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Abstract

A high-level abstraction sacrifices the ability to exercise low-level control, which can be prob-
lematic for performance critical applications. The phenomenon is apparent in data-parallel array
languages, which traditionally do not support types with multiple variants. Data-parallelism uses
the uniformity between multiple data elements to accelerate the process of operating on large
collections of data. Variant types constrain the ability to operate uniformly, which therefore lim-
its data-parallelism opportunities in the general case. In the situations where non-uniformity is
inherit to the algorithm low-level optimizations are used to mitigate the heterogeneity. In this
paper a higher abstraction level variant type is explored, which can capture the low-level control
required to implement low-level optimizations in data-parallel languages. A polymorphic variant
type is used to represent variance on the type-level, which can be used by data structures to
adapt to the variance. Type-level programming is used to derive memory efficient representations
for user-defined variant types. Custom memory representations are supported through datatype-
generic programming, which automates the (de)construction of variant types. A fully modular
variant type is presented, which can exercise low-level control while preserving the ergonomics of
an existing high-level architecture. An implementation is provided in the data-parallel language
Accelerate, which demonstrates the viability of variant types in a data-parallel context.
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1 Introduction

Array languages such as APL[23], SAC[20], Accelerate[9] and Futhark[41] can operate on a higher
abstraction level compared to general-purpose languages through collective operations. The abstraction
can be used to implicitly execute instructions in parallel on each element within an array. Data-parallel
map and fold functions are sufficient to cover a wide range of high-performance applications. A
naive intersection algorithm for a raytracer can therefore be defined incredibly concisely.

A single ray is intersected with a collection of triangles, where the distance to the nearest triangle is
computed by folding over all distances. As example, an equivalent C-like pseudocode implementation
has to take in account both the parallel distribution of work but also the potential vectorization in
the inner loop. As the number of triangles might not be nicely divisible the remaining scalar case
must also be handled. The example is far from optimal as it does not enforce blocks of equal size, but
demonstrates the complexity of even a simplified version.

The collective array operations are preferable for both maintainability and expressiveness. A draw-
back for working on a higher-abstraction level is the lack of low-level control, which can be crucial
in performance sensitive cases. Sometimes it is easy to incorporate optimizations, with the example
of the nearest function using the sentinel value 1e30f to avoid implementing an explicit failure
state. Making the failed intersection explicit requires branching after each intersection, which hinders
data-parallelism in the general case.
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In other cases this is significantly harder, such as implementing low-level optimizations around
memory representation and cache efficiency. This is apparent when attempting to extend the inter-
section function to operate on other geometrical shapes, such as spheres. The most straightforward
approach is to create a datatype that can either be a triangle or a sphere.

In the general case this will hinder data-parallelism as it requires branching on the identity of the
object. A solution is to store each primitive in their own respective collection. Static polymorphism
is used to define an intersection function for each primitive. Each primitive is folded over separately
and the result of all primitive intersections are combined.

The purpose of both approaches is the same, namely to operate on a collection of primitives. While
we improved the possibility for data-parallelism, we still need to maintain the Primitive datatype
when we want to explicitly return the exact primitive which was intersected with. To improve our naive
O(n) implementation we can use an acceleration structure to eliminate primitives prematurely based
on their spatial properties. This means intersections will be performed in smaller batches, to be able
to exit early, which reduces the opportunities for data-parallelism. From a performance standpoint
it might be preferable to separate the primitives on a batch-level, requiring even another datatype.
Maintaining the architecture around all these different constructs is ergonomically not viable and
caused by our attempt to achieve low-level control. A type-safe and generic implementation is often
not possible, as both datatypes and interfaces must be defined at compile time. To remain flexible
without explicit defining each representation requires the data to be (re)interpreted at runtime, which
breaches type-safety. It is also not feasible to manually define mappings between all these different
representations. The inability to abstract over both value-level variant types and type-level variant
types prevent a generic higher level abstraction from taking form.

Unifying these concepts allows a collection of primitives to be fully agnostic to the underlying
representation. In this thesis, I propose a transparent way to switch between representations for col-
lections of variant types. It provides the convenience of an high-level abstraction, while being able to
capture relevant low-level optimizations. Type-safety is preserved by elevating the concept of a mu-
tually exclusive datatype to the type-level, which is achieved through type-level and datatype-generic
programming. This way, the easy to use surface-level datatype is mapped automatically to an efficient
machine-level representation. The machine-level representation, as well as efficient (de)construction
can be specified in detail and optimized for a particular architecture and application.
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It can be utilized by libraries, frameworks and embedded domain-specific languages that exist in
languages that facilitate type-level programming and datatype-generic programming, like Haskell. The
control over the memory representation is invaluable for adapting to cache behavior without having to
change the architecture around it. Manual control over the (de)construction also prevents the need for
the explicit sentinel value in our intersection algorithm. The failure state Miss can be used, which
is internally represented as 1e30f . The min function uses the value directly while other functions
must pattern match on the value 1e30f . Within the context of raytracing this other function might
spawn an extension ray that simulates the ray bouncing of a surface. Pattern matching on the 1e30f

value will limit data-parallelism for all subsequent extension rays. A solution can be to unconditionally
execute like with the min function or eliminate all rays that failed for each iterative step. The latter
can now be represented as an internal reorganization in the proposed implementation, as it does not
change the identity of the collection but merely the layout and thus no architectural changes are
required to support such an optimization. To summarize, the research questions answered in this
thesis are:

� How to obtain low-level control that is applicable for high performance computing, while pre-
serving the higher-abstraction surface representation?

� What is the conceptualization of a higher-abstraction variant type, which can exercise the ob-
tained low-level control within in a data-parallel environment?

Concretely, the contributions of this thesis include:

� An extendable deduplication algorithm for the memory representation of a variant type.

� Datatype-generic derivation of an isomorphic mapping between any two datatypes.

� A collection of variants that can be completely agnostic to its internal representation.

1.1 Related Work

First the performance considerations must be understood, to capture the most relevant low-level op-
timizations. This induces the need for a flexible and type-safe interface around these optimizations,
which will be done through type-level and datatype generic programming. Relevance is established by
an implementation in the data-parallel language Accelerate, which is deeply embedded within Haskell.

Performance Capturing low-level optimizations in high-level languages can be done through various
methods; such as compiler optimizations[6], a Foreign Function Interface[11], compiler intrinsics or
embedded domain-specific languages[29]. For data with multiple representations in a high-performance
environment it often involves resorting to untyped code and bitwise operations, to gain control over
the memory representation and (de)construction of the variant type. In data-parallel applications
primitive types are distributed over multiple arrays to facilitate vectorization. It is not apparent what
the representation of a tagged union should be[45], as they inherently break vectorization in most cases.
The functional data-parallel languages Accelerate[45] and Futhark[41] implicitly distribute primitive
types in composite datatypes over multiple arrays. Both implementations have limited deduplication
capabilities, but research has been done to integrate a memory efficient tagged union in Accelerate[45].
Game-engines, which deal with many clusters of data, have a fundamentally different approach as they
have widely adopted the Entity-Component-System (ECS) pattern[28]. Many implementations; such as
Unity[2], Flecs[33] and Bevy[1], incite a collective reorganization of data when a variant change occurs
at runtime. A type-safe and performant implementation is notably hard, as all interactions between
the representations must be statically resolved. More generally, research on zero cost abstractions over
memory representations are prevalent in C++ libraries such as LLAMA[21] and Alpaka[48].
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Interface Functional languages handle tagged unions safely through Algebraic Data Types (ADTs),
where sum types categorize ADTs with multiple variants. Constructors can be local to an unique
ADT (nominally typed) or exist as independent types (structurally typed). Deconstructing is done by
pattern matching, where functions natively branch on the current active variant. In Haskell sum types
are nominally typed, which means variants are not standalone types and cannot exist safely outside
the ADT. Structural sum types are often called extensible or open sum types, as they do not have to
be explicitly declared before use. In OCaml these are natively supported as polymorphic variants[16],
while Futhark is completely structurally typed and refers to them as sum types[41]. Deriving a memory
representation for user-defined datatype can be done statically through type-indexed types[22][8]. In
C++ these are called traits[35] and in Haskell these are called type families[43]. As stated earlier, some
C++ libraries also attempt to create zero cost abstractions around memory representations[21][48].
Datatype-generic programming[18], which parametrizes on the composition of a datatype, can be used
to create mappings between the derived representations. Both concepts are used in highly generic
libraries for a wide-range of applications[39].

Implementation Variant types are rare in array languages, likely due to a combination of the
infrequency of non-uniform data in data-parallel applications and the required low-level control in the
instances they are needed. The functional array languages Accelerate and Futhark have only recently
gotten support for sum types[45][41]. Accelerate is a data-parallel array language deeply embedded
within Haskell, where sum types are currently represented as a non-compact tagged union. Research
has been done on a compact tagged union representation for parallel arrays in particular, which has
been named a Recursive Tagged Union[45]. The representation uses a unified tag for nested sum types,
which optimizes memory usage at the cost of tag (de)construction but has not yet been integrated
within Accelerate. Futhark is a functional structurally typed data-parallel array language, where the
sum types only deduplicate identical primitive types. The research pertains primarily to including
structural sum types to the Futhark compiler[41], rather than performance.
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2 Background

There are many components that can influence the performance of a program. This increases the im-
portance of being able to identify bottlenecks but also understanding the underlying technological per-
formance considerations. Section 2.1 introduces fundamental optimizations related to the interaction
between data and hardware. This is used to identify architecture agnostic performance considerations
for collective operations in section 2.2. In section 2.3 this information is used to discuss efficient data
structures for multiple variants of a type.

2.1 Optimizations

In the early days of computing, memory was seen as a way to store data indefinitely. As compu-
tational power of processors increased, the importance of main memory increased. Main memory is
dependant on the advancements of random-access-memory (RAM), which stagnated due to both cost
and physical limitations[12]. This put pressure on the software side to adapt to hardware components
for optimizations, rather than merely the computational complexity of algorithms. One of these hard-
ware optimizations is cache storage, which accelerates memory accesses of predetermined data. The
chosen data is decided based on a cache replacement policy, often based on a temporal property. The
cache operates independently of the operating system[12], and no direct control can be exercised.

Figure 1: An abstract view of a computer memory hierarchy. Each layer can be subdi-
vided even further, depending on the type of hardware. The difference between
both the memory access time and memory storage size for each layer can be
several order-of-magnitudes. As example: data in a register effectively takes 0
instruction cycles, while data from disk might take several million instruction
cycles to arrive.

Instructions Interfacing with processors is done through computer instructions. Fetching of an in-
struction is a memory operation in itself, as it retrieves the instruction at the target of the program
counter. Instructions operate on registers, which have distinct sizes depending on the architecture
and their respective function. There are many instruction set architectures (ISA) and devices that
utilize only a specific instruction set. An intermediate representation (IR), such as the LLVM IR[26],
can be used to create a single interface for multiple instruction sets[10]. Hardware design sometimes
allows for specialized instructions1, such as square root approximations, which are faster than their
semantically equivalent instruction(s). Other examples include sacrificing accuracy for performance
(floating-point), combining a sequence of instructions (arithmetic) or by parallel execution on multiple
data elements (SIMD). SIMD instructions in particular are often very performant, as several steps
within the execution pipeline can be parallelized. The process of parallelization of multiple instruc-
tions is called vectorization. Using these architecture dependant instructions directly can be achieved
through compiler intrinsics.

1Note that this is separate from a complex instruction, which concerns a compact representation of several instructions.
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Figure 2: A scalar addition instruction is converted to the equivalent single instruction
multiple data (SIMD) instruction, where each grey square denotes a single
data component. Vectorization requires the data to be contiguous in memory
and effectively performs the work of several scalar operations within a single
instruction.

Register Pressure Registers can be considered the fastest available memory, as the data is ready
to be used by an instruction. Within the context of registers this data is commonly referred to as
a variable. Variables being preloaded into registers before execution is a prerequisite for reasonable
performance. The scheduling problem of ensuring all variables exist in registers before execution is
to be considered a NP-complete problem[7]. Programming languages with any form of abstraction
generally delegate this process to the compiler. It simplifies a lot of complexity, as only which data is
being used by what instruction is relevant for the programmer. In some cases there are too many live
variables for the available registers, which can spill the variable. This requires a variable to be stored
outside registers, in a slower form of memory, and incites a delay when attempting to use the data. It
can be prevented by either reducing the time variables are live, reordering the sequence of instructions
or diversifying the execution units.

Memory Access Time Semantically random-access-memory (RAM) implies that memory opera-
tions take around the same amount of time, independent of the physical storage location. In practice
this does not hold for several reasons.

SRAM/DRAM On a modern system there often exist several different types of RAM, mostly driven by cost
differences. The main forms of RAM are static RAM (SRAM) and dynamic RAM (DRAM).
SRAM uses six transistors to represent a single bit, while DRAM only uses one transistor with
a single capacitor. A capacitor loses electrons over time which means data has to be refreshed
repeatedly to preserve its data. A refresh requires both read and write operations, which interferes
with other memory operations. This makes DRAM inconsistent and on average significantly
slower but much cheaper to produce due to requiring less transistors[12].

Propagation Data is transferred by using electrical charges through semi-conductors. This creates a physical
limitation dictated by physical distance and temperature. This is called propagation delay and
poses a hard limitation to the rate at which components can operate on. SRAM is often located
physically closer to the execution units to utilize the faster memory access more effectively.

DMA A processing unit needs to forward the requested data to the targeted location, which takes
up processing time. Direct-memory-access (DMA) is an interface for hardware components and
allows memory operations to be more organized. This allows for large scale memory operations
to be performed efficiently and independently of the main processor. It requires use of several
buses which means some processors must idle at seemingly random periods of time. In essence
it means that other hardware components can influence the memory access time.
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Caching Due to the hardware related discrepancies between memory access time, which we dis-
cussed in the previous paragraph, it can be beneficial to organize data according to the memory
access time. The simplest way to achieve this is by caching data, that is storing a copy of the data in
a faster accessible medium. A cache generally consists of SRAM and resides close to the processor,
which allows memory accesses to be order-of-magnitudes faster than a main memory access[12].
When data already exist in the cache it is referred to as a cache hit, otherwise a cache miss has
occurred. Deciding which data is cached and for how long is a cache replacement policy, utilizing
both recency and frequency. Adapting to policies simplifies both the scheduling and minimizes the
potential cache misses that can occur in the worst case scenario.

Caching of data can be done after the data has already been
retrieved, which means a delay already has occurred. This can
be avoided by requesting data in advance and storing the data
in a cache prematurely, so called cache prefetching. It can be
accomplished by analyzing future instructions (hardware) or us-
ing instructions that hint at the future use of a piece of data
(software)[4]. Prefetching is harder when there are multiple ex-
ecution paths possible, as both the data and the next instruc-
tions will be uncertain. Speculatively executing the uncertain in-
structions can be performant if the overhead of redundant work
remains small enough. Rather than executing unconditionally,
some processors execute the most likely to happen branch based
on some parameters (branch prediction)[42].

Figure 3: Stream buffer
that prefetches data into the
cache based on cache misses.

Parallelism Instruction-level parallelism is the parallel execution of multiple instructions[42]. It
can be done by dividing an instruction into several steps and outsourcing each step to a distinct
processor unit (instruction pipelining). Shuffling the order of instructions might allow more units
to work in parallel from each other (out-of-order execution). This can be extended by outsourcing
instructions to different units of the same type, such as execution units (superscalar execution).
An abstraction-level higher is data-level parallelism, which executes a single instruction on mul-
tiple data elements such as the previously discussed SIMD instructions. Specialized processors
sometimes either fully pipeline the data (vector processing) or allow for some form of autonomy
(multithreading). Both share instruction fetching and decoding, but threads have their own pro-
gram counter which allows for an independent sequence of instructions. Execution of threads can
be done concurrently, which can be useful to hide latencies (context-switching). In parallel is also
possible with multi-core processors, which have several processors units (cores) that can support
multiple threads at the same time. Cores are often not independent processors and might share
several components with other cores, such as caches[27].

Figure 4: Multiple phases allows a processor to
hypothetically execute the [A, B, C,
D] instructions in 8 cycles. This is
significantly faster in comparison to
the 20 cycles it would require in a
single lane.

Figure 5: Both vectorization and concurrency
are single lane concepts, but differ
in handling multiple tasks. Parallel
threads are both independent and ex-
ecute on multiple cores simultaneous.
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2.2 Principles

In section 2.1 several components have been identified that can influence the performance of a program,
such as the cache. The interconnectivity of the components make general statements on optimizations
often weak, as the environment in which the optimization exist can heavily influence the result. Focus-
ing on a particular area, such as iterating on multiple data elements in parallel, allows for a stronger
argument. Within this section previously discussed intricacies will be discussed in the context of
iterating on many elements in parallel.

Contiguous It is beneficial to contiguously allocated data, like an array, so that all elements can
be identified in constant time2 through a linear function. Composite datatypes work similarly, where
each field exists as a predefined offset from the base memory location. Such structure also simplifies
work distribution between threads, as all data is segregated through constant offsets. For vectorization
contiguous data is a prerequisite as instructions operate on singular contiguous blocks of data. If data
is not spatial adjacent in memory, data must aligned temporarily or complex interleaving methods
must be used[36]. Therefore composite datatypes interfere with vectorization in the general case, as
the spatial adjacent data includes fields within the same datatype. Parallel arrays solve this by creating
a distinct array for each primitive type within the composite datatype so that each field within the
composite datatype can be vectorized independently.

Figure 6: Visual comparison between an array-of-struct collection(1) and a struct-of-array
collection(2). The solid lines represent indices in an array and the dotted lines
denote an implicit connection that is relative to the original index.

Caches also operate with contiguous blocks of memory, which means spatial adjacent data within
a fixed alignment are stored together. A struct-of-array collection lends itself well to the cache, as
it means the least amount of cache blocks are required irrespective of block size and alignment3. A
function that operates on a single field in an array-of-struct collection pollutes the cache with the
(unused) fields, which is not an issue for the struct-of-array collection. In addition all memory accesses
use the same linear function, a constant stride access behavior, which makes it particularly receptive
to hardware cache prefetching[4].

Access Patterns As the cache is finite in size, a cache block can be ejected prematurely. Both for
data within the same cache block but also when the same block is required at multiple times in the
application. As stated in section 2.1 the cache replacement policy is based on temporal properties,
which can be leveraged to increase the chance requested data exists in the cache. By avoiding random
accesses and organizing computations around when the data is used we can increase the temporal
locality of our application. This is non-trivial in iterations which access multiple indices (stencils)
or computations that inherently involve some random access (linked lists). Due to the way caches
operate with contiguous blocks, spatial locality of data commonly used together can also reduce the
total amount of cache blocks that are required.

2Both in time complexity and within computer architecture norms, as data access from a memory location consists of
a single instruction. This is in contrast with data structures such as pointer trees and hash tables, which require several
instructions due to pointer chasing.

3Note that this is only the case when all elements in an array are operated on, which falls under the predefined
context of this chapter.
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Figure 7: Comparison between temporal and spatial locality, where the data A/B and
C/D will exist in different cache blocks when stored in the cache. The initial
sequence of operations has overlapping live time of cache blocks. Reordering
the operations can facilitate both spatial and temporal locality.

A way to contextualize this is by considering multiple iterations on an array. Partitioning the
array and iterating on a single segment at a time means cache blocks will be reused (tiling). Cache
coherence can be further improved by also accounting for shared resources, by grouping elements that
use the same resource in their instruction sequence. This technique is explored in raytracing[32], where
rays are sorted to exploit the fact that spatially adjacent rays likely traverse the acceleration structure
similarly. Avoiding redundant cache blocks is also important for multi-core processors, as it reduces
the need for data to exist in multiple caches at the same time and minimizes cache reloads.

Branching Pipelining instructions is not possible when the sequence of instructions is dependant on
the result of a previous instruction. This limits instruction-level parallelism, which is solved through
various ways of unconditional instruction executions[42]. Either by discarding the computed results
or by flushing the pipeline when the wrong branch is predicted, both of which intuitively have an
overhead. A compiler can eliminate4 branches or move loop-invariant code to facilitate instruction-level
parallelism[15]. These optimizations do not always improve performance, as an increase in instructions
can pressure registers usage and the cache. It is also limited to instructions that cannot fail or overflow,
as unconditional execution of these instructions can introduce unintentional side-effects.

Branching is also problematic for vectorization, as
all data within the instruction size must follow the
same sequence of instructions. It can be resolved
through the use of a bitmask, which can nullify parts
of a result[15]. Another notable application of un-
conditional execution is sequential loops, where un-
rolling the loop creates an opportunity to vectorize
the scalar instructions. Automatic vectorization of
loops is an active field of research, and limitations
have been primarily attributed to the lack of anal-
ysis information available to compilers[13]. This
means branchless code and simplifying control flow
allows the compiler to vectorize instructions in more
instances.

Figure 8: Updated instruction-level pipeline
where B is dependant on the result of A.

Specialized processors where an instruction sequence is distributed over many cores are limited to
executing all branches unconditionally. This is minimized through the use of Streaming Multiproces-
sors (SM), which contain several cores and fetch their own instructions. Streaming Multiprocessors
operate and schedule warps, which often contain 32 threads. When divergence between these threads
occur (branch divergence) the instructions will in the general case be executed in lockstep[37]. This
means diverging execution flows are not necessarily problematic when it only occurs between different
Streaming Multiprocessors, as branches that are not executed can be skipped entirely.

4Either by proofing the branch will never be executed or by replacing the branch with a conditional move instruction,
which only writes the result on true.
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2.3 Data structures

A fundamental aspect of computing is data structures, which is a constant overhead for all com-
putations. For collective operations arrays are essential; as they have a constant access time, are
contiguously allocated and access can be parallelized. Composite datatypes within arrays introduce
some considerations. One is the implicit use of parallel arrays, where each primitive datatype is stored
in a distinct array. It enables vectorization opportunities, but a random access pattern might cause
additional cache blocks to be cycled between. Since collective operations control the access pattern,
parallel arrays are often a natural choice for array languages. The consideration for both structurally
and functionally distinct data, now referred to as variant, is often complex. It is at the essence of why
non-uniform data demands control over the low-level representation. Variants can be represented on
an individual basis (element-wise) or collectively (variant-wise). Usage and implementations of these
approaches are explored in this chapter. Within this chapter the assumption is made that parallel
arrays are used, as they align with the intention to vectorize operations.

2.3.1 Element-wise

For each individual element the choice of variant is represented, which introduces branching and in
the general case will break vectorization. As variants are not grouped, functions cannot iterate on a
specific variant without iterating on the complete array. The main advantage is that a variant change
can be done independently of other elements, and thus can be parallelized. A practical consideration
is that each element in an array must be structurally the same, that is they occupy the same memory
space. This is a limitation which enforces that each index can determine the location of an element.
For parallel arrays this restriction intuitively applies for all arrays individually[45].

Memory Representation Another restriction is that memory instructions only operate on fixed
boundaries, which means operations that overlap these boundaries require additional but strictly un-
necessary instructions. A natural alignment of a datatype is achieved by aligning all types according
to the instructions that access them. Many compilers introduce padding to enforce natural alignment
for all the types within the structure. While computational efficient, the alternative of packing types
together can be preferred for a smaller memory footprint.

(a) Compact packed struct of 5 bytes (b) Naturally aligned padded struct of 8 bytes

Figure 9: As data has a size of 4 bytes, padding the id to 4 bytes enforces that data is
naturally aligned for the instructions that access it. In the case data is stored
before id , the data type will not always be naturally aligned when stored
within an array. It would require padding the complete struct to a multiple of
the largest field, which in this case would be 8 bytes regardless.

Parallel arrays have a natural alignment by default as they only consist of primitives types, which
are inherently naturally aligned. A zero-cost abstraction that can ergonomically switch between Struct-
of-Array and Array-of-Struct arrays is non-trivial. An intermediate structure as interface can break
automatic vectorization[24]. In addition, all the distinct internal representations must be statically
definable and able to be handled by the data structures independently. Many C++ libraries utilize
class templates to achieve this[24].
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Tagged Union Multiple variants can be represented by a fixed size data component with multiple
interpretations, so called union. A tag can be used to identify the currently active interpretation of
the union. A naive implementation creates a new field for all fields within the variants, which means
the memory usage is cumulative for each variant within the union. A compact tagged union overlaps
fields of variants, as only one interpretation can be valid at a time. The process of overlapping fields is
generally referred to as deduplication. It can in theory reduce the size to the largest variant within the
union, but this is not necessarily computationally efficient due to the previously discussed alignment
requirements[45]. A deduplication algorithm for unions therefore balances between enforcing natural
alignment and compactness of the memory representation, a space-time tradeoff. The most primitive
form of deduplication is to combine fields that are of the same type. It can be extended for types
of the same size, which would require support for reinterpretation of data. A consideration for this
approach is that it is not apparent how to deduplicate fields of different sizes. Is it acceptable to pack
a byte and short within an integer, or should the individuality of each datatype be preserved. The
individuality of a primitive type is essential for parallel arrays, as it allows for efficient vectorization.

Figure 10: Example of an union type that can either be an integer or a byte and a short.
The dotted lines within a layout represent a parallel array. The first layout
is compact, while the other layouts preserve the individuality of at least one
primitive type. Performance of each layout would depend on which fields are
accessed by what instructions.

General-purpose languages avoid this discussion by overlapping the complete variant, irrespective
of the individual fields within the variants. As stated previously, this would prevent vectorization
as fields are no longer contiguous. Strictly speaking it can be considered less problematic for tagged
unions as there already exists branching on the tag which breaks vectorization, but this does not
necessarily always hold. A form of unconditional execution or compatibility with existing architecture
might make a tagged union spread over multiple arrays preferable. Parallel arrays also make it also
possible to enforce natural alignment, as an alternative to padding.

Tagged Pointer Another way to comply with elements being structurally the same is to use a form
of indirection, in this case a pointer to a memory location. The indirection allows variants to escape
the uniform size restriction, but there are several notable complications. General complications around
pointers, such as being unsafe to operate on and complicating garbage collection apply. In addition,
pointers that point to the same data (alias) can prevent parallelization due to possible race conditions.
These can be partly solved through language constructs; such as smart pointers, immutable data or
abstracting the use of pointers altogether. The key issue is that a change in variant requires new data
to be allocated and the pointer to be adjusted. The allocation means there is no guarantee that the
data is contiguous, which in addition to the required branching prevents any vectorization efforts. The
indirection and fragmented memory is also problematic for cache efficiency, as it is unpredictable and
a cache block is not used effectively.
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Entity A notable observation is that the re-allocation caused by the variant change causes the data
to be not contiguous, not the indirection in itself. The concept can be illustrated through a hash table
data structure, where a key is mapped to a value within an array (bucket). Any collective operation
on the hash table can be vectorized by disregarding the hashing operations and using the internal
array directly, as computations are inherently independent and order is irrelevant. The indirection
is not inherently problematic, merely the use of indirection to denote the identity of an variant. In
essence, a form of indirection that is not used by the collective operations. The entity-component-
system (ECS) is a coding pattern that sometimes utilizes this concept to efficiently represent collections
of multiple variants. Represented as a single heterogeneous collection, while internally it consists of
several variant-wise collections.

Figure 11: Each entry within the surface array can uniquely identify the variant and
index through the hashing function. The relative costly operating of using
the hashing function can generally be avoided, by operating on the variants
directly. It allows the collection to appear as a heterogenous collection, while
still being able to vectorize collective operations.

It will mean that variant choice is not directly represented on an element basis, now referred to as
an entity, which has several implications.

Stable The same entity is not guaranteed to refer to the same data, as the location of the data might
change when the variant changes. The reverse also holds, the data is not guaranteed to have the
same entity. Concretely, the entity is no longer stable across structural changes as it depends
on the relative location of the data. It can solved by maintaining a logbook, by updating the
entities with the location of data or annotating the data with their entity. These approaches can
be complementary for performance reasons, but they are inverses of each other through gather
and scatter operations. For many collective array operations stableness is excessive, as it means
data is discriminated based on the index of the data.

Independent Elements can no longer change their variant independently of other elements, which can be
problematic when considering data-parallelism. Depending on the way variants are grouped,
there can also be a significant cost associated with regrouping variants. It can be minimized by
delaying structural changes indefinitely, by using the previously discussed tagged union approach.
Regrouping variants can be seen as a performance consideration between the cost of regrouping
and having to branch for future iterations.
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2.3.2 Variant-wise

Grouping variants means all data is uniform, contiguously allocated and there exist no inherit branching
within the same grouping of variants. It can be achieved through an array for each variant, but also
grouping within the same array and using segment descriptors. The latter is effectively an untagged
union, where the representation is determined by the index within the array. Both allow operations
to be vectorized, but there exist several other considerations.

grouping As stated in the previous section, regrouping variants to a variant-wise collection is a performance
consideration. When variants are stored in separate arrays, the amount of a certain variant must
be known before allocation. When this is dependant on a computation, it can be retrieved
through an additional scan or by atomically5 counting any structural change. This adds an
overhead, which is not required for a singular array when the total of elements remains the same.

immutable An important consideration for purely functional languages is that values, and therefore arrays,
are to be considered immutable. This means that updating parts of an array efficiently is non-
trivial. It must be proven that the array before update will never be used again, otherwise both
arrays must co-exist in memory. This is inefficient for small updates and grows the necessity to
destructively update[25], which is not always possible.

automatic Most compilers support automatic vectorization of iterations with flexible bounds, where the final
leftover iteration is not vectorized. This overhead can be a significant when the loop is extensively
unrolled. It is minimized through epilogue vectorization, which (re)applies loop vectorization to
the remaining scalar code. In practice data must be aligned along specific boundaries to be
vectorized, which is challenging for dynamic regions within an array and not always analyzed by
compilers[13].

operable An undiscussed benefit of parallel arrays is that fields can be operated on independent of other
fields, as they are completely distinct arrays. This is also possible for regions within an array,
but this is less trivial and often requires explicit support in array languages[14].

To summarize, there are many variant-wise collections that vary in the organization of the concrete
data. Either within the same array, spread out over of multiple arrays, or a hybrid which maximizes
contiguous memory of only a certain field within the datatype. It translates to iterating over a variant-
wise collection as well, as one can either iterate over each variant separately (split) or within the same
collective function but branch on the index to get the concrete variant (joined). The split iteration
is suitable for vectorization, while the joined iteration reduces potential overhead of having multiple
functions and increases the cache predictability. The concept of a variant-wise collection can be
extended further by considering other data structures, which are generally dependant on the specific
type of data. The initial example of an acceleration structure for geometry intersection is such a
tailored data structure. While there are many examples of such data structures, a common pattern
for variant types in particular is a shared component. Rather than organizing based on the variant, it
can be beneficial to organize around the types of which the variant is composed.

5Atomic instructions prevent interruptions by other processes and are thread-safe.
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3 Polymorphic Variants

A synopsis of the background chapter is that a performant representation cannot be derived from a
mere theoretical framework. There are considerations for both computational efficiency and memory
efficiency. Concretely, an optimal solution is based on factors such as: whether the operations can
be vectorized, the required access pattern, if the application is memory-bound or compute-bound, the
hardware and the frequency at which the data is used. The concept of organizing the program structure
around data transformations is referred to as data-oriented design. With this in mind it is important for
high performance oriented applications to be flexible in the internal representation of their datatypes,
as there is not a concrete optimal solution for all situations. In this case flexibility entails that no
architectural changes will be required for changing the internal representation of a datatype. It is
especially important for variant types, due to the previously discussed numerous amount of suitable
data structures available for variant types. In this chapter a solution is discussed which can capture
the different data structures in a type preserving manner without sacrificing performance. In section
3.1 requirements are discussed, with the proposed solution of a type-level variant type. In section
3.2 and 3.3 we show how type-level programming and datatype-generic programming can be used to
implement such a type-level variant type.

3.1 Requirements

As discussed in section 2.3, there are two primary categorizations for collections of variant types.
Variants of a particular type can be stored either element-wise or variant-wise. There are several
considerations for designing a data structure that is agnostic to whether an element-wise or a variant-
wise data structure is used. A variant-wise collection can operate on a subset of variants, while an
element-wise collection is forced to discover the identity while iterating. To avoid redundant iterations
for variant-wise collections, it must be possible to define a function on a specific subset of variants.
For element-wise collections the number of variants must be finite, the type must be identifiable and
no large discrepancies should exist between the size of each variant.

Figure 12: Example where a function is applied on a single variant. A non-exhaustive
function can skip a significant amount of work when using a variant-wise col-
lection, while this requires a complete traversal for an element-wise collection.
Note that the identity of the collection remains the same in both cases (green
and blue variant).

An Entity-Component-System (ECS), previously mentioned in section 1.1 and 2.3.1, allows func-
tions to be defined on a subset of variants. It is commonly associated with data-oriented design, in
particular within the field of game-engines. Section 3.1.1 explains the ECS pattern and identifies the
core principles around variant-wise collections. For element-wise collections sum types can be used to
safely discriminate between multiple variants by enforcing pattern matching. Section 3.1.2 is dedicated
to sum types and their role in establishing a type-safe interface.



3 POLYMORPHIC VARIANTS 16

3.1.1 Entity-Component-System

The ECS pattern arguably originated in the context of object-oriented languages being predominant
in game engines. The premise is to organize game-logic around functions, where the relation between
data remains flexible[28]. It is in contrast with inheritance, where relations are statically determined.
An overview of the pattern:

Entity A set of components, where the composition is defined at runtime. As such there is no predeter-
mined relation between any of the components. As example, an entity can gain momentum at
any time by attaching the Velocity component.

Component An user-defined datatype within the pattern, such as Velocity . In the general case components
are stored in parallel arrays to exploit data-parallelism opportunities.

System A global function that repeatedly operates on all entities that match a set of components. A
Movement system operates on all entities that contain the Velocity component, irrespective
of other components that might be attached to the entity.

The ECS pattern exists on a similar abstraction-level as array languages, through the use of col-
lective operations. To reiterate on section 2.3.1, an entity is often implemented as a unique identifier.
Rather than using this identifier to find the associated components, collective operations operate di-
rectly on the data components. It allows for a variant-wise collection as internal representation, but
with the functionality of a heterogeneous collection. As such the pattern is often combined with data-
oriented design and can be used to implicitly exploit data-parallelism in general purpose languages.

Figure 13: The movement and render systems both have two components as a dependency
and only operate on variants that contain their specific components. The
example uses a parallel array for each unique combination, so called archetype.
Some ECS implementations, such as Bevy[1], use sparse arrays to speed up
the process of adding and removing components at the cost of fragmentation.

The ECS design pattern is arguably inherently imperative, due the way structural changes are
handled. Apecs, an ECS library in Haskell, achieves this imperative style through monads[5]. The
ECS pattern makes element-wise collections often infeasible, as there is no way to restrict the possible
amount of structural changes. This is inherent to the pattern, as any component can be attached to any
entity. A restrictive approach is to only consider already attached components, by including the ability
to disable a component. A disabled component is automatically ignored by systems, and is denoted
with an element-wise tag. A more general performant element-wise collection would require a statically
definable scope and a notion of mutual exclusivity. An observation is that the ECS pattern represents
variance by the inclusion or omission of a component. Rather than using the set appearance of entities,
we can determine the construct for variant types independently of the performance considerations. This
brings us to Algebraic Data Types.
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3.1.2 Algebraic Data Type

Functional languages handle tagged unions safely through sum types, which is a construct in an Alge-
braic Data Type (ADT). An ADT is a compositional type that categorizes its different compositions
with: product, sum and recursive type constructors.

Product The composition of datatypes, where datatypes coexist.

Sum The alternation between datatypes, where datatypes are mutually exclusive.

Recursive The self referencing datatype, where a datatype is composed of itself.

When considering tagged unions, recursive datatypes are infeasible due to their unpredictable and
unconstrained size. This is why only product and sum types are considered. It is often useful to
discriminate between multiple variations of a sum type, which is done through a data constructor. An
example is the Maybe a type, which represents an optional value. It can either be Nothing or the
optional value wrapped in the Just data constructor.

Deconstructing an ADT is done by pattern matching on the data constructor. The pattern matcher
can exhaustively match on all variants, as all data constructors are known at compile-time. It enforces
type-safety by ensuring all variants are considered, rather than putting the responsibility on the pro-
grammer. It can be seen as a native control-flow mechanism that ensures only the operations on the
active variant are performed. An example of a function that pattern matches is fmap , which applies
a function to the optional value.

The fmap function considers two cases, the Just data constructor and the Nothing data con-
structor. The pattern matcher ensures that the branch of the active variant is chosen, which in the case
of Just would result in the function being applied to the value. In Haskell, ADTs are distinguish-
able by name and therefore explicitly declared. It means data constructors are local to the declared
type and pattern matching happens within the same type. In the context of our intention to create
a flexible interface this is problematic for several reasons. A practical reason is that the ADT must
be explicitly declared, which requires meta-programming for a generic implementation. In addition,
on the type-level it is not apparent which variants exist in a particular ADT. This makes it hard for
data structures to adapt to a particular variant type. It also complicates optimizing variant types
that overlap in the variants they contain, as data constructors are local to their type and therefore
not necessarily equal. Consequently, defining a function on a subset of variants is also infeasible. A
solution, which can adapt well to section 3.1.1, requires mutually exclusivity to exist on the type-level.
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3.1.3 Proposed Solution

Before discussing the case of sum types, it is easier to start with the case of product types. A common
application of product types are tuples. The tuple (Bool, Float) is considered to be equal to any
other tuple with the type (Bool, Float) . It operates differently from explicitly declared datatypes,
which distinguish themselves through their name. A way to compartmentalize the difference is by
considering that a tuple is a polymorphic datatype. It is therefore also possible to define our own
Tuple a b type, which is only syntactically distinct from a tuple. A benefit of tuples is that we
can define generic functions that take the composition of the tuple in account. An example is the
fst function, which extracts the first operand of a tuple. The concept can be extend to sum types.
In Haskell, the polymorphic Either a b datatype is either Left a or Right b . The mutual
exclusive relationship is captured in a single generic datatype. Rather than nesting the Either

datatype, ergonomically it is much easier when the arity of the datatype is flexible. OCaml calls these
polymorphic variants6, while other functional languages generally refer to them as extensible or open
sum types. The operands of the sum type are represented on the type-level, which can be used to solve
the previously discussed limitations of nominal sum types in section 3.1.2.

Motivation To make it more concrete, the previously discussed fmap function is used to demon-
strate the flexibility that polymorphic variants provide. The type signature of the fmap function
provides no information on a potential structural change. It is possible to return Nothing for both
cases7. From a performance perspective, it means the result of the function will always require a tag.

A function that takes Just a and returns Just b would ensure that the collective identity can
be preserved. A variant-wise collection of optional values can therefore prevent the tag and preserve
its variant-wise collection. This exact definition is not possible, as Just a is a data constructor under
the Maybe a with the type a -> Maybe a . As discussed in section 3.1.1, it requires a function to be
definable on a subset of variants. In some cases, such as a safe division function, the introduced uncer-
tainty would be inherit to the function. The following figure uses the polymorphic variant constructor
a || b , with the standalone Just a and Nothing types.

Concretely, Maybe a is now an alias for the mutually exclusive relationship between Just a or
Nothing . A motivating example is that a collection of Maybe a can now be an element-wise collec-
tion or two variant-wise collections of Just a and Nothing 8. While the former involves branching
for fmap , the latter can ignore the Nothing collection and vectorize the fmap function. An imple-
mentation of polymorphic variants will be discussed in the upcoming sections.

6OCaml also implements nominally typed sum types, so called variants.
7 Just b is not possible as it can only be inferred through Just a and the a -> b function.
8As Nothing does not hold data, a size descriptor is sufficient.
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3.2 Type-level programming

In the previous section polymorphic variants are proposed, a type constructor which represents multiple
variants. Defining an internal representation for each instance of a polymorphic variant is infeasible
and defeats the purpose of ergonomically switching between representations. Statically deriving an
internal representation for a datatype is impossible in most languages. Some high-performance libraries
circumvent this restriction by meta-programming or having predetermined custom data layouts[21]. A
type-safe solution is type-level programming, which will be utilized within this chapter to generically
derive efficient memory representations.

3.2.1 Kinds

A value is categorized by types, while a type is categorized by kinds. This is relevant when discussing
type constructors, where type constructors with a different arity have a distinguishable kind. A well
known exposition of type constructors are parametric polymorphic data types. While a lot of languages
support polymorphic data types, the concept of kinds is not evident as only concrete types are used
as argument. Haskell supports higher-order types, which function similarly to higher-order functions,
which makes kinds more apparent to the user.

Type constructors can be used to encode data statically, such as Peano numbers. The parametric
Succ a and Nil types are axioms that can be used to construct a natural number on the type-level.
By default these exist in a open universe, which means ill-formed expressions can be created. On the
type-level it can be resolved by Generalized Algebraic Data Types (GADTs), implemented in Haskell
as an extension. The type variables of data constructors can diverge from the more general type.

The consequence is that deconstructing a GADT will refine the type. Pattern matching can there-
fore construct evidence of certain properties. An observation is that this is a categorization of types,
similar to how the kind * represents all concrete types. The DataKind extension promotes types
to the kind-level and constructors to the type-level. The Natural kind would include the type
Succ (a :: Natural) and Nil . It is a kind-level solution, which creates a closed universe and
other type constructors can now also use the Natural kind. A limitation is that the construction of
the kind, which is needed for arithmetic operations, is guarded by the definition of Natural .

On the type-level this is solved through value-level functions. Translated to the kind-level it means
we need type-level functions that transform an input kind into an output kind.
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3.2.2 Type Family

A way to approach type-level functions is to see it as a type dependent on the instantiation of a
type variable. This is akin to functions in type classes, where type-indexing allows functions to be
overloaded. Haskell reuses this functionality for types, categorizable as associated types[8]. It is par-
ticularly useful for embedded domain-specific languages, as an instance can have a specialized return
type. Accelerate uses the Elt 9 class to create a mapping between surface and embedded types.

While these type-indexed types integrate well with type classes, type families is the much stronger
standalone concept. A data family has unique types associated with each type, while a type family

is merely the type synonym equivalent. In some cases a function cannot be represented, as the type
checker is unsure which instance within the type family to use. This is the case when the function has
a more general default case that will always match. A closed type family attempts the instances in
order of definition, which expresses itself in being able to pattern match on types.

In this example the variable y can be x , which means the second and third instance are over-
lapping with each other. A closed type-family resolves this by attempting the more specific case of
x = x first. A lot of functions can now directly be translated into a type-level equivalent. An an-
noying limitation in Haskell is that type families cannot be partially applied, which means a lot of
boilerplate is required to capture more complex functions. Type families cannot be partially applied
due to it requiring higher-order unification, which is currently not supported in Haskell.

3.2.3 Interface

With type-level functions a type can be computed based on an argument type, which is the foundation
for constructing multiple representations for a single variant type. The process of constructing multiple
representations can be captured within a single datatype.

The data type Variant takes two type variables, a higher-kinded construction type and a promoted
list type. The constructor takes the promoted list and transforms it into a concrete type. As type
families cannot be partially applied, a data family is used to create the concrete constructor.

An instance of the constructor data family constructs a unique type, which is based on the given ar-
gument. It avoids partial application by effectively using the Constructor data family as a dictionary.
An example variant type would be V Compact [Int, Float, Bool] , where Compact is the argu-
ment. The Constructor data family then constructs the actual type with the kind [variant] -> * .

9Extract, Load, Transform.
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3.2.4 Type Composition

While it is now possible to abstract over the multiple constructors, the next step is to implement
the constructor type. As a memory representation only concerns itself with the bit size of types, the
intermediate structure will be the natural number discussed in subsection 3.2.1. The DataKinds

extension natively supports the Nat kind with arithmetic expressions and literals for syntax. While
mapping primitive types to their corresponding natural number is trivial, this is not the case for
user-defined datatypes.

It is not possible to statically derive the bit size of the Custom type within the type family. For
this the types of which Custom is composed of, or the structure of the type itself, must be apparent
to the type family. A way to approach this is to use a kind more specific then * that is also explicit
in the composition, such as the Natural kind but for all datatypes. While the approach works on
paper, it would involve drastic changes to an existing architecture. Another way is to enforce an
implicit constraint by ensuring the type can be constructed with a particular GADT. The latter is
used by Accelerate, where the TupR constructor ensures that the embedded type is composed of
only primitives types and tuples. The function eltR enforces this by requiring the associated type
EltR a to have a mapping to the TupR type10. The GADT approach is preferable when access to the
structure on the value-level is also needed, which is the case for future datatype-generic programming
endeavors.

With this constraint it is now possible to figure out the bit size of user-defined datatypes. A closed
type family is used to recursively traverse the structure, where primitive types are converted to their
respective size in bits. It lays the foundation for type-level programming on user-defined datatypes.

In Accelerate the embedded representation is the one relevant for optimizations. All type-functions
therefore operate on the embedded representation, the type associated with EltR . It is impossible to
construct such type outside the Elt class. A solution is to automatically derive the EltR class for a
set of types with a fixed representation, such as tuples. Returning a type with a fixed representation
means that all computed representations will inherently implement the Elt class.

10Note this can be circumvented by returning a bottom type such as undefined , which will only be detected when
using the value.
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3.2.5 Deduplication

While the tools are there to generically compute different memory representations, it is not trivial
to create a single performant solution. Capturing all possible solutions to a performant memory
representation is made easier by creating an intermediate structure that only contains the relevant
information. The most general intermediate structure of a composite datatype is a collection where
each field in the datatype is represented as their size in bits. It removes both hierarchy and type
identity, which makes it is easier to reason about a specific layout of a datatype. The intermediate
representation will preserve performance critical information about the way data can be retrieved by
instructions. The conversion is analogous to the CustomBitSize type family, but the the promoted
list type [] is used instead.

With closed type-families it is possible to define most of the common operations on lists. The
definition of these are similar to their value-level counterparts, but without any partial application. As
such it possible to define a type-level function that creates a compact deduplicated union. As stated,
the IntermediateRep function returns a list of natural numbers. The Union function recursively
adds an element only if it is unique. The corresponding element is removed from the comparison list
once it has been matched. It ensures all fields of a datatype are included exactly once.

One could consider the representation compact, but it deduplicates only the bit size of the primitive
type that is of equal size. This is very safe, as there is no inherit performance cost to operating on
types with the same size. This is not necessarily the case for types stored in a larger type, or even a
type spread out over multiple types. In some memory-bound cases this approach can be preferable.
An implementation would require type-level sorting, to avoid a scenario where the smallest type is
inserted into the largest type. A naive sorting algorithm is quite trivial to implement, by inserting all
elements into their respective position.

The derivation of such a compact layout is not particularly complex, as it is similar to the normal
deduplication approach but with multiple stages. Each step increasing the perceived performance cost
of the deduplication and avoiding a local optimum solution by unifying large datatypes first. The
complexities of such layout lay within generically operating on it. The simplicity is only the case
due to implicitly using parallel arrays, as it avoids having to incorporate padding. When padding is
handled the approach can be extended to non-variant types as well, as it effectively is the simpler case
of a variant type with a single variant. To summarize, we can now switch between multiple memory
representations for a variant type through type-level programming.
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3.3 Datatype-Generic programming

In section 3.2 it was established how to compute a wide-range of internal representations for a single
variant type. It is not ergonomically viable to write (de)construction functions for all representations.
Under the assumption that representations can be extended, a mapping between all possible datatypes
must be handled. This can be achieved with datatype-generic programming, which parametrizes on
the composition of a datatype[18]. A mapping between datatypes must be isomorphic, such that all
information is preserved between construction and deconstruction. This is not possible for all possible
pairings, an obvious example being when a variant is larger in size than the representation it must
be contained in. Within section 3.3.1 a type-level way to prove valid pairings is explored, which is
essential for supporting user-defined datatypes. Section 3.3.2 explores the foundations of datatype-
generic programming, which is used for an implementation of a datatype-generic framework in section
3.3.3.

3.3.1 Verifying

A variant must be smaller or equal in size to the union it exists in. A variant that is larger than its
union loses information when constructing and deconstructing. While it is possible to ensure that the
type-level computation of the representation is always larger than the variants it contains, this is a
risky construction. It assumes custom memory representation will be correct and does not catch flaws
within existing derived memory representations. A modular implementation requires an independent
method that ensures the variant is smaller than its representation. The Constraint kind can be
used to restrict the construction to larger or equal types. Constraints occur on the left-hand side of
the type annotation, and are generally used to enforce that an interface has been implemented. A
relevant example is ensuring that our newly computed representation has a mapping to the embedded
representation.

In the type-level programming chapter we already achieved a way to determine the size of any
type, as a Nat kind. Fortunately the native Nat type already supports several comparison operators
with the kind Nat -> Nat -> Constraint . A simple but functional constraint is the <= operator.
While it does omit performance considerations, a lax restriction is required to support a wide-range of
representations. A generic class can be used to capture the relation between variant and union nicely,
the IsVariant class. Operations that require type-safety can use this class, while the general variant
type can remain constraint-free with the assumption that the union will be larger than the variant.
The IsVariant class has a default implementation for constructing and deconstructing, but can be
extended by the user to support unsafe variants such as sentinel values.

The IsVariant class can be restricted further by constraining the individual fields within the
datatype. The next data-type generic programming part pertains to implementing the default construct

and destruct functions.
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3.3.2 Foundations

Before looking into how construct and destruct are implemented concretely, it is essential to
understand the problem datatype-generic programming is attempting to solve. Paradoxically variant
types are best to illustrate the problem, coined the expression problem[46]. Extending the variants
within the Color type means all functions that pattern match on Color must be changed. It can be
resolved by having a general interface, but extending the behavior of this interface requires all types
that implement the interface to change. There is no way to extend functionality without having to
explicitly define some sort of behavior.

The impact of the expression problem can be minimized through several methods. Arguably poly-
morphic variants fit within this category themselves, as it separates pattern matching with the un-
derlying data[17]. In our case we have chosen for the representations to be extensible, which requires
behavior to be defined for all possible representations. Both for constructing and deconstructing the
union into a specific variant. The possible datatypes is an infinite domain, which can be made finite
by considering that all composite types can always be reduced to primitive types. Datatype-generic
programming utilizes the concept of composition in programming languages to operate on any type.
This is sufficient to generically operate on multiple representations, as the semantics of the type are
irrelevant for constructing and deconstructing the variant type. It requires access to the way type
are composed, which is not always natively supported in programming languages. While Haskell does
support datatype-generic programming, we do not operate directly on native Haskell types. An imple-
mentation through native Haskell types, which Accelerate currently uses for sum types, is restrictive.

Figure 14: Visual diagram that displays the interconnectivity of data types within Ac-
celerate and the relative placement of the framework. Note that the type and
transform are separate, which adds to the modularity of the approach. It can
be used to implement the translation layer between surface and embedded
representations.

The restrictions are apparent when attempting to implement structurally typed sum types or
more complex representations generically[45]. The complexity is caused due to Accelerate’s Elt

class requiring a direct mapping to the Haskell equivalent. Each deduplication decision must also be
represented on both the value-level and type-level, rather than just the type-level. The translation
layer remains essential for embedded languages, but can be implemented with the help of a standalone
implementation. Operating directly on embedded types results in a more targeted and adaptable
implementation.
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3.3.3 Framework

A particular composition of types is enforced through a GADT, as stated in section 3.2.4. As such
a type can only have three cases; the empty type () , the primitive type a and the composed type
(a, b) . An initial attempt would be to traverse the structure and apply a function to each primitive
type. It means we need a function that discriminates between primitives types at the value level. In
most embedded languages this is possible, as the abstract syntax tree itself is represented through a
GADT.

Traversing A generic way to apply a function on each primitive type is hard to define. Each pattern
match will refine the type further, which means we need a function that operates on multiple types.
When passing a polymorphic function to a higher-order function it is not instantiated on the refined
type, but on the surface type, which means we cannot apply it. A solution is to explicitly limit the
scope of type variables, such that the instantiated type variable is local to each application.

A generic traversal of a structure is extremely powerful and the first step to a datatype-generic
implementation. The next step is traversing over the concrete values of a structure, which is only
slightly more difficult. Including an expression with the same type as the structure will refine both
the expression and the structure when pattern matching. It allows for functions to operate on fields
within the datatype individually, but is restrictive in that it does not take in account the hierarchy it
exists in. A more involved traverse function makes available how a primitive type can be inserted and
retrieved from the structure.

The Retrieve function recursively accumulates the further we traverse into the structure. The
Insert function is slightly more involved, as it is recursive on the composed value. Normally this
would just be the input expression, but we are operating on the structure and do not have direct access
to the actual expression. Fortunately the Retrieve function is available to construct the expression to
that point, which make the traversal function quite simple and compact. To summarize, the traverse

function creates two functions for each field within a datatype. One to insert a primitive type into the
field, where the resulting expression will include the primitive type. The other to extract the primitive
type from the expression. The traverse function can be used for various datatype-generic functions.
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Intermediate The traversal function is the foundation for operating on two structures, required to
construct and deconstruct variant types. It is possible to create a mapping by traversing the other
structure, and finding a specific primitive value. This is both redundant and highly complex when
considering that values must be removed from the available mappings once they have been matched.
The intermediate representation of a list, also used for computing the type representation, only requires
a single traversal for each structure. On the value-level it requires an heterogeneous list with all the
different primitive types. For this we use existential types, which allow type variables to be hidden
and therefore be stored together.

Normally existential types result in functions not being able to discriminate between the hidden
types. As the primitive types exist within a GADT, pattern matching on the primitive type will reveal
the type to the type system. A structure can now be constructed or destructed by folding over such a
list, but more importantly the fields can now easily be compared between structures.

Isomorphism The primary constraint is that the construct and destruct functions must be
isomorphic from each other. Both must map primitive types to the same fields, otherwise we cannot
retrieve the same data from the representation. It can be achieved by creating both mapping within
the same function, such that all mapping decisions are inherently isomorphic. This is trivial with the
Field type, as we have access to functions that can insert and retrieve the value. As example, a field
in the variant (A) is chosen to be mapped to a field in the union (B). The constructor can retrieve A
and insert B, while the deconstructor would retrieve B and insert A. Reinterpretation of the data can
be incorporated when the fields are of different types.

It does mean that the constructor v -> u might make different decisions than the constructor
u -> v , as decisions are made based from the perspective of one side. This is not a problem as
constructed types must always be deconstructed first. The union part of the decisions function is
allowed to have spare fields, as they are the undefined fields within an union.

Steps To avoid a local optimum in the representation several iterations must be done within the
decisions function. A matching function determines whether there exist a mapping between two
fields, and returns the functions that transform between the two primitive types. This makes the
decision function extensible, as long as the user specifies the relation between two fields. Matching
functions can be provided in order of preference. An implementation can in some cases be made more
efficient by sorting before matching, but this reduces the generality of the function. Some cases might
require a custom decisions function, such as inserting multiple fields into a single field. In general
the implementation should be tailored to the implementation language.
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4 Implementation

In section 3.2, type-level programming was used to generate efficient representations for variant types.
In section 3.3, mappings between representations are automatically created with datatype-generic pro-
gramming. It is sufficient to represent the initial sought after abstraction around variant types. A
collection can utilize the abstraction to represent variant types efficiently, depending on the circum-
stances.

While the implementation is heavily tailored to Haskell, it is possible to implement such a framework
natively within a language. This chapter centres around implementation details specific to Haskell and
Accelerate. In section 4.1 Accelerate related details are explored, while section 4.2 discusses the
concrete implementation of polymorphic variants. Section 4.3 revisits the performance considerations
of chapter 2 and benchmarks the different approaches while maintaining the high-level abstraction.

4.1 Algebraic Data Types in Accelerate

Accelerate is a data-parallel array language deeply embedded within Haskell. An abstract syntax
tree (AST) is created through Accelerate functions, which is subsequently transformed and optimized
during the code generation phase. This greatly improves useability, as it can function as an Haskell
library, at the cost of executing code within another runtime system. A downside is that the garbage
collector of Haskell can negatively affect the performance[47]. For the code generation, a type-safe
interface to the compiler infrastructure LLVM facilitated the creation of two backends: GPU and
multi-core CPU’s[29]. The backends can be used to execute a small set of collective operators in
parallel; such as map , fold and stencil . The canonical example used to demonstrate Accelerate
code is the dotp function, which computes the dot product of two arrays of floats.

Fusion The fixed set of collective operators guarantee a consistent application of data-level paral-
lelization. It in addition allows for these collective operators to be heavily optimized in isolation,
but also in relation to other collective operators. A naive implementation of dotp will create an
intermediate array for the results of the zipWith function[30]. Fusing these operations will eliminate
an iteration and the intermediate array, at the cost of potential register pressure. Accelerate always
fuses collective operations where possible, unless the fusion introduces duplicate work or the compute

function is explicitly called. For the dotp example there is no duplicate work, and will therefore be
fused together.

ADT Datatypes must be lifted from their surface-level representation into the AST of Accelerate.
This is done with the Elt class, discussed in section 3.2.2 and 3.2.4, which is implemented for all
native types. The Exp datatype represents the embedded representation. As Accelerate is embedded
within Haskell, it can use Haskell’s ADT’s as surface-level representation for composite datatypes.
The notion of an ADT does not necessarily exist within the embedded AST. Accelerate resolves the
disconnection between surface and embedded representations through the use of pattern synonyms, a
Haskell extension. A pattern synonym can be seen as an external (de)constructor for a datatype. Before
discussing pattern synonyms further, pattern matching will be used to demonstrate the disconnection
between the surface and embedded representation.
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Pattern Matching Accelerate is deeply embedded within Haskell, which means a program effec-
tively constructs an abstract syntax tree at the runtime of Haskell. Pattern matching occurs while
constructing the abstract syntax tree, which means we are effectively trimming the tree rather than
extending it. Stated more generally it is not possible to represent choice elements within a deeply
embedded representation through the surface representation. Explicit control flow is possible but
Accelerate circumvents the restriction altogether by explicitly defining all choice elements within a
datatype. When encountering a datatype with multiple variants, the surface-level function is repeat-
edly evaluated on a dummy type which contains the corresponding choice element. The function only
matches on the dummy type with the corresponding tag, which mean all embedded branches can be
obtained. This is possible as pattern synonyms do not have to be isomorphic and the stub type is
ignored within the Accelerate compiler. As pattern matching cannot be overloaded in Haskell, the
match operator is used to generate all choice elements recursively[31].

Pattern Synonymns As stated, a pattern synonym can be seen as an external (de)constructor
for a datatype. A pattern synonym can been pattern matched against, which mean they can act
interchangeably to a regular datatype. Accelerate uses this functionality to simulate ADT’s, with the
corresponding embedded representation. As pattern synonyms cannot share their name with their
surface type an underscore is used to denote the difference. A limitation is that the compiler cannot
prove the cases to be exhaustive, but completeness can be annotated with a compiler pragma. An
example of a pattern synonym is Just , which is used in the fmap function.

It can be tedious to define pattern synonyms for all user defined datatypes, which is why Accelerate
uses meta-programming to generate (de)constructors for surface ADT’s at compile-time. Pattern
synonyms can be extremely powerful and can be used to create a polymorphic constructor for our
polymorphic variant type. Rather than a nominal constructor we use the position in the sum type,
which can be statically constrained to be below the number of variants. It can even be defined through
a type-level natural number, but this requires type annotation for each use. For useability the pattern
synonyms Con0, Con1,... are defined to avoid the need for explicit type annotations.

In some cases it might be preferable to have a descriptive name, which can be done by creating
a new pattern such as pattern Nothing = Con1 () . This will work on all sum types that have
() as second data constructor, which one might consider to comprise type-safety. The type can be
constrained to only work for Variant Compact [a, ()] , but there cannot be any distinction between
types that are composed similarly due to structural typing. A solution is to explicitly define a new
datatype and derive all functionality through the variant type.
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4.2 Result

There are no setup requirements for using the variant type within Accelerate code. Concretely, it is
sufficient to use the Variant type constructor and the Con0, Con1, Con2... data constructors.
The expected behavior is that of a traditional sum type, where pattern matching happens on the
current active variant. The intersect function discussed within the introduction only has to be written
once, irregardless of any low level optimizations. These optimizations include a variant type collection
with multiple representations, multiple memory representations and efficient (de)constructor of variant
types. The Primitive and Intersect function, discussed in the introduction, can now be defined.

Memory Representation The Compact type already deduplicates primitive types of the same
size, which makes the memory representation of Primitive already quite compact. A more aggressive
approach is to deduplicate on larger fields, which requires defining a type with the kind [*] -> r .
Such type can be defined through pre-existing type-level functions, which can then be used as layout
for all variant types. The datatype-generic constructors adapt independently to the derived type and
resort to truncation when deconstructing these fields. As such, the intersect function does not have
to adapt to a memory representation optimization.

(De)constructor The Variant type uses a single tag to represent the active variant, which is used
by the Case operator to pattern match. This is often quite performant, but in some cases it can be
preferable to unconditionally execute a function. The Maybe type can always unconditionally exe-
cute, as the Nothing constructor does not have any fields. This is impossible with variant types that
deduplicate fields, as unconditionally executing would impact used fields. With the datatype-generic
functions a bitmask can be unconditionally generated, which masks side-effects of all uncondition-
ally executed functions. Rather than integrating this within the Variant type, it can be used as
replacement for the pattern matching match operator.

Collection The datatype-generic functions allow for a collection of Primitives to be completely
agnostic to the representation. For a variant-wise collection pattern matching is redundant, which
means to be effective all control-flow paths of the intersect function must be extracted. Pattern
matching will effectively occur on the Haskell side, which is trivial due to embedded pattern matching
already making choice elements explicit. Distributing the intersect function over multiple arrays,
within a collection of Primitives , can therefore be done. With this many collective operations can
be supported, including ones that modify the identity of such a collection. These collective operators
are currently not implemented beyond the necessary operators to support benchmarking.
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4.3 Benchmarks

A concrete performant way to operate on multiple variants was not the objective in its own right.
As discussed in section 2, many components would be able to dictate the viability of a concrete
optimization. In this section previously discussed optimizations are benchmarked, to demonstrate
the viability of the abstraction around variant types. The benchmarks will be done with the Criterion
Haskell library, and will utilize both the multi-core CPU and GPU backend of Accelerate. Benchmarks
will be run on an Intel Core i5-10600KF CPU and a NVIDIA GeForce RTX 3060 Ti GPU.

Nearest The nearest function, the original motivating example, computes the nearest primitive
that intersects with a ray. The type of primitive include spheres, planes and triangles. The Möller-
Trumbore algorithm[34] is used for the triangle intersection, while the plane and sphere use the obvious
intersection algorithm. In the benchmarks, a comparison is made with and between variant-wise
collections. The split category uses multiple functions for each primitive, and combines the results after.
The join category uses a single function, but branches on the index to determine the concrete primitive
which is intersected with. The element-wise collection are either randomly distributed or the primitives
are grouped together to exploit potential coherence. The compact representation deduplicates fields of
equal size or smaller size, through the framework established in this thesis. The benchmarks were run
on 3000 equally distributed primitives, where the time in milliseconds is the average of 1000 samples.

Primitives: 3000 CPU GPU
Variant-wise split 4.76 ms 1.11 ms
Variant-wise joined 4.17 ms 0.74 ms
Random element-wise 4.32 ms 0.77 ms
Sorted element-wise 4.32 ms 0.77 ms
Compact random element-wise 2.70 ms 0.64 ms
Compact sorted element-wise 2.70 ms 0.63 ms

As seen in the results, the overhead of running multiple functions appears to exceed the cost of the
branch on the primitive. Scaling the amount of primitive intersection would give a more conclusive
answer to whether it is actually faster and if the overhead can be recouped.

Primitives: 300000 CPU GPU
Variant-wise split 5.06 ms 1.73 ms
Variant-wise joined 4.69 ms 1.10 ms
Random element-wise 5.01 ms 1.12 ms
Sorted element-wise 4.86 ms 1.10 ms
Compact random element-wise 3.47 ms 0.98 ms
Compact sorted element-wise 3.39 ms 0.95 ms

While it appears to recoup slightly for the multi-core CPU backend, the difference becomes larger
for the GPU backend. In general, the element-wise collections heavily benefit of the reduced memory
footprint of the compact representations. A surprise is that this does not translate to the joined
category, which inherently uses the least amount of memory possible. A possible explanation is that
the non-contiguous memory and not being able to pattern match diminish the obtained benefit of
using less memory. This would also explain the discrepancy between multi-core CPU and GPU, as
the difference is less significant on the GPU. The large difference between the devices themselves can
be most likely attributed to the inability of the CPU backend to vectorize the intersection algorithm.
This is unsurprising, as the control-flow within the individual intersections algorithms is complex
and contains branches. The coherence of grouped primitives also has a minimal influence, which is
likely a side-effect of the already unpredictable control-flow. In summary, the framework but more
specifically the deduplication algorithm appears to be useful and can be applied without changing
existing architecture.
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5 Discussion

In this paper some fundamental choices have been made without extensive argumentation. This chapter
is used to highlight these choices and provide further reasoning for the choices that have been made.
It also highlights some limitations of the framework and ways these potentially can be resolved.

5.1 Non-variant types

In the preamble obtaining low-level control for datatypes in general was discussed. The obtained
method for variant types can be extended to product types, as it is effectively a simpler problem
space. Rather than deduplication, different padding strategies can be used to create multiple memory
representations on the type-level. The datatype-generic programming must be adapted to facilitate
padding, which has already been previously discussed. Ergonomic switching between representations
can be achieved with a similar higher-kinded type constructor as Variant .

5.2 Embedded Domain-Specific Language

Libraries and domain-specific languages that are embedded construct their user-defined-types through
the host-language. A shallow embedding operates directly on types native to the host-language, while
deep embeddings construct an abstract syntax tree that is later evaluated. The latter offers flexibility
on how user-defined types are implemented, as types exist both on the surface level and as construct
within the abstract syntax tree. There are several approaches, which have been subject to research in
the domain of circuit design.

� CλaSH is not deeply embedded and operates on user-defined types through generics[3].

� Hydra has the deep embedding constructs nested into the shallow embedding constructs[38].

� Kansas Lava has both embeddings exist in parallel under an encasing type[19].

� ForSyDe has both embeddings exist separately as standalone types[40].

An observation is that user extendability is limited on deeply embedded constructs as execution
models must be updated. A proposed approach is to have a small deeply embedded core language that
only supports constructs that are relevant for combinatorial optimizations[44]. The shallow embedding
can be used to create an extensible and user-friendly interface to this core language. In the context
of data-parallel applications and variants this leans itself to an implementation in the host-language.
This distinction is irrelevant for languages that are not embedded in other languages.

5.3 Datatype-generic programming in Haskell

Current Accelerate derives the Elt class generically through Haskell’s native datatype-generic frame-
work. It traverses the structure of the datatype, for each layer providing both the type and the trans-
formation. As these are intrinsically linked, deduplication must be represented both on the value-level
and type-level. The Recursive Tagged Union[45] uses this approach, which proved to be problematic
and complex. One concern was that replacing the Elt class was considered to be a too invasive of an
operation[45]. This means the Elt class must be derived from the implementation class, which limits
user extendability. It is also not possible to sort the types on the type-level, as closed type families
do not have an intrinsic link to its value-level construct. An implementation that is fully modular and
extendible on both the value-level and type-level prevent these complications. Explicit derivation of
the Elt class is also not required, as the sum type itself is effectively a polymorphic datatype that
implements the Elt class.
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5.4 Limitations

The framework has some limitations, either in general or specific to the implementation in Accelerate.
Within this section limitations will be discussed (further).

Surface type As polymorphic variant types do not exist in Haskell, it is not apparent what the
corresponding surface type should be. Currently the raw memory representation is used, which might
sound more problematic then it really is. It means (de)constructing the variants must be done in
the Accelerate code, rather than Haskell. A solution can be to make a direct mapping to an existing
extensible or open sum library.

Nested pattern matching Since tags are statically determined for each type individually, nested
pattern matching is not trivial. Currently the datatype TagR is used, where Just (Just a) is rep-
resented as TagRtag 1 (TagRtag 1 (TagRsingle a)) . Pattern matching on the first Just would
remove one layer, and the rest is propagated along.

An important detail is that these tags are generated statically, for all possible permutations. In a
type with deduplicated fields the nested datatype is not necessarily available, as it might be constructed
through different fields. As the TagR is constrained to the same structure as the encapsulating type,
it is not possible to list all possible permutations through the TagR type. A solution is to just lose
the constraint on the TagR type, and allow for more flexibility. As the TagR type is integrated with
the Elt class, a change would require some changes to existing Accelerate code.

Unified tag An extension of the previous discussion is the use of a single tag, for multiple nested
tags. It involves operations to extract and construct the tag, which can be computationally expensive.
Currently the deduplication algorithm has no knowledge of tags at all, and sees them as any other
field. An implementation would complicate both the deduplication process and automatic derivation
of (de)constructors. A temporary solution would involve simply flattening the sum type, which would
also be more performant in the general case. Another solution would be to change perspective and
argue tags are datatypes with a fixed size depending on the amount of choices they represent. Both
the type-level and datatype-generic part could handle tags as any other fields, and can upscale them
to an existing datatype.

Struct While it possible to derive struct-like memory representations, Accelerate does not (yet) have
the instructions to insert and extract those values. As primitive types are implicitly distributed over
multiple arrays, there is no need to operate on a type within a larger type. It in addition does not
allow types existing outside the predefined types, which means memory representation is limited to
that set of types. A solution would be to add an (untyped) type with a variable size and corresponding
instructions to extract (aligned) data.

Compilation Speed As type-level programming is done statically, it puts additional strain on the
compilation speed of programs. This might become apparent in larger projects, where statically resolv-
ing many interactions might become too costly. It also exists for the datatype-generic programming
part, as data (de)constructors might recompute the mapping each time. Strictly speaking it can be
optimized away, but this might not always be obvious to the compiler. This is less of an issue for
embedded languages, as it occurs while constructing the abstract syntax tree.
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6 Conclusion

The first research question of this thesis was:

How to obtain low-level control that is applicable for high performance computing, while
preserving the higher-abstraction surface representation?

Answering this required understanding performance implications of low-level optimizations, an
exposition of relevant considerations was therefore done in the first chapter of this thesis. The im-
portance of contiguous memory allocation, cache efficiency, access patterns and influence of branching
was demonstrated. Due to the inability to derive an efficient solution from a mere theoretical frame-
work, the flexibility of representations became prominent in the task to capture low-level control. This
thought was used for answering the second research question of this thesis:

What is the conceptualization of a higher-abstraction variant type, which can exercise the
obtained low-level control within in a data-parallel environment?

A polymorphic variant type was used, which is able to represent both element-wise and variant-
wise collections. It also gave the opportunity to use type-level programming for a deduplicating
algorithm for variant types, which can be extended by the user. Datatype-generic was successfully used
to create isomorphic mappings between datatypes, which made data (de)constructors independent
of the concrete memory representation. As such a fully modular framework has been established,
which can capture various low-level optimizations through a higher-abstraction variant type. An
implementation was realized in Accelerate, an embedded domain-specific data-parallel language in
Haskell, which demonstrates the viability of the established flexibility. Concretely, the low-level control
of the second research question has been obtained through polymorphic variant types that are flexible
in their memory representation. It creates the foundation for answering the first research question,
where low-level control has been established through type-level and datatype-generic programming.

6.1 Future Work

Within this thesis a notable focus was the performance of predictable non-uniformity, which is data
that is not dependant on a previous computation. Exceptions in particular are not predictable, and
as such must use an element-wise collection. It can be more performant to effectively filter out the
exception states, that is the transform from an element-wise collection to an variant-wise collection.
It would require a performant data-parallel grouping algorithm, which is not trivial to implement and
as such subject to future research. It can be categorized together with other applications that can
potentially accelerate operations in specific use case, such as task-parallelism.
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