. The final form of the Einstein frame energy momentum
tensor is thus

T̃µν =
(
Ω−4ρ+Ω−4p

)
ũµũν +Ω−4pg̃µν . (4.2.64)

The Weyl tensor

In chapter 3, we introduced the effective relativistic action for a binary system. This action depended
on the tidal moments Eµν , which again depend on the Weyl tensor given by (3.1.5). We will later on be
interested in transforming these tidal terms to the Einstein frame, which will also mean knowing how
the Weyl tensor Wµανβ transforms. Recall that the Weyl tensor is the trace-free part of the Riemann
tensor, which in 4 spacetime dimensions looks like

Wαβµν = Rαβµν −
(
gα[µRν]β − gβ[Rν]α

)
+

1

3
Rgα[µgν]β . (4.2.65)

While we will not show it here (although one can use the Mathematica package xPand for example),
the Weyl tensor can be transformed to the Einstein frame using our previously derived transformation
rules. The resulting transformation is [36]

Wµανβ = Ω−2W̃µανβ . (4.2.66)
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We can further raise an index on the Weyl tensor Wµανβ using the metric, which implies that

Wα
βµν = gαρWρβµν

= g̃αρ����
Ω2Ω−2W̃ρβµν

= W̃α
βµν . (4.2.67)

This can be further generalized to say the Weyl tensor with any index raised is invariant under
conformal rescalings. We record the result (4.2.67) for completeness, however, it is primarily (4.2.66)
that we will use throughout the rest of this thesis.

4.2.4 Tool box
To summarize the work done in the previous section, we collect the most relevant conformal transfor-
mations that were derived in this chapter and put them in one place for future reference

gµν = Ω−2g̃µν , R = Ω2

(
R̃+ 6□̃f − 3

2
· g̃

µν

Ω4
∂µΩ

2∂νΩ
2

)
,

gµν = Ω2g̃µν , Γµ
αβ = Γ̃µ

αβ −
(
δµαfβ + δµβfα − g̃αβ f̃

µ
)
,

√
−g = Ω−4

√
−g̃, Wαβµν = Ω−2W̃αβµν ,

uµ = Ωũµ, Tµν = Ω−2T̃µν ,

ρ = Ω−4ρ̃, p = Ω−4p̃,

(4.2.68)

where

f ≡ lnΩ, fµ ≡ ∂µ lnΩ, f̃µ ≡ g̃µνfν . (4.2.69)

In this chapter, we have successfully shown how a conformal rescaling of the metric tensor can decouple
a scalar field ϕ from the gravitational sector of the action at the expense of coupling it to matter.
However, this work was only done for the simplest coupling type F (ϕ)R, corresponding to the scalar-
tensor theory. This trick does not account for the generalized scalar-tensor theory with couplings of the
type f(ϕ,R). We will later go on in chapter 6 to address this issue, and present a recipe to generalize
the transformations in this chapter for the generalized scalar-tensor theory.
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Chapter 5

Tidal effects in scalar-tensor theories

So far, we have laid the basic theoretical foundation for calculating Love numbers in GR. We have
further introduced the idea of modified theories of gravity, namely the scalar tensor theories. For this
chapter, we are interested in merging both, that is to obtain the basic recipe for computing the Love
number in scalar-tensor theories - that is those of the coupling type F (ϕ)R.

We will do this by first schematically deriving the effective action for a binary system in scalar-tensor
gravity. Then, through a conformal rescaling of the metric, we will transform this effective action to
the Einstein frame, allowing us to identify how the Love number(s) λℓ change between frames. Finally,
we will derive and solve equations of motion for the metric gµν and scalar field φ in the Einstein frame
in an asymptotic frame. This will allow us to see how the Love number can be extracted in the Einstein
frame such that we can convert it back to the Jordan frame.

This chapter will primarily be a review of the most relevant parts of [6] (although other attempts at
computing the Love number in F (ϕ)R gravity can be found in [7, 8]). The ultimate outcome here is
that we would like to review the most important aspects of computing the Love number in F (ϕ)R
gravity. The intention is then to investigate if these aspects may be generalized for the generalized
scalar-tensor theories f(ϕ,R).

5.1 The effective action in the Jordan frame
We begin by readopting the skelontized worldline approach, as seen in chapter 3, that allowed us to
write an effective for a binary system at the orbital scale. In this approach, the system is treated as
a point particle with (static) multipole moments moving along the centre of mass worldline worldline
xµ(τ), where τ parameterizes the particle’s trajectory along xµ. This action schematically looks like

S = SST + Spp + STidal. (5.1.1)

Here SST is the scalar tensor action of the full theory

S =

∫
d4x

√
−g
[
KRF (ϕ)R−Kϕ

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
, (5.1.2)

where we have used arbitrary normalization constants KR and Kϕ to account for differences in the
literature. We have also set the scalar potential V (ϕ) = 0.

The term Spp in the full action (5.1.1), is the action for the relativistic point-particle

Spp = −
∫
dτ z

√
−uµuµ m(ϕ), (5.1.3)

where here, the mass m(ϕ), is a function of the scalar field due to a scalar-dependent binding energy
[37]. The redshift factor z is still given as z =

√−uµuµ.
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Lastly, the tidal part STidal of the full action (5.1.1) represents the tidal multipole moments that move
along the worldline with the point particle. This action schematically looks like

STidal =
∑
ℓ

∫
dτ z

√
−uµuµ

(
λTℓ
2ℓ!

ELEL +
λSℓ
2ℓ!

ELE
L +

λST
ℓ

ℓ!
ELEL

)
. (5.1.4)

Here, EL are the previously discussed tidal multipole moments from GR (3.1.8). We have also included
two additional terms in the tidal action that were not present in previous chapters. These terms
depend on a scalar tidal term that we denote EL which is defined as

EL ≡ −∇⟨L⟩ϕ. (5.1.5)

These new terms encapsulate effect that a tidal scalar field will have on the body. The ELE
L term

characterizes the static response of the induced scalar multipole in the body due the perturbing tidal
scalar field from the companion. This internal response in the body is characterized by a scalar Love
number that we denote λSℓ . Similarly, the third term shows a coupling ELEL, which characterizes the
tensor/scalar multipole induced in the body due to the perturbing tidal scalar/tensor field. We now
denote the previous tensor Love number λℓ from GR as λTℓ .

The form of the scalar tidal moments EL are determined through an effective field theory approach
similar to what was commented on in chapter 3. The terms containing EL arise naturally in the action
when one considers all possible terms with the allowed symmetries of the theory. For the interested
reader, a schematic derivation for the the scalar tidal dipole term Eµν using effective field theory can
be found in Appendix A of [38].

With the effective action (5.1.1) describing a binary system in the Jordan frame fully specified, our
next step is to transform the action to the Einstein frame and identify how the various Love numbers
λTℓ , λSℓ , and λST

ℓ transform along with it.

5.2 The effective action in the Einstein frame

5.2.1 Transforming the tidal moments
With the effective action describing finite size effects in the Jordan frame (5.1.1) fully obtained, we
are almost ready to perform our conformal rescaling of the metric gµν to transform the action to the
Einstein frame. The only terms in the effective action (5.1.1) that we have not examined yet in the
Einstein frame are the tidal moments EL and EL.

Tensor tidal terms

To transform these terms, we begin by looking at the ℓ = 2 tensor tidal term

Eµν =
1

z2
Wµανβu

αuβ , (5.2.1)

where z =
√−uµuµ is the redshift factor. We can transform each term in Eµν by applying our

previously derived toolbox (4.2.68) of transformations. The result is

Eµν =
1

z2
Wµανβu

αuβ ,

=
1

z̃2
��Ω2W̃µανβ�

�Ω−2ũαũβ , (5.2.2)

= Ẽµν ,

Thus we find that the ℓ = 2 tensor tidal term is conformally invariant, and equivalent in the Jordan
and Einstein frames. We can similarly transform the higher order tidal moments starting with the
ℓ = 3 term
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Eαµν = ∇αEµν . (5.2.3)

The transformations quickly become cumbersome for ℓ ≥ 3 however due to the increasing presence of
the covariant derivative with each ℓ. An explicit derivation for the ℓ = 3 tensor tidal term is carried
out in Appendix B, where we also present a generic recursive formula for calculating higher order tidal
moments. For now, we simply state the result for the ℓ ≥ 3 tensor tidal terms as

EL = ẼL + ..., (5.2.4)

where the “...” denotes higher order powers of 1/r in the power counting scheme of the EFT [6] and
so can be neglected.

Scalar tidal terms

With the transformation rules for the tensor tidal moments EL obtained, we can now turn our attention
to the scalar tidal moments EL. Starting with the ℓ = 1 scalar tidal moment we have that

Eµ = ∇µϕ,

= ∂µϕ. (5.2.5)

where the covariant derivative ∇µ reduces to a partial derivative ∂µ when acting on a scalar. To
express the tidal term (5.2.5) in the Einstein frame, we must recall that when passing to the Einstein
frame we redefine our scalar field through the differential relation

dφ

dϕ
=

√
∆, (5.2.6)

where ∆ is a function of the scalar field ϕ. This differential relation can alternatively be expressed as

∂µϕ =
1√
∆
∂µφ. (5.2.7)

Putting this relationship back into the ℓ = 1 scalar tidal moment (5.2.5), we obtain that the Jordan
and Einstein frame tidal moments are related as

Eµ =
1√
∆
Ẽµ, (5.2.8)

where the Einstein frame tidal moment is defined as Ẽµ = ∂µφ. Similarly to the tensor tidal terms,
the scalar tidal terms become more cumbersome to transform starting with ℓ = 2. As a result, the
transformations for higher order moments have also been left to Appendix B. For now, we simply
state the result as

EL =
1√
∆
ẼL + ..., (5.2.9)

where the “...” again denote terms that can be neglected due to power counting arguments in the EFT
[6].

To summarize, we find that the scalar and tensor tidal terms both transform proportionally to their
Einstein frame counterparts + higher order terms, which are suppressed in the EFT

EL = ẼL + ..., EL =
1√
∆
ẼL + .... (5.2.10)

For all intents and purposes however, we can thus treat these terms as changing as

EL → ẼL, EL → 1√
∆
ẼL. (5.2.11)

With these final transformations, we are now almost ready to express the entire effective action (5.1.1)
in the Einstein frame.
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Rescaling coordinates

Before proceeding to the final step of transforming our effective Jordan frame action to the Einstein
frame, we make a sidenote. From here on, we switch to the convention of expressing the conformal
factor Ω(ϕ) instead as A(φ), defined through (4.2.53).

Secondly, in order to extract the Love number at spatial infinity, we will later demand that our Einstein
frame spacetime asymptotically resembles Minkowski space. We can ensure this condition with a simple
rescaling of our Jordan frame coordinates. Recall that the invariant line element is

ds2 = gµνdx
µdxν ,

= g̃µνA
2(φ)dxµdxν , (5.2.12)

where we have conformally rescaled the metric according to (4.2.53). In order to demand that

ds2 = ηµνdx
µdxν , (5.2.13)

at spatial infinity, we must redefine our coordinates according to

dxµ∗ = A(φ∞)dxµ. (5.2.14)

This ensures that g̃µν = ηµν for the Jordan frame metric at spatial infinity. This redefinition of
coordinates will not change our previously established transformation rules to the Einstein frame, with
the exception that the covariant derivative now changes with an additional factor dependent on A(φ)

∇L → Aℓ
∞∇∗

L. (5.2.15)

Here A∞ ≡ A(φ∞) denotes A with the scalar field φ evaluated at infinity.

5.2.2 Relating the Love numbers between frames
Finally we are ready to transform our effective tidal action (5.1.4)

STidal =
∑
ℓ

∫
dτ z

√
−uµuµ

(
λTℓ
2ℓ!

ELEL +
λSℓ
2ℓ!

ELE
L +

λST
ℓ

ℓ!
ELEL

)
, (5.2.16)

to the Einstein frame. Using our toolbox (4.2.68), the transformation rules for the tidal terms (5.2.11)
and the coordinate rescaling (5.2.15), the Jordan frame action (5.2.16) transforms as

STidal =
∑
ℓ

∫
dτ̃ z̃

√
−ũµũµ

(
A

A∞

)1−2ℓ(
λTl
2ℓ!

ẼLẼL +
λSℓ
2ℓ!∆

ẼLẼ
L +

λST
ℓ

ℓ!
√
∆
ẼLẼL

)
. (5.2.17)

We would now like to be able to compare how the Love numbers change between frames. In the
Einstein frame, we will demand that the effective tidal action takes the form

STidal =
∑
ℓ

∫
dτ̃ z̃

√
−ũµũµ

(
λ̃Tℓ
2ℓ!

ẼLẼL +
λ̃Sℓ
2ℓ!

ẼLẼ
L +

λ̃ST
ℓ

ℓ!
ẼLẼL

)
. (5.2.18)

We can thus read off how the Love number changes by comparing the prefactors in front of each of
the tidal terms in the Jordan frame (5.2.17) and Einstein frame (5.2.18) action. The results are

λTℓ = (A/A∞)2ℓ−1λ̃Tℓ , (5.2.19)

λSℓ = (A/A∞)2ℓ−1∆λ̃Sℓ , (5.2.20)

λST
ℓ = (A/A∞)2ℓ−1

√
∆λ̃ST

ℓ , (5.2.21)

where
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∆ =

(
F ′

2Fα

)
=

(
A2F ′

2α

)
. (5.2.22)

Given that the Love numbers are extracted at spatial infinity, we can further simplify the relationships
between the Love numbers. Evaluating A(φ) ≡ A∞ at spatial infinity, the relationships (5.3.28) become

λTℓ = λ̃Tℓ , (5.2.23a)

λSℓ = ∆∞λ̃
S
ℓ , (5.2.23b)

λST
ℓ =

√
∆∞λ̃

ST
ℓ . (5.2.23c)

Conveniently, we find that tensor tidal Love number λTℓ does not change between frames, whereas the
scalar and scalar-tensor Love numbers change according to ∆∞, due to the redefinition (5.2.6) of the
original scalar field ϕ.

To give a sense for the magnitude of ∆∞, we can evaluate it for the values performed in the case study
[6]. For this we have that the coupling function and inverse conformal factor are

F (ϕ) = ϕ, (5.2.24)

A(φ∞) = e
1
2βφ

2
∞ . (5.2.25)

Note the distinction between the scalar fields ϕ and φ in F and A. The parameter β here measures the
strength of the coupling between the scalar field and matter in the Einstein frame. Setting β = −4.5
and taking the scalar field at infinity to be φ∞ = 10−3 as in [6], we find that

∆ ∼ 1.2× 105. (5.2.26)

This implies a difference of several orders of magnitude between the values of λSℓ in each frame, owing
to the redefinition of the scalar field ϕ and justifying the need for having a transformation between
the two frames. With the relationship between Love numbers obtained between frames, we can now
turn our attention to how λ̃Sℓ may be extracted in the Einstein frame.

5.3 Extracting the Love number in the Einstein frame

5.3.1 The EFT equations of motion
Recall that the total effective action in the Einstein frame looks like

S = SST + Spp + STidal, (5.3.1)

with

SST =

∫
d4x
√
−g̃
[
KRR̃−Kφ∂̃µφ∂̃

µφ
]
, (5.3.2a)

Spp = −
∫
dτ̃ z̃

√
−ũµũµm̃(φ), (5.3.2b)

STidal =
∑
l

∫
dτ̃ z̃

√
−ũµũµ

(
λ̃Tl
2l!

ẼLẼL +
λ̃Sℓ
2l!
ẼLẼ

L +
λ̃ST
l

2l!
ẼLẼL

)
. (5.3.2c)

When studying how to compute the Love number in chapter 3 for basic GR, we were able to take
advantage of the fact that the tt component of the metric in an asymptotically flat frame could be
expressed in terms of an effective potential

gtt = − (1− 2Ueff) , (5.3.3)
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which could then be used to identify which components contain the multipole moments QL and the
tidal fields EL

lim
r→∞

Ueff =
M

r
+

∞∑
ℓ=2

1

ℓ!

[
(2ℓ− 1)!!

QLn
⟨L⟩

rℓ+1
− n⟨L⟩EL rℓ

]
, (5.3.4)

such that the Love number
λℓ = −QL

EL
, (5.3.5)

could be extracted.

However, we are now dealing with the computation of a Love number in a scalar-tensor theory, which
means our effective action has been modified to contain the presence of the scalar field φ, as well a
scalar tidal field EL with appropriate Love numbers λSℓ , λST

ℓ . We would like to be able to compute
the equations of motion of the effective action, such that the effective solution can be obtained. In this
sense we will be able to see which coefficients of the solution contain the tidal fields EL, EL such that
the Love number can be extracted in a similar way to the GR case (5.3.4).

We begin by working in a local aymptotic frame, far away from the system. This means the spacetime
is locally Minkowskian such that the metric determinant is 1 i.e.

√
−g̃ = 1. We also work in the rest

frame of the body such that the four velocity only has one component u0 = 1 and thus its normaliza-
tion is

√
−ũ2 = 1. We would like to start by varying the action with respect to φ, however, we must

first address a subtlety

The total effective action (5.3.1) contains 3 terms, however not all have the same integration measure.
As an instructive example, consider varying the point particle action Spp with the integration measure
dτ̃ replaced by d4x. The action in our local asymptotic frame would read

Spp = −
∫
d4x m̃(φ), (5.3.6)

and its contribution to the equations of motion would be

δSpp

δφ(z)
=

∫
d4x m̃′(φ)δ(4)(xµ − zµ), (5.3.7)

= m̃′(φ), (5.3.8)

where it is now understood that φ ≡ φ(z). In actuality, the point-particle action integrates over τ̃ .
We can compute its equation of motion by again computing δSpp

δφ(z) , this time obtaining

δSpp

δφ(z)
= −

∫
dτ̃ m̃′(φ)δ(4)(xµ − zµ). (5.3.9)

We can simplify things by separating the delta function as

δ(4)(xµ − zµ) = δ(t− zi)δ(3)(xi − zi), (5.3.10)

and setting zµ = (τ̃ , 0, 0, 0) by invariance of its reparameterization. Performing the integral over τ̃ ,
the result is

δSpp

δφ(z)
= −m̃′(φ)δ(3)(x− 0), (5.3.11)

= −m̃′(φ)δ(3)(x), (5.3.12)
≡ −m̃′(φ)δ(x), (5.3.13)

where we have abbreviated δ(3)(x) ≡ δ(x). The full equation of motion of for φ can be computed in a
similar way, with delta functions arising from each term which contains an integration measure over
τ̃ . The resulting equation of motion for φ is then
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□̃φ = −m̃
′(φ)

2Kφ
δ(x) +

∞∑
l=1

(−1)l+1

l!2Kφ

[
λ̃Sl Ẽ

L∂L + λ̃ST
ℓ ẼL∂L

]
δ(x). (5.3.14)

Here, the tidal moments ẼL = −∇̃Lφ are evaluated on the worldine ∇̃Lφ ≡ ∇̃Lφ
∣∣∣
0
, such that they

may be treated as constant.

We can now perform a similar procedure for the metric equations of motion. One can take the tt
component of the Einstein equations and expand the metric in terms of the Newtonian potential ŨN

in the same way as (5.3.3). We can then take the Newtonian limit by working to linear order in ŨN .
The resulting equation of motion is

□̃ŨN =
m̃(φ∞)

4KR
δ(x) +

∞∑
ℓ

(−1)ℓ+1

ℓ!4KR

[
λ̃Tℓ ẼL∂L + λ̃ST

ℓ ẼL∂L

]
δ(x), (5.3.15)

where the tidal moments ẼL in their Newtonian limit look like

ẼL = −∂LŨN . (5.3.16)

5.3.2 Solving the equations of motion
With the Einstein frame EFT equations of motion obtained, we would now like to work on solving
them. This can be done by passing to Fourier space. An example of the methodology can be found in
[39]. We start by transforming the field φ(x) to its fourier space counterpart φ̃(k)

φ(x) =

∫
d3ke−ikxφ̃(k), φ̃(k) =

∫
d3x

(2π)3
eikxφ(x), δ(x) =

∫
d3ke−ikx (5.3.17)

With these definitions, the equation of motion for φ

□̃φ = −m̃
′(φ)

2Kφ
δ(x) +

∞∑
l=1

(−1)l+1

l!2Kφ

[
λ̃Sl Ẽ

L + λ̃ST
ℓ ẼL

]
∂Lδ(x), (5.3.18)

then looks like

∫
d3k

[
−k2φ̃(k)

]
e−ikx =− m̃′(φ∞)

2Kφ

∫
d3k [1] e−ikx

+

∞∑
ℓ=1

(−1)ℓ+1

ℓ!2Kφ

(
λ̃Sl Ẽ

L + λ̃ST
ℓ ẼL

)∫
d3k

[
(−i)ℓ+1kL

]
e−ikx.

(5.3.19)

We can isolate the left hand side of this equation by diving by −k2 and performing the remaining
integrals to return to real space. The integrals are performed in [39]. The solution for φ is then

φ =
m̃′(φ∞)

2Ω2Kφr
+

∞∑
l=1

(2l − 1)!!

l!2Ω2Kφ

(−λ̃Sℓ ẼL − λ̃ST
ℓ ẼL)nL

rl+1
+ φhom. (5.3.20)

Due to the linearity of the equation of motion (5.3.18) in φ, we have also added the solution of the
homogeneous equation

□̃φhom = 0. (5.3.21)

This is the standard Laplace equation in Euclidean space and the solution can be written as

φhom = −
∞∑
ℓ=1

1

ℓ!8πKφ
ẼLnLr

ℓ. (5.3.22)

This completes the solution for φ in the EFT in the local asymptotic frame.
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We can now turn our attention to the equation of motion for the Newtonian potential ŨN

□̃ŨN =
m̃(φ∞)

4KR
δ(x) +

∞∑
ℓ

(−1)ℓ+1

ℓ!4KR

[
λ̃Tℓ ẼL + λ̃ST

ℓ ẼL
]
∂Lδ(x). (5.3.23)

Fortunately this equation is identical to the scalar φ equation of motion (5.3.18) up to replacing

Kφ → 2KR, λ̃Sℓ ẼL → λ̃Tℓ ẼL. (5.3.24)

Hence, the solution for ŨN can be written immediately as

ŨN =
m̃′(φ∞)

4Ω2KRr
+

∞∑
l=1

(2l − 1)!!

l!4Ω2KR

(−λ̃Tl ẼL − λ̃ST
ℓ ẼL)nL

rl+1
+ Ũhom

N , (5.3.25)

with the homogeneous solution

Ũhom
N = −

∞∑
ℓ=1

1

ℓ!16πKR
ẼLnLr

ℓ. (5.3.26)

With the solutions for the ETF equations of motion in the Einstein frame obtained, we can turn our
attention to the extraction of the Love numbers λ̃Tℓ , λ̃Sℓ , λ̃ST

ℓ .

5.3.3 Extracting the Love numbers
To extract the Love numbers in the Einstein frame requires a similar approach to what was used in
chapter 3. In that chapter, we compared an exact solution for the perturbed metric function Hℓ(r)
with the the expected Newtonian limit of the tt component of the metric. We take a similar approach
in this section. To compute the Love number in the full theory, the metric g̃µν and the scalar field φ
are both perturbed similarly to how the metric was in chapter 3, this time in terms of Hℓ(r) and a
scalar perturbation δφℓ(r). One can then solve the perturbation equations at r → ∞ in a perturbative
expansion in r (these equations of motion are later presented in (5.4.9)). The perturbative expansions
in Hℓ and φℓ go as

δφℓ(r) = δφ(ℓ)rℓ
(
1− ℓM

r

)
+ ...+

δφ(−ℓ−1)

rℓ+1
+O

(
1

rℓ+2

)
, (5.3.27a)

Hℓ(r) = H(ℓ)rℓ
(
1− ℓM

r

)
+ ...+

H(−ℓ−1)

rℓ+1
+O

(
1

rℓ+2

)
. (5.3.27b)

Here the terms δφ(ℓ)(r) and H(ℓ) with brackets around ℓ denote coefficients in the solutions for δφℓ(r)
and Hℓ(r) respectively. We can then compare these coefficients with those from the solution to the
EFT equations (5.3.20) and (5.3.25). Matching the coefficients, we see that the various Love numbers
can be extracted from the full theory solutions δφℓ(r) and Hℓ(r) as

λ̃Tℓ =
1

(2ℓ− 1)!!

H(−ℓ−1)

H(ℓ)

∣∣∣∣
δφ(ℓ)=0

, (5.3.28a)

λ̃Sℓ =
1

(2ℓ− 1)!!

δφ(−ℓ−1)

φ(ℓ)

∣∣∣∣
H(ℓ)=0

, (5.3.28b)

λ̃ST
ℓ =

1

(2ℓ− 1)!!

H(−ℓ−1)

2δφ(ℓ)

∣∣∣∣
H(ℓ)=0

=
1

(2ℓ− 1)!!

2δφ(−ℓ−1)

H(ℓ)

∣∣∣∣
δφ(ℓ)=0

. (5.3.28c)

Notice that all expressions are evaluated with δφ(ℓ) or H(ℓ) = 0. This is due to the mingling of the
tensor ẼL and scalar ẼL tidal fields in the coefficients for the EFT solutions (5.3.20) and (5.3.25). For
example, when evaluating the tensor Love number λ̃Tℓ without δφ(ℓ) we find
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1

(2ℓ− 1)!!

H(−ℓ−1)

H(ℓ)
=
λ̃Tl ẼL + λ̃ST

ℓ ẼL

ẼL
, (5.3.29)

= λ̃Tℓ + λ̃ST
ℓ

ẼL

ẼL
. (5.3.30)

Thus the necessity of setting δφ(ℓ) = 0 really ensures that ẼL = 0 and we recover λ̃Tℓ . This problem
of setting δφ(ℓ) = 0 or H(ℓ) = 0, however is a problem for the numerical aspect of the analysis. It is
explained in more detail in [6], where here we merely review the analytical treatment for extracting the
Love numbers, in the hope that it can be generalized to generalized scalar-tensor theories in chapter 6.

With the Love numbers now obtained in the Einstein frame, they can be transformed back to their
Jordan frame counterparts with the use of the previously derived transformation formulas (5.2.23).
For the remainder of this chapter, we conclude by reviewing some of the numerical results that were
obtained using the EFT formalism to extract the Love numbers.

5.4 Numerical results
In the previous sections we have given an analytical treatment to scalar-tensor F (ϕ)R theories, culmi-
nating with a recipe for extracting the Love number in the Einstein frame and transforming it back to
the Jordan frame. In this section, we now put this analytical treatment into context by reviewing the
numerical results that give the mass-radius curves and Love numbers λℓ in scalar-tensor gravity. This
section will take a similar outline to chapter 3 in that we first review the results from the background
spacetime i.e. the mass-radius curves, followed by the results from perturbing the spacetime i.e. the
Love numbers.

5.4.1 Background equations of motion
We start with the scalar-tensor action in the Einstein frame

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2∂̃µφ∂̃

µφ
]
+ Smatter

[
ψm, A

2(φ)g̃µν
]
. (5.4.1)

Here, we fix the previous normalization constants as KR = 1/16πG and Kφ = 2KR also use A2(φ)
to denote the conformal factor as in (4.2.53). The theory is defined in the Einstein frame by choosing
F (ϕ) = ϕ and A(φ) = e

1
2βφ

2

.

We make the same metric ansatz for a non-rotating, spherically symmetric spacetime, as used in
chapter 3. Varying the action (5.4.1) with respect to g̃µν and φ, we can derive the scalar-tensor
counterpart to the TOV equations. These equations look like

dm

dr
= 4πA4(φ)ρ2r2 +

r2

2

(
1− 2m

r

)(
dφ

dr

)2

, (5.4.2a)

dν

dr
= 2

4πA4(φ)r3p+m

r(r − 2m)
+ r

(
dφ

dr

)2

, (5.4.2b)

dp

dr
= −ρ+ p

2

(
dν

dr
− 2α(φ)

dφ

dr

)
, (5.4.2c)

where α(φ) = − 1
A

dA
dφ . The modified TOV equations are then completed by the equation of motion of

motion for the scalar field

d2φ

dr2
+

(
1

2

dν

dr
− 1

2

dγ

dr
+

2

r

)
dφ

dr
= 4πα(φ)A4(φ)(3p− ρ)eγ . (5.4.3)

Here it is more convenient to express the equation in terms of the metric component γ(r), related to
the mass m(r) by
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Figure 5.1: Mass-radius curves [6] in the Einstein and Jordan frame for various equations of state.
The deviations from GR correspond to “scalarized” [40] neutron star configurations. We can see that
lowering the value of β can potentially influence the maximum mass of the neutron star. Setting β = 0
recovers the GR mass-radius curves in solid. The value of the scalar field at infinity is φ∞ = 10−3.

γ(r) = − ln

(
1− 2m(r)

r

)
. (5.4.4)

We can see that setting α(φ) = φ = 0 and A(φ) = 1 in the modified TOV equations recovers the GR
limit.

5.4.2 Numerical solutions to the TOV equations
The modified TOV equations (5.4.2) are then solved similarly to the TOV equations of chapter 3,
including using the same initial conditions for the density, pressure and mass close to the star

ρ(r → 0) = ρc +O(r2), p(r → 0) = pc +O(r2), m(r → 0) =
4π

3
ρcr

3 +O(r5). (5.4.5)

However, with the presence of the scalar field, we also require two more initial conditions to complete
the numerical integration. These will come from the scalar field φ(r), and are given by

φ(r → 0) = φc, φ′(r → 0) = 0, (5.4.6)

where φ′(r) denotes a derivative of φ(r) with respect to r. We will determine the central value of the
scalar field φc by fixing the value of φ as it approaches infinity instead, i.e.

lim
r→∞

φ(r) = φ∞, (5.4.7)

in accordance with observational constraints (φ∞ = 10−3 is used in [6]). This means integrating the
system using a shooting method to determined the φc that gives the desired value of φ∞. This will
need to be done for each value of the central density ρc. The resulting mass-radius curves are presented
in Figure 5.1. Here we omit some of the numerical details for extracting the mass and converting the
diagrams between frames for our own case study in chapter 7. More detail can be found in [6] for the
interested reader.

Examining the mass-radius curves in Figure 5.1, we can see that the solutions partially overlap with the
GR curves but then display qualitatively different behavior in particular regions. These configurations
correspond to so-called “scalarized” neutron star configurations and allow scalar-tensor theories to obey
satisfy solar system constraints while still deviating from GR in stronger regimes of gravity.
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5.4.3 Perturbation equations
Similarly to chapter 3, we next derive the perturbation equations by perturbing the metric as (3.2.26)
and the pressure, density and four-velocity as (3.2.27). In addition, we also include perturbations to
the scalar field as

φ = φ0 +
∑
ℓ,m

δφℓm(r)Y m
ℓ (θ, φ). (5.4.8)

Adding these perturbations into the Einstein equations and subtracting the modified background TOV
equations, we can write equations of motion for the linear perturbations as

d2Hℓ

dr2
+

{
2

r
+ eγ

[
1− e−γ

r
+ 4πA4(φ0) (p0 − ρ0) r

]}
dHℓ

dr

+

{
− l(l + 1)

r2
eγ + 4πA4(φ0)e

γ

[
9p0 + 5ρ0 +

ρ0 + p0
c̃2s

]
−
(
dν

dr

)2
}
Hℓ

+eγ

{
−4

(
dφ0

dr

)
r

[
1− e−γ

r2
+ 8πA4(φ0)p0 + e−γ

(
dφ0

dr

)2
]

−16π√
3
A4(φ0)

[
(ρ0 − 3p0) + (ρ0 + p0)

1− 3c̃2s
2c̃2s

]}
δφℓ = 0,

(5.4.9a)

d2δφℓ

dr2
+

(
1

2

dν

dr
− 1

2

dγ

dr
+

2

r

)
dδφℓ

dr

− eγ

{
l(l + 1)

r2
+ 4e−γ

(
dφ0

dr

)2

− 8π

3
A4(φ0)

[
−2 (ρ0 − 3p0) + (ρ0 + p0)

1− 3c̃2s
2c̃2s

]}
δφℓ

+ eγ
{
−e−γ

(
dν

dr

)(
dφ0

dr

)
− 4π√

3
A4(φ0)

[
(ρ0 − 3p0) + (ρ0 + p0)

1− 3c̃2s
2c̃2s

]}
Hℓ = 0.

(5.4.9b)

Here c̃2s = ∂p0/∂ρ0 denotes the Jordan frame speed of sound. These equations are solved perturbatively
in 1/r at r → ∞ to give the series solutions (5.3.27) discussed previously.
Notice the presence of a δφℓ term in the equation for Hℓ and vice versa. This coupling between
perturbation equations is what is accounted for in the effective action through the scalar-tensor coupling
term λST

ℓ ELEL. Setting δφℓ = φ = 0 in (5.4.9a) recovers the GR master equation (3.2.29).

5.4.4 Numerical solutions to the perturbation equations
The perturbation equations (5.4.9) are then solved numerically inside the neutron star, starting from
the origin with similar initial conditions as in GR

Hℓ ∝ rℓ, H ′
ℓ ∝ ℓrℓ−1, (5.4.10)

δφℓ ∝ rℓ, δφ′
ℓ ∝ ℓrℓ−1. (5.4.11)

The numerical solutions for Hℓ(r) and δφℓ(r) are then matched with the pertubative expansions
(5.3.27) to determine the coefficients H(ℓ) and δφ(ℓ). The coefficients can then be used in (5.3.28)
to extract the various various Love numbers, and be related back to their Jordan frame counterparts
through (5.2.23).

The numerical results for the tensor, scalar and scalar-tensor Love numbers can be found in Figures
5.2, 5.3 and 5.4. We see that the tensor Love numbers again show similar behavior to GR but devi-
ate in certain regions corresponding to the same scalarized neutron star configurations as seen in the
mass-radius curves. We can see from the plots of the scalar Love numbers λ̃Sℓ that a larger tensor Love
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Figure 5.2: Tensor Love numbers in the Jordan and Einstein frame for ℓ = 2.
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Figure 5.3: Scalar Love numbers in the Jordan and Einstein frame for ℓ = 2.

number λTℓ also appears to correlate with a larger scalar Love number, although the order of magnitude
is far smaller in the Jordan frame. We can also see that the scalar Love number is essentially zero
outside of the scalarized regions, in accordance with there being no scalar field in GR. Interestingly,
we see that the scalar-tensor Love numbers λST

ℓ are negative.

We omit plots of kℓ and Λℓ (as seen in chapter 3) for brevity as they exhibit similar qualitative behavior
as the plotted Love numbers λℓ in this section.
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Figure 5.4: Scalar-tensor Love numbers in the Jordan and Einstein frame for l = 2.
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Chapter 6

Generalized scalar-tensor theories

So far our discussion of scalar-tensor theories has been solely limited to the case of the scalar-tensor
F (ϕ)R theory

SST =
1

16πG

∫
d4x

√
−g
[
F (ϕ)R− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ− V (ϕ)

]
+ Smatter [ψm, gµν ] , (6.0.1)

where F (ϕ) and ω(ϕ) are arbitrary functions paramaterizing the theory. In chapter 5 we looked at how
to describe tidal effects in the scalar-tensor theory and how the Love numbers λℓ may be extracted
from it. For this chapter, we would now like to extend the previous discussions of the scalar-tensor
action (6.0.1) to the generalized scalar-tensor action

S =
1

16πG

∫
d4x

√
−g
[
f(ϕ,R)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
+ Smatter [ψm, gµν ] , (6.0.2)

where now f(ϕ,R) is an arbitrary, algebraic function of ϕ and R (and has also absorbed the potential
V (ϕ)). Specifically, we would like to show how the generalized scalar-tensor action (6.0.2) may be
transformed to the Einstein frame by introducing an auxiliary scalar field Φ followed by a conformal
rescaling of the metric tensor

gµν = Ω−2g̃µν . (6.0.3)

With the Einstein frame transformations worked out for the general action (6.0.2), we would then like
to investigate if the formalism for extracting the Love number in chapter 5 may be extended to the
case of f(ϕ,R).

We would like to make some comments on the novelty of the work carried out in this chapter. The
technique of transforming the generalized scalar-tensor theory (6.0.2) to the Einstein frame is not an
original technique. It has been done previously for the arbitrary coupling f(ϕ,R) in [41], but only at
the level of the equations of motion, which were then used to deduce the correct form of the Einstein
frame action. The result for the Einstein frame action of f(ϕ,R) is also claimed to be in [28] and [29],
however their result omits the kinetic term for ϕ and gives little detail on how the transformation may
be carried out, suggesting the result may have also been taken from [41].

Thus, to the author’s knowledge, the transformation technique for transforming the generalized scalar-
tensor theory to the Einstein frame at the level of the action is wholly original (or at the very least, the
author did not have access to a source showing the correct transformation at the level of the action).
The work in the second section of this chapter, which attemps to generalize the work of chapter 5 and
[6], is also a wholly original attmept.

6.1 Transforming to the Einstein frame

6.1.1 Introducing the auxiliary field
We begin with the generalized scalar-tensor action (6.0.2) and omit the matter action for brevity

48



S =
1

16πG

∫
d4x

√
−g
[
f(ϕ,R)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
. (6.1.1)

We can rewrite this action in terms of an auxiliary field Φ by making the replacement

f(ϕ,R) → f(ϕ,Φ) + (R− Φ)fR(ϕ,Φ), (6.1.2)

such that the original action now looks like

S =
1

16πG

∫
d4x

√
−g
[
f(ϕ,Φ) + (R− Φ) fR(ϕ,Φ)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
. (6.1.3)

Here we use fR(ϕ,Φ) to denote a derivative of f with respect to its second argument i.e.

fR(ϕ,Φ) =
∂

∂R
f(ϕ,R)

∣∣∣∣
R=Φ

=
∂

∂Φ
f(ϕ,Φ). (6.1.4)

Because the new action (6.1.3) is independent of ∂µΦ, we can easily calculate the Φ equation of motion
as

∂

∂Φ
[f(ϕ,Φ) + (R− Φ)fR(ϕ,Φ)] = 0,

=⇒ ����fR(ϕ,Φ)−����fR(ϕ,Φ) + (R− Φ)fRR(ϕ,Φ) = 0.

(6.1.5)

Thus we see that Φ has the equation of motion

Φ = R, (6.1.6)

provided that fRR(ϕ,Φ) ̸= 0. We can return to the original generalized scalar-tensor action (6.1.1)
by substituting Φ’s equation of motion (6.1.6) back into the action (6.1.3), which is permitted at the
classical level as both theories produce equivalent equations of motion. In the case that fRR(ϕ,Φ) = 0,
one can without loss of generality express the coupling function f(ϕ,R) as

f(ϕ,R) = F (ϕ)R− V (ϕ). (6.1.7)

Filling this choice of f(ϕ,R) back into the auxiliary field action (6.1.3) we find that

f(ϕ,Φ) + (R− Φ)fR(ϕ,Φ),

=F (ϕ)Φ− V (ϕ) + (R− Φ)F (ϕ),

=F (ϕ)R+����F (ϕ)Φ−����F (ϕ)Φ− V (ϕ),

=F (ϕ)R− V (ϕ). (6.1.8)

Thus the auxilary field drops out for fRR = 0 and the auxiliary field action (6.1.3) remains equivalent
to the original action (6.1.1). For the case that fRR(ϕ,Φ) ̸= 0, we can tidy up the auxiliary field action
as

S =
1

16πG

∫
d4x

√
−g
[
fR(ϕ,Φ)R− V (ϕ,Φ)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
, (6.1.9)

where we have defined the potential V (ϕ,Φ) as

V (ϕ,Φ) ≡ ΦfR(ϕ,Φ)− f(ϕ,Φ). (6.1.10)

As we can see, the new action (6.1.12) has been made linear in the Ricci scalar R, which was not nec-
essarily the case depending on the choice of the original coupling function f(ϕ,R). Such a linearization
requires the introduction of the auxiliary field Φ, as introducing higher order derivatives of the met-
ric (e.g. terms as ∼ R2) also introduces an additional scalar degree of freedom into the theory [36].
For example, gravitational waves, which normally contain two polarizations in GR, now come with
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three polarizations in f(ϕ,R) gravity. This additional degree of freedom introduced into the theory
must be conserved if the theory is to be made linear in the Ricci scalar, and so the introduction of
the auxiliary scalar field Φ is inevitable if one wants to linearize an action in R for which fRR(ϕ,Φ) ̸= 0.

Before performing the conformal rescaling of the metric to pass to the Einstein frame, we must perform
an additional redefinition of the scalar field Φ in terms of a new scalar field χ through

χ = fR(ϕ,Φ). (6.1.11)

The significance of this redefinition will be addressed later, but for now we simply say that it will make
for a smoother transformation to the Einstein frame. In terms of the new auxiliary field χ, our action
can then be expressed as

S =
1

16πG

∫
d4x

√
−g
[
χR− V (ϕ,Φ(ϕ, χ))− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
, (6.1.12)

where we have inverted the definition (6.1.11) of χ in terms of Φ, and used it to express the potential
V (ϕ,Φ) in as a function of ϕ and χ. At this point we will simply denote the potential as V , without
reference to its arguments, which will change again through this chapter. One should always recall
that the potential is defined with respect to two scalar fields.

6.1.2 Conformal rescaling
With the original scalar-tensor action (6.0.2), now made linear in R, we are ready to perform our
conformal rescaling of the metric

gµν = Ω−2g̃µν (6.1.13)

to pass to the Einstein frame. We can do this by employing our toolbox of transformations (4.2.68).
The initial action in the Einstein frame then looks like

S =

∫
d4x
√
g̃

[
χΩ−2

(
R̃− 3

2

g̃µν

Ω4
∂µΩ

2∂νΩ
2

)
− Ω−4V − 2

ω(ϕ)

ϕ
Ω−2g̃µν∂µϕ∂νϕ

]
, (6.1.14)

where we have dropped the 6□̃f term in the transformation of R as it soon amounts to a boundary
term. We can now kill the coupling between χ and R by choosing the conformal factor Ω as

Ω2 = χ, (6.1.15)

such that the resulting action simplifies down to

S =
1

16πG

√
−g̃
[
R̃− 3

2

1

χ2
∂̃µχ∂̃

νχ− V

χ2
− 2

1

χ

ω(ϕ)

ϕ
∂̃µϕ∂̃

µϕ

]
. (6.1.16)

We can further simplify the action to make the χ scalar field canonical. This can be done by defining
a new scalar field χ̃ in terms of χ as

χ̃ =

√
3

2
lnχ, (6.1.17)

such that

2∂̃µχ̃∂̃
µχ̃ =

3

2

1

χ2
∂̃µχ∂̃

µχ. (6.1.18)

With this, the action (6.1.16) becomes

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2∂̃µχ̃∂̃

µχ̃−∆2(χ̃)V − 2∆(χ̃)Ω(ϕ)∂̃µϕ∂̃
µϕ
]
, (6.1.19)

where we have defined
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∆(χ̃) ≡ χ−1,

= e−2χ̃/
√
3, (6.1.20)

and abbreviated Ω(ϕ) ≡ ω(ϕ)
ϕ . This Ω(ϕ) should not be confused with the conformal rescaling factor

(6.1.13).

The action (6.1.19) thus represents the final form of the original f(ϕ,R) action (6.0.2) in the Einstein
frame. We have successfully managed to linearize the action in the Ricci scalar R by rewriting the
theory as general relativity plus two coupled scalar fields ϕ and χ̃. The action (6.1.19) is completely
general up to the potential V , which is dependent on the original coupling function through (6.1.10).
We will shortly give an explicit example of the potential V may be computed based on the choice of
f(ϕ,R).

Comment on the field redefinition Φ to χ

We take a moment to emphasize the importance of the field redefinition (6.1.11). Had we not redefined
the initial auxiliary field Φ in terms of χ, the conformal factor Ω2 would instead have been chosen as

Ω2 = fR(ϕ,Φ). (6.1.21)

This would have lead to a Ricci scalar transformation that looks like

R = Ω2

(
R̃2 + 6□̃f − 3g̃µν

2Ω4
∂µfR(ϕ,Φ)∂νfR(ϕ,Φ)

)
. (6.1.22)

While innocent at first, equation (6.1.22) becomes cumbersome to work with, as using the chain rule
on fR(ϕ,Φ) implies that

g̃µν∂µfR(ϕ,Φ)∂νfR(ϕ,Φ) = g̃µν
(
∂µϕ

∂

∂ϕ
+ ∂µΦ

∂

∂Φ

)
fR(ϕ,Φ)

(
∂νϕ

∂

∂ϕ
+ ∂νΦ

∂

∂Φ

)
fR(ϕ,Φ),

= g̃µνfϕR∂µϕ∂νΦ+ 2g̃µνfRRfϕR∂µϕ∂νΦ+ g̃µνfRR∂µΦ∂νΦ, (6.1.23)

where we have summed the cross terms by using the symmetry of the metric g̃µν under exchange of
indices. The above expression (6.1.23) leads to a more complicated action due to the presence of the
“cross” kinetic term proportional to g̃µν∂µϕ∂νΦ. Thus the field redefinition (6.1.11) is necessary if one
wants to avoid working with such terms and obtain the simplest possible action.

6.1.3 Special cases
As we have seen, the Einstein frame action posses two coupled scalar fields ϕ and χ̃, one which is the
original Jordan frame field ϕ, and the other, χ̃, which encodes the additional degrees of freedom from
the higher order derivatives of the metric. Removing either of these features from the Jordan frame
action leads to an Einstein frame action containing a single scalar field - ϕ or χ̃. We briefly review
these special cases here.

Case F (ϕ)R

The first subcase, f(ϕ,R)=F (ϕ)R−V (ϕ) we have reviewed extensively in chapters 4 and 5. We repeat
it here however as it may not be immediately clear how the action (6.1.19) reduces to the previously
seen Einstein frame action (4.2.51). As discussed previously, the auxiliary field Φ drops out in this
case. This can be seen by making the replacement

f(ϕ,R) →f(ϕ,Φ) + (R− Φ)fR(ϕ,Φ), (6.1.24)
=RfR(ϕ,Φ)− [ΦfR(ϕ,Φ)− f(ϕ,Φ)] , (6.1.25)
=RF (ϕ)− V (ϕ), (6.1.26)
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and the action remains independent of the auxiliary field Φ. Thus, when we transform to the Einstein
frame, the field redefinition (6.1.11) that introduces χ is no longer necessary and the conformal factor
can simply be chosen as

Ω2 = fR(ϕ,Φ),

= F (ϕ). (6.1.27)

When comparing this choice with the conformal factor (6.1.15) for the general case, this implies that
one can simplify the general case by making the replacement

χ→ F (ϕ). (6.1.28)

Doing so, reduces the generalized scalar-tensor (6.1.16) to

S =

∫
d4x
√

−g̃

[
R̃−

(
2
ω(ϕ)

ϕF (ϕ)
+

3

2

(
F ′(ϕ)

F (ϕ)

)2
)
∂̃µϕ∂̃

µϕ− V

F (ϕ)2

]
, (6.1.29)

which is identical to the scalar-tensor action (4.2.48), before we redefined ϕ in terms of φ.

Case f(R)

The second special case involves setting the Jordan frame scalar field ϕ to 1 such that the original
action looks like

S =

∫
d4x

√
−g [f(R)] . (6.1.30)

Such theories are usually referred to as f(R) theories or non-linear theories of gravity due to the fact
that the function f(R) can in principle contain arbitrary powers of the Ricci scalar R. We can find this
actions counterpart in the Einstein frame by looking at our generalized Einstein frame action (6.1.19)
and setting ϕ = 1. The result is

S =

∫
d4x
√
−g̃
[
R̃− 2∂̃µχ̃∂̃

µχ̃−∆(χ̃)V
]
, (6.1.31)

where ∆(χ̃) is still defined by (6.1.20). The field redefinition (6.1.11) is no longer necessary as the
conformal factor, Ω, will again only be a function of one field - χ. As a result there are no cross-
derivative terms to avoid when transforming R to the Einstein frame, similar to the F (ϕ)R case. The
conformal factor Ω is then determined by

Ω2 = f ′(Φ). (6.1.32)

The scalar fields Φ and χ̃ may also be expressed directly in terms of each other as

χ̃ =

√
3

2
ln [f ′(Φ)] , (6.1.33)

and the potential V is

U(χ̃) = Φ(χ̃)f ′ (Φ(χ̃))− f (Φ(χ̃)) , (6.1.34)

where f ′ denotes a derivative of f with respect to Φ.

6.1.4 Equations of motion
With the Einstein frame action (6.1.19) obtained for the generalized scalar-tensor theory, it is also
useful to keep a record of the equations of motion. Varying the action (6.1.19) with respect to g̃µν , ϕ
and χ̃, one finds
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G̃µν =2∆(χ̃)Ω(ϕ)∇̃µϕ∇̃νϕ+ 2∇̃µχ̃∇̃ν χ̃

− g̃µν

[
∆(χ̃)Ω(ϕ)∇̃αϕ∇̃αϕ+ ∇̃αχ̃∇̃αχ̃+

1

2
∆(χ̃)2V

]
,

(6.1.35a)

□̃ϕ =
2√
3
∇̃αϕ∇̃αχ̃− 1

2

(
Ω′(ϕ)

Ω(ϕ)

)
∇̃αϕ∇̃αϕ+

1

4

(
∆(χ̃)

Ω(ϕ)

)
∂V

∂ϕ
, (6.1.35b)

□̃χ̃ =− 1√
3
∆(χ̃)Ω(ϕ)∇̃αϕ∇̃αϕ+

1

4
∆2(χ̃)

[
∂

∂χ̃
− 4√

3

]
V. (6.1.35c)

While these equations contain intricacies, they are still preferable to solving fourth order equations for
the metric in the Jordan frame. The equations of motion also make it more apparent how the degrees
of the freedom of the theory have been conserved with the introduction of the auxiliary field χ̃. In the
Jordan frame, our equations of motion would have been a fourth order differential equation for gµν
and a second order for ϕ. By contrast in the Einstein frame, we can see above that we have a second
order differential equation for the metric g̃µν as well as two second order differential equations, one for
ϕ and χ̃.

6.1.5 Explicit example
As seen previously, the Einstein frame action (6.1.19) is only defined up until the potential V . In order
to completely determin the Einstein frame action, a coupling function f(ϕ,R) must be specified in
the Jordan frame, and the corresponding potential worked out in the Einstein frame. It is instructive
to outline the steps for this procedure with a simple example. After specifying a coupling function
f(ϕ,R), the basic recipe is as follows

1. Compute the potential V = ΦfR(ϕ,Φ)− f(ϕ,Φ).

2. Solve the equation χ = fR(ϕ,Φ) for Φ in terms of ϕ and χ.

3. Put this expression for Φ back into V .

4. Replace χ in V with the redefinition χ = e2χ̃/
√
3.

For example, consider one of the simplest coupling functions that contains both ϕ and higher order
derivatives of the metric

f(ϕ,R) = F (ϕ)
(
R+ αR2

)
, (6.1.36)

where setting α = 0 and ϕ = 1 recovers GR.

Following step 1, we compute V

V = ΦfR(ϕ,Φ)− f(ϕ,Φ), (6.1.37)

= ΦF (ϕ)(1 + 2αΦ)− F (ϕ)(Φ + αΦ2), (6.1.38)

= αF (ϕ)Φ2. (6.1.39)

Following step 2, we solve the equation

χ = F (ϕ)(1 + 2αΦ), (6.1.40)

for Φ, and obtain

Φ =
1

2α

(
χ

F (ϕ)
− 1

)
. (6.1.41)

For step 3, we substitute this expression for Φ back into V to obtain
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V =
F (ϕ)

4α

(
χ

F (ϕ)
− 1

)2

, (6.1.42)

=
1

4αF (ϕ)
(χ− F (ϕ))

2
. (6.1.43)

Finally, for step 4 we replace χ with its expression in terms of χ̃ to get

V =
1

4αF (ϕ)

(
e2χ̃/

√
3 − F (ϕ)

)2
. (6.1.44)

Recalling the definition of ∆(χ̃) (6.1.20), we can alternatively write the potential as

V =
1

4αF (ϕ)

(
∆−1 − F (ϕ)

)2
, (6.1.45)

which completes the action (6.1.19). While determining V is enough to fully specify the action, recall
that V enters the action as

∆2(χ̃)V. (6.1.46)

If one finds it more convenient to define a new potential Ṽ through

Ṽ = ∆2V, (6.1.47)

this is also possible and is more in convention with what is done in the study of f(R) theories. We
find the new potential can be written as

Ṽ =
1

4αF (ϕ)
(1−∆F (ϕ))

2
,

=
1

4αF (ϕ)

(
1− F (ϕ)e−2χ̃/

√
3
)2
. (6.1.48)

Setting F (ϕ) = 1 gives agreement with the potential found in [5], which studied an f(R) theory of the
form f(R) = R+ αR2 in the Einstein frame.

6.2 Generalizing the EFT

6.2.1 Transforming to the Einstein frame and relating the Love numbers
For this section, we would like to attempt a generalization of the work done in [6] for extracting the
Love numbers in scalar-tensor gravity, which we reviewed in chapter 5. Thus we begin by again writing
our effective action in the Jordan frame

S = SGST + Spp + STidal, (6.2.1)

where the generalized scalar-tensor action is given by the f(ϕ,R) action (6.1.1) and the point particle
Spp and tidal STidal actions are still given by (5.3.2b) and (5.3.2c) respectively. We can continue by
performing our conformal rescaling of the metric to pass to the Einstein frame. As the point-particle
and tidal actions are unchanged from before, their Einstein frame counterparts will be identical to
before, the only exception being how the scalar tidal moments EL will change.

Recall that in the scalar-tensor case, the Jordan frame scalar field ϕ was redefined in terms of a new
field φ such that

dφ

dϕ
=

√
∆(ϕ)

2
, (6.2.2)

which lead to the tidal terms EL changing in the Einstein frame as
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EL → 1√
∆
ẼL. (6.2.3)

However, we did not perform such a field redefinition in the generalized scalar-tensor case, meaning
our action in the Einstein frame action still depends on the original Jordan frame field ϕ. We can thus
“generalize” the tidal action to the generalized scalar-tensor case by simply setting ∆ = 1.

After this, none of the steps from the case reviewed previously in chapter 5 will change. Therefore to
get how the Love numbers are related between frames, we can simply take our result (5.2.23) for the
Love numbers and set ∆ = 1, giving

λTℓ = λ̃Tℓ , (6.2.4a)

λSℓ = λ̃Sℓ , (6.2.4b)

λST
ℓ = λ̃ST

ℓ . (6.2.4c)

We can see from the above equations, that the Love numbers do not change between frames. This is
in contrast to the previous results (5.2.23), where there the scalar λSℓ and scalar-tensor λST

ℓ were not
necessarily the same in both frames. This change in Love numbers between frames however was owed
to the field redefinition of ϕ in terms of φ. Since there is no such redefinition here, we find that there
is no consequence to the Love number for changing between frames.

6.2.2 The EFT equations of motion
In order to attempt an extraction of the Love number as was seen previously in chapter 5, we again
would like to derive the EFT equations of motion. The procedure for deriving the equations of motion
will remain largely unchanged from last time, with the point particle Spp and tidal STidal actions giving
identical contributions as before. The only part that will change from the equations of motion are those
that come from SGST. Fortunately we have presented the equations of motion for this action already
and the only thing to do now is combine them with our previously derived equations of motion from
chapter 5. We will first rewrite the generalized scalar-tensor action in terms of arbitrary normalization
coefficients, such that the Jordan frame action looks like

S =

∫
d4x

√
−g
[
KRf(ϕ,R)−Kϕ

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
. (6.2.5)

Its Einstein frame counterpart is

S =

∫
d4x
√
−g̃
[
KRR̃−Kχ̃∂̃µχ̃∂̃

µχ̃−KR∆
2(χ̃)V −Kϕ∆(χ̃)Ω(ϕ)∂̃µϕ∂̃

µϕ
]
, (6.2.6)

where the scalar fields χ̃ and χ are now related through

χ̃ =

√
3

2Kχ̃
lnχ, (6.2.7)

such that

∆(χ̃) ≡ χ−1,

= e−
√

2Kχ̃χ̃/
√
3. (6.2.8)

In terms of this general normalization constants, the equations of motion for the generalized scalar-
tensor EFT action in the Einstein frame are
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□̃ŨN =
m̃(ϕ∞)

4KR
δ(x) +

∞∑
ℓ

(−1)ℓ+1

ℓ!4KR

[
λ̃Tℓ ẼL∂L + λ̃ST

ℓ ẼL∂L

]
δ(x), (6.2.9a)

∆(χ̃)Ω(ϕ)□̃ϕ =

√
2Kχ̃

3
∆(χ̃)Ω(ϕ)∇̃αϕ∇̃αχ̃− 1

2
∆(χ̃)Ω′(ϕ)∇̃αϕ∇̃αϕ+

KR

2Kϕ
∆2(χ̃)

∂V

∂ϕ

− m̃′(ϕ)

2Kϕ
δ(x) +

∞∑
l=1

(−1)l+1

l!2Kϕ

[
λ̃Sl Ẽ

L∂L + λ̃ST
ℓ ẼL∂L

]
δ(x),

(6.2.9b)

□̃χ̃ =− 1√
6

Kϕ√
Kχ̃

∆(χ̃)Ω(ϕ)∇̃αϕ∇̃αϕ+
KR

2Kχ̃
∆2(χ̃)

[
∂

∂χ̃
−

2
√
2Kχ̃√
3

]
V. (6.2.9c)

Comparing these equations to what we derived for the scalar-tensor case, we can see that the equation
of motion for the Newtonian potential (6.2.9a) is unchanged from the previous chapter. Thus we can
similarly use the same solution (5.3.25) for the Newtonian potential.

The same is not necessarily true for the scalar field ϕ. We can see that its equation (6.2.15a) has
become considerably more cumbersome than in the F (ϕ)R case due to the presence of the additional
scalar field χ̃, which also has its own equation of motion. Our approach previously in chapter 4, was to
transform the fields to Fourier space, and attempt to solve for the scalar field and Newtonian potential
algebraically, before transforming back to real space. We can see that due to the presence of the generic
potential V in the equations of motion, such a solution is not possible. Thus the equations of motion
remain too generic to be solved for the generalized scalar-tensor case. We can attempt to see however
if filling in an explicit form for V indicates if the equations will be any easier to solve.

6.2.3 The EFT equations of motion for particular cases
Particular case f(R)

The first special case is one that we have discussed previously - the f(R) theories. Recall that to reduce
our generalized scalar-tensor theory to the f(R) case we merely need to set ϕ = 1. Similarly, due to
the fact that there is no scalar field in the Jordan frame we can also ignore its associated tidal moments
EL by setting them to zero. The consequence of this is that there is no scalar λSℓ or scalar-tensor λST

ℓ

Love numbers in the theory. As a result, our EFT equations of motion (6.2.9) reduce to

□̃ŨN =
m̃(ϕ∞)

4KR
δ(x) +

∞∑
ℓ

(−1)ℓ+1

ℓ!4KR
λ̃Tℓ ẼL∂Lδ(x), (6.2.10a)

□̃χ̃ =
KR

2Kχ̃
∆2(χ̃)

[
∂

∂χ̃
−

2
√
2Kχ̃√
3

]
V. (6.2.10b)

We now only have two uncoupled equations, one for the Newtonian potential ŨN and one for the scalar
field χ̃. As we can see from the above, the equation of motion for χ̃ contains no information about the
tidal fields ẼL or the tensor Love number λ̃Tℓ . As it is decoupled from the Newtonian potential ŨN it
can henceforth be ignored in the extraction of the tensor Love number λ̃Tℓ .

As mentioned previously, we may use our solution (5.3.25) for the Newtonian potential ŨN . However
this is only the solution in the EFT. To obtain the Love number in the full theory requires solving the
perturbation equations of motion for the metric perturbation Hℓ(r) and scalar field perturbation δφℓ

in the generalized form of (5.4.9). To solve these generalized equations perturbatively, one must again
specify a form for the potential V .

We attempted to do so for the simplest f(R) theory f(R) = R + αR2. However we encountered
difficulty in first solving the f(R) generalization of the background TOV equations (5.4.2) and (5.4.3)
which are required for the solution to the perturbations. The only modification that f(R) theory
makes to the background equations is the presence of the potential V . We found (as later discussed
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in chapter 7) that the potential implied that the field was massive. In flat spacetime, a massive scalar
field χ̃ typically decays exponentially rather than as polynomials. This made constructing a series so-
lution considerably more challenging, and as of the time of writing, we were not successful in obtaining
the perturbative solution. As a result, more work must be done here to determine if a perturbative
solution for the background quantities is possible.

If such a way for extracting the Love number λTℓ in the Einstein frame was found, then our equation
(6.2.4) would imply that we had also computed the Jordan frame Love number. This is the same as
what is claimed in [5], which we have attempted to put on more rigorous grounds through the EFT.

Particular case f(ϕ,R) = ϕ(R+ αR2)

As discussed previously, the EFT equations of motion (6.2.15) remain too generic to be solved without
first specifying a coupling function f(ϕ,R) such that the potential V can be properly defined. As the
two simplest possible cases for study - the scalar tensor case F (ϕ)R and the f(R) - have already been
examined, the next simplest possible case that we can examine involving both theories is

f(ϕ,R) = ϕ(R+ αR2). (6.2.11)

We have already worked out how the potential V looks for this choice of coupling, by taking (6.1.44)
and setting F (ϕ) = ϕ as well as inserting the normalization constant Kχ̃. The result is

V =
1

4αϕ

(
eχ̃
√

2Kχ̃/
√
3 − ϕ

)2
. (6.2.12)

To substitute this form for V back into the equations of motion (6.2.15), it is necessary to first work
out

∂V

∂ϕ
=

1

4α

(
1− 1

ϕ2∆2(χ̃)

)
, (6.2.13)[

∂

∂χ̃
−

2
√
2Kχ̃√
3

]
V =

1

2α

√
2Kχ̃

3

(
1

∆(χ̃)
− ϕ

)
, (6.2.14)

where we have expressed the results in terms of ∆(χ̃) from (6.2.8). We can then substitute these
expressions back into the EFT equations (6.2.9) to obtain

∆(χ̃)□̃ϕ =

√
2Kχ̃

3
∆(χ̃)∇̃αϕ∇̃αχ̃+

KR

8αKϕ

(
∆2(χ̃)− 1

ϕ2

)
− m̃′(ϕ)

2Kϕ
δ(x) +

∞∑
l=1

(−1)l+1

l!2Kϕ

[
λ̃Sl Ẽ

L∂L + λ̃ST
ℓ ẼL∂L

]
δ(x),

(6.2.15a)

□̃χ̃ =− 1√
6

Kϕ√
Kχ̃

∆(χ̃)∇̃αϕ∇̃αϕ+
KR

4α

√
2

3Kχ̃
∆(χ̃) (1− ϕ∆(χ̃)) . (6.2.15b)

We have set Ω(ϕ) = 1, such that the above equations represent the simplest possible EFT equations
in f(ϕ,R) gravity. However we can see these equations are not trivial to solve even for the simplest
case. One could attempt to transform to Fourier space as was done in chapter 5, however the resulting
algebraic equations for ϕ and χ̃ still remain highly coupled. As well as this, the equations still contain
cumbersome exponential terms in the function ∆(χ̃), which are still present in some aspect regardless
of the form of the potential V . Thus isolating ϕ and χ̃ in Fourier space is not a straightforward, if
even possible, task.

More analysis of the problem is required, as these equations will only become more cumbersome with
increasingly complicated choices of the coupling f(ϕ,R). One approach to consider in future work is
to attempt to linearize the equations in χ̃. As χ̃ is a massive scalar field (discussed in the following
chapter), it decays exponentially to zero at infinity (a more precise definition of how it behaves at
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infinity will also be discussed in the superseding chapter). The ϕ scalar field at infinity however is
∼ O(1), as the coupling (6.2.11) should begin to resemble GR far enough away from the system. As
a result χ̃ ≪ ϕ, in our EFT approach meaning an expansion linear in χ̃ may be a valid approach for
solving these equations. However, this remains a task for future work.

We have seen how the formalism for extracting Love numbers in the Einstein frame in F (ϕ)R gravity
does not straightforwardly extend to generalized scalar-tensor theories f(ϕ,R), even for the simplest
coupling type. Nevertheless, the transformation to the Einstein frame outlined in this chapter is still
a useful result and can be used to tremendously simplify the task of numerically solving the Einstein
equations in f(ϕ,R) gravity. As a result, we attempt to gain a foothold for future work in f(ϕ,R)
gravity with a numerical calculation of the mass-radius curves, similarly to how was done in previous
chapters.
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Chapter 7

Case study - f(R) and f(ϕ,R)

In chapter 6, we attempted to generalize the formalism developed in [6] for studying tidal effects of
neutron stars in F (ϕ)R to a more general case f(ϕ,R). We found that this was challenging, even for
the simplest coupling of type f(ϕ,R) = ϕ(R+αR2). Despite the lack of a concrete way for extracting
the Love number in f(ϕ,R) gravity, the transformation to the Einstein frame that we documented
still allows one to remove the non-linearities of the Ricci scalar R from the action, leaving equations
of motion that are still considerably easier to solve than in the Jordan frame. This provides a good
motivation for studying the background spacetime of f(ϕ,R) gravity and the resulting mass-radius
curves that emerge. As such, obtaining these mass-radius curves shall be the goal of this chapter. To
the author’s knowledge, no mass-radius curves have been presented for f(ϕ,R) gravity before, and so
unfortunately there is no literature to fall back on for comparing results.

Before probing into the f(ϕ,R) background spacetime, recall first that transforming the f(ϕ,R) action
to the Einstein frame results in two scalar fields, each needing to satisfy their own boundary conditions
at infinity (we will soon elaborate on these boundary conditions). To get practise solving such a
system numerically, we therefore first put our attention into numerically solving the f(R) background
spacetime. This has been done several times, for example in [42, 5, 43, 44, 45]. When working on
this section, we initially followed the structure of [5] as a comparison for our equations of motion. We
will adopt some similar conventions to that paper. The most notable being that we will denote our
Einstein frame scalar field χ̃ instead as φ. It should be stressed that this φ is not the same as the φ
defined by (4.2.49). When referring to the φ scalar field of chapter 5, we will from here on denote it
as φR. The second convention that we follow from [5] is that we define our conformal rescaling of the
metric in terms of the function A(φ) such that

gµν = A2(φ) ˜gµν . (7.0.1)

Lastly there is one convention that we differ from [5] in. We instead define the function α(φ) as

α(φ) = − 1

A

dA

dφ
, (7.0.2)

in accordance with typical convention in the literature. This is in contrast to [5], which defines α(φ)
without the minus sign. The only consequence here is that our equations of motion will differ from [5]
up to a sign flip of α(φ).

7.1 Background configuration - f(R)

7.1.1 The action
We begin with the simplest possible f(R) action: one that adds a higher order term of the Ricci scalar
R

S =
1

16πG

∫
d4x

√
−g
[
R+ αR2

]
+ Smatter(gµν , ψm), (7.1.1)
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where α parameterizes the strength of the quadratic correction to R. Setting α → 0 recovers the GR
limit of the theory. As demonstrated in chapter 6, the Einstein frame form of this action looks like

S =
1

16πG

∫
d4x

[
R̃− 2g̃µν∂µφ∂

µφ− Ṽ
]
+ Smatter(A

2(φ)g̃µν , ψm). (7.1.2)

We can determine the form of the potential Ṽ (from here on omitting the tilde) by setting ϕ = 1 in
our previously derived expression (6.1.48) to obtain

V (φ) =
1

4α

(
1− e

− 2φ√
3

)2
. (7.1.3)

The conformal factor A(φ) can be worked out by first determining Ω and then using A(φ) = Ω−1. We
can determine Ω by using both equations (6.1.32) and (6.1.33) to find

Ω2 = f ′(Φ),

= e
2φ√

3 ,
(7.1.4)

which then implies that

A(φ) = e
− φ√

3 . (7.1.5)

Lastly, we recall that φ was originally defined in terms of the auxiliary scalar field Φ. This scalar field
obeyed the equation of motion Φ = R, where R is the Jordan frame Ricci scalar. Relating Φ with φ,
again through (6.1.32), implies that φ should obey the equation of motion

φ =

√
3

2
ln (1 + 2αR) . (7.1.6)

This identity will be useful for determining how φ should behave at infinity.

7.1.2 Comments on boundary conditions and the potential
With the f(R) action fully determined in the Einstein frame, we now take a moment to make some
comments on the boundary conditions of the field φ and illuminate the role that the potential V (φ)
plays in the theory. As demonstrated in (7.1.6), the auxiliary field φ obeys an equation of motion that
depends on the Ricci scalar. In asymptotic regions of spacetime, far away from any sources of gravity,
we demand that

lim
r→∞

R→ 0. (7.1.7)

Applying this to (7.1.6), we can thus deduce that

lim
r→∞

φ =

√
3

2
ln(1),

= 0.

(7.1.8)

Therefore, the field φ should vanish at spatial infinity. This will be later accounted for with a shooting
method when solving for the spacetime numerically.

Secondly, we expect from the action (7.1.1), that taking α → 0 should reproduce the GR limit of the
theory. The constant α, however, only appears in the Einstein frame as a reciprocal in the potential
V (φ). To shed some light on how α should recover the GR limit in the Einstein frame, we can Taylor
expand the potential V (φ) around φ = 0 to get

V (φ) =
φ2

3α
− 2φ3

3
√
3α

+
7φ4

27α
− 2φ5

9
√
3α

+O(φ6). (7.1.9)

Due to the vanishing of V (φ) and V ′(φ) at φ = 0, the Taylor series begins at order φ2. By equating
the φ2 term to a mass term

60



2m2
φφ

2 ≡ φ2

3α
, (7.1.10)

we can deduce that the φ field is massive with an α dependent mass

mφ =
1√
6α
. (7.1.11)

Note that the prefactor of 2 in the left-hand side of (7.1.10) is to reconcile with the prefactor of 2 in
the kinetic term for φ in the action (7.1.2). We can see from (7.1.11) sending α → 0 should produce
a scalar-field with a mass approaching infinity. We can make a qualitative argument about how the
mass should influence the behavior of a scalar field by looking at the massive Klein-Gordon equation
for a free scalar field φ in flat spacetime

φ′′(r) +
2

r
φ′(r)−m2

φφ(r) = 0. (7.1.12)

This equation can be solved straightforwardly with Mathematica. The decaying part of the solution
for φ(r) behaves as

φ(r) ∼ e−mφr

r
. (7.1.13)

We can thus see that sending mφ → ∞ exponentially suppresses the scalar field, essentially killing
it. Thus in our Einstein frame f(R) theory, we can similarly expect that taking the limit α → 0 will
exponentially send the scalar field to zero, leaving only GR behind.

7.1.3 The equations of motion
Proceeding with the computation, we are now ready to obtain our equations of motion. Recall that in
the Einstein frame, we model the background spacetime with the metric for a spherically symmetric,
non-rotating spacetime

ds2 = −eν(r)dt2 + eγ(r)dr2 + r2(dθ2 + sin2 θdϕ2), (7.1.14)

along with an energy-momentum tensor (4.2.64) for a perfect fluid

T̃µν = A4(φ) (ρ+ p) ũµũν +A4(φ)g̃µν . (7.1.15)

We can then vary the action with respect to g̃µν and φ, and use the conservation equation (4.2.25) to
obtain

1

r2
d

dr

[
r(1− e−γ)

]
= 8πGA4(φ)ρ+ e−γ

(
dφ

dr

)2

+
1

2
V (φ), (7.1.16a)

1

r
e−γ dν

dr
− 1

r2
(1− e−γ) = 8πGA4(φ)p+ e−γ

(
dφ

dr

)2

− 1

2
V (φ), (7.1.16b)

d2φ

dr2
+

(
1

2

dν

dr
− 1

2

dγ

dr
+

2

r

)
dφ

dr
= −4πGα(φ)A4(φ)(ρ− 3p)eγ +

1

4

dV (φ)

dφ
eγ , (7.1.16c)

dp

dr
= −ρ+ p

2

(
dν

dr
− 2α(φ)

dφ

dr

)
. (7.1.16d)

Here the first two equations pertain to the tt and rr components of the Einstein equations respectively.
The third equation is the equation of motion for the scalar field φ, and the fourth is the energy con-
servation equation (4.2.25). We express our equations of motion here in terms of the metric function
γ(r) rather than the mass function m(r), for better comparison with [5]. As previously mentioned,
our equations agree up to a sign flip of α(φ). One should also send γ → 2Λ and ν → 2Ψ for an exact
comparison, where a different convention for the metric functions has been employed in [5]. We choose
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however to continue with the convention of [6] as used in previous chapters.

When solving the equations numerically we will reinsert m(r) into (7.1.16) through

e−γ(r) = 1− 2m(r)

r
. (7.1.17)

To recover the original TOV equations from chapter 3, one should set φ = 0, implying that

A(φ) = 1, V (φ) = α(φ) = 0. (7.1.18)

7.1.4 Discussion of numerical implementation and challenges
Here we discuss some of the subtleties with numerically implementing the shooting method for the
scalar field. If one is not interested in numerically reproducing the calculation, they can proceed to
the results in subsection 7.1.5.

Initial conditions

With the Einstein frame equations of motion obtained, we can now turn to numerically solving them.
Although we have four coupled differential equations (7.1.16), we can reduce this to three by using
(7.1.16b) to isolate an expression for dν

dr , which can be then substituted into (7.1.16d). The result is
two first-order differential equations for the mass, m(r) and pressure, p(r), as well as a second-order
differential equation for the scalar field, φ(r). Overall this constitutes four initial conditions required
to solve the system. Similarly to what was seen in chapter 3 and chapter 4, we specify the initial
conditions for m(r) and p(r) by first choosing a central density, ρc for the neutron star and then using
the initial conditions (3.2.20).

We are still left with two initial conditions to specify, which then come from the scalar field. These
initial conditions are

φ(r → 0) = φc, φ′(r → 0) = 0. (7.1.19)

The second condition ensures the regularity of the solution close to the origin. We are free to choose
the initial value, φc for the scalar field, and will use it to ensure that the boundary condition (7.1.8)
is satisfied. This will mean employing a shooting method in the integrator, which carefully varies the
value of φc in order to obtain the correct value of φ at infinity.

Divergences for large r

The code used to solve our system of coupled equations is again based on code written by G. Creci and
F. Visser for the purposes of [6]. Originally, this code only required an integration of the interior of
the neutron star up to the star’s surface. This was because an analytical formula for the scalar field at
infinity, φ∞, could be obtained in terms of the neutron star configuration at the surface. This was done
by expressing the equations of motion in the so-called “Just” coordinate system (see Appendix B of [6]
or reference [46]). We attempted to generalize this formula for the f(R) case, but found this was not
possible due to the presence of the potential V (φ) in the equations of motion. As a result, the original
code has been modified to integrate up to the neutron star surface, and then continue integrating from
the surface to a suitable cutoff point, denoted rcut, which we use as a numerical representation of
infinity.

We tested the accuracy of this method for the massless F (ϕ)R case, and found that rcut = 1000 (in
geometrical solar units G = M⊙ = c = 1) gave excellent agreement with the analytical formula from
the Just coordinate system. We found however that implementing such a cutoff for the f(R) case was
more numerically challenging. The f(R) scalar field was found to be extremely sensitive to its central
value φc. More so, we repeatedly encountered that the scalar field φ would diverge to ±∞ within a
range of two to three times its Compton wavelength
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λφ =
2π

mφ
, (7.1.20)

with mφ defined the same as in (7.1.10). We found that increasing the numerical precision of the
integrator and of the initial guesses for φc was not sufficient to suppress these divergences. As a result,
we decided to settle on a cutoff of r ∼ λφ for the scalar field. We found this to be suitable as pushing
the cutoff further, to about 2.5λφ lead to an indistinguishable profile for the scalar field, which was
already exponentially decaying well before λφ. Similar methods were also employed in [43, 5].

The emergence of this diverging solution for the scalar field can be qualitatively explained, by again
considering the solution of the massive Klein-Gordon equation (7.1.12) in flat spacetime. The full
solution, again obtainable with for example Mathematica, is given by

φ(r) = c1
e−mφr

r
+ c2

emφr

2mφr
, (7.1.21)

where c1 and c2 are integration constants. The solution (7.1.21) consists of an exponentially decaying
and growing solution. Generalizing to our case, we did not believe it possible, numerically speaking,
to completely suppress this exponentially growing part of the solution i.e. set c2 = 0. Thus around
r ∼ λφ, the decaying solution dies out and the growing solution starts to take over, sending the field
φ to ±∞ within a few factors of λφ. As a result, we believe that implementing a cut off for r was
necessary to obtain a divergent free solution and accurately model the spacetime of the neutron star.

Sensitivity to initial conditions

As discussed previously, the neutron star solution is obtained by first specifying a central density ρc,
guessing a φc, and then integrating from the center of the star outward. When the correct value for
φc satisfying the boundary conditions is obtained, the central density ρc is then slightly incremented
and the process starts again. This is continued for as many central densities as one desires. We can
denote the collection of these central densities used in the calculation as ρic, with ρi=1

c being the first
central density used in the calculation.

As well as the likelihood for the scalar field to diverge at large r, we also found that these divergences
were extremely sensitive to the central values of the scalar field, denoted φi

c. The code initially used the
same guess for every φi

c. This worked well at first for small increments in ρc, but as ρic was repeatedly
incremented, the initial guess for φi

c began to deviate too much from the correct value. This resulted
in the solution rapidly diverging as soon as new central density ρc was selected and the first shooting
integration performed.

In order for Mathematica to accurately adjust its initial guesses for the φi
c, it requires that the solution

does not diverge so that it can extract the value of the field φ at the boundary point (r = rcut). This
meant that Mathematica could not continue with the calculation if a single divergence was encountered
for any of the φi

c. To compensate for this, we fed the code an initial guess for φi=1
c that was extremely

close to the correct φi=1
c . This initial guess, which we denote φi=1,guess

c was obtained through trial and
error.

Once the correct value for φi=1
c is obtained such that the boundary condition (7.1.8) is satisfied, the

code then moves onto ρi=2
c and begins the shooting method again to determine φi=2

c . The code uses
φi=1
c as the initial guess φi=2,guess

c , and φi=2
c as the initial guess φi=3,guess

c . Once the first three φi
c are

determined, the code then uses an extrapolation method to determine a suitably accurate value for
φi=4
c and so on.

For example, consider that the correct values for φi=1
c , φi=2

c , and φi=3
c have been determined (to an

acceptable precision) via the shooting method. The initial guess for φi=4,guess
c is then determined by

using φi=3
c plus the difference between φi=2

c and φi=3
c , times the ratio of the increment from φi=1

c and
φi=2
c , to φi=2

c and φi=3
c . Mathematically we can express this initial guess for φc

4 as
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Initial guesses φi=1,guess
c

α SLy H4 APR4
0.5 0.011815 0.021283 0.011094
5 0.0088185 0.014598 0.0082987
50 0.0039040 0.0050307 0.0037299

Table 7.1: Initial guesses for the central value of the scalar field φi=1
c , corresponding to ρi=1

c =

1018.3kg/m3. Each guess should be sufficient to compute the entire neutron star configurations starting
from ρi=1

c .

φ4,guess
c = φ3

c +
(
φ3
c − φ2

c

)
× φ3

c − φ2
c

φ2
c − φc

1

,

= φ3
c +

(
φ3
c − φ2

c

)2
φ2
c − φ1

c

.

(7.1.22)

The formula can be generalized into a generic guess for any φi
c as

φi,guess
c = φi−1

c +

(
φi−1
c − φi−2

c

)2
φi−2
c − φi−3

c

. (7.1.23)

This formula is valid as long as the previous three φi
c are known. More sophisticated extrapolation

methods are likely possible, but we found this improvised method worked suitably well for any equation
of state and value of α in the parameter space, so long as the initial guess φi=1,guess

c was suitably close
to the actual value φi=1

c . We include a record of the initial guesses used for the computations in
this chapter, found in Table 7.1, for a central density of ρi=1

c = 1018.3kg/m3. These initial guesses,
combined with our code are the only inputs needed to produce the results of this section. Lastly, we
reuse rmin ∼ 10−10 as the starting radius for the integration as in chapter 3, and used a numerical
representation of φ∞ be φ∞ = 10−10. It was found that further decreasing the order of magnitude of
φ∞ made no noticeable difference on results.

7.1.5 Numerical results
Scalar field profiles

With the necessary discussion for numerical implementations out of the way, we can now turn our
attention to the results. We numerically solved the modified TOV equations (7.1.16) for three of the
tabulated piecewise EoS discussed previously: SLy, H4, and APR4. As in the GR case, the radius of
the neutron star R is determined by the point of vanishing pressure i.e. p(R) = 0.

It is interesting to discuss the profile of the central values φi
c that emerge from the shooting method.

We present a plot of the central scalar field values φi
c in Figure 7.1 for the SLy equation of state, with

three different values of α. For larger central densities, we see that the initial scalar field configuration
becomes negative. From equation (7.1.6), we can interpret that a negative scalar field φ corresponds
to a negative Jordan frame Ricci scalar i.e.

φ < 0 =⇒ R < 0. (7.1.24)

Thus the negative central values for the scalar field correspond to negative central values for the Jordan
frame Ricci scalar. Furthermore, we can compare the φi

c profiles with the profile of the neutron star
masses, as seen in Figure 7.2. Interestingly we find that the Jordan frame Ricci scalar at the centre
of the star becomes negative very close to maximum mass configuration of the neutron star. Thus
the sign of the central Ricci scalar value could potentially highlight a way to determine if a neutron
star configuration is unstable, although further analysis and consultation with the literature is needed.
Although only shown in Figures 7.1 and 7.2 for the SLy EoS and three values of α, we found similar
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Figure 7.1: Central scalar values φi
c for the SLy EoS. These correspond to a central density

1017.3kg/m3 ≤ ρc ≤ 1018.5kg/m3, broken into 121 discrete values.

behavior in all of the other studied equations of state, and values of α.
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Figure 7.2: The same central values φi
c from Figure 7.1 this time plotted as a function of the neutron

star mass for the SLy EoS. The central density ranges from 1017.3kg/m3 ≤ ρc ≤ 1018.5kg/m3

It is also interesting to note that despite the central value of the scalar field, φc, becoming negative
for larger central densities ρc, this is not necessarily true further away from the star’s centre. An
example is demonstrated in Figure 7.3, which shows how the scalar field profile changes in response
to an increase in ρc. The example in Figure 7.3 is for the APR4 equation of state with α = 5, but we
found this behavior typical for all of the equations of state and values of α that were studied.

Mass-radius curves

Now that we have inspected the qualitative behavior of the background spacetime, in particular, the
behavior of the scalar field φ, we can use the results to plot mass-radius curves. Similarly to F (ϕ)R
gravity however, the mass m(r) no longer becomes constant at the surface. This can be seen by looking
at (7.1.16) and setting ρ = p = 0 while eliminating γ(r) through (7.1.16a). This means the mass m(r)
is also integrated in the vacuum region. The mass of the neutron star is determined by evaluating the
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Figure 7.3: Scalar field configurations for the APR4 equation of state with α = 5. Here the distance
is plotted in geometrical solar units such that r0 = GM·

c2 ≃ 1.5km. The grey dotted line indicates the
average radius of the neutron star for the three different configurations. We can see that the scalar field
decays to zero very close to the surface of the star. The cutoff for the integration was r/r0 = λφ ≃ 34.

mass function m(r) sufficiently far away from the star, where the scalar field has essentially decayed
to zero. We previously denoted this distance rcut, implying that we define m(rcut) =M .

A plot of the mass radius curves in the Einstein and Jordan frame are compared in Figure 7.4. We relate
the radius of the Einstein frame neutron star rS to the Jordan frame one RS through RS = A [φ(rS)] rS ,
in accordance with [5]. Interestingly, we found that the formula for relating the masses between frames
in [6] led to Jordan frame curves with masses far smaller than the GR curves. This is likely due to
the relation of the masses in both frames depending on α(φ), which is a constant α(φ) = 1/

√
3 in the

f(R) case. This is not true for the studied F (ϕ)R case, in which α(φR) has a scalar dependence and is
on the order of 10−3, where it would not make any notable difference to the masses. Due to the plots
not displaying the qualitatively correct behavior in the Jordan frame, we opted to continue with the
formula from [5] until the discrepancy is better understood.

α=0.5

α=5

α=50

8 9 10 11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

R[km]

M
/M

⊙

Einstein frame

SLy H4

α=0.5

α=5

α=50

8 9 10 11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

R[km]

M
/M

⊙

Jordan frame

SLy H4

Figure 7.4: Mass-radius curves in the Einstein and Jordan frame for the SLy and H4 equations of state.
The solid lines represent the GR mass-radius curves from Figure 3.2. We omit the APR4 mass-radius
curves for better visibility, although they demonstrated the same qualitative behavior. The central
densities here range from 1017.3kg/m3 ≤ ρc ≤ 1018.5kg/m3.

Comparing the mass radius curves to the previous case of F (ϕ)R, we see that the modifications to
GR this time have a less subtle effect on the mass-radius curves, as the F (ϕ)R only deviated from
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GR along certain regions. In contrast, we find in f(R) that there is essentially no overlaps with the
GR curves, although it is reassuring to see that the GR limit appears to be recovered as α → 0. The
deviations from GR also appear more severe in the Einstein frame, for larger masses. We can see
from either frame that a larger α appears to allow for a larger maximum mass of the neutron star.
We can conclude that if there are indeed higher order corrections to the Ricci scalar needed in the
Einstein-Hilbert action, the effects should have some observable consequences for the allowed masses
and radii of a neutron star.

7.2 Background configuration - f(ϕ,R)
Now that we have successfully implemented code to numerically solve the f(R) background spacetime,
we have been able to eludicated some aspects that should be approached with caution in the f(ϕ,R)
case - namely the implementation of the shooting method. This section takes a similar structure to
the preceding one as we attempt to generalize the previous work to the background f(ϕ,R) spacetime.

7.2.1 The action
We begin as before with the Jordan frame action for the generalized scalar-tensor theory

S =
1

16πG

∫
d4x

√
−g
[
f(ϕ,R)− 2

ω(ϕ)

ϕ
∂µϕ∂

µϕ

]
+ Smatter (ψm, gµν) , (7.2.1)

where f(ϕ,R) = ϕ (R+ αR)
2 represents the simplest possible coupling of an f(R) theory to a scalar

field ϕ. The function ω(ϕ) will be later chosen to coincide with the Jordan frame action of the scalar-
tensor theory studied in chapter 5 and in [6]. As demonstrated in chapter 6, the Einstein frame
counterpart to this action is

S =
1

16πG

∫
d4x
√

−g̃
[
R̃− 2∂̃µφ∂̃

µφ− 2∆(φ)Ω(ϕ)∂̃µϕ∂̃
µϕ− V (ϕ, φ)

]
+ Smatter

(
ψm, A(φ)

2g̃µν
)
,

(7.2.2)
where again φ denotes the auxiliary scalar field that linearizes the Ricci scalar. We also again abbreviate
Ω(ϕ) ≡ ω(ϕ)/ϕ (separate from the conformal factor Ω, which will not appear again in this chapter).
The scalar field φ should not be confused with the φR defined in chapter 5. Here the function ∆(φ) is
still given by

∆(φ) = e−2φ/
√
3, (7.2.3)

and the potential V (ϕ, φ) has been determined in (6.1.48) as

V (φ, ϕ) =
1

4αϕ

(
1− ϕe−2φ/

√
3
)2
. (7.2.4)

Lastly, the conformal rescaling function A(φ) can be determined from equations (6.1.15) and (6.1.17)
to give

A(φ) = e
− φ√

3 . (7.2.5)

Although this coupling may at first appear similar to the f(R) case, we can demonstrate that the field
φ in f(ϕ,R) theory is not equivalent to one studied in f(R). Using equations (6.1.11) and (6.1.17), we
can express φ in terms of the Jordan frame Ricci scalar R and the scalar field ϕ. The result is

φ =

√
3

2
ln [ϕ (1 + 2αR)] . (7.2.6)

Thus, we see that the Einstein frame scalar field φ is not necessarily equivalent to the previous one
from f(R) due to its dependence on ϕ. We will now see the implications that this ϕ dependence has
on the boundary conditions for φ.
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7.2.2 Comments on boundary conditions and potential
We can determine how the scalar field φ should behave at infinity by again sending R to zero in (7.2.6),
and by replacing ϕ with its value at infinity, ϕ∞. Thus we have that

lim
r→∞

φ =

√
3

2
ln(ϕ∞). (7.2.7)

We can see that φ only vanishes at infinity for ϕ∞ = 1. We would like to choose the value for ϕ∞ in
our case study that coincides with the Einstein frame scalar field φR at infinity as studied in chapter 5
and [6]. Chapter 5 specified the action in the Einstein frame through A(φ) = e

1
2βφ

2
R with F (ϕ) = ϕ.

We can relate ϕ and φR through equation (4.2.54) as

ϕ = e−βφ2
R . (7.2.8)

Putting this into (7.2.7), and using φR
∞ = 10−3 as in [6], we find that φ should behave at infinity as

lim
r→∞

φ = −β
√
3

2
× 10−6, (7.2.9)

which in contrast to f(R), is non-zero. Similarly from (7.2.8) we can write that the field ϕ should
behave at infinity as

ϕ∞ = e−β×10−6

,

= 1− β × 10−6 +O
(
β × 10−12

)
.

(7.2.10)

We now turn our attention to the form of the potential V (ϕ, φ). We can Taylor expand (7.2.4) around
φ = 0 to see that it still yields a mass term for the φ field

V (φ, ϕ) =
(ϕ− 1)2

4ϕα
− (ϕ− 1)√

3α
φ+

(2ϕ− 1)

3α
φ2 +

2(1− 4ϕ)

9
√
3α

φ3 +O(φ4). (7.2.11)

The mass however now contains a ϕ dependence. As the scalar field ϕ is expected to be O(1) based
on its boundary conditions, we can still approximate the mass of the φ term as

mφ ∼ 1√
6α
. (7.2.12)

We also note the lack of any ϕ2 terms in the potential, which can be made more explicit by expanding
V (ϕ, φ) as

1

4αϕ
− e

− 2φ√
3

2α
+
e
− 4φ√

3ϕ

4α
. (7.2.13)

However we do notice the presence of a term linear in ϕ as well as a term running as 1/ϕ2. Recall that
we expect ϕ ∼ O(1) at infinity, such that this 1/ϕ2 should not contain any numerical surprises as we
approach large r.

7.2.3 Determining the form of Ω(ϕ)

In order to completely reconcile our Jordan frame action with the one studied in chapter 5, we must
determine the form of the function Ω(ϕ). This function was not specified in [6] as the action was first
conceived in the Einstein frame. This was done by first specifying F (ϕ) and A(φR), which then fixed
the form of Ω(ϕ). We will thus have to work back from the Einstein frame action of chapter 5 to
determine Ω(ϕ). This can be done using (4.2.50) and (4.2.55) such that
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dφR

dϕ
=

√
∆(φR)

2
,

=
A(φR)2F (ϕ)

2α(φR)
,

=

√
3

4

(
F ′(ϕ)

F (ϕ)

)2

+
ω(ϕ)

ϕF (ϕ)
.

(7.2.14)

Filling in for F and A, we can then isolate Ω(ϕ) in (7.2.14) to obtain

ω(ϕ) = −
(

1

4β lnϕ
+

3

4

)
, (7.2.15)

such that

Ω(ϕ) = −
(

1

4βϕ lnϕ
+

3

4ϕ

)
. (7.2.16)

This now completely specifies our Jordan and thus Einstein frame action. The form of Ω(ϕ) however
appears to be highly specific. We thus performed a comparison with the results of chapter 5, by
numerically solving for the background spacetime in terms of ϕ, rather than φR. This allowed us to
verify that we had correctly determined Ω(ϕ). It also came with the additional benefit of verifying the
independence of our results on the definition of ϕ, as well as reaffirm our faith in the newly determined
boundary condition (7.2.10). For completeness, the action used for this test was

S =
1

16πG

∫
d4x
√
−g̃
[
R̃− 2∆(ϕ)∂̃µϕ∂̃

µϕ
]
+ Smatter

(
ψm, A(ϕ)

2g̃µν
)
, (7.2.17)

with A(ϕ) = 1√
ϕ
. The function ∆(ϕ) is the same as in the first line of (7.2.14). Expressed in terms of

ϕ, it works out to be

∆(ϕ) = − 1

4βϕ2 lnϕ
. (7.2.18)

With the specific form of Ω(ϕ) chosen in (7.2.16), it is not possible to canonicalize the field ϕ through
a field redefinition. This is due to the fact that redefining ϕ in terms of a canonical field φ̃, requires
one to be able to integrate the differential equation

dφ̃

dϕ
=
√

Ω(ϕ). (7.2.19)

This was not possible (at least with standard Mathematical software systems such as Mathematica),
and so the ϕ field must be left uncanonicalized for the choice of Ω(ϕ) in (7.2.16). This was our original
decision for leaving the field ϕ uncanonicalized with the EFT calculations in chapter 6.

A plot for the mass radius curve generated by the action (7.2.17) can be found in Figure 7.5. We also
include a profile of the central scalar field values ϕic in Figure 7.6 and a profile of several scalar field
configurations in Figure 7.7.

It was found that the result for the mass-radius curves gave excellent agreement with the curves in
Figure 5.1. We stress however that this is a preliminary result. The test was only conducted for the
various equations of state with β = −4.5. We found that attempting to solve the spacetime for smaller
β generated numerical errors in the shooting method. This was possibly due to the presence of the
reciprocals containing ϕ in the action, however more analysis is needed. We proceed with a preliminary
test of the f(ϕ,R) calculation regardless, and keep in mind that we will restrict ourselves to β = −4.5.
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Figure 7.5: Comparison of the mass-radius curves generated by the action (7.2.17) in terms of φR and
ϕ respectively for the SLy EoS with β = −4.5
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Figure 7.6: Central scalar values ϕic for the SLy EoS with β = −4.5. The spike in the central values
corresponds to the “scalarized” configuration of the neutron star, where the mass-radius curves deviate
from GR. These central values display very different behavior to the ones studied in Figure 7.1 for
f(R). The central density is again in the range 1017.3kg/m3 ≤ ρc ≤ 1018.5kg/m3, broken into 121
discrete values.
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Figure 7.7: Scalar field configurations for the SLy equation of state with β = −4.5. The distance is
again plotted in geometrical solar units and the grey dotted line indicates the average radius of the
neutron star for the three configurations. We can see that the scalar field has a stronger presence for
the higher central value, corresponding to the spike in Figure 7.6. The cutoff for the integration was
r/r0 = 1000.

7.2.4 Equation of motion
With the Einstein frame action fully determined, we are now free to derive the respective equations
of motion. We use the same metric ansatz (7.1.14) and energy momentum tensor (7.1.15) as the
f(R) case. Given that in the f(ϕ,R) Einstein frame there are two scalar fields, we will now have five
relevant equations of motion - two from the Einstein equations, two scalar field equations and one
energy conservation equation. These equations work out to be

1

r2
d

dr

[
r
(
1− e−γ

)]
= 8πGA4(φ)ρ+ e−γ

(
dφ

dr

)2

+ e−γ∆(φ)Ω(ϕ)

(
dϕ

dr

)2

+
1

2
V (ϕ, φ), (7.2.20a)

e−γ

r

(
dν

dr

)
− 1

r2
(
1− e−γ

)
= 8πGA4(φ)p+ e−γ

(
dφ

dr

)2

+ e−γ∆(φ)Ω(ϕ)

(
dϕ

dr

)2

− 1

2
V (ϕ, φ),

(7.2.20b)

d2φ

dr2
+

(
1

2

dν

dr
− 1

2

dγ

dr
+

2

r

)
dφ

dr
= 4πGA4(φ)α(φ)(ρ− 3p)eγ − 1√

3
∆(φ)Ω(ϕ)

(
dϕ

dr

)2

+
1

4
eγ
∂V

∂φ
,

(7.2.20c)

d2ϕ

dr2
+

(
1

2

dν

dr
− 1

2

dγ

dr
+

2

r
− 4

√
3r
dφ

dr

)
dϕ

dr
= −1

2

(
Ω′(ϕ)

Ω(ϕ)

)(
dϕ

dr

)2

+
3r

2∆(φ)Ω(ϕ)
eγ
dV

dϕ
, (7.2.20d)

dp

dr
= −1

2
(p+ ρ)

(
dν

dr
− 2α(φ)

dφ

dr

)
. (7.2.20e)

While it may appear upon initial inspection that only the φ field couples to p and ρ, one should also
recall the presence of ϕ in (7.2.6). This also implies an implicit coupling of ϕ to matter, hopefully
allowing for a scalarized neutron star configuration as seen in Figure 7.5. To recover the GR TOV
equations from (7.2.20), one should now set φ = 0 and ϕ = 1, implying that

A(φ) = 1, V (ϕ, φ) = α(φ) = 0. (7.2.21)
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7.2.5 Discussion of numerical implementation and challenges
Again we discuss some of the important aspects of implementing the numerical integration. Readers
interested in the results can continue straight to subsection 7.2.6

Initial conditions

As discussed previously for the f(R) case, we begin our numerical integration with the same initial
conditions for m(r) and p(r). This depends upon first choosing a central density ρc, which we also
take in the same range as those used in Figure 7.4. The initial guesses for the central value of the
scalar field φi=1,guess

c are also reused from Table 7.1. Again, a shooting method is employed to deter-
mine the correct φi

c, such that the scalar field φ obeys the correct boundary condition (7.2.7) at infinity.

We also however require two more initial conditions in our equations due to the second order differential
equation for ϕ. We approach this similarly to the previous cases by specifying the initial conditions
for ϕ as

ϕ(r → 0) = ϕc, ϕ′(r → 0) = 0. (7.2.22)

Similarly to the central values φi
c, the central values ϕic are determined with a shooting method, such

that ϕ approaches the correct value (7.2.10) at infinity. This will require a double-shooting method
for the integration, to ensure that both boundary conditions are simultaneously satisfied for the scalar
fields.

Cutoff for large r

In the f(R), we observed that the scalar field φ would diverge with exponential behavior for large
enough r beyond the the Compton wavelength of the field λφ. Numerically speaking, we still found
this to be true for f(ϕ,R). As a result, a cutoff was implemented again for the φ field at r ≃ λφ, with
λφ defined with the same mass from the f(R) case. After this, we set the field φ numerically to a
constant for the remainder of the integration, as φ(r) ≪ ϕ(r) and φ(r) ≪ m(r) in this region. Thus
only an integration of m(r) and ϕ(r) was necessary beyond this point. We choose again to continue
the integration to the same value of spatial infinity r∞ ≃ 1000 as was used in our F (ϕ)R test. In this
sense we have three regions for the integration, characterized as

rmin ≤ r ≤ R, R < r ≤ rcut, rcut < r ≤ r∞. (7.2.23)

Here R represents the radius of the star, corresponding to vanishing pressure p(R) = 0. We again use
a numerical value of rmin = 10−10 for the centre of the star.

Next, rcut is the cutoff for the φ field defined as rcut = 2π
√
6α. The field φ(r) is then taken to be

constant beyond this range i.e. φ(r > rcut) = φ∞.

Lastly, r∞ is the numerical representation of infinity where the mass is then extracted i.e. m(r∞) =M .

Sensitivty to initial conditions

During our numerical investigation, we found that the ϕ field was also this time susceptible to di-
vergences - although not as rapidly as the φ field. Suppressing these growing solutions for ϕ(r) was
challenging for larger r, but again possible with an accurate enough initial value for both φi=1guess

c and
ϕi=1,guess
c .

However, as the parameters α and β were lowered, it was found that the shooting method required
considerably more time to obtain accurate values for φi

c and ϕic. This became increasingly so for the
neutron star configurations which were closer to the maximum φi

c and ϕic.
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7.2.6 Numerical results
We focus on the numerical results for the f(ϕ,R) background spacetime. In what follows, all plots are
for the SLy equation of state with α = 50 and β = −4.5 unless otherwise stated.

Central values

We present profiles for the central scalar field values ϕic and φi
c in Figure 7.8. Interestingly, we find

that the φi
c scalar field values overlap perfectly with the φi

c values from f(R) and show now visible
deviation. This may be a result of the effects of the scalar field ϕ being more suppressed in the f(ϕ,R)
theory. Comparing Figure 7.8 and Figure 7.6, we can see that the ϕ field in f(ϕ,R) has central values
that are significantly smaller deviation form 1. Interestingly, we also find that the central ϕic values
are significantly more spread out in f(ϕ,R) theory than in F (ϕ)R, with a slight asymmetry around
the maximum ϕc configuration.
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Figure 7.8: Central values φi
c and ϕic for the SLy equation of state in f(ϕ,R) theory. We also plot

the overlap with the φi
c from f(R) theory until φi=121

c . Here we take α = 50, β = −4.5. The central
densities correspond to 1017.3kg/m3 ≤ ρc ≤ 1018.7kg/m3

Scalar field profiles

A plot for some of the ϕ scalar field profiles with the SLy equation of state can be found in Figure 7.9.
We omit plots for the φ(r) scalar field as they are identical to those of the f(R) case. We can see
that the scalar fields ϕ have a much larger drop off range compared to those of the F (ϕ)R theory in
Figure 7.7, although the f(ϕ,R) scalar field is smaller in magnitude.

7.2.7 Mass-radius curves
Now that we have inspected the qualitative behavior of several scalar fields, we can now present our
result for the mass-radius curves. The plots can be found in Figure 7.10. As these are only preliminary
results, we present only a single equation of state with a single value for α and β. This represents the
simplest numerical case study as lowering α and β requires more sensitivity in the initial conditions of
the shooting method. Interestingly, we find that the f(ϕ,R) solution overlaps perfectly with the f(R)
solution for the same value of α, implying the presence of the scalar field ϕ has had no noticeable effect
on the mass and radii of the neutron star.

At the time of writing, this is the only neutron star configuration in the parameter space of α and β,
as well as the only equation of state, that we have examined for f(ϕ,R). As there is no comparison to
be made with the literature, a proper analysis to these results is dependent upon the output of further
results. One might hope that with a lower value of β and α, the ϕ field might exhibit less suppressed
behavior and lead to noticeable differences in the mass-radius curves.

73



ρc
i=40=1017.69[kg/m3]

ρc
i=80=1018.09[kg/m3]

ρc
i=120=1018.49[kg/m3]

50 100 150 200

1.00000

1.00001

1.00001

1.00001

1.00001

1.00001

1.00001

1.00001

r/r0

ϕ

Figure 7.9: Scalar field profiles ϕ(r) for different central densities in f(ϕ,R) gravity. The magnitude
of the field is smaller than those in Figure 7.7 but with a longer drop off range for the scalar field.
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Figure 7.10: Mass-radius curves in the Einstein and Jordan frame for the SLy equation of state. We
include GR, F (ϕ)R, f(R) and f(ϕ,R) gravity with α = 50, β = 4.5 for a wide comparison that the
different modifications to gravity can have on the mass-radius curves.
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Chapter 8

Discussion, Outlook, Closing
statement

8.1 Discussion
We began this thesis with an introduction to the Love number, motivating its relevance and describing
how it can encode finite-size effects in a binary system of a binary system. We presented recipes for
computing the Love number in both Newtonian gravity and GR. Following this, we then motivated
the study of modified gravity theories. We chose to focus on a particular class known as scalar-tensor
theories and reviewed the relevant parts of a recent work [6] that proposed a formalism for computing
the Love number in F (ϕ)R gravity.

The intention of this thesis was to extend that work to a larger class of modified gravity theories that
we called generalized scalar-tensor theories or f(ϕ,R) theories. The attempt at this extension was car-
ried out in chapter 6. Here, we demonstrated a previously poorly documented transformation for the
f(ϕ,R) theory to the Einstein frame. This allowed us to simultaneously decouple ϕ from R and also
linearize R, at the expense of coupling ϕ to matter and introducing a second scalar field respectively.

We were successfully able to relate the Love numbers between frames in the f(ϕ,R) theory, and found
that the Love numbers were unchanged between frames for the case fRR(ϕ,R) ̸= 0 (fRR(ϕ,R) = 0 was
the unique case addressed in chapter 5). However, we then encountered difficulty when attempting
to extract the Love number from the Einstein frame EFT. This was due to the intricacies of the
EFT equations of motion, which were ultimately too cumbersome to be solved with the same Fourier
transform method as used in chapter 5. We can systematically categorize the differences in these
equations compared to the F (ϕ)R case in the follow ways.

i The presence of an additional scalar field χ̃, which is necessary to linearize the Ricci scalar in the
Einstein frame.

ii The kinetic term for ϕ in Einstein action could not be decoupled from a χ̃ dependent prefactor.

iii The Jordan frame coupling f(ϕ,R) manifested itself as a non-trivial potential V (ϕ, χ̃) in the Ein-
stein frame, even for the simplest f(ϕ,R) coupling.

iv The prefactor ω(ϕ)/ϕ in the kinetic term for ϕ was not necessarily removable through a redefinition
of the field ϕ.

None of these constraints were present in the F (ϕ)R study. Removing these constraints, in particular
constraints ii and iii, would have allowed for a significantly better chance at solving the EFT equations.
This is because it would have allowed for decoupled equations of motion for ϕ and χ̃, as well as possibly
allowing ϕ to be canonicalized (depending on the choice of ω(ϕ)).

Finding that the analytical formalism developed in chapter 5 not easily extended to f(ϕ,R), we at-
tempted to at least gain a foothold on potential future work with a numerical case study of the
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background spacetime. To the best of the author’s knowledge, this had not been presented in the
literature before.

We began our numerical case study by first solving the f(R) background spacetime, and using it as
a toy model to elucidate some of the numerical pitfalls for the f(ϕ,R) calculation. With this, we
were then successful in obtaining some preliminary results for the f(ϕ,R) background spacetime and
mass-radius curves.

It was found that the preliminary results for the f(ϕ,R) mass-radius curves gave results seemingly
degenerate to the f(R) mass-radius curves, with no noticeable contribution appearing to come from the
scalar field ϕ. This was despite both scalar fields in the equations of motion qualitatively satisfying the
correct boundary conditions. Specifically, it was found that the χ̃ scalar field (denoted φ in chapter 7)
behaved identically to its f(R) counterpart, where as the scalar field ϕ was much smaller in magnitude
compared to its F (ϕ)R counterpart. It is as of yet undetermined if this degeneracy in the mass-radius
curves was the result of an analytical or numerical error, or simply the product of the particular choice
of the function Ω(ϕ) and parameters α and β.

8.2 Outlook
With the most relevant work of this thesis discussed, we can now highlight some potential future areas
of work and how the work of this thesis may be continued. We can list some of the ideas worth pursuing
on the analytical side as

• Review the Einstein frame transformation for f(ϕ,R), to ensure that the action we obtained is
indeed the simplest possible one. A simpler action might allow for a solving of the EFT equations
of motion and thus an extraction of the Love number.

• Revisiting the EFT Einstein frame equations in f(ϕ,R) gravity to examine if other techniques
beyond Fourier transforming can be used to solve the equations. One might first simplify the
problem by attempting to linearize the equations in χ̃.

• Review other theories that contain Einstein frame transformations such as f(R, T ) [47] and
f(R,□R) [48] gravity, to see if the Love number might be extractable in these theories.

• Reviewing the conditions needed for scalarized neutron stars [40] in F (ϕ)R gravity to see if they
can be generalized for f(ϕ,R) gravity. The intention is that we might potentially constrain α
and β for configurations that yield a generalization of scalarized neutron stars to better aid our
numerical case study.

• Deriving the equations of motion for the perturbed spacetime in f(ϕ,R) gravity, to get a foothold
in the event that any future progress on the analytical extraction of the Love number is made.

Similarly, future possible work on the numerical side includes

• Perfecting the shooting method for ϕ in F (ϕ)R gravity for β < 4.5 (as briefly outlined in sub-
section 7.2.3). This will allow for better insight into the f(ϕ,R) shooting method.

• Perfecting the double shooting method for f(ϕ,R) to allow for smoother numerical integration
and for a larger variety of values in the parameter space.

• Attempting the f(ϕ,R) numerical solution with a different choice of Ω(ϕ), ideally taken from the
literature to see if the degeneracy from f(R) was Ω(ϕ) specific.

• Using the equations of motion and numerical code to investigate what other astronomical objects
might be studied in f(ϕ,R) gravity.
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8.3 Closing statement
Attempts to better constrain the neutron star equation of state require accurate modelling of neutron
stars in modified theories of gravity. In this thesis, we attempted to extend an existing framework
for extracting the Love number in scalar-tensor theories to generalized scalar-tensor theories. We
found that extracting the Love number in this extension was troublesome, but we were still able
to lay some groundwork by accurately documenting the necessary transformation to the Einstein
frame. Our Einstein frame transformation still allowed for a modelling of the neutron star equilibrium
configuration in generalized scalar-tensor theories. We tested this with a preliminary numerical case
study. While there is still work to be done in perfecting the numerical set up, we have demonstrated a
proof-of-concept that the background spacetime can in principle be computed numerically. This proof-
of-concept calculation opens the door for a larger class of modified gravity theories, the generalized
scalar-tensor theories, to be included in future neutron star work, thereby allowing for a more informed
constraining of the nuclear matter equation of state and contributing to the solution of one of the
biggest open problems in astrophysical research.
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Appendix A

Conformal rescaling of the Ricci scalar

In this appendix we present the steps for how the Ricci scalar transforms in arbitrary spacetime
dimensions under a conformal rescaling of the metric tensor

gµν = Ω−2(x)g̃µν . (A.0.1)

A.1 Christoffel symbols
Equation (A.0.1) implies a partial derivative of the metric transforms as

∂α(Ω
−2g̃µν) = − 2

Ω2

∂αΩ

Ω
g̃µν +

1

Ω2
∂αg̃µν ,

≡ − 2

Ω2
fαg̃µν +

1

Ω2
∂αg̃µν . (A.1.1)

where we have defined:
fα ≡ ∂α(lnΩ) =

∂αΩ

Ω
.

The untransformed Christoffel symbols are given by:

Γµ
αβ =

1

2
gµρ (∂αgβρ + ∂βgρα − ∂ρgαβ) .

Applying equations (A.0.1) and (A.1.1) on the Christoffel symbols we find:

Γµ
αβ =

1

2

��Ω2

��Ω2
g̃µρ (∂αg̃βρ + ∂β g̃ρα − ∂ρg̃αβ)−

2

2

��Ω2

��Ω2
g̃µρ (fαg̃βρ + fβ g̃ρα − fρg̃αβ) ,

= Γ̃µ
αβ −

(
δµαfβ + δµβfα − g̃αβ f̃

µ
)
,

≡ Γ̃µ
αβ − δΓ̃µ

αβ ,

where we define:
f̃µ ≡ g̃µρfρ,

and
δΓ̃µ

αβ = δµαfβ + δµβfα − g̃αβ f̃
µ.

A.2 Ricci scalar

A.2.1 Preliminaries
Some useful identities and notation are presented here.
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With some algebra, one should be able to verify the following

g̃λρ (∂µg̃λρ) = 2Γ̃λ
µλ, (A.2.1)

δΓ̃λ
µλ = nfµ, (A.2.2)

g̃µνδΓ̃ρ
µν = −(n− 2)f̃ρ. (A.2.3)

where n denotes the number of space-time dimensions, which we for now keep arbitrary.
The following identities require a little more effort, but can also be verified

Γ̃λ
µρg̃

µν
(
δΓ̃ρ

νλ

)
= g̃µν Γ̃λ

µνfλ (A.2.4)(
δΓ̃λ

νρ

)(
δΓ̃ρ

λµ

)
= −(n− 2)f̃2 (A.2.5)

where we have defined f̃2 ≡ fµf̃
µ = g̃µνfµfν .

Lastly we will make some final definitions:

fµν ≡ ∂µfν = ∂µ∂νf,

f̃ ≡ g̃µνfµν ,

where fµν is symmetric under the exchange of µ and ν.

A.2.2 Workings
The Ricci scalar R is defined as

R = gµνRλ
µλν ,

where Rλ
µσν denotes the Riemann tensor. The Riemann tensor above can be expanded as:

Rλ
µλν = ∂λΓ

λ
µν − ∂νΓ

λ
µλ + Γλ

λρΓ
ρ
µν − Γλ

µρΓ
ρ
λν . (A.2.6)

We will systematically expand each Γ above in terms of Γ̃ and δΓ̃ and inevitably take contractions
with gµν ≡ Ω2g̃µν .

From here, we will temporarily set Ω = 1 and reinsert it later.

Note that we are only interested in simplifying terms containing δΓ̃ as all of the Γ̃ terms can be
immediately grouped together to form R̃.
We can compute

−∂λ
(
δΓ̃λ

µν

)
,

and raise with g̃µν to obtain
n∂λf̃

λ − 2f̃ + 2Γ̃µ
µλf̃

λ ,

where at some point we have used equation (A.2.1).
The second term in equation (A.2.6) is easily shown to transform as

nf̃ ,

after using equation (A.2.2) and contracting with g̃µν .

The third term in (A.2.6) is found to vary as

(n− 2)Γ̃λ
λρf̃

ρ − n
(
g̃µν Γ̃ρ

µν

)
fρ − n(n− 2)f̃2 ,

after contracting with g̃µν and using (A.2.2) and (A.2.3).
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Lastly, the fourth term varies as

2g̃µν Γ̃λ
µρ

(
δΓ̃ρ

νλ

)
− g̃µν

(
δΓ̃λ

νρ

)(
δΓ̃ρ

λµ

)
,

where we have explicitly inserted g̃µν . Simplifying with the use of (A.2.4)) and (A.2.5) we find

2g̃µν Γ̃λ
µνfλ + (n− 2)f̃2 .

Combining the relevant terms in the boxed equations, we obtain

n
(
∂µ + Γ̃λ

λµ

)
f̃µ + (n− 2)g̃µν

(
fµν − Γ̃λ

µνfλ

)
− (n− 1)(n− 2)f̃2. (A.2.7)

The last trick is to notice that
(
∂µ + Γ̃λ

λµ

)
f̃µ and g̃µν

(
fµν − Γ̃λ

µνfλ

)
are equivalent expressions for

the D’Alembertian of f , i.e.

□̃f ≡ g̃µν∇̃µ∇̃νf,

= g̃µν∇̃µfν ,

= g̃µν
(
fµν − Γ̃λ

µνfλ

)
.

Equivalently

g̃µν∇̃µfν = ∇̃µf̃
µ,

=
(
∂µ + Γ̃λ

λµ

)
f̃µ,

where we have commuted the metric tensor through the covariant derivative on the first line and con-
tracted with fν .

Thus equation (A.2.7) further reduces to:

2(n− 1)□̃f − (n− 1)(n− 2)f̃2.

Assembling everything and reinserting Ω we find:

R = Ω2
[
R̃+ 2(n− 1)□̃f − (n− 1)(n− 2)f̃2

]
.

This further reduces to

R = Ω2
(
R̃+ 6□̃f − 6f̃2

)
(A.2.8)

in n = 4 spacetime dimensions, which completes the Einstein transformation for the Ricci scalar R.
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Appendix B

Transforming tensor and scalar tidal
multipoles to the Einstein frame

B.1 Tensor tidal terms
We begin by repeating the l = 2 tensor tidal term given by

Eµν =
1

z2
Wµανβu

αuβ , (B.1.1)

where z =
√−uµuµ. Using our toolbox (4.2.68), we can easily show that this term transforms as

Eµν =
1

z̃2
��Ω2W̃µανβ�

�Ω−2ũαũβ (B.1.2)

= Ẽµν . (B.1.3)

Thus the l = 2 term is invariant under the conformal rescaling. The transformation of the l = 3 tidal
term happens as

Eαµν = ∇αEµν
= ∂αEµν − Γλ

αµEλν − Γλ
ανEµλ

= ∂αẼµν − Γ̃λ
αµẼλν − Γ̃λ

αν Ẽµλ

+
(
δλαfµ + δλµfα − g̃αµf̃

λ
)
Ẽλν

+
(
δλαfν + δλν fα − g̃αν f̃

λ
)
Ẽµλ,

where we have used again used the toolbox (4.2.68) to transform Γλ
µν and Eµν . Also recall that

fµ = ∂µ lnΩ. Tidying up the above we find

Eαµν = ∇̃αẼµν + 2fαẼµν + fµẼαν + fν Ẽµα − f̃λ
(
g̃αµẼλν + g̃αν Ẽµλ

)
. (B.1.4)

Higher order tidal moments can be calculated in a similar fashion and it is indeed preferable to do this
recursively. An EL tidal term can be more easily calculated, assuming that the previous tidal moment,
EL−1 is known. This is by noting that EL can be written as

EL = ∇αEL−1. (B.1.5)

By substituting in the previously calculated expression for EL−1, only the covariant derivative need be
transformed. A generic formula for this is also possible by noting that the EL term will have L − 1
appearances of the Christoffel symbol Γ when ∇α is expanded. Thus (B.1.4) can be generalized to
higher order moments as
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EL = ∇αEL−1,

= ∇̃αEL−1 + (l − 1)fαEL−1 +
∑
α

f1EαL−2 − f̃λ
∑
λ

g̃α1EλL−2, (B.1.6)

where the sigmas
∑

denote a sum over the permutations of the indexed variable on EL−1. For example,
the l = 4 tidal term looks like

Eαβµν =∇αEβµν
=∇̃αEβµν + 3fαEβµν + {fβEαµν + fµEβαν + fνEβµα}
− f̃λ {g̃αβEλµν + g̃αµEβλν + g̃ανEβµλ} (B.1.7)

After this, the transformed expression for EL−1 may be substituted in to get the full transformed
expression for EL.

B.1.1 A note on Mathematica implementations
To verify that the tidal terms were correctly transformed by hand, the xPert package, part of a larger
suite of Mathematica packages known as xAct, was used. The package xPert comes with natural
implementation of conformal transformations. Directly transforming tidal terms explicitly defined in
terms of the Weyl tensor quickly became computationally expensive however, and indeed transforming
the l = 4 tidal term took on the order of several hours. This was due to how xPert transforms the Weyl
tensor, expressing it in terms of contractions of the Riemann tensor and manually transforming each
term. This computational cost becomes larger for each covariant derivative needed to be transformed.
There are 2 ways to speed up these transformations.

(i) The recursive formula (B.1.6). One does not even truly need this formula but we include it for
completeness. One only need to tell Mathematica to transform the covariant derivative in (B.1.5) and
then substitute in the previously calculated transformation for EL−1.

(ii) Manually defining a tensor that transforms like the Weyl tensor and then leaving the code absent
of the actual Weyl tensor defined in terms of the Riemann tensor. This means defining a conformally
invariant symmetric rank 2 tensor Eµν and telling Mathematica to transform covariant derivatives of
this tensor rather than covariant derivatives of Wµανβu

αuβ .

This can speed up the transformation of tidal terms from hours to seconds and save valuable time,
although it requires some more manual input from the user. For reproducibility, we record the trans-
formed l = 4 tensor tidal term as

Eβαµν = (B.1.8)

Ẽβαµν+3Ẽβµνfα+3Ẽαµνfβ+Ẽαβνfµ+Ẽβανfµ+Ẽαβµfν+Ẽβαµfv−Ẽγµν f̃γ g̃αβ−Ẽβνγ f̃γ g̃αµ−Ẽβµγ f̃γ g̃αν−

Ẽανγ f̃γ g̃βµ−Ẽαµγ f̃γ g̃βν+2fµfν Ẽαβ− f̃γfv g̃βµẼαγ− f̃γfµg̃βν Ẽαγ+4fβfvẼαµ−fγ f̃γ g̃βν Ẽαµ+4fβfµẼαν−

fγ f̃
γ g̃βµẼαν − f̃γfν g̃αµẼβγ − f̃γfµg̃αν Ẽβγ +3fαfν Ẽβµ +3fαfµẼβν + f̃γ f̃ζ g̃αν g̃βµẼγζ + f̃γ f̃ζ g̃αµg̃βν Ẽγζ−

f̃γfν g̃αβ Ẽµγ − 3fβ f̃
γ g̃αν Ẽµγ − 2fαf̃

γ g̃βν Ẽµγ +8fαfβ Ẽµν − 2fγ f̃
γ g̃αβ Ẽµν − f̃γfµg̃αβ Ẽνγ − 3fβ f̃

γ g̃αµẼνγ−

2fαf̃
γ g̃βµẼvγ + 2Ẽµν∇βfα − g̃αν Ẽµγ∇β f̃

γ − g̃αµẼνγ∇β f̃
γ + Ẽαν∇βfµ + Ẽαµ∇βfν
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B.2 Scalar tidal terms
With the tensor tidal terms transformed, we can now move on to doing the same for the scalar tidal
terms

EL = −∇Lϕ. (B.2.1)

To transform (B.2.1) to the Einstein frame, we must recall that there is a field redefinition given by

dφ

dϕ
=

√
∆(ϕ)

2
(B.2.2)

as well as the conformal rescaling of gµν .

For completeness we repeat the transformation of the l = 1 scalar tidal term, which transforms
straightforwardly. This is because the single covariant derivative will reduce to a partial derivative
when acting on ϕ and so is equivalent to its Einstein frame counterpart. The field redefinition (B.2.2)
then gives

∇αϕ =
1√
∆
∇̃αφ, (B.2.3)

Next, the l = 2 tidal term is given as

∇µ∇νϕ = ∂µ∂νϕ− Γλ
µν∂λϕ. (B.2.4)

Upon redefining ϕ and conformally rescaling the metric, the first part will change as

∂µ∂νϕ =
1√
∆

[
∂µ∂νφ− ∆′

2∆3/2
∂µφ∂νφ

]
, (B.2.5)

where we have used that

∂µ

(
1√
∆

)
= − ∆′

2∆2
∂µφ. (B.2.6)

Here ∆′ denotes a derivative of ∆ with respect to ϕ. The second part of (B.2.4) will change as

Γλ
µν∂λϕ =

1√
∆

[
Γ̃λ
µν −

(
2δλ(µfν) − g̃µν f̃

λ
)]
∂λφ. (B.2.7)

Putting everything together we find that the l = 2 tidal term transforms as

∇µ∇νϕ =
1√
∆

[
∇̃µ∇̃νφ+

(
2δλ(µfν) − g̃µν f̃

λ
)
∂λφ− ∆′

2∆3/2
∂µφ∂νφ

]
. (B.2.8)

We can employ the same recursive formula for the scalar tidal terms as used for the tensorial tidal terms
(B.1.6). This is because the scalar tidal terms are similarily obtained by taking covariant derivatives
of lower order moments ((B.1.6) also does not use the symmetry of Eµν under exchange of indices
to simplify the expression). Thus the scalar tidal terms can be computed recursively, similarly to
the tensor tidal terms. No speed up is necessary for transforming scalar tidal terms through xAct
however due to the absence of the Weyl tensor in these terms. The tranformations are performed
on the order of a few seconds, and so (B.1.6) is not necessary for implementing scalar transformation
terms in Mathematica. As we will see shortly however, the recursive formula (B.1.6) does fufill another
purpose.
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Dropping higher order terms

One can see from the recursive formula (B.1.6)

EL = ∇̃αEL−1 + (l − 1)fαEL−1 +
∑
α

f1EαL−2 − f̃λ
∑
λ

g̃α1EλL−2, (B.2.9)

that the tidal terms do not transform neatly from the Jordan frame to the Einstein. They generally
transform as

EL = ẼL + additional terms, (B.2.10)

when one recursively removes all the Jordan frame EL−1 terms and subsequent lower order moments
etc.. The purpose of this subsection is to argue why these additional terms may be neglected. We
start by looking at fµ = ∂µ lnΩ in (B.2.9). Using the definition

α(φ) =
1

Ω

dΩ

dφ
, (B.2.11)

fµ may be rewritten as

fµ = ∂µ lnΩ,

=
1

Ω
∂µΩ,

=
1

Ω

dΩ

dφ
∂µφ,

= α(φ)∂µφ,

= α(φ)Ẽµ. (B.2.12)

Thus (B.2.9) can be rewritten in terms of Jordan frame tensor and Einstein frame scalar moments as

EL = ∇̃αEL−1 + α(l − 1)ẼαEL−1 + α
∑
α

Ẽ1EαL−2 − αg̃λρẼρ

∑
λ

g̃α1EλL−2. (B.2.13)

We see in the second, third and fourth terms above, the presence of couplings between Ẽ and Ẽ . These
terms represent higher order powers of 1/r which are suppressed in the EFT and so can be neglected,
leaving ∇̃αEL−1 as the only relevant term. Furthermore, if the recursive formula is then used to replace
EL−1, this will result in a

∇̃α∇̃βEL−2, (B.2.14)

plus again additional higher order terms which can be neglected. Repeatedly applying the recursive
formula eventually yields

EL = ẼL + additional terms, (B.2.15)

where the additional terms of higher order can be dropped. We can thus effectively treat EL as
transforming like

EL → ẼL. (B.2.16)

Because the recursive formula (B.2.9) also holds for the scalar tidal terms, we can similarly find that
the scalar tidal terms will effectively just change as

EL → 1√
∆
ẼL, (B.2.17)

.
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