Deep Semantic Decoding: Reconstructing Semantic
information from SEEG Data in Epilepsy Patients

UMC Utrecht

N
S % Utrecht University

£

Student: Emiel Eliens
Student ID: 7683634
Project Supervisor: Prof. Nick Ramsey
Daily Supervisor 1: Dr. Julia Berezutskaya
Daily Supervisor 2: Dr. Zachary Freudenburg

Second Supervisor: Dr. Samson Chota

Department of Information and Computing Sciences
Utrecht University
Artificial Intelligence
February 2024

Abstract

This thesis, developed in collaboration with Nick Ramsey’s BCI lab at UMC Utrecht, investigated the feasibility of decoding
semantic representations of speech from Stereotactic EEG data, recorded from epilepsy patients during a natural speech
production task. These representations were either encoded as static or dynamic word embeddings, generated through the
use of the Word2Vec and BERT models respectively, or as automatically generated semantic categories, derived from either
these embedding, or from WordNet, a large lexical database. Furthermore, auto encoders were utilized in order to reduce
the dimensionality of the word embeddings, whilst keeping important semantic information intact, which in turn reduced the
complexity of decoding such embeddings. Additionally, auto encoders were applied to the sEEG data, for the purposes of
de-noising, automatic feature selection, and dimensionality reduction. A preliminary motor decoding task, in the form of syllable
classification was also included, to determine whether the SEEG data held any decoding potential in the first pace, as this task
demonstrated a more salient relationship with the SEEG data. Lastly, data from 2 individual subjects was combined, after having
been compressed by the auto encoders, in order to investigate whether limitations regarding the sparse distribution of SEEG
electrode placements could be mitigated, through the incorporation of more data. The results of this study have demonstrated that
auto encoders could successfully compress both the brain data and the semantic vectors, whilst keeping important information
intact. Furthermore, the results indicated that while motor information could be decoded to a certain extent, semantic information
could not be decoded from the available SEEG data. This was likely caused by a combination of the SEEG data’s inability
to sufficiently encapsulate semantic processing, given its sparse and distributed nature, as well as a lack of clear separability
between the different semantic representations. Despite these findings with respect to semantic decoding, the efficacy of the auto
encoders could hold great potential for future semantic speech decoding studies. Future work should focus on generating more
separable semantic representations, incorporating data from more subjects, and on designing tools that can properly quantify the
relationship between different electrode activations and semantic processing.

Acknowledgements

I would like to express my sincere gratitude towards Dr. Julia Berezutskaya, Dr. Samson Chota, Dr. Zachary Freudenburg, and
Professor Nick Ramsey for allowing me to work on this project and for supporting me during my time at UMC Utrecht.

I would like to especially thank Dr. Julia Berezutskaya for helping me during the early stages of this project and for the
knowledge she imparted on me early on, as my experience in neuroscience was limited at best, when i first started working on
this project. Furthermore, I would also like to give special thanks to Dr. Zachary Freudenburg for his extended daily support
during Dr. Julia’s maternity leave. Without his guidance, I would not have been able to finish this project by myself, so thank you
for allowing me to move forward with this project during uncertain times.

Contents
List of Figures
List of Tables

1 Introduction

2 Related Work

2.1 Brainsignals for speech decoding L
2.1.1 Non-invasive methods L
2.1.2 Invasivemethods L e
2.2 Representationsof speech L
2.3 Semantic encoding and decoding models L
2.3.1 Encoding semantic representations of speech Lo Lo
2.3.2 Semantic vector and brain data dimensionality reduction methods
2.3.3 Semanticdecodingmodels L.
2.34 Cross subject sSEEG data combination
Methodology
3.1 DataCollection o e e e
3.2 PythonLibraries. L e
3.3 sEEGdata pre-processing e e e e e
3.4 Speech Transcript generation and alignment L e e
3.5 sEEG feature selection and de-noising through Auto Encoders
3.6 Semantic representations and decoding tasks L.
3.6.1 Large Language models and word embeddings
3.6.2 Contextual embeddings through BERT
3.6.3 Static embeddings through Wikipedia2Vec
3.6.4 Clustering word embeddings
3.6.5 semantic space dimensionality reduction using Auto encoders Lo
3.6.6 Semantics and lexical databases L
3.6.7 WordNetimplementation L e e e e e e e e e
3.6.8 Syllable quantity classification oL e
3.69 Appliedtaskso
3.7 Decodingmodels e
3.7.1 Traditional sequence models L.
3.7.2 Convolutional decoding models L e
3.7.3 Decoding model data input formats Lo
3774 Imbalanced classes e
3.8 Multi patient training e e e e e e e
Results
4.1 sEEG data dimensionality reduction performance o
4.2 Syllable decoding task performance e
4.3 Word embedding decoding performance L
43.1 BERTdecoding e
4.3.2 Wikipedia2Vec decoding
4.4 Word embedding dimensionality reduction performance Lo
4.4.1 Semantic space dimensionality reduction performance
4.4.2 Compressed embedding decoding performance Lo L.
4.4.3 BERT compressed semantic space decoding results
4.4.4 Wikipedia2Vec compressed semantic space decoding results L.
4.5 Clustering results and classification performance
45.1 BERT clusters e e e e

10
10
10
10
12
12
13
15
16
19

20
21
21
21
22
22
24
24
25
25
27
27
28
29
29
30
30
31
32
33
33
34

4.5.2 Wikipedia2Vec

ClUStErS e

453 WordNet clusters o o e e e e

5 Discussion

5.1 Autoencoder SEEG cCOmpression e e e e

5.2 Motor decoding results
5.3 Semantic decoding .
5.4 Multi-patient training

6 Future Work
7 Conclusion

Bibliography

51
51
51
52
53

54

54

56

List of Figures

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

Implantation difference between ECoG and sEEG electrodes. ECoG grids are implanted under the skull whereas

SEEG electrodes penetrate inside the cortex. L 11
Implanted electrode shafts. SEEG requires only small, localized burr holes compared to the comparatively large
craniotomies required for ECoG implants. [32]. 11

Schematic overview of the scale of spatial and temporal resolution of measurement methods used for BCL.
Measurement methods are electroencephalography (EEG), magnetoencephalography (MEG), near-infrared
spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), electrocorticography (ECOG), local field
potential (LFP) recordings, micro-electrode array (MEA) recordings, and microelectrode (ME) recordings.
Non-invasive methods are shown in blue and invasive methods are showninred. [91]. 11
relational properties of embedding spaces [38] 13
Different model architectures for contextual embeddings. BERT uses a bidirectional transformer. GPT uses a
left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left

LSTMS [I8]. . . o o o e e e e 14
simple depiction of a 2-layer auto encoder. The encoder is in orange and the decoder in blue. The latent
representation is the bi-colored node [22]. L e e 15

simple depiction of a 2-layer variational auto encoder. The encoder is in orange and the decoder in blue. The
latent representation is the bi-colored node. note that the latent representation is sampled from a Gaussian density
distribution, which is generated from the input data. [22]. oL 16
simple depiction of a recurrent unit, where the hidden unit contains a recurrent connection as part of its input,
such that its activation is dependent on the previous activation of that same unit from a previous time-step. [38] 16
A single LSTM Unit, with current input x¢, previous hidden state 4f — 1, previous context ¢t — 1, hidden state At
and updated context cr [38] L L e 17
visualization of a sample CNN architecture for multi-channel EEG data. The dimensionality of the input data is
reduced with every convolutional layer, in order to increase the CNN’s receptive field with respect to the input
data. After convolution, the resulting feature maps are flattened to a 1D vector, such that they may be fed into a

fully connected layer [78]. L e e e 18
visualization of a sample disjointed CNN-LSTM architecture, in which temporal and spatial features are first
learned separately, and concatenated afterwards [77]. 18

three types of convolution for the purpose of multichannel time series data (from left to right): convolution in
time, convolution in channel, and convolution in both channel and time. colored squares represent independent

time series, whereas gray values indicate mixed channel values [78] 19
This study’s main pipeline as described in the Methodology 20
SEEG Electrodes implantation for participant 1 (left) and participant 2 (right) 21
SsEEG activations before and after de-trending oL 22

High gamma activity [60-150 Hz] tracking the speech envelope. Panels a and b depict results for subject 1 and 2,
respectively. The speech envelope is depicted in blue, whereas the HFB sEEG data for channels 52 (sub-1) and

26 (sub-2) are Shown in Orange. o o vttt e e e e e e 23
Channels with significant correlation (p < 0.01) between speech envelope and neural activity in HFB. The color
bar represents different values of correlation. Full number of channels sub1=99,sub2=79. 23

LSTM auto encoder architecture. The input sequence is first encoded into a lower dimensional latent space using
a two-layer LSTM encoder, after which it is decoded using a two-layer LSTM decoder. Figure from reference [19]. 23
BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation

embeddings and the position embeddings [18]. 25
2D representation of some common words in the BERT embedding space, generated using t-SNE 26
The word2Vec model’s skip-gram architecture [S6] e 26
2D Wikipedia2Vec embedding representation of the same words from the BERT embedding space, generated

using t-SNE . . . L L 26
WordNet hierarchy example. The most general classes are on top, whereas specific concepts are found further

downinthe graph [85]. L e 28
general WordNet pipeline for semantic similarity computation [85]. 29
Word by Word similarity matrix, where N refers to the total number of unique labels, and sim = WuP, ranging

fromOto 1 . . . e e e e 29

26

27
28

29

30

Individual correlation profiles per channel over different time lags, for subjects 1 (a) and 2 (b). The x-axis
represents cross-correlation lags (in ms), where negative lags indicate that the neural activity precedes audio.
The maximum correlation is achieved using a time lag between -50to 50ms.
Block diagram of input and output data applied to the decodingmodel.
AE Channels with significant correlation (p < 0.01) between speech envelope and neural activity in HFB. The
color bar represents different values of correlation. Full number of channels sub 1 =30, sub 2 = 30, sig. channels:
sub 1 =12, sub2 =10 e
VAE Channels with significant correlation (p < 0.01) between speech envelope and neural activity in HFB. The
color bar represents different values of correlation. Full number of channels sub 1 =30, sub 2 = 30, sig. channels:
subl =14, sub2 =16 e,
LSTM-AE Channels with significant correlation (p < 0.01) between speech envelope and neural activity in
HFB. The color bar represents different values of correlation. Full number of channels sub 1 =30, sub 2 = 30, sig.
channels: sub 1 =21, sub2 = 14 e e

31 LSTM-VAE Channels with significant correlation (p < 0.01) between speech envelope and neural activity in
HFB. The color bar represents different values of correlation. Full number of channels sub 1 =30, sub 2 = 30, sig.
channels: sub 1 = 19, sub2 =06 e e

32 Training and validation accuracy of 1D-CNN, trained on Subject 1’s full 99-channel sEEG Data.

33 Training and validation accuracy of 1D-CNN, trained on Subject 1’s compressed 30-channel sEEG Data.

34 Training and validation accuracy of 1D-CNN, trained on Subject 2’s full 79-channel sEEG Data.

35 Training and validation accuracy of 1D-CNN, trained on Subject 2’s compressed 30-channel sEEG Data.

36 Training and validation accuracy of 1D-CNN, trained on the combined compressed 60-channel sEEG, obtained
from the compressed sSEEG data for subjects land 2.o Lo

37 BERT 768D, LSTM training and validation accuracy, trained on Subject 1’s full 99-channel sEEG Data.

38 BERT 768D, LSTM training and validation accuracy, trained on Subject 1’s full 99-channel randomized sEEG
Data. L

39 Wikipedia2Vec 100D, LSTM training and validation accuracy, trained on Subject 1’s full 99-channel SEEG Data.

40 Wkipedia2Vec 100D, LSTM training and validation accuracy, trained on Subject 1’s full 99-channel randomized
SEEG Data. e

41 BERT heatmap of cosine similarities between differently related words

42 Wikpedia2Vec heatmap of cosine similarities between differently related words

43 BERT 50D, LSTM training and validation accuracy, trained on Subject 1’s reduced 30-channel SEEG Data.

44 BERT 50D, LSTM training and validation accuracy, trained on Subject 1’s reduced 30-channel randomized
sEEGData.

45 Wikipedia2Vec 50D, LSTM training and validation accuracy, trained on Subject 1’s reduced 30-channel SEEG
Data. . . e e

46 Wikipedia2Vec 50D, LSTM training and validation accuracy, trained on Subject 1’s reduced 30-channel random-
ized sSEEGData.

47 BERT: heat-map of cosine similarities between the different clusters generated by BERT for subjects 1 and 2. .

48 BERT cluster training results, utilizing an LSTM trained on the reduced 30 channel data from subject 1.

49 Wikipedia2Vec heat-map of cosine similarities between the different clusters generated by Wikipedia2 Vec for
subjects land 2. L. L e e e

50 WordNet heat-map of cosine similarities between the different clusters generated by WordNet for subjects 1 and 2.

List of Tables

1 Commonly used Python packages e

2 Word Error Rates (WER) forsubject 1 o e

3 Word Error Rates (WER) forsubject 1 o . o e

4 different Auto Encoder architecture characteristics, AE = auto encoder, VAE = variational auto encoder

5 word count before and after stop-word and error removal for subjects land2 L.

6 distribution of number of syllables for all word used for decoding, subject 1

7 distribution of number of syllables for all word used for decoding, subject2

8 different sequence model architectures and hyperparameters

9 Training results for the different auto encoder architectures, subject 1

38
39

40
41

41
44
44
45

45
46
46
47
48

49
50

10
11

12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Training results for the different auto encoder architectures, subject2 35
Motor decoding model parameters original SEEG data (99-channel,79-channel for sub 1 and 2) and combined

SsEEG data (60 channel, 30 channels from both patients after compression) 37
Motor decoding model parameters compressed sEEG data (30 channels for both patients 37
Motor decoding accuracy for the different training scenarios, accuracy averaged over 5 folds. 38
BERT Semantic decoding model parameters e 39
BERT 768D, LSTM decoding performance under different training scenarios 40
Wikipedia2Vec Semantic decoding model parametersl 40
Wikipedia2Vec 100D, LSTM decoding performance under different training scenarios 41

Performance of dimensionality reduction on BERT (768d) and word2vec (100d) embeddings. All methods
reduced the dimensionality of the embeddings to 50 dimensions. AE = vanilla auto encoder, VAE = variational

auto encoder, PCA = prinicipal component analysis. e e e e 42
Translations of comparison Words L e e e e e e e e e e e 42
BERT cosine similarity between words with high cosine similarity 42
BERT cosine similarity between words with low cosine similarity 42
Wikipedia2Vec cosine similarity between words with high cosine similarity 42
Wikipedia2Vec cosine similarity between words with low cosine similarity 42
BERT 50D, LSTM decoding performance under different training scenarios 45
Wikipedia2Vec 50D, LSTM decoding performance under different training scenarios 46
BERT Cluster Legend e 47
BERT distribution of different clusters for all word used for decoding, subject 1 47
BERT distribution of different clusters for all word used for decoding, subject 2 and combined subjects 47
BERT Clusters classification performance utilizingan LSTM 48
Wikipedia2Vec Cluster Legend e e e 48
Wikipedia2Vec distribution of different clusters for all word used for decoding, subject 1 48
Wikipedia2Vec distribution of different clusters for all word used for decoding, subject 2 and combined subjects 48
Wikipedia2Vec Clusters classification performance utilizingan LSTM 49
WordNet Cluster Legend 0 49
WordNet distribution of different clusters for all word used for decoding, subject1 49
WordNet distribution of different clusters for all word used for decoding, subject 2 and combined subjects . . . 49
WordNet Clusters classification performance utilizingan LSTM 50

1 Introduction

Communication, one of humanity’s fundamental characteris-
tics, plays a crucial role in social interactions, facilitating ex-
pressions of thoughts, emotions, and ideas. It fosters relation-
ships, knowledge transfer, empathy, and community. Losing
this ability to express oneself can therefore have a devastating
impact not only on one’s professional life, but also on one’s
mental state. This is especially true in cases where a healthy
mind is locked inside a body that can no longer convey the
notions, ideas, and feelings that are still present within, as is
the case for people with locked-in syndrome. This condition,
which can result from a brain stem stroke, trauma or a neuro-
degenerative disease, is characterized by severe whole-body
paralysis, with varying degrees of motor control loss, depend-
ing on the root cause and the extent of the neural damage [15].
The loss of motor control can either be progressive, when
caused by a neuro-degenerative disease such as amyotrophic
lateral sclerosis (ALS), or remain relatively stable, as is the
case with brain stem lesions or strokes [87] [40]. The severity
of motor control decline can range from loss of fine motor
control during the early stages of ALS, to losing all forms of
motor control except for eye movement and even complete
loss of motor function, resembling patients in a vegetative
state, in certain ALS and brain stem lesion cases [87] [40].
People presenting with locked-in syndrome can still think,
reason, and feel, however, and may make use of computer-
based communication technologies, if they are still able to at
least control eye movement [87]. Such forms of communica-
tion are limited, however, as they are relatively slow, do not
form a natural way of communication, and can only be used
by patients who are still able to control eye movement [87]
[75].

To enable communication in cases of complete motor con-
trol loss and to create a more natural form of communication,
patients with locked-in syndrome can make use of so-called
Brain-computer Interfaces (BCI). A BCI’s general aim is to
utilize its user’s neural activity in order to restore or augment
some of their capabilities, which in this case would refer to
restoring the capability to communicate [96]. A BCI for the
purpose of restoring natural communication would thus pro-
duce either spoken or written forms of speech, words, or other
linguistic information relevant for the purpose of communica-
tion and would derive such information from the user’s brain
activity.

Recent investigations into the potential for such systems
have demonstrated that BCI systems could reliably be used
to assist individuals with speech impairments [86] [92] [28]
[59] [8]. However, most of these methods have focused on
decoding speech directly, and are characterized by slow com-
munication speeds stemming from their serialized manner
of decoding [75]. Therefore, recent work has also gravitated
towards focusing on specific representations of speech. These
representations of speech can generally be categorized as be-

longing to the semantic, auditory or articulatory pathways of
speech, each focusing on different aspects of speech produc-
tion [72].

Most research pertaining to the potential use of BCI tech-
nology for speech decoding has been focused on the auditory
and articulatory pathways, with many approaches placing a
major emphasis on the motor cortex and other more local-
ized brain areas [29] [86] [98]. However, insights gathered
from neurocomputational models of semantic cognition have
shown that the semantics of speech are represented in a much
more distributed manner in the brain, meaning that locally
recording brain activity might not adequately represent the
manner in which semantic concepts are processed [23] [68].
Such semantic information could hold potential for BCI tech-
nology as it could allow for the decoding of isolated words
in a faster and less ambiguous manner than current BCI tech-
nologies [75]. This, in turn, would warrant the need to explore
BCI technologies capable of spanning multiple brain areas, in
order to fully encapsulate the neural processing behind seman-
tic representations of words. Doing so may not only increase
the efficacy of future BCI systems but may also increase our
understanding of how the concepts behind speech arise from
brain functioning and give us more insight into the neural
mechanisms underlying the comprehension of semantic con-
cepts.

In terms of modalities for recording semantic processing,
most studies have focused on non-invasive neural record-
ing methods, such as functional magnetic resonance imaging
(fMRI), magnetoencephalography (MEG), functional near-
infrared spectroscopy (fNIRS), and electroencephalography
(EEG), in order to gather relevant brain data [23] [76] [47]
[95] [68] [90]. Methods like fMRI, however, are character-
ized by slow temporal recording capabilities, which limits
their practical applications for semantic decoding[90] [75]
[26]. More invasive methods, such as electrocorticography
(ECoQG) and stereotactic EEG (sEEG) recordings, are avail-
able in cases where human subjects either undergo clinical
treatment for epilepsy or participate in a clinical BCI trial [96].
Epilepsy patients temporarily implanted with ECoG or sEEG
present a unique opportunity in which more invasive methods
can ethically be applied in order to gain much more detailed
and accurate brain data, when compared to non-invasive meth-
ods, especially in terms of temporal recording capabilities. In
particular, the distributed nature of SEEG methods happens
to lend itself particularly well to the task of decoding seman-
tic features from brain data, due to the similarly distributed
manner in which semantic concepts are represented in the
brain [23] [68] [32]. sSEEG’s sparsely distributed nature, on
the other hand, could inhibit adequate coverage of brain areas
related to semantic processing [32].Therefore, despite uncer-
tainty regarding the extent to which semantic processes are
shared across individuals, combining SEEG data from mul-
tiple subjects could potentially mitigate its sparse sampling
limitations [23].

Furthermore, because most research into speech decoding
has been focused on these auditory and articulatory represen-
tations of speech, most speech decoding tasks revolve around
continuous next word prediction, or prediction aided by statis-
tical language models, in which neural activity plays a more
cooperative role in word prediction as it is coupled with a
sequence of context words which are used to select probable
words based on a language model[88] [90] [31]. The task of
predicting words or any sort of semantic information with-
out context is sparsely documented in the speech decoding
community with only a few documented cases focusing on
semantic decoding specifically for BCI purposes [76] [24]
[60] [93]. This lack of documentation, therefore, warrants a
closer look into the feasibility of such a task. Furthermore,
because words can have many interpretations and are often
context dependent and thus highly ambiguous when isolated,
speech decoding systems should aim to decode brain data in
a more holistic manner, when compared to approaches solely
focused on the articulatory and acoustic aspects of speech
production [68]

A simple way of representing semantic information in-
volves using semantic categories, which separate words based
on their semantic meaning. Such categories have been success-
fully used in previous works and are often manually generated
[76] [60] [93].They can also be generated automatically, based
on large semantic databases, such as the WordNet database,
which has been used for tasks such as information retrieval,
text categorization, semantic feature selection, and word sense
disambiguation [57] [85] [13]. However, using semantic cate-
gories limits the granularity of the semantic information that
can be decoded from brain data. One way of capturing word
semantics, whilst keeping word differentiability intact, is by
representing words in semantic embedding spaces, generated
from word co-occurrences in natural speech, which capture
word similarity through the positions of the words in that
space [38]. These models, along with the use of deep learn-
ing in general, have been met with increasing interest in the
field of speech decoding, because of their ability to repre-
sent semantic information mathematically [72] [79] [80] [27].
Such embeddings may be static or contextual in how they
represent words semantically. Static word embedding models,
such as Word2Vec learn one fixed embedding for each word,
whereas dynamic models, such as the BERT model developed
by google, can be different for the same word in different
contexts and are often more complex as a result [38] [18]
[56]. The increased complexity of dynamic models makes
them far more accurate in complex NLP tasks such as word
sense disambiguation and could therefore allow for more in-
tricate semantic encoding [18]. Conversely, the simplicity of
Word2Vec may increase the feasibility of successful semantic
decoding, and such models have been shown to work better in
isolation due to their static nature [68]. Therefore, both mod-
els ought to be tested in order to see which model is better
suited for semantic decoding.

One major drawback of directly decoding word embed-
dings from brain data,is the high dimensionality of such em-
beddings, which makes reconstructing such vectors a complex
task. Simplifying such vectors should therefore constitute a
high priority task, which can be achieved through the use
of auto encoders, a specific type of neural network that is
often used for dimensionality reduction purposes. These mod-
els have been shown to outperform linear techniques like
PCA in tasks such as image compression, and have been suc-
cessfully applied on word embeddings [48] [2] [51] [94]. It
could therefore be interesting to see whether applying auto
encoders could potentially enhance the feasibility of semantic
vector decoding. These models have also successfully been
used in order to denoise and compress the brain data used
for decoding as well, which may improve decoding capabili-
ties [12]. Decoding these complex semantic representations,
in turn, could be achieved through the use of temporal neu-
ral network architectures, such as recurrent neural networks
(RNN), gated recurrent units (GRU), temporal convolutional
neural networks, and Long short-term memory networks, as
such models have been successfully applied to SEEG data in
previous works [30] [45].

Therefore, the purpose of this study was to investigate the
potential of utilizing deep learning approaches in order to
decode semantic representations from sEEG data and aimed
to answer the following research question: Is it possible to
decode semantic representations of speech, encoded as either
word embeddings or semantic categories, using SEEG during
a natural speech production task?

Towards that goal, semantically relevant words, pronounced
by two subjects during a Dutch natural language reading task,
were represented either as semantic vectors, generated through
both static and dynamic embedding models, like Word2Vec
and BERT, or as semantic categories, which were automati-
cally generated from these models as well as from WordNet.
The decoding models consisted of the temporal neural net-
work architectures, mentioned before. Furthermore, in order to
make the decoding task more computationally feasible, both
the sEEG data and semantic vectors underwent dimensional-
ity reduction through the use of auto encoders. Additionally,
in order to assess the usefulness of the SEEG data, a prelim-
inary motor decoding task, in the form of syllable quantity
classification, was performed. Lastly, the SEEG data from
both subjects was combined, in order to investigate whether
an increase in available electrodes could mitigate the spar-
sity of the SEEG electrode coverage and whether this could
positively modulate decoding performance.

As a concluding remark, it is important to note that utiliz-
ing sEEG data to decode isolated semantic representations in
the form of word embeddings obtained from natural speech
represents a novel task, which has not been publicly studied
before. Therefore, this study could be considered a feasibil-
ity study, which could hold major implications for semantic
decoding in general.

2 Related Work

This section provides an overview of the relevant back-
ground with regards to speech decoding. Towards that end,
an overview of the different brain recording methods, used in
general speech decoding, is provided first, after which the dif-
ferent representations of speech are introduced. The following
section, on the other hand, discusses work related to how spe-
cific semantic representations of speech can both be encoded
and decoded, and discusses how such work may be applied,
when aiming to decode semantic representations from sEEG
data.

2.1 Brain signals for speech decoding

Generally, methods to record brain data for the purpose of
speech decoding can be categorized into invasive and non-
invasive methods, with invasive methods only available in
epilepsy patients or participants of BCI clinical trials.

2.1.1 Non-invasive methods

Non-invasive methods, based on the detection of metabolic
signals for brain activity, include functional magnetic res-
onance imaging (fMRI) and functional near-infrared spec-
troscopy (fNIRS), which can reach the majority of the brain
surface with good spatial coverage and resolution [75] [26].
An added benefit of using non-invasive methods, is the fact
that patients require no surgical implants in order for these
methods to work, which in turn lowers the risk of complica-
tions and eliminates some of the more physical entry barriers
towards introducing BCls to the larger population. However,
fMRI and fNIRS represent an indirect measure of neural
activity by recording BOLD changes, leading to a delay in
recordings and overall low temporal resolution of the signal,
which combined with the high number of words per seconds
used in natural language, means that each brain image can
be affected by a multitude of words [90] [75] [26]. This, in
turn causes non-invasive models to lack the temporal resolu-
tion necessary for capturing brain data pertaining to real time
speech synthesis [83].

Despite those limitations, recent work on non-invasive
fMRI decoders has still demonstrated the feasibility of gener-
ating decoders capable of generating continuous intelligible
word sequences that recover the meaning of perceived and
imagined speech [90]. Although promising, the use of fMRI is
still limited in the sense that decoding speech using fMRI was
unable to capture individual semantic representations as word
sequence generation relied on auto-regressive priors in order
to generate candidate sequences, which highlights fMRI’s
inability to predict isolated semantic representations or indi-
vidual words [90]. furthermore, cases in which fMRI could
predict isolated words exist, but relied on the careful selection
of words, which were temporally separated to a sufficient ex-

10

tent, which highlights fMRI is unsuitable for decoding natural
speech, in which such temporal separations are virtually non-
existent [68]. FNIRS has also successfully been utilized to
differentiate between imagined semantic concepts belonging
to two separate semantic categories [76]. The need to utilize
long hemodynamic response measurement intervals (several
seconds), however, highlights the lack of temporal resolution
that is inherent to both FNIRS and fMRI [76]. Therefore,
these slower but more global imaging methods are more of-
ten used in order to gather insights into the inner workings
and relevant structures involved in speech production and
comprehension. [47] [95] [49] [49] [17].

In contrast, electro-physiological neuroimaging methods,
such as electroencephalography (EEG) and magnetoen-
cephalography (MEGQG), offer far better temporal resolution
in terms of their recording capabilities, when compared to
fMRI and FNIRS [75] [16]. EEG, for instance, has success-
fully been used to model auditory speech processing [58].
Furthermore, EEG recordings have been used in order to en-
hance classification performance on common NLP tasks, such
as sentiment classification and relation detection, although
these methods were contingent on combining EEG record-
ings with independent semantic features which had no neural
basis [34]. Unfortunately, EEG is not without its drawbacks.
Whereas it has excellent temporal resolution, in contrast to
fMRI, it severely lacks in the area of spatial resolution and
has poor signal quality, caused by the fact that the electrodes
are not in direct contact with the cortex of the brain [75] [23].
MEG, on the other hand suffers less from signal distortion
and has a higher spatial resolution than EEG, and there are
multiple studies describing and testing its viability for the
task of both imagined and attempted speech decoding [15]
[14] [16]. However, MEG still has worse spatial resolution, a
lower signal-to-noise ratio, and motion artifacts, when com-
pared to the more invasive methods that are available in cases
where human subjects undergo clinical treatment for epilepsy
or participate in a clinical BCI trial [96].

2.1.2 Invasive methods

Invasive brain recording methods represent the most com-
monly used brain recording techniques for developing BCI
systems and notably include electrocorticography (ECoG) and
stereotactic EEG (sEEG), which require patients to receive
surgical implants in order for their brain data to be recorded.
While these methods inherently carry more risk in terms of
surgical complications, they offer far superior spatial and tem-
poral resolution in return and do not suffer from poor signal
quality as is the case with most non-invasive methods [96].
ECoG entails placing sheets of electrodes directly onto the
brain, just below the dura, which allows it to directly measure
the synaptic field potentials of the underlying neurons in a
manner inaccessible to fMRI, and without the signal qual-
ity issues of surface EEG [72] [9]. Its invasive nature, on

the other hand, has caused ECoG to most often be applied
in cases of drug resistant epilepsy, in which patients receive
these implants strictly for medical purposes [72] [52]. De-
spite this practical drawback, numerous studies have shown
the potential of using ECoG in speech decoding, with many
approaches yielding favorable results [72] [3] [27] [93] [62].
A more fundamental issue pertaining to the use of ECoG re-
lates to its inability to penetrate into the deeper structures of
the brain, such as the hippocampus, insula, Herschl’s gyrus
and basal ganglia [32]. Furthermore, ECoG often fails to have
broad coverage over different brain areas, since the electrode
sheets are most often placed over specific and localized re-
gions of the brain based on the affected area of the patient’s
brain [32].

The other notable invasive method, stereotactic EEG, en-
tails the employment of penetrating depth electrodes that are
directly implanted through burr holes in the skull and are
placed using stereotactic guidance [32]. SEEG is most often
used in conjunction with ECoG but the general consensus is
that SEEG by itself carries fewer risks of complications than
ECoG, which makes it a more desirable target when looking
for more permanent implants [32] [36]. Furthermore, while
sEEG is characterized by a much sparser cortical sampling
rate than ECoG, its potential for employing a multitude of
distinct recording sites in different areas of the brain poten-
tially allows it to better investigate semantic representations
as these are believed to be widely distributed throughout the
brain [32] [72] [68]. Lastly, sSEEG’s stereotactic guidance ap-
proach allows it to reach deeper structures of the brain, which
allows for analyzing previously unreachable brain areas such
as the hippocampus, insula, Herschl’s gyrus and basal ganglia
[32]. There are limited studies available which have focused
on speech synthesis and speech activity recognition, as well
as semantic processing, utilizing SEEG data. [45] [1] [61]
[84]. These existing studies demonstrated promising results
however, directly attributed to SEEG’s ability to more accu-
rately decode memory related processes, which are linked to
semantic representations, its ability to reach multiple brain
areas when placed in larger numbers, and its potential to ac-
cess deeper brain structures [32] [45][61] [84] [1]. These
recording advantages, combined with SEEG’s relative low
risk profile, as well as the lack of attention it has received
when compared to the more established ECoG method, make
it a suitable target for exploratory research with regards to
semantic decoding.

11

Figure 1: Implantation difference between ECoG and sEEG elec-
trodes. ECoG grids are implanted under the skull whereas sEEG
electrodes penetrate inside the cortex.

Figure 2: Implanted electrode shafts. SEEG requires only small, lo-
calized burr holes compared to the comparatively large craniotomies
required for ECoG implants. [32].

10+

= EES NIRS

g T MEG

g 11 ECoG fMRI

g

S T LFP

3

= MEA

5 1T

T

Ul an ME

.01 1+
.001 .01 ol 1 10

Temporal resolution (s)

Figure 3: Schematic overview of the scale of spatial and temporal
resolution of measurement methods used for BCI. Measurement
methods are electroencephalography (EEG), magnetoencephalogra-
phy (MEG), near-infrared spectroscopy (NIRS), functional magnetic
resonance imaging (fMRI), electrocorticography (ECOG), local field
potential (LFP) recordings, micro-electrode array (MEA) recordings,
and microelectrode (ME) recordings. Non-invasive methods are
shown in blue and invasive methods are shown in red. [91].

2.2 Representations of speech

Before the models for the purpose of semantic encoding and
decoding can be discussed, a clear understanding of the de-
sired output representations for such models is required. Gen-
erally, speech can be analyzed through three main representa-
tions, which are each involved in a different part of the speech
production process and are termed the semantic, auditory and
articulatory pathways [72].

Semantic representations are likely one of the earliest en-
countered representations in the process of speech production
and are involved with the meaning of words and concepts [72]
[75]. Therefore, these representations rely on both speech for-
mation as well as memory, vision, and higher cognitive func-
tioning related areas of the brain such as the parietal, frontal,
temporal, and occipital lobes [72] [75]. This entails that se-
mantic representations are highly distributed in the brain and
that they likely cannot be fully represented by examining just
one localized brain area. In computational terms, semantic
information can be represented through semantic categories,
which group semantically similar words together into clus-
ters. More advanced methods focus on mapping the semantic
information to a higher dimensional space, in which each di-
mension describes some feature. These higher dimensional
spaces are termed embedding spaces in the realm of natural
language processing and utilize the mathematical properties
of vector spaces in order to represent semantic information
[38]. More specifically, utilizing vector spaces allows com-
puters to mathematically compare semantic information, be-
cause words are embedded in a contextualized vector space,
in which words with similar meaning are physically closer
to each other in that space [38]. This similarity is contextu-
ally derived in the sense that it originates from the notion
that similar words occur in similar contexts, which is also
called the distributional hypothesis [38] [55]. Furthermore,
mathematical rules valid in vector spaces, such as addition
and subtraction, make it possible to establish mathematical
relationships between different semantic concepts [38]. More
details on how these word embedding are generated can be
found in the next section concerning encoding and decoding
approaches. One drawback of relying on word embeddings to
represent semantic information is the fact that precise word de-
coding becomes much more difficult as many words can have
similar meanings. This can also be viewed as a strength for the
case of semantic decoding, however, as semantic information
is more concerned with conceptual information, rather than
precise wording, where semantic vectors can serve to mitigate
the ambiguous nature of words, when viewed in isolation [20].
This means that contextual embeddings could potentially be
more informative than words themselves in certain cases, as
they give computers more context pertaining to the actual
meaning of embeddings than words usually can. Embedding
spaces have successfully been used in several studies pertain-
ing to neural speech decoding, in particular with regards to

12

fMRI brain activation prediction for semantic categories as
well as for contextualizing brain data such as EEG and iEEG
recordings [65] [34]. They have also been used in conjunction
with fMRI data in order to reconstruct semantic information
directly, as is discussed later on [68]. Most BCI research, how-
ever, is geared towards decoding discrete words and studies
that do use semantic vectors, generated through large lan-
guage models, use them in continuous language decoding
tasks in order to generate likely next word candidates [27]
[90]. Semantic categories are more commonly used in BCI
studies, as they can simplify the decodable semantic space,
which allows for easier classification [62] [93]. Ways of gen-
erating semantic categories are discussed alongside semantic
vector generation in the next section.

In terms of audition, speech can be represented in terms of
its acoustic wave-forms and corresponding spectrotemporal
features, which can further be separated into phonemes whose
neural representations could be used for decoding in the mid-
dle stages of speech production [72]. such spectrotemporal
features have been used in both ECoG and sEEG studies for
the purpose of auditory speech feature reconstruction and
have found that auditory representations of speech can in fact
be reconstructed from such features [54] [3] [45]. Lastly, the
articulatory pathway of speech can be represented as a com-
bination of vocation and articulatory actions generated by the
mouth, vocal tract and tongue and could be assessed through a
combination of visual and attention correlates as well as neu-
ral features gathered through either invasive or non-invasive
methods focusing mostly on the motor cortex [72] [15] [97].
As informative as the auditory and articulatory representations
of speech may be, semantic representations more directly re-
late to the purpose of this current study, although it should be
noted that a combination of multiple representation pathways
could positively modulate general decoding capabilities. Such
a task is currently outside the scope of this project however,
which is why solely semantic representations are considered
for decoding in this study.

2.3 Semantic encoding and decoding models

The last section focuses on specific ways to both encode
and decode semantic information. Based on the previous sec-
tions, the types of semantic representation relevant for the pur-
poses of this study are represented by semantic categories and
word embeddings. Therefore, the first subsection discusses
how such representations could be generated from natural
speech. Afterwards, ways in which more complex semantic
representations, as well as the brain data itself, can be sim-
plified, whilst retaining important semantic information, are
discussed. Subsequently, suitable decoding models for SEEG
data are presented, after which the possible enhancement of
sEEG data through the combination of data from multiple
subjects is discussed.

T T T T T T T T T

05 r heiress 1
04}
* niece
I caunt
-swsler'
T

* countess

0.3} * duchess-

0.2F | »empress

1
+ madam 4
| i
! nepHew hir

| jwoman y /!
! earl -
~que%?'r-‘
7 dduke

Luncle
* brother

I
| {emperor

lking 4

03 0.4 05

Figure 4: relational properties of embedding spaces [38]

2.3.1 Encoding semantic representations of speech

Encoding approaches, for the purposes of this study, con-
sist of methods towards generating semantic semantic cate-
gories, which cluster target concepts based on their seman-
tic characteristics, or word embeddings, the dense and short
vectors used for representing semantic information [38]. Se-
mantic clusters can be generated either manually, by focusing
on salient semantic differences between different words, or
automatically by using large language models or semantic
databases. Manually generating semantic categories is par-
ticularly useful when the words one aims to decode can be
separated into clearly defined clusters, which is why manual
semantic category selection is often used when decoding a
relatively small set of words, which have a relatively clear
relationship with the class they belong to, with classes such as
tools and animals [76] [60] [93]. However, such an approach
becomes less advantageous when using words recorded dur-
ing natural language tasks, which often do not display such
clear distinctions, as such words are not selected to be cate-
gorically distinct from one another, meaning that derived cat-
egories need to be much more general in order to encapsulate
all the words or the number of categories must be substantially
increased, and manually annotating words with semantic cate-
gories is labour intensive work [35]. Therefore, automatically
categorizing words based on semantic databases or embed-
ding models can both decrease the labour intensiveness of
such tasks as well as infer semantic categories without the
need to define such categories beforehand. Clustering the
words into semantic categories can be done either trough se-
mantic databases, such as WordNet, or through the use of large
language models, which are introduced later on. WordNet is
a large lexical database which also contains semantic relation-
ships between different words, and has mainly been used for

13

tasks such as information retrieval, text categorization, seman-
tic feature selection, and word sense disambiguation [57] [85]
[13]. WordNet connects nouns, verbs, and adjectives hierarchi-
cally based on a class system, where parent classes are more
general than their sub-classes [57]. This hierarchical structure
builds knowledge from specific concepts to broader classes,
such as people and dogs both falling under the entity super-
class. This hierarchical structure could potentially be used in
order to cluster different words based on how similar their
positions are in this hierarchical structure and possible ways
of achieving this goal are discussed in the methodology of this
study. Lastly, while employing semantic categories proves
highly effective in simplifying the complexity of speech de-
coding tasks, it is important to acknowledge that the broad
categorization of words into semantic clusters imposes limita-
tions on the specificity of information that a semantic decoder
can decode. This can be mitigated by increasing the number
of semantic categories, but this in turn increases decoding
complexity, which is what semantic categories are supposed
to mitigate in the first place. This is where word embeddings
can offer additional value over semantic categories for the
purpose of semantic decoding, as word embeddings fully en-
capsulate the meaning of each concept, without the need for
categorization.

Whereas semantic categories can be generated manually,
embeddings are exclusively generated through the use of large
language models (LLMS), which are trained on large quan-
tities of unlabeled text, also called a training corpus [38].
Generally, such models can either generate static or dynamic
embeddings, where static methods learn one fixed embedding
for each word in the vocabulary, whereas dynamic embed-
dings can be different for the same word in different contexts
[38]. The two most well known methods for generating static
embeddings are GloVe and Word2Vec, which work in slightly
different ways but produce similar outputs [56] [67]. GloVe,
short for global vectors, is based on capturing global cor-
pus statistics and captures ratios of probabilities from word
to word co-occurrence matrices, and serves as a hybrid be-
tween count based methods and methods like word2Vec, due
to its linear substructure used for assessing vector similarity
[38] [67]. Word2Vec, on the other hand, is a predictive based
method, which uses logistic regression to distinguish between
the context and non-context words of a given target word, and
uses the learned weights of that classifier as the word embed-
dings [38] [56]. Both models have been applied to semantic
representation encoding and as a way to generate semantic
categories, although they are generally outperformed by dy-
namic embedding methods in cases where they are used for
next word prediction [10] [90] [80] [68].

Dynamic embedding models, in contrast to their static coun-
terparts, generate multiple embeddings for each word, based
on the different contexts in which that word is used. One of the
most well known dynamic embedding models is ELMO (em-
beddings from language models), which utilizes bidirectional

LSTMs, allowing it to consider context words both before
and after the target word for encoding [69]. EImo, however,
is limited in the sense that it considers the context from both
directions independently from one another, which limits its
ability to capture certain contextual dependencies [18]. Fur-
thermore, its training process is computationally expensive,
its performance is very dependent on the quality of the pre-
training tasks on which it was trained and it can still struggle
with longer sequences because of the vanishing gradients
problem inherent to almost all recurrent neural network archi-
tectures [38]. Therefore, more advanced models like BERT
and GPT have taken over ELMO’s prevalence in the Natural
language processing scene.

Such models are based on the transformer architecture, a
deep sequential learning approach which employs self atten-
tion layers [38] [18]. This allows transformers to directly
extract and use information from arbitrarily large contexts,
without needing to pass that information through intermedi-
ate recurrent connections, unlike Recurrent Neural Network
based approaches, which can suffer from forgetting context
that is further removed from the target input [38]. Transform-
ers thus allow for creating a more sophisticated manner of
representing how words contribute to the representation of
longer inputs. Transformers can serve as the basis for pow-
erful language models, which can be applied to embedding
generation tasks, but the unidirectional processing of standard
transformer encoders cannot take context information from
the right of the target word into account, which inhibits their
potential to fully account for the context they attribute to their
generated embeddings [38]. Despite this limitation, Unidirec-
tional transformer models, like GPT have still become wildly
popular in the field of NLP and have been successfully used in
semantic decoding studies as well [27] [90]. More advanced
models, such as BERT, short for Bidirectional Encoder Rep-
resentations from Transformers, overcome this limitation by
adopting a bidirectional transformer model which allows self
attention to span the entire input sequence rather than just
the preceding context of a target word [38]. Models such as
BERT have been utilized successfully in speech decoding,
semantic labeling, and semantic processing studies, and gen-
erally outperform simpler methods in next word prediction
tasks [10] [80] [90] [47].

BERT (Ours)

OpenAl GPT

G ; — " .

Qﬁ..@i@. | Qe+
D - @ || s i s T
%T/ DO DO O

Figure 5: Different model architectures for contextual embeddings.
BERT uses a bidirectional transformer. GPT uses a left-to-right
Transformer. ELMo uses the concatenation of independently trained
left-to-right and right-to-left LSTMs [18].

14

It is important to note, however, that none of the studies fo-
cusing on word embedding encoding have actually used such
semantic vectors for decoding isolated semantic representa-
tions directly. The semantic embeddings generated though
these methods, rather always played a more supportive role,
in the form of next word prediction candidate generation or
by using them in order to show how neural processes can fol-
low similar semantic trends as observed in such embeddings
[27] [90] [47]. The closest attempt towards direct embedding
decoding was conducted by Pereira and colleagues utilizing
fMRI data, who selected isolated concepts from clusters de-
rived from Glove and wWrd2Vec embeddings, and were able
to show that the reconstructed semantic vectors were more
similar to the true semantic vectors than they were to other
words [68]. Such work, however, involved the use of fMRI,
which limited the number of words that could be decoded, as
word had to be sufficiently separated in terms of their temporal
extent, due to fMRI’s lacking temporal recording capabilities
[68]. This also implies such an approach would hold no prac-
tical value for decoding purposes, as it would be incapable
of keeping up with the fast pace of natural speech [26] [83].
Furthermore, the words used for decoding were sampled from
clusters which were generated to be semantically different
from one another, which also limits practicality with regards
to handling natural speech [68]. In terms of the methods with
practical applications towards semantic decoding, such as
ECoG and sEEG, attempts towards direct semantic vector
decoding have not been made to date.

This lack of research pertaining to decoding word embed-
dings directly is most likely caused by the complexity that is
associated with such a task. For reference, BERT generates
768-dimensional embeddings, and even the smallest static
embedding models, such as word2vec, generate vectors that
are 100 dimensional [38] [18] [56]. Decoding such seman-
tic representations directly, amounts to a task of vector re-
construction, which requires the generation of very high di-
mensional data, from an often limited number of available
training samples in BCI studies. it could prove interesting to
see whether clustering the embeddings discussed so far can
result in semantic categories relevant for semantic decoding,
as this constitutes a much simpler decoding task. However,
as mentioned before, semantic categories limit the specificity
of possible decoders. Hence, a key priority should be the re-
duction of the dimensional complexity in embedding models.
This task is crucial for maintaining the distinguishability be-
tween various words, especially when the objective is to make
decoding of semantic representations, in the form of word em-
beddings, feasible within the constraints of data availability
prevalent in many speech decoding studies. The subsequent
subsection addresses specific methods aimed at simplifying
the complexity of semantic vectors.

2.3.2 Semantic vector and brain data dimensionality re-
duction methods

One of the main ways to reduce the embedding space’s com-
plexity is to make use of Principal Component analysis (PCA).
PCA is a linear technique that works by transforming high-
dimensional data into a lower-dimensional space through the
identification and selection of principal components, which
are eigenvectors representing directions of maximum variance
in the original dataset. These principal components capture
the essential information, allowing for dimensionality reduc-
tion while retaining the most significant features of the data.
[63].

Recent research on auto encoders, an encoder-decoder ar-
chitecture used for dimensionality reduction and reconstruc-
tion, has shown that such models are capable of demonstrating
superior performance over PCA in tasks such as image recon-
struction and that they can successfully be applied to reduce
the dimensionality of word embeddings [48] [2] [51] [94].
This advantage is attributed to the non-linear nature of neural
networks, the foundation of auto encoders, enabling them to
learn complex patterns beyond the reach of linear techniques
like PCA. Such architectures have also been utilized to effec-
tively reduce the dimensionality of vocoder parameters in an
ECoG and sEEG auditory speech reconstruction study [1].

Auto encoders are neural network architectures designed
for unsupervised feature extraction and consist of an encoder
and a decoder [22]. they learn to compress input data into
a lower-dimensional latent representation using the encoder
and then reconstruct the original data from this compressed
representation, using the decoder. The training process en-
courages the network to capture meaningful features, which
is encapsulated in the data after encoding. The reconstruction
error can be calculated through commonly used loss functions
such as Mean Squared Error.

It is important to emphasize the flexibility of both the en-
coder and decoder components, as they can be constructed
with various architectures, such as simple fully connected
layers, convolutional layers, or sequential layers. This adapt-
ability allows them to accommodate inputs of diverse formats
such as images, vectors or time series data [2] [48] [39] . Con-
sequently, an auto encoder doesn’t represent a rigid model
but serves as a framework for organizing neural networks in
different configurations, which can have different purposes.
Furthermore, auto encoders may be hierarchical, in the sense
that they can employ multiple layers in both their encoder
and decoder, which allows them to learn important features of
the input space at different levels of abstraction [50]. An auto
encoder for the purpose of dimensionality reduction, with
compression occurring through the encoder and reconstruc-
tion being taken care of by the decoder, can be observed in
figure 6.

There also exists a probabilistically informed variant of
the auto encoder architecture known as the variational auto

15

Figure 6: simple depiction of a 2-layer auto encoder. The encoder is
in orange and the decoder in blue. The latent representation is the
bi-colored node [22].

encoder (VAE). Unlike traditional auto encoders, VAEs are
generative models with a non-deterministic latent space. They
function by first projecting the input features into a Gaus-
sian probability density distribution, from which samples are
drawn in order to form the encoded latent space. Importantly,
these samples are drawn by reparameterizing the sampling
operation as a deterministic function,

ey

where () is the mean, (o) is the standard deviation, and
(¢) is a noise term drawn from the distribution [43]. This
reparameterization trick ensures that the sampling operation
is differentiable and allows for back-propagation with respect
to the parameters of the latent encoding, concerning the mean
and standard deviation [43]. The decoder then takes the sam-
pled latent encoding and decodes it back into the input di-
mensionality. Furthermore, the loss function for Variational
auto encoders include an additional regularization term, called
the Kullback-Leibler (KL) divergence term, which forces the
sampled latent space to be close to the predefined Gaussian
distribution[22]. The formula for KL divergence can be ob-
served in the equation below [43].

Z=U+O*E

kL(Pl0) =L Ptee (o1)

This equation measures the disparity between two prob-
ability distributions, P and Q. The KL divergence provides
a quantification of the information loss incurred when Q is
employed as an approximation for the true distribution P. By
incorporating the KL divergence as a regularization term, the
loss function forces the latent space to both capture important
patterns from the input as well as to be close to the Gaussian
distribution of the input. As a result, VAEs have the capability
to generate diverse and meaningful samples while providing
a continuous and robust latent representation [22]. Due to
their stochastic nature, VAEs are most often employed for
generative purposes, but they can also be used for dimen-
sionality reduction, due to their robust representation of the
latent space, which is especially beneficial in relatively small

(@)

datasets [53] [39]. A depiction of a simple variational auto
encoder, for the purpose of dimensionality reduction, can be
observed from figure 7.

O
O
O
©

N(p,a?)

O =
2 sampling »

O
Y

> »5
f sampling g

O
Q.

0000

Figure 7: simple depiction of a 2-layer variational auto encoder. The
encoder is in orange and the decoder in blue. The latent represen-
tation is the bi-colored node. note that the latent representation is
sampled from a Gaussian density distribution, which is generated
from the input data. [22].

In terms of use cases besides word embedding dimension-
ality reduction, as has currently been discussed, it is also
important to note that auto encoders could hold great poten-
tial for reducing the complexity of the incoming brain signals
used for decoding, especially when considering that this input
data is equally sparse as the number of available semantic
data, in speech decoding. Furthermore, auto encoders could
potentially act as a way to denoise brain data which could
make its semantically decodable features more salient. This
potential is already demonstrated in work by Chikkankod
and Longo who successfully utilized convolutional auto en-
coders for the tasks of dimensionaltiy reduction and artifact
removal in EEG data [12].While sSEEG data cannot benefit
from spatial models like convolutional auto encoders due to
its sparse and distributed nature, the flexibility of the auto
encoder structure allows for the adoption of sequence-based
or non-temporal fully connected architectures as well. Ex-
ploring whether such auto encoder architectures can similarly
contribute to leveraging sEEG data represents an intriguing
avenue for future research and is therefore discussed in more
detail in the methodology section.

2.3.3 Semantic decoding models

As mentioned before, the sparsely distributed nature of SEEG
limits the kind of deep learning architectures it can benefit
from. This is true because spatial models, such as convolu-
tional models are only really useful when the data is struc-
tured in a way that makes neighbouring channels carry related
information. Because sEEG is so sparsely distributed, gener-
ating a spatial grid from its channels would generate a very
sparse grid, which would need a lot of interpolated values to
be densely populated. Because of this, deep learning models
for decoding any sort of information from sEEG are mostly
comprised of traditional sequence models, which do not take
the spatial extent of the different channels into account. Such

16

models present themselves in the forms of RNNs, GRUs, and
LSTM models. The benefit of a simple RNN, when compared
to traditional feedfoward neural networks, is their ability to
capture temporal dependencies, since their hidden state can
be influenced by earlier activation of the hidden state [38].
Although simple RNNs provide the right idea by focusing
on more than just the current input, when determining their
output, they have difficulties with capturing long range depen-
dencies, because the weights in their hidden state have to be
updated in order to both provide useful information regard-
ing the current input as well as to carry forward information
required for future time-steps [38]. They also need to back-
propagate their prediction error signal through time, which
involves repeated multiplications of the gradients, ultimately
driving these gradients towards zero, thus losing the error
signal as the signal propagates through the network [38]. This
in turn inhibits learning long range context dependencies, and
makes the information encoded in the hidden states of RNNs
fairly local.

N)
Xy hy Yi
__/ _/

Figure 8: simple depiction of a recurrent unit, where the hidden
unit contains a recurrent connection as part of its input, such that its
activation is dependent on the previous activation of that same unit
from a previous time-step. [38]

In order to overcome these issues, an extension of RNNs,
called the LSTM, short for Long Short-Term Memory unit,
can be applied. Such models tackle the long range depen-
dency problem by removing information that is no longer
needed from the context and by adding information that is
likely needed later, through the use of explicit context lay-
ers and neural gates that control the flow of information in
the network [38]. The three gates used are the forget, input,
and output gates, and are used in each recurrent unit. In that
sense, the hidden state of each unit represents the short term
memory, whereas the recurrent unit, encompassing all the
gates, represents the long term memory [38]. The forget gate
deletes unnecessary context information from the context by
computing a weighted sum of the previous hidden layer state
as well as the current input and passes this sum through a
sigmoid activation function, resulting in a number between
0 and 1 which is then multiplied with the context vector via

= Cy

Xt

LSTM

=

Figure 9: A single LSTM Unit, with current input x¢, previous hidden
state ht — 1, previous context ¢t — 1, hidden state At and updated
context ct [38]

dot product to remove unnecessary information. The forget
gate is in essence a neural network of its own, which decides
which pieces of the long-term memory (unit-state) should
be forgotten, given the previous hidden state and the current
data point in the sequence. Subsequently, the importance of
the new information carried by the current input is quantified
by adding the current input to the activation of the previous
hidden state and passing the result through a Tanh activation
function, resulting in a number between -1 and 1 [38]. Nega-
tive numbers allow for subtracting information from the cell
state. The add gate is then used in order to determine which
parts of the new input data should be remembered, acting as
a filter, where outputs near zero indicate that the unit state
should not be updated. The results of the Sigmoid and Tanh ac-
tivations are then multiplied via dot product, and are added to
the unit state, resulting in an update of the long-term memory
of the network [38]. The input gate thus decides which infor-
mation should be added to the unit state. Lastly, the output
state decides the new hidden state, which in term decides the
output of the entire unit for the current time-step. It does so
by passing the current unit state through a Tanh function, after
which the previous hidden state and current input are added
and passed through a sigmoid activation neural network. The
resulting vector acts as a filter, which is applied to the Thanh
activated unit state in order to update the actual hidden state
of the recurrent unit [38]. This complicated memory structure
allows LSTMs to capture long range context dependencies
by focusing on important context information and forgetting
less relevant information, whereas the encapsulating nature of
each unit allow for maintaining modularity, when combining
LSTM architectures with other deep learning networks. Gated
Recurrent Units, work in a similar manner as LSTMs but have
fewer parameters and gates, which makes them faster to train
but also less powerful [38].

It is important to note that more advanced versions of the
aforementioned traditional sequence models do exist, such as
bidirectional sequence models, sequence models with skip-

17

connections, other wise called residual nets, and transformer
models [38]. However, all of these models present drawbacks
pertaining to increased complexity, which makes them un-
suitable for most decoding tasks, given the constraints per-
taining to data availability in most decoding studies. This
increased complexity is caused by the increase in model pa-
rameters attributed to these more advanced models. Bidirec-
tional models include a second hidden state for processing
the sequence from right to left, which roughly doubles the
model parameters for each layer [38]. Sequence models with
skip-connections on the other hand, are only really useful
when using deeper networks, and the networks used for de-
coding in most studies do not reach the depth at which having
residual connections becomes advantageous, because there
is simply not enough training data to utilize actually deep
neural networks in the first place [38]. Lastly, transformer
models, on which BERT is based, are some of the most com-
plex sequence models to date and require far more data than is
available for decoding [18]. This, combined with the fact that
no pre-trained transformer models for the purposes of seman-
tic decoding are available, makes their application infeasible
with respect to semantic decoding.

The more straightforward traditional sequence models have
been employed in certain SEEG studies. For instance, one
study involving an sEEG subject employed an LSTM based
model to automatically separate audio signals from mixed
speakers, comparing each speaker with the user’s neural data,
and amplifying the speaker that best matched the neural data
to assist the user [30]. Furthermore, Kohler and colleagues
have used GRU based encoder-decoder networks, in combi-
nation with 1D-CNNs, which are introduced later on, in order
to reconstruct audio from sEEG recordings [45]. As can be
seen, the number of SEEG decoding studies is quite limited,
which underlines the gap in research pertaining to the use of
sEEG for any sort of decoding purposes. Therefore, besides
focusing on methods that are purely relevant for SEEG, certain
spatial methods could hold potential for SEEG as well.

For recording methods which incorporate a spatial struc-
ture, such as ECoG or EEG, deep learning approaches focus-
ing on the spatial extent of the input data have also shown
promising results. These approaches predominantly consist
of deep convolutional neural networks, which in essence are
basic neural networks with some additional prepossessing
applied to them. This prepossessing is performed in the form
of convolutional filters, which operate on a 1D, 2D, or 3D
input signal and compress the signal based on element wise
multiplication with the filter [66]. The paramaters such mod-
els aim to learn during training are the actual filter weights,
which are shared between each convolutional layer. In doing
so, convolutional neural networks can identify both spatial
and hierarchical patterns in images and other forms of multi-
dimensional input data, such as multi-channel EEG data [79].
The ability to analyze the spatial extent of the data has led
CNN models to be particularly useful in tasks where the aim

is to decode multiple channels of brain signal data, where
they perform admirably, when compared to more traditional
decoding methods [78] [79].

Flattening

-»

Channels

i

32x 40

2 x 4096 features
Channel x Time

Figure 10: visualization of a sample CNN architecture for multi-
channel EEG data. The dimensionality of the input data is reduced
with every convolutional layer, in order to increase the CNN’s re-
ceptive field with respect to the input data. After convolution, the
resulting feature maps are flattened to a 1D vector, such that they
may be fed into a fully connected layer [78].

More recently, studies have shown that adopting methods
which incorporate both the spatial and temporal of the input
data can significantly improve decoding performance. Such
spatiotemporal models present themselves in the form of con-
volutional LSTMs. Such models can be beneficial when a
multitude of sensors are employed to record brain activity.
Convolutional LSTMs have successfully been used in such in-
stances in by integrating the spatial placement of sensors in or-
der to improve decoding performance. One study transformed
EEG data from multiple sensors into its time frequency distri-
bution through wavelet and Fourier transforms, which allowed
it to be fed into a CNN, whilst benefiting from the time de-
pendencies introduced by the inclusion of an LSTM memory
component, resulting in improved decoding performance for
binary motor cortex activation [89]. In the realm of speech
decoding, Convolutional LSTMs have been used in order to
predict whether EEG data would match speech envelopes [58].
Although predictions like these were binary, in the sense that
they would only predict whether a certain EEG and speech
envelope pair were a match, their performance in these tasks
was still impressive. There have also been efforts towards
multi-class imaginary speech recognition systems through the
use of Convolutional LSTMs, with one study achieving rela-
tively high prediction accuracy for a small set of utterances,
phonemes and words [74]. While most of the Convolutional
LSTM approaches are hierarchical in nature, meaning that
the results of convolutional layers are passed onto the LSTM
layers, there have also been successful attempts focusing on
disjointed architectures, which first separately learn the spatial
and temporal features of the data [77]. These representations
are concatenated afterwards and fed into a fully connected
neural network, which can then exploit both types of features
simultaneously, as depicted in figure 11. All in all, Convolu-
tional LSTMs as well as traditional CNNs have been shown
to hold a lot of potential in the realm of neural decoding, but
their application to sEEg data remains limited, due to the

18

sparsely distributed nature of SEEG electrode implantation.

Figure 11: visualization of a sample disjointed CNN-LSTM archi-
tecture, in which temporal and spatial features are first learned sepa-
rately, and concatenated afterwards [77].

However, not all spatial models require a dense and struc-
tured grid of data in order to be successfully utilized. Despite
earlier having mentioned that spatial models are unsuitable
in combination with SEEG, given the sparsely distributed
nature of the sEEG data, convolutional models can still be
successfully applied, if one shifts their attention from spatial
properties in the data towards temporal properties. This can be
achieved through the use of 1 dimensional convolutional neu-
ral networks, whose filters only span the temporal extent of
the data and not their spatial extent, as can be observed in the
left-hand image in figure 12 . In doing so, an alternative to tra-
ditional sequence models can be created, in which the model’s
convolutional filters exclusively learn local temporal features.
While LSTMs and GRUs are theoretically stronger models
and can in theory learn to model arbitrarily long dependencies
between their inputs, the approach of applying convolutional
filters at various positions in each channel sequence could
potentially lead to learning interesting local patterns in the
data [37] [73]. Such models have been successfully applied
with SEEG data in work by Kohler and colleagues, as men-
tioned earlier, in which 1D-CNNs were used to down-sample
the SEEG data into a lower temporal format whilst extracting
relevant temporal features. [45]. It could, therefore, be inter-
esting to see whether SEEG semantic decoding could benefit
from such an alternative temporal model, inspired by spatial
models.

Furthermore, although spatial temporal models hold no
direct potential for decoding semantic information from sEEG
signals, they could be incorporated if a multitude of SEEG
electrodes were to be placed in a structured 3D grid. The
number of electrodes required for such a spatial representation
would make sEEG more invasive than ECoG, but only when
all electrodes are placed within the same patient. This issue

1-DKemel 1-DKemel
[DI (Time)] [E (Channel)] [@ Z'DK"“']
m . m - m i
F Output o i RS

Figure 12: three types of convolution for the purpose of multichannel
time series data (from left to right): convolution in time, convolu-
tion in channel, and convolution in both channel and time. colored
squares represent independent time series, whereas gray values indi-
cate mixed channel values [78]

could be mitigated if this structured grid was generated from
electrodes placed among several subjects, which is why the
following subsection delves into how combining SEEG data
from multiple patients could take place.

2.3.4 Cross subject SEEG data combination

One of the difficulties in building neural decoders from brain
data in general, pertains to the inter-patient differences in
electrode placement and frequency, which makes direct com-
parisons between different users more difficult and inhibits
the development of more generalized decoders, which incor-
porate data from multiple patients [70]. Work by Peterson
and colleagues demonstrated that by mapping ECoG data
from multiple patients onto common regions of interest, a
more robust model for decoding motor activations could be
created [70]. While their approach was quite complex in the
sense that it did not simply map local electrode activations
to a structured grid, but rather to common brain regions, they
discuss that it would have been possible to do so. SEEG might
benefit from a similar approach that aims to map these brain
regions onto a structured grid. However, it remains uncertain
whether integrating combined SEEG data would enhance se-
mantic decoding performance. The study by Peterson and
colleagues focused on motor decoding, and the debate on
the shared representation of semantic processes is ongoing.
Neuroimaging studies suggest some independent, contiguous,
and similarly localized elements in neuro-semantic represen-
tation [23]. At the same time however, neurocomputational
models of semantic cognition exhibit conjoint, anatomically
dispersed, heterogeneous, and potentially differently localized
representations across individuals [23]. Despite this uncer-
tainty, it could be interesting to see whether the combination
of SEEG data could yield semantic decoding performance
improvements.

19

3 Methodology

This section elaborates on the methods used in this paper in order to answer its research question pertaining to the feasibility of
decoding semantic information from sEEG data recorded from epilepsy patients. This chapter adopts a similar structure as was
seen in the related work section, in that the brain data preparation steps are discussed first, after which the decoding tasks are
elaborated on and instantiated. This order is maintained such that the inputs and outputs of the decoding models may be clear
before they are introduced, negating any confusion regarding the tasks they aim to accomplish. Furthermore, since this study is
based on previous internal work, conducted at the UMCU, many of the pre-processing steps had already been implemented,
which is why a clear distinction is made between the parts of the project that were already in place, and the parts that were
introduced in this study. a schematic overview of this study’s pipeline can be viewed below, which serves to guide the individual
subsections of the methodology.

Syllable
Classification

Motor

Decoding

Semantic
Decoding

Semantic
Clusters

Embedding
econstructiol

l
@

RNN
GRU
LSTM

1D-CNN

Embedding
Dimensionality
Reduction

Figure 13: This study’s main pipeline as described in the Methodology

20

Figure 14: sEEG Electrodes implantation for participant 1 (left) and
participant 2 (right)

3.1 Data Collection

This study’s input SEEG data was obtained from two native
Dutch participants with medication-resistant epilepsy, who un-
derwent temporary implantation of SEEG electrodes, in order
to localize the origin of their seizures and assess the possibil-
ity of removing the associated brain tissue. Participants gave
written informed consent to participate in scientific research
based on the utilization of their SEEG recordings, obtained be-
tween clinical procedures, and the use of these recordings was
approved by the Medical Ethical Committee of the University
Medical Center Utrecht in accordance with the Declaration
of Helsinki. every patient underwent a pre-operative MRI
scan and post-operative CT scan for the purposes of both lo-
calization and placement of the electrodes. Depth electrodes
were 0.8 mm in diameter with 5 to 18 contact points. The
electrodes were placed into the left (participant 2) or bilat-
eral (participant 1) hemispheres, mainly including temporal,
parietal, and occipital cortices, as can be seen in figure 14.

Data collection was conducted at University Medical Cen-
tre in Utrecht in the [EMU unit. During the experiment, words
were presented to the participants on separate pages on a Mi-
crosoft Prime tablet using a software package called Presen-
tation software (Neurobehavioral Systems) [64]. Participants
could hold the tablet according to their own comfort and read
the pages at their own pace. SEEG recordings were acquired
using Micromed at a sampling rate of 2048 Hz, filtered at
0.3-500 Hz.

The experiment from which both the semantic data as well
as the sEEG recordings were obtained consisted of a natural
language task in which the subjects were instructed to read
aloud chapter one of Harry Potter and the Sorcerer’s stone
in Dutch. The semantic data consisted of all the words pro-
nounced by each subject as they read the chapter. The chapter
was divided into two runs, dividing the chapter into roughly
equal parts in terms of their word count, which was done in or-
der to minimize the strain on the patients. Finishing each run
took approximately 15 minutes, after which participants were
given a short break. The audio recordings were acquired using
an external microphone (Samson Q2U dynamic USB micro-

21

phone), connected directly to the tablet, and controlled within
the Presentation software. Microphone data were recorded at
16000 Hz. Synchronization of the neural recordings with the
task, as well as with the recorded audio, was achieved based
on event codes sent from stimulus presentation software to
the Micromed system.

3.2 Python Libraries

The tasks in this study were implemented using the Python
programming language, which is one of the most popular
languages for data analysis and machine learning [71]. The
most commonly used packages in this study can be observed
in table | below.

Table 1: Commonly used Python packages

Package Purpose

Pandas Data structure generation and manipulation

Torch Deep learning and tensor computation

TensorFlow Deep learning and tensor computation

Keras Deep learning interface for TensorFlow

Transformers | Contains pre-trained transformer models

NumPy Support for large, multi-dimensional arrays, matrices, and mathematical functions

Sklearn Machine learning and statistical tools

NLTK Natural language processing

Pyphen Text hyphenation for Python

Matplotlib Data visualization

Seaborn Data visualization

PyNSL python equivalent of NSL, used for spectogram audio computation

SciPy Statistical analysis library

Azure Management and use of Azure resources from Python application code
3.3 sEEG data pre-processing

The sEEG data utilized in this study had already been pro-
cessed to an extent where it could be directly used in a decod-
ing pipeline. These steps included filtering out noisy channels,
re-referencing the signal through the Common Average refer-
encing Method (CAR) and removing power line noise (S0HZ)
[6]. After these initial steps, the electrode data was converted
into the time-frequency domain through the application of
the Short-Time Fourier Transform (STFT), from which the
activations in the High Frequency Band range (60-150HZ)
were obtained by averaging amplitudes for the entire range
of extracted frequencies [44]. Finally, the High Frequency
Band power spectrum was re-sampled at 100HZ in order to
facilitate analysis later on.

In addition to the already implemented pre-processing
steps, some additional steps were taken in the current study,
in order to further enhance the usability of the SEEG data for
decoding purposes. These steps include de-trending the signal
for each channel, as some long-term trends became apparent
after visually inspecting each channel. Such long-term trends
are likely irrelevant for decoding, as activations for each word
rarely last longer than a second, meaning that these trends
are likely not-informative for decoding individual words. the
results of de-trending can be observed in figure 15.

(b) after de-trending

(a) before de-trending

Figure 15: sEEG activations before and after de-trending

Furthermore, values that were more than two standard
deviations away from the mean of each channel were clipped
to be twice the standard deviation. This was done in order to
reduce the effect that outliers could have on the data during
data normalization, which in turn is necessary to facilitate
convergence during decoding. Normalization is discussed at
the end of this study’s methodology, however, as it is more
concerned with model instantiating than the more general
data preparation discussed here.

Lastly, utilizing 1D convolutions as an alternative to the
method of down-sampling the spectrum data to 100HZ was
considered, due to the technique’s ability to learn variable
temporal patterns from the original data, rather than applying
a static down-sampling technique. Its implementation was
ultimately canceled, however, due to insufficient evidence for
the current method’s inefficacy to keep any existing temporal
patterns in tact. 1D convolutions are applied in other areas
of the methodology, however, as will become evident in later
sections.

3.4 Speech Transcript generation and align-
ment

The audio data acquired during the task has been subjected to
a similar amount of pre-processing as was seen in the SEEG
data pre-processing section. The Microsoft Azure Cognitive
Services were used to generate transcripts from audio record-
ings. In particular, Azure speech-to-text service was used to
provide transcripts in a TextGrid format, obtaining informa-
tion about each time instant at which words were pronounced
(onset and offset time). Even though the Microsoft Azure
Cognitive Services have been proven to accurately generate
speech to text files, this process always requires additional
validation, due to the importance of the alignment between
onset and offset times corresponding to the audio, as these
are crucial in selecting the correct sSEEG sequence [41].
Therefore, the transcripts were validated using Praat, which
is a software package designed for the phonetic analysis of
speech signals [7]. Utilizing Praat allowed for checking the
audio alignment, and the quality of the transcriptions. Fur-
thermore, by using praat, the Word Error Rate (WER) for the

22

transcripts could be computed, which is defined by the num-
ber of incorrect words identified during validation divided by
the total number of words. The resulting WERs are shown be-
low in figures 2 and 3. Selecting brain activity correspondent
to each word could then be performed by utilizing the onset
and offset time, at which each word was spoken, derived from
the TextGrid file. The specifics of these timings are discussed
in a later section, as they depend on the task for which the
brain data is used.

Table 2: Word Error Rates (WER) for subject 1

Word detection count error detection count error percentage [%]

run 1 2437 132 542
run2 2375 122 5.15
total 4812 254 5.28

Table 3: Word Error Rates (WER) for subject 1

Word detection count error detection count error percentage [%]

runl 2594 133 5.13
run2 2051 157 7.65
total 4645 290 6.24
3.5 SEEG feature selection and de-noising

through Auto Encoders

Earlier work, conducted at the UMCU, has already shown
that at least some of the electrodes in each patient are related
to the speech envelope, generated from the audio recorded
during the reading task. The speech envelope corresponds to
the slow overall amplitude fluctuations of the speech signal
over time, with peaks occurring roughly at the syllabic rate,
and has been shown to correlate well with activations in the
auditory cortex as well as motor processing and continuous
speech perception [4] [5] [46].

The speech envelope was computed, utilizing the python
library pyNSL, which is the python equivalent of the Matlab
NSL toolbox developed by Chi and colleagues, and computes
the sound spectrogram following the biological model of
sound processing by the cochlea [11]. The spectrogram was
extracted at 8 ms frames along 128 logarithmically spaced
frequency bins in the range of 180-7,200 Hz. The spectogram
data was then averaged over the frequency bins to obtain a
1D spectral sound envelope. The resulting spectral envelope
was down-sampled to 100 Hz to match the sampling rate of
the sSEEG Sequence data. The resulting speech envelope was
plotted alongside the HFB sEEG data, as can be seen in figure
16.

in order to assess the relationship between the speech enve-
lope and the HFB sEEG data, the non-parametric Spearman
correlation coefficient was calculated for each channel. To
account for the time lag between these two quantities, the
correlation for each lag between the two signals in a range of

M“MMWM i

MMMWHLMMMHNMM

(@) (®)

Figure 16: High gamma activity [60-150 Hz] tracking the speech en-
velope. Panels a and b depict results for subject 1 and 2, respectively.
The speech envelope is depicted in blue, whereas the HFB sEEG
data for channels 52 (sub-1) and 26 (sub-2) are shown in orange.

-200ms to 200ms with 10 ms steps was computed. Afterwards,
one value of correlation for each electrode was obtained by
taking the the maximum correlation over the time lags.

These correlations between the speech envelope and elec-
trode activations were bootstrapped by shuffling the sSEEG
recordings into 10 second blocks, in order to obtain a random
distribution of brain activity. This shuffling was performed
1000 times and the correlations between the shuffled brain
data and speech envelope were calculated and saved during
every shuffle. In doing so, the actual correlations between
electrode activations and the speech envelope could be com-
pared to the correlations from the random distributions, and
the p-value for each electrode could be calculated as the ratio
between the number of correlations greater than the actual
correlation and the number of iterations. Setting the p-value at
0.01 allowed for calculating which of the electrodes showed
sadistically significant correlations with the speech envelope,
as can be seen in figure 17.

As can be seen from figure 17, however, most of the elec-
trodes for each patient showed either no significant correlation
or a very moderate correlation of 0.05 < r < 0.1, indicating
that many of the electrodes would most likely not aid in de-
coding semantic information and would likely represent some
form of noise as far as the decoding models were concerned.
Furthermore, having more channels could add complexity to
the input space, especially if most of these channels did not
contain any decodable information. In order to both reduce
the complexity of the input space and to remove some of the
noise represented in uncorrelated channels, a special type of
neural network architecture introduced in the related work sec-
tion, called the auto encoder was applied. As was mentioned
before, the purpose of such models is mainly to reduce the
dimensionality of the input data by aiming to reconstruct the
input data from a reduced latent space, also called a bottleneck
layer. In doing so only the most important information of the
input data could be preserved in the bottleneck layer, which
effectively removes noise and decreases the data’s complexity.

Since the sEEG recordings were represented as multi-
channel sequence data, two overarching types of auto en-
coders cold be applied here, namely sequence auto encoders,

23

r values of correlation between speech envelope and neural activity in HFB p < 0.01

% I

0.05<r<0.1
01<r<02
02<r<03

- 03<r<04

- 04<r<l

8

channels

1 2

Figure 17: Channels with significant correlation (p < 0.01) between
speech envelope and neural activity in HFB. The color bar represents
different values of correlation. Full number of channels sub 1 =99,
sub 2 =79.

which take the temporal relationships of the data into account,
and feed-forward auto encoders, which simply process one
time-step at a time. The benefit of utilizing sequence auto
encoders is that they may uncover temporal relationships that
could have been missed by feed-forward networks, and may
thus better capture semantic patterns which arise over multi-
ple time steps rather than instantly. A benefit of feed-forward
auto encoders, on the other hand, is that they are less complex
and have more training data to work with, since each sequence
consists of multiple time-steps, which can be separately fed
into the feed-forward auto encoder. To see which model is bet-
ter suited for this study’s needs, both types of auto encoders
were implemented.

it .. A B
Encoder | S S S S Decoder
- \) 1 1 \ -
MM = MM

" Bottleneck

Input sequence Reconstructed sequence

LSTM-autoencoder Model

Figure 18: LSTM auto encoder architecture. The input sequence is
first encoded into a lower dimensional latent space using a two-layer
LSTM encoder, after which it is decoded using a two-layer LSTM
decoder. Figure from reference [19].

Furthermore, a variational version was created for both
types of auto encoders as well. This study utilized variational
auto encoders (VAEs) in a slightly non-traditional way, be-
cause such models were applied without the use of the KL,

divergence regularization term, discussed in the related work
section. This was an intentional choice, because the KL di-
vergence term forces the latent space to follow a Gaussian
distribution learned from the combination of all inputs. How-
ever, by forcing the latent space to adhere to the Gaussian of
all inputs, some of the latent space’s differentiability is lost,
meaning it can generalize the data too much. By removing the
KL divergence term, whilst still sampling from the Gaussian
distribution in a way that makes that sampling differentiable
(reparameterization), the model could focus on extracting rel-
evant mean and standard deviation parameters, solely for the
purpose of improving reconstruction error. Choosing this ap-
proach involved a trade-off as such a VAE sacrifices most
of its generative capabilities. However, early testing revealed
a significant improvement in results by omitting the KL di-
vergence term, and given that generative capabilities were
irrelevant for the current study, the decision was straightfor-
ward. Therefore the variational auto encoder could better be
described as a hybrid between regular auto encoders and vari-
ational auto encoders.

In summary, four types of auto encoders were applied with
the purpose of applying both feature selection and de-noising
to the input sSEEG data. More specifically, the feed-forward
auto encoders consisted of single layer encoders and decoders
with Leaky-ReLu activations. The sequence models, on the
other hand, featured dual layer LSTM encoders and decoders,
in order to extract more complex temporal patterns from the
input data. Since these models have their own activation func-
tions built-in, no additional activation functions were applied.
Furthermore, the Sequence models were configured to return
the entire input sequence, without compressing the temporal
extent of the data, because there is currently no evidence that
doing so would increase performance, and because preserving
the temporal extent of the data keeps the matching between
the SEEG data and the audio recordings intact, which makes it
easier to apply the resulting compressed data later on. Lastly,
the variational auto encoder variants of each type of auto
encoder also featured a separate hidden layer, which repre-
sented the Gaussian distribution of the input data, through
its associated mean and standard deviation parameters, and
contained 256 hidden units. For all models, the bottleneck
layers were set at 30 units, meaning that the input SEEG data
would always be reduced to 30 channels. The models were
trained under the Mean Squared Error (MSE) loss function,
and under the Adam (/r = 0.01) optimizer. All models were
implemented in PyTorch, which is a commonly used deep
learning library. An overview of the differences between each
architectures can also be viewed in table 4.

Besides measuring model performance in terms of train-
ing and validation loss, a more tangible performance metric
presents itself in the form of the electrode correlations to the
speech envelope, discussed earlier. The assumption here is
that if the reduced sEEG data show better or at least similar
correlations to the speech envelope, one can generally assume

24

Table 4: different Auto Encoder architecture characteristics,
AE = auto encoder, VAE = variational auto encoder

| AE | VAE | LSTM AE | LSTM VAE

temporal extent (time steps) 1 1 variable variable
Gaussian distribution layer No | Yes No Yes
number of encoder/decoder layers | 1 1 2 2

that the auto encoders were successful in keeping the criti-
cal data intact, whilst removing redundant information from
the sEEG data. Therefore, channel correlation to the speech
envelope constitutes the main performance metric for these
auto encoder models, as it serves as a more transparent per-
formance metric than the model losses, which by themselves
give no representation of the usefullness of the compressed
sEEG data.

3.6 Semantic representations and decoding
tasks

3.6.1 Large Language models and word embeddings

As mentioned in the related work section, this study explores
two major ways in which decodable semantic representations
can be extracted from the validated speech transcripts, gen-
erated from the audio recordings. The first of these methods
involves generating word embeddings through the application
of large language models, and has been used in this study’s
predecessor as well, through the use of the BERT language
model, which generates contextual word embeddings. This
means that one word can have multiple embeddings based on
the context in which it was used. Beside utilizing contextual
word embeddings models, this study also makes use of static
embedding models, which learn one fixed word embedding
for each unique word. Such models are less complex, because
the embedding for each unique word is based on global con-
texts, rather than individual context occurrences, meaning that
all the different contexts in which a single word can occur are
squished into one representation for that word. for example,
consider the following two sentences:

“The man was accused of robbing a bank.”
“The man went fishing by the bank of the river.”

A static model would consider both instances of the word
bank to be identical, whereas a contextual model, like BERT,
would consider these words to have different meanings. This
makes contextual models better for word sense disambigua-
tion tasks, where the goal is to infer the correct meaning of a
word based on the context in which it appears. On the other
hand, the increased complexity of contextual word embed-
ding models may increase the difficulty of decoding semantic
information from brain data, as contextual models generally
represent the semantic information in a much more high di-
mensional format, when compared to static models [18]. This

is a direct result of the contextual nature of such models, as
they need far more expressability in order to differentiate
between different word senses. This is the main reason for
considering both contextual and static embedding models,
as the dimensionality of the input data, corresponding to the
number of electrodes implanted in each patient, is far lower
than the dimensionality of the word embeddings generated
through a contextual embedding model, like BERT, which
generates 768 dimensional word embeddings. An in depth
overview of how these different model architectures are used
is given in the following two subsections, after which this
study’s alternative to word embedding models is presented.

3.6.2 Contextual embeddings through BERT

As mentioned in the related work section, BERT is a bidirec-
tional encoder transformer model, meaning that it uses the
self-attention mechanism, which allows it to handle arbitrarily
long sequences, and its bidirectional nature allows it to pro-
cess context on both the left and the right side of a target word.
Its architecture consists of 12 layers and 768 hidden states [?
]. Transformers need an enormous amount of data in order to
be properly trained, which is why BERT is already pre-trained
on a vast text corpus, meaning that it has already learned the
vector representations of many words. Furthermore, BERT’s
tokenizer divides a word into the sub-words that make up that
word, which allows it to check the sub-words as well, if any
of the words it encounters should be outside of its vocabulary.
BERT can be further fine-tuned for specific downstream tasks,
but this is not necessary for the purposes of this study, as only
the embeddings from BERT’s hidden state are required for the
current decoding tasks. What is required for this study, how-
ever, is a Dutch pre-trained version of BERT, as this study’s
reading task was carried out in Dutch. To that end, a Dutch
monolingual version of BERT, called "BERTje", was used as
the model of choice, due to it having fewer out of vocabulary
words than the other available dutch BERT models. In order
to convert the speech transcript words into embeddings, the
following steps were carried out in a similar fashion as in the
UMCU’s earlier work:

¢ Out of vocabulary words were removed from the word
list.

¢ The BERT model and tokenizer were loaded.

* Each input sentence was marked with start "[CLS]" and
separator tokens "[SEP]".

» The words were then tokenized using the tokenizer.

* afterwards, each token was assigned to a unique token ID
and an index denoting its position within the sentence.

* each sentence was then given its own segment-id, which
allows for distinguishing between different sentences.

25

() ()))))))) o)

+ + + + + + + + + + +
+ + + + + + + + + + +

Figure 19: BERT input representation. The input embeddings are
the sum of the token embeddings, the segmentation embeddings and
the position embeddings [18].

Input

Token
Embeddings

Sentence
Embedding

Transformer
Positional
Embedding

* finally, the BERT model was applied to each sentence,
where the last four layers of the model were summed in
order to generate the embeddings.

768 dimensional embeddings for all of the words that were
in BERT’s vocabulary were obtained by following these steps,
utilizing the huggingface transformers library. After having
generated the word embeddings, stop words and other words
with low semantic quality were removed, utilizing NLTK’s
stop-word package, which includes an extensive list of dutch
stop-words. Furthermore, words which did not relate to the
task, mostly consisting of sentences spoken before or after
reading the chapter, were removed as well. In doing so, only
1889 words out of the original 4812 remained for subject 1,
whereas for subject 2 only 1486 of the original 4645 words
were left. Note that subject 2 lost much more of its word
count, due to the presence of multiple unscripted sentences in
subject 2’s data.

Table 5: word count before and after stop-word and error
removal for subjects 1 and 2

sub1 sub 1 postremoval sub2 sub 2 postremoval
runl 2437 961 2594 754
run2 2375 928 2051 732
total 4812 1889 4645 1486

A visual representation of some common words in the
embedding space can be generated through Sklearn’s t-SNE
package, which can visualize high dimensional data in a 2D
space. Doing so highlights the efficacy of embeddings in
keeping related words close together in the semantic space, as
can be seen from figure 20. From this figure, one can observe
that pairs of similar words such as meneer (sir) and mevrouw
(madam), straat (street) and hoek (corner), nek (neck) and
snor (moustache), mantel (coat) and laarzen (boats) all appear
close to each other in the semantic space.

3.6.3 Static embeddings through Wikipedia2Vec

In contrast to the contextual BERT model, generating word
embeddings pre-trained static embedding models such as
Word2Vec or GLoVe does not require any special formatting

-250 200 -150 -100 -50 [50 100 150

Figure 20: 2D representation of some common words in the BERT
embedding space, generated using t-SNE

or pre-processing. A pre-trained model can simply be down-
loaded and its embeddings can be retrieved by querying the
list of embeddings based on their word labels. Finding dutch
pre-trained embedding models, however, is more problematic,
when compared to the BERT model, since there are no pre-
trained GLoVe models for the dutch language. Luckily, there
are some pre-trained Word2Vec models available, such as
the Wikipedia2Vec model, which contains pre-trained embed-
dings for twelve languages, including Dutch. Wikipedia2Vec
is trained according to the skip-gram model, which is one
of the original training models with which Word2Vec was
originally introduced [38].

skip-gram works by training a probabilistic classifier that,
given a target word and a context window, assigns a prob-
ability based on how similar this context window is to the
target word. The learning algorithm for skip-gram embed-
dings is given an initial random embedding vector and learns
to maximize the similarity of the target word and the contexts
that occur with it in the training corpus, whereas it learns to
minimize the similarity between the target word and contexts
which do not appear nearby in the training corpus. In doing so
it adjusts the embedding vectors, which are the model weights,
such that similar words which occur in similar context are
associated with similar embedding vectors. After training, the
classifier is discarded and the embeddings are extracted from
the model’s hidden state.

Wikipedia2Vec offers both 100 dimensional as well as 300
pre-trained dimensional embeddings in Dutch. The 100 di-
mensional embeddings were selected for this study, because
the main reason behind using static embeddings, was for them
to serve as a less complex alternative to the contextual em-
bedding models, mentioned in the previous subsection. After
having downloaded the dutch pre-trained Wikipedia2Vec em-
beddings, the labels from the bert model were used to select
the appropriate Wikipedia2Vec embeddings, since comparing
these models requires using the same labels for each model.
Afterwards, the electrode activations were mapped to the ap-
propriate embeddings, based on the word they were originally
paired with. Due to Wikipedia2Vec’s static nature, multiple

26

O\ Input layer
o\
Xpe
W'\
el
) \ 5% Output layer
B\ Hidden layer e
| \ -
9
X2k <'>wvw h, Wiy
N
. 87 / N-dim
' =
S Wiy
x o/
OV CxV-dim

Figure 21: The word2Vec model’s skip-gram architecture [56]

electrode activations, referring to the same word in a different
context, were mapped to the same static embedding for that
word, resulting in a more sparsely populated semantic space.
A visual representation containing embeddings for the same
words as in the BERT model example can be observed in
figure 22. As can be seen, the embedding space is indeed far
more sparsely populated with only one embedding per word
label. Note that, although the coordinates of each embedding
are different, when compared to BERT, the overall similarity
patterns are quite similar, with similar words again appearing
close together in the semantic space.

150

120 100 50 60 40 20 o 20

Figure 22: 2D Wikipedia2Vec embedding representation of the same
words from the BERT embedding space, generated using t-SNE

3.6.4 Clustering word embeddings

Besides using the embeddings generated through BERT and
Word2Vec for decoding directly, they can also be used to gen-
erate semantic categories, the decoding of which can be seen
as a classification task, which is much simpler than trying to
reconstruct the vectors themselves. The clustering was per-
formed according to a distance function, which measured how
far apart different vectors, or embeddings in this case, were
from one another in the vector space. The distance function
utilized in this study for this task, and for almost any other
task that follows, is based on the cosine similarity function, de-
scribed in the equation below, which knows many applications
in the fields of Natural language processing and information
retrieval [82] [25].

_AB LiiAiBi
= A B - n n
AllBl Sy, a2 B2

As can be seen from equation 1, cosine similarity is essen-
tially the normalized dot product of two vectors. Its appeal,
when compared to other similarity functions and other dis-
tance functions, is that it only considers the angle between
the two target vectors and is not influenced by the vector’s
absolute values , meaning that it is scale-invariant, which is
very helpful when dealing with high-dimensional data, where
the importance of individual dimensions may vary, and scale-
invariance becomes crucial. Furthermore, in high-dimensional
data, the impact of outliers in one dimension can be dispropor-
tionate. Cosine similarity is less sensitive to outliers, making
it more robust in the presence of noisy or outlying data points.
Due to these advantages in cases of high-dimensional data,
Cosine similarity and its complementary measure, cosine dis-
tance, defined to be 1 — cos(0), form the basis for most of the
comparison metrics utilized in this study. Utilizing NLTK’s
clustering package with cosine-distance as its distance func-
tion allowed for generating clusters of both the static and
contextual embedding spaces.

The number of clusters for each embeddings space was set
to 5, resulting in the generation of 5 semantic categories for
the purpose of decoding. This number was chosen in order
to keep the complexity of the decoding task within a feasible
range, and matched the number of categories that were used in
the motor decoding task that is discussed in the last subsection
of the tasks. The semantic content of the clusters and the
cluster distributions are presented along with the main results
of this study, as the differences between the contents of each
cluster could be related to differences in model performance.
These differences themselves can also be considered as part
of the results as they indicate how semantic encoding may
differ between different models.

All in all, by utilizing clustering techniques, the complexity
of the decoding task could be greatly reduced from trying to
reconstruct high dimensional vectors, to a standard classifica-
tion problem. Do note, however, that cluster classification is a

cos(0) 3)

27

less precise task than semantic vector reconstruction, meaning
that some of the differentiability between the different words
is lost, due to the more overarching nature of clustering, but
this trade-off seemed more than worth it, when taking into
account this study’s low data availability, combined with the
original complexity of the decoding task.

3.6.5 semantic space dimensionality reduction using

Auto encoders

As can be observed from the previous sections, one of the ma-
jor goals of this study was to simplify the tasks, both from the
input data as well as the semantic representation perspectives.
For the semantic representations, this trend could already be
seen in the application of a static embedding model, which is
inherently less complex than a contextual embedding model,
and through the application of clustering methods in order to
further simplify the representations. Besides selecting models
with less complexity and utilizing clustering, one can also
aim to reduce the complexity of an existing model by reduc-
ing the complexity of the semantic space in which the word
embeddings reside. Doing so keeps the differentiability of
different words intact, unlike clustering methods, whilst still
providing simpler representations of each word.

Earlier work conducted at the UMCU has already been con-
ducted towards this end, in which Principal Component Anal-
ysis (PCA) was applied in order to reduce the 768 dimensional
BERT vectors to 50 dimensional vectors. The dimensionality
reduction performance of PCA, however, was found to be
incapable of preserving the semantic qualities of the origi-
nal BERT embeddings, with many related embeddings losing
their similarity, after having been reduced through PCA.

An alternative method for dimensionality reduction was al-
ready mentioned in the sEEG feature selection section, where
auto encoders were utilized in order to reduce the number
of SEEG channels. A similar approach can be adopted for
the word embeddings generated by the BERT and Word2Vec
models, in the sense that the original 768 and 100 dimensional
vectors can be reduced to a fraction of their dimensionality,
through the use of auto encoders. Note, however, that unlike
the SEEG sequence data, there exists no temporal extent in the
word embeddings, meaning that the sequence auto encoders,
introduced earlier, serve no purpose in compressing the word
embeddings. The feed-forward auto encoders, on the other
hand, could be implemented in a similar manner as was done
when applying them to the SEEG data. The only differences
between these models and the ones used before can be found
in the dimensions of the bottleneck layer, the number of layers
used in the encoders and decoders, and the loss function used
to train the models.

Whereas the SEEG data auto encoders used a bottleneck
layer with 30 hidden units, the auto encoders for the word
embeddings instead utilized bottleneck layers with 50 hid-
den units, meaning that the embeddings were always reduced

to 50 dimensional embeddings, compared to 768 and 100
dimensional vectors for the original BERT and Word2Vec
models, respectively. Additionally, since embedding compres-
sion represents a complex task, given BERT’s original 768
dimensional nature, the auto encoder structure was updated
in order to feature hierarchical dual layer encoders and de-
coders. In this hierarchy, the first layer would have half of
the embedding’s original dimensionality, and the second layer
would have the final 50 units, which would constitute the re-
duced embedding space. Furthermore, When compressing the
Wikipedia2 Vec embeddings, the first layer would consist of
% of the input space, since the compressed dimensions would
already be half the size of the original Wikipedia2Vec vec-
tors. The variational auto encoder, however, was not granted a
second hierarchical layer, because its sampling layer already
introduced enough complexity on its own. Instead its sam-
pling layer was increased from 256 hidden units to 384 units,
when reducing the BERT embeddings, in order to handle
the higher dimensional embeddings. For Wikipedia2Vec such
alterations were not necessary.

Additionally, whereas the SEEG auto encoders relied on the
MSE loss function for comparing the reconstructed vectors to
the original input data, the embedding auto encoders relied on
cosine similarity as the basis of their loss function. This met-
ric, and the resulting cosine distance loss function, defined in
the previous subsection, was chosen because here the auto en-
coders aimed to preserve word similarity in their embeddings,
and the method of choice for this task was cosine similarity,
due to reasons mentioned in the clustering subsection. Aside
from these three differences, the auto encoders were similar
to the ones mentioned in the SEEG auto encoder section. Per-
formance assessment of these auto encoders was conducted
according to the models’ train and validation losses, as well
as by testing the difference in similarity levels between words
before and after dimensionality reduction, the results of which
are shown together with the main results of this study.

3.6.6 Semantics and lexical databases

The other major way in which decodable semantic representa-
tions can be extracted is through the use of lexical databases
that link words semantically, such as the WordNet database
which is utilized in the current study. WordNet semantically
links different nouns, verbs, and adjectives according to a
hierarchical class system, in which each each parent class is
more general than its sub-classes. The resulting knowledge
base thus hierarchically builds up from very specific concepts
to the most general classes they belong to, such as people and
dogs both belonging to the entity super class. An example of
this hierarchy can be observed in figure 23.

besides using this class based structure, WordNet also
groups words with similar meanings into groups called
synsets, and captures different meanings or word senses for
each concept in the same synset as well, meaning that the

28

i

1. [entity, physical thing]

T

2. [object, physical object]

artefact, artifact

3. atural s

4, [enclosure]

A
[surface]

6.

birdcage

Figure 23: WordNet hierarchy example. The most general classes
are on top, whereas specific concepts are found further down in the
graph [85].

polysemy of words is preserved in its knowledge base. This
concept of polysemy relates back to the different word senses
between which the previously discussed BERT model can
differentiate, meaning that the word bank has multiple mean-
ings in WordNet just as it did under the BERT model. This
implies that a given synset includes multiple instances of the
same word, each having a different word sense, as well as
words that are closely related to the target word, from which
the synset was generated. In this study, WordNet is utilized
as an alternative to embedding models. In doing so the aim is
to create semantic categories based on the similarity between
words according to the positions of the words in WordNet’s
hierarchy. The idea behind this is that words with similar
meanings have shorter paths to their closest parent class than
words with less similar meanings. This similarity measure is
called Wu-Palmer similarity and is commonly used for calcu-
lating similarity at both the word and sentence level in Natural
language processing, Informational Retrieval, Text-Mining
and Q&A systems [85]. It is also one of the few similarity
measures which allows for the comparison of words with
different Part Of Speech tags such as words and nouns [85].
Wau-Palmer similarity is calculated according to the following
formula.

Depth(LCS(W1,W2))

Wi — Palmer =2
e = D e pth(W1) + Depth(W2)

“

in this formula, W1 and W2 refer to the words between
which the similarity is calculated, whereas depth represents
the depth of a concept in the hierarchy, or in other words,
the length of the path from the concept to the root of the
hierarchy. Lastly, LCS refers to the least common subsumer

Bag of words

Tagging
v

Lemmatization

v
WordNet
v
Processed pairs of the sentences
L 2

Semantic similarity measure

v |

Shortest path Wu and palmer
measure

I 4

Feature

measure measure

} I '

Score

Score Score

Figure 24: general WordNet pipeline for semantic similarity compu-
tation [85].

of the two words, meaning the concept at the lowest level in
the hierarchy that is an ancestor to both W1 and W2. The
resulting similarity ranges from O to 1, where O indicates no
similarity, and 1 indicates that the concepts are identical. The
measure takes into account both the depth of the LCS and
the depths of the individual concepts to provide a normalized
similarity score.

3.6.7 WordNet implementation

WordNet is integrated into the python NLTK package where it
can be used to look up the different synsets and hypernyms or
parent classes of each concept that is fed into it. The general
similarity score generation pipeline can be viewed in figure
24. Note that WordNet is designed to be used with the English
language, and although multi-lingual versions of WordNet do
exist, they are far less complete than their native English coun-
terpart. The implications of this limitation became apparent
when trying to generate synsets for the different labels that
were used in the BERT model, where more than half of the
words were simply not recognized under the Dutch version
of WordNet. Therefore, the different labels had to be manu-
ally translated from dutch into English, as using automatic
translation packages, such as python’s google translate API,
proved to be inadequate for the task of keeping the semantics
of each label intact after translation. After having translated
the words from Dutch to English, the synsets for each word
were generated, which could subsequently be used to compare
different words for semantic relatedness.

Also note that WordNet does not automatically distinguish

29

W W Wy

Wi sim sim sim sim
W, sim sim sim sim
... sim sim sim sim

Wy sim sim sim sim

Figure 25: Word by Word similarity matrix, where N refers to the
total number of unique labels, and sim = WuP, ranging from O to 1

between different inflections or word senses of a given word,
it simply returns the synset of all word senses and all related
words. Because POS tagging is a time consuming task given
the current scattered format of the word labels, a different
approach was selected in order to differentiate between the
existing synset entries of each target concept. First, Lemma-
tization was intentionally skipped, as the English version of
WordNet can distinguish between different conjugations of a
given verb. Keeping the conjugations in tact allowed WordNet
to more easily distinguish verbs from nouns, in cases where
the Lemma of a word could be interpreted as both. Further-
more, synset selection was performed according to the simple
but effective approach of simply selecting the first synset, as
this represented the most common entry with respect to how
the verbs were conjugated. For nouns the first entry would
also represent the most common entry with regard to its mean-
ing. Subsequently, similarity between two word pairs was
calculated using Wu-Palmer similarity. In doing so, similarity
scores for each of the possible word pairs were obtained and
were subsequently stored in a matrix of size [labels x labels|,
as can be seen in figure 25. This similarity matrix was then
used to cluster the different words using NLTk’s clustering
package utilizing cosine-distance, in a similar manner as was
done for the embedding clustering, mentioned earlier, which
resulted in the generation of 5 semantic categories. The result-
ing clusters are discussed in the results section of this study,
for similar reasons as discussed in the word embeddings clus-
tering section.

3.6.8 Syllable quantity classification

Besides aiming to decode semantic information from the
sEEG recordings, a preliminary motor decoding task was also
included as a way to check whether the current data contained
any decodable information in the first place. Furthermore,
interpreting motor decoding results was much more straight-
forward, when compared to semantic decoding, as these re-
sults have a transparently measurable outcome. Additionally,
obtaining above chance motor decoding performance could
aid in the discussion of semantic decoding performance, as
it can serve as a sanity check for the existing pipeline. More
specifically,if motor decoding proved to be a feasible task for
the current data and decoding models, the suitability of the
decoding models could be validated even if the semantic tasks
yielded inconclusive results. Simply put, any lack of perfor-

mance could in that case not be attributed to the decoding
models themselves, because their efficacy would have been
proved beforehand. Lastly, because earlier work conducted
at the UMCU has shown that at least some of the electrodes
were correlated to the speech envelope, which peaks roughly
at the syllable rate, as mentioned in the SEEG auto encoder
section, including a motor task should be at least be a some-
what feasible task, given the data’s relationship to the speech
envelope as can be seen in figure 17.

Therefore, this study included a motor decoding task, which
presented itself in the form of a syllable quantity classification
task, information which should be reflected in the peaks of
the speech envelope. Syllable counts of each word were ob-
tained by utilizing the Pyphen package, which has the ability
to Hyphenate words and includes a distribution for the Dutch
language. In doing so the words were split into 5 categories,
corresponding to the number of syllables in each word, rang-
ing from 1 to 5. The distribution of the different categories
can be viewed below in tables 6 and 7, for subjects 1 and 2,
respectively. As can be seen from the distribution of the num-
ber of syllables, the different classes are quite imbalanced,
with one and two syllable words making up more than 80%
of all the words used for decoding. Ways in which this class
imbalance was dealt with are discussed in the deoding model
section of the methodology.

Table 6: distribution of number of syllables for all word used
for decoding, subject 1

Syllables | 1 2 3 4 5 total
Count 798 771 274 41 5 1889
percentage | 42.24% 40.82% 14.51% 2.17% 0.26% 100%

Table 7: distribution of number of syllables for all word used
for decoding, subject 2

Syllables | 1 2 3 4 5 total
Count 631 590 227 34 4 1486
percentage | 42.46% 39.70% 15.28% 229% 0.27% 100%

3.6.9 Applied tasks

This subsection provides a final overview of how the differ-
ent decoding tasks, discussed in the previous subsections,
were used for decoding. The first of these tasks is based on
the embeddings generated through BERT and Word2Vec, as
mentioned before, and the task here is to reconstruct the em-
beddings from the sEEG recordings directly. Therefore, this
task is essentially a vector reconstruction task, in which the
aim is to make the embeddings generated by the decoding
models as similar as possible to the original word embeddings.
If the reconstructed embeddings are highly similar to the orig-
inal embeddings, one can conclude that the network is able to
decode semantic information from brain data. Similarity was

30

measured in terms of cosine similarity for reasons that were
discussed in the clustering section earlier, including its ability
to deal with high dimensional data, and its decreased sensitiv-
ity to outliers. Cosine similarity therefore served as the loss
function for the networks that are introduced in the next sec-
tion. In order to define which results are meaningful, a strict
baseline score denoting random chance level performance is
also required. To that end, random chance level performance
was defined to be the performance of a decoding model under
the condition that the brain data and embeddings are shuffled,
such that the embeddings and brain data no longer match with
each other. This condition was chosen due to the fact that a
model could simply learn the embedding structure of a given
semantic space, rather than the actual semantic differences
between different brain activations, and shuffling the labels
and input data keeps the embedding structure intact, whereas
it removes the semantic connection between the brain data
and the embeddings. In doing so, one can clearly distinguish
between a model that has learned to decode actual semantic
information from brain data and a model that is simply recon-
structing the overall structure of the embedding space, which
would correspond to the average vector of the embedding
space.

For the clustering based tasks, including the clustered con-
textual and static embeddings, the WordNet clusters, and the
syllable clusters, more standard comparison measures could
be utilized. This is the case because these tasks all repre-
sented more straightforward classification tasks, where ac-
curacy could simply be defined as the number of correctly
classified cluster labels divided by all the predictions made by
the model. In these tasks, random chance level performance
was set to the prevalence of the majority class, as the best
strategy for a model that has not learned anything useful, is to
always pick the most frequently occurring category. Random
chance level performance would thus be dependant on the dis-
tribution of the different clusters and is therefore mentioned
seperately for each task and training scenario.

3.7 Decoding models

This section gives an operational description of all the models
that were used for the different decoding tasks. Note that the
conceptual workings of each model are omitted here, since
they have already been discussed extensively in the related
work section. The type of decoding models used in this study
mainly included the sequence models discussed in the related
work section, as the sparse distribution of SEEG electrodes did
not allow for exploiting the spatial extent of the data, meaning
that spatial models, such as 2D convolutional neural networks
and their derivatives such as Convolutional LSTMs could pro-
vide no added benefit over standard sequence models, given
the current data. Also note that, due to the low number of
available training samples (1889 for sub 1, 1486 for sub 2),
most advanced models provided no increased benefit over the

standard sequence models either, since increased complexity
leads to an increase in a model’s number of trainable param-
eters, which in turn require more training data to provide
any benefits. With little training data, complex models were
unlikely to reach convergence which made them unsuitable
for the task at hand. On the other hand, semantic decoding
is a complex task, with no clear relationships between brain
data and semantic representations, meaning that the simplest
of models are also unlikely to properly capture any seman-
tic relationships. Therefore, the focus of decoding models
is placed upon models with as little complexity as possible,
whilst keeping enough complexity intact such that the models
are able to properly map the brain data to the SEEG data.
What this entails for specific model details is made clear in
the next subsections which the discusses the different aspects
of the decoding models individually.

3.7.1 Traditional sequence models

The main models used for decoding were the traditional se-
quence models introduced in the related work section, includ-
ing RNNs GRUs and LSTMs. These models have in common
that they all process entire sequences of data and have the abil-
ity to classify or reconstruct a single instance of data from that
sequence. As mentioned in the related work section, RNN’s are
the simplest sequence models, followed by GRUs and finally
LSTMs, which are the most complex vanilla sequence mod-
els. For the current decoding tasks, all models were similarly
implemented, and the differences in implementations can be
categorized as belonging to the following design choices:

* Layer type: The type of layer used in a neural network
constitutes the defining difference between the differ-
ent model types. As mentioned, both RNNs, GRUs and
LSTMs are used for the current decoding tasks.

* Number of hidden layers: Utilizing a single hidden
layer may prove to be too simplistic in order to capture
any semantic patterns in the data, which is why architec-
tures with a varying number of layers are tested, ranging
from 1 hidden layer to 4 hidden layers, with 2 hidden
layers most likely striking the proper balance between
complexity and trainability.

¢ Post sequence fully connected layer: Both architectures
with and without another fully connected layer after the
last sequential layer were tested, in case additional pro-
cessing after the sequence layer activations should prove
beneficial. Note that in case a hidden layer was used, the
last sequential layer would not return the entire sequence
of its hidden states, but would only return the last hidden
state, such that the information could be processed by a
feed-forward hidden layer.

¢ Activation functions: All sequence models have built
in activation functions, with RNNs using the Tanh acti-

31

vation function, and GRUs and LSTMs using both the
Tanh activation function for the recurrent activation as
well as the sigmoid activation function for the layer acti-
vation. In case an additional hidden layer was used, both
the Tanh and ReL.U activations were implemented and
tested.

Output layer: the output layer of the model is the final
layer, whose number of nodes correspond to the dimen-
sionality of the semantic representation used for decod-
ing. Therefore, this layer would consist of 5 nodes for
any of the cluster classification tasks, whereas it would
consist of 50, 100, or 768 nodes for the vector recon-
struction task, depending on which embedding model
was used, and whether dimensionality reduction through
the use of auto encoders was applied.

Number of hidden units: A general rule of thumb for
choosing an appropriate number of hidden units, is to
take the average of the input and output dimensions and
adjust from there. Furthermore, because having too much
or too little complexity is unwanted due to reasons men-
tioned earlier, the number of hidden units per layer would
never exceed the minimum or maximum boundaries set
by the input and output dimensions of the decoding mod-
els. Therefore, the number of hidden units would range
from 30 to 768, as these represent the minimum and
maximum values that the inputs and outputs adhere to.
The exact number of hidden units would naturally de-
pend on the decoding task and the input data that was
used, but would generally be close to the lower end of the
aforementioned spectrum, in order to curb complexity.

Output layer activation: Activation functions are gen-
erally not used for vector reconstruction tasks, meaning
that the output layer for these tasks had no activations
and could be viewed as a simple linear layer. For the clus-
ter classification tasks, on the other hand, the softmax
activation function was applied, in order to transform
the raw network outputs into probabilities for each node
of the layer, corresponding to the number of clusters in
the task. These probabilities sum up to one and serve
as a common way to have a network choose between
different output classes, as is the case with the current
cluster classification task.

Loss function: The loss function used for all of the
vector reconstruction tasks is the cosine similarity loss
function, for reasons mentioned in the semantic repre-
sentations section of the methodology. Shortly, cosine
similarity is one of the most commonly used metrics
for assessing vector similarity, because of its scale in-
variance, outlier insensitivity, and due to its ability to
properly deal with high dimensional vectors. For the
classification tasks on the other hand, the loss function
of choice was categorical cross entropy loss, which is

explicitly designed to handle multi-class classification
problems, and constitutes one of the industry standards
for these kinds of problems. When utilizing cosine simi-
larity as a loss function, the loss function is represented
as the cosine distance, defined as 1 — cos(0). Utilizing
cosine distance, rather than cosine similarity directly, is
necessary in order for the model’s optimizer to minimize
the loss function.

Optimizers: Early model architecture selection, includ-
ing choosing the number of layers and activation func-
tions was usually done under the Adam optimizer, due
to its lower sensitivity to differences in hyperparameter
choices, when compared to other optimizers [100]. After
these had been determined, however, all models were
changed to use the stochastic gradient descent (SGD) al-
gorithm, because it has been shown to better generalize
than Adam, which is most likely due to its simplicity
[100].

Learning rate: The learning rate dictates the step size
in updating the model’s weights. Larger learning rate
values may inhibit the model from reaching convergence,
as it might skip the global minimum in the loss function
of the model. Therefore, the learning rate was kept at
lower values to ensure reliable training and reaching
convergence. learning rates of 0.001 were compared to
both higher values, with a maximum of 0.01, as well as
smaller values, with a minimum of 0.00001.

Regularization techniques: Different regularization
techniques were included in order to curb potential over-
fitting problems, although such methods were only im-
plemented in cases where over-fitting actually did occur.
These techniques included adding dropout between dif-
ferent model layers, applying weight decay to penalize
large model weights, and applying gradient clipping in
order to keep the gradients in manageable ranges during
training. The regularization strength of each technique
varied, with dropout probability ranging from 0 to 25%,
weight decay being kept in the smaller range between
0 if not applied and between le — 5 and 1e — 3 in cases
where it was applied, and finally gradient clipping rang-
ing from 0.5 to 0.25, meaning that the gradients were
clipped to be in the range of A < V <A, where A denotes
the clip value.

Batch size: Multi batch training was implemented in
various levels in order to significantly speed up training
times. Commonly used batches were 1, 8, 16, and 32.
Larger batches were not included as these have been
shown to negatively impact model generalization capa-
bilities. When a batch size larger than one was used, the
SsEEG sequences were zero padded to be the same size,
since every instance in a single batch must have an equal

32

number of time steps. Padding was performed in a pre-
padding fashion, meaning that padding would be applied
for the start of the sequence. Furthermore, a masking
layer was used in order to make the models ignore the
padded values during training.

 Training iterations: The number of training iterations,
sometimes called the number of training epochs, refers
to how many times the model makes a pass through all
of the training data. This maximum number of training
iterations was determined based on observing the loss
curves of each model, and would typically fall between
50 and 500 iterations, with a lower number usually being
applied in cases of over-fitting.

An overview of all these different model implementations and
hyperparameter choices can be observed in table 8.

Table 8: different sequence model architectures and hyperpa-
rameters

Parameter Values

Layer type RNN, GRU, LSTM
Number of hidden layers 1,2,3,4

Post sequence fully connected layer | Yes or No

Activation function Sigmoid, Tanh, ReLU
Output layer dimensionality 5, 50, 100, 768
Hidden units 30-768

Linear or Softmax
Cosine Similarity or Categorical Cross Entropy

Output layer activation
Loss function

Optimizers SGD or Adam

Learning rate le—5,1e—4,1e—3,0.01
Dropout 0-25%

Weight decay 0,orle—5,1e—3
Gradient clipping No clipping, or 0.25 - 0.5
Batch size 1,8, 16,32

50, 100, 250, 500

Training iterations

3.7.2 Convolutional decoding models

Despite earlier having mentioned that spatial models are un-
suitable for the current decoding task, given the sequential and
sparsely distributed nature of the sEEG data, convolutional
models can still be successfully applied, if one shifts their
attention from spatial properties in the data towards temporal
properties, through the use of 1D convolutional neural net-
works, as discussed in the related work section. Therefore, 1
dimensional convolutional neural networks were implemented
alongside the traditional sequence models, where the follow-
ing different architectural choices were taken into account.

* Number of convolutional layers: The 1D CNN was
exclusively implemented with two convolutional layers,
as this proved to serve as a proper balance between com-
plexity and trainability.

* Number of filters: the number of filters were stacked
hierarchically between the two layers, with the first layer
containing either 8 or 16 filters and the second layer
containing either 16 or 32 filters.

» Kernel size: the kernel size of each filter varied from 3 to
10 time steps, and would always span only the temporal
dimension. This means that filters would be applied to
each channel separately.

e Max pooling: pooling layers were utilized in order to
reduce the computational complexity of the models, with
pooling kernel sizes varying from 2 to 4 over the tempo-
ral dimension.

¢ Flattening: the resulting feature maps resulting from the
convolutional layers were flattened using the standard
flattening layer or using Global Max Pooling.

« fully connected layer: a fully connected layer with hid-
den units ranging from 32 to 128, depending on the
task, were utilized for post-processing, after the flatten-
ing layer.

* Activation function: convolutional layers exclusively
used the ReLU activation function, which is common
practice for CNNs. The fully connected layer was imple-
mented with either the ReLu or Tanh activation function

Aside from these architectural differences, the 1 dimen-
sional convolutional models were implemented according to
the architecture and hyperparameter choices, defined in the
traditional sequence model section, and visualized in figure 8.

3.7.3 Decoding model data input formats

As mentioned before, the input data for the decoding mod-
els is represented as multichannel sequence data. In order
to properly feed this data into the decoding models, spec-
trum data corresponding to the onset and offset times of each
word were selected. For the motor decoding task, S0ms of
additional activity before and after the onset and offset times
were selected as well, because earlier work conducted at the
UMCU has shown that correlations to the speech envelope
were maximal when taking these time lags into account, as
can be observed in 26. For the semantic decoding tasks on
the other hand, a time lag of 500ms before the onset time
of each word was taken into account when selecting SEEG
samples, because semantic processing starts before word
pronunciation [99]. In doing so, samples for each word of
size [timesteps x channels] were selected and were stacked
into a 3D matrix after having been zero padded, such that
all sequences had the same size. The resulting 3D matrix
had a shape of [words x timesteps * channels]. The output
representations were stacked into a 2d matrix with shape
[words x features], where the number of features would dif-
fer based on the decoding task of choice, ranging from 5 to
768 features. The resulting pairs of input and output data were
randomly split into training and validation data with an 80/20
split, and stratified sampling in case of the classification tasks.

33

The training and validation sets were subsequently normal-
ized using Min-Max scaling, which is common practice in
deep learning and scales all values between 0 and 1. Note
that for each channel, values larger or smaller than 2 stan-
dard deviations were already clipped, as mentioned earlier,
in order to prevent outliers from influencing the normaliza-
tion. subsequently, the training and test sets were divided into
batches and fed into the decoding models. The models were
implemented in both PyTorch as well as TensorFlow in order
to verify correct implementation. Lastly, if one of the mod-
els would achieve above chance level performance, its final
performance would be dictated by splitting the data for that
model again, but with the use of sklearn’s stratified Kfold
function, with the number of splits set to the default of 5, thus
providing an 80/20 training-test split for each fold. Perfor-
mance would then be the average performance achieved over
these 5 folds, and would represent a more accurate represen-
tation of how the models performed. A visual overview of the
input and output data applied to the decoding models can be
observed in figure 27.

@ (b)

Figure 26: Individual correlation profiles per channel over different
time lags, for subjects 1 (a) and 2 (b). The x-axis represents cross-
correlation lags (in ms), where negative lags indicate that the neural
activity precedes audio. The maximum correlation is achieved using
a time lag between -50 to 50 ms.

Figure 27: Block diagram of input and output data applied to the
decoding model.

3.7.4 Imbalanced classes

As was seen when discussing the syllable classification task,
the different classes were not equally distributed, which could
impact model performance. Furthermore, the other clustering
techniques are likely to contain imbalanced classes as well, as
clustering distributions are rarely equal. In order to deal with
imbalanced class data, a technique called class weighting was

introduced, which aims to make a model to pay more atten-
tion to the minority class by penalizing misclassifications of
the minority classes more severely compared to the major-
ity classes [42]. Towards that end, Sklearn’s utility package
was used to assign class weights, which estimates the class
weights by means of the following formula.

samples

®)
classes x occurences(class)
In this formula, the term samples refers to the total num-
ber of samples comprising all of the classes, whereas the
classes refer to the number of different classes and the occur-
rences refer to the instances of the particular class for which
one wants to calculate the desired class weight. applying
class weighting in combination with the stratified sampling
method, mentioned before, allowed for properly handling the
unbalanced nature of the different class distribution, and was
applied when necessary.

3.8 Multi patient training

One of the benefits of having multiple subjects perform the
same task is that their SEEG brain data corresponds to the
same semantic representations, as the two subjects in this
study mostly did pronounce the same words during the task.
The final part of this study’s methodology therefore pertains
to how data from the two subjects discussed so far can be
used in conjunction, with the hope of increasing decoding
performance on all the tasks mentioned before. Note that the
data from the two different subjects is not used in order to
increase the number of available training samples. Doing so
would constitute an infeasible task, because the electrodes
in each patient were placed in vastly different locations, as
could be seen in figure 14, and the activations from the dif-
ferent locations between the two subjects would likely only
interfere with each other, as the same semantic representation
would then be paired with vastly different electrode activa-
tions. Instead, an alternative manner of utilizing the sEEG
data from both patients was adopted in which the different
electrode channels between two channels would be concate-
nated, meaning that each semantic representation would be
paired with the electrode activations from both patients at the
same time. This constituted a far simpler approach than the
one discussed in the related work section, but when consid-
ering the fact that data from only two subjects was available
in this study, structuring the combined electrodes into a grid
would still result in a very sparse grid, which would require a
lot of interpolation in order to form a dense grid. Therefore,
forsaking the spatial extent of the SEEG data and opting for
simple concatenation was deemed the only feasible approach
towards combining the data these two subjects

A counterargument for adopting this combination strategy
posits that increasing the dimensionality of the input data only

34

increases the complexity of the task, without generating addi-
tional training data to account for this increased complexity.
This marks a valid concern, as the dimensionality of the input
space would almost be doubled when concatenating the SEEG
channels from both patients. This is where auto encoders yet
again proved their usefullness, as they could be applied to
reduce the dimensionality of both subjects’ SEEG data before
concatenation. When reducing the sEEG data from the two
subjects to just 30 channels, as discussed earlier, the input
dimensionality of the concatenated SEEG data would still con-
tain fewer channels (60) than the original data for either of the
two subjects (99 and 79), with the added benefit of having the
most important activations from each subject, without most
of the noise these signals originally contained.

To that end, the different electrode activations from the two
patients were concatenated, after having been compressed, by
aligning the timings of each word pronounced by both sub-
jects, and by selecting the corresponding brain data from both
patients. This matching was done in order to ensure that each
word pair between the two patients was the exact same word,
mentioned in the same context, as the BERT model differenti-
ates between different instances of the same word based on
the context in which that word was used. Furthermore, since
the time it took to pronounce a word, differed between the
two subjects, the longest instance of each word was chosen
and the shorter instance was zero padded to match the longer
instance.

However, due to differences in the words that were actually
spoken by each subject during the reading task, subject 1’s
total quantity of decodable semantic representations did suffer,
and was reduced from 1889 to only 1486, which matched the
number of words spoken by subject 2. Despite this reduction
in decodable semantic representations, it could be interesting
to see whether the increase in correlated electrode activations
could potentially enrich any semantically encoded content of
the input data.

4 Results

This section provides an overview of the results pertaining
to both the encoding and decoding tasks discussed in the
Methodology section. The SEEG data dimensionality reduc-
tion techniques are discussed first, as these are utilized in all
other results, after which the motor decoding task is discussed.
Afterwards, the decoding results are presented. Note that due
to the quantity of model parameters and different architec-
tures, only the best versions of relevant models are discussed
for the decoding tasks.

4.1 sEEG data dimensionality reduction per-

formance

The training results of the different auto encoder architec-
tures for subjects 1 and 2 can be observed from figures 9 and
10, respectively. Note that the differences in training times
were obtained by letting each model train until over-fitting
started to occur. As can be seen from these figures, the non-
temporal variational auto encoder consistently presented with
the lowest validation loss of all models. These results were
within general expectations, given the probabilistic nature of
variational auto encoders, which aids in curbing over-fitting,
meaning that these models are generally able to achieve higher
validation scores. The other architectures generated higher
losses, with the LSTM auto encoder being the second best
performing architecture, followed by the LSTM variational
auto encoder and the regular auto encoder, which presented
the overall highest validation losses.

Table 9: Training results for the different auto encoder archi-
tectures, subject 1

Architecture ‘ Epochs loss (MSE) val. loss (MSE)
AE 25 0.139 0.156
VAE 25 0.013 0.014
LSTM AE 25 0.047 0.092
LSTM VAE | 50 0.053 0.102

Table 10: Training results for the different auto encoder archi-
tectures, subject 2

Architecture ‘ Epochs loss (MSE) val. loss (MSE)
AE 25 0.109 0.104
VAE 50 0.006 0.006
LSTM AE 50 0.041 0.031
LSTM VAE | 50 0.052 0.041

Aside from the differences between individual model ar-
chitectures, it is important to note that the losses for subject 2
were consistently lower than they were for subject 1. However,

35

this does not necessarily imply that the models performed
better on the data from subject 2, which became clear after
observing the significant correlations (p < 0.01) between the
compressed SEEG HFB data’s channels and the speech en-
velopes from both subjects, depicted in figures 28-31. Note
that the channels pertaining to the reduced input space were
not actual channels, but abstract input nodes, which incor-
porated data from multiple original channels. They are still
referred to as channels from here on, for the sake of conve-
nience.

lues of correlation between speech envelope and neural activity in HFB p < 0.01

005 <r<o0l
o1<r
w—02<r<03

—03<r<04
-—04<r<l

subjects

Figure 28: AE Channels with significant correlation (p < 0.01) be-
tween speech envelope and neural activity in HFB. The color bar
represents different values of correlation. Full number of channels
sub 1 =30, sub 2 = 30, sig. channels: sub 1 = 12, sub2 = 10

r values of correlation between speech envelope and neural activity in HFB p < 0.01

<<<<<<<

Figure 29: VAE Channels with significant correlation (p < 0.01)
between speech envelope and neural activity in HFB. The color bar
represents different values of correlation. Full number of channels
sub 1 =30, sub 2 = 30, sig. channels: sub 1 = 14, sub 2 = 16

Figure 30: LSTM-AE Channels with significant correlation (p <
0.01) between speech envelope and neural activity in HFB. The
color bar represents different values of correlation. Full number of
channels sub 1 =30, sub 2 = 30, sig. channels: sub 1 = 21, sub 2 =
14

Figure 31: LSTM-VAE Channels with significant correlation (p
< 0.01) between speech envelope and neural activity in HFB. The
color bar represents different values of correlation. Full number of
channels sub 1 =30, sub 2 = 30, sig. channels: sub 1 = 19, sub2 =6

The different correlational plots indicate that, in terms of
keeping correlations to the speech envelope in tact, the LSTM
auto encoder demonstrated the best results (21 channels sub
1, 14 channels sub 2), and the non-temporal variational auto
encoder was relatively close in terms of the number of cor-
relations (/4 channels sub 1, 16 channels sub 2). The other
two models still demonstrated several correlations, but gener-
ally showed fewer correlations, when compared to the other
two models. Besides the number of significant channels the
strengths of the correlations were also the highest for the
LSTM auto encoder, with many of the correlations exceeding
the correlations of the original input data, with respect to the
speech envelope.

Furthermore, the correlations were consistently higher for

36

subject 1, when compared to subject 2, which was contradic-
tory to the results pertaining to model training. This, com-
bined with the fact that the LSTM auto encoder performed
best in terms of correlations to the speech envelope, but not in
terms of general model performance, implies that good model
performance is not necessarily indicative of an increased abil-
ity to keep the encoded data intact. However, it is important
to note that there were far fewer strongly correlated channels
in subject 2’s SEEG data to begin with as could be observed
in figure 17, which could explain why the significant correla-
tions in the reduced input space for subject 2 were lower than
those of subject 1.

In terms of overall performance, the LSTM auto encoder
was able to reduce the SEEG input space, whilst extracting
important features from the original input space, with respect
to the speech envelope, as demonstrated by the higher correla-
tions with respect to the speech envelope as, depicted in figure
30, when compared to the original correlations as depicted in
figure 17. These results demonstrate the efficacy of utilizing
an auto encoder approach for dimensionality reduction, as
well as feature selection purposes. Lastly, the LSTM auto
encoder was chosen as the main auto encoder architecture for
the remaining results, due to its aforementioned performance.

4.2 Syllable decoding task performance

Classifying the number of syllables in each task was the sole
motor decoding task applied in this study and served as a
verification of the usability of the decoding models used later
on. More specifically, the motor decoding results served as a
test to see whether any information could be decoded from
the currently available data, since the current motor task is
more easily verifiable and has a more transparent relationship
with the speech envelope, whose relationship with the current
sEEG HFB data had already been verified to a certain extent.
The models used for classification included the RNN, GRU,
LSTM and 1D CNN, which were used both with the original
sEEG HFB data as well as with the compressed input data
generated by the LSTM auto encoder model. Each model
was trained on the data from subjects 1 and 2 separately,
was well as on the combined data for both subjects, after this
data had been compressed to 30 channels per subject. The
parameters for the best performing variants of each model
can be observed in tables 11 and 12, for the full SEEG data
and the compressed sEEG data, respectively, whereas relevant
model training curves and accuracy statistics can be observed
in figures 32- 36 and table 13, respectively.

Table 11: Motor decoding model parameters original SEEG
data (99-channel,79-channel for sub 1 and 2) and combined
SEEG data (60 channel, 30 channels from both patients after

model accuracy

0.6
— train

validation

100 150 200
epoch

Figure 33: Training and validation accuracy of 1D-CNN, trained on
Subject 1°s compressed 30-channel sEEG Data.

compression) 03
parameter RNN GRU LSTM I1D-CNN > 04
layers 2 2 2 2 f
neurons per layer 50 50 50 - o3
filters per layer - - - 16, 32
kernel size - - - 6 02
max pooling size - - - 2
Dense layer size 128 128 128 128 : s
Dense layer activation | ReLU ReLU ReLU ReLU
learning rate Se—4 5e—4 5Se—4 Se—4
dropout 0 0 0 15%
weight decay 0 0 0 le—5
clip value 0.5 0.5 0.5 0.5
batch-size 16 16 16 16

Table 12: Motor decoding model parameters compressed

SEEG data (30 channels for both patients

model accuracy

—— train
validation

0.5

parameter RNN GRU LSTM I1D-CNN
layers 2 2 2 2
neurons per layer 20 20 20 -
filters per layer - - - 8, 16
kernel size - - - 6
max pooling size - - - 2
Dense layer size 128 128 128 128
Dense layer activation | ReLU ReLU ReLU ReLU
learning rate Se—4 5e—4 5S5e—4 Se—4
dropout 0 0 0 15%
weight decay 0 0 0 le—5
clip value 0.5 0.5 0.5 0.5
batch-size 16 16 16 16

model accuracy

0.6 q
—— train

0.5+

0.4 4

accuracy

0.2 4

0.1+

validation A/ W, J i
a DRI P A i A ",‘a‘mv‘lvw o]

100

epoch

150

200

250

Figure 32: Training and validation accuracy of 1D-CNN, trained on
Subject 1’s full 99-channel sEEG Data.

avLuracy

0.3 4

024 |

0.4 4 W*'M

A
N LA

AT
'W’ ﬂ/‘\"""{ |

T T T
100 150 200
epoch

Figure 34: Training and validation accuracy of 1D-CNN, trained on
Subject 2’s full 79-channel SEEG Data.

model accuracy

—— ftrain

validation
0.5 1

0.4 4

]

02 w/

accuracy

A Vp"\.w‘ W v,,kum'-'w

0 50

100 150 200
epoch

Figure 35: Training and validation accuracy of 1D-CNN, trained on
Subject 2’s compressed 30-channel sEEG Data.

37

model accuracy

— ftrain) A ’)
validation f~“"\ﬁrfww\““’wwvw\"WI‘WNVWV“

0.50 - ¥

0.55 -

accuracy

0.30

100 150 200

epoch

250

Figure 36: Training and validation accuracy of 1D-CNN, trained
on the combined compressed 60-channel SEEG, obtained from the
compressed sEEG data for subjects 1 and 2.

Table 13: Motor decoding accuracy for the different training
scenarios, accuracy averaged over 5 folds.

‘ accuracy val. accuracy

majority class accuracy

subject 1 full 54.14% 56.35% 42.24%

subject 1 compressed 54.07% 57.68% 42.24%
subject 2 full 5231% 53.20% 42.46%
subject 2 compressed 51.05% 53.54% 42.46%
combined subjects compressed | 54.84% 55.56% 42.46%

Among the models considered, only the 1D-CNN model
consistently achieved performance surpassing the majority
class prediction level. Consequently, the depicted accuracy
levels and plots for this task exclusively focused on the 1D-
CNN models, as can be observed from table 13 and figures
32- 36, respectively. This trend persisted across all decoding
scenarios, and attempts to enhance the performance of the
traditional sequence models proved unsuccessful, as adjusting
parameters did not increase performance past the majority
class threshold. Furthermore, increasing model complexity
resulted in over-fitting and diminished validation accuracy.
Therefore, the 1D-CNN models emerged as the sole relevant
candidate for the task of syllable quantity classification.

As can be seen from the training and validation plots, the
1D-CNN performed best under the scenarios which employed
auto encoders to compress the input SEEG data, where the
model displayed decreased volatility in later stages of train-
ing, when compared to the same model trained on the un-
compressed input data. More specifically, validation accuracy
proved to be at its maximum, when the model was trained on
the compressed input SEEG data from subject 1 (validation
accuracy=57.68%). Note, however, that this level of perfor-
mance was not substantially higher than compared to the
performance levels for the combined data from subjects 1 and
2, (validation accuracy=55.56) and the compressed data for
subject 2 (validation accuracy = 53.54.

Moreover, it’s important to observe that the majority of
the plots indicate a degree of under-fitting, a phenomenon

38

likely induced by the incorporation of dropout between the
convolutional layers. This inclusion was necessary as convo-
lutional filters have a tendency to rapidly over-fit. Without
dropout, the training and validation plots would exhibit more
smoothing, resulting in closer alignment between validation
and model accuracy. However, this would come at the expense
of a decrease in overall validation accuracy.

Furthermore, note that performance for the model trained
on the combined compressed data from both subjects per-
formed better than the model trained on subject 2’s isolated
data, but did not perform as well as the model trained on
subject 1’s isolated data. This discrepancy is likely attributed
to the fact that not all electrodes in the original space corre-
lated with the speech envelope. Consequently, adding input
data from both subjects, even after compression, introduced
some form of noise to the dataset. More importantly, since
the speech envelopes between the two subjects did not exactly
match as could be observed in figure 16, the data that did
correspond to each patient’s respective speech envelope could
still have been different in the sense that it correlated to a
different speech envelope. Adding these data together may
therefore have inhibited the model from learning more refined
patterns and made it focus on the patterns which were similar
between the two patients, causing performance to be roughly
in between the individual performance levels of each subject.

Finally, it is crucial to emphasize that, while performance
levels surpassed majority class predictions, their robustness
remains limited, particularly given the substantial class imbal-
ance evident in tables 6 and 7. The majority of instances were
concentrated within two of the five classes. However, it is
essential to underscore that the primary objective of this task
was to assess the feasibility of extracting meaningful infor-
mation from the available SEEG data. The earlier-presented
results indicate that motor information is indeed encoded to
a certain extent in the current dataset. Additionally, the fact
that combining data from both patients did not result in a sig-
nificant performance decline suggests that such aggregation
could still be beneficial for decoding performance later on.
Notably, the models trained on the compressed data consis-
tently performed at or above the level achieved by models
trained on each patient’s full data, underscoring the effective-
ness of utilizing auto encoders to both enhance and compress
the input data. The following subsection delves into whether
the ability to decode motor information from sEEG brain
data can be extended to decoding semantic information from
the same dataset, aligning with the primary objective of this
study.

4.3 Word embedding decoding performance
4.3.1 BERT decoding

As mentioned in the related work section, the first and most
computationally intensive semantic decoding task consisted
of reconstructing the word embeddings, generated through
either BERT or Wikipedia2Vec, from the sEEG HFB data
obtained from each subject. Towards that end, the decoding
model parameters introduced in table |1, were adjusted based
on these 2 new tasks, which led to the final testing parameters
for each version of this task as indicated in figures 14 and
16. Note that the level of complexity of each model differed
between the BERT and Wikipedia2Vec decoding tasks. This
was a direct result of the different levels of dimensionality
these different embeddding models introduced, with BERT
utilizing 768 dimensional vectors, whereas Wikipedia2Vec
consisted of 100 dimensional vectors. Because the input data
almost always consisted of a lower dimensional input (99
channels subject 1, 79 channels subject 2), the mapping from
input to output would almost always be from a lower to a
higher dimensional space. Therefore, the number of nodes in
the hidden sequence layers and fully connected layers of each
model would differ between the BERT and Wikipedia2Vec
embedding tasks, in order to facilitate this mapping of input
and output, as the relationship between input, model, and
output should not have extreme differences in dimensionality.
Do note, however, that in order to keep model complexity
within reasonable parameters, given the low training sample
size, the models for the BERT task could not be made too
complex, as this would simply cause over-fitting on what little
training data was available.

Table 14: BERT Semantic decoding model parameters

parameter RNN GRU LSTM I1D-CNN
layers 2 2 2 2
neurons per layer 100 100 100 -
filters per layer - - - 16, 32
kernel size - - - 6
max pooling size - - - 2
Dense layer size 192 192 192 192
Dense layer activation | Tanh ~ Tanh Tanh Tanh
learning rate Se—4 5e—4 5S5e—4 Se—4
dropout 0 0 0 15%
weight decay 0 0 0 0

clip value 0.5 0.5 0.5 0.5
batch-size 16 16 16 16

In terms of the BERT model, the training and validation
accuracies of the LSTM architecture can be observed in figure
37. At first it seemed the model achieved decent performance
here, with a validation cosine similarity of 0.69. However,
analyzing the performance of the same model, when trained
under a scenario in which the training samples and labels

39

had been shuffled, depicted in figure 38 demonstrated the
opposite. More specifically, it became clear that the model
could not achieve a validation cosine similarity higher than
the same model when trained on this shuffled data, which
also achieved a validation cosine similarity of 0.69. This in
turn indicated that model performance did not exceed random
chance level performance. Checking the differences between
the predictions for each model further confirmed the model’s
inability to successfully decode any semantic information
from the sEEG input data, as the predictions would have an
inter-cosine similarity of 0.99, meaning that the average co-
sine similarity between all predictions was 0.99. Additionally,
the cosine similarity between the predictions and the average
vector of the BERT embedding space was 0.99 as well, indi-
cating that the model had simply learned to always predict
the average BERT vector, which demonstrates no relationship
between the current input and output data.

model cosine similarity
1.0

—— train
validation
0.8
=
= 0.6 1
]
E
w
[}
£
B 0.4
v /
/
f
f
0.2
|
I
|
0.0 T T T T
0 50 100 150 200 250

epoch

Figure 37: BERT 768D, LSTM training and validation accuracy,
trained on Subject 1’s full 99-channel sEEG Data.

model cosine similarity
1.0

— frain
validation
0.8
. PR
= 0.6 1
s
E /
n /
€./
n 0.41 [
S/
’f
0.2 -/
0.0 T T T
0 50 100 150 200 250

epoch

Figure 38: BERT 768D, LSTM training and validation accuracy,
trained on Subject 1’s full 99-channel randomized sEEG Data.

Table 15: BERT 768D, LSTM decoding performance under
different training scenarios

‘ subject 1 subject2 combined subjects
cosine similarity 0.70 0.69 0.69
val. cosine similarity 0.69 0.69 0.70
control cosine similarity | 0.69 0.70 0.70

As can be observed in table 15, model performance did
not increase under the different training scenarios created by
training on the data from subject 2 and the combined data
from subjects 1 and 2. As can be seen from the table, con-
trol cosine similarity is annotated for each training scenario
individually, rather than for all scenarios, which is the case
because subjects 1 and 2 had a different number of samples,
which influences the distributions of their respective semantic
spaces. Therefore, control cosine similarity was calculated
for each scenario individually, by running each model under
the randomization constraint, mentioned earlier. In this case,
the spaces were not significantly different from one another,
as signified by each space having roughly the same control
cosine similarity, but these differences could theoretically be
significant, which is why thee values were still measured in-
dividually, for the sake of completeness. Furthermore, note
that the different scenarios did not include the use of the com-
pressed sEEG data from separate subjects, discussed earlier
in the results section. These data were not used for decoding
the full embedding models, since compressing the input data
without compressing the word embeddings would make the
difference between input and output dimensionality too great,
which would likely not facilitate increased performance. In-
stead the compressed data is used when the embeddings are
also compressed, the performance of which is discussed in
a later subsection. Additionally, training curves and perfor-

40

mance tables are only shown for the LSTM model, which
is due to the fact that none of the models discussed so far,
including RNNs, GRUs and 1D-CNNs were able to achieve
cosine similarities which were above the randomized con-
trol level of cosine similarity. Additionally, changing model
parameters for any of the architectures, would not increase
performance either, with increased complexity only leading to
over-fitting, as discussed earlier, and regularization techniques
being unable to reduce over-fitting whilst also improving vali-
dation cosine similarity. All in all these results demonstrate
that none of the models were able to successfully decode any
semantic information, when utilizing the BERT embedding
model. These insignificant performance levels could have
been caused by a combination of low data availability and
BERT’s highly complex semantic space.

4.3.2 Wikipedia2Vec decoding

Given the issues mentioned in at the end of the BERT decod-
ing section, performanc might ameliorate when using a more
simple embedding model, like the Wikipedia2Vec model. Be-
cause this model is less complex with only 100 dimensional
embeddings, the resulting models used for decoding could be
less complex as well, which might positively modulate per-
formance. The simplified models used for reconstructing the
Wikipedia2Vec embeddings can be observed in table 16, and
are indeed less complex, with fewer neurons in each sequen-
tial layer as well as in the fully connected layer. These models
were trained under the same scenarios as the models used for
decoding the BERT embeddings. Once again, the training and
validation accuracies for the LSTM version of these models
can be observed in figures 39 and 40, displaying results for
the normal and randomized control scenarios, respectively.

Table 16: Wikipedia2Vec Semantic decoding model parame-
ters

parameter RNN GRU LSTM 1D-CNN
layers 2 2 2 2
neurons per layer 50 50 50

filters per layer - - - 8,16
kernel size - - - 6

max pooling size - - - 2
Dense layer size 50 50 50 50
Dense layer activation | Tanh ~ Tanh ~ Tanh Tanh
learning rate Se—4 5e—4 5¢e—4 Se—4
dropout 0 0 0 15%
weight decay 0 0 0 0

clip value 0.5 0.5 0.5 0.5
batch-size 16 16 16 16

model cosine similarity

1.0
— frain
validation

0.8

o
o
L

[=]
S
|

cosine similarity

0.2 4

0.0 T

T T
150 200

epoch

T
100 250

Figure 39: Wikipedia2Vec 100D, LSTM training and validation
accuracy, trained on Subject 1’s full 99-channel sEEG Data.

model cosine similarity
1.0

— train
validation

0.8

o
o
L

cosine similarity

o
B
L

0.2 4

0.0 T T T T
0 50 100 150 200
epoch

250

Figure 40: Wkipedia2Vec 100D, LSTM training and validation accu-
racy, trained on Subject 1’s full 99-channel randomized sEEG Data.

unfortunately, these results display the exact same trend that
could be observed when aiming to reconstruct the BERT em-
beddings, in the sense that the model was not able to achieve
a validation cosine similarity higher than the same model,
trained under the scenario of shuffling the training samples
and labels. The predictions once again demonstrated an aver-
age inter-cosine similarity value of 0.99, and the predictions
shared this same similarity with the average vector of the
Wikipedia2Vec embeddings space.

Note that the validation cosine similarity for the
Wikipedia2Vec embeddings was lower (cos(0) = 0.65), when
compared to the validation cosine similarity achieved when
reconstructing the BERT embeddings (cos(8) = 0.69). This
is likely caused by the fact that the BERT embeddings were
overall more similar to each other, which resulted in the aver-

41

age vector being more similar to the predictions as well. This,
in turn, caused the predictions, which were in essence the av-
erage vector of the embedding space, to have a higher cosine
similarity to the test set under the BERT model. This, how-
ever, had no actual implications for decoding performance,
as the performance for both models is almost exactly equal
to their randomized control counterparts, meaning that there
was no difference in the extent to which the decoding models
were able to extract any semantic information from the brain
data.

Furthermore, when looking at the validation cosine similar-
ities obtained by training the model on the different input data
scenarios (subject 1 vs subject 2 vs combined compressed
sEEG data), as shown in table 17, it once more became clear
that the model was unable to achieve above chance valida-
tion cosine similarity performance, under any of the training
scenarios. As was the case for the BERT model, applying
different model architectures such as the RNN, GRU or 1D-
CNN, changing hyperparameters, or increasing model com-
plexity did not yield performance gains either, suggesting that
reconstructing the original BERT and Wikipedia2Vec mod-
els represents an infeasible task, given the current input data.
The next section, therefore aims to simplify both embedding
spaces, through the application of auto encoder architectures,
in a similar manner as was utilized when compressing the
sEEG data itself.

Table 17: Wikipedia2Vec 100D, LSTM decoding performance
under different training scenarios

‘ subject 1 subject2 combined subjects
cosine similarity 0.65 0.65 0.65
val. cosine similarity 0.64 0.65 0.64
control cosine similarity | 0.65 0.65 0.65

4.4 Word embedding dimensionality reduction
performance

4.4.1 Semantic space dimensionality reduction perfor-
mance

The training results of the different auto encoder architectures
for the BERT and Wikipedia2Vec embedding spaces can be
observed in table 18. The differences in training times were
obtained by letting each model train until over-fitting started
to occur. Note that the PCA (principal component analysis)
technique was also included in these results, since earlier
work conducted at the UMCU has concluded that PCA was
unable to keep the semantic structure of the embeddings intact
after compression. Therefore, PCA was included as a baseline
performance metric, in order to see how the vanilla and vari-
ational auto encoder models, discussed in the methodology,
would perform in comparison.

Table 18: Performance of dimensionality reduction on BERT
(768d) and word2vec (100d) embeddings. All methods re-
duced the dimensionality of the embeddings to 50 dimensions.
AE = vanilla auto encoder, VAE = variational auto encoder,
PCA = prinicipal component analysis.

Embedding Epochs reduction method (AE/ VAE) val. Cosine Similarity ~(PCA) Explained variance
BERT - PCA - 40.35%

BERT 400 AE 0.77 -

BERT 500 VAE 0.84 -

Word2vec - PCA - 82.67%

Word2vec 450 AE 0.89 -

Word2vec 500 VAE 0.94

Even though these different classes of methods utilize dif-
ferent performance metrics with auto encoders utilizing co-
sine similarity as their performance metric, and PCA relying
on the percentage of variance in the data its principal compo-
nents can explain, it still seemed that the auto encoders were
vastly superior when only looking at these performance met-
rics. Whereas the auto encoders seemed to generate quite simi-
lar vectors, with high levels of cosine similarity for both BERT
(val. cos(AE) =0.77, cos(VAE) = 0.84) and Wikipedia2Vec
(val. cos(AE) = 0.89, cos(VAE) = 0.94), PCA seemed to es-
pecially struggle in compressing the BERT semantic space
(Explained Variance= 40.35%), whereas it seemed to per-
form decently when compressing the Wikipedia2Vec seman-
tic space (Explained Variance= 82.67%). However, auto en-
coders aim to keep vectors similar, whereas PCA aims to
model capture the differences between the different embed-
dings, which makes these different performance metrics diffi-
cult to interpret, in relation to one another.

Therefore, differences in performance could be compared
in a more coherent manner by measuring the cosine similar-
ity between different pairs of word, after compression. More
specifically, both word pairs with high cosine similarity in the
original semantic space of each embedding model, as well as
pairs of words with low similarity in these original spaces,
were used to evaluate differences between the different tech-
niques. The results of these comparisons can be observed in
tables 20, 21 and 22, 23, for the BERT and Wikipedia2Vec
models, respectively. Table 19 also depicts a legend with
translations for all the words that were used for comparison.

Table 19: Translations of comparison words

Dutch English | Dutch English
zoontje son Zus sister
jongetije boy baby baby
meneer sir kind child
achteruit reverse idee idea
cijfers numbers | middag afternoon
aansteker lighter tijd time
raam window | zonsopgang sunrise

42

Table 20: BERT cosine similarity between words with high
cosine similarity

Word1 Word2 | cosine sim. original cosine sim. AE cosine sim. VAE cosine sim. PCA
zoontje zoontje | 1 1 1 1
zoontje zus 0.68 0.85 0.49
zoontje kind 0.73 0.85

zoontje jongetje | 0.79 0.89 0.71
zoontje baby 0.75 0.84 0.87

zoontje meneer | 0.68 0.74 0.37
zus zus 1 1 1 1
zus kind 0.60 0.83 0.27
zus jongetje | 0.64 0.84 0.35
zus baby 0.63 0.85 0.48
zus meneer | 0.63 0.75 0.34

Table 21: BERT cosine similarity between words with low
cosine similarity

Word1 Word 2 cosine sim. original cosine sim. AE cosine sim. VAE cosine sim. PCA
zoontje achteruit 0.43 0.79 -0.14
zoontje idee 0.37 0.76 0.03
zoontje zakje 0.47 0.86 0.19
zoontje cijfers 0.44 0.82 -0.13
zoontje middag 0.36 0.71 -0.21
zoontje grond 0.35 0.71 -0.12
zus aansteker 0.45 0.81 0.07
zus tijd 0.35 0.65 -0.27
zus raam 0.42 0.74 -0.10
zus zonsopgang | 0.38 0.73 -0.14

Table 22: Wikipedia2Vec cosine similarity between words
with high cosine similarity

Word 1 Word 2 | cosine sim. original cosine sim. AE cosine sim. VAE cosine sim. PCA
zoontje zoontje | 1 1 1 1
zoontje zus 0.80 0.90 0.75
zoontje kind 0.75 0.92 0.83

zoontje jongetje | 0.73 0.92 0.63
zoontje baby 0.58 0.83 0.40
zoontje meneer | 0.54 0.76 0.27
zus zus 1 1 1 1
zus kind 0.70 0.85 0.79

zus jongetje | 0.53 0.77 0.33
zus baby 0.55 0.71 0.33
zus meneer | 0.48 0.65 0.21

Table 23: Wikipedia2Vec cosine similarity between words
with low cosine similarity

Word 1 Word 2 cosine sim. original cosine sim. AE cosine sim. VAE cosine sim. PCA
zoontje achteruit 0.28 0.74 -0.07
zoontje idee 0.48 0.80 0.06
zoontje zakje 0.42 0.83 0.08
zoontje cijfers 0.23 0.70 0.01
zoontje middag 0.35 0.72 -0.05
zoontje grond 0.36 0.78 -0.09
zus aansteker 0.34 0.63 0.01
zus tijd 0.43 0.69 0.10
zus raam 0.36 0.71 0.04
zus zonsopgang | 0.24 0.67 -0.17

From these results, it became clear that the vanilla auto
encoder was not outperforming the PCA technique, in the
same way as when simply looking at their respective per-
formance metrics. The major trend observed for the vanilla
auto encoder was that it would constantly yield very high
cosine similarities, even for the words that were supposed
to be dissimilar. For such dissimilar word pairs, the cosine
similarity was lower, when compared to the more similar

word pairs, but would still be far higher than the other two
techniques. These results are in stark contrast to the relatively
high cosine similarity the model achieved during training, but
one has to keep in mind that the cosine similarity of all the
words in the different embedding models is already quite high,
implying that the cosine similarities achieved by the vanilla
auto encoder (val. cos(AE) = 0.77 BERT, cos(AE) = 0.89
WiKipedia2Vec) were not high enough in order to adequately
distinguish between the different words.

PCA on the other hand proved to be inadequate for the
exact opposite reason. From the comparison tables, one can
observe that for certain words with high cosine similarity in
both original semantic spaces, PCA’s reduced embeddings
were actually the most similar in terms of cosine similarity
(BERT: zoontje-kind, zoontje-baby, Wikipedia2Vec: zoontje-
kind, zus-kind) . However, there were also several instances
in which similar words in the original words lost most of their
similarity after applying PCA reduction (BERT: zus-kind,
Wikipedia2Vec: zus-jongetje, zus-baby, zus-meneer). Further-
more, for all dissimilar words, PCA would simply remove
all granularity in the embeddings and make them completely
dissimilar. One could argue that making dissimilar words a
lot more dissimilar in the reduced space is not detrimental,
as doing so can lead to enhanced discrimination between dis-
similar words, making it easier for the decoding models to
distinguish between semantically dissimilar words. In doing
so, however, exaggerating dissimilarity might lead to a loss
of nuanced information, making it harder for the model to
capture subtle semantic relationships between words. Further-
more, exaggerating these differences can lead to semantic
drift, where words that are related in meaning end up being
treated as more dissimilar than they actually are. This could
lead to a decrease in the model’s ability to generalize across
related concepts. Therefore it would be best if the reduced em-
beddings simply capture the semantics of the original space
as closely as possible, without introducing unwanted extra
similarity or dissimilarity.

lastly, the variational auto encoder seemed to display none
of the issues that the other two reduction techniques presented
with. It had both the highest model performance of the two
embedding models and was also able to keep the reduced em-
beddings closest to those of both of the original spaces, when
compared to PCA and the vanilla auto encoder. In cases where
it did not yield the highest cosine similarities between words
pairs, when compared to the original spaces, it was still never
far off from the target values. Importantly, it was able to keep
both the proper similarities for similar as well as dissimilar
word pairs intact, meaning that it could adequately discrimi-
nate between different semantic meanings, while keeping the
nuanced balance of both embedding spaces intact.

In order to further support these results, heat-maps of the co-
sine similarities between all the combinations of the words dis-
cussed previously, were generated for each reduction method
under each embedding model. These heat-maps can be ob-

43

served in figures 41 and 42, for the BERT and Wikipedia2Vec
models, respectively. As can be observed from these heat-
maps as well, the variational auto encoder managed to rep-
resent the similarities for each word combination in a much
more convincing manner, especially for the Wikipedia2Vec
embeddings, when compared to the normal auto encoder and
PCA. This was to be expected as Wikipedia2Vec is a much
simpler model than BERT, but the VAE results for BERT were
still impressive, when compared to the other two reduction
methods, which were not able to keep the similarities intact
at all. Therefore, the variational auto encoder constituted the
best performing dimensionality reduction tool for embedding
compression, and it represented the only reduction technique
that was applied for the decoding tasks mentioned in the fol-
lowing subsection.

(a) Original space

cosine similarity between unique words.

|

F IS N
i i

zonsopgang

(b) 50D Variational Auto Encoder (b) 50D Variational Auto Encoder

cosine similarity betwaen unique words
i il cosine similarity between unique words

.
.
e)
09 fonae 09
o 08
.
.
.
.
- -
.
.
;
.
-
131 1311311735358 YEEEE
i P

achtenit
zonsopgang

(c) 50D vanilla Auto Encoder (c) 50D vanilla Auto Encoder

cosine similarity between unique words

ilarity between unique words

10

i

H
1

g
g
§
H

(d) 50D Principal Component Analysis (d) 50D Principal Component Analysis

Figure 42: Wikpedia2Vec heatmap of cosine similarities between

Figure 41: BERT heatmap of cosine similarities between differently
differently related words

related words

44

4.4.2 Compressed embedding decoding performance

After applying the variational auto encoder to compress both
the BERT and Wikipedia2Vec semantic embedding spaces,
models with similar levels of complexity as when decoding
the original Wikipedia2Vec embeddings were utilized to re-
construct these new compressed embedding spaces. This level
of complexity was chosen because the dimensionality of the
Wikipedia2Vec embedding space was already not much more
complex than the new reduced spaces and because further
reducing complexity did not yield any improvements in per-
formance, likely indicating that further reducing complexity
makes the models too simple for the task of semantic vec-
tor Reconstruction. Therefore, the same models as described
in table 16 were utilized for reconstructing the compressed
embeddings of both the BERT and Wikipedia2Vec seman-
tic spaces. Furthermore, since the semantic spaces were now
small enough to use the compressed sEEG data from indi-
vidual subjects, the model training and validation curves, de-
picted in figures 43, 44, were based on training the LSTM
model on the compressed SEEG data from subject 1. How-
ever, when looking at these curves and the associated per-
formance table for the model under all training scenarios,
it again became clear that the model could still not achieve
above chance validation cosine similarity performance, when
compared against the control validation cosine similarity val-
ues. This was the case for all of the training scenarios, which
now included both the full and compressed data from subjects
1 and 2 individually, as well as the combined compressed data
from both subjects together, as can be observed in table 24.

4.4.3 BERT compressed semantic space decoding results

model cosine similarity
1.0

—— train
validation

0.8

o
o
L

|

cosine similarity
o
e
1

0.2

0.0

T T T
100 150 200

epoch

250

Figure 43: BERT 50D, LSTM training and validation accuracy,
trained on Subject 1’s reduced 30-channel sEEG Data.

45

model cosine similarity
1.0

— ftrain
validation

0.8

o
o
L

cosine similarity
I
£y
L

0.2 4

0.0 T

T T T
100 150 200

epoch

250

Figure 44: BERT 50D, LSTM training and validation accuracy,
trained on Subject 1’s reduced 30-channel randomized sEEG Data.

Table 24: BERT 50D, LSTM decoding performance under
different training scenarios

‘ cosine similarity val. cosine similarity control cosine similarity

0.61
0.61

0.61
0.61
0.62
0.61
0.62

0.62
0.62
0.62
0.62
0.62

subject 1 compressed
subject 1 full

subject 2 compressed 0.61
subject 2 full 0.61
combined subjects compressed | 0.61

When looking at the training and validation curves, as well
as the performance results, as indicated in table 24, it also
became clear that the cosine similarities were lower, when
compared to reconstructing the full embedding spaces. This
is a direct result of compressing BERT’s semantic space, and
indicates that the semantic vectors became less similar after
compression, which is not strange, as some nuance is always
lost when compressing a 768 dimensional space into a 50 di-
mensions, and differentiating between vectors has to be done
slightly more coarsely when having fewer available dimen-
sions. This was not detrimental for the feasibility of the vector
reconstruction task, as it simply implied that the baseline sim-
ilarity level of the embedding spaces was lowered, which was
reflected in the randomized control cosine similarity values
as well. Nonetheless, none of the models were able to achieve
significant performance levels under these circumstances ei-
ther, and changing model parameters or model complexity
had no effect on performance either, in a similar manner as
was observed when aiming to reconstruct the uncompressed
semantic spaces.

4.44 Wikipedia2Vec compressed semantic space decod-
ing results

Model performance for reconstructing the reduced
Wikipedia2Vec semantic space followed a similar trend as in
the BERT case, with performance again not exceeding the

randomized control threshold, as can be observed in figures
45, and 46, for the unshuffled and shuffled training scenario,
trained on the compressed sEEG data from subject 1. This
also again held true under all training scenarios, as can be
observed in table 25

model cosine similarity
1.0

— train
validation

0.8

o
o
|

cosine similarity
o
e
|

0.2

0.0 T T T
150 200
epoch

T
100 250

Figure 45: Wikipedia2Vec 50D, LSTM training and validation accu-
racy, trained on Subject 1’s reduced 30-channel SEEG Data.

model cosine similarity
1.0

— frain
validation

0.8
=
= 0.6
o
E
w
L
£
[0.4 1
(]

0.2

0.0 T T T T

0 50 100 150 200 250

epoch

Figure 46: Wikipedia2Vec 50D, LSTM training and validation accu-
racy, trained on Subject 1’s reduced 30-channel randomized sEEG
Data.

Table 25: Wikipedia2Vec 50D, LSTM decoding performance
under different training scenarios

‘ cosine similarity val. cosine similarity control cosine similarity
subject 1 compressed 0.58 0.59 0.58
subject 1 full 0.58 0.58 0.58
subject 2 compressed 0.58 0.57 0.59
subject 2 full 0.58 0.57 0.59
combined subjects compressed | 0.58 0.59 0.59

Furthermore, in a similar fashion as was observed when re-

46

constructing the reduced BERT semantic vectors, the control,
training and validation cosine similarities were all lower than
when reconstructing the original Wikipedia2Vec embeddings,
although the difference was smaller, which is likely a result of
the fact that less nuance was lost when compressing a 100 di-
mensional space into a 50 dimensional space, when compared
to compressing from 768 dimensions to 50 dimensions.

All in all, the results for all of the vector reconstruction
tasks, whether the full embedding space or the reduced em-
bedding space was used as the target for reconstruction, have
shown no signs of the feasibility of successfully reconstruct-
ing such semantic information, when utilizing the sEEG data
from subjects 1 and 2. There were also no performance differ-
ences between utilizing the full SEEG data from each subject
and between utilizing the compressed versions of their data,
through the application of LSTM auto encoders. Lastly, com-
bining the compressed data from both subjects did not yield
any performance gains either, suggesting that semantic vec-
tor reconstruction might simply be a task too complex, for
the currently available data. Therefore, a final effort towards
reducing the complexity of the semantic information was em-
ployed, which is discussed in the following and last section
of the Results.

4.5 Clustering results and classification perfor-
mance

This study’s final results section pertains to the usage of clus-
tering methods, which were used in order to further simplify
both the BERT and Wikipedia2Vec semantic spaces. Fur-
thermore, Semantic clusters were also obtained through the
use of WordNet, as described in the methodology section. in
doing so, 5 semantic clusters were obtained from each se-
mantic space, which are discussed in separate sections, both
in terms of cluster contents and cluster classification perfor-
mance. Note that in a similar fashion as in the semantic vector
reconstruction tasks, only the best performing iterations of
the models under each scenarios are discussed. Lastly, since
the task contained the same input and output dimensions as
the motor decoding task, the model configurations used for
this task were similar to the ones as described in table 11 and
12 for the full input data for subjects 1 and 2 and combined
reduced data from both subjects, as well as for the compressed
input data for both subjects individually, respectively.

4.5.1 BERT clusters

The different cluster labels, obtained by visually inspecting
the contents of each cluster, as well as the distributions of the
clustered space, for subject 1, and subject 2 and the combined
case, can be observed from tables 26 - 28. Note that the
distributions for subject 2 and the combined case are the same
due to the fact that the combined case only consisted of words
which were present in the data from both subjects, which

restricted the word count, and the resulting distributions to be
the same as for subject 2’s individual data.

Table 26: BERT Cluster Legend

Cluster | theme

1 Everyday life

2 Communication and Actions

3 Emotions and states of being

4 physical environments and objects
5 Expressions and reactions

Table 27: BERT distribution of different clusters for all word
used for decoding, subject 1

Cluster | 1 2 3 4 5 total
Count 410 364 348 549 218 1889
percentage | 21.70% 19.27% 18.42% 29.07% 11.54% 100%

Table 28: BERT distribution of different clusters for all word
used for decoding, subject 2 and combined subjects

Cluster ‘ 1 2 3 4 5 total
Count 314 283 331 373 185 1486
percentage | 21.13% 19.05% 22.27% 25.10% 12.45% 100%

The overarching trends for each clusters are elaborated on
below. Note however, that the themes are quite general, which
is to be expected when only considering 5 clusters.

¢ Cluster 1: Everyday Life. This cluster mostly contained
words related to everyday life, conversations, and var-
ious situations one might encounter during the day. It
included common words, names, and actions that might
occur in regular day-to-day scenarios.

* Cluster 2: Communication and Actions. This cluster
mostly focused on words related to communication, ac-
tions, and interactions. It included verbs and expressions
associated with talking, expressing, and doing things.

¢ Cluster 3: Emotions. This cluster appeared to be cen-
tered around emotions and various mental states. It in-
cluded words related to feelings, descriptions of situa-
tions, and emotional states.

¢ Cluster 4: Physical environments and entities. This
cluster seems to describe settings, scenes, and various
objects. It includes words related to locations, physical
descriptions, and words denoting physical objects, as
well as living entities, such as people or animals.

¢ Cluster 5: Expressions and Reactions. This cluster
contained words related to expressions, reactions, and
responses. It included words associated with how people

47

react to situations, express themselves, and interact with
others.

As can be concluded from the descriptions of each clus-
ters, not only were the clusters very general in terms of their
contents, there was also a considerable amount of overlap be-
tween the clusters as can be seen in figure 47, which demon-
strates that all clusters were significantly similar in terms
of their cosine similarities. This lack of separation between
different clusters was most likely caused by the fact that dif-
ferences between words were too nuanced to encompass in 5
broad clusters. Furthermore, not all words followed the topics
mentioned in the cluster descriptions above. It is likely that
many more clusters would have been needed in order to main-
tain proper semantic separation, as BERT is highly nuanced
in how it differentiates between different words. Doing so,
however, was outside the scope of this study, as the goal of
the clustering methods was to maintain complexity on par
with the motor decoding task.

nilarity between diffe

(a) Subject 1

Figure 47: BERT: heat-map of cosine similarities between the dif-
ferent clusters generated by BERT for subjects 1 and 2.

ine similarity between different cluster

average cosi

(b) Subject 2

Classifying these clusters, therefore represented a difficult
task to begin with, which is exemplified by the levels of per-
formance as indicated in table 29, as well as the training and
validation accuracy curves depicted in figure 48, all pertaining
to the LSTM model.

model accuracy

—— train

0.2935 - validation

0.2930 4

0.2925 4

0.2920 4

accuracy

0.2915 4

0.2910 A ’

0.2905 o

0 10 20 30 40 50
epoch

Figure 48: BERT cluster training results, utilizing an LSTM trained
on the reduced 30 channel data from subject 1.

Table 29: BERT Clusters classification performance utilizing
an LSTM

‘ accuracy val. accuracy majority class accuracy
subject 1 compressed 29.12% 29.37% 29.07%
subject 1 full 29.19% 29.10% 29.07%
subject 2 compressed 25.06% 25.25% 25.10%
subject 2 full 25.06% 25.25% 25.10%
combined subjects compressed | 25.15% 24.91% 25.10%

As can be seen from the training and validation curves,
the model almost instantly converges to picking the majority
class, meaning it has not learned anything about the clusters.
This constituted the best case scenario as well, as different
versions of the model would simply alternate between pick-
ing other classes, without ever even reaching majority class
performance. Note that the validation accuracy was ever so
slightly above the majority class level, due to the fact that
the distributions were slightly different after dividing the data
into train and test samples, which is inevitable, even when
balancing classes, due to the different total number of samples
in the training and validation data after the split. Furthermore,
when looking at the performance table, it became clear that the
LSTM model was unable to reach above majority level perfor-
mance under any of the training scenarios. As was observed
during the other tasks as well, increasing model complexity
or changing model architecture had no effect on model perfor-
mance other than causing the alternating behavior described
above, indicating that decoding the BERT clusters represented
an infeasible task, given the current data and the number of
clusters that were used.

4.5.2 Wikipedia2Vec clusters

The different cluster labels for the Wikipedia2Vec seman-
tic space as well as their distributions for all scenarios are

48

depicted in tables 30-32.

Table 30: Wikipedia2Vec Cluster Legend

Cluster | theme

Physical environment and appearance
Emotions and social interactions
Quantities and descriptions

Actions and events

Living entities

N AW -

Table 31: Wikipedia2Vec distribution of different clusters for
all word used for decoding, subject 1

Cluster ‘ 1 2 3 4 5 total
Count 366 485 536 283 219 1889
percentage | 19.37% 25.68% 28.38% 14.98% 11.59% 100%

Table 32: Wikipedia2Vec distribution of different clusters for
all word used for decoding, subject 2 and combined subjects

Cluster ‘ 1 2 3 4 5 total
Count 287 388 422 222 167 1486
percentage | 19.31% 26.11% 28.40% 14.94% 11.24% 100%

The identified clusters could be described as shown below.

¢ Cluster 1: Physical environment and appearance.
This cluster mostly contained words related to physi-
cal appearance, clothing, and outdoor settings.

¢ Cluster 2: Emotions and social interactions. The
words in this cluster were mostly related to emotions,
communication, and social interactions.

¢ Cluster 3: Quantities and descriptions. This cluster
consisted of words related to quantity, size, and general
descriptors for objects.

* Cluster 4: Actions and events. The words in this cluster
were mostly related to actions and events, with many
verbs and words pertaining to activities.

* Cluster 5: Living entities This cluster appeared to
mostly contain words related to people, animals, and
their descriptions.

When examining the different cluster labels, descriptions
and separation heat-maps depicted in figure 49, it became evi-
dent that the Wikipedia2Vec clusters exhibited similarly unim-
pressive levels of separation, featuring equally vague themes
among the clusters. Furthermore, similar to the BERT clusters,
not all words within each cluster accurately aligned with the
identified labels, signifying sub-optimal cluster quality. In par-
allel, classification performance consistently never exceeded

majority class performance across all training scenarios, as
illustrated in Table 33. These outcomes underscore the im-
practicality of cluster classification for the Wikipedia2Vec
clusters, given the existing data.

e similarity between different cluster

3 1 2

(a) Subject 1

10

. i
- |
o
. |
-5

3 3

ine similari tyb(wee drfre(lusters
3 s

(b) Subject 2

10

o

-os

Figure 49: Wikipedia2Vec heat-map of cosine similarities between
the different clusters generated by Wikipedia2Vec for subjects 1 and
2.

Table 33: Wikipedia2Vec Clusters classification performance
utilizing an LSTM

‘ accuracy val. accuracy majority class accuracy
subject 1 compressed 28.39% 28.31% 28.38%
subject 1 full 28.39% 28.31% 28.38%
subject 2 compressed 28.34% 28.28% 28.40%
subject 2 full 2843% 28.62% 28.40%
combined subjects compressed | 28.43% 28.62% 28.40%

4.5.3 WordNet clusters

The final clusters were obtained utilizing the WordNet similar-
ity matrix, which contained similarity scores for all word com-
binations. Clustering based on this similarity matrix yielded
the semantic clusters, with accompanying labels, depicted in
tables 34-36.

49

Table 34: WordNet Cluster Legend

Cluster | theme

1 Physical environment

2 living entities and their descriptions
3 Time and events

4 Actions and thoughts

5 Emotions and states of mind

Table 35: WordNet distribution of different clusters for all
word used for decoding, subject 1

Cluster | 1 2 3 4 5 total
Count 204 425 473 310 477 1889
percentage | 10.80% 22.50% 25.04% 1641% 25.25% 100%

Table 36: WordNet distribution of different clusters for all
word used for decoding, subject 2 and combined subjects

Cluster | 1 2 3 4 5 total
Count 170 322 369 241 384 1486
percentage | 11.44% 21.67% 24.83% 16.22% 25.84% 100%

The overarching trends for each of these clusters are ex-
plained in more detail below.

* Cluster 1: Physical environment. Cluster 1 mostly con-
tained words describing the physical environment, in a
similar fashion as with the Wikipedia2Vec cluster.

* Cluster 2: Living entities and their descriptions. This
cluster consisted of words relating to living entities and
their descriptions, in a similar fashion as was seen with
other clustering methods.

Cluster 3: Time and events. Cluster 3 focused on time
related concepts, such as the time of day, or day of the
week. It also contained more general event descriptions,
pertaining to everyday activities.

Cluster 4: Actions and thoughts. Cluster 4 mostly con-
sisted of words pertaining to actions and thoughts and
included mostly verbs and adverbs pertaining to verbs.

Cluster 5: Emotions and states of mind Finally, cluster
5 focused on emotions and other words describing one’s
state of mind, and included literal emotions as well as
words pertaining to emotional states with words such as
fantastic or cruel, which have a clear emotional charge.

In general, the WordNet Clusters exhibited the weakest
separation among the three discussed clustering techniques,
as can be observed in figure 50. In a similar fashion as with
the BERT and Wikipedia2Vec clusters, none of the clusters

showed proper separation, meaning that WordNet was inca-
pable of grouping the words into the 5 overarching clusters .
The results were likely worse in case of WordNet because the
concepts it used for comparison had to be manually translated.
Furthermore, its lack of contextual information could have
made this task even more demanding, as words can become
ambiguous without context. This could have been further ex-
acerbated by its lack of part of speech tagging, which normally
helps to disambiguate words.

o 1 2 3 4

(a) Subject 1

aver aqe cosine similari ly between d fferent clusters

“os

(b) Subject 2

Figure 50: WordNet heat-map of cosine similarities between the
different clusters generated by WordNet for subjects 1 and 2.

Table 37: WordNet Clusters classification performance utiliz-
ing an LSTM

‘ accuracy val. accuracy majority class accuracy
subject 1 compressed 2528% 25.13% 25.25%
subject 1 full 2495% 24.87% 25.25%
subject 2 compressed 25.82% 25.59% 25.84%
subject 2 full 2590% 25.93% 25.84%
combined subjects compressed | 25.82% 25.59% 25.84%

The performance figures for the WordNet cluster classifica-
tion task, as depicted in table 50, once more demonstrate that
above majority class level performance proved to be unattain-
able under any of the training scenarios. As before, changing
model parameters or increasing complexity did not increase

50

performance above the respective thresholds of each scenario.

In summary, none of the three discussed clustering meth-
ods surpassed random chance performance. These findings
confirmed that attempting to extract broader semantic infor-
mation by clustering words—whether based on contextual
meanings (as demonstrated by BERT and Wikipedia2Vec)
or on hierarchical semantic meanings derived from Word-
Net—represented an unattainable task given the available
data and the number of clusters that were employed. Further-
more, the clustering task served as the concluding decoding
task in the study, leading to the overall conclusion that se-
mantic decoding, using the current techniques and data, was
deemed infeasible.

5 Discussion

The main purpose of this section is to discuss the results from
the previous section and put them in a broader context with
regards to the main research question of this study, pertaining
to the feasibility of decoding semantic information from sEEG
data. Furthermore, the discussion touches on some of the
limitations inherent to the current approaches. Towards that
end, the results are discussed in a similar order as they were
presented in, meaning that the SEEG compression and motor
decoding results are discussed first, after which focus shifts
towards the main semantic decoding tasks and the results
pertaining to the simplification of these tasks.

5.1 Auto encoder sEEG compression

The findings pertaining to SEEG data compression revealed
that preserving information relevant to the speech envelope
while reducing input data dimensionality was achievable. The
most successful auto encoder architecture, as indicated by
the results, was the LSTM auto encoder model. This model
exhibited the highest and most consistent correlations with
the speech envelope for each subject.

This finding was slightly contradicting as the variational
auto encoder should theoretically constitute a more robust re-
duction architecture. This unexpected outcome may have been
attributed to the independent sampling of the auto encoders la-
tent space, because the variational auto encoder would sample
its latent space from a Gaussian distribution, created inde-
pendently for each individual time step of the input sequence.
This issue arises from the inherent structure of such auto en-
coders and wouldn’t be problematic if the LSTM auto encoder
compressed in both the temporal and spatial dimensions. In
such a scenario, the hidden state of the LSTM encoder would
only encapsulate the last time step, effectively compressing
the entire sequence into one time step. This would allow for
independent sampling (reparameterization) of the entire se-
quence, as each sequence would be represented by just one
time step.

However, the current LSTM auto encoder compressed only
the spatial extent of the input data to preserve timing rela-
tionships between brain data, speech envelope, and word on-
set/offset times. While this design choice was necessary, it
could have counteracted the temporal patterns extracted by
the LSTM encoder. Independently sampling (reparameteri-
zation) each time step in the sequence likely interfered with
the temporal patterns extracted by the LSTM, explaining the
superior performance of the LSTM auto encoder compared
to its variational counterpart. However, the benefit of adding
a probabilistic sampling component to the latent space could
still be observed, when comparing the the non-temporal auto
encoders, where the variational auto encoder outperformed
its static counterpart. Overall, combining LSTMs with vari-
ational auto encoders could still be a feasible approach, but

51

only in cases where the auto encoder aims to compress in
the temporal dimension as well as the spatial dimension, as
training in a sequence to sequence manner as was performed
in the current study proved more favourable to the vanilla
LSTM auto encoder.

Generally, however, the results still demonstrated the fea-
sibility of reducing the complexity of the brain data, whilst
keeping important motor information intact. This finding cor-
roborates with earlier work pertaining to the usage of auto en-
coders for the purpose of EEG denoising and artifact removal
and could prove valuable towards other brain data decoding
efforts [12]

5.2 Motor decoding results

As discussed in syllable decoding results section, decoding
motor information in the form of syllable quantity classifi-
cation, proved to be at least somewhat feasible when using
the current SEEG data sets. The only model that proved rel-
evant here was shown to be the 1D-CNN model, which at
first seems contradictory, given the fact that sequence models
are specifically designed to tackle sequences in which the
temporal extent of the data is taken into account. However, it
is important to note that sequence models, like RNNs GRUs
and LSTMs, are designed to capture patterns pertaining to the
timings and the temporal hierarchies in which peaks in each
channel occur, which may be different for individual words,
even if they contain the same number of syllables. In other
words, these sequence models might be too sensitive towards
the differences in locations of different peaks in different
words and the different spacing between each peak.The 1D
CNN on the other hand, is designed to capture local patterns
and does not take the exact locations of these patterns into
account, which may have benefited its performance, due to
the aforementioned possible differences in local peak occur-
rences. Therefore the 1D-CNN’s relative simplicity may be
one of the main factors for its increased performance, when
compared to traditional sequence models.

Evaluating the models’ performance on these tasks posed
challenges due to the absence of studies directly quantifying
the number of syllables in each word from brain data.

In terms of sEEG studies focused on reconstructing mo-
tor speech information, results from Kohler and colleagues
demonstrated that SEEG data encoded enough information
to reconstruct audio wave-forms that appeared similar to the
ground truth to the human eye, and contained certain intelligi-
ble speech fragments, corroborating with this study’s motor
decoding results, in the sense that certain motor related as-
pects of speech could be decoded to a certain extent in both
studies [45].

However, given that the results achieved in this study were
only marginally superior (10 — 15%) to majority class per-
formance and considering the dataset’s inherent imbalance,
with the majority of words falling into just two out of the

five classes, it appears that these findings did not reflect out-
standing performance. These results, combined with infor-
mation pertaining to the placement of the sEEG electrodes,
as depicted in figure 14, and the original correlations of the
electrodes to the speech envelope, depicted in figure 17, sug-
gests that not all electrodes in the data encoded information
relevant to the motor aspects of speech.

This became particularly apparent when cross referencing
these outcomes with studies that targeted the direct decoding
of syllables, rather than merely classifying their quantity. In
such studies, the results demonstrated the capacity to decode
specific syllables from a diverse range of classes, surpassing
chance performance as outlined in [81]. It is important to
note, however, that such results were obtained utilizing EEG
brain recordings, which had far greater spatial coverage than
the sparse and locally distributed SEEG electrodes that made
up the current data sets, which likely did not all encode mo-
tor related speech information. Furthermore, as mentioned
before, decoding motor information from the current SEEG
recordings only served to establish whether any information
pertaining to speech was encoded in the data, and the results
thus far demonstrated that such information was at least partly
encoded in the current SEEG recordings.

5.3 Semantic decoding

Despite motor decoding results demonstrating the feasibil-
ity to extract certain motor features of speech to a certain
extent, this did not hold true for any of the semantic decod-
ing tasks. None of the models achieved above chance level
performance for any of the decoding tasks that were intro-
duced in this study. It would be quite easy to attribute this
lack of performance to the lack of samples that were available
for training, and this fact did indeed limit the complexity of
the models that could be applied towards decoding seman-
tic information from the brain signals. However, even with
limited training data available there should have been some
noticeable effect in performance, if the problem was solely
described by a lack of training data. Therefore, there must
have been other issues, pertaining to either the brain data or
the semantic representations that limited the decodability of
the semantic representations from the sEEG recordings.

In terms of the semantic representations, there were some
limitations and issues to be found within the current tasks.
First of all the task of reconstructing either the BERT or the
Wikipedia2Vec embeddings constituted a highly complex task.
For reference, one of the few studies that managed to decode
words based on word embeddings was conducted by Gold-
stein and colleagues, which was based on ECoG data, but
their task was simpler than the current task, in the sense that
they only aimed to predict the probability of the next word,
given a sequence of previous words, rather than aiming to
reconstruct the entire word vector without context [27].

Furthermore, the only public work which has managed to

52

decode semantic vectors directly, involved the use of fMRI,
meaning it was reliant on having enough temporal separa-
tion between the different words, and sampled words from
semantically different clusters, such that every word that was
used for decoding was significantly different from compar-
ison words, which simplifies the decoding task [68]. It was
therefore unlikely that the current study would be able to re-
construct the full word embeddings, given the complexity of
the original embeddings and the task in general.

This constituted the main reason behind reducing the di-
mensionality of the embeddings, as this could greatly sim-
plify the vector reconstruction task. The results of this study
demonstrated that utilizing auto encoders for this purpose was
highly effective and could outperform traditional linear meth-
ods such as PCA, which corroborates with earlier findings
that have shown that auto encoders can be effective for word
embedding dimensionality reduction [48]. More specifically,
the variational auto encoder that was utilized managed to keep
most of the semantic similarities between the words intact,
and reached high overall similarity to the original embedding
spaces of both BERT and Word2Vec. Unfortunately, even
after successful compression of the semantic space, recon-
structing the semantic vectors still proved to be infeasible, as
none of the models reached above chance performance on
this simplified task. These results indicate that semantic vec-
tor reconstruction is simply a very complex task, even when
reducing the complexity of the semantic vectors.

The last effort towards simplifying the semantic space trans-
formed the task from semantic vector reconstruction into
semantic category classification, with the same number of
classes as were present during the motor decoding task, in
which above random chance level results could be obtained.
The three methods for generating these semantic categories,
involved clustering both the BERT and Wikipedia2Vec em-
bedding spaces into clusters, as well as utilizing a WordNet
derived similarity matrix for clustering. None of the clustering
methods were able to lead to above chance results in terms
of semantic category classification, however. Here it would
be easy to conclude that the data likely did not encode any
semantic information because above chance results could be
obtained for the motor decoding task, but not for a semantic
decoding task of the same complexity.

However, the clustering methods used to separate the se-
mantic representations into semantic categories were far from
perfect, with none of the clustering methods having particu-
larly clear boundaries between the semantic categories they
generated. In terms of the BERT and Word2Vec clusters, it is
important to note that the clusters were derived from semantic
spaces which already displayed high similarity between the
different concepts they encapsulated. This became evident
after observing that even a random chance model would gen-
erate vectors with relatively high levels of cosine similarity to
both the BERT (cos(6) = 0.69) and Wikipedia2Vec vectors
(cos(8) = 0.65), which in turn implied that the differences

between the different embeddings were quite nuanced. This
nuanced similarity structure could also be observed when
looking at the performance of the vanilla auto encoder model,
which was unable to keep similarity structures intact, de-
spite achieving high overall cosine similarity to the entire
word space (cos(BERT)=0.77, cos(WIKI)= 0.89). These dif-
ferences appeared to be more nuanced between the BERT
embeddings, which is likely caused by the fact that BERT’s
embeddings are contextual, as research has shown that static
embeddings can only explain a small portion of the variance in
contextual embeddings, which implies that contextual models
are likely far more intricate in how they differentiate between
different embeddings [21]. Furthermore, since BERT’s em-
bedding are context dependent, similarities in the sentence
structure of the reading task might have further increased the
embedding similarities. Note that the high levels of similarity
in the embeddings spaces could have also further inhibited
performance on the direct vector reconstruction task.

The WordNet clusters, on the other hand, likely suffered
from the lack of POS tagging, mentioned in the methodol-
ogy, which may have inhibited WordNet to select the proper
synset for each word. This in turn could have impacted the
similarity between the different words, which in turn could
have impacted cluster quality. Furthermore, the fact that every
word had to be manually translated into English, due to Word-
Net’s limited span over the Dutch language likely inhibited
proper synset selection as well, as translating the words with-
out proper context was likely not without loss of semantic
quality.

All methods could have also been influenced by the fact
that the words were drawn from a natural speech task in which
all words revolved around a similar general theme, namely
harry potter, which could explain why most words would
display increased similarity between one another. This is es-
pecially plausible when keeping in mind that models such as
BERT and Word2Vec contain embeddings that are trained to
be differentiable in a space containing an enormous variety of
words, which implies that words drawn from a much smaller
subspace revolving around a similar topic would naturally
display higher similarity. It is likely a combination of the
factors mentioned above that may have led the words to dis-
play high similarities and nuanced differences between one
another. It therefore seems unlikely that categorizing such nu-
anced differences into 5 broad semantic categories would lead
to interpretable results. For reference, similar work by Pereira
and colleagues also clustered word embeddings into semantic
clusters, but used far more clusters (200) to represent the dif-
ferences between the different words [68]. The current study
intentionally utilized much broader clusters (5), in order to
induce similar computational complexity as for the motor de-
coding task, in order to allow for easy comparison, but as has
become evident, this might have limited the informativeness
of the derived clusters, when paired with automated clustering
methods.

53

Besides limitations pertaining to the semantic representa-
tions discussed above, the lack of semantic decoding capabil-
ities are likely also attributed to a lack of semantic decoding
in the sEEG data that was utilized for decoding in this study.
This notion does not contradict with the evidence regarding
the presence of correlations between the SEEG data and the
speech envelope, because the speech envelope mostly per-
tains to motor related areas of the brain, whereas semantic
processing occurs through a widely distributed number of
brain regions [72] [75]. Therefore, high correlations to the
speech envelope did not necessarily indicate that the sEEG
data would be relevant for semantic decoding as well. Fur-
thermore, when looking at the distribution of the different
sEEG electrodes, as indicated in figure 14, it becomes evident
that the electrodes were quite sparsely located and might also
penetrated brain areas with a lot of white matter that might
not be relevant for semantic decoding. Lastly, when observing
the initial correlations to the speech envelope as indicated
in figure 17, one can see that the available correlations to
the speech envelope were already quite sparse to begin with,
and even after amplifying these correlations through the use
of the auto encoders, still not every reduced channel demon-
strated significant correlations to the speech envelope. This
fact, combined with a lack of evidence that correlations to the
speech envelope would directly translate to semantic correla-
tion, and the sparse nature of the electrode placements, could
suggest that the current SEEG samples from both subjects did
not encode a sufficient amount of semantic information for
the purpose of decoding. It is therefore likely a combination
of limitations pertaining to the brain data as well as the se-
mantic representations themselves that posed constraints on
successfully decoding semantic information from sEEG data.

5.4 Multi-patient training

The sparsity of the electrode placements, as mentioned in the
previous subsection, was one of the main reasons behind com-
bining the data from both subjects into one unified sample.
By reducing the dimensionality of the brain data from both
subjects beforehand, increased complexity could be mitigated,
as the dimensionality of the combined data was lower than
when utilizing the original data from isolated subjects. The
hope, therefore, was that decoding performance could be ame-
liorated as a result of the additional information provided by
this combination. As demonstrated by the results, however,
this was not the case. For the motor decoding task, results
neither really improved, nor deteriorated, whereas there was
no measurable effect whatsoever during the decoding tasks.
This inhibits the formation of a clear conclusion towards the
efficacy of combining data from multiple patients. What can
be said, however, is that it is plausible that the combined brain
data from both subjects still did not cover enough brain areas
in order to sufficiently represent semantic processing because
the combined data only spanned the electrodes from 2 patients.

Furthermore, the method of combination, which consisted of
simply concatenating the channels from both patients, was
likely too simplistic, in the sense that simple concatenation
does not take the location of these different electrodes into
account. Note that this was not possible with only two sub-
jects, as the electrodes would still be too sparsely distributed
to form a grid, from which spatial relationships could be as-
certained. Therefore, no clear conclusions can be made at this
time pertaining to the efficacy of combining brain data from
multiple subjects, as it is likely that a threshold needs to be ex-
ceeded before such combined data could encompass enough
brain areas to sufficiently represent semantic processes in the
brain.

6 Future Work

Based on the results and discussion of this study, directions
towards future work could focus on both the brain data itself,
the decoding models, as well as the output representations.
In terms of the brain data, an obvious suggestion would be
to utilize the sEEG data from different patients in addition to
the currently used data. Data from other patients was avail-
able but had not been pre-processed to the same extent as the
currently used data, which is why they were left unused for
the purposes of this study, as this additional pre-processing
would have been beyond the time constraints imposed on this
project. the addition of data from multiple subjects could po-
tentially enhance the coverage of the electrodes to an extent
where they would be able to sufficiently represent semantic
processing in the brain. This has implications for the suitabil-
ity of spatiotemporal decoding models as well as models like
convolutional neural networks or convolutional LSTMs could
potentially be applied if the electrodes are abundant enough
to form a high density 3d grid. Naturally, the inclusion of
many more electrodes would increase complexity too, but
this is where convolutional auto encoders could successfully
be applied in order to reduce the dimensionality of such a
grid. It could, therefore, be interesting to see whether seman-
tic decoding performance could be ameliorated under such
conditions. In addition to using more sEEG data, it is worth
noting that ECoG data for subjects who performed the same
reading task is also available. since ECoG already represents
a structured grid, attempting semantic decoding whilst utiliz-
ing this data could also be worth considering, although it is
currently unclear whether ECoG’s superficial coverage and
lack of penetration into deeper brain areas could sufficiently
record semantic processing in the brain.

Furthermore, one of the limitations of considering the brain
data’s correlations to the speech envelope was the fact that
it was unlikely that such correlations would translate into
correlations pertaining to semantic processing too. Therefore,
a direct method for ascertaining the correlations between the
brain data and semantic processing would be a desirable tool
for future studies. recent work by Kohler and colleagues has

54

already proposed what form such a tool might assume, as they
demonstrated that Word2Vec embeddings could be utilized
to reconstruct neural activity from sEEG electrodes during
speech production. More specifically, they were able to show
which electrodes significantly encoded semantic information
by training a linear regression predictor for each electrode
and correlating the results to each time point relative to the
word presentation [33]. A similar could be adopted in future
work in order to ascertain which electrodes hold potential for
semantic decoding.

Lastly, in terms of the semantic representations, it has be-
come clear that direct semantic vector reconstruction is likely
too complex given the limited sample sizes and available data
and this likely holds true when increasing the number of avail-
able electrodes too. Whether such a task becomes achievable
after dimensionality reduction through auto encoders is cur-
rently unclear, so future work ought to focus on tasks with
lower complexity instead. The semantic categories utilized
in this study were limited too, in the sense that automatic
semantic clustering in combination with aiming to generate
a few general clusters was not successful. Therefore, future
work could instead aim to increase the number of clusters, in
order to better separate the different concepts from one an-
other, in a similar fashion as was done in work by Pereira and
colleagues [68]. Even with many clusters, such a task would
still have a lower complexity than direct vector reconstruction
and could therefore yield more favorable results. Furthermore,
manual clustering words into well defined categories could
also hold potential as doing so would make the learning space
more differentiable. Lastly, if vector reconstruction could suc-
cessfully be applied, it is likely that the best results could be
obtained when using the Word2Vec model as this model was
yielded more differentiable word embeddings with a lower
dimensionality, which in turn also increased the efficacy of
efforts towards further reducing its complexity, as became
evident by the auto encoder results for Wikipedia2Vec.

7 Conclusion

The main purpose of this study was to investigate the feasi-
bility of decoding semantic representations, in the forms of
semantic categories and semantic vectors, from sEEG data.
Towards that end, both static and dynamic embedding models,
in the forms of Word2Vec and BERT, were applied to generate
word embeddings which encapsulated the semantic meaning
of words pronounced by two subjects during a natural lan-
guage reading task. Such models, in addition to the WordNet
lexical database, were also utilized in order to generate broad
semantic categories, which served as a simplification of the
original decoding task of reconstructing the semantic vec-
tor representations. The semantic vectors were compressed
utilizing auto encoders, in order to reduce the complexity
of directly decoding such vectors. In a similar manner, the
SEEG brain data itself was compressed utilizing temporal

auto encoders, which served to reduce the complexity of such
signals as well as to make features relevant to speech more
salient. Furthermore, in order to ascertain whether the data
held any decodable information with regards to speech in the
first place, a preliminary motor decoding task, in the form of
syllable quantity classification was conducted. Finally, the
data from both subjects was combined, after compression, in
an effort to mitigate SEEG’s sparse coverage of the brain.

The results of this study have demonstrated that auto en-
coders can successfully be applied to reduce the complexity
of both the sEEG data as well as the semantic BERT and
Word2Vec embeddings, while keeping important information
intact. Furthermore, the results pertaining to motor decoding
indicated that motor information could, to a certain extent,
be decoded from the data. Despite these favorable results,
semantic decoding proved infeasible, with predictions never
exceeding above chance level performance on any of the
semantic decoding tasks, even when combining data from
multiple subjects. This lack of decoding performance could
be attributed to a combination of limitations pertaining to
both the sEEG data as well as the semantic representations
in each decoding task. On one hand, the semantic vector re-
construction tasks remained complex, even after reducing the
complexity of the embeddings. Furthermore, automatically
clustering the semantic representations into broad semantic
categories proved unable to maintain separability between dif-
ferent semantic concepts. However, it is also plausible that the
SsEEG data did not sufficiently encode semantic processing in
the brain for the purpose semantic decoding, even after com-
bining data from multiple subjects and it was unclear whether
the correlations to the speech envelope, used to asses the qual-
ity of the SEEG data, were relevant for semantic decoding
too.

Based on these findings, future work could focus on in-
corporating more data from other sEEG subjects, or ECoG
subjects, which could allow for a better representation of se-
mantic processes in the brain. Furthermore, the relevancy of
individual electrodes towards semantic processes should be
evaluated, rather than focusing on correlations to the motor
related aspects of speech, as this could yield important in-
sights into which electrodes would be suitable for decoding
semantic information. Lastly, future work should focus on
using manually generated semantic categories, which focus
on semantic separability. Alternatively, automated clustering
could still be used but would require far more clusters in order
to appropriately separate different semantic concepts. All in
all, this study was one of the first attempts towards decoding
semantic information from sEEG data and could spark new
research in the area of SEEG semantic decoding.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Hassan Akbari, Bahar Khalighinejad, Jose L Herrero,
Ashesh D Mehta, and Nima Mesgarani. Towards recon-
structing intelligible speech from the human auditory
cortex. Scientific reports, 9(1):874, 2019.

Jasem Almotiri, Khaled Elleithy, and Abdelrahman
Elleithy. Comparison of autoencoder and principal
component analysis followed by neural network for
e-learning using handwritten recognition. In 2017
IEEE Long Island Systems, Applications and Technol-
ogy Conference (LISAT), pages 1-5. IEEE, 2017.

Miguel Angrick, Christian Herff, Emily Mugler,
Matthew C Tate, Marc W Slutzky, Dean J Krusien-
ski, and Tanja Schultz. Speech synthesis from ecog
using densely connected 3d convolutional neural net-
works. Journal of neural engineering, 16(3):036019,
2019.

Maria Clemencia Ortiz Barajas, Ramén Guevara, and
Judit Gervain. The origins and development of speech
envelope tracking during the first months of life. De-
velopmental cognitive neuroscience, 48:100915, 2021.

Julia Berezutskaya, Clarissa Baratin, Zachary V
Freudenburg, and Nicolas F Ramsey. High-density
intracranial recordings reveal a distinct site in anterior
dorsal precentral cortex that tracks perceived speech.
Human brain mapping, 41(16):4587-4609, 2020.

Nima Bigdely-Shamlo, Tim Mullen, Christian Kothe,
Kyung-Min Su, and Kay A Robbins. The prep pipeline:
standardized preprocessing for large-scale eeg analysis.
Frontiers in neuroinformatics, 9:16, 2015.

Paul Boersma. Praat: doing phonetics by computer
[computer program]. http://www. praat. org/, 2011.

Jonathan S Brumberg, E Joe Wright, Dinal S An-
dreasen, Frank H Guenther, and Philip R Kennedy.
Classification of intended phoneme production from
chronic intracortical microelectrode recordings in
speech motor cortex. Frontiers in neuroscience, S:
7880, 2011.

Shreya Chakrabarti, Hilary M Sandberg, Jonathan S
Brumberg, and Dean J Krusienski. Progress in speech
decoding from the electrocorticogram. Biomedical
Engineering Letters, 5:10-21, 2015.

Emmanuele Chersoni, Enrico Santus, Chu-Ren Huang,
and Alessandro Lenci. Decoding word embeddings
with brain-based semantic features. Computational
Linguistics, 47(3):663-698, 2021.

56

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

Taishih Chi, Powen Ru, and Shihab A Shamma.
Multiresolution spectrotemporal analysis of complex
sounds. The Journal of the Acoustical Society of Amer-
ica, 118(2):887-906, 2005.

Arjun Vinayak Chikkankod and Luca Longo. On the di-
mensionality and utility of convolutional autoencoder’s
latent space trained with topology-preserving spectral

eeg head-maps. Machine Learning and Knowledge
Extraction, 4(4):1042-1064, 2022.

Stephanie Chua and Narayanan Kulathuramaiyer.
Semantic feature selection using wordnet. In
IEEE/WIC/ACM International Conference on Web In-
telligence (WI’04), pages 166—172. IEEE, 2004.

Debadatta Dash, Paul Ferrari, Angel W Hernandez-
Mulero, Daragh Heitzman, Sara G Austin, and Jun
Wang. Neural speech decoding for amyotrophic lateral
sclerosis. In INTERSPEECH, pages 2782-2786, 2020.

Debadatta Dash, Paul Ferrari, and Jun Wang. Decoding
imagined and spoken phrases from non-invasive neural
(meg) signals. Frontiers in neuroscience, 14:290, 2020.

Debadatta Dash, Paul Ferrari, and Jun Wang. Role of
brainwaves in neural speech decoding. In 2020 28th
European Signal Processing Conference (EUSIPCO),
pages 1357-1361. IEEE, 2021.

Wendy A de Heer, Alexander G Huth, Thomas L Grif-
fiths, Jack L Gallant, and Frédéric E Theunissen. The
hierarchical cortical organization of human speech pro-
cessing. Journal of Neuroscience, 37(27):6539-6557,
2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Jae Seok Do, Akeem Bayo Kareem, and Jang-Wook
Hur. Lstm-autoencoder for vibration anomaly detec-
tion in vertical carousel storage and retrieval system
(vesrs). Sensors, 23(2), 2023. ISSN 1424-8220. URL
https://www.mdpi.com/1424-8220/23/2/1009.

Jiaju Du, Fanchao Qi, and Maosong Sun. Using
bert for word sense disambiguation. arXiv preprint
arXiv:1909.08358, 2019.

Kawin Ethayarajh. How contextual are contextual-
ized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. arXiv preprint
arXiv:1909.00512, 2019.

https://www.mdpi.com/1424-8220/23/2/1009

(22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

Quentin Fournier and Daniel Aloise. Empirical com-
parison between autoencoders and traditional dimen-
sionality reduction methods. In 2019 IEEE Second
International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), pages 211-214. IEEE,
2019.

Saskia L Frisby, Ajay D Halai, Christopher R Cox,
Matthew A Lambon Ralph, and Timothy T Rogers.
Decoding semantic representations in mind and brain.
Trends in Cognitive Sciences, 2023.

Jeroen Geuze, Jason Farquhar, and Peter Desain. To-
wards a communication brain computer interface based
on semantic relations. PLoS One, 9(2):e87511, 2014.

Joydeep Ghosh and Alexander Strehl. Similarity-based
text clustering: A comparative study. In Grouping Mul-
tidimensional Data: Recent Advances in Clustering,
pages 73-97. Springer, 2006.

Gary H Glover. Overview of functional magnetic reso-
nance imaging. Neurosurgery Clinics, 22(2):133-139,
2011.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano
Schain, Amy Price, Bobbi Aubrey, Samuel A Nastase,
Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared
computational principles for language processing in hu-
mans and deep language models. Nature neuroscience,
25(3):369-380, 2022.

Frank H Guenther, Jonathan S Brumberg, E Joseph
Wright, Alfonso Nieto-Castanon, Jason A Tourville,
Mikhail Panko, Robert Law, Steven A Siebert, Jess L
Bartels, Dinal S Andreasen, et al. A wireless brain-
machine interface for real-time speech synthesis. PloS
one, 4(12):¢8218, 2009.

Zengzhi Guo and Fei Chen. Decoding articulation
motor imagery using early connectivity information
in the motor cortex: A functional near-infrared spec-
troscopy study. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 2022.

Cong Han, James O’Sullivan, Yi Luo, Jose Herrero,
Ashesh D Mehta, and Nima Mesgarani. Speaker-
independent auditory attention decoding without ac-
cess to clean speech sources. Science advances, 5(5):
eaav6134, 2019.

Christian Herff, Dominic Heger, Adriana De Pesters,
Dominic Telaar, Peter Brunner, Gerwin Schalk, and
Tanja Schultz. Brain-to-text: decoding spoken phrases
from phone representations in the brain. Frontiers in
neuroscience, 9:217, 2015.

57

(32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Christian Herff, Dean J Krusienski, and Pieter Kubben.
The potential of stereotactic-eeg for brain-computer
interfaces: current progress and future directions. Fron-
tiers in neuroscience, 14:123, 2020.

Christian Herff, Maxime Verwoert, Joaquin Amig6-
Vega, and Maarten Ottenhoff. Semantic representa-
tions of speech production in intracranial eeg. pages
4764-4769, 10 2023. doi: 10.1109/SMC53992.2023.
10394550.

Nora Hollenstein, Cedric Renggli, Benjamin Glaus,
Maria Barrett, Marius Troendle, Nicolas Langer, and
Ce Zhang. Decoding eeg brain activity for multi-modal
natural language processing. Frontiers in Human Neu-
roscience, page 378, 2021.

Alexander G Huth, Wendy A De Heer, Thomas L Grif-
fiths, Frédéric E Theunissen, and Jack L Gallant. Nat-
ural speech reveals the semantic maps that tile human
cerebral cortex. Nature, 532(7600):453-458, 2016.

Koji Tida and Hiroshi Otsubo. Stereoelectroen-
cephalography: indication and efficacy. Neurologia
medico-chirurgica, 57(8):375-385, 2017.

Hassan Ismail Fawaz, Germain Forestier, Jonathan
Weber, Lhassane Idoumghar, and Pierre-Alain Muller.
Deep learning for time series classification: a review.
Data mining and knowledge discovery, 33(4):917-963,
2019.

Daniel Jurafsky and James H Martin. Speech and lan-
guage processing (draft of december 29, 2021), 2021.

Devinder Kaur, Shama Naz Islam, and Md Apel Mah-
mud. A variational autoencoder-based dimensionality
reduction technique for generation forecasting in cyber-
physical smart grids. In 2021 IEEE International Con-
ference on Communications Workshops (ICC Work-
shops), pages 1-6. IEEE, 2021.

Matthew C Kiernan, Steve Vucic, Benjamin C Cheabh,
Martin R Turner, Andrew Eisen, Orla Hardiman,
James R Burrell, and Margaret C Zoing. Amyotrophic
lateral sclerosis. The lancet, 377(9769):942-955, 2011.

Joshua Y Kim, Chunfeng Liu, Rafael A Calvo, Kathryn
McCabe, Silas CR Taylor, Bjorn W Schuller, and Kai-
hang Wu. A comparison of online automatic speech
recognition systems and the nonverbal responses to un-
intelligible speech. arXiv preprint arXiv:1904.12403,
2019.

Gary King and Langche Zeng. Logistic regression
in rare events data. Political analysis, 9(2):137-163,
2001.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

M Kemal Kiymik, Inan Giiler, Alper Dizibiiyiik, and
Mehmet Akin. Comparison of stft and wavelet trans-
form methods in determining epileptic seizure activity
in eeg signals for real-time application. Computers in
biology and medicine, 35(7):603-616, 2005.

Jonas Kohler, Maarten C Ottenhoff, Sophocles Goulis,
Miguel Angrick, Albert J Colon, Louis Wagner, Si-
mon Tousseyn, Pieter L Kubben, and Christian Herff.
Synthesizing speech from intracranial depth electrodes
using an encoder-decoder framework. arXiv preprint
arXiv:2111.01457,2021.

Jan Kubanek, Peter Brunner, Aysegul Gunduz, David
Poeppel, and Gerwin Schalk. The tracking of speech
envelope in the human cortex. PloS one, 8(1):e53398,
2013.

Sreejan Kumar, Theodore R Sumers, Takateru Ya-
makoshi, Ariel Goldstein, Uri Hasson, Kenneth A Nor-
man, Thomas L Griffiths, Robert D Hawkins, and
Samuel A Nastase. Reconstructing the cascade of
language processing in the brain using the internal
computations of a transformer-based language model.
BioRxiv, pages 2022-06, 2022.

Md Tahmid Rahman Laskar, Cheng Chen, Jonathan
Johnston, Xue-Yong Fu, Shashi Bhushan TN, and Si-
mon Corston-Oliver. An auto encoder-based dimen-
sionality reduction technique for efficient entity link-
ing in business phone conversations. In Proceedings
of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 3363-3367, 2022.

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh
Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal,
Jerry Tang, Lixiang Xu, and Alexander G Huth. A
natural language fmri dataset for voxelwise encoding
models. Scientific Data, 10(1):555, 2023.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hi-
erarchical neural autoencoder for paragraphs and doc-
uments. arXiv preprint arXiv:1506.01057, 2015.

Xuan Li, Tao Zhang, Xin Zhao, and Zhengming Yi.
Guided autoencoder for dimensionality reduction of
pedestrian features. Applied Intelligence, 50:4557—
4567, 2020.

Shiyu Luo, Qinwan Rabbani, and Nathan E Crone.
Brain-computer interface: applications to speech de-
coding and synthesis to augment communication. Neu-
rotherapeutics, 19(1):263-273, 2022.

58

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Mohammad Sultan Mahmud, Joshua Zhexue Huang,
and Xianghua Fu. Variational autoencoder-based di-
mensionality reduction for high-dimensional small-
sample data classification. International Journal of
Computational Intelligence and Applications, 19(01):
2050002, 2020.

Stéphanie Martin, Peter Brunner, Chris Holdgraf, Hans-
Jochen Heinze, Nathan E Crone, Jochem Rieger, Ger-
win Schalk, Robert T Knight, and Brian N Pasley. De-
coding spectrotemporal features of overt and covert
speech from the human cortex. Frontiers in neuroengi-
neering, 7:14, 2014.

Scott McDonald and Michael Ramscar. Testing the
distributioanl hypothesis: The influence of context on
judgements of semantic similarity. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 23, 2001.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. Ad-
vances in neural information processing systems, 26,
2013.

George A Miller. Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39-41,
1995.

Mohammad Jalilpour Monesi, Bernd Accou, Jair
Montoya-Martinez, Tom Francart, and Hugo
Van Hamme. An Istm based architecture to relate
speech stimulus to eeg. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 941-945. 1IEEE,
2020.

David A Moses, Sean L Metzger, Jessie R Liu,
Gopala K Anumanchipalli, Joseph G Makin, Pengfei F
Sun, Josh Chartier, Maximilian E Dougherty, Patri-
cia M Liu, Gary M Abrams, et al. Neuroprosthesis for
decoding speech in a paralyzed person with anarthria.
New England Journal of Medicine, 385(3):217-227,
2021.

Brian Murphy, Massimo Poesio, Francesca Bovolo,
Lorenzo Bruzzone, Michele Dalponte, and Heba
Lakany. Eeg decoding of semantic category reveals
distributed representations for single concepts. Brain
and language, 117(1):12-22, 2011.

Elliot Murphy, Kiefer J Forseth, Cristian Donos,
Kathryn M Snyder, Patrick S Rollo, and Nitin Tandon.
The spatiotemporal dynamics of semantic integration
in the human brain. Nature Communications, 14(1):
6336, 2023.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Youngmin Na, Inyong Choi, Dong Pyo Jang,
Joong Koo Kang, and Jihwan Woo. Semantic-
hierarchical model improves classification of spoken-
word evoked electrocorticography. Journal of neuro-
science methods, 311:253-258, 2019.

Salifu Nanga, Ahmed Tijani Bawah, Benjamin Ansah
Acquaye, Mac-Issaka Billa, Francis Delali Baeta,
Nii Afotey Odai, Samuel Kwaku Obeng, and Am-
pem Darko Nsiah. Review of dimension reduction
methods. Journal of Data Analysis and Information
Processing, 9(3):189-231, 2021.

Inc. Neurobehavioral Systems. Neurobs presen-
tation, 2024. URL https://www.neurobs.com/
menu_presentation/menu_features/features_
overview.

Subba Reddy Oota, Naresh Manwani, and Raju S Bapi.
fmri semantic category decoding using linguistic en-
coding of word embeddings. In Neural Information
Processing: 25th International Conference, ICONIP
2018, Siem Reap, Cambodia, December 13—16, 2018,
Proceedings, Part Il 25, pages 3—15. Springer, 2018.

Keiron O’Shea and Ryan Nash.
to convolutional neural networks.
arXiv:1511.08458, 2015.

An introduction
arXiv preprint

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empiri-
cal methods in natural language processing (EMNLP),
pages 1532-1543, 2014.

Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel
Ritter, Samuel J Gershman, Nancy Kanwisher,
Matthew Botvinick, and Evelina Fedorenko. Toward
a universal decoder of linguistic meaning from brain
activation. Nature communications, 9(1):963, 2018.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representa-
tions. In Marilyn Walker, Heng Ji, and Amanda Stent,
editors, Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227-2237, New Or-
leans, Louisiana, June 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N18-1202. URL
https://aclanthology.org/N18-1202.

Steven M Peterson, Zoe Steine-Hanson, Nathan Davis,
Rajesh PN Rao, and Bingni W Brunton. Generalized
neural decoders for transfer learning across participants
and recording modalities. Journal of Neural Engineer-
ing, 18(2):026014, 2021.

59

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

Why Python. Python. Python Releases for Windows,
24, 2021.

Qinwan Rabbani, Griffin Milsap, and Nathan E Crone.
The potential for a speech brain—computer interface
using chronic electrocorticography. Neurotherapeutics,
16:144-165, 2019.

Anne Bech Risum and Rasmus Bro. Using deep learn-

ing to evaluate peaks in chromatographic data. Talanta,
204:255-260, 2019.

Ana-Luiza Rusnac and Ovidiu Grigore. Imaginary
speech recognition using a convolutional network with
long-short memory. Applied Sciences, 12(22):11873,
2022.

Milan Rybéf and Ian Daly. Neural decoding of seman-
tic concepts: A systematic literature review. Journal of
Neural Engineering, 2022.

Milan Rybét, Riccardo Poli, and Tan Daly. Decoding of
semantic categories of imagined concepts of animals
and tools in fnirs. Journal of Neural Engineering, 18
(4):046035, 2021.

Pramit Saha and Sidney Fels. Hierarchical deep fea-
ture learning for decoding imagined speech from eeg.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 10019-10020, 2019.

Siavash Sakhavi, Cuntai Guan, and Shuicheng Yan.
Learning temporal information for brain-computer in-
terface using convolutional neural networks. IEEE

transactions on neural networks and learning systems,
29(11):5619-5629, 2018.

Robin Tibor Schirrmeister, Lukas Gemein, Katharina
Eggensperger, Frank Hutter, and Tonio Ball. Deep
learning with convolutional neural networks for decod-
ing and visualization of eeg pathology. arXiv preprint
arXiv:1708.08012, 2017.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute,
Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. The
neural architecture of language: Integrative modeling
converges on predictive processing. Proceedings of the
National Academy of Sciences, 118(45):¢2105646118,
2021.

Rini A Sharon, Shrikanth Narayanan, Mriganka Sur,
and Hema A Murthy. An empirical study of speech
processing in the brain by analyzing the temporal syl-
lable structure in speech-input induced eeg. In ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
4090-4094. IEEE, 2019.

https://www.neurobs.com/menu_presentation/menu_features/features_overview
https://www.neurobs.com/menu_presentation/menu_features/features_overview
https://www.neurobs.com/menu_presentation/menu_features/features_overview
https://aclanthology.org/N18-1202

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

Grigori Sidorov, Alexander Gelbukh, Helena Gémez-
Adorno, and David Pinto. Soft similarity and soft co-
sine measure: Similarity of features in vector space
model. Computacion y Sistemas, 18(3):491-504, 2014.

Bettina Sorger and Rainer Goebel. Real-time fmri
for brain-computer interfacing. Handbook of clinical
neurology, 168:289-302, 2020.

PZ Soroush, C Herff, S Ries, JJ Shih, T Schultz, and
DJ Krusienski. Contributions of stereotactic eeg elec-
trodes in grey and white matter to speech activity detec-
tion. In 2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 4789—4792. IEEE, 2022.

Pantulkar Sravanthi and B Srinivasu. Semantic similar-
ity between sentences. International Research Journal
of Engineering and Technology (IRJET), 4(1):156-161,
2017.

Sergey D Stavisky, Paymon Rezaii, Francis R Willett,
Leigh R Hochberg, Krishna V Shenoy, and Jaimie M
Henderson. Decoding speech from intracortical mul-
tielectrode arrays in dorsal “arm/hand areas” of hu-
man motor cortex. In 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 93-97. IEEE, 2018.

A Steven Laureys, Frederic Pellas, Philippe Van Eeck-
hout, Sofiane Ghorbel, Caroline Schnakers, Fabien Per-
rin, Jacques Berre, Marie-Elisabeth Faymonville, Karl-
Heinz Pantke, Francois Damas, et al. The locked-in
syndrome: what is it like to be conscious but paralyzed
and voiceless? 2005.

Pengfei Sun, Gopala K Anumanchipalli, and Edward F
Chang. Brain2char: a deep architecture for decoding
text from brain recordings. Journal of neural engineer-

ing, 17(6):066015, 2020.

Kahoko Takahashi, Zhe Sun, Jordi Solé-Casals, An-
drzej Cichocki, Anh Huy Phan, Qibin Zhao, Hui-Hai
Zhao, Shangkun Deng, and Ruggero Micheletto. Data
augmentation for convolutional Istm based brain com-
puter interface system. Applied Soft Computing, 122:
108811, 2022.

Jerry Tang, Amanda LeBel, Shailee Jain, and Alexan-
der G Huth. Semantic reconstruction of continuous
language from non-invasive brain recordings. Nature
Neuroscience, pages 1-9, 2023.

Marcel Van Gerven, Jason Farquhar, Rebecca Schae-
fer, Rutger Vlek, Jeroen Geuze, Anton Nijholt, Nick
Ramsey, Pim Haselager, Louis Vuurpijl, Stan Gielen,
et al. The brain—computer interface cycle. Journal of
neural engineering, 6(4):041001, 2009.

60

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

Sarah K Wandelt, Spencer Kellis, David A Bjanes,
Kelsie Pejsa, Brian Lee, Charles Liu, and Richard A
Andersen. Decoding grasp and speech signals from the
cortical grasp circuit in a tetraplegic human. Neuron,
110(11):1777-1787, 2022.

Wei Wang, Alan D Degenhart, Gustavo P Sudre,
Dean A Pomerleau, and Elizabeth C Tyler-Kabara. De-
coding semantic information from human electrocor-
ticographic (ecog) signals. In 2011 Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society, pages 6294—-6298. IEEE, 2011.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-
encoder based dimensionality reduction. Neurocom-
puting, 184:232-242, 2016.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. Simultane-
ously uncovering the patterns of brain regions involved
in different story reading subprocesses. PloS one, 9
(11):e112575, 2014.

Jonathan Wolpaw and Elizabeth Winter Wol-
paw. Brain—Computer Interfaces: Princi-
ples and Practice. Oxford University Press,
01 2012. ISBN 9780195388855. doi:
10.1093/acprof:0s0/9780195388855.001.0001.
URL https://doi.org/10.1093/acprof:
0s0/9780195388855.001.0001.

Hemmings Wu, Chengwei Cai, Wenjie Ming, Wangyu
Chen, Zhoule Zhu, Chen Feng, Hongjie Jiang, Zhe
Zheng, Mohamad Sawan, Ting Wang, et al. Inves-
tigation of contributions from cortical and subcortical
brain structures for speech decoding. bioRxiv, pages
2023-11, 2023.

H Yamaguchi, T Yamazaki, K Yamamoto, S Ueno,
A Yamaguchi, T TIto, S Hirose, K Kamijo,
H Takayanagi, T Yamanoi, et al. Decoding
silent speech in japanese from single trial eegs:
Preliminary results. Journal of Computer Science &
Systems Biology, 2015:285, 2015.

Yuhao Zhao, Yu Chen, Kaiwen Cheng, and Wei Huang.
Artificial intelligence based multimodal language de-
coding from brain activity: A review. Brain Research
Bulletin, page 110713, 2023.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu.
Understanding the generalization of adam in learn-
ing neural networks with proper regularization. arXiv
preprint arXiv:2108.11371, 2021.

https://doi.org/10.1093/acprof:oso/9780195388855.001.0001
https://doi.org/10.1093/acprof:oso/9780195388855.001.0001

	List of Figures
	List of Tables
	Introduction
	Related Work
	Brain signals for speech decoding
	Non-invasive methods
	Invasive methods

	Representations of speech
	Semantic encoding and decoding models
	Encoding semantic representations of speech
	Semantic vector and brain data dimensionality reduction methods
	Semantic decoding models
	Cross subject sEEG data combination

	Methodology
	Data Collection
	Python Libraries
	sEEG data pre-processing
	Speech Transcript generation and alignment
	sEEG feature selection and de-noising through Auto Encoders
	Semantic representations and decoding tasks
	Large Language models and word embeddings
	Contextual embeddings through BERT
	Static embeddings through Wikipedia2Vec
	Clustering word embeddings
	semantic space dimensionality reduction using Auto encoders
	Semantics and lexical databases
	WordNet implementation
	Syllable quantity classification
	Applied tasks

	Decoding models
	Traditional sequence models
	Convolutional decoding models
	Decoding model data input formats
	Imbalanced classes

	Multi patient training

	Results
	sEEG data dimensionality reduction performance
	Syllable decoding task performance
	Word embedding decoding performance
	BERT decoding
	Wikipedia2Vec decoding

	Word embedding dimensionality reduction performance
	Semantic space dimensionality reduction performance
	Compressed embedding decoding performance
	BERT compressed semantic space decoding results
	Wikipedia2Vec compressed semantic space decoding results

	Clustering results and classification performance
	BERT clusters
	Wikipedia2Vec clusters
	WordNet clusters

	Discussion
	Auto encoder sEEG compression
	Motor decoding results
	Semantic decoding
	Multi-patient training

	Future Work
	Conclusion
	Bibliography

