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Abstract

Machine learning (ML)-based tools hold great promise in clinical practice, as
evidenced by lab-based studies. However, it remains particularly challenging
for these tools to be officially approved. Insights from Human-Computer In-
teraction (HCI) show that many face critical user interface issues. A notable
issue is the absence of contextual patient information alongside ML predictions.
Therefore, our research attempts to bridge this gap by focusing on the design
of an explainable interface for a sepsis prediction model in the Neonatal Inten-
sive Care Unit (NICU) at the Wilhelmina Children’s Hospital. The interface
aims to present contextual patient information in a centralized view, offering
support to healthcare providers in decision-making and facilitating the inter-
pretation and validation of ML predictions. This research contributes to an
overarching HCI topic on designing trustful and purposeful interfaces for ML-
based systems in clinical practice. The research starts with the identification
of healthcare providers’ needs, which were subsequently translated into a set of
potential requirements. With this knowledge, a potential solution was created
through iterative design processes, developed in collaboration with healthcare
providers. To measure the effectiveness of our design, a task-based think-aloud
study was conducted, allowing healthcare providers to interact with and provide
feedback on the interface. The results from this study highlights the importance
of contextual information in interpreting ML predictions. Moreover, presenting
all relevant contextual information in a central overview supported decision-
making and validating ML predictions, potentially fostering an increased trust
in the ML model. The insights gained from healthcare providers lay a solid
foundation for future research. Subsequent research can delve deeper into re-
fining the proposed interface, leading to advancements in explainable interface
design in clinical practice.
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1 Introduction

Diagnosing and treating medical conditions within the intensive care unit poses
an intricate challenge, complicating the delivery of appropriate care. Caregivers
have to analyse and piece together large amounts of information amidst cogni-
tive demanding and time-sensitive situations. Despite the substantial capacity
and expertise of healthcare providers, critical information occasionally evades
notice due to the constraints of human memory, cognitive biases and inefficient
communication [1]. These limitations can results in major consequences, poten-
tially subjecting patients to enduring harm or even fatality. Furthermore, the
healthcare sector is grappling with a growing staff shortage, leading to a dimin-
ished workforce available to oversee patients. Consequently, there’s a heightened
likelihood of failing to detect deterioration’s in patients’ conditions.

The combination of ML and the vast amounts of data stored in the electronic
health record presents a possible potential for addressing these challenges. ML
excels in discerning trends and patterns in large amounts of data such as vital
signs, laboratory findings, and various clinical parameters that could potentially
signal early stages of patient deterioration. By continuously monitoring these
parameters, care providers can promptly receive notifications about potential
risks, allowing timely start of treatments.

Despite the enormous enthusiasm surrounding the integration of ML into the
healthcare domain, it has appeared that many applications fail in practice [2].
A major factor contributing to this issue is the inadequate interpretability of
ML models [3] [4]. This concern becomes especially pronounced in healthcare,
where decisions have a major impact on patients’ well-being. When a healthcare
provider is unable to grasp the process that led to a prediction, then it becomes
difficult to determine the prediction’s reliability. This issue becomes even more
critical in instances of errors or unforeseen outcomes.

By far the majority of research aimed at enhancing the interpretability of
ML models, known as XAI, focuses on technical challenges [5]. Nonetheless,
the effectiveness of an explainable model is heavily determined by the end user,
the intended goal, and the context of use [6]. For instance, if an explainable
model presents a complex representation of the feature space, while an end user
lacks experience in machine learning, it becomes futile. This underscores the
necessity of user-centric XAI research, especially as an increasing number of
machine learning models are being implemented in practice.

HCI researchers have developed frameworks and design guidelines to design
explainable ML models. Nonetheless, two-thirds of XAI interfaces in healthcare
have critical problems [4]. One contributing factor is the absence of contextual
patient information alongside ML predictions [6] [7]. Healthcare providers un-
derscored the importance of contextual information to comprehend and trust
predictions. To illustrate, as elucidated in Jin. et al.’s study [8], historical events
are needed as evidence to determine whether a prediction is reliable. In a sim-
ilar vein, nurses who received sepsis alerts felt uncomfortable making decisions
because of the lack of sufficient patient information [9], and electrophysiologists
in some cases relied on contacting patients for more information to interpret risk
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predictions [10]. Despite a large body of research highlighting the importance
of contextual information in XAI interfaces, almost no research has been done
on it.

This thesis contributes to an HCI-related issue in which research is conducted
on understanding and designing the interaction between humans and intelligent
systems. A crucial component of this is the development of user-friendly XAI
interfaces to make AI decisions understandable for end users. By investigating
both the information needs and presentation preferences of end users, this study
aims to contribute to the design of an effective XAI interface.

1.1 Sepsis prediction algorithm

Sepsis is an major cause of neonatal morbidity and mortality in the first week
of life in the newborn. Every year, 25% of the 1500 premature babies have
to deal with it in the Netherlands. From this group, 75 vulnerable infants die
[11]. Diagnoses is complex, which leads to sepsis often being diagnosed too late,
resulting in serious consequences with death as a worst case scenario. The blood
pressure lowers quickly, which leads to the failure of vital organs, such as the
heart, brain, and liver. Survivors may suffer from severe and painful residual
damage. For this reason, it is important that patients receive effective treatment
in a timely manner.

The NICU at the Wilhelmina Children’s Hospital developed a novel sepsis
prediction algorithm that promises to predict Late-Onset Sepsis (LOS) before
symptoms occur, allowing healthcare providers to start treatment in a timely
manner. The algorithm is trained on a large dataset with patient records, using
heart rate and oxygen saturation as predictors. Currently, the algorithm is being
tested under the hood, which means that care providers are not able to act on
the information provided by the system, but only to evaluate the accuracy of
its predictions in a real-life setting.

The predictions of the model can have a major impact or even do harm
when misinterpreted on the patient’s condition. Because of this, healthcare
providers need sufficient information about both the model and the patient to
interpret and validate predictions. If the model predicts a high risk score then
care providers need to know what the prediction is based on so it can be vali-
dated with clinical information. For example, if the model predicts an increased
risk based on an elevated heart rate and the child has just been administered
medication then that may be a consideration to wait a while before treating.
This is consistent with related studies [6] [9] [12] who found that healthcare
providers need contextual patient information, such as vital parameters, labo-
ratory results and patient history to interpret risk scores.

As the condition of the patient can deteriorate rapidly, it is crucial that pre-
dictions can be easily interpreted and decisions can be made quickly [13]. Cur-
rently, patient information is scattered across various sources, requiring health
care providers to search for information in many different places and to do a lot of
clicking [14] [15]. As observed in the research conducted by Gephart et al. [15],
which surveyed healthcare providers’ requirements for a prediction model tar-
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geting Necrotizing Entercolitis (NEC), it becomes evident that these providers
necessitate a centralised location for accessing aggregated data relevant to the
NEC risk score. One healthcare provider noted: ”it seems like it would be very
simple to create just a section where all of that information (e.g., NEC risk
scoring, clinical signs, feeding information, exposure to preventive treatments)
flowed over into so it would give a much quicker snapshot.” Several studies pro-
pose that displaying information through an interactive timeline with various
synchronized views promoted interpretation [16] [14]. Despite the documented
association between poor information presentation and model interpretation [4],
little research has been done on it.

1.2 Research questions

In conclusion, this thesis aims to bridge the gap between XAI and dashboard
design by investigating how contextual patient information should be incorpo-
rated into an XAI interface for a sepsis prediction model in the neonatal intensive
care unit (RQ1). This study will outline the specific information requirements
of healthcare providers (RQ1.1) and explore the efficient presentation of this
data by using principles and theories of information visualization (RQ1.2). By
combining insights from XAI, dashboard design and healthcare providers needs,
this research aims to create an XAI interface that enhances the interpretabil-
ity of ML models (RQ1.3), ultimately supporting informed decision-making in
healthcare.

RQ1: What does an XAI interface with contextual information in one consol-
idated overview look like to support healthcare providers in interpreting sepsis
predictions?

• RQ1.1: What specific contextual information do healthcare professionals
require to interpret sepsis predictions?

• RQ1.2: How can contextual information be best presented in an XAI
interface to facilitate the interpretation of sepsis predictions?

• RQ1.3: What is the impact of a dashboard with contextual information
on trust, reliance and decision-making for healthcare professionals?
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2 Related work

2.1 Artificial intelligence

This subsection offers a concise overview of artificial intelligence, primarily draw-
ing from the content provided in Tom Taulli’s book, ”Artificial Intelligence Ba-
sics” [17]. AI refers to the development of computer systems that can perform
tasks that typically require human intelligence. Examples of such tasks are:
learning from data to make predictions, understanding and interpreting human
language, and interpreting visual information.

2.1.1 Machine learning

Machine learning is a subfield of AI that learns from data using statistical models
to make predictions without being explicitly programmed. There are two main
types of machine learning algorithms: supervised and unsupervised machine
learning.

Supervised machine learning algorithms use labeled data. In this approach,
input features are matched to their corresponding target labels. The objective
is to learn a mapping function that can predict the output given new, unseen
inputs. During training, the input-output pairs are presented to the model,
optimising its parameters until the discrepancy between the predicted outputs
and true labels are minimised. This knowledge is generalised to make predictions
on unseen data. There are two main types of supervised learning algorithms.
The first is classification, in which the algorithm divides the dataset in common
labels. In this case, the target variable is a discrete, categorical value. Examples
of these algorithms include Naive Bayes Classifiers and k-nearest neighbors.
The other type are regression algorithms, which finds continuous patterns in
the data. Examples of these are, linear regressions, ensemble modelling, and
decision trees.

Unsupervised learning deals with unlabeled data. This means that there are
no corresponding target labels to the input features. The goal of the algorithm
is to detect patterns without prior knowledge of the outputs. By identifying
similarities or differences between data points, they can categorize or group
the data into clusters. Common techniques are clustering algorithms, such as
K-means.

Machine learning is a powerful tool that can be used to support humans
in their daily lives. Tasks can be automated so that humans can focus on
creative and complex work, which may have both economical (e.g., increased
productivity) and societal (e.g., increased mental health) benefits. For example,
incoming emails can be automatically classified into different categories, such
as incoming requests in a call center.

Although machine learning performs well in specific domains and for simple
tasks, they do not possess general intelligence that is comparable to human
cognition such as abstract reasoning, creativity, and empathy [18]. It depends
on large volumes of data and is not able to generalise beyond specific patterns
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observed during training.

2.2 Human-in-the-loop machine learning

The content on human-in-the-loop machine learning and annotation interfaces
primarily relies on information sourced from Robert Monarch’s book ”Human-
in-the-loop Machine Learning” [19]. The synergy of human expertise and ma-
chine learning can lead to powerful solutions. On the one hand, machine learning
can recognise complex patterns in large amounts of information that is not fea-
sible to comprehend with the human brain. On the other hand, the human
brain possesses general intelligence, domain knowledge, creativity and critical
thinking skills that can complement data-driven models. Humans can provide
valuable insights, but also interpret results and guide decision-making, which
can lead to well-informed decisions.

Human-in-the-loop machine learning (HITL ML) not only enables models to
solve more complicated tasks, but also makes them insightful for its users. The
methods that are used to enable users to provide the system with feedback also
allows them to gain insights into the inner working of the system. For example,
asking users what features are most appropriate for a dataset also teaches them
what features are used to make predictions. Allowing an AI system to edit,
improve and repair when it has made mistakes leads to seamless collaboration
between humans and the algorithm [20]. This guideline was empirically aug-
mented in a follow-up study [21] by the same authors in which it was confirmed
that allowing users to provide feedback increases trust and interpretability.

2.2.1 Human experts in the ML process

HITL ML is a branch of machine learning that focuses on the improvement of
machine learning models through interaction and feedback with the system. [22]
identified several stages to which HITL ML can be applied:

• Data producing: Human experts can assist in labeling raw data so
that it becomes training data. For example, they can manually label the
sentiment of a tweet as positive, negative or neutral. More complicated
ways of annotating data consists of transcribing audio or generating texts.

• Data preprocessing: Humans can assist in data preprocessing or data
cleaning to detect and fix errors in the dataset. For example, they can
deal with outliers, inconsistent data, and missing values.

• Feature selection: Humans can cooperate in the process of selecting
and generating relevant features based on their domain knowledge. This
is particularly relevant when there is too little training data to arrive at
distinctive features.

• Model creation: In this stage, humans are involved in the learning pro-
cess. [22] has identified three main categories including adding new in-
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formation directly, determining and modifying parameters and modifying
parameters using parameter learning.

• Model selection: Humans can contribute by selecting appropriate algo-
rithms among a set of candidate ML methods according to some criteria.
Some algorithms perform better on certain datasets, making it necessary
for people to decide which is best to use.

• ML evaluation & refinement: Human experts can evaluate and vali-
date outputs of the ML model, which is crucial for the performance of the
trained model.

2.2.2 Basic principles for designing annotation interfaces

The design of the annotation interface can heavily effect the quality of the
annotations, therefore it is important that the basic principles of designing an-
notation interfaces are discussed. It is important to mention that the guidelines
do not apply to all situations, but should be considered based on the task, con-
text and user of the interface. [19] identified four main principles for designing
effective annotation interfaces:

• Cast your problems as binary choices wherever possible: Pre-
senting problems as binary choices may reduce intra-annotator variability.
People appear to be more reliable when asked to rank two items rather
than to judge a problem on a continuous scale.

• Ensure that expected response are diverse to avoid priming: Or-
der effects and other contextual information might influence the annota-
tion. The most significant priming problem for annotation is repetition.
For example, annotators might change their opinion about what is consid-
ered negative while annotating the sentiment of social media posts. En-
suring long-enough practice before users start annotating may help them
to become familiar with the data so that they have configured there un-
derstanding. Another approach is to use a diversity sampling method to
make sure each item is as different from the previous one.

• Use existing interaction conventions: The interface should make use
of basic human-computer interaction conventions, because they have been
created by experts and are hard to improve. For example, the interface
should let a user know when it pressed a button by providing appropriate
feedback.

• Allow keyboard-driven responses: It is much slower to use the mouse
than the keyboard. In most applications, the Tab key is the designated
key to move the cursor to the next field, therefore, it is important to ensure
that this is also what happens.
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2.3 Explainable Artificial Intelligence (XAI)

XAI is an upcoming research area that focuses on the development of AI-systems
that can provide explanations for their decisions. AI models such as deep neural
networks operate as a ”black-box” as it is unclear how it came to a decision. In
some cases this is not a problem. For example, when models are very reliable
such as in optical character recognition or when mistakes do not carry conse-
quences such as predictions for a movie recommender-system. However, in most
cases, a single measurement value is not enough to make real-world decisions.
[23] identified several motivations that humans have to make machine learning
models interpretable. A few are highlighted below:

• Scientific understanding: Humans want to understand how decisions
are made so that they can incorporate this knowledge into their lives.
For example, business owners might want to know why a product was
recommended to certain people so that they can use this intelligence to
sell more products.

• Model debugging and auditing: An interpretation for an erroneous
prediction helps to understand the cause of an error and delivers a direc-
tion for how to fix the system.

• Human-AI cooperation: Understanding how a machine makes deci-
sions, persuades humans to use the system.

• High-risk applications: In some industries it is necessary to provide
explanations. For example, a customer has the right to know why he was
not granted a loan so that it is clear that it was not due to an unfair
process.

2.3.1 Taxonomy of XAI methods

Methods for machine learning interpretability can be classified according to
various criteria. The information in this section is based on Christoph Molnar’s
book, ”Interpretable machine learning” [23].

Intrinsic or post-hoc Intrinsic methods explain machine learning decisions
through its inherently simple structure, such as linear regression models or de-
cision trees. For example, to calculate how much a feature contributed to the
prediction it is not hard to multiply the feature weight with the desired feature
value. However, the interpretability depends on the complexity of the models’
internal structure. When a decision tree is very dense, it may still be hard to
understand how the decision was constructed. Post-hoc methods are used to
explain complex ”black-box” machine learning models such as neural networks,
but can also be applied to intrinsically explainable models. Another character-
istic is that post-hoc methods are applied after the model is trained.
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Model agnostic or model specific As the name implies, model agnostic
methods can be applied to all machine learning models, while model specific
methods only to some models. Model agnostic methods are applied after the
model is trained, therefore are always post-hoc methods. Model-specific meth-
ods use the model internals (i.e., it extracts statistical information from the
model itself) to explain how a decision was made. For example, using the in-
ternal structure of a linear regression to explain what features contributed to
a prediction cannot be applied to another machine learning model. Therefore,
model-specific explanation methods are always intrinsic.

Local or global Local and global explanations are two different ways of distin-
guishing between the scope of the interpretation methods. A local explanation
only makes one instance or prediction interpretable, while a global explanation
method makes an entire model behaviour interpretable.

2.3.2 Result of interpretation method

The various interpretation methods can be roughly differentiated according to
their results. The information in this section is based on Christoph Molnar’s
book, ”Interpretable machine learning” [23].

Feature summary statistics The importance of a feature can be shown as
a number, but more complex statistics such as the feature interaction strength
are commonly used as well.

Feature summary visualisation Feature summary statistics can also be vi-
sualised. The advantage is that a large number of data points can be made
visible in one central display, making it possible to provide understandable in-
sights of complex spaces. Some explanation methods such as partial dependence
plots can only be visualised.

Model internals The model internals are similar to their results for inher-
ently interpretable models. For example, the coefficients of a linear regression
model, which, in this case is similar to the feature summary statistics.

Data point Some explainable methods generate new data points or provide
existing ones from the training set to explain a prediction. A Counterfactual
explanation is an explanation method that provide the user with new data
points. Users may alter features to see how it changes the prediction. For
example, to reduce the risk on diabetes, a user may increase the number of
exercise hours to how it affects the risk score. Another explanation method that
uses data points to explain a prediction are prototype explanations. Imagine a
model that predicts the house price for a given apartment. To explain to the
user how it came to that prediction, the system provides different apartments
with a similar predicted price. This way, the user may pick-up patterns in the
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provided examples (e.g., all 5-room apartments are around this price) and may
learn the rationale behind the decisions over time.

2.3.3 Human-friendly explanations

Explanations are ultimately used by people, so it is important to investigate
what makes an explanation ”good” for human interpretation. Most explanations
are not suitable for laypeople or people with little time. For these people,
the explanations often contain too much information or are too technical. To
make good explanations, literature from the humanities has been used [5]. The
information in this section is based on Christoph Molnar’s book, ”Interpretable
machine learning” [23].

Contrastive A contrastive explanation shows the recipient of the prediction
the difference between the prediction made and a reference prediction. This
way of explaining comes from the way people prefer to receive an explanation,
which is best explained using an example. Imagine not being hired for a job you
would have liked. When asked why you were not hired, you were given a list
of all arguments for and against not hiring you. However, you only wanted to
know what you could have done differently to get hired. This list does not show
you the difference between the actual result and the desired result, deciphering
this costs valuable time. A short statement that manages to name the biggest
difference is most appropriate, especially in healthcare where there is little time
left to understand explanations of predictions.

Selective An explanation of a prediction should contain at most 1 to 3 reasons
for explaining an event, even if the event is actually more complex. Often there
are multiple reasons for an event, but people are not interested in a complete
overview of them. People prefer to see a clear reason for an event, something
you also see when watching the news.

Social An explanation has to adapt to the environment it is in and the target
audience it addresses. If a doctor gives an explanation for starting treatment,
the explanation to a fellow doctor will be incomprehensible to the patient.

Focus on the abnormal According to Kahnemann & Traversky [24], in an
explanation of an event, people usually look for the deviant reason. For ex-
planation design, this means that if there is an anomalous reason it should be
shown even if other reasons have more influence on the prediction.

Consistent with prior believes Explanations that do not align with peo-
ple’s prior believes are seen as wrong or are being ignored. It is common knowl-
edge that there is a positive causal relationship between smoking and cancer. If
an explanation says that smoking has a negative contribution to cancer, no one
will trust this model.
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2.4 XAI-interface design

Determining what constitutes a ”good” explanation is often in the hands of
the machine learning algorithm developer, someone whose knowledge and back-
ground is not representative of end-users’ expertise [5]. Developers usually focus
on the technical challenges of generating an explanation, but pay little attention
to interface design and do not consider the needs of end-users. HCI researchers
[6] have developed a framework for designing user-centric interfaces of explana-
tions of ML models (see Figure 1). This framework assumes that the context
(who, why, when, where) in which the model is located answers what informa-
tion should go into the interface and how this information should be presented.
This framework will be explained further below.

Figure 1: XAI-interface design framework by Barda et al.

2.4.1 Context of use

Who The framework recognises that users often have multiple roles, so it
categorises users across two aspects: 1) user cognition & experience and 2)
user relationship to the system. [25] argues that the three groups (developers,
domain experts and lay users), differing in terms of user cognition & experience,
have different needs in terms of the type of explanation and how it should be
presented. According to this study, both domain experts and lay users desire
post-hoc explanations, but to the domain expert this should be presented as a
visualisation and to the lay-user as a short explanation in text. [26] classifies
users (engineer, developer, owner, end-user, data subject, stakeholder) based on
the relationship the user has with the AI-system.

Why Despite previous studies having made different classifications, according
to [6] most goals can be summarised in the following four categories. It is
important to note that these goals are not mutually exclusive:
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• verification to the system: examining how decisions are made by the
system to ensure it is operating as expected

• learning from the system: extracting knowledge from the system

• compliance to legislation: ensuring the system adheres to an estab-
lished legal, moral or other societal standard

• improvement of the system: improving system performance, efficiency,
and/or utility

When/where The framework distinguishes two aspects on which the envi-
ronment can be classified: the system stage (development, implementation, and
deployment) and the environment stage (constraints on the user, technical re-
sources, and social factors). This is also strongly related to the user’s role. A
developer in the development phase may desire mathematical insight into the
model, while a domain expert may be more in need of how fair predictions are
for different demographic groups.

2.4.2 Explanation design

What An explanation may contain information about a system’s internal pro-
cess or behaviour in general, which in this framework is referred to as the target.
Processes explain how the model connects input values to output values, so it
exposes the model’s internal working and mechanism to the user. Examples
include: feature importances, activation patterns in neural networks and deci-
sion rules. The system can also explain the general behaviour of the model,
which means that it presents the input-output relationships instead of the inner
workings. For example, it could explain to users that fever, extreme headache
and fatigue are more often associated with a particular condition. Furthermore,
an explanation can also differ at the level it is explained. The system may ex-
plain the whole system (i.e., global) or one particular prediction of interest (i.e.,
instance). However, the type and level can usually be determined by the type
of an explanation. [27] made a handy overview of the most common types of
explanations:

• ”input” explanations: provide information on the input values being
used by a system.

• ”output” explanations: provide information on specific outcomes, in-
ferences, or predictions.

• ”certainty” explanations: provide information on why an expected
output was not produced based on certain input values.

• “why” explanations: provide information on how a system obtained an
output value based on certain input values.
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• “why not”/“how to” explanations: provide information on why an
expected output was not produced based on certain input values.

• “what if” explanations: provide information on expected changes in
output based on certain changes in the input.

• ”when” explanations: provide information on which circumstances pro-
duce a certain output.

The importance of supporting information is emphasised in several studies
[7] [25] [6]. The framework underscores source data (i.e., raw data on which
the model is built), supplemental data (i.e., data that was not used to train the
model on, but is relevant for interpreting the predictions) and training material
(i.e., information related to the development of the model).

How Within Barda et al.’s framework [6], the presentation of an explana-
tion can be summarized across four key dimensions: 1) the format of the ex-
planation (e.g., raw features, feature summaries, images, or instances); 2) the
arrangement of units (e.g., groupings, hierarchical or relational structures, or
summary abstractions); 3) the extent of explanation’s dimensions, which en-
compass the overall size of an explanation or interactive exploration options;
and 4) the method of information representation, encompassing the vocabulary,
data structures, and visualizations employed to convey information. The spe-
cific choices made in each of these four primary categories will be influenced by
the intended user of the explanation (i.e., who) and the context within which it
is being delivered [28].

2.5 Collaboration in ICU

Most of the literature on XAI-interface design is focused on single end-users,
however care in the ICU is delivered in a highly collaborative and social envi-
ronment. Therefore, the interface should support this collaborative process. In
this sub chapter, a short introduction to collaboration in the intensive care unit
will be provided and the importance of supporting this into the development of
a novel XAI-interface.

Diagnosing and treating patients in the intensive care unit is complex and
challenging that requires many care providers with specialized expertise’s. For
example, physicians diagnose, treat and manage diseases, nurses are skilled in
monitoring and administering medications, microbiologists are specialized in
micro-organisms, and infectious disease specialists are specialized in diagnosing
and treating patients with infectious diseases. By working closely together,
care providers can combine their expertise to share insights, contribute the
development of accurate diagnosis and effective treatment plan. According to
[14], two types of collaboration exist, both of great importance for the provision
of effective and cohesive care.
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Synchronous collaboration Synchronous collaboration refers to real-time
communication among healthcare providers. This often includes immediate in-
formation exchange through face-to-face meetings or phone calls. This is very
important. For example, when a patient’s conditions deteriorates, nurses can
contact the designated physician to assess the situation and decide for the most
appropriate course of action. This allows for timely adjustments in critical sit-
uations, which is crucial as diseases become dangerous within hours.

Asynchronous collaboration On the other hand, care providers work to-
gether asynchronously when they communicate and share information that do
not happen in real-time. Some patients remain for several weeks on the ICU,
therefore care providers must provide care in different shifts, thus asynchronous.
It is important that care providers are aware of the latest developments so that
they can continue the line of work of the previous care providers. This is often
the first task of care providers when they start shift. They’ll look into the EHR,
ask for elaboration with other healthcare providers, during shift hand-offs.

Healthcare providers bring diverse expertise to the table. For example,
nurses have close contact with patients, therefore they may detect small changes
in the patients’ condition faster than physicians. Care providers have domain-
specific insights and practical experience. Collaboration allows for the integra-
tion of these different perspectives into the XAI-interface, which is needed to
make sure all stakeholders can make informed decisions. They have a deep un-
derstanding of the clinical context in which the diagnositc prediction model will
be used.

2.6 Data visualisation

Examining contextual information with huge amounts of data is daunting, there-
fore visual analytics may come to the rescue. Electronic Health Record (EHR)
have been developed to keep patient history and reduce the time spent analysing
patient information. This information is very useful, however information is
scattered across various sources and information often appears to be out-dated,
incomplete and inconsistent [29] [14]. Furthermore, EHRs primarily focus on
data storage and retrieval, providing structured representation of patient in-
formation. However, they may not effectively convey information in the right
format to interpret ML predictions.

In this subchapter, a visualisation overview will be provided based on Tamara
Munzner’s book ”Visualization Analysis & Design” [30].

2.6.1 Four stages of validation

In Tamara Munzner’s book, she breaks down the visualization design process
into four phases: 1) domain situation, 2) task and data abstraction, 3) visual
encoding and interaction idiom, and 4) algorithm. The output of each preceding
phase feeds into the next. The benefit of this methodology lies in the autonomy
of analyzing and validating each phase independently. However, a downside
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emerges if any inaccuracies from earlier phases persist, potentially affecting
subsequent stages. Therefore, meticulous examination of the output is essential.
Despite their apparent sequential arrangement, these phases often necessitate
iterative approaches in real-world applications. This subsection will provide a
succinct overview of the four phases:

Domain situation In the domain situation phase, a picture of the target
audience is painted, exploring their areas of interest, questions and problems.
The domain usually has its own vocabulary and its own way of solving problems.
This can be investigated by conducting interviews with users and observational
studies. The outcome is a clear picture of user needs. A common pitfall is
making assumptions instead of really engaging with users.

Task and data abstraction In the next phase, the domain-specific language
is translated into a visualization language. In this way, a designer can deter-
mine which processing and coding methods are available and appropriate. For
example, by determining whether the data is categorical or ordered, a designer
can determine which colors are appropriate in the next phase. Sometimes very
different domain-specific situations can be translated into the same abstract
tasks.

Visual encoding and interaction idiom In this phase, the visual represen-
tation of the abstract data block defined in the previous phase is determined.
There are two main points to consider when designing. First, it must be deter-
mined how data will be presented to the user, for example, what shapes and
colors the data points will have. Second, it must be determined how the data can
be manipulated, such as whether the information should be able to be sorted or
filtered. Although it is often possible to analyze coding and interaction idioms
as separate decisions, in some cases these decisions are so intertwined that it is
best to consider the result of these choices as a single combined idiom.

Algorithm In the last, most nested, phase, an algorithm is developed for
the design. The chosen visual representation and interaction method should be
handled as efficiently as possible.

2.6.2 Marks and channels

After the domain-specific language is abstracted, the abstract information can
be converted to a visual encoding. Tamara Munzner provides building blocks
for this that can be used to analyze visual encodings. The essence of the design
space of visual encodings involves an orthogonal combination of two elements:
graphical elements, referred to as markings, and visual channels that control
their representation. Even complex visual encodings can be decomposed into
components that can be analyzed based on their markings and channel structure.
This subsection will briefly discuss the two types of elements:
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Channel types Channels can be used to manipulate the appearance of mark-
ings independent of the dimensionality of the geometric primitive. Like the hu-
man perceptual system, Tamara Munzner subdivides channels into two sensory
modalities. The identity channels tell us information about what something
is or where it is. Magnitude channels, on the other hand, tell us how much
of something there is. Examples of visual channels include: shape, the color
channel of hue and pattern of motion. Multiple channels can be combined to
redundantly encode the same feature. The limitation of this approach is that
more channels are ”used up,” so fewer attributes can be encoded in total, but
the advantage is that the attributes shown are very easily perceived.

Mark types A marker is a basic graphic element in a visualisation, such as
points, lines and areas.

Channel rankings Channels can be ranked according to two expressiveness
types of ordered and categorical data (see Figure 2). The expressiveness prin-
ciple stipulates that visual encoding should accurately represent all the infor-
mation within dataset attributes, without omitting any. This principle is fun-
damentally demonstrated by displaying ordered data in a manner that aligns
with our natural perceptual recognition of order. As can be seen in the picture
below, position on a common scale is more effective than color saturation for
ordered attributes. This also underscores why barcharts are so widely used.

Figure 2: Channel rankings by Tamara Munzner
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2.6.3 Actions

Tamara Munzner has designed a framework (see Figure 3) with words that
describe why people use data visualization to distinguish between different goals.
It is divided into three levels of action. At the highest level, visualization is used
to analyze information, both consuming and producing it. At the middle level
relates to the type of search action (e.g., browsing, exploring). At the lowest
level, the goals relate to the type of search (e.g., compare, summarize). Below,
the different goals will be described:

Figure 3: Three levels of actions: analyze, search, and query by Tamara Mun-
zner

Consume

• Discover: using visualization to gain new knowledge. This can be com-
pletely finding new things (generate hypothesis) or finding out if a conjec-
ture is true or false (verify hypothesis).

• Present: using visualization to communicate something specific to other
people. This can take place, for example, within the context of decision-
making and planning processes.
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• Enjoy: use visualization to entertain users. A visual can elicit curiosity,
such as an info-graphic accompanying a blog post.

Produce

• Annotate: Adding graphical or textual annotations in a visualization. For
example, annotate all points within a text label with a text label.

• Record: Save or capture visualization elements. For example, screenshots,
parameter settings or annotation

• Derive: Derive new data points from existing data points by transforming
data, for example, by calculating the sum of different variables.

Search

• Lookup: Finding information that users know what it is and where to find
it.

• Locate: Find information that users know what it is but not where to find
it, or in other words, find out where the information is located.

• Browse: Find information that users do not know exactly what it is, but
approximately where to find it. For example, the average square meter
price in Utrecht on April 20, 2023.

• Explore: Find information that users are not sure what it is and where to
find it. For example, outliers in a scatterplot visualisation.

Query

• Identify: search that returns the attributes of a single, known target

• Compare: search that compares multiple targets.

• Summarize: provide a comprehensive view of all kinds of different things.

2.6.4 Four commonly used EHR-based visualisation types

Rostamzadeh et al.’s study [31] undertakes a review of Visual Analytics (VA)
within the context of electronic health records. The study identifies four preva-
lent categories of visualizations frequently employed in VA systems centered
around electronic health records: relation-based, time-based, hierarchy-based,
and flow-based visualizations. Each of the categories will be concisely discussed
below:
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Relation-based Relation-based visualizations show the relationships between
one or more attributes. A large number of visualization techniques can be used
to display relationships: scatter plots, parallel coordinates plots, bubble charts,
bar charts, and heatmaps.

Figure 4: Gotz et al. [32] employ a scatter plot to demonstrate the distribution
of the most common patterns with respect to their level of support for various
patients.

Time-based Visualizations that focus on time display information or events
in the order they happened over a period. These visualizations help doctors and
experts understand a patient’s medical history better. One common way to do
this is by using a Timeline. A Timeline shows events in order using icons that
can look different in size, shape, or color to show different things about each
event.

23



Figure 5: Peekquence [33] displays each patient’s event sequence in a timeline.

Hierarchy-based These visualizations show how things are put in order and
ranked in a system. There are different ways to show this, like using tree
diagrams, treemaps, or icicle plots.

Figure 6: In DecisionFlow [34], they put events that are alike together in a tree.
Each spot on the tree represents an event and where it fits in the order of when
things happened.

24



Flow-based These visualizations display the movement and amounts of dif-
ferent things compared to each other. Two common ways to do this are using
pictures called Sankey diagrams and parallel sets. These are used in systems
that look at electronic health records to show how patients move between dif-
ferent types of medical events.

Figure 7: Care Pathway Explorer [35] uses a special kind of diagram called a
Sankey diagram to show how clinical events that happen often are linked to
each other.

2.7 Existing XAI interfaces in healthcare

In the upcoming section, three established XAI interfaces will be examined, with
a primary emphasis on their key contributions, dashboard components, and their
relevance to the present study, which seeks to explore the optimal contextual
information to be presented on the dashboard. To conclude, prevalent design
patterns that emerge across these interfaces will be delineated.
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2.7.1 XAI interface for DCIP Risk Model

Figure 8: XAI interface for DCIP Risk Model [12]

In the study conducted by Bienefeld et al. [12], the primary focus was on
understanding user needs to derive insights for the design of an interface tailored
for a Delay Cerebral Ischemia Prediction (DCIP) system within the domain of a
neuro-ICU. The study provides valuable insights about the aspects of designing
an XAI interface by shedding light on information essential for clinicians to
interpret ML-predictions.

The core components of the designed interface includes an overview of risk
scores (B), incorporating both static and dynamic risk scores. The static scores
pertain to factors like patient demographics, while the dynamic scores involve
physiological parameters. According to Bienefeld et al. [12], the separation of
risk scores allows care providers to discern the relative contribution of each at-
tribute set. However, showing multiple risk scores can also lead to difficulties
in interpreting risk scores, which can lead to problems for adopting a model in
clinical practice [36]. The dashboard includes visualisations to illustrate both
dynamic- (E) and static (C) feature contribution. Static contributions are rep-
resented as a bar chart, while dynamic contributions are depicted as heatmaps,
providing a representation that matches with the underlying data. Additionally,
the dashboard integrates contextual information such as vital parameters (F)
and demographic patient information (A). This holistic approach ensures that
care providers have access to relevant information, enhancing interpretability.

The outcomes of the study emphasize the clinicians’ insistence on the clin-
ical plausibility of model predictions. The presentation of information aligning
with clinical knowledge, such as pertinent biomarkers (e.g., C-reactive protein
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(CRP)) and physiological parameters, was highlighted as crucial. Clinicians un-
derscored the significance of physical examination findings, underscoring their
role in providing essential context. The study suggests that integration with
existing systems, such as EHR, is imperative for acquiring patient-specific in-
formation from physical examinations.

Furthermore, the study accentuates the clinicians’ need for rapid interpre-
tation of model results. In the case of sepsis predictions, the interface’s design
should facilitate rapid decision-making.

2.7.2 XAI Interface for PICU In-Hospital Mortality Risk Model

Figure 9: XAI Interface for PICU In-Hospital Mortality Risk Model [6]

Barda et al. [6] conducted a study with the objective of designing an inter-
pretable interface for a Pediatric Intensive Care Unit (PICU) mortality risk
model, with a focus on addressing providers’ needs. The mortality risk model is
designed to predict in-hospital mortality in the PICU setting, aiming to enhance
the acceptability of ML-based systems among clinicians.

An important component of the interface are model explanations, using
the SHaply Additive exPlanations (SHAP) algorithm to offer model-agnostic,
instance-level explanations. Visualising the feature importances through a tor-
nado plot (B) was found easier to understand than a forceplot, which was con-
sistent with findings from related studies [37]. Additionally, the design empha-
sized the inclusion of contextual patient information, encompassing raw pre-
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dictor values (D), as well as demographic and diagnostic patient details (C &
E). Recognizing the critical role of such details in assessing clinical relevance,
credibility, and utility of predictions, the study acknowledged their significance
in establishing trust in the model predictions.

Despite the initial emphasis on including patient information in the inter-
face, the final iteration opted to exclude this information. This decision was
grounded in the anticipation of integrating the model into the EHR system,
where contextual patient information is abundant. The study suggests that,
while contextual patient information is valuable for verifying predictions and
building trust, considerations must be given to the workflow within which the
XAI interface is embedded.

The study underscores the significance of user-centered design, with feed-
back from focus group sessions playing a pivotal role in refining the interface.
The primary takeaway from the research is the importance of contextual patient
information in verifying predictions. However, the study emphasizes that the
integration of the XAI interface into the broader workflow, particularly within
the EHR system, should be carefully considered for optimal usability and effec-
tiveness.

2.7.3 Sepsis Watch

Figure 10: Sepsis Watch Dashboard [9]

This study [9] aims to explore the optimal integration of an ML-based sepsis
early warning system, known as Sepsis Watch, into the clinical workflow. Uti-
lizing a deep learning model that analyzes real-time clinical data to predict a
patient’s likelihood of sepsis, this study is pivotal in discerning the contextual
information care providers require and how it should be presented in an XAI
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interface for a sepsis prediction model. The research delves into the factors
influencing clinicians’ acceptance and usability of the ML-based system.

The primary components of Sepsis Watch’s main dashboard include an orga-
nized overview of patients (B) categorized by sepsis risk using color-coded cards
(e.g., black for meeting sepsis criteria, red for high risk, orange for medium risk,
and yellow for low risk). Tabs (A) are employed to categorize patients into
different groups, such as triaged, screened, and those in the sepsis bundle. De-
tailed risk analysis and contextual patient information (C) are accessible when
a patient is selected, encompassing patient demographics, latest lab and vital
signs, and pertinent details about the current hospitalization, including admis-
sion time.

The study’s key findings emphasize that positive experiences with ML pre-
dictions and feedback on model success play a pivotal role in building trust in the
system. Moreover, the study underscores the critical importance of understand-
ing clinician perspectives and integrating ML models into the existing clinical
workflow. Regarding the display of contextual information, the research high-
lights the significance of real-time clinical data, demographic information, and
details about preexisting health conditions in assessing the patient’s baseline
health risk. The incorporation of feedback mechanisms, including information
on the model’s success and specific cases detected, significantly contributes to
building trust among clinicians.

2.7.4 Common design themes

Explanations While the Sepsis Watch interface [9] lacked explicit model ex-
planations, providers expressed a crucial need to comprehend the rationale be-
hind the model’s predictions. This difficulty in trusting the model without
understanding highlights the critical role of explaining model predictions to
foster trust between ML-based tools and healthcare providers. This aspect res-
onates with current advancements in HCI literature, especially in the field of
explainable interfaces.

Studies by Barda et al. [6] and Bienefeld et al. [12] contribute insights
into this domain by utilizing model-agnostic instance-level explanations to in-
terpret and validate model predictions. They advocate for the effectiveness of
this approach in rendering ML predictions more interpretable. Notably, both
studies found that representing feature values through a tornado plot (diverging
bar-chart) was deemed easy to interpret. However, they jointly underscore the
significance of a user-centric design approach in determining the most effective
visualizations that resonate with end-users. The emphasis on user-centred de-
sign echoes the HCI principles that tailoring interfaces to meet specific needs
and cognitive processes of end-users.

Contextual patient information All three studies [9] [6] [12] underscore
the importance of incorporating contextual patient information for the effective
interpretation of risk predictions. Barda et al. [6] integrated demographics
and diagnostic details into their prototypes, while Sandhu et al. [9] expanded
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on this by including demographics along with the latest lab and vital signs.
Bienefeld et al. [12] presented additional vital sign timelines in their dashboard.
Despite their inclusion of contextual information, all studies emphasized the
crucial need for seamless integration with the EHR, advocating for parallel use
with the model.

In the context of current HCI literature on XAI-interfaces, these finding are
consistent with the broader discourse on designing interfaces that use contextual
information for interpreting predictions and decision-making. The lack of con-
sensus on what specific contextual information should be shown on the interface,
and what information should be deferred to the EHR, resonates with ongoing
discussions in HCI about optimizing information presentation. This challenge
highlights the importance of HCI principles in designing XAI-interfaces that
align with the current workflows.

Supporting model information Barda et al.’s study [6] found that present-
ing additional information, such as tables of raw feature values and time-series
plots, proved beneficial for healthcare providers in interpreting predictions and
explanations. However, showing raw feature values may become problematic
for models with multiple features. As emphasized in [23], the importance of
simplification and abstraction to enhance interpretability of complex models.

Risk representation All three studies emphasize the crucial role of risk rep-
resentation in facilitating effective interpretation; however, they present varying
results. Bienefeld et al. [12] adopted a dual approach, displaying risk scores both
numerically (as probabilities) and visually (as a risk analysis with highlighted
high-risk areas). This dual representation strategy enhances information com-
prehensibility, catering to diverse cognitive styles among users, as discussed in
the current state of art in HCI literature.

In a similar vein, Barda et al. [6] explored clinicians’ preferences for risk
information represented as odds versus probabilities. The findings revealed a
unanimous preference for probabilities, attributed to the reduction in informa-
tion processing effort. This aligns with HCI literature, which often advocates for
representations that minimize cognitive load and enhance user understanding.

Sandhu et al. [9], on the other hand, discovered that representing a risk
score through color-coded categories (low, medium, high) was more intuitive
and easier to grasp than depicting it as a continuous risk scalar. This finding
resonates with the ongoing discourse in HCI literature, emphasizing the impor-
tance of intuitive visualizations that facilitate quick and accurate comprehension
of information.

According to these studies, the choice between numerical, visual, or cate-
gorical representations should consider the varied cognitive styles of healthcare
providers, ensuring that risk information is presented in a manner that optimizes
understanding and decision-making.
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Interactivity The interfaces in these studies incorporated interactive com-
ponents, such as shared views and on-demand information retrieval, aiming to
alleviate cognitive load. This design choice aligns with principles discussed in
the current state of art in visualisation and HCI literature. As exemplified by
Munzner [30], emphasizes the importance of interactive elements to enhance
user engagement and comprehension.

One prevalent design strategy employed in these interfaces is progressive dis-
closure, a technique that gradually presents information and unveils additional
details upon user request. This approach aligns with HCI principles that advo-
cate for managing cognitive load by initially providing a concise and simplified
view of the data. In the context of XAI interfaces, especially in the intensive
care unit where rapid decision-making is imperative, progressive disclosure be-
comes particularly crucial. Clear and concise information presentation emerges
as a key factor in expediting decision-making processes and reducing cognitive
workload, an aspect underscored by the broader HCI literature focusing on
user-centered design and effective information visualization.
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3 Sepsis prediction model

The model that is used for this study is an early warning LOS prediction algo-
rithm. It utilizes low-frequency heart rate and oxygen saturation data obtained
from the neonatal intensive care unit (NICU). This chapter discusses the main
model limitations by placing these in the context of XAI interface design. In
addition, it provides an overview of all the predictors used in this model. More
information about the model can be read in their published article [38].

3.1 Model lmitations relevant for XAI-interface design

Limited Variables Some predictors appeared to be unreliable and were ex-
cluded from the model. Variables such as patient temperature, commonly used
to identify fever, a symptom of sepsis, were omitted due to influences like incu-
bator temperature and measurement accuracy. Skin color, another commonly
used factor, was not included as the child is often covered in the incubator.
Additionally, infection parameters like CRP were considered too delayed for an
early warning system. The model utilized heart rate and oxygen saturation as
predictors. Transparency regarding the model’s capabilities, as highlighted in
XAI literature [39], is essential for building trust and making informed deci-
sions. Therefore, the interface should explicitly state the predictors used by the
model.

Use of Low-Frequency Data The prediction algorithm uses low-frequency
data to make predictions, impacting model sensitivity. It may not capture
subtle and rapid changes in physiological parameters, failing to detect short-
term trends and variations. This limitations can results in a reduced sensitivity
to early signs of medical conditions, potentially leading to missed diagnosis. A
high number of false negatives could become a problem, especially when care
providers over rely on the model.

High Number of False Positives Despite the model’s moderate perfor-
mance (AUC of 0.73 upon clinical suspicion), a notable issue is the relatively
high number of false positives, indicating that high-risk predictions may have
only a minimal chance of actual sepsis. The abundance of false positives empha-
sizes the need for contextual information, enabling care providers to assess the
clinical relevance of alerts and make informed decisions. Additionally, select-
ing the appropriate alarm threshold is crucial for model adoption; an excessive
number of false positives can erode trust in the model. To address these con-
cerns, incorporating a feedback mechanism within the interface, allowing users
to provide feedback on false positives and other observations, can contribute to
continuous model improvement and refinement.

Cross-sectional dataset limitations The sepsis prediction model under-
went training using a cross-sectional dataset characterized by 4-hour interval
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time-aggregated features (mean, minimum, variance). Consequently, the model
may encounter challenges in fully capturing the temporal dynamics and corre-
lations present in repeated measurements, which are inherently a part of lon-
gitudinal data. This limitation has the potential to influence the prevalence of
positive LOS cases, deviating from what would be observed in a purely cross-
sectional analysis.

Furthermore, the absence of intricate temporal dynamics and correlations in
repeated measurements introduces difficulty in calibrating the model to align
its certainty with the actual likelihood of a patient having sepsis. Consequently,
interpreting risk scores derived from the model becomes a nuanced task, as these
scores cannot be directly translated into the true probability of a patient hav-
ing sepsis. In essence, the model’s training on time-aggregated, cross-sectional
data restricts its ability to capture the evolving nature of sepsis risk over time,
limiting the direct interpretability of risk scores as accurate representations of
the actual chance of sepsis occurrence.

3.2 Main Features Used in the Model:

As explained, [38] states that a range of monitoring data was initially evalu-
ated, but heart rate and oxygen saturation measurements were selected for the
algorithm. The main features used in the logistic regression model include:

Name Description
HF mean Mean heart rate

HF variance Heart rate variance
SpO2 variance Oxygen saturation variance
SpO2 min Minimum oxygen saturaion
Bradycardia Number of bradycardias
Tachycardia Number of tachycardias
SpO2 drops Number of oxygen saturation drops

Table 1: Selected features for the sepsis prediction algorithm [38]
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4 Design study framework

Sedlmair et al. [40] introduced a framework comprising nine phases organized
into three categories for carrying out a design study (see Figure 11). The ”pre-
condition” phase outlines the necessary preparatory steps before commencing
a design study. The ”core” phase details the sequence of actions involved in
conducting the study, while the ”analysis” phase involves presenting outcomes
and reflecting on the design study. Although the framework is presented as a
sequence, it doesn’t mean each previous step must be entirely finished before
the next begins. Many phases overlap, and the process involves significant it-
eration. As each step is carried out, new information might emerge, refining
previous stages. The following sections will discuss an outline of the framework,
with a detailed description of each phase available in Sedlmair et al.’s study [40].
Subsequent chapters will delve into the discussion of each phase concerning the
design of an explainable interface for the sepsis prediction model. The deploy
phase is omitted due to time constraints, as the interface will not be deployed.

Figure 11: Sedlmair et al. [40] nine-stage design study methodology framework
organized into three top-level categories

4.1 Precondition phase

The initial steps of learn, winnow, and cast revolve around getting the visual-
ization researcher ready for the task and identifying and selecting collaborative
partnerships with domain experts.

4.1.1 Learn: Visualisation literature

This stage provides knowledge of the visualization literature, including visual
coding and interaction techniques, design guidelines and evaluation methods.
This knowledge provides an important foundation for later stages. For instance,
it helps with data and task abstraction in the discovery phase and offers the
researcher the ability to distinguish between good and bad ideas in the design
phase.
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4.1.2 Winnow: Select promising collaborators

The winnow phase focuses on selecting promising collaborations. This involves
initially meeting with a large number of potential partners and gradually se-
lecting a few based on careful consideration. Selection criteria can be practical,
intellectual as well as interpersonal, for example, the time available between two
parties.

4.1.3 Cast: Identify collaborator roles

This phase defines the roles within the project, with the most important roles
being the front-line analyst (domain expert end user) and gatekeeper (project
approver), along with additional roles such as connectors and translators. How-
ever, these roles are not set in stone. For this project, other roles (e.g., students,
researchers) are more suitable.

4.2 Core phase

The core of a design study contains four stages: discover, design, implement,
and deploy.

4.2.1 Discover: Problem characterization & abstraction

In the discovery phase, the problem will be characterized by talking to and
observing different domain experts so that the domain-specific insights can be
abstracted. This process is iterative: the researcher asks questions to the domain
expert, the researcher abstracts and asks for feedback on the abstraction. A
good abstraction ensures that the results from this design study can be used in
other domains, and provides an understandable description of the domain for a
visualization audience.

4.2.2 Design: Data abstraction, visual encoding & interaction

In the design phase, the data abstractions, visual encodings and interaction
mechanism will be generated and validated. After requirements are identified in
the previous phase, multiple solutions will be generated, leading to one solution.
A common pitfall is to choose a solution too early. This can be avoided by
generating a wide selection of solutions. The research can incrementally refine
the wide range of solutions by using design principles and guidelines. The
proposed solutions in the proposal space should be presented to domain experts
for discussion, such as in the form of paper mock-ups, data sketches or low-level
prototypes. The goal of the design cycle is to satisfy rather than optimize: while
there is usually no best solution, there are many good and okay solutions.

4.2.3 Implement: Prototypes, Tool & Usability

Once a design solution has been identified in the preceding phase, this stage will
involve creating a prototype. Subsequently, this prototype will undergo testing
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with the actual users.

4.2.4 Deploy: Release & Gather Feedback

In the final core phase, we put the tool to real-world use and gather feedback.
The main goal is to see if experts find the tool helpful.

4.3 Analysis phase

4.3.1 Reflect: Confirm, Refine, Reject, Propose Guidelines

Reflection is a crucial part of a design study. This helps build knowledge and lets
other researchers learn from the work. It’s especially useful for improving design
guidelines. When new things are discovered, new guidelines can be confirmed,
refined, extended, or even proposed.

4.3.2 Write: Design Study Paper

Writing is about communicating findings with the research community. It is
important not to rush but to take time to reconsider ideas and explain them
clearly.
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5 Winnow & Cast

This chapter defines the different roles involved in this study. A role may be
separate from a person, as a person can also have multiple roles.

Researchers The researchers involved in this project are myself and my su-
pervisors. My supervisors work at Utrecht University, department of human-
computer interaction, and my supervisors from UMC Utrecht work in the de-
partment of neonatology and digital health.

Domain Experts The domain experts involved in this project are the fol-
lowing healthcare providers: neonatologists, NICU nurses, NICU physician as-
sistants and fellow neonatologists. They can be contacted for an interview with
permission from my UMC Utrecht supervisor.

Students Master students from the Human-Computer Interaction course also
participate in the study. They are tasked with providing interface feedback in
the design phase of the study.

37



6 Discover

In this chapter, we will explore the domain and existing practices, addressing
the challenges and requirements of the target group. The identification of these
aspects was accomplished through interviews with domain experts and a half-
day observation at the NICU ward. The insights gained from these activities
were then transformed into general tasks, which were subsequently validated
with stakeholders.

Figure 12: Overview of the discover phase: transforming findings from inter-
views with domain experts and an observational study into a set of potential
requirements.

6.1 User Interviews

The first step to identify the needs of end users is by engaging with them. Semi-
structured interviews were conducted with four different healthcare providers (M
= 1, F = 3). Each interview was conducted independently and lasted approxi-
mately 30 minutes. The interview began with a brief introduction of the purpose
of the study. It was made clear to the participant that the interview would be
recorded, the information would be kept confidential and could be stopped at
any time without having to provide a valid reason. Participants were then asked
to sign a consent form (see Appendix E). The interview delved into the intri-
cacies of sepsis diagnosis, the methods employed for information analysis, and
the perspectives of healthcare providers concerning the introduction of a sepsis
prediction algorithm to their ward. The outline of the interview can be found
in the Appendix A. A second round of interviews was conducted to identify
the exchange of information between caregivers. Four caregivers participated in
these, including 3 nurses and 1 fellow neonatologist (M = 1, F = 3). During
the interview, sharing information with and retrieving from other care providers
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was discussed. The outline of the interview can be found in the Appendix B.

6.2 Observational study

In addition to conducting user interviews, half a day was dedicated to observ-
ing care providers on the NICU ward. Throughout the observation, valuable
insights were gathered pertaining to decision-making, collaboration, and infor-
mation exchange. The day commenced by following a neonatologist during their
morning routine, which included patient visits and offering guidance to fellow
care providers. Subsequently, nurses were observed while delivering care, pro-
viding an opportunity to pose questions for clarification of their actions. The
neonatologist demonstrated the utilization of Metavision for patient adminis-
tration. Towards the end, participation in a multi-disciplinary session allowed
witnessing decisions being made regarding the treatment of challenging cases.
Throughout the observation, detailed notes were taken and later expanded upon
for comprehensive documentation.

6.3 Set of Requirements

The interviews with care providers and related work have yielded the following
four themes: explanation, patient information, model feedback & collaboration,
and alarm notification.

Care providers indicated reluctance to make decisions based on a prediction
alone. They said that they would like to know what the prediction is based on
(requirement: 1.1) so that they can cross-validate it with available data about
the patient. Additionally, they wanted to know the trend of the prediction
(requirements: 1.2, 1.3). A high-risk patient coming from a very low risk pre-
diction may be more alarming than a patient maintaining a moderately high
risk score. There was disagreement about showing reliability metrics. Some care
providers expressed a desire to know the likelihood behind a score and wanted
information on sensitivity and specificity. On the other hand, care providers
found these metrics too challenging to understand. Since the large majority of
care providers did not want to see this on the dashboard, it was decided not
to include it. In addition, as explained in the model limitations in the cross-
sectional dataset limitations 3.1 section, calculated likelihoods are difficult due
to repeated measurements.

Care providers indicated the need for contextual information to interpret the
model’s risk score, enabling them to determine the appropriate course of action.
For instance, ”in a severe illness, you might need to start treatment at 20%,
while in a mild care, you can wait until 80%”. Another care provider said: ”its
orange (indicating a moderate risk score), but it’s an extremely premature case,
so you need to start now”. They indicated that contextual information is key
to facilitate informed decision-making. Furthermore, they desired contextual
information to verify and validate the model based on their own insights and
knowledge. They wanted this information to cross-verify predictions, as one
care provider mentioned, ”that you can compare it with the patient. Yes, the
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child has a lot of bradycardia. Let’s start treatment”. They emphasized the
importance of having contextual information to enhance their confidence in the
model’s predictions.

While the EHR contains a lot of contextual information, not all of it is
relevant for interpreting sepsis risk scores. Care providers expressed a desire to
have all relevant information consolidated in one central location, enabling them
to act quickly and efficiently. Providers mentioned that it takes a significant
amount of time to find to all relevant contextual information as it is scattered
across multiple sources and hidden in long rapports, resulting in instances where
crucial details are overlooked, and takes longer to attend the patient. As one
provider noted, ”It is sometimes a lot of information, which causes you to have
an overwhelming amount of data to process. This leads to delays before we can
actually get to the patient.”.

The added value appears to lie in having all relevant information in one
central location rather than solely in the algorithm itself. However, centralizing
all information relevant to interpreting sepsis risk scores would enable providers
to act quickly and efficiently without spending time searching for scattered
information across multiple sources. This enhances care providers ability to
interpret risk scores but also improves the overall decision-making process.

During the interviews, care providers explained the diagnostic process of
sepsis and all the relevant parameters. Together with a neonatologist, this
extensive list of parameters was condensed to the most relevant ones, which will
be explained below.

Actual interventions like antibiotics and respiratory support was assumed
to be of importance for interpreting the risk scores. For example, respiratory
support might affect oxygen saturation, a predictor used by the model, and
thus could influence the risk score (requirement: 2.1). Additionally, it provides
insights into the child’s stability; if oxygen saturation is highly unstable without
respiratory support, it could be a cause for significant concern. Furthermore,
clinical symptoms play a role in evaluating the patient’s condition and assessing
the severity of the situation. The child’s color and mobility are particularly
important: if the child appears still, fatigued, and/or has a pale complexion,
it is highly concerning (requirement: 2.2). Furthermore, laboratory results like
white blood cell count and CRP values serve as indicators for infections in the
body (requirement: 2.3). Vital functions provide indicators of the vital organs
performance, with heart rate and oxygen saturation being the most critical ones
(requirement: 2.4). They are also the input features for the prediction model.
Healthcare providers expressed a desire to know the patient’s weight and age
(requirement: 2.6). Knowing that the child is extremely premature, treatment
may be initiated earlier and a moderate risk score could be highly alarming.

The literature shows that providing feedback on a prediction has a positive
effect on usability (requirement: 3.1). In addition, model developers can use
this information to further refine the model. Healthcare providers wanted to
know what actions were performed when an alarm was validated (requirement:
3.2).

Care providers wanted an alarm to be forced on them so that no alarms
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would be missed (requirement: 4.1).

6.3.1 Participants

ID Job function
P1 Neonatologist
P2 Neonatologist
P3 Neonatologist Fellow
P4 Infectiologist
P5 Nurse
P6 Nurse
P7 Nurse
P8 Literature [6] [7] [12] [41]

6.3.2 Priorities

Must have Critical requirements
Should have Important, but not necessary for the prototype to be validated.
Could have Desirable, but not necessary. Can be included if time and resources permit.
Won’t have Least-critical

6.3.3 Functional requirements

Theme ’Explanation’

ID Requirement Participant Priority
1.1 The user should be able to see the latest model

prediction trend
P2, L Must have

1.2 The user should be able to adjust the timeline
of the model predictions trend.

P2, L Must have

1.3 The user should be able to see what features
contributed to the prediction

P1,P2,P3 Should have

Theme ’Patient information’
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ID Requirement Participant Priority
2.1 The user should be able to see actual interven-

tions (lines, ventilation, antibiotics)
P6,L Must have

2.2 The user should be able to see the latest results
from physical examination (skin colour and ac-
tivity).

P1, P2, P3,
P5, P6, P7

Must have

2.3 The user should be able to see the latest infec-
tion parameters. (CRP, Leukocytes, Thrombo-
cytes)

P1, P2 Must have

2.4 The user should be able to see the vital signs
over the last 6 hours (heart frequency, mean
heart frequency and saturation).

P1, P2, P3,
P6, P7, L

Must have

2.5 The user should be able to see the latest result
of the blood culture (datetime and type of bac-
teria).

P2, P3, P6 Must have

2.6 The user should be able to see general patient
information (sex, latest weight, gestational age,
postnatal age).

L Must have

2.7 The user should be able to hover over the afore-
mentioned datapoints to see the three latest val-
ues.

L Should have

Theme ’Model feedback & collaboration’

ID Requirement Participant Priority
3.1 The user should be able to indicate whether they

agreed with the prediction
L Should have

3.2 The user should be able to indicate what actions
they performed

L Should have

Theme ’Alarm notification’

ID Requirement Participant Priority
4.1 The user should be warned when the predicted

risk exceeds the threshold
P1, P3 Must have

4.2 The user should be able to see when an alarm
was generated

Feedback
from design
phase

Must have

4.3 The user should be able to validate an alarm Feedback
from design
phase

Should have

4.4 The user should be able to mute an alarm Feedback
from design
phase

Should have
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Non-functional requirements

ID Requirement Participant Priority
4.1 The system should minimize cognitive load. L
4.2 The system should group similar objects L
4.3 The system should use simple terminology L
4.4 The system should be providing appropriate

feedback
L

4.5 Visual information should be supported with
textual information

L

4.6 The system should minimize the number of ac-
tions to complete a goal

L
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7 Design

After identifying the needs of healthcare providers and transforming them into
a set of requirements, several low-fidelity designs for the interface were created.
First, for each of the requirements, the data types were determined, includ-
ing the attribute type (e.g., categorical, quantitative), ordering direction (e.g.,
sequential, diverging) and range. Subsequently, together with the XAI and vi-
sualisation literature, a set of relevant design solutions were created (see Figure
13). These designed components were tested with end users and usability ex-
perts. This chapter will layout the design considerations for the low-fidelity
prototypes and detail the results of the evaluation.

Figure 13: The analysis model by Tamara Munzner [30], in which the current
steps of the process are highlighted in blue.

7.1 Low-fidelity Prototype

Low-fidelity prototypes are simple, rough and often quick designs of a product
or interface. The focus is on the concept and not the detailed graphics. This
ensures that concepts can be tested quickly to validate hypotheses and gain
valuable insights. A low-fidelity prototype can be created in a variety of ways.
This study will use Figma [42], a Web application for designing interfaces. They
offer a large library of drag and drop components, allowing layouts to be created
quickly and easily. In addition, the designs can be made easily clickable. This
allows users to use the interface in a ”real-world” way, leading them to different
insights.

The low-fidelity prototypes were designed based on Tamara Munzner’s book
’Visualization Analysis and Design’ [30] and relevant XAI literature. To deter-
mine an appropriate presentation form for the set of requirements, the following
components were identified: vital sign chart, feature importance chart, risk anal-
ysis, risk score, table with patient information, patient overview section, and a
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feedback form. For some of these components various relevant solutions were
found, which will be further explained below.

7.1.1 Vital signs

Two variants for representing the vital signs were designed: a line chart featur-
ing multiple attributes (Figure 14a) and a multi-plot line chart (Figure 14b), one
for each attribute. The attributes included all features that were used by the
model, excluding countable predictors: heart frequency, saturation, mean heart
frequency, heart frequency variance, saturation variance, and minimum satura-
tion. Tamara Munzner [30] advocates for the use of a line chart to illustrate
trends when the data involves at least one quantitative attribute (e.g., heart
rate frequency) and one ordered attribute (time). However, when confronted
with numerous attributes, the chart can become challenging to interpret, lead-
ing to the creation of a multi-plot line chart. Despite its benefits, this approach
introduces the challenge of comparing attributes effectively.

(a) Variant 1: Linechart with vital signs
(b) Variant 2: A multi-plot linechart with
vital signs

Figure 14: Vital sign sketches

7.1.2 Feature importance chart

In designing the feature importance chart, three relevant design solutions were
found. The most prevalent visualization was the tornado plot, where factors
contributing to an increased risk score are positioned on the right side, while
those diminishing the score are located on the left side. This design aligns with
the latest XAI and visualisation literature, highlighting the ease of interpretation
[43] and suitability for comparing diverse attributes [30]. This makes the tornado
plot a relevant design choice for visualising feature importances (Figure: 15b).

Notably, tornado plots were selected over alternative visualizations such as
force plots, which were find hard to interpret for individuals lacking AI expertise
according to findings by Haas et al. [37] and Barda et al. [6]. Similarly, scatter
plots were dismissed due to incongruities with the underlying data structure;
they necessitate two quantitative attributes, while feature importances inher-
ently involve a single categorical and quantitative attribute. Despite the poten-
tial utility of scatter plots in revealing how each feature behaves globally, their
interpretational challenges, particularly among lay-users [43], rendered them less
suitable for quick comprehension.
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Interestingly, XAI research [23] indicated a divergence in preference among
healthcare professionals, with nurses favoring textual explanations and doctors
finding visualisations more interpretable. For this reason, textual explanations
(Figure 15c) were also included as a relevant design choice. A hybrid solution
was also developed, presenting a combination of textual and visual explanations
in a tabular format. Although this approach is visually less telling, it facilitates
rapid understanding, especially when dealing with a limited number of features
(Figure 15d). Tables offer the added benefit of allowing items to be sorted,
enhancing the user’s ability to focus on specific aspects of interest. This strategy,
rooted in both XAI principles and user feedback, underscores the importance of
tailoring explainable interfaces to diverse user preferences and expertise levels.

(a) Prediction trend chart
(b) Variant 1: feature value
contribution tornado plot

(c) Variant 2: feature value
contribution full text

(d) Variant 3: feature value
contribution table

Figure 15: Model information sketches

7.1.3 Risk scores

Turning our attention to the risk score representation, two variants were created.
One with categorical labels (Figure 16a) and another with numerical values
(Figure 16b). Despite the prevalent use of numerical values in existing XAI
interfaces [12] [6], categorical representations were found easier to interpret [9]
[10]. These findings were consistent with results obtained from our own user
interviews, which revealed that care providers had a preference for a categorical
approach. They expressed a tendency to interpret parameters by categorizing
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them into three groups: ”low,” ”medium,” and ”high,” akin to a traffic light
system. Participants emphasized the challenge of deriving practical insights
from numerical scores, questioning the meaningful distinction between scores
like 80 and 85. Because risk scores are often expressed in a number, both
variants are designed, so that they can be tested in the next phase.

(a) Variant 1: risk score with categories (b) Variant 2: risk score with numbers

Figure 16: Risk score sketches

7.1.4 Patient information

Designing contextual patient information was deemed straightforward as only
the latest values needed to be presented. Guided by the proximity design prin-
ciple from Gestalt psychology [44], groups of similar elements were created to
enhance interpretability. Furthermore, a color-coded system was implemented
to signify the status of values: red indicated alarming values, green represented
normal values, and neutral colors were assigned when no specific meaning was
attributed.

Figure 17: Enter Caption
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7.1.5 Patient overview

The risk scores were used to create an overview of all patients, with a title spec-
ifying the relevant unit (Figure 18b). During the interviews with care providers,
as detailed in the subsequent section, care providers indicated a need to validate
and mute alarms (Figure 18a). Nurses, for instance, should have the capability
to validate alarms, signifying that they have attended the patient. Moreover,
doctors are granted the authority to mute alarms, facilitating an additional layer
of scrutiny.

(a) Muting and validating an alarm (b) Patient overview per unit

Figure 18: System component sketches

7.1.6 Feedback

According to the human-in-the-loop literature [19], feedback options should be
shown as binary choices wherever possible. They state that people are more
reliable when asked to rank two items rather than judging a problem on a
continuous scale. It also is much quicker to hit a button than to drag a slider.
Easy to use interfaces are particularly important in the ICU to reduce interaction
time and cognitive load, especially as these tasks are not directly linked to
providing care.
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Figure 19: Low-fidelity feedback-form

7.2 Interviews with Domain- and usability experts

Domain experts were asked to examine a range of low-fidelity prototypes, aim-
ing to confirm the alignment of the designs with their requirements. They
evaluated the interfaces on whether the information displayed was sufficient
for interpreting predictions, and whether the presentation of the information
was both understandable and user-friendly. The full interview outline can be
found in the appendix C. Furthermore, the designs were critically evaluated by
usability experts with the goal of improving the usability of the designs.

7.2.1 Participants

The low-fidelity prototypes were evaluated by 6 domain experts, 1 data sci-
entists and 2 usability experts (N = 9, M = 6, F = 3). From the group of
domain experts, the following care providers took part: 1 fellow-neonatologist,
1 neonatologist, 2 nurses and 2 physician assistants. All care providers pos-
sessed considerable expertise in diagnosing and treating neonatal sepsis. They
exhibited diversity in terms of age and practical experience. The usability ex-
perts were both second-year MSc. HCI students, providing both practical and
academic insights. They both had significant expertise in UX design and were
involved in at least one design project within the last two years.

7.2.2 Materials

Participants participated in the interviews either in person at the designated
location or, if in-person attendance was not feasible, the session was held online
via Teams. For participants that attended the session in-person, a private room
at the WKZ was made available. For these sessions, the low-fidelity designs were
printed out and additional pen and paper was taken to the session. Participants
that attended the session online, a Figma file that contained the low-fidelity
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prototype was shared. The answers to the interview questions were recorded on
a mobile device.

7.2.3 Procedure

The interviews lasted a total of 30 minutes per participant. The interview
started with a general introduction to the topic, explaining the purpose of the
study and the expectations of the interview. Participants were informed on the
formalities (e.g., participants can stop at any time) and were asked whether they
agree to an audio recording. The full informed consent can be found in the ap-
pendix E. Domain experts were then asked to explain what the visualizations on
the dashboard represent. Next, domain experts were asked which visualizations
they found most understandable and useful (i.e., visual encoding and interac-
tion mechanisms) for estimating the risk of sepsis. Usability experts were asked
to share one positive and one negative comment for each of the components.
Finally, participants were asked to compose a dashboard to their liking. They
could use printed versions of the components or draw a lay-out by using pen
and paper. The full interview outline can be found in the appendix C. During
the interview, participants were promoted to use pen and paper, for example,
to draw alternative visualisations. Afterwards, the researcher summarised the
main insights, which participants could then confirm.

7.2.4 Analysis

The audio recordings were listened back and then deleted. All findings for
each participant were noted. Then all duplicate findings were extracted and
the remaining findings were sorted from most important to least important
for estimating the risk of sepsis. Feedback not relevant to the dashboard was
removed from the list and saved for future work. In addition, based on the
feedback, a selection was made of the visualizations that participants found most
understandable and useful, which were used for the high-fidelity prototype.

7.2.5 Results

In this section, feedback from domain and usability experts will be discussed for
each of the designed low-fidelity components. The main findings were listed in
the following Table 2.
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Component Finding Design recommendation
Vital sign chart Desire to compare attributes Show all relevant attributes in

the same chart
Used chart to detect outliers Highlight outliers with visual

cues
Used chart to identify trends
and baselines

Allow zooming

Redundant attributes were dis-
tracting

Remove redundant attributes

Patient infor-
mation

Desire to identify trends and
baselines

Display how measurements
changed over time

Needed timestamps to assess
relevance

Include timestamps & remove
outdated measurements

Missed patient information to
interpret and validate patient
risk

Include missing patient infor-
mation (e.g., temperature)

Color-coded values were inter-
preted as feature contributions

Use alternative visual cues than
color (e.g., bold text)

Feature impor-
tance chart

Providers had opposing design
preferences

Support multiple visualisations
to suit different users

Desire to identify trends and
baselines

Make chart available for each
prediction

Varied opinions regarding util-
ity

Make chart available on demand

Risk trend &
scores

Numerical values were inter-
preted as sepsis likelihoods

Express risk as a category

Desire to identify and baselines Allow zooming

Patient
overview

Caregivers linked actions to cat-
egories, whereas the purpose of
the model is to visit the patient.

Only visually distinguish be-
tween alarm/no alarm

Desired alarm validation and
muting

Allow alarm validation and
muting

Providers were only interested
in patients from their unit

Show patients within a unit

Table 2: Overview of the obtained findings from both domain and usability
experts. Findings marked in italic were not implemented in the high-fidelity
prototype.

Dashboard composition Domain and usability experts agreed on the lay-
out of the dashboard for the most part. They wanted all patients from a unit
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on the left side of the screen and more information about that specific patient
on the right side of the screen. Domain experts thought the feature importance
chart should not have a permanent location on the dashboard as the information
can be easily deferred from the vital function charts. Care providers thought
the vital signs chart was more important than the risk analysis chart and should
therefore be placed lower than the vital signs chart.

Figure 20: Dashboard lay-out composed by one the participants

Vital signs Care providers showed a preference for the line chart featuring
multiple attributes in a single plot, as opposed to the multi-plot line chart. They
found it more user-friendly for comparing attributes within one consolidated
view. Additionally, they suggested the removal of specific attributes, such as
’heart frequency variance,’ ’oxygen saturation variance,’ and ’minimal oxygen
saturation.’ According to their feedback, these attributes could be derived from
the heart rate and oxygen saturation signs, leading to unnecessary clutter in the
plots.

Care providers also expressed a desire for enhanced visual cues, proposing
that bradycardias, tachycardias, and saturation drops be highlighted in red for
quick anomaly identification. Although this feature was taken into account
in the high-fidelity design, there was not enough time to implement it in the
high-fidelity prototype.

Patient information Their feedback extended to the latest patient informa-
tion parameters, with a specific request for the inclusion of the time elapsed
since the measurements were taken. They highlighted the importance of this
temporal context, noting that outdated measures might no longer be relevant.
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Interestingly, there was a misconception among care providers who mistak-
enly believed that values highlighted in red contributed directly to the predic-
tion: ”This is very convenient. I can easily see that the score is 75 because
of the skin color of the child and the heart frequency variance.”. However,
skin color was not one features used by the prediction model. This highlights
the significance of clear visual cues in aiding their interpretation of predictive
elements.

Feature importance chart Care providers expressed varied opinions regard-
ing the comprehensibility and utility of the feature importance chart. Doctors
found these charts helpful, as they aided in understanding the features utilized
by the prediction model and provided insights into the model’s decision-making
process. Despite acknowledging its usefulness, doctors suggested that the fea-
ture value contribution chart should not have a permanent location on the inter-
face. They also felt that presenting raw feature and effect values, or a reference
point, added unnecessary complexity, particularly as the raw values for calcu-
lated features like variance were not essential to the diagnosis of sepsis by the
doctor. Simplifying the chart to display only the magnitude and direction of
the feature was deemed more straightforward.

Both domain experts and usability specialists recommended that the feature
value contribution chart be displayed when the user interacts with a specific
prediction, either by clicking or hovering over it in the prediction trend chart.
Care providers, including doctors, favored this approach as it allowed them to
observe how feature value contributions evolved over time.

In terms of preferred presentation, nurses leaned towards textual explana-
tions, while doctors (including fellow’s and physician assistants) showed a pref-
erence for visual representations, particularly the tornado plot format. However,
nurses, in general, expressed a preference for not having the feature value con-
tribution chart at all, as their focus was on patient care rather than delving into
the inner workings of the model. They believed that understanding the model’s
functioning was more important for doctors.

Risk scores Both domain and usability experts thought the risk categories
were easier to interpret. Healthcare providers incorrectly interpreted the model’s
output as directly related to the likelihood of sepsis. Even in cases of high
probability predictions, the actual chance of infection is considerably lower. A
score of 75 does not imply a 75% chance of sepsis; in reality, this probability
is much lower. As explained in the section outlining the limitations of the
model, achieving calibration of the model’s output to accurately reflect the true
probability of sepsis poses a challenge. This difficulty arises from the presence
of repeated measurements, particularly considering that the model is trained on
cross-sectional data.

Moreover, displaying the exact probability of sepsis to healthcare providers
may not be desirable, as a low probability might not be taken seriously. The
difference between, for example, a 3% chance and a 0.01% chance is significant,
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but healthcare providers might not perceive it in that way. To make the results
more accessible, an approach categorizing outcomes into understandable levels,
such as low, medium, and high-risk areas, proves [10] to be an effective solution.
This approach facilitates interpretation, especially for non-technical users, and
provides better context for decision-making.

Healthcare providers wanted to know the necessary actions based on the
risk level: ”Should I alert a doctor for a medium-risk or high-risk area?”. The
model is not distinctive enough to directly link actions to specific risk areas.
This means the model cannot indicate when to alert a doctor when the risk
area is classified as medium. While the model generates valuable alerts, each
alarm signal remains an area with nuances.

Nurses sought practical guidance: ”What steps should I take when an high-
risk alarm is triggered?” In contrast, doctors were more inclined to comprehend
the underlying processes. Nurses specifically expressed the need for clear in-
structions regarding actions to be taken for each risk score category, asking
questions like, ”Do I need to contact a doctor when the risk score is high?”
They emphasized the importance of a conclusive section on the dashboard to
facilitate quick decision-making.

Patient overview Some domain experts showed a positive response to the
patient overview component. They thought the information was clear and well
structured, indicating helpful for informed decision-making. Usability experts
recommended expanding the patient information displayed when a user clicks on
a specific patient in the overview. Additionally, domain experts recommended
filtering patients based on the unit to which they belonged, as they were pri-
marily concerned with alarms for patients within their designated units.

Because every alarm signal - regardless of whether it is medium or high -
requires patient assessment, the patient overview intentionally does not differ-
entiate between low, medium, or high-risk areas. The system simply uses two
colors: red for an alarm signal and a neutral color for no alarm signal. Nev-
ertheless, it is possible to see in the trend prediction chart whether the alarm
signal is triggered in a low, medium, or high-risk area. This feature is crucial as
it enables healthcare providers to understand the trend value and identify the
patient’s context. A transition from low to high risk may potentially be more
alarming than a shift from medium to high. The boundaries for the categories
are carefully determined by the model developers and depend on the number
of alarms they want to be triggered. A higher threshold will result in higher
precision, leading to fewer generated alarms.

7.3 High-fidelity prototype

A high-fidelity prototype is an advanced, detailed and interactive model of a
product or system that accurately mimics the final look, feel and functionality
of the final product. This type of prototype is often developed using technolo-
gies and tools similar to those of the final product, providing a realistic user
experience.
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After the data was collected from the interviews, a high-fidelity web appli-
cation prototype was developed using JavaScript, HTML, and CSS. The inter-
active charts were developed using D3.js. As we were not allowed to use EHR
of even pseudonymous data, mock EHR data was used by anonymizing and
scrambling.

In this section, the high-fidelity prototype 21 will be discussed, explaining
the dashboards main components.

Figure 21: Dashboard design of the high-fidelity web application prototype. The
dashboard contains an overview of the patients (C1), alarm notification (C2),
vital signs (C3), prediction trend (C4) and a summary of the patient information
(C5). Note: patient names & dates are not real.
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Figure 22: Design of the high-fidelity feature value contribution chart
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Figure 23: Design of the high-fidelity validation form

7.3.1 Patient overview (C1)

The user is provided with an overview of all patients associated with the specific
unit presented in the dashboard. This ensures that care providers are exclusively
notified about patients within their designated unit. However, physicians have
access to an overview encompassing patients from all units. When an alarm is
triggered for a patient, the vertical bar on the patient tile turns red, accom-
panied by the display of a red alarm symbol. If the alarm is not validated, a
message indicates that the patient is not validated. Conversely, when the alarm
is validated, a message confirms the patient’s validation status. For patients
without generated alarms, the vertical bar on the left side of the patient tile
remains gray, and no alarm icon is visible. The color is either red or gray.
No distinction in color is made based on the level of risk because healthcare
providers need to assess the patient for every alarm.

7.3.2 Alarm notification (C2)

When an alarm is triggered, the system records the time of the alarm generation.
Users have the option to validate the alarm by selecting the validation button,
which opens a validation form prompting the user to confirm their agreement
with the prediction and report the actions taken. Once validated, the system
displays the time at which the patient was validated. The actions performed
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can be viewed by other care providers by hovering over the document sym-
bol in the trend prediction chart. It’s essential to note that only a physician
has the authority to deactivate an alarm. This precautionary measure ensures
that decision-making regarding alarm signals occurs responsibly. Deactivating
an alarm carries potential consequences, and it is crucial to do so under the
supervision of a doctor who can assess the situation comprehensively.

7.3.3 Vital signs (C3)

Users have the capability to review the heart frequency and oxygen saturation
indicators spanning the past six hours. By hovering over the graph, users can ac-
cess precise timestamps and corresponding values corresponding to the mouse’s
location. To streamline the charts and enhance clarity, metrics such as ’heart
frequency variance,’ ’oxygen saturation variance,’ and ’oxygen saturation mini-
mum’ were eliminated, as care providers deemed them redundant and a source
of unnecessary visual clutter.

The charts proved highly beneficial for care providers, enabling them to eval-
uate the frequency, duration, and intensity of occurrences related to bradycar-
dias, tachycardias, and saturation drops. As a valuable addition, care providers
proposed the inclusion of a counter on the dashboard to display the number
of tachycardias, bradycardias, and saturation drops, which is presented in the
patient information table.

7.3.4 Prediction trend chart (C4)

The prediction trend chart empowers care providers to observe the evolution of
prediction values. They can customize the timeframe to assess the development
over an extended period. Moreover, alarms at the bottom of the chart enable
care providers to pinpoint predictions that triggered an alarm, with an active
alarm highlighted in red. The universally recognized bell icon ensures instant
recognition for care providers. Additionally, care providers can track when an
alarm was validated and review associated actions by hovering over the docu-
ment symbol. For a detailed understanding of how a prediction was generated,
a pop-up screen displays the feature value contributions when a user hovers over
them.

7.3.5 Patient information (C5)

Care providers expressed a preference to have all patient information in one
central location to facilitate swift decision-making. During the interviews, the
response to this was largely positive, with care providers commending the clarity
and organization of the information. However, there were some minor points
identified for improvement.

One crucial addition was the inclusion of timestamps to indicate the recency
of the latest metrics. Care providers emphasized the importance of knowing
whether the infection parameters were measured recently or a month ago, as
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it significantly influences decision-making. To address this, timestamps were
incorporated into a table format, ensuring the information remains easily read-
able.

Additionally, there were suggestions for both additions and removals. Care
providers noted the absence of temperature as a parameter and recommended
its inclusion in the dashboard. On the other hand, neutrocytes were deemed
expendable and were subsequently removed.

There was a common misconception regarding the red/green parameter val-
ues, with care providers associating them with contributing to predictions. To
rectify this, the color coding was removed, and alarming values were highlighted
with bold font for a distinctive visual cue. This adjustment aimed to eliminate
any ambiguity and enhance the overall interpretability of the information.
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8 Evaluation

The evaluation focuses on a task-based think-aloud study conducted to assess
the high-fidelity design, which was developed in the previous step. The qualita-
tive nature of this study aims to measure the impact of the designed dashboard
on trust & reliance, usability and decision-making.

8.1 Methodology

This section provides an overview of the methods used, including participants,
materials and the procedure. The main method used in this study is a task-
based think aloud study which is widely recognised method in usability research
[45]. Participants are asked to articulate their thoughts aloud while performing
tasks, providing important insights into their decision-making processes. Six
distinct tasks emulated real-world scenarios, two of those tasks from another
study were incorporated to evaluate the prediction model without a dashboard.

8.1.1 Participants

In total 7 caregivers (see Table 3) took part in the evaluation of the high-fidelity
prototype, actively working in the Neonatal Intensive Care Unit (NICU) at
Utrecht’s Wilhelmina Children’s Hospital. The gender distribution within the
sample consisted of six females and one male. The sample as a whole was
relatively average (M = 47.57, SD = 11.67). This group consisted of various
roles within the NICU, including neonatologists, NICU physicians assistants,
neonatologist-fellows, and NICU nurses. The participants exhibited diversity
not only in their professional roles but also in terms of practical experience (M
= 12.5 years, SD = 7.99 years). Due to limited availability, three caregivers
who had previously participated in the low-fidelity interview sessions were also
included in the evaluation. Because there was over 2 months between the low-
fidelity prototype and evaluation session, most of the details had already been
forgotten.
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Participant Position
(full)

Position
(D/N)

P1 Physician
assistant

D

P2 Nurse N
P3 Neonatologist D
P4 Fellow D
P5 Physician

assistant
D

P6 Physician
assistant

D

P7 Nurse N

Table 3: In total 7 caregivers of various roles took part within the NICU. The
table also shows which role is considered a doctor (D) and which role is consid-
ered a nurse (N).

8.1.2 Material

Participants were handed a computer with the developed XAI-interface already
opened so that they could perform the tasks. Interviews were recorded using a
cell phone and screen recordings were captured using pre-installed Apple soft-
ware. Care providers scheduled their own private rooms, so that they could take
part in the evaluation without interruption. SUS-questionnaires and informed
consent forms were printed. The evaluation assesses three primary variables: us-
ability & comprehension, trust & reliability, and decision-making. Furtermore,
software used to analyse the data included Amberscript to (partly) automati-
cally transcribe audio-recordings to text and NVIVO was used to code text and
extract themes. The patient data used in the dashboard was extracted from the
EHR, anonymized and shuffled.

Trust & Reliability The effect of contextual information on the trust and
reliance of predictions will be qualitatively evaluated by combining component
analysis and semi-structured interviews. To evaluate the reliance, it will be
investigated which contextual information has the most influence on the inter-
pretability of a prediction by performing a component analysis. Here, contextual
information is broken down into components such as patient information, vital
signs, and feature contributions. During the evaluation, a sample prediction will
be displayed and asked which components are most critical for interpreting this
prediction. In addition, a semi-structured interview should evaluate the effect
of contextual information on users’ trust of predictions.

8.1.3 Usability

The System Usability Scale (SUS) questionnaire was used to measure user sat-
isfaction, as detailed in Appendix D. The SUS is a standardized questionnaire
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used to gauge the usability of an interface. Comprising 10 questions, partici-
pants express their agreement levels on a Likert scale. The scoring methodology
involves subtracting 1 from odd statements and 5 from even ones. The cumula-
tive result is then multiplied by 2.5, resulting in a total of 100 points possible. A
higher SUS score correlates with enhanced usage and greater user satisfaction.

Comprehensibility Qualitative evaluation through semi-structured interviews
delved into comprehensibility of the designed components.

8.1.4 Task-based think-aloud analysis

To evaluate the effectiveness of the designed high-fidelity prototype regarding
usability & comprehensibility, reliability & trust, and decision-making, six tasks
were formulated. Task 5 and 6 were part of a parallel study conducted by
a student-colleague, investigating how providers respond to prediction models
without a dashboard with contextual information, as will be described in section
8.1.5. In order to minimize the impact of learning-effect, the sequence of tasks
were rearranged for participants. For each participant, the two studies were
swapped. Furthermore, the order of tasks 1 to and including 4 were shuffled
using the Latin square method. For instance, the first participant competed
tasks 1 through 6 in that specific order, while the second participant started
with tasks 5 and 6, followed by tasks 2, 3, 4, and 1. Every task included a
distinct prediction type (e.g., true positive, false positive, etc.), stated below
within brackets, which was deliberately withheld from the participants.

Task 1: An alarm was raised at 13:00 for a patient at high risk of sepsis
(true positive). Are you concerned and how high do you estimate the
risk? Rationale task: the goal of this task is to find out what information they
use for decision making and what strategies they use to come to a conclusion.

Task 2: An alarm was raised at 17:00 for a patient at high risk of sepsis
(false positive). Are you concerned and how high do you estimate the
risk? Rationale task: incorrect predictions can result in unnecessary interven-
tions and treatments. The objective of this task is to determine if healthcare
providers can identify false positives and to understand how they come to this
conclusion.

Task 3: No alarm was generated for the following patient (true nega-
tive). Are you concerned and how do you estimate the risk? Rationale
task: the goal of this task is to find out what information they use for decision
making and what strategies they use to come to a conclusion.

Task 4: No alarm was generated for the following patient (false nega-
tive). Are you concerned and how do you estimate the risk? Rationale
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task: false negative predictions can lead to missed diagnosis or delayed treat-
ments. This situation is unlikely to occur because healthcare providers will
consult the dashboard when an alarm has been generated. However, it is still
useful to know if care providers are able to detect false negative predictions
based on the information on the dashboard, and more importantly how they
arrive at this conclusion.

Task 5: Read scenario 1 (see Appendix F). Are you concerned and
how do you estimate the risk of sepsis? You may also retrieve in-
formation from the electronic patient record, look at the monitor or
glance at the patient. Rationale task: find out how healthcare providers
make decisions without a dashboard including contextual information, and how
this compares with estimating risk with a dashboard.

Task 6: Read scenario 2 (see Appendix F). Which of these patients
are you most concerned about? Which of these patients would you
prioritize right now? You may also retrieve information from the
electronic patient record, look at the monitor or glance at the patient.
Rationale task: find out how care providers prioritize patients and how decisions
are made when multiple alarms are generated without a dashboard including
contextual information.

8.1.5 Procedure

The session started with an introduction of the researcher, an explanation of
the research goal and what is expected from them during the session. Then
participants were asked to introduce themselves, and asked for their age, sex,
domain-expertise, and years of experience. Users were then asked whether they
agreed to an audio and screen recording during the session while performing
the tasks. It was also made clear that they could stop at any time and need
not give a valid reason for doing so. After the introduction, the researcher
provided background information about the sepsis prediction model, including
why the model was developed in the first place and what variables were used
to make a prediction. Furthermore, the researcher explained all components of
the dashboard and participants could ask any questions during the explanation.
Then, participants were asked to take place behind the computer, as detailed
in section 8.1.4. Before they started with the first task, participants were asked
to think-aloud while doing the tasks: what information they were looking at,
what they were doing, what they liked and didn’t like. Furthermore, it was
explained that there were no right or wrong answers and that no score was kept
in the background. It was made clear to participants that they could always ask
questions while performing the tasks, for example if they did not understand
something on the dashboard. Then, participants were asked to start with the
first task. After they were satisfied with their answer, the researcher asked how
they estimated the risk and what actions they would perform based on that
conclusion. To find out to what degree participants trusted model predictions,
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they were asked whether they agreed with the prediction and how confident they
were in their decision. Participants were then asked what components on the
dashboard were most valuable to them for estimating the risk. After tasks 1 until
and including 4 were completed, the participant were asked to complete the SUS
questionnaire to evaluate the user-friendliness of the dashboard, whether there
is sufficient information on the dashboard and if they would have visualised it
in a different way. Participants were thanked for their time and the recordings
were stopped. The full interview outline can be found in the appendix G.

Parallel study Together with a colleague-student, a parallel study was con-
ducted. The purpose of this study was to investigate how healthcare providers
responded to ML-based systems in clinical practice, including determining ur-
gency. Participants were asked to read scenarios from task 5 and 6 (see Appendix
F) aloud to then estimate the patient’s risk, as detailed in 8.1.4. They could do
this by using the introduction text, a screen shot of the monitor, a screen shot
of the electronic health record, a picture of the patient and the risk analysis
including the final risk score. The risk analysis including the risk score was sim-
ilar to the risk analysis presented on the dashboard (Screenshot is available in
the appendix F). This was different from our study, were contextual information
was presented in one central overview. After the tasks were completed, partic-
ipants were asked whether they believed the dashboard supported interpreting
risk scores or whether they preferred using existing information systems such as
the Electronic Health Record (EHR).

8.1.6 Analysis

Data collected from the SUS was analyzed quantitatively and the scores were
calculated, as detailed in 8.1.3. After transcribing the interviews and watching
back the screen recordings, the emerging themes regarding the impact of con-
textual information on trust & reliability and decision-making were carefully
examined.

8.2 Results

This section will present qualitative insights obtained from task-based think-
aloud sessions with healthcare providers for each of the variables: usability and
comprehensibility, trust and reliability, and decision-making, with each of them
containing subthemes, as detailed in the following Table 4.
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Thematic area Subtheme
Trust & Reliance Assessment of clinical relevance

Alignment with domain knowledge
Perceptions of predictive performance

Decision-making Risk interpretation
Influence of predictions on decision-making

Comprehensibility & Usability Centralized information display
Interpretability explanations
Further improvements

Table 4: Overview of the themes, with corresponding subthemes, extracted
from the task-based think-aloud study and semi-structured interviews acquired
during the evaluation of the high-fidelity prototype.

8.2.1 Trust & reliance

Establishing trust in a predictive tool is paramount for decision-making and
successful adoption in clinical practice. This section delves into the multifaceted
aspects of trust and reliance, exploring key sub themes that emerged during the
evaluation. These include the assessment of clinical relevance, alignment with
domain knowledge, and perceptions of predictive performance.
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Figure 24: The presented figure illustrates the interplay between care providers’
trust in the predictive model and their assessments of clinical relevance and
alignment with domain knowledge across different prediction scenarios. The
analysis is centered around four distinct tasks: true positive, false positive, true
negative, and false negative, with a final task featuring a scenario without a
dashboard. In the true positive task, care providers inspected predictions by
aligning domain knowledge through comparing risk analysis and feature con-
tributions with the vital sign chart. However, determining clinical relevance
posed a challenge due to missing, unreliable, or outdated contextual informa-
tion, impacting their trust in the prediction. Conversely, in the false positive
task, providers found discrepancies between the explanations and vital signs,
resulting in a lack of trust. In the true negative and false negative cases most
participants agreed with the predictions. The alignment with domain knowl-
edge and the establishment of clinical relevance were straightforward, as fewer
incidents required less clinical context for understanding. In the final task, ab-
sent of a dashboard, providers did not check whether the predictions aligned
with domain knowledge.

Assessment of clinical relevance When we asked participants to assess the
risk of a patient and whether they agreed with the prediction, they all relied
heavily on contextual patient information. They leaned on this contextual data
to assess the clinical relevance of a prediction and the patient’s overall risk. This
involved discerning deviations, establishing baselines, and excluding alternative
explanations. We observed that participants first analysed the chart with vital
signs to identify whether deviations from the normal pattern took place and how
severe these were. Then, they used general patient information to determine
patient baselines. For instance, one participant (P4) noted: ”In itself, for a
baby who is at 25 weeks, now four weeks old and a little rumbling saturation
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I don’t think is a big deal”. Another care provider (P1) completely changed
it’s mind after discovering that general patient information was included in
the interface: ”Oh, but you have here what it is. Oh wait a minute, I don’t
pay attention. 25 weeks, which is now 26 days old. 860 gram. no, no then
I’m not so very worried”. Providers also relied heavily on actual interventions
(e.g., respiratory support), medication (e.g., antibiotics) to determine patient
baselines. For instance, participant (P2) noted: ”If saturation drops occur while
the child is on a ventilator, it is even more worrisome”. However, providers
were cautious in answering how worried they were and whether they agreed with
predictions for alarming patients as they indicated a need for more contextual
information to assess the clinical relevance. This is indicated by a question mark
in figure 24. Participant 3 (P3) responded to the inquiry about her concern for
the patient in task 1 with the following statement: ”So I would then indeed
want to know: is there support start, yes or no? Or did they already have
it? And is it intensified yes or no? And is that pressure being administered
properly?” and desired more information on previous infection episodes: ”A
child who’s already had an NEC once or who has an infected trhombos. You
know, then the story becomes different for me anyway”. Finally, they stated
that before they could trust the prediction, they wanted to be sure that the
observed incidents were not due to some other explanation. For instance, P1:
”I do need to know if it is real (meaning: not due to interference e.g., bathing,
nursing, feeding), I would check. If I am told: these are real drops then I do
have confidence in the prediction.”. They mentioned that measurements could
also be unreliable due to subjective measurements, indicating the importance of
visiting the patient themselves and acquiring information from other nurses. For
example, some providers indicated that the skin colour could also be entered by
an inexperienced nurse or could have changed in the meantime. Evaluating the
clinical relevance of a prediction appeared as a crucial factor influencing care
providers’ trust in the model. Nevertheless, the available data on the dashboard
proved insufficient for a comprehensive assessment.

Alignment with domain knowledge Care providers mainly relied on the
vital signs chart together with the explanations (risk analysis and feature impor-
tance chart) to verify if the predictions aligned with domain knowledge. When
predictions aligned, such as in the true positive case, trust in the model in-
creased (see Figure 24). Participant 6 (P6) noted: ”Because there was really a
huge increase in the number of bradycardias that wasn’t there before. So I do
understand that that’s getting into a higher risk area”. However, this was also
true the other way around: trust in the model decreased when predictions did
not align with clinical knowlege. For instance, participant 3 (P3) noted that
the prediction trend increased, while the vital signs stabilized: ”Why does it
alarm at five? Because here you actually have a very stable heart action again”.
Interestingly, all contextual information in one central overview, did support
participants in determining whether the prediction aligned with clinical domain
knowledge, as indicated with the absence of the an icon for task 5 in Figure 24.
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Thus, they compared the time when an alarm was generated and the progres-
sion of predictions with the vital signs to see if this corresponded to domain
knowledge, which occurred to a lesser extent in the case without contextual
patient information in one centralized overview.

Perceptions of predictive performance The perceptions of predictive per-
formance also influenced trust. For instance, participant 2 (P2) was reluctant
in relying on the model because the model had not yet proven itself: ”If you’re
going to find in practice that alerting is really an indicator of infection, then
I’ll definitely take that on board.”. These findings were confirmed by other
participants, for example, participant 3 (P3) mentioned: “To what extent does
this help me (referring to the prediction model), I know that from the monitor
trend a little bit more. You know that, you have that feeling, you’ve been doing
that for years like that”. Participant 4 (P4) wanted to know how accurate the
model was first: ”I would also like to know how that has been in previous predic-
tions, whether it was often wrong”. Moreover, trust in the predictions was also
impacted by the limitations of the model. Participant 3 (P3) reacted surprised
when she saw (through the feature importance chart) that only saturation and
heart frequency were used: ”Based only on heart rate and saturation doesn’t tell
me very much”. Another participant (P4) doubted whether they could rely on
a model that only used heart frequency and oxygen saturation: ”I do think that
heart rate and saturation alone do not cover it, so to speak, for me to decide
whether or not to use antibiotics”. And care providers thought that one predic-
tion per hour was not enough, as participant 4 (P4) mentioned: ”But you can
still miss a lot in an hour. It would be best if it were continuous”. Therefore,
providers did not rely on the prediction model to make a decision but used it
more as reassurance, to increase confidence or as a second opinion. Participant
4 (P4): ”I think it’s that you just that at least sometimes I’m looking or looking
for additional confirmation that it’s high-risk.”.

8.2.2 Decision-making

In this section, we will delve into the outcomes concerning decision-making,
exploring the two sub themes: risk interpretation and the influence of predictions
on decision-making.

Risk interpretation Similar to findings from the low-fidelity prototype, care
providers expressed a need for clarity and meaning in the results. They sought
predefined rules for interpreting risks, with participant 4 (P4) highlighting the
desire for a specific cut-off value. P4 articulated, ”it is also good that you
then look with your group of how are we going to use this then and where do
you put a cut-off value.”. Another participant (P3), also faced challenges in
interpretation, questioning, ”how are you going to interpret it? Are you going
to say high-risk then by definition you have to start my antibiotics.”. P3 also
struggled to gauge the degree of risk within a given range, stating, ”Because
still with high-risk you have a kind of gray area of, is this 85% or 99% chance

68



that it could be an infection?”. This underscores a prevalent need for guidance
on utilizing the model and interpreting risk predictions.

Influence of predictions on decision-making Participant 4 (P4) noted
that when the prediction diverged from their own assessment, as observed in
task 2, a false positive case, it prompted them to look at the patient more closely.
P4 expressed, ”I do find it funny, because I find that this does trigger me to look
at the child again. Maybe they really are declines after all.” The contradiction
compelled the care provider to reevaluate their initial assessment, even though
they were not initially concerned: ”This (referring to the monitor with vital
parameters) doesn’t necessarily worry me, but then again, this (referring to
the latest prediction score) one does a little bit. With the thought that it
probably predicts before you would see it, I would like to see the child”. Also P3
examined the false positive case with extra attention. The participant utilized
explanations to understand why the prediction deemed the patient high-risk,
comparing it with vital signs and engaging in reasoning, questioning whether
there was genuinely no saturation drop. This suggests that high-risk predictions
have a noticeable impact on care providers, prompting them to conduct a more
thorough examination of the patient and reevaluate their initial assessments.

8.2.3 Usability

In this section, we will explore the findings from the SUS questionnaire and
delve into the qualitative results pertaining to three subthemes: centralized
information display, interpretability explanations, and potential areas for further
improvement.

SUS-questionnaire The resulting SUS-scores are presented in Table 5, with
an average SUS-score of 86.25. The score was marginal for two participants (P3
and P4), and excellent for the other participants (P1, P2, P5, and P6).
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Question P1 P2 P3 P4 P5 P6
1 Strongly

Agree
Strongly
Agree

Neutral Strongly
Agree

Strongly
Agree

Strongly
Agree

2 Strongly
Disagree

Strongly
Disagree

Disagree Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

3 Strongly
Agree

Strongly
Agree

Agree Neutral Strongly
Agree

Strongly
Agree

4 Strongly
Disagree

Strongly
Disagree

Disagree Disagree Agree Strongly
Disagree

5 Strongly
Agree

Agree Disagree Agree Strongly
Agree

Strongly
Agree

6 Strongly
Disagree

Strongly
Disagree

Neutral Disagree Strongly
Disagree

Strongly
Disagree

7 Strongly
Agree

Strongly
Agree

Agree Strongly
Agree

Strongly
Agree

Strongly
Agree

8 Strongly
Disagree

Strongly
Disagree

Neutral Neutral Strongly
Disagree

Strongly
Disagree

9 Strongly
Agree

Strongly
Agree

Neutral Neutral Agree Strongly
Agree

10 Strongly
Disagree

Strongly
Disagree

Disagree Agree Strongly
Disagree

Strongly
Disagree

Score 100 97.5 60 70 90 100

Table 5: Overview of results from the System Usability Scale (SUS) question-
naire

Centralized information display Participants found it convenient that rel-
evant information was centralized in one central overview. Participant 1 (P1)
expressed this sentiment, stating, ”In Metavision I have to click through screens
and then I don’t have that next to it. So I like that I immediately know oh,
yes, there is a line in it, from so many days. And that you see last recent lab
with the time added.”. This sentiment was echoed by other participants, with
participant 4 (P4) noting, ””It is nice that you have it at a glance. I do like
it in itself because in Metavision you have to press different tabs all the time,
and here you have everything in one overview”. The centralized view offered
a clear overview, aiding care providers in verifying risk predictions and quickly
assessing patients, particularly beneficial for those commencing their shifts.

Moreover, the centralized overview proved advantageous for presenting cases
to a doctor, as noted by participant 2 (P2): ”That certainly means that I get
my overall picture clearly and can then alert the doctor”.

While the centralized overview supported participants in verifying risk pre-
dictions and quickly assessing patients, concerns arose about the feasibility of
maintaining this central location when missing contextual patient information
was included (e.g., patient history, additional timelines). Participant 3 (P3) ex-
pressed doubt, stating, ”Well, I think you just need more patient information,
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so to speak, and the question is whether you should put it all in that dashboard.”.
Participants 4 (P4) and 5 (P5) suggested that the explanations, encompassing
the risk analysis and feature importance chart, could also be integrated into the
electronic health record (EHR) alongside vital signs. This integration would en-
sure the availability of all pertinent information while preserving the advantages
offered by the explanations. In summary, participants consistently preferred
the dashboard with centralized contextual information over the version with-
out it. Nevertheless, their information needs remained unfulfilled, indicating
uncertainty regarding the added value.

Interpretability explanations Overall, participants reacted very positive
to the explanations, including the risk analysis and feature importance plot.
Throughout the tasks, they consistently referred to these explanations, finding
it straightforward to comprehend the evolution of prediction trends and dis-
cern features influencing the prediction. Although participant 1 (P1) found the
feature importance plot somewhat challenging to interpret. In their effort to un-
derstand the explanations, participants not only utilized the feature importance
plot but also relied on the vital sign charts.

Further improvements While the majority of participants expressed posi-
tive feedback for the dashboard featuring contextual information in one central
location, they also provided suggestions for improvement. Specifically, partici-
pants, including P1, P3, P4, and P6, proposed that the vital sign chart would
be more valuable for validating predictions if it exclusively displayed validated
signs. This entails the removal of disturbances like feeding and nursing that may
influence vital signs, thereby presenting only real validated signs. Such refine-
ment would streamline the validation process, allowing for quick and accurate
risk assessment without the need for additional checks.

Additionally, participants expressed the need for the capability to zoom in
on the vital sign charts to discern patient baselines, aiding in understanding
whether certain patterns, such as saturation drops, were normal for a par-
ticular patient. The integration of vital sign counts alongside the charts was
deemed helpful, eliminating the need for manual counting. However, partic-
ipants stressed the importance of establishing clear thresholds for what con-
stitutes as a count, aligning with the criteria utilized in the electronic health
record.

Participants also identified areas for improvement in the dashboard’s design.
Some overlooked the demographic patient information crucial for establishing
baselines, emphasizing the need for greater visual prominence. Moreover, par-
ticipants advocated for the removal of outdated or irrelevant parameters from
the dashboard to maintain its relevance and utility.
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9 Discussion

This study aimed to design an XAI interface with contextual patient information
in one central location to support care providers in interpreting sepsis predic-
tions. Addressing a recognised gap in existing XAI literature, the study focused
on providing relevant contextual information alongside machine learning pre-
dictions to enhance the assessment and trust in model predictions. This aligns
with broader HCI research goals of creating trustful and purposeful interfaces
for ML-based tools in clinical practice, a crucial factor for adoption.

The study revealed positive outcomes regarding the usability and compre-
hensibility of the designed interface. Participants consistently preferred the
dashboard with contextual patient information in a central location over the
existing approach. However, concerns were raised about missing or outdated
information, affecting participants’ ability to assess the clinical relevance of pre-
dictions and overall patient risk.

9.1 Research Question 1.1: Specific Contextual Informa-
tion for Interpretation

Providers required a diverse range of contextual information to interpret sepsis
predictions. Vital signs emerged as a crucial component to interpret predictions,
assessing whether the severity of detected abnormalities aligned with the severity
of the risk score. This assessment was pivotal in determining the level of trust
in predictions. Additionally, they utilized vital signs to gauge clinical relevance,
establishing baseline values for patients by looking back into the patient’s vital
sign history. This finding aligns with the results of Barda et al. [6], wherein they
identified the significance of time-series plots for identifying anomalous vital sign
values and establishing patient baselines to assess the clinical relevance of ML
predictions. This might highlight potential challenges for models with numerous
dynamic parameters, as displaying all vital signs in one centralized overview may
result in information overload. Providers found aggregated data, like vital sign
counts, beneficial, suggesting a possible solution. Using aggregated data could
help emphasize suspicious values, identify baselines, and reveal trends in a more
efficient manner.

Moreover, contextual information such as patient demographics and actual
interventions and medications were also important to caregivers. However, clin-
ical information such as mobility and skin color posed challenges in integration,
with concerns about reliability and the need of physically assessing patients.
Also lab results were perceived as less helpful, often considered outdated. This
indicates that key contextual information should be prioritized, and suggests
that the design should find innovative ways to incorporate clinical data such as
mobility and skin color.

Participants expressed positive reactions towards explanations, finding them
valuable in assessing predictions. This indicated that the feature importance
chart, risk analysis, and vital signs combined may be a viable approach in
explaining predictions in clinical practice.
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9.2 Research Question 1.2: Presentation of Contextual
Patient Information

The interface’s design was well received by care providers, indicating the ad-
vantage of having all information in one overview compared to the electronic
health record. Providers found the dashboard easy to use, aligning with the in-
tended simplicity. Moreover, they favoured the risk score and risk score analysis
with three color-coded risk categories for intuitive interpretation. This obser-
vation aligns with the findings of Sandhu et al. [9], who noted that simplifying
the visual display of sepsis risk into three colored categories reduced cognitive
burden.

While the consolidated view supported validating model predictions, chal-
lenges remain in determining if all relevant information can be effectively pre-
sented in one central location. Data aggregation and showing additional details
on demand may offer a comprehensive overview. However, when multiple pre-
diction models will be introduced in the NICU, integration strategies become
imperative. This integration should aim to make all contextual information
readily available for quick interpretation without disrupting the workflow-a cru-
cial factor in the adoption of systems in clinical practice [9].

Moreover, there was a clear disparity between the model’s intended use and
how care providers perceived its application. Caregivers sought to correlate
actions with risk predictions, such as initiating treatment for high-risk patients,
contrary to the model’s intended purpose of alerting caregivers to potential risks
for patient check-ins. Aligning with this, interface design can play a crucial role
in shaping usage and operational modes. For instance, adjusting risk categories
to signify alarms only or no alarm could better align with the model’s intended
function. Clear communication to caregivers about the necessity of validating
alarms by physically assessing the patient, possibly through accompanying text,
could reinforce the desired mode of operation.

9.3 Research Question 1.3: Impact on Trust & Reliance,
Usability and Decision-Making

Our study, consistent with Matthiesen et al. [10], revealed that care providers
mostly relied on their established methods to assess patient risk, treating the
model as a confirmation or second opinion. Initial skepticism regarding the
model’s predictive performance was evident, with providers expressing a de-
sire to understand the model’s performance. While presenting detailed metrics
like specificity and sensitivity may be challenging for care providers to compre-
hend, the absence of such metrics led to doubts about the model’s predictive
capabilities. This underscores the importance of intuitive methods to commu-
nicate prediction confidence, such as a color-coded confidence level display or
user-friendly language.

Moreover, perceived limitations of the model, such as the number of predic-
tors, had an adverse impact on trust, resonating with insights from Barda et
al. [6]. Simultaneously, providers expressed interest in a system like the HERO
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system, which relies solely on heart rate for sepsis prediction. This suggests
a potential gap in understanding machine learning concepts. To address this,
incorporating an overview section in the interface could potentially clarify the
model’s capabilities and limitations.

9.4 Limitations

This section outlines the limitations inherent in this study, which provide con-
text for interpreting findings.

Firstly, caregivers unfamiliar with patients needed additional contextual in-
formation to interpret predictions, unlike those who had long-term relationships
with the patients. The NICU ward, where the model operates, holds crucial in-
formation not available in the room, such as real-time patient conditions (e.g.,
skin color, mobility) and visible interventions (e.g., lines and respiratory sup-
port). Consequently, the contextual information required for a dashboard may
vary in a real-setting study.

Additionally, constraints prevented the use of real patient information in this
study, leading us to employ anonymized data. The absence of pseudonymized
patient information for evaluation led to the shuffling of general patient details,
occasionally resulting in notable cases. Despite potential differences in choices
without shuffled information, the impact on the study’s outcomes related to con-
textual information interpretation, comprehensibility, and verification remained
minimal.

Finally, participants overlapped between the design and evaluation phases,
where some had seen parts of the dashboard earlier, possessing additional knowl-
edge about the model’s limitations. Due to staffing constraints and a busy clinic,
we had to approach available participants, including those who had previously
participated. However, a significant time gap (over two months) between the
design and evaluation phases likely resulted in participants forgetting major
interface details.

9.5 Future work

In this section, future research will be discussed which can contribute to the
refinement of predictive model interfaces in healthcare settings.

Firstly, it became evident that mental models of care providers often did
not align with the intended use of the predictive model. Future research in
HCI should delve into strategies and design principles that can bridge these
misalignments.

Additionally, the study underscored instances where contextual information
on the dashboard was misinterpreted as a predictor, leading to a misunderstand-
ing of the model’s predictions. Subsequent research should focus on refining the
presentation of contextual information, employing visual cues to enhance un-
derstanding.

Care providers expressed a desire for evidence of the model’s performance,
yet found technical validation metrics too complex. A critical future research
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direction involves exploring user-friendly ways to communicate the confidence
and reliability of predictive models. This could include the development of
intuitive visual indicators, color-coded confidence levels, or the use of plain
language to convey the reliability of predictions.

Integrating multiple predictive models into a unified dashboard or the EHR
is another area that needs exploration. Research should investigate how to
present information from diverse models in a one consolidated overview, allowing
care providers to interpret and act upon predictions without disrupting clinical
workflows.

Furthermore, the study suggested that data aggregation could play a crucial
role in providing a comprehensive overview of all relevant contextual informa-
tion. Future work should look into ways on how to aggregate data, considering
visualization techniques.
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10 Conclusion

In conclusion, our study aimed to design an explainable interface to support care
providers in interpreting and validating sepsis risk predictions. Throughout this
study, we delved into specific care provider needs, uncovering key insights about
the presentation of contextual information, and the impact on trust & reliance,
usability and decision-making.

10.1 RQ1.1: What specific contextual information do health-
care professionals require to interpret sepsis predic-
tions?

Addressing the first research question (RQ1.1), we found that vital signs, risk
analysis, and feature importance charts supported care providers in aligning
predictions with domain knowledge. Although contextual patient information
was necessary to assess the clinical relevance of predictions, we found that con-
textual information on the dashboard was deemed insufficient, unreliable, or not
suited for real-time patient assessment.

10.2 RQ1.2: How can contextual information be best pre-
sented in an XAI interface to facilitate the interpre-
tation of sepsis predictions?

Moving on to question (RQ1.2), our findings highlighted that explanations, such
as tornado plots and risk analysis, were perceived as easy to interpret. Com-
bining these explanations with vital signs was suggested as a viable approach.
Providers favored an overview-style presentation for decision-making and risk
interpretation, opting for this over the current EHR in combination with risk
trends. The importance of displaying only validated vital signs, enabling zoom-
ing for trend analysis, incorporating timestamps, and addressing visual prefer-
ences across different care providers’ roles were emphasized.

10.3 RQ1.3: What is the impact of a dashboard with con-
textual information on trust, reliance and decision-
making for healthcare professionals?

Exploring the impact of the dashboard on trust, reliance, and decision-making
(RQ1.3), we discovered that an overview in one central location was well-received
and positively influenced decision-making. Validated predictions, aligning with
domain knowledge, increased trust, while explanations revealing the limited
number of features used in the model and a lack of proof of model accuracy
decreased trust. This initial skepticism led to the model being used as a sec-
ond opinion, with healthcare providers validating their assessments against the
model’s predictions.
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A Discover: Interview outline

A.1 General

• Can you tell me about the last time a child was suspected of sepsis?

Follow-up questions:

– How did you assess the seriousness of the situation? Do you always
take the same approach to assessing such situations?

– Which moment is decisive for you to administer antibiotics?

– What challenges do you face in diagnosing sepsis in the ICU?

A.2 Analysing information

• What strategies or techniques do you use to research and analyze the
available information? (e.g. clinical assessment (vital signs), history, lab,
consultation, guidelines)

A.3 Decision-making

• How does the available time affect your decision-making process?

– Is your information need and how you analyze information different
in an acute situation?

A.4 Prediction algorithm

• How do you feel about using AI-based systems in the NICU?

• How do you see an ideal interface for an algorithm that predicts the risk
of sepsis every hour? Which features would be most useful to you?

• What additional data or contextual information would be valuable to have
in addition to the risk score to support your decision making process?

• If the AI-system makes a false positive or false negative prediction, how
do you want the interface to let you know about this?

• How could the predictive algorithm support you in diagnosing sepsis?
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B Discover: Interview outline - information shar-
ing

B.1 General

• Can you tell me about the last time a child was suspected of sepsis?

B.2 Sharing information

• Can you tell me how you currently share information with other healthcare
providers?

• Is there information that you think is crucial for other healthcare providers,
but that might be missed in the current process?

• Are there any problems or challenges you encounter when sharing infor-
mation with other healthcare providers?

B.3 Using information

• Can you tell me how you currently receive information from other health-
care providers?

• Which information from other healthcare providers is crucial to you?

• Is there information from other healthcare providers that you think is
crucial, but don’t have access to?

• Are there any challenges you face in getting information from other health-
care providers?

B.4 Collaboration

• What challenges do you encounter when collaborating with other health-
care providers?
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C Design: Interview outline domain-experts

• Can you explain why the model made this prediction?

• What information has led you to trust or not trust the prediction?

• Is there any information missing that could make understanding this pre-
dictions easier?

• Is there any information that you don’t find useful or doesn’t help in
understanding this prediction?

• What information do you find most important to see at a glance?

• Do you think the current level of detail is enough, or would you like even
more detailed information?

• What visualisations do you find the easiest to understand?

• What do you think about how the information is organized on the screen?
For instance, all information in one screen or do you prefer it to be in
different sections?

• Can you do everything with the information that you want to do or are
there other actions you would like to perform? For example, see more
details, zoom in, compare?

• Is there anything else you would like to change about these visualisations?

83



D System Usability Scale (SUS)

• I think that I would like to use this system frequently.

• I found the system unnecessarily complex.

• I thought the system was easy to use.

• I think that I would need the support of a technical person to be able to
use this system. I found the various functions in this system were well
integrated.

• I thought there was too much inconsistency in this system.

• I would imagine that most people would learn to use this system very
quickly. I found the system very cumbersome to use.

• I felt very confident using the system.

• I needed to learn a lot of things before I could get going with this system.
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E Informed Consent

E.1 Purpose of this study

As part of a master’s program in human-computer interaction at Utrecht Univer-
sity, this study is being conducted during an internship at UMCU. The primary
objective of this study is to determine the requirements of critical care profes-
sionals in the NICU for the design of a new interface for a sepsis risk prediction
model.

Human-computer interaction is a multidisciplinary field that combines in-
formation, computer science, and psychology to implement technology in real-
world situations. One of the major research areas in this field is human-centered
machine learning, which aims to ensure that AI decisions are made with a
human-centric approach. As AI continues to become more prevalent, algorithms
are increasingly being used for medical diagnoses, making it crucial to involve
healthcare professionals in the design of such systems.

The NICU at WKZ has developed an AI model that can predict the risk of
sepsis in babies before symptoms appear. This model has the potential to aid
critical care professionals in intervening earlier, thereby reducing suffering. How-
ever, the algorithm currently lacks an interface, which could be critical to the
success of the model. A poorly designed interface could hinder the effectiveness
of the model and prevent its adoption by healthcare professionals. Moreover,
it is essential for care professionals to understand how the model works so that
they can decide when to rely on the model and when to rely on their expertise.

• The researcher has explained the purpose of the research to me.

• I have had an opportunity to ask questions about the study.

E.2 Freedom to withdraw

Your participation in this study is voluntary.

• You can refuse to take part at any time.

• You can take a break at any time.

• You can ask questions at any time.

• I understand that I can leave at any time without giving a reason.

E.3 Privacy and confidentiality

The interview will be recorded. After the recording is transcribed, it will be
deleted. No one else will get to hear the recordings. This means you will not be
identifiable, and your comments will be confidential. We may publish research
reports that include your comments. The data used in these reports will be
anonymous.
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• I understand that my voice will be recorded.

• I understand that my comments are confidential.

E.4 Your agreement

To take part in the research, please sign this form showing that you consent to
us collecting these data.
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F Evaluation: Scenarios

F.1 Scenario 1

It is evening and you are starting duty in the NICU and have just had the han-
dover. One of the children admitted is infant Paula. Paula was born preterm at
31+2 weeks ammenorrhea after difficult last weeks of pregnancy with ruptured
membranes (PPROM) 24 hours before delivery. Delivery went smoothly with
Apgar scores of 6, 8 and 9 after 1, 5 and 10 minutes postpartum. Subsequently,
there were mild transition problems on the first day for which a day and a half
of nasal CPAP with good recovery. On life day 4, the less with Paula: she is
irritable, cries a lot and is less active in between, in addition she is tachycardia
and has a rectal temperature of 35.8 degrees Celsius.

Figure 25: Enter Caption

F.2 Scenario 2

It is evening and you begin your shift in the NICU and have just had the
handover. You have the following patients:

1. Paula - born at 31+2 weeks and a birth weight of 1.1 kg. Paula is irritable,
cries a lot and is less active in between, in addition she is tachycardic and
she has a rectal temperature of 35.8 degrees Celsius.

2. Jonathan - born at 28+3 weeks and a birth weight of 930 grams. Jonathan
is less active, sleeps a lot, tachypneic (up to 80 per minute), a heart rate
of 170 per minute and a temperature of 38.0 degrees Celsius.
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3. Floor - born at 24+3 weeks and a birth weight of 680 grams. With Floor
has been doing well for the past few days. She is sleeping well now and
has a nice pink color.

4. Joep - born at 32+1 weeks and a birth weight of 1.2 kg. Also with Joep
is also doing well this past week. He is sleeping well now and looks good
looking.
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G Evaluation: Task-based think-aloud protocol

Demographic questions:

• Age

• Domain-expertise

• Years of experience

TASKS [repeat for 4 tasks]:
Task 1: An alarm was raised at 13:00 for a patient at high risk of sepsis.

Are you concerned and how high do you estimate the risk?
If not already mentioned by the participant: Can you describe to me in your

own words how you have used the information on the dashboard to come to a
decision?

• What actions did you perform? Why those?

• Did you agree with the prediction? Why/why not?

• How sure are you of your decision?

• Could you rank the following components by how much you rely on them
for estimating risk?

• Do you think the dashboard containes enough information?

• How difficult did you find the task? (cognitive load)

After all tasks are completed:

• Would you have visualized it the same way or differently?

• Do you think the dashboard would improve your decision-making? Or do
you think existing dashboards such as Metavision provide enough support?
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