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Part B – Scientific proposal 

B.1  BASIC DETAILS 

B.2.1 Title 

Investigating effective filter criteria for functional variant discovery  
of inborn errors of immunity in whole exome sequencing data 

B.2.2 Abstract 

This proposal aims to enhance the discovery of disease-causing variants in whole exome sequencing data 
from undiagnosed patients, addressing existing analytical challenges and proposing a standardized pipeline 
for increased discovery of new inborn errors of immunity (IEIs). Currently, the International Union of 
Immunological Societies (IUIS) Expert Committee recognizes only 485 IEIs. These IEIs are utilized as gene 
panels for variant detection in new patients. However, only 46% of severe immune response cases are 
diagnosed through Next Generation Sequencing (NGS), indicating that there are still unknown IEIs. The 
diverse criteria used in current NGS analysis pipelines, coupled with the absence of a universal standard, 
underscores the need for a standardized approach. The proposed pipeline utilizes data from GTEx, gnomAD, 
and dbSNP, employing an incorporated and sequential filtering process at allele, gene, and protein levels. 
This prioritizes variants by allele-specific filtering based on quality, location, MAF, CADD score, mutation type, 
and coverage, followed by gene-specific criteria, such as expression and conservation, and concludes with 
variant effect prediction to assess the functionality of the protein with the given variant. By prioritizing 
variants according to predefined criteria, this pipeline offers the potential to uncover new IEIs, allowing the 
in-depth characterization of the mechanisms of immune diseases and facilitating accurate diagnosis and 
treatment for patients. 

B.2.3 Layman’s summary 

This research proposal aims to make it easier to find out what is wrong in the genes of people who get sick a 
lot due to infection. Right now, scientists know about 485 mistakes in our genes that can cause immune 
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system problems. But, when they use a special way to read our DNA, they can only find the cause in about 
46% of the cases. This means there might be more hidden gene mistakes that we do not know about yet. The 
way scientists are trying to find new mistakes is not universal. Scientists are producing their own method of 
finding new mistakes and sometimes they do not communicate what method that is. This project suggests 
creating a method of analysing the DNA data, so, that all scientists can use it to find new mistakes in genes 
that affect the immune system. The problem is, is that these mistakes are present in a really big pile of data. 
Imagine you need to find one gold rice kernel in ten bathtubs of white rice kernels. To filter out most of the 
white rice, it is important to use a systematic approach. Via this new method, scientists will look closely at 
our DNA to check for mistakes and use information from genetic databases to filter out irrelevant mistakes. 
Then, the method checks for specific genes linked to our immune system. Finally, scientists will use prediction 
tools to see if the mistakes make the protein become toxic to the body. This step is like making sure the rice 
kernels they find matter. If this whole method works well, it could help scientists find new gene mistakes and 
give doctors better information to help sick people get the right treatment. 

B.2.4 Keywords 

Whole exome sequencing; single nucleotide variant calling; inborn errors of immunity; functional variant 
detection; data analysis pipeline 

B.2  SCIENTIFIC PROPOSAL 

B.2.5 Research topic  

Inborn Errors of Immunity 

Inborn Errors of Immunity (IEIs) constitute a heterogeneous group of medical conditions caused by genetic 
mutations in a single gene, resulting in an increased susceptibility to severe infections, immune 
dysregulation, autoimmunity, and malignancy. With a prevalence ranging from 1 in 1000 to 5000 individuals, 
these encompass diseases categorized into Primary Immunodeficiency Diseases (PIDDs) and Primary Immune 
Regulatory Disorders (PIRDs) (Baloh & Chong, 2023). PIDD is diagnosed when the predominant feature is 
recurrent severe infections, whereas PIRD is diagnosed when there is an immune dysfunction. Within these 
disorders, there are multiple categories of diseases, all caused by different IEIs. Given this extensive genetic 
diversity, IEIs pose a significant challenge for accurate diagnosis and proper patient counselling.  

The International Union of Immunological Societies (IUIS) Expert Committee has recently updated the 
catalogue up to 485 inborn errors of immunity, involved in over 400 distinct disorders (Tangye et al., 2022). 
This increase is due to the improved detection of new genetic variants. The introduction of next-generation 
sequencing (NGS) has revolutionized the field, leading to an increased identification of IEIs (Rawat et al., 
2022). In 2019, the IUIS catalogue consisted of only 430 IEIs, increasing the discovery with almost sixty genes 
last four years.  

Within NGS there are two subtypes currently used in research and diagnostics to discover new IEIs. Whole 
genome sequencing (WGS) sequences all DNA of the patients, including introns and exons of all 
chromosomes. Whole Exome Sequencing (WES) only sequences the exonic regions of the patient's DNA, 
focusing only on the protein-coding regions of the genome. In diagnostic settings, WES is applied as it is more 
cost-effective than WGS. Although these approaches have shown promising results in identifying new 
disease-causing genotypes, challenges in data analysis remain, as there is no universal golden standard for 
variant detection.  

IEIs gene panel confines diagnosis of patients with immune disorders 

Despite identifying 485 IEIs, a substantial number of patients remain undiagnosed following severe immune 
responses. These individuals evade clinical diagnosis as no mutations are detected within the established 485 
IEIs. In the early days of the WES, only 30% of individuals could be diagnosed with an immunological disorder 
(Lye et al., 2019; Schwarze et al., 2018). However, this figure has increased over the years due to improved 
analysis methods. Despite these advancements, not all patients receive a molecular diagnosis. For example, 
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WES analyses on children with sepsis yielded diagnoses for only 38 out of 176 patients (Borghesi et al., 2020), 
and in individuals with symptoms of monogenic autoinflammatory disease (AID), only 26 out of 125 patients 
could be molecularly diagnosed (Poker et al., 2023). Even reanalysis of undiagnosed patients with the 
recently updated IEI gene panel resulted in only a modest increase of five per cent of the included 94 patients 
(Mørup et al., 2022). 

A 2019 review estimates the diagnostic yield of NGS for patient diagnosis lies within a range of 15% to 46% 
within mixed PIDD groups. In specific subcategories, the data shows uneven distribution but more favourable 
yields, ranging from 30% to 79% (Yska et al., 2019). Noteworthy considerations for this low yield include 
sequencing biases, where certain bases experience inadequate coverage, and challenges arising from 
incomplete gene sequencing due to the presence of pseudogenes or high GC content. Nevertheless, the 
limited number of known IEIs suggests the existence of other yet undiscovered IEIs.  

Variant analysis pipelines lack overarching filter criteria for proper functional variant detection 

The analysis of genetic data includes a multitude of approaches, highlighting the absence of a standardized 
set of criteria. Within the WES pipeline, various methods are employed on the generated data by exome 
sequencing. The standard WES pipeline encompasses quality filtering, adapter removal, reference genome 
alignment, variant calling, copy number variation (CNV) detection, and variant effect prediction. Studies 
performing WES lack a clear description of their WES methodology or refer only to specific guidelines without 
noting any deviations (Yska et al., 2019). This lack of clarity poses challenges for the reproducibility of results 
and the establishment of explicit criteria for variant detection. 

Interpreting Variant Call Format (VCF) files generated by WES poses significant challenges due to the large 
number of variants present in the human genome. The vast number of rare or novel variants is estimated at 
six hundred thousand per person, present across an individual genome (1000 Genomes Project Consortium 
et al., 2015). On average, a WES analysis yields between 20,000 and 23,000 variants per individual (Kremer 
et al., 2018). To manage this complexity, various metrics have been developed to filter out the majority of 
variants. In the following sections, the current metrics used for analysing WES data, including those applied 
at the variant, gene, and protein levels will be discussed. 

Filtering on allele level 

Currently, the found variants yield from a WES analysis are annotated with their minor allele frequency (MAF) 
from public databases, such as gnomAD (Karczewski et al., 2020), the Combined Annotation Dependent 
Depletion (CADD) score (Rentzsch et al., 2019), Gene Damage Index (GDI) (Itan et al., 2015) and protein 
function prediction tools such as PolyPhen-2 and SIFT. Although these annotations add value in filtering out 
functional variants, different filtering metrics are applied in research without proper clarification. An example 
is the MAF, which is the frequency at which the less common allele occurs in a specific population. Recent 
papers are filtering the MAF between 0.2 and 0.8 for heterozygous variants (Shaomei et al., 2022), whereas 
<0.01 for homozygous/hemizygous and <0.0001 for heterozygous variants are used as well (Borghesi et al., 
2020). This discrepancy shows an additional reason to figure out the best filter criteria for discovering new 
IEIs, as it depends on the type of disease being investigated. A more prevalent disease has a higher MAF, 
compared to a rare disease. Since this proposal is aiming for discovery, the MAF should not be set in stone. 

Additionally, the CADD framework is used to integrate diverse genome annotations and scores of known 
single nucleotide variants (SNV) or small insertions/deletions (indel). The CADD is a method that measures 
the deleteriousness of a certain variant, which is correlated with its functionality and pathogenicity. The score 
can be used to prioritize variants based on deleteriousness (Kircher et al., 2014; Rentzsch et al., 2019). Certain 
variants are highly penetrant contributors to the population or are the cause of severe Mendelian disorders. 
The CADD score makes a distinguishment between those two. The value of the CADD score is continuous that 
ranges from 1 to 99. A higher value indicates a more deleterious case (Niroula & Vihinen, 2019), whether the 
variant is more likely to be observed or simulated. However, this raw score does not have a unit of measure, 
but is merely a relative score, limiting comparison between variants. 
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In practice, the CADD score is applied as a scaled score, which ranks all found variants based on 
deleteriousness within a provided group, as a set baseline. Then, the variants are binned in order of 
magnitude, resulting in bins of 10%, 1%, and 0.1% representing CADD-10, CADD-20, and CADD-30 etc. The 
negligible difference in scaled CADD scores between variants ranking at the 25th percentile and those at the 
75th percentile of the raw score indicates that these percentiles do not significantly impact the interpretation 
of variant deleteriousness. This means that the slight variation in CADD scores between these percentiles 
does not substantially change the assessment of variant deleteriousness. Consequently, analysts can focus 
their attention on more meaningful distinctions in scaled CADD scores, such as those between variants in the 
top 10% and 1%, which carry greater significance in the assessment of variant deleteriousness (Kircher et al., 
2014; Rentzsch et al., 2019). 

Filtering on the gene level 

The Gene Damage Index (GDI) is a genome-wide, gene-specific metric that provides an efficient gene-level 
approach for filtering out false positive variants within genes highly affected in the general population. It 
correlates with evolutionary pressure, protein complexity, coding sequence length, and the number of 
paralogs, making it a reliable metric for prioritizing variants on a gene level (Itan et al., 2015). The GDI score 
is based on the comparison of the CADD score of each allele to the expected CADD score for variants with 
similar allele frequencies. Subsequently, the findings are standardized into a homogenized Phred I-score, 
offering a comparative ranking of each gene against others. A lower Phred score indicates a gene with a 
diminished likelihood of harbouring damaging variants, while a higher score suggests the opposite. Genes 
with high GDI scores typically experience reduced purifying selection pressure, potentially facilitating the 
retention of harmful mutations. Conversely, genes with lower GDIs tend to exhibit higher conservation across 
species, indicating their essential roles in fundamental cellular processes such as protein synthesis, immune 
response, protein degradation, and gene regulation. These genes undergo stronger purifying selection, 
minimizing the persistence of harmful mutations compared to the average human gene (Alyousfi et al., 2019; 
Itan et al., 2015). 

Variant effect prediction 

After these metrics are applied and filtered, there are still variants left that may be disease-causing variants. 
With variant effect prediction (VEP) methods, the variated amino acid sequence can be assessed whether 
the variant causes a different effect in the protein. There are multiple methods recently reviewed (Horne & 
Shukla, 2022), where they presented the SIFT (sorting intolerant from tolerant) algorithm as one of the 
universally used VEPs. However, SIFT is outperformed in metrics of deleteriousness, pathogenicity, and 
molecular functionality. Meyts et al. (2016) theorized that stop mutations either up- or downstream in the 
gene can still result in a functional protein. They elaborate that the function of a protein can still be 
persevered when the stop mutation is sufficiently downstream. When this stop mutation occurs in the 
upstream region, reinitiation of the translation may overrule the new stop codon, or via alternative splicing 
the variant can be bypassed, which may result in a functional isoform (Meyts et al., 2016). However, using 
the CADD score alone would leave the analysis pipeline biased.  

Recent developments of AlphaFold’s AlphaMissense can add additional validation of the found variants. 
AlphaMissense is an adaptation of AlphaFold to predict missense variant pathogenicity on human and 
primate variants in protein sequences, based on population frequency databases. In comparison to 
AlphaFold, AlphaMissense does not predict the structure of molecules but instead predicts pathogenicity as 
scalar values. Additionally, AlphaMissense outperforms both SIFT and CADD in distinguishing likely benign or 
pathogenic (Cheng et al., 2023). Other methods are known that are not discussed here. The lack of ultimate 
methods for VEP adds a reason why a standardized discovery pipeline is necessary.  

Proposing a standardized discovery pipeline for inborn errors of immunity 

In summary, the lack of standardization of filtering criteria raises the risk of overlooking potentially disease-
causing variants. In the dynamic landscape of IEIs, the list of identified IEIs is expanding annually (Bousfiha et 
al., 2020; Tangye et al., 2020, 2022). Still, more than half of the patients with severe immune responses 
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remain undiagnosed. The challenge for these patients lies in the fact that the detected genetic variants in 
patients’ DNA do not align with the existing catalogue of IEIs of IUIS, emphasizing the need for a more 
nuanced and comprehensive approach to variant detection and classification. This proposal aims to 
investigate and design an improved functional variant discovery pipeline of WES data to discover new inborn 
errors of immunity and aid the vast majority of unexplained immune responses in patients. 

Aim 

Developing an innovative approach for functional variant detection in whole exome sequencing data to 
discover previously unknown inborn errors of immunity. 

Objectives: 

(1) Evaluate and select methods for functional variant detection in whole exome sequencing data of 
patients with IEI. 

(2) Develop a pipeline for functional variant detection in whole exome sequencing data of patients with 
IEI. 

(3) Phased validation of the developed pipeline with the diagnosed disease group, the control group, 
and the undiagnosed disease group.  

B.2.6 Approach 

Objective 1. Literary review  

Goal: Evaluate and select methods for functional variant detection to discover new inborn errors of 
immunities in whole exome sequencing data 

The primary goal is to evaluate and select methodologies for functional variant detection in whole exome 
sequencing data by means of a review. This review will be written focussing on WES analysis in IEIs while 
keeping flagship papers about current WES filter criteria in mind. These papers cover CADD (Rentzsch et al., 
2019), MAF, and GDI. Moreover, standard protocols for WES analysis should be taken into account, such as 
the STAR Protocols standard WES analysis pipeline (Verrou et al., 2022). Additional papers will be sourced on 
PubMed by key search terms that could include: “whole exome sequencing,” “variant calling,” “variant effect 
prediction,” “variant filtering,” “inborn errors of immunity,” and “variant annotation.” The recent review on 
IEIs can be used as a guide to present the state-of-the-art findings of IEIs (Baloh & Chong, 2023). By using 
these search parameters, the aim is to identify the current approaches, methodologies, and filtering criteria 
that have emerged in recent years, ensuring that the review captures the latest advancements in the field. 
Apart from recent publications, the review will also draw insights from various sources used in WES analysis 
pipelines, such as gnomAD, dbSNP, and 1000G databases. Objective 1 will deliver the most useful metrics 
and their accompanying filtering criteria to be applied in the discovery of yet unknown IEIs. 

Objective 2. Pipeline development 

Goal: Develop a new pipeline for functional variant detection in WES data of patients with IEIs using variant 
prioritizing in a three-step approach. 

The second objective is to develop an efficient pipeline that culminates in an interactive application, requiring 
only a Variant Call Format (VCF) file as input. This discovery pipeline will be designed with default filtering 
criteria aimed at discovering novel IEIs while allowing for flexibility to be adjusted based on specific research 
needs. The evaluated filter criteria from Objective 1 will be used in the pipeline. The filtering in the pipeline 
is based on three key steps and is implemented subsequently. 

Comprising of several key steps, the pipeline refines the analysis process and prioritizes potential disease-
causing variants. Phase I involves standard in-house WES with adapter removal and read quality control, 
followed by variant calling using GATK Haplotype Caller. Phase II employs the systematic filtering existing out 
of three main filtering steps. In the first step, variants undergo filtering on allele level, incorporating 
annotations such as MAF, CADD scores, genotype quality, and coverage on identified variants. This step 
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targets the elimination of standard SNPs prevalent in the population. Additionally, mutation type indications 
are assessed, and only the relevant variants progress to step 2: gene-level filtering.  

Step 2 of the pipeline focuses on gene-level filtering, where it evaluates the mutation's location within the 
gene, with a specific emphasis on coding regions and splice sites. During this stage, the GDI is assessed for 
the genes in which the variants are present. The variants in genes with a high GDI level are then filtered out. 
This assessment provides valuable insights into the potential damage that the gene can do with the given 
variants. Simultaneously, the expression of the gene in provided tissues is examined based on the GTEx 
database (GTEx Portal), adding a layer of information to enhance the filtering process. 

Following this gene-level evaluation, the remaining variants proceed to the final filtering step. Here, the 
protein function will be assessed and the potential impact of implicated variants on the protein will be 
evaluated. To achieve this, we will employ the innovative tool AlphaMissense, known for its capability to 
distinguish between benign and pathogenic missense variants. Moreover, we enhance the depth and 
accuracy of this final filtering process through the integration of SIFT. These additional tools contribute 
further layers of analysis, providing a comprehensive evaluation of the variants in terms of their potential 
impact on protein function. 

The output of the pipeline is formatted into a tabular .txt file, ensuring clarity and simplicity in presentation. 
Each column in this file corresponds to a specific filtering step within the pipeline, clearly indicating whether 
a variant has passed the filtering step or not. This systematic arrangement allows researchers to easily 
navigate and comprehend the results, streamlining the identification and prioritization of novel IEIs. By 
presenting the data in a transparent and structured manner, we aim to empower researchers with a pipeline 
that not only excels in functional variant detection but also enhances the interpretability of the decision-
making process on the provided variants. This approach promotes the reliability and reproducibility of 
genomic analyses, fostering a more accessible and collaborative research environment and improving the 
discovery of novel IEIs. 

This objective requires are HPC environment, with a CentOS operation system, a minimal 16 physical cores, 
128GB of RAM and 1TB memory. The tools that will be used in the pipeline are singularity, FastQC, MultiQC, 
Trim Galore!, bwa, GATK, DeepVariant, bcftools, samtools, htslib, BEDTools, UCSC tools, R, python3. All tools 
will be installed as image, which is a container for each tool. This installation ensures version control and 
makes sure that the installation of other tools is not interfering with each other. Additionally, databases need 
to be integrated with the HPC environment. Required databases for this tool are gnomAD v4.0, dbSNP 151, 
GTEx, CADD v1.7, and the human reference genome GRCh38, which can be retrieved with wget. The advised 
files and required versions are presented in Error! Reference source not found.. 

Pipeline overview 

The flowing section will highlight the pipeline's steps with additional explanation. A visual representation can 
be observed in Figure 1. 

Phase I: WES Analysis 

Step 1: Variant Calling of SNVs and Indels 

The initial step of the pipeline involves variant calling with GATK Haplotype Caller, identifying SNVs, and small 
insertions/deletions (Indels) within the WES data. This process is crucial for pinpointing genetic variations 
that could contribute to inborn errors of immunity (IEIs). 

Step 2: Quality Control 

Quality control measures are implemented to ensure the reliability and accuracy of the subsequent analyses. 
This includes assessing the mapping quality, ensuring high-quality alignment of sequenced data to the 
reference genome, and evaluating the depth-of-coverage, ensuring sufficient sequencing depth for accurate 
variant calling. 

Step 3: Incorporate Databases 

https://gtexportal.org/home/
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The pipeline will incorporate databases from various sources, including gnomAD for MAF, dbSNP for known 
variants, and GTEx for gene expression per tissue, and CADD scores. The databases will be integrated in this 
pipeline, by saving each copy locally. 

The GTEx data retrieval offers flexibility through both direct download and API access and is freely accessible 
for research purposes. Specifically, via GTEx Portal API (2.0.0) the expression data will be sourced through 
their Data Endpoints, with in specific the Median Exon Expression. Furthermore, the recently updated CADD 
v1.7 (Schubach et al., 2024) will be integrated to annotate the deleteriousness of identified variants, for 
which a local version of CADD and the scoring scripts are stored. The dbSNPs are available as a zipped .txt file 
including all the known variants for easy comparison. In Error! Reference source not found. an overview of 
the databases/files used for this pipeline is presented. 

 

Phase II: Prioritizing and Filtering of Variants 

Phase II starts after the WES analysis and the annotation of the VCF file per individual with the data presented 
earlier. The next part will highlight each filtering step per allele, gene and protein level. This prioritization and 
filtering is a guide and will be adjusted based on the outcomes of Objective 1. Literary review  

Step 1: Allele Level Filtering 

The pipeline employs filtering criteria to refine the variant selection process based on allelic variants. This 
step mainly focuses on excluding the noise from the VCF file. The filtering starts with excluding variants with 
a low genotype quality, where the cut-off is determined based on the distribution across all variants’ 
genotype quality. Additionally, the MAF < 0.01 (1%) filtering step will focus only on the rare variants. The 
CADD scaled score will be applied and only the variants included in bin CADD-30 and CADD-40 will remain in 
the pipeline. Finally, the type of mutation will be selected, with a focus on missense and predicted loss-of-
function (pLOF) variants, such as nonsense or frameshift mutations.    

Step 2: Gene Level Filtering 

The remaining variants will continue in the gene prioritization with a focus on the location of the variant, the 
GDI and the gene expression values of the GTEx database. Categorizing variants based on their location within 
genes, being either coding sequences (CDS) or splice sites will aid in distinguishing relevant variants. The gene 
expression of each gene in which a variant is present will be retrieved from the GTEx Portal. With the immune 
domain in mind, the gene expression tissue will elucidate whether the gene and its variant are involved in 
the immune system. Finally, the GDI will be determined and exclude variants in highly conserved genes – 
variants with a high GDI score.  

Step 3: Variant Effect Prediction 

Table 1: Overview of the used databases and datasets in the discovery pipeline. 

Database Link 

gnomAD v4.0 https://gnomad.broadinstitute.org/downloads#v4  

dbSNP 151 https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/snp151.txt.gz 

GTEx v8 https://storage.googleapis.com/adult-gtex/bulk-gex/v8/rna-seq/GTEx_Analysis_2017-06-
05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz  

CADD v1.7 https://kircherlab.bihealth.org/download/CADD/v1.7/GRCh38/whole_genome_SNVs_inclAnno.tsv.gz  

AlphaMissense https://console.cloud.google.com/storage/browser/_details/dm_alphamissense/AlphaMissense_gene_hg38.tsv.gz  

https://gnomad.broadinstitute.org/downloads#v4
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/snp151.txt.gz
https://storage.googleapis.com/adult-gtex/bulk-gex/v8/rna-seq/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz
https://storage.googleapis.com/adult-gtex/bulk-gex/v8/rna-seq/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz
https://kircherlab.bihealth.org/download/CADD/v1.7/GRCh38/whole_genome_SNVs_inclAnno.tsv.gz
https://console.cloud.google.com/storage/browser/_details/dm_alphamissense/AlphaMissense_gene_hg38.tsv.gz
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The pipeline leverages protein prediction tools, including AlphaMissense and SIFT, to assess the potential 
impact of identified variants on protein function. These tools enhance the understanding of how genetic 
variations may influence the functional aspects of proteins associated with IEIs. The VEP score of both tools 
will be included, and when both tools comply, the variant will continue to the last phase. 

Phase III: Output Format 

The last step of the pipeline involves presenting the findings based on the given filtering cut-offs in a tabular, 
human-readable format, encompassing essential information such as chromosome (CHROM), position (POS), 
reference (REF), alternate (ALT) alleles, gene, gene ID, exon, allele frequency (AF), CADD score, GTEx tissue, 
GTEx RNAseq expression, and function prediction. This organized output streamlines the interpretation of 
identified variants. We propose to add additional validation tags to each filtering step to see which variant 
passes which filtering step. An example could be that one variant passes the filter to be potentially disease-
causing by CADD, but not by AlphaMissense, then the analyst may decide based on the phenotypic 
characteristics of the patients whether the variant can be further investigated. 

Figure 1: Proposed novel pipeline for discovery of novel functional variants in Inborn Errors of Immunity. Phase 
I employs standard in-house Whole Exome Sequence analysis, followed by variant calling performed by GATK 
Haplotype Caller. Databases will be incorporated and variant effect prediction will be performed on the 
available variants. Phase II entails the prioritization and filtering steps existing out of three main steps, per 
allele, gene and protein level. Phase III presents the aimed human-readable output format for downstream 
analysis. 
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Objective 3. Validate pipeline with positive and negative controls 

Goal: To validate the efficacy and accuracy of the developed pipeline using a combination of internal and 
external datasets. 

The validation process of the discovery pipeline will be divided into three distinct phases, each dedicated to 
validating the detection of genuine variants, the absence of variants, and the discovery of novel variants 
(Table 2). Phase I focuses on examining VCFs originating from WES analysis of ten in-house patients diagnosed 
with IEIs, aiming to detect the same ten IEIs as positive control samples. This phase serves to identify real IEIs 
and establish a benchmark for detection accuracy. Moving to Phase II, the validation extends to 1000G WGS 
data with 30X coverage, devoid of any IEI history (Byrska-Bishop et al., 2022), providing robust negative 
controls for accurate differentiation between affected and unaffected individuals. Phase III introduces a shift 
towards exploration, involving 78 VCFs from undiagnosed patients exhibiting severe immune responses, 
thereby expanding the spectrum beyond the 485 IEIs of the IUIS gene panel. This step underscores the 
pipeline's capacity for uncovering potentially novel genetic markers or variants. Similarly, Phase IV delves 
deeper, by analysing 15 in-house whole blood samples of undiagnosed patients. These samples will go 
through the entire pipeline, including WES analysis, to enhance the discovery phase before practical 
application. Successful outcomes in each phase are indispensable for progressing through subsequent 
validation stages, culminating in the pipeline's deployment in research settings. 

Furthermore, a comprehensive statistical analysis will enhance the validation process. Receiver Operating 
Characteristic (ROC) curves will be employed to evaluate the sensitivity and specificity of the pipeline using 
the provided control samples, offering insights into its overall performance. The calculation of the Area Under 
the Curve (AUC) with a 95% confidence interval will provide a quantitative measure of the pipeline's 
discriminative ability during Phase I and II. Additionally, the assessment of false positive and false negative 
rates will offer valuable information on the precision and recall of the pipeline's predictions, ensuring a 
thorough evaluation of its effectiveness. This statistical analysis will complement the validation efforts, 
offering a comprehensive assessment of the pipeline's reliability and accuracy. 

B.2.7 Feasibility / Risk assessment  

Risk assessment 

The implementation of the proposed research pipeline introduces concrete risks that demand attention for 
successful execution and reliable analysis. Firstly, the OS version on which the pipeline runs poses a tangible 
risk of compatibility issues, potentially impacting performance and reliability. This risk is actively mitigated 
by selecting an OS version widely supported by computational tools and ensuring consistent use across the 
research team to enhance overall compatibility. Secondly, the risk of software compatibility and version 
control arises, where variations in software versions across bioinformatic tools can introduce inconsistencies. 
These risks pose a threat to the overall consistency and reproducibility of the results of the pipeline. By 

Table 2: Sample validation overview 

Phase Samples Required outcome to continue 

Phase I WES analysis, VCFs of 10 patients, diagnosed with IEIs Detecting 10 IEIs 

Phase II 1000G WGS 30X VCFs (exome variants only) No IEIs are found 

Phase III 78 VCFs of undiagnosed patients with severe immune 
response 

Discovery 

Phase IV  15 Whole Blood Samples of undiagnosed patients with severe 
immune response 

Discovery 
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regular updates and via version control of the filtering pipeline, the aim is to systematically track changes in 
the pipeline, mitigating these risks and ensuring reproducibility. Thirdly, this pipeline will rely on the public 
genetic variant databases, which poses a risk when these databases are no longer updated, or curated. When 
these databases are not available, or updated, the pipeline might no longer work in future settings. To 
mitigate this risk, it is essential to only include curated databases from well-known institutes, such as 
gnomAD, GTEx, and dbSNP (NCBI). Furthermore, the databases will be stored locally to prevent any 
unforeseen updates to online databases, making it able to run the pipeline when the databases are stored 
locally at any time. However, this mitigation requires a large amount of memory, which is something to keep 
in mind. At last, from the perspective of IEI’s heterogeneity, the genetic heterogeneity of IEIs may lead to 
challenges in establishing universally applicable filter criteria. This challenge can be solved by actively 
changing filter criteria and making the pipeline include state-of-the-art knowledge on the best criteria to use. 
Furthermore, this pipeline can anticipate the heterogeneity of the sample, as the filter criteria can be 
adjusted to specific cases.   

Feasibility 

The project requires in total of one and a half years to fully investigate the best filter criteria, develop the 
new pipeline, and validate it according to the presented process. A rough time sketch can be observed to 
indicate the projects timeline (Table 3). 

Concerning feasibility, this project requires an experienced researcher, i.e. Post-doc or analyst with prior 
knowledge of bioinformatic databases such as gnomAD, AlphaMissense, and GTEx. Experience in genetic data 
handling and experience in programming languages such as bash, python, R, Java and experience in working 
in HPC environment is required. Additionally, a medium understanding of the immune system and its 
pathways would aid the researcher in understanding the scope of the project. It is important that the 
discovery pipeline is a standalone tool/pipeline and can be used by other researchers after proper validation, 
where the filter criteria are set in a default setting but can be adjusted when needed. With these criteria in 
mind, the feasibility of this project is sound. 

Table 3: Timeline overview of the project. 

Objectives 

Year 1 Year 2 (half) 

Q1 Q2 Q3 Q4 Q1 Q2 

Objective 1: Literary Review       

Objective 2: Pipeline development       

Objective 3: Pipeline validation    Phase I Phase II + III Phase III + IV 

 

B.2.8 Scientific (a) and societal (b) impact  

Scientific Impact: A standard pipeline for functional variant detection may discover novel IEIs 

The presented pipeline presents an opportunity to establish a new standard in genomic variant analysis, 
revolutionizing the field of IEIs. By streamlining the discovery of novel IEIs, the pipeline holds potential to 
contribute significantly to the scientific community's understanding of IEIs. Moreover, the pipeline's capacity 
to potentially extend the list of involved genes in IEIs adds a valuable dimension to the understanding of 
immunological diseases. By increasing the list of IEIs, additional research can be conducted, aiding our 
understanding of immunological pathways, and fostering new avenues for targeted research and therapeutic 
interventions. 

Societal Impact: The discovery of more IEIs may improve patient diagnostics and aid patients further in 
genetic counselling, and access to appropriate therapies. 

The discovery of additional IEIs through our new pipeline can be significant for patient diagnostics and care. 
The pipeline aims to discover new IEIs, and with that, it increases the list of IEIs and their gene panels. This 
can lead to improved diagnostics and can lead to earlier intervention, positively influencing patient prognoses 



APPLICATON FORM (based on NWO Open Competition Domain Science – M) 

 

 

11 / 15 NWO-ENW v190703 

and enhancing their overall quality of life. In the medical domain, the ability to screen patients earlier for IEIs 
can potentially identify conditions before they manifest, facilitating timely and targeted therapeutic 
interventions. Furthermore, the genetic diagnosis provided by the pipeline can significantly aid patients in 
genetic counselling, enabling informed family planning and prenatal diagnosis. The pipeline's societal impact 
extends to ensuring patients have access to appropriate therapeutic options, marking a crucial step forward 
in personalized medicine and patient-centred care. 

B.2.9 Ethical considerations  

Ethical Considerations and Informed Consent 

Overseeing genetic data raises ethical concerns related to privacy, consent, and potential implications for 
patients, especially in cases of undiagnosed conditions. Adherence to rigorous ethical guidelines is imperative 
to address these concerns responsibly. The project will be held within the University Medical Centre Utrecht, 
which has a department of Bioethics & Health Humanities, which engages in the Research Ethics Committee 
in the UMC Utrecht (NedMec), whom we can approach for ethical consultation. Additionally, guidelines for 
ethical practices, informed consent, and data privacy will be designed in collaboration with the Research 
Ethics Committee.  

Data Management Plan  

The project will prioritize the development of a clear data management plan, acknowledging the importance 
of ethical and legal considerations. This plan will be crafted to align with the FAIR principles, emphasizing the 
data's Findability, Accessibility, Interoperability, and Reusability. The latter is of most importance, as the aim 
of this project is to develop a universal pipeline for the discovery of IEIs. Moreover, the proposal will be 
designed to comply with the regulations set by the General Data Protection Regulation (GDPR) of the 
European Union, ensuring the secure and responsible handling of personal and sensitive information. 
Standardized metadata practices, access controls, and comprehensive documentation will be elaborated on 
to elevate the project's transparency and collaborative potential and with that improve further discovery of 
new IEIs. 
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