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Abstract

Multimodal artificial intelligence (AI) revolutionizes biomedical research by inte-
grating electronic health records and imaging data. This review succinctly
explores the imperative of multimodal AI, outlines covered topics, examines exist-
ing types, discusses limitations, and proposes future research.
In cancer research, multimodal AI is used to predict survival rates and identify
molecular subtypes, exemplified by methods like Cancer Integration via Multi-
kernel Learning (CIMLR). Extending beyond cancer, it contributes to various
facets of precision medicine and radiation therapy. Precision medicine benefits
from AI-driven radiomics, a cost-effective method for biomarker identification
through medical image analysis. The adaptability of multimodal AI is evident
in its application to single-cell analysis, showcasing its potential across diverse
modalities. However, managing extensive datasets combining imaging and omics
data poses a challenge. The focus shifts to refining representations and effectively
combining modalities. Statistical and machine learning approaches, including
supervised classification algorithms, regression analysis, unsupervised clustering,
and network analysis, play pivotal roles. Deep learning techniques, particu-
larly Convolutional Neural Networks (CNNs), succeed in image recognition and
genomics analysis. Models like VGG19-CNN and self-normalization networks
integrate image and omics data, enhancing predictions related to cancer-specific
survival and subtype classification. In summary, multimodal AI in biomedical
research holds promise for disease diagnosis, subtyping, and precision medicine.
This work provides a concise overview of recent progress and potential, empha-
sizing its transformative role. The synergy of electronic health records and
imaging data facilitated by AI enhances our understanding of biological processes,
heralding a new era in personalized medicine.
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1 Layman Summary

In recent years, scientists have made significant strides in combining different types of
data using advanced computer models. This exciting field, known as multimodal artifi-
cial intelligence (AI), involves merging electronic health records and imaging data. This
integration has proven particularly valuable in biological and medical studies. Essen-
tially, researchers are using AI to blend information from medical images with genetic
and molecular data to gain a more complete understanding of how our bodies work. A
major focus of this approach is on cancer research. Scientists are using multimodal AI
to predict survival rates in liver cancer and identify specific types of ovarian cancer.
One method, called Cancer Integration via Multikernel Learning (CIMLR), uses AI to
integrate different types of data and reveal molecular subtypes of cancer. This kind of
AI is transforming our understanding of cancer and could lead to new and improved
ways of treating the disease. But the impact of multimodal AI isn’t limited to cancer
research. playing a pivotal role in various aspects of precision medicine and radiation
therapy. In precision medicine, scientists are using AI to analyze medical images and
identify biomarkers—indicators that help tailor treatments to individual patients. This
process is non-invasive, quick, and cost-effective. Moreover, when it comes to studying
single cells in the body, integrating data from different sources using multimodal AI
is proving to be a powerful tool. The combination of imaging and omics data through
multimodal AI is opening up exciting possibilities in the medical field. This approach
has the potential to revolutionize how we diagnose diseases, categorize them, and tailor
treatments to each patient. Cutting-edge computer models and AI techniques are at
the heart of this transformative approach, helping scientists unravel the complexities
of diseases at a microscopic level. To understand how multimodal AI works, we need
to look at the progress made in medical imaging technologies like CT scans, MRIs,
and PET scans. These imaging techniques provide detailed pictures of the inside of
our bodies, helping doctors see and understand anatomical structures and processes.
On the other side, omics data, which includes information about genes, proteins, and
other molecules, provides a comprehensive view of an organism’s genetic and molecular
makeup. However, managing the vast amount of data generated by combining imag-
ing and omics data is a major challenge. This involves integrating information from
various sources such as genetic data, information about proteins, and medical images.
This integration is essential for conducting meaningful analyses, addressing challenges
like selecting important features, classifying different aspects, and understanding rela-
tionships between different pieces of information. To make sense of this complex data,
scientists use a variety of statistical and machine learning approaches. These encom-
pass supervised classification algorithms, which facilitate the identification of patterns
in the data, and unsupervised clustering, which organizes similar data points into
groups. Deep learning techniques, including Convolutional Neural Networks (CNNs),
play a pivotal role in deciphering complex biomedical data. Notably, some studies
stand out for utilizing deep learning, especially CNNs, to integrate image and omics
data, showcasing the versatility of these models across both supervised and unsuper-
vised learning paradigms. Models like VGG19-CNN and self-normalization networks
are improving predictions related to cancer survival and subtypes. One model, called
PAGE-NET, uses a patch-wise texture-based CNN to integrate genomic data, patient
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age, and histological images. Multimodal neural networks, like MM-Net, are even
predicting how patients will respond to drugs by combining drug information, gene
expression data, and histological features.
In summary, the integration of multimodal AI in medicine holds great promise for
improving disease diagnosis, classification, and treatment. This overview provides
insights into the recent progress, challenges, and future possibilities of multimodal AI,
showcasing its crucial role in advancing medical research and healthcare.

2 Introduction

The integration of multimodal artificial intelligence (AI) in the medical field has
garnered substantial attention due to its transformative potential in revolutionizing
disease diagnosis and treatment. This paradigm shift is particularly evident in the con-
vergence of imaging and omics data, which has opened new avenues for understanding
diseases at a molecular level. As the volume of omics data continues to accumulate,
the prospect of developing computational models that seamlessly integrate multimodal
data sources becomes increasingly feasible [1]. This has spurred the development of
advanced AI-based methods for the fusion of electronic health records and imaging
data, and these methods are progressively finding applications in both biological and
medical studies [2].
One significant approach to integrating images with multi-omics data involves deriving
phenotypic information from imaging data. This information is then utilized as anno-
tations to enhance the interpretation of omics data, contributing to a more holistic
understanding of the biological landscape [3]. Furthermore, the imperative for multi-
modal learning paradigms has been underscored, emphasizing their role in providing
reliable diagnoses of diseases such as cancer by combining omics, bioimaging, and clin-
ical outcomes [4].
The potential of multimodal AI in the medical field is particularly conspicuous in
cancer research. Studies have not only highlighted the lack of concerted efforts in inte-
grating multi-omics data for predicting survival in liver cancer across multiple patient
cohorts [5], but they have also showcased successful integration of medical images
with multi-omics analysis in ovarian cancer using artificial intelligence [6]. Moreover,
innovative approaches like Cancer Integration via Multikernel Learning (CIMLR)
have demonstrated the integration of multi-omic data to unveil molecular subtypes
of cancer, further underlining the potential of multimodal AI in advancing cancer
research [7]. Beyond cancer, the integration of imaging and omics data has shown
promise in precision medicine and radiation therapy. Radiomics, coupled with artificial
intelligence, has emerged as a novel approach for precision medicine in radiation ther-
apy, leveraging multimodal medical images for non-invasive, fast, and cost-effective
biomarker identification [8]. Additionally, computational methods for the analysis and
integration of single-cell omics data across different modalities have been summarized,
highlighting the potential of multimodal AI in advancing single-cell analysis [9].
In conclusion, the integration of multimodal AI for combining imaging and omics
data in the medical field presents a groundbreaking opportunity to advance disease
diagnosis, subtyping, and precision medicine. The convergence of imaging and omics
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data, coupled with advanced computational models and AI techniques, offers a trans-
formative approach to understanding and addressing complex diseases at a molecular
level. This comprehensive review aims to provide a thorough overview of the current
state of multimodal AI integration in the medical field, offering insights into the latest
advancements, challenges, and future prospects in this rapidly evolving domain.

3 Background

Artificial intelligence (AI) that integrates imaging data and omics data has ushered
in a transformative era in biomedical research and healthcare. This section aims to
elucidate the fundamental principles of medical imaging, pathology, genomics, pro-
teomics, computer vision, and the integration of machine learning and deep learning
techniques for a comprehensive understanding of this scientifc review.

3.1 Imaging Data

In the realm of medical imaging, various techniques play crucial roles in providing com-
prehensive insights into anatomical and physiological aspects. Computed Tomography
(CT), a non-invasive imaging technique utilizing X-rays, generates cross-sectional
images of anatomical structures. Through the application of mathematical algorithms,
CT reconstructs detailed images, allowing for the precise visualization of internal
tissues and organs. Magnetic Resonance Imaging (MRI) works by employing strong
magnetic fields and radiofrequency pulses. This technique creates detailed images
of soft tissues, leveraging variations in water content and molecular properties to
excel in capturing high-resolution anatomical details. Positron Emission Tomography
(PET) introduces a different dimension by involving the injection of radiolabeled trac-
ers to assess metabolic activity in tissues. PET detects positron emissions resulting
from tracer decay, providing functional information about physiological processes at
the molecular level. The synergy of PET and CT in PET/CT integration combines
anatomical and functional information. While CT offers detailed structural images,
PET reveals metabolic activity, enabling a comprehensive assessment of pathology
and disease progression.
Turning our attention to histological techniques, Hematoxylin and Eosin (H&E) stain-
ing emerges as a standard practice. This technique employs hematoxylin to stain cell
nuclei blue and eosin to stain cytoplasm and extracellular structures pink. The staining
method facilitates microscopic examination and the characterization of tissue morphol-
ogy. Ultimately, the emergence of Whole Slide Imaging (WSI) introduces digitization
to the field of histology. This technique involves digitizing entire histological slides to
create high-resolution digital images. This facilitates computational analysis, remote
access, and the application of machine learning algorithms for automated pathology.
In the domain of medical image analysis, computer vision techniques are applied to
interpret and diagnose medical images, encompassing the segmentation of anatomical
structures, detection of abnormalities, and quantitative analysis of imaging features.
Computer vision proves invaluable in Histopathology Image Analysis, as machine
learning algorithms excel in identifying patterns in digitized pathology slides, aiding
pathologists in diagnosing diseases, quantifying biomarkers, and predicting patient
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outcomes. Furthermore, the field of Radiomics involves the extraction and analysis of
quantitative features from medical images. Prediction models in Radiomics can rely
on predefined functions or learned features, often employing techniques such as Deep
Learning. Computer vision plays a pivotal role in deciphering complex patterns in
radiological images, facilitating the identification of imaging biomarkers for disease
characterization.

Fig. 1 Comparison of different imaging technologies: a:CT[10], b: PET[10], d: PET/CT[10], e:
H&E[11], f:WSI[12]

3.2 Omics Data

In the comprehensive exploration of molecular biology, various branches come together
to contribute significantly to our understanding of genetic and molecular processes,
culminating in what we describe as omics.
Genomics involves a thorough exploration of an organism’s complete genomic
content, encompassing genes, non-coding regions, and structural variations. High-
throughput sequencing technologies facilitate the analysis of DNA sequences, aiding
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in the identification of genetic variations and functional elements. Moving to Epige-
nomics, this field delves into modifications to DNA and histone proteins regulating
gene expression without altering the underlying DNA sequence. Techniques such
as chromatin immunoprecipitation sequencing (ChIP-seq) unveil intricate epigenetic
landscapes. Advancing to Transcriptomics, the focus is on the study of RNA
transcripts produced in a specific biological context. Leveraging RNA sequencing
(RNA-Seq), we can quantify and characterize the transcriptome, gaining insights
into gene expression patterns and alternative splicing events. In the realm of Pro-
teomics, a systematic study of an organism’s complete complement of proteins takes
place. Employing mass spectrometry-based techniques, such as liquid chromatography-
mass spectrometry (LC-MS), enables the identification and quantification of proteins,
unraveling complex cellular processes.
While both RNA-Seq and RNA-microarrays significantly contribute to molec-
ular insights, RNA-Seq, is a high-throughput sequencing method that, quantifies
RNA transcripts, providing a detailed and unbiased view of the transcriptome.
Whereas, RNA-microarrays use complementary DNA (cDNA) probes to measure gene
expression levels, allowing the simultaneous analysis of multiple genes.

Fig. 2 Integration of diverse Omics data, demonstrating their collective contribution to a holistic
analysis.[13]
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4 Data

4.1 Multimodal Data

Contemporary biomedical research faces a significant challenge in effectively managing
features derived from extensive datasets that combine imaging and high-throughput
omics data. In this article, we refer to this challenge as ’multimodal data’, representing
a collection of information from diverse features and sample sets. This data, generated
from heterogeneous sources, provides complementary information crucial for charac-
terizing biological samples, events, or systems.
In the context of a study, multimodal data processing entails the integration of infor-
mation from a minimum of two among the following categories: anatomical pathology,
genomics, epigenomics, transcriptomics, proteomics, and medical imaging data. While
our focus revolves around these specific data categories, it’s important to note that
multimodal AI extends beyond these domains, encompassing a broader spectrum
of data modalities. The integration of multimodal data is pivotal for conducting
data-driven analyses, addressing challenges such as feature selection, classification,
regression, unsupervised learning, inter-view interactions, and association studies.
Throughout this review, we explore various algorithms capable of handling multimodal
data, presenting insights into their roles in constructing predictive models for disease
detection and classification. The subsequent subsections delve into the presentation of
these distinct data types.

4.2 Molecular Data

In this study, we delve into omics data, encompassing extensive datasets acquired
through high-throughput techniques. Specifically, we focus on genomics, epigenomics,
transcriptomics, and proteomics, as these constitute the omics data types under
scrutiny in the reviewed papers.
The majority of the examined studies predominantly leveraged molecular data from
two primary databases for disease classification training: the NCI’s Genomic Data
Commons (GDC) [14] and the Cancer Genome Atlas Program (TCGA) [15–17]. Addi-
tionally, the MOSCATO dataset [18] was employed. Primarily utilized for training,
this dataset provides a substantial volume of data from a large sample size, offering
detailed information on tumor type, grade, RHM score, therapy class, and genomic
composition. These characteristics render it particularly suitable for training machine
learning models [17].
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) [19], on the other hand,
furnishes a public catalog of correlated genomic and proteomic data across various
cancer sites, with overlap with TCGA data. The combination of these datasets aims
to more comprehensively characterize the molecular state of patients’ disease [20].
To introduce epigenomic data [21, 22], we utilize the epigenome-wide association stud-
ies (EWAS) dataset [23]. This dataset examines a genome-wide array of quantifiable

7



epigenetic marks, such as DNA methylation, in different individuals to establish asso-
ciations between epigenetic variation and specific identifiable phenotypes.
For the integration of transcriptomics data into the model, the studies utilized data
obtained through RNA-Seq [24] or RNA-microarrays [25], incorporating mRNA levels
for predictive models. In both epigenomics and transcriptomics, the studies commonly
relied on the ENCODE database [26].

4.3 Imaging Data

Biomedical research increasingly relies on the integration of molecular and imag-
ing data for a holistic understanding of health and disease. Studies vary in their
approaches, with some exclusively leveraging the TCGA database, while others opt
for a broader integration of molecular and additional imaging databases.
In the TCGA-focused approach, researchers benefit from its dual repository housing
molecular and imaging data. The TCGA database provides a diverse range of imaging
data, including CT, MRI, PET, and PET/CT scans, covering both healthy controls
and various cancer types.
Alternatively, some studies adopt a more inclusive strategy, integrating molecular
databases with supplementary imaging data. Notable sources include private clini-
cal Cancer institutes and the Cancer Imaging Archive (TCIA) [16, 27, 28]. TCIA’s
repository encompasses images acquired through various techniques, capturing diverse
scenarios from healthy controls to different cancer types. The UK BioBank [29, 30]
emerges as a valuable resource, contributing a wealth of information, including body
and cardiac imaging, genetics, lifestyle measures, biological phenotyping, and health
records. The ongoing expansion aims to monitor the health status of up to 100,000
participants over time [16]. In the realm of neuroimaging, two prominent datasets,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31] and the Enhancing Neu-
roImaging Genetics through Meta-Analysis (ENIGMA) [32], take the spotlight. Both
datasets provide rich repositories of biomarkers, genetics, MRI, and PET imaging data
from meticulously tracked patients. However, it’s crucial to note that ADNI often lim-
its open access to its data. Consequently, ENIGMA was established to enforce the
usage of common, harmonized data analysis, and meta-analysis protocols, fostering
free access for collaborators to process their data independently [16].

Partin et al. [33] employed a distinctive methodology, training their model on three
key feature types: drug descriptors, gene expression, and histology image tiles. The
data collection process involved three primary methodologies.
Firstly, the NCI PDMR [34] played a crucial role by providing comprehensive
histopathology assessments, whole-exome sequencing, and RNA-Seq analyses on a sub-
set of tumors. This initial step allowed for the establishment of baseline histology and
omic characterization.
In the second phase, transcriptomic data from Patient-Derived Xenografts (PDX),
generated through RNA-Seq, underwent transformation into Transcripts Per Kilobase
million (TPM). The data were further log2-transformed and standardized for each
gene, ensuring a zero mean and a unit standard deviation. Landmark genes, represent-
ing significant transcriptomic changes, were meticulously selected from the Library of
Integrated Network-Based Cellular Signatures (LINCS) project [35].
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Lastly, data were collected from PDX implanted in mice, utilizing 96 PDX models
from 89 unique patients. Tumors were subcutaneously grown in NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ (NSG) host mice, staged to an approximate tumor weight of 200
mm³ for drug studies. Histopathology slides (H&E stained) were digitized at 20x
magnification using an Aperio AT2 digital whole slide scanner (Leica Biosystems).
A board-certified pathologist ensured consistency with the original patient diagno-
sis. Regions of interest (ROIs) were annotated using QuPath [36]. Whole slide images
underwent processing into individual tiles through the Slideflow software package [37].
Image tiles were extracted from annotated ROIs in a grid pattern at 302 µm by 302
µm with no overlap. Subsequently, they were downsampled to 299 pixels by 299 pixels
(10x effective optical magnification). Background tiles were filtered using grayscale,
removing those with more than 60% of pixels having a hue value of less than 0.05. To
ensure uniformity, digital stain normalization was applied using the Reinhard method
[38], followed by standardization to achieve a mean of zero and a variance of one.

5 Methods

The realm of bioinformatics strategies encompasses a diverse array of statistical and
machine learning approaches tailored to address the intricacies of omics imaging
investigations. This discussion meticulously categorizes general classes of methods,
providing a comprehensive overview of their applications and significance. Antonelli
et al.’s seminal survey [16] serves as an indispensable foundational resource in this
rapidly advancing domain.
In the sphere of supervised classification, a multitude of algorithms has been refined
over the years, specifically tailored for the challenges inherent in biomedical con-
texts. Biomedical data, rich with errors and natural variability in samples, necessitates
meticulous algorithm design with tunable parameters. Supervised classification sce-
narios, where functions assigning labels to data are real-valued, highlight the relevance
of regression analysis. This method introduces a regularization term, controlling the
count of independent variables. An exemplary technique, the Lasso method, intro-
duces an L1-term to the objective function [39]. Addressing instances with highly
correlated features, Canonical Correlation Analysis (CCA) identifies co-expressed fea-
tures across modalities. Yan et al. [40] further enhance CCA by introducing a penalty
term that factors in disease status information, incorporating Laplacian matrices for
patients with the same or different diagnoses. The landscape of unsupervised clustering
assumes pivotal significance in scenarios involving unlabeled data. Traditional classi-
fication or regression algorithms prove impractical, prompting the grouping of similar
samples and the segregation of dissimilar ones through clustering methodologies. The
lmQCM clustering algorithm, with overlapping groups enabling genes to belong to dif-
ferent clusters, offers a nuanced perspective. Concurrently, hierarchical clustering, as
embraced by Diehn et al. [41], unveils common functional or biological themes among
genes and identifies modular structures with topological overlaps in networks.
The instrumental role of network analysis in deciphering biological data stems from
the intricate connections among cell constituents within an organism. Gene expression
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data form the bedrock for constructing networks of interacting genes, with inter-
actions inferred from co-expression. This dynamic landscape extends to bioimaging,
where deep learning algorithms emerge as high-performance tools. Renowned for their
accuracy in image-related tasks, these algorithms demonstrate success in regulatory
genomics, protein classification, protein structure identification, and multi-omics data
integration. Recent applications, exemplified by a groundbreaking study mapping
tumor gene expression profiles with tumor morphology in pre-operative MRI images,
showcase the integration of imaging and omics data. Despite the growing prominence
of deep learning, comprehensive tools for integrated analyses of omics and imaging
data remain in their nascent stages. Nonetheless, bioinformatics can leverage existing
resources for statistical and machine learning analysis on omics data.

Fig. 3 Example of a Multimodal Network (MM-Net). Adapted from Partin et al.[33]

5.1 Model Description

In investigating the synergy between multimodal AI and the integration of imaging
and omics data, a subset of studies has deviated from conventional techniques. A
comprehensive review by Shneider et al. [42] has spotlighted endeavors adeptly com-
bining image and omics data through Convolutional Neural Networks (CNNs). These
studies notably aimed at enhancing cancer-specific survival (CSS), classifying cancer
subtypes, and predicting microsatellite instability (MSI) status. What distinguishes
these investigations is their departure from the traditional reliance on either omics or
imaging data alone.
One noteworthy study, as highlighted by Shneider et al., delves into the innovative
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integration of image and omics data, bringing forth a significant advancement in the
field. Chen et al. [43] conducted a comprehensive investigation, leveraging the power
of a VGG19-CNN to extract pivotal features from regions of interest within Whole
Slide Imaging (WSI) data. Simultaneously, the utilization of self-normalization net-
works in processing omics data served a dual purpose, not only enhancing feature
extraction but also mitigating the risk of overfitting. The true innovation lay in the
strategic fusion of these disparate datasets, giving rise to a sophisticated multidimen-
sional array that seamlessly integrated information from both image and molecular
domains. This strategic integration marks a paradigm shift, offering a holistic perspec-
tive that goes beyond traditional unimodal approaches. Another pioneering effort, as
elucidated in the comprehensive review by Shneider et al., underscores the ground-
breaking work of Hao et al. [44], who introduced the PAGE-NET model. This model
represents a remarkable fusion of genomic data, patient age, and H&E images, showcas-
ing a nuanced approach to data integration. The integration process itself is executed
through a patch-wise texture-based CNN, deploying a patch aggregation strategy
that captures the intricacies of diverse data modalities. The predictive prowess of the
PAGE-NET model is not only limited to its ability to forecast Cancer-Specific Sur-
vival (CSS) but extends to its application in a Cox proportional-hazards model. This
dual capability not only highlights its versatility but also positions it as a powerful tool
in predicting patient outcomes based on a comprehensive understanding of integrated
data. The PAGE-NET model, through its innovative design and successful applica-
tions, stands as a testament to the potential unlocked by multimodal integration in
advancing predictive modeling and clinical insights.
Furthermore, Partin et al. [33] conducted a study using a multimodal neural network
(MM-Net) to predict drug response in PDXs. In their comprehensive analysis, MM-
Net evaluated six distinct models, each characterized by variations in feature sets and
sample types. The unimodal models included UME-Net for gene expression, UMH-Net
for histological features, and LGBM (GE) for gene expression. MM-Net, representing a
sophisticated multimodal integration approach, seamlessly combined drug descriptors,
gene expression data (GE), and histological features. The distinct unimodal models
each employed specialized techniques: UME-Net utilized a single-layer neural network
for gene expression, UMH-Net employed a Convolutional Neural Network (CNN) for
processing histology tiles, and LGBM applied gradient boosting specifically on gene
expression data. This fusion into MM-Net showcased not only a unified integration
of diverse data modalities but also demonstrated superior performance, particularly
in metrics such as the Matthews correlation coefficient (MCC). This outcome under-
scores the efficacy of multimodal integration as a powerful strategy for advancing the
accuracy and reliability of drug response predictions.
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Fig. 4 Comparison of different performance in studies based on C-Index. Adapted from
Shneider et al. [42].

6 Discussion

The integration of multimodal AI, harmonizing imaging and omics data, emerges as
a transformative force in disease classification and treatment prediction across diverse
medical landscapes. Rooted in machine learning and social signal processing, this
approach navigates the complex web of biological processes, health indicators, and
risk factors, providing a versatile tool in healthcare ([45, 46]).
In the expansive field of cancer research, multimodal AI serves as a catalyst for change,
enhancing prognostic accuracy and tailoring treatment strategies. Integrative mod-
els, synthesizing insights from omics and histopathological image data, outperform
individual factors in various cancers, including liver, lung, renal, and breast cancer
[46, 47]. Diseases like head and neck squamous cell carcinoma and neuroendocrine
tumors, with their intricate variables, find multimodal AI to be an ideal ally[46, 47].
The potential of AI in predicting treatment outcomes, exemplified in the response
to rivastigmine treatment in Alzheimer’s disease, underscores its role in personalized
medicine and treatment planning [48]. Additionally, AI’s rapid diagnosis capabilities,
as demonstrated in diseases like necrotizing enterocolitis, highlight its robustness in
multivariate analysis [49]. Moving forward in healthcare applications, the development
of AI models, including ELMO and MORONET, propels the integration of large-scale
AI into biomedical research and healthcare, broadening the scope of multimodal AI
applications[50, 51]. Furthermore, AI’s utility in predicting and analyzing attribute
reduction algorithms in Alzheimer’s disease hints at its potential in future clinical and
research applications [52]. In the context of cancer, the impact of multimodal AI is
profound. Integrative models based on omics and histopathological image data in liver
cancer, lung cancer, renal cancer, and breast cancer exhibit superior prognostic accu-
racy compared to individual factors [46]. The proposed multi-omics data integration
model, utilizing UMAP embedding and convolutional neural networks, shows promise
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in building a multi-omics prediction model for various cancer types, emphasizing the
potential of AI in predicting treatment responses and survival ([53]). This paradigm
shift has significant implications for personalized treatment strategies and improved
patient outcomes. Transitioning to neurological diseases, multimodal AI offers poten-
tial revolutionization in disease prediction and treatment recommendation. Utilizing
machine learning for disease prediction and treatment recommendation holds consider-
able promise for disease prevention, treatment, and management ([54]). Additionally,
the development of disease prediction models employing machine learning has the
potential to enhance early diagnosis and intervention in neurological diseases such
as Alzheimer’s. Moreover, the potential of multimodal AI in predicting treatment
response and prognosis is exemplified in the context of inflammatory bowel disease
(IBD). The identification of predictive biomarkers for therapeutic response highlights
the potential of AI-driven approaches to personalize treatment strategies and improve
patient outcomes in the management of chronic immune-mediated inflammatory con-
ditions [55].
In conclusion, the integration of multimodal AI, combining imaging and omics data,
holds great promise for revolutionizing disease classification and treatment prediction.
The comprehensive analysis and predictive capabilities offered by multimodal AI mod-
els present opportunities for personalized medicine, improved prognostic accuracy, and
enhanced clinical decision-making. As research in this field advances, the transforma-
tive potential of multimodal AI in reshaping disease management and patient care
becomes increasingly evident, representing the pinnacle of integrating imaging and
omics data for improved healthcare outcomes.

13



References

[1] Bhattacharya, T., Brettin, T., Doroshow, J., Evrard, Y., Greenspan, E., Gryshuk,
A., T, H., Lauzon, C., Nissley, D., Penberthy, L., Stahlberg, E., Stevens, R.,
Streitz, F., Tourassi, G., Xia, F., Zaki, G.: Ai meets exascale computing: advanc-
ing cancer research with large-scale high performance computing. Frontiers in
Oncology 9 (2019) https://doi.org/10.3389/fonc.2019.00984

[2] Mohsen, F., Ali, H., Hajj, N., Shah, Z.: Artificial intelligence-based methods for
fusion of electronic health records and imaging data. Scientific Reports 12 (2022)
https://doi.org/10.1038/s41598-022-22514-4

[3] Watson, E., Fard, A., Mar, J.: Computational methods for single-cell imaging
and omics data integration. Frontiers in Molecular Biosciences 8 (2022) https:
//doi.org/10.3389/fmolb.2021.768106

[4] Karim, R., Islam, T., Lange, C., Rebholz-Schuhmann, D., Decker, S.: Adversary-
aware multimodal neural networks for cancer susceptibility prediction from
multiomics data. Ieee Access 10, 54386–54409 (2022) https://doi.org/10.1109/
access.2022.3175816

[5] Chaudhary, K., Poirion, O., Lu, L.: Deep learning–based multi-omics integration
robustly predicts survival in liver cancer. Clinical Cancer Research 24, 1248–1259
(2018) https://doi.org/10.1158/1078-0432.ccr-17-0853

[6] Sone, K., Toyohara, Y., Taguchi, A., Miyamoto, Y., Uchino-Mori, M., Iriyama, T.,
Tsuruga, T., Osuga, Y.: Application of artificial intelligence in gynecologic malig-
nancies: a review. Journal of Obstetrics and Gynaecology Research 47, 2577–2585
(2021) https://doi.org/10.1111/jog.14818

[7] Ramazzotti, D., A, L., Wang, B., Batzoglou, S., Sidow, A.: Multi-omic tumor
data reveal diversity of molecular mechanisms that correlate with survival. Nature
Communications 9 (2018) https://doi.org/10.1038/s41467-018-06921-8

[8] Arimura, H., Soufi, M., Kamezawa, H., Ninomiya, K., Yamada, M.: Radiomics
with artificial intelligence for precision medicine in radiation therapy. Journal of
Radiation Research 60, 150–157 (2018) https://doi.org/10.1093/jrr/rry077

[9] Efremova, M., Teichmann, S.: Computational methods for single-cell omics across
modalities. Nature Chemical Biology 17, 14–17 (2020) https://doi.org/10.1038/
s41592-019-0692-4

[10] PET/CT Scan | University Radiology Associates, LLP | SUNY Upstate Medical
University. https://www.upstate.edu/ura/pet-ct-scan.php Accessed 2023-12-27

[11] H&amp;E stain. Page Version ID: 1191484566 (2023). https://en.wikipedia.org/
w/index.php?title=H%26E stain&oldid=1191484566 Accessed 2023-12-27

14

https://doi.org/10.3389/fonc.2019.00984
https://doi.org/10.1038/s41598-022-22514-4
https://doi.org/10.3389/fmolb.2021.768106
https://doi.org/10.3389/fmolb.2021.768106
https://doi.org/10.1109/access.2022.3175816
https://doi.org/10.1109/access.2022.3175816
https://doi.org/10.1158/1078-0432.ccr-17-0853
https://doi.org/10.1111/jog.14818
https://doi.org/10.1038/s41467-018-06921-8
https://doi.org/10.1093/jrr/rry077
https://doi.org/10.1038/s41592-019-0692-4
https://doi.org/10.1038/s41592-019-0692-4
https://www.upstate.edu/ura/pet-ct-scan.php
https://en.wikipedia.org/w/index.php?title=H%26E_stain&oldid=1191484566
https://en.wikipedia.org/w/index.php?title=H%26E_stain&oldid=1191484566


[12] Using FAST on Whole-Slide Images (WSI) | FAST | Documentation. https://
fast.eriksmistad.no/python-tutorial-wsi.html Accessed 2023-12-27

[13] Supporting Multi-omics Approaches - IT. https://www.thermofisher.
com/uk/en/home/brands/thermo-scientific/molecular-biology/
molecular-biology-learning-center/molecular-biology-resource-library/
spotlight-articles/supporting-multi-omics-approaches.html Accessed 2023-12-22

[14] Home | NCI Genomic Data Commons. https://gdc.cancer.gov/ Accessed 2023-
11-30

[15] The Cancer Genome Atlas Program (TCGA) - NCI. Archive Loca-
tion: nciglobal,ncienterprise (2022). https://www.cancer.gov/ccg/research/
genome-sequencing/tcga Accessed 2023-11-29

[16] Antonelli, L., Guarracino, M.R., Maddalena, L., Sangiovanni, M.: Integrating
imaging and omics data: A review. Biomedical Signal Processing and Control 52,
264–280 (2019) https://doi.org/10.1016/j.bspc.2019.04.032 . Accessed 2023-11-29

[17] Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R.,
Verlingue, L., Brandao, D., Lancia, A., Ammari, S., Hollebecque, A., Scoazec, J.-
Y., Marabelle, A., Massard, C., Soria, J.-C., Robert, C., Paragios, N., Deutsch,
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