
Improving neural network trojan
detection via network abstraction

Master thesis

by

Marcello Eiermann

For the M. Sc. Artificial Intelligence

at

Utrecht University

List of examiners and supervisors:
Dr. Dominik Klein, Assistant Professor, First examiner
Prof. Dr. Albert Gatt, Professor, Second examiner
Dr.-Ing. Vahid Hashemi, Audi AG, Thesis supervisor
Akshay Dhonthi Ramesh Babu, Audi AG, Thesis supervisor

i

Improving neural network trojan detection via network
abstraction

Marcello Eiermann

Abstract

Deep learning-based image recognition systems have become essential in a variety of
applications, including autonomous driving functions in vehicles. The increased use of
third-party datasets and pretrained models open up a new security risk, where any poten-
tial user cannot know if the data or model have been manipulated. Attackers can plant
a backdoor during the training phase by poisoning a part of the dataset with a trojan
trigger. The trojaned model behaves normally on benign inputs, but inputs that contain
the trigger will cause the model to intentionally select a wrong output. In the domain of
autonomous vehicles, an attack which causes an intentional misclassification of a road sign
could have fatal consequences. One of the methods for detecting neural network trojans is
Artificial Brain Stimulation (ABS) [20], which manually stimulates a neuron’s activation
value and observes the change in output activation values. We combine ABS with the
neural network abstraction tool DeepAbstract [1], which computes clusters and cluster
representatives, based on Input/Output similarity of neurons. Our strategy involves se-
lectively applying the ABS analysis on the subset of cluster representatives, to possibly
reduce the computational load and increase the detection accuracy. To assess the efficacy
of our method, we conducted experiments using the GTSRB dataset, trojaning multiple
models with six distinct triggers of varying visibility. We analyze two research questions:
Whether our method can lead to a runtime improvement compared to ABS, and whether
it can increase the detection accuracy. One model showed an improvement in stimulation
runtime, while the runtime of the other models remained equal. Our method consistently
yields superior or equivalent detection accuracy across all tested models compared to ABS.
At best, our method increased the reverse-engineered attack success rate score by 33% and
the number of detected trojaned neurons by 59%, demonstrating a clear improvement in
detection accuracy.

ii

Acknowledgements

I would like to express my gratitude to Akshay Dhonthi and Vahid Hashemi for the oppor-
tunity and their generous support throughout my time at Audi. Special thanks to Dominik
Klein for his valuable and insightful feedback on my thesis. Lastly, my appreciation goes
to Löıs Dona for diligently proofreading my thesis.

iii

Contents

1 Introduction 1

2 Theoretical background 4
2.1 Fully Connected Neural Networks . 4
2.2 Convolutional Neural Networks . 5
2.3 Adversarial neural network attacks . 8
2.4 Defense techniques against trojan attacks 11

2.4.1 Neural cleanse . 13
2.4.2 Artificial Brain Stimulation . 15
2.4.3 Other methods improving on ABS 18

2.5 Neural network pruning . 19
2.6 DeepAbstract . 20

3 Methodology 24
3.1 Method overview . 24
3.2 Preliminary neuron activation analysis . 26
3.3 Converting a CNN to a FCNN . 27
3.4 Reshaping feature output . 32
3.5 Adaptations to ABS . 33

4 Experimental Setup 36
4.1 Performance measures . 36
4.2 GTSRB Dataset . 37
4.3 Neural network architectures . 38
4.4 Model trojaning . 39

5 Results 43
5.1 Performance comparison . 44
5.2 Clustering rates . 47
5.3 Reverse engineered triggers . 47

6 Discussion & Conclusion 51

A Appendix 61

iv

List of Figures

2.1 Structure of a FCNN with 2 hidden layers [34] 5
2.2 CNN example architecture [28] . 6
2.3 Convolution operation [11] . 7
2.4 Poisoning-based backdoor attack [19] . 10
2.5 Stop sign with patch trigger [12] . 11
2.6 Feature space triggers . 11
2.7 Stealthy triggers . 12
2.8 Warping based trigger [26] . 12
2.9 Detection accuracy of Neural Cleanse based on the number of data points

used and the size of the trojan trigger [20] 14
2.10 Activation values of benign and trojaned neurons [20] 16
2.11 ABS output activation values [20] . 17
2.12 ABS elevation difference - possibly benign neuron (left) and possibly tro-

janed neuron (right)[20] . 17
2.13 ABS reverse engineered triggers [20] . 18
2.14 Clustering of neurons [1] . 21
2.15 DeepAbstract algorithm 1: Clustering [1] 22
2.16 DeepAbstract algorithm 2: Identifying the number of clusters [1] 23

3.1 Flowchart DeepAbstract + ABS approach with layer conversion 25
3.2 Flowchart DeepAbstract + ABS approach without layer conversion 26
3.3 Activation values of three selected neurons. Left: Clean inputs; Right:

Trojaned inputs . 26
3.4 Activation values of three random neurons. Left: Clean inputs; Right:

Trojaned inputs . 27
3.5 Converting the convolution operation to a fully connected/linear operation 28
3.6 Adapting ABS to utilize Cluster representatives in Conv layers 35

4.1 Example images of the GTSRB dataset . 38
4.2 Class distribution of the GTSRB training set 39
4.3 The nine triggers used in the ABS paper [20] 39
4.4 The six triggers used for model trojaning [8] 41

5.1 Predictions of a clean and trojaned model on clean and trojaned data . . . 43
5.2 Traffic sign with blue pixel trigger . 48
5.3 Reverse engineered triggers of the trojaned model, from original ABS 48

v

5.4 Reverse engineered triggers of the trojaned model, from our adapted ABS . 49
5.5 Reverse engineered triggers from the ABS paper [20] 49
5.6 Traffic sign with yellow L-shaped trigger . 49
5.7 Reverse engineered yellow L-shaped triggers 50
5.8 Reverse engineered triggers of the benign model 50

A.1 Class distribution of the GTSRB validation set 61
A.2 Class distribution of the GTSRB test set . 61

vi

List of Tables

3.1 Architecture of the LeNet CNN and its corresponding converted FCNN . . 30

4.1 Model architectures . 40

5.1 Average Accuracy and ASR of the models 44
5.2 Method performance [8] . 45
5.3 Number of detected trojaned neurons for each trigger type, comparing our

method with ABS . 45
5.4 Average metrics per model . 46
5.5 Performance at different clustering rates . 47

A.1 Full model architectures . 62
A.2 Full results of the experiments . 63

1

Chapter 1

Introduction

In recent years, deep learning-based image recognition systems have become essential in

various applications, including Advanced Driver Assistance Systems (ADAS) and Au-

tonomous Driving (AD) systems in vehicles, where they play a crucial role in recognizing

and interpreting road signs and signals due to their superior performance compared to

classical methods, such as support vector machines or histograms of oriented gradients

[7]. However, most state-of-the-art models require expensive hardware, large amounts of

training data, and long training times. To reduce the associated costs of training, many

users decide to utilize third-party datasets that are publicly available, rather than col-

lecting data themselves. It has also become common practice to use pre-trained networks

provided by third-party sources instead of training models from scratch. While these

approaches are convenient, they come with a downside: users can lose control over the

training process, which can make neural networks (NN) more vulnerable to security risks

[12]. One particular type of risk that has received attention in the literature is the insertion

of neural trojans into deep neural networks [37]. Through the contamination of training

data, backdoors can be inserted during the training phase [12]. Other types of attacks do

not need access to training data, but hijack inner neurons and perform limited retraining

with manipulated inputs [4]. The backdoored models perform ordinarily on normal input,

but when a benign input is combined with a trigger, such as a patch that is stamped on

2

a traffic sign, the model will intentionally misclassify the input to a specific output label,

often called target label [20]. In the domain of vehicles with ADAS/AD capabilities, the

intentional misclassification of a traffic sign carries profound implications, potentially lead-

ing to life-threatening situations for passengers and other road users. The significance of

this research lies in its direct relevance to the safety and reliability of autonomous vehicles,

aiming to mitigate the risks associated with neural network trojaning attacks.

Neural networks are, at their core, comprised of matrices that are interconnected with

a particular structure. The weights assigned to these matrices encode the network’s un-

derlying meaning, which can be entirely implicit [22]. Neural networks generally do not

provide a reasoning for their decision and the purely numerical parameters of a neural

network cannot be read and interpreted [22]. This makes the detection of backdoors in

neural networks particularly challenging. There are different approaches that aim to iden-

tify backdoors in neural networks. Artificial Brain Stimulation (ABS) [20] manually sets

the activation values of a specific neuron, while freezing the activation values of the other

neurons in the same layer and observes how the output values change. In theory, a tro-

janed neuron will behave differently to a benign neuron by having a much higher impact

on a specific output target label, while possibly suppressing the activation values of other

labels. However, this approach is computationally expensive. In order to increase the

efficiency of ABS we propose to combine this approach with the neural network abstrac-

tion tool DeepAbstract [1]. DeepAbstract feeds input images into the NN and clusters

neurons within the same layers based on similar input/output behaviour. K-means clus-

tering is used to determine these clusters and the cluster representatives, which are the

neurons closest to the center of their respective clusters. The method then removes all

neurons that are not deemed cluster representatives and creates a new, smaller network.

For our approach, we need to identify the cluster representatives and perform the ABS

analysis on this subset of neurons. We want to analyze whether this method can reduce

the computational load of ABS. This leads to our first research question:

Q1: Can activation-based abstraction effectively reduce the computational

3

load for analyzing neural networks using ABS?

We further want to analyze whether this approach can lead to an improvement in

backdoor detection accuracy. Therefore our second research question is

Q2: Does the utilization of activation-based abstraction lead to more accu-

rate results analyzing neural networks using ABS?

In order to implement our approach, we will need to adapt both DeepAbstract and

ABS. DeepAbstract currently only works with fully connected layers and ABS will need

to be utilized on only the subset of neurons that is determined by DeepAbstract.

The following chapters will present the necessary theoretical background, the proposed

methodology, the experimental setup and the results. Finally, a discussion and conclusion

will summarize the key findings and discuss limitations and future research possibilities.

4

Chapter 2

Theoretical background

This chapter will begin with a short explanation of fully connected neural networks and

an overview of convolutional neural networks and the convolution operation, which will

be essential in later chapters. Next, backdoor attacks and their different types will be

explained as well as two methods for detecting trojaning attacks called Neural Cleanse

and Artificial Brain Stimulation. The latter method will be the basis for this research,

as we will try to enhance it with our clustering-based approach. Finally, this chapter

introduces the neural network abstraction tool DeepAbstract.

2.1 Fully Connected Neural Networks

A fully connected neural network (FCNN) is a type of artificial neural network in machine

learning. In this network architecture, neurons are organized into layers, with each neuron

in one layer connected to every neuron in the next layer. Information flows through the

network from the input layer, through a series of hidden layers, and finally to the output

layer, which performs a task such as classification. The connections between neurons are

called weights and determine the strength of the connection. The weights are learned

during the training phase, where input data is fed through the network, comparing the

predicted output to the actual output, and adjusting the weights to minimize the prediction

error. Figure 2.1 shows an example architecture with two hidden layers. The activation

5

Figure 2.1: Structure of a FCNN with 2 hidden layers [34]

value of the first neuron in layer X1 will be calculated by σ(W1x0 + b1) where σ() is

the activation function and Wl and bl are the weights and biases, which are also referred

to as parameters [34]. W1x0 is the multiplication of each weight with the value of each

corresponding neuron in the input layer.

FCNNs are often used in machine learning, but for image-related tasks, convolutional

neural networks are preferred due to their ability to capture spatial hierarchies and patterns

in image data more effectively.

2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of neural network that is primarily used

for image classification, object detection, and segmentation. CNNs work by learning and

recognizing patterns in images through the use of convolution and pooling operations [17].

It will take an image as input and read the numeric values of each pixel. A black and

white image of size 32x32 pixels will have an input size of 32x32x1. A RGB color image

of the same dimension, will have an input size of 32x32x3, where each of the 32x32 pixels

has three channels for the three RGB colors.

Convolution is a mathematical operation that applies a filter, also referred to as a

kernel, to an image to extract features. The filter slides across the image with a specified

stride, performing element-wise multiplication and addition, thereby generating a new

6

Figure 2.2: CNN example architecture [28]

output matrix. The resulting output is typically smaller than the input image, as the

filter only covers a portion of the image at each step. The filter is learned through back-

propagation, where the network learns to optimize the filter weights to extract meaningful

features from the input image [11]. At the early layers, the convolution filters act as edge

detectors, identifying low-level features such as borders and edges. As we move deeper

into the network, the convolution filters react to more complex and abstract features. In

the final layer, the network will produce an output that is used to make a prediction about

the input data, such as the type of traffic sign.

The output size of the convolutional layer will depend on the size of the input, the

size of the filter, the stride and the padding. The filter size determines the spatial extent

of the filter that is applied to the input. A larger filter size will cover more pixels in the

input, resulting in a larger receptive field and a higher degree of spatial abstraction in the

output. The stride parameter determines the distance between two successive positions of

the filter on the input. A larger stride will reduce the number of times the filter is applied

to the input, resulting in a smaller output size. Padding refers to the addition of extra

pixels around the border of the input, which allows the filter to be applied to the edge

pixels of the input. Padding can be used to keep the output size the same as the input

size after the convolution operation, which can be important for some applications. The

following figure shows the convolution operation using a 2× 2 kernel, a stride of (1,1) and

7

no padding [11]. We can see that the input of size 4 × 3 is turned into and output size

3× 2.

Figure 2.3: Convolution operation [11]

The 2× 2 sized kernel is first applied to the top-left 2× 2 sized window on the input.

The resulting value will be the top-left value in the output. In the next step, the kernel

will stride to the right by one position and be applied on the input values (b,c,e,f). This

is repeated another time for the same row, after which the kernel moves down one row

and is applied on all three positions in that row. The resulting output is of size 3× 2.

Pooling is another operation that is commonly used in CNNs. Pooling works by re-

ducing the size of the feature maps produced by the convolution operation. The most

common type of pooling is max pooling, where the maximum value out of a set of pixel

values in a sliding window is selected and the rest is discarded. This process helps to

reduce the number of parameters in the network, which can help to prevent overfitting

and improve generalization [11].

CNNs typically consist of multiple layers, including convolution layers, pooling layers,

and fully connected layers. Convolution layers are responsible for extracting features from

8

the input image, pooling layers are used to reduce the size of the feature maps, and fully

connected layers are used to perform the final classification or regression.

Having established the foundations of convolutional neural networks, our focus now

shifts to the realm of adversarial attacks on neural networks.

2.3 Adversarial neural network attacks

The goal of an adversarial attack on a neural network is to cause an intentional misclas-

sification, given an input that contains a perturbation or distortion [14]. Attacks can be

categorized into two groups: targeted and untargeted attacks [14]. In a targeted attack,

the attacker can select the label resulting misclassification label, which we will refer to

as target label. The network will always predict the target label when it is attacked. An

untargeted attack will cause misclassification, but the attacker cannot choose a specific

target label. Furthermore, the attacks can be categorized based on the information the

attacker can access:

• White-box attacks require the attacker to have full access to the inner structure and

parameters of the neural networks, as well as the training dataset. The attacker can

edit any values of the network or retrain it on poisoned data.

• Black-box attacks function without access to the inner structure. The attacker can

only interact with the trained neural network by querying it with perturbed inputs.

The methods that will be discussed in this section are targeted white-box attacks.

They involve inserting a hidden backdoor, also referred to as a trojan, into the network’s

architecture. The backdoor is typically designed to activate in response to a specific

trigger, such as a particular input signal, and can cause the network to intentionally

produce incorrect outputs. The attacker can design the trigger in a way that is difficult

for others to detect, such as by using a specific pattern of input that is not common in

normal usage scenarios. Once the trigger is activated, the network can produce outputs

that are designed to harm or deceive the user, such as misclassifying images, generating

9

fake text, or executing malicious actions.

One of the most common types of attack is data poisoning [19]. Data poisoning

attacks involve injecting malicious data into the training dataset to alter the behaviour of

the neural network. This can be done by an attacker who has access to the dataset, by

manipulating the training algorithm, or by modifying the data during the transmission

process.

Figure 2.4 depicts a poisoning-based backdoor attack where a black square in the

bottom right corner serves as the trigger, and the target label is designated as ’0’. To

carry out the attack, a part of the benign training images is modified by embedding the

trigger, and their original label is substituted with the attacker’s desired target label.

Consequently, the deep neural network trained with this dataset is compromised. It will

learn to associate the presence of the trigger with the target label and will misclassify any

inputs stamped with the trigger as that target label ’0’ while providing accurate results

on benign images.

These attacks are rather effective. Chen et al. [4] managed to successfully insert a

backdoor using only 50 poisoned input samples. Other approaches, such as the approach

from Liu et al. [22] does not need access to the training data but functions by inverting

the neural network to generate a trojan trigger and then partially retraining the model

with the reverse engineered training data that is stamped with the trojan trigger. The

attacks can use different types of triggers:

Patch-based triggers

The most common and basic type of trigger is a patch-based trigger. Figures 2.4 and 2.5

are examples of a patch-based trigger, where a small static patch is stamped onto a part

of the image. The patch can be a simple square, a pattern of pixels, or more complex

forms like logos or small images [12]. Figure 2.5 depicts a stop sign that was stamped with

a yellow square trigger and is misclassified by a trojaned neural network as a speed limit

sign.

10

Figure 2.4: Poisoning-based backdoor attack [19]

Feature space trigger / perturbation-based trigger

In contrast to patch-based triggers, feature space or perturbation-based triggers perturb

the entire input image. They can also take on various forms such as an Instagram filter

that changes the colours of the image [20], slightly transparent images or random patterns

that are blended with the image [4].

Stealthy triggers

While the aforementioned triggers can be spotted by manually inspecting the data, there

are stealthy triggers that make it hard to see if an image contains a trigger, even for human

observers. Barni et al. [2] superimpose a sinusoidal backdoor signal over the image, which

is difficult to detect and can be seen in Figure 2.7a. Liu et al. [23] utilize reflections, in

order to create triggers that are difficult to spot by the human eye (Figure 2.7b).

11

Figure 2.5: Stop sign with patch trigger [12]

(a) Feature space attack using Instagram filters
[20] (b) Blended attack [4]

Figure 2.6: Feature space triggers

Imperceptible triggers

The newest trojaning methods are imperceptible, even on closer inspection. WaNet [26]

uses a small and smooth warping field to generate backdoor images, which are not distin-

guishable from benign inputs based on human observation (Figure 2.8).

This project will focus on patch-based triggers, as they are physically realizable and

therefore pose a realistic threat to computer vision systems for autonomous driving.

2.4 Defense techniques against trojan attacks

Several techniques were proposed to defend against trojan attacks including detection and

bypassing of the trojan as well as removal of the backdoor from the model [37]. Wang et

12

(a) Sinusoidal backdoor attack [2] (b) Stop sign with patch trigger [4]

Figure 2.7: Stealthy triggers

Figure 2.8: Warping based trigger [26]

al. [37] grouped the defense methods into the following categories:

• Model Verification: This mechanism verifies the efficacy of the model. If it detects

anomalies in the functionalities of the model, a flag is raised for a potential trojan.

• Trojan trigger detection: The aim of trojan trigger detection is to detect the presence

of triggers in the input, such as by fine-tuning a classifier to detect trojan triggers

as anomalies in the input image [6].

• Restoring Compromised Models: Compromised models can be restored to a benign

state by retraining and pruning the model, which can be done on a small subset of

training data [24].

• Trigger-based trojan reversing : This method tries to estimate the potential trojan

trigger pattern and uses it for retraining the model in order to increase its robustness

[36].

• Bypassing neural trojan: This method utilizes pre-processing on the input before it

is passed to the model by removing the trigger and passing a benign input [9].

• Input filtering : The strategy for input filtering involves filtering the input data by

removing malicious input and therefore ensuring that the data passed into the model

is mostly clean.

13

• Certified backdoor defenses: In contrast to the aforementioned ad-hoc techniques,

certified backdoor defenses improve the robustness against adaptive attacks by e.g.

adding random noise to the training data of a model [35].

The methods presented in the following subchapters fall under the categories of trojan

trigger detection and trigger-based trojan reversing.

2.4.1 Neural cleanse

Wang et al. [36] created the first trigger-based trojan reversing defense, which they named

Neural Cleanse (NC), wherein potential trigger patterns are obtained for each class and

the final synthetic trigger and its corresponding target label are determined using anomaly

detection [19]. NC assumes, that the defender has access to the trained neural network

and a set of correctly labelled samples in order to test the performance on the model [36].

The goals of NC are:

1. Detecting backdoor: Making a binary decision on whether a neural network contains

a backdoor and finding out which label is infected

2. Identifying backdoor: Reverse engineering the trigger that was used by the attack

3. Mitigating backdoor: The backdoor should be rendered ineffective by two approaches

(a) Building a proactive filter that detects and blocks incoming adversarial inputs

(b) Removing the backdoor from the NN without affecting the classification per-

formance on benign input

The intuition behind the technique is derived from the basic properties of a backdoor

trigger. A backdoor trigger produces a classification result to a target label regardless of

the label the input typically would belong in.

The authors assume that the target label can be misclassified with much smaller modi-

fications compared to other uninfected labels. As a result, they iterate through the model’s

labels and determine if any of them can be misclassified with significantly less modification

compared to the rest. Their system consists of three steps:

14

1. Each label is treated as potential target label. An algorithm is designed to find

the ”minimal” trigger required to misclassify all samples from other labels into this

target label. For images, this trigger defines the smallest collection of pixels and its

associated colours that cause misclassification.

2. Step 1 is repeated for all output labels in the model.

3. The size of each trigger is measured by the number of pixels. An outlier detection

algorithm is used to detect if a trigger candidate is substantially smaller than other

candidates. A significant outlier is assumed to be a real trigger and its corresponding

label is seen as target label.

The trigger produced by step one is considered as reverse engineered trigger, which aids

the understanding of why the model misclassifies samples. This can be used to create a

proactive filter that detects and filters all adversarial inputs.

There are several scenarios in which NC is unable to detect neural trojans. NC is not

effective for feature space attacks and it is not as effective when only one image is provided

for each label [20]. NC is much more effective when the full training set is used and less

effective when the size of the trojan trigger is larger than 6% [20]. Figure 2.9 shows the

detection accuracy increasing based on the number of data points and a sharp decline in

accuracy if a larger trigger is used.

Figure 2.9: Detection accuracy of Neural Cleanse based on the number of data points used
and the size of the trojan trigger [20]

15

2.4.2 Artificial Brain Stimulation

Artificial Brain Stimulation (ABS) [20] is a technique that was inspired by Electrical Brain

stimulation, which is used to study the behaviour of human and animal brain neurons by

applying an electrical current of differing strength levels to selected neurons and observing

the consequences. Analogously, ABS scans AI models by manually modifying a neuron’s

activation values while freezing the activation values of the other neurons in the same

layer, then monitoring the changes in output values. This is performed on all convolution

and fully connected layers. They assume the presence of trojaned neurons, which strongly

respond to the presence of a trojan trigger. A trojaned neuron is assumed to perform

differently from a benign neuron by having a considerably greater impact on certain output

target labels. If an input image contains a small trigger patch, the neurons associated with

this small area need to have a much larger impact in order to change the output label from

the correct class to the target class. The authors define a model as successfully trojaned

if:

1. The trojaned model does not have (non-trivial) accuracy degradation on benign

inputs

2. For any benign input, if it is stamped with the trojan trigger, the model has a high

probability of classifying it to the target label regardless of its original label

Furthermore, they make a simplifying assumption that for each target label only one

trigger exists, and that this trigger is intended to transform any input, regardless of its

label, into the target label. Therefore, advanced attacks, which only attack certain images

were out of scope, as well as attacks with multiple trojaned neurons.

The concept of ABS can be described as follows: A benign input is fed into the model

and all inner neuron activation values are collected. In layer Li one neuron α is analyzed

by freezing the activations of the other neurons in that layer and examining how the output

activation Zt in the output layer for a label t changes. If α is a potentially compromised

neuron and t is the corresponding target label, Zt will be much higher than the activation

16

of other target labels, whenever α falls into a certain range. This phenomenon can be seen

in Figure 2.10. The X- and Y-axis denote the activation values Vα and Vβ for two neurons

α and β, the Z-axis is the output activation value Zt for the target label. Comparing the

benign model (a) to the trojaned model (b) a ridge can be observed, which cuts through

the entire space at Vα = 70. This means that whenever α falls within this range, no

matter which value β takes, the output activation of label t will be greatly enlarged. The

same analysis is performed on different input labels and if neuron α consistently shows

this behaviour it is considered a compromised neuron candidate.

Figure 2.10: Activation values of benign and trojaned neurons [20]

However, there can be several candidate neurons that substantially elevate the output

activation of a specific label with only a small subset being compromised neurons. ABS

tries to eliminate such false positives by generating an input pattern, that activates a can-

didate neuron and achieves the previously identified activation value range, which strongly

increases the target label activation. A compromised neuron will have less confounding

with other neurons, meaning that its value will change independently from other activa-

tion values. A benign neuron should have significant confounding, making it impossible to

generate an input pattern that achieves the activation value range. The following figure

shows the output activation values for class A (plane) and C (car). The benign model

as well as the trojaned model will correctly classify the benign input image as A with an

output activation of ZA = 0.8, while the target label has an activation value of ZC = 0.1.

When the input is stamped with a trigger, the compromised neuron α falls into the range

of around 70 and the activation value of the target label is strongly increased to ZC = 1.2,

surpassing the true label at ZA = 1.

17

Figure 2.11: ABS output activation values [20]

ABS employs two criteria to enhance the precision of its identification of trojaned neu-

ron candidates. First, instead of analyzing the maximum elevation, it takes the elevation

difference between the highest and second highest elevation into account. The reason for

this is that compromised neurons will only elevate the target label activation value, while

benign neurons are more confounded and will increase multiple activation values. Figure

2.12(a) shows the output values (y-axis) of the 10 classes, given the activation values (x-

axis) of a neuron that is being analyzed. The left neuron might be considered benign,

since it elevates two labels, while the right neuron can be considered a compromised neu-

ron candidate, having a large difference between the top two labels. Second, ABS uses

the minimum elevation across all images for a label instead of a single image because a

benign neuron might only elevate a subset of images, while a trojaned neuron will elevate

all images of the target label.

Figure 2.12: ABS elevation difference - possibly benign neuron (left) and possibly trojaned
neuron (right)[20]

After gathering the compromised neuron candidates, ABS tries to separate the false

positives by reverse engineering the trojan trigger using an optimization procedure. This

18

will not be further explained, since we do not intend to make any changes to this part of

the system. The reverse engineered triggers are stamped onto benign input images and

fed into the network. ABS then measures if this causes the network to misclassify the

input to the target label.

Figure 2.13 depicts an original image, a trojaned image using a pixel trigger and feature

trigger, as well as their respective reverse engineered triggers. If the reverse engineered

trigger can successfully cause misclassification in at least 80% of the cases it is considered

a real trojan and the model is considered compromised.

Figure 2.13: ABS reverse engineered triggers [20]

2.4.3 Other methods improving on ABS

This section briefly mentions two methods that augment ABS. They are not explained in

detail as their approach differs from the current approach and will not be relevant to this

work.

ABS+K-Arm Optimization

One method that tries to improve ABS is the K-arm optimization method [30], which

is inspired by the Multi-Arm-Bandit in Reinforcement Learning. The authors state that

ABS has a shortcoming of potentially selecting the wrong neurons in the stimulation anal-

ysis. In the first step ABS stimulates neuron activation values and observes if consistent

misclassification can be achieved. The neuron candidates determined in the first step

are used to create a reverse engineered trigger, which then is used to determine whether

the neurons are truly compromised. However, it is possible that the first step produces

candidates that do not contain the compromised neurons and therefore the trigger gen-

19

eration fails to derive the correct triggers. K-arm tries to improve on that by iteratively

and stochastically selecting the most promising labels for optimization. The authors state

that they achieve higher performance compared to ABS in terms of accuracy and runtime.

ABS+ExRay

The authors of ABS+ExRay [21] claim to improve on the drawback that ABS will only

work on small and fixed triggers while being less effective on larger and more stealthy

triggers. Their detection method uses a trigger inversion technique to create a trigger that

will misclassify examples to a target label. Then, it checks whether a trigger is made of

features that are not natural distinctive features between the victim and target classes

using Symmetric Feature Differencing (SFD). SFD determines the distinguishing features

between two sets of classes. The authors give the example of two persons A and B in a

face recognition model, where replacing Person A’s nose with person B’s causes the model

to predict B and vice versa, making the nose a distinctive feature. They state that their

method cuts down on the number of false positives by 78-100% with an increase of false

negatives of 0-30%, leading to an overall accuracy increase of 17-41%.

2.5 Neural network pruning

This research aims to combine ABS with the neural network abstraction method Deep-

Abstract. Different types of pruning will be listed in this section. Pruning is an effective

method for reducing the number of parameters in a Deep Neural Network (DNN). Many

parameters in a DNN are redundant and do not contribute significantly to lowering the

error or improving the network’s generalization during training. Therefore, after training,

these parameters can be pruned from the network with little impact on the network’s

accuracy [5]. Eliminating less effective connections can significantly reduce the storage,

computation cost, energy and inference time of a DNN model [5]. CNNs can also benefit

from pruning the filters of the convolution layers, therefore reducing the computation and

speeding up the inference process [18]. There are several pruning methods:

20

Weight pruning The weights between neurons can be pruned based on certain condi-

tions. Han et al. [13] set the weights to zero if they are unimportant, which is

determined if they are below a certain threshold or if they are redundant.

Neuron pruning Rather than removing individual weights, another approach is to elim-

inate redundant individual neurons, as suggested by Srinivas and Babu [32]. This

approach involves removing all the incoming and outgoing connections associated

with the redundant neuron. It is assumed that the information captured by a re-

dundant neuron is already present in other neurons. There are various other methods

to remove individual weight connections or neurons [5].

Filter pruning In a convolution layer of a CNN, entire filters can be pruned. Li et al.

[18] calculate the importance of filters by their L1/L2 norm and remove whole filters

in the network together with their connecting feature maps, which have the least

effect on output accuracy.

Layer pruning Another pruning method is layer pruning, such as the method by Chen

and Zhao [3], where the performance of feature representations is extracted at differ-

ent convolution layers within the architecture and layers with comparatively small

contributions are determined and removed from the network.

The pruning method which is presented in the following subchapter performs neuron

pruning by taking the activation values into account and using K-Means clustering to

determine similar neurons.

2.6 DeepAbstract

DeepAbstract [1] is a neural network abstraction framework. Abstraction is a technique

used in formal methods to simplify a system by disregarding irrelevant details and con-

structing a smaller system with similar behaviour. In contrast to other abstraction tech-

niques, that analyze the weight connections between neurons [45], DeepAbstract provides

21

a notion of similarity by analyzing activation values, which the authors claim is more

general and more powerful [1].

DeepAbstract considers simple fully connected neural networks with one input layer,

one output layer and multiple hidden layers. In classic abstraction, states with similar

properties are merged for analysis. For NNs, identifying which neurons to merge and

defining similarity is not immediately clear. Neurons do not have an inner structure like

states with variable values, which makes it more challenging to detect and drop irrele-

vant information. To overcome this, the authors suggest merging neurons that compute

similar functions on a set X of inputs, where they produce ϵ-close values for each input

x ∈ X. This is referred to as Input/Output-similarity. To simplify the analysis and

implementation, only neurons from the same layer are merged.

The following example in figure 2.14 demonstrates the procedure. The network consists

of two input neurons, one hidden layer with three neurons and an output layer with one

neuron. The weights are denoted by w and the activation values are denoted by z. The

activation values of the hidden layer are calculated as follows:

z3 = ReLU(w1 ∗ z1 + w4 ∗ z2), z5 = ReLU(w3 ∗ z1 + w6 ∗ z2),

z4 = ReLU(w2 ∗ z1 + w5 ∗ z2), z6 = ReLU(w7 ∗ z3 + w8 ∗ z4 + w9 ∗ z5).
(2.1)

With ReLU(X) being the Rectified Linear Unit function defined as max(0, x)

Figure 2.14: Clustering of neurons [1]

22

If the activation values of neurons 4 and 5 are similar for all inputs (denoted by z4 ≈ z5),

then the network is abstracted by merging those two neurons. In this example, neuron 4 is

chosen as the cluster representative and the outgoing weight of the representative is set as

the sum of all outgoing weights in that cluster. In the abstracted network, the activation

values of neuron 3 and 4 remain the same:

z̃3 = ReLU(w1 ∗ z̃1 + w4 ∗ z̃2) = z3 and z̃4 = ReLU(w2 ∗ z̃1 + w5 ∗ z̃2) = z4

The value of neuron 6 is now calculated by:

z̃6 = ReLU(w7 ∗ z̃3 + (w8 + w9) ∗ z̃4) = ReLU(w7 ∗ z3 + w8 ∗ z4 + w9 ∗ z4) ≈ z6

The effectiveness of the abstraction relies on the selection of neurons to be merged. There

are various techniques to identify these groups, and the authors selected the unsupervised

learning method of K-means clustering as proof of concept.

Figure 2.15: DeepAbstract algorithm 1: Clustering [1]

Algorithm 1 (Fig. 2.15) describes the general approach. The function takes three

inputs: the original trained network D, an input set X, and a function KL that specifies

the number of clusters to be identified for each layer. Each input x ∈ X is fed into

the network D̃, is evaluated and a |X|-dimensional vector of observed activations a
(l)
i is

generated for each neuron i in layer l . These activation vectors, representing each neuron,

are then aggregated into the set A. Afterwards, K-means clustering is used to identify

KL(l) clusters. The neuron closest to the centroid of the respective cluster is chosen as

23

Figure 2.16: DeepAbstract algorithm 2: Identifying the number of clusters [1]

cluster representative, denoted by rep(C), and merged with the other neurons by summing

the outgoing connections.

Although Algorithm 1 outlines the clustering procedure, selecting the appropriate num-

ber of clusters per layer (KL) remains a challenge. Algorithm 2 (Fig. 2.16 presents a

heuristic for determining a suitable parameter set for clustering. This heuristic is based

on the observation that merging neurons closer to the output layer has the least impact

on network accuracy because merging errors are not amplified and propagated through

multiple layers. The main idea is to search for the best K-means parameter (KL(l)) for

each layer l from the first hidden layer to the last hidden layer, ensuring that merging

with the specified parameter (KL) does not cause the network’s accuracy to fall below a

threshold α. The function takes three inputs: A trained network D, an input set X, and

a parameter α that sets the minimum accuracy threshold for the abstract network. Start-

ing with the first hidden layer (l = 2), the algorithm attempts K-means clustering. The

parameter KL(l) is determined using the BinarySearch procedure, which searches for the

lowest value of that yields the highest accuracy for the abstracted network. According to

the authors, a higher degree of clustering (i.e., a smaller K) results in a greater reduction

in accuracy.

24

Chapter 3

Methodology

This chapter will first introduce the proposed workflow for combining DeepAbstract with

ABS and show a preliminary analysis that supports our hypothesis. Since DeepAbstract

is only implemented to function with fully connected layers, we propose two methods to

adapt its functionality for convolution layers. Finally, we will explain the adaptations made

to ABS, which were necessary to combine it with the cluster representatives determined

by DeepAbstract.

3.1 Method overview

The main concept is to enhance the performance of ABS by combining it with the cluster-

ing of DeepAbstract. We want to utilize DeepAbstract to analyze a trained neural network

and determine the cluster representatives. This information should be used within ABS

in order to focus the analysis on this subgroup of neurons. We want to be able to analyze

CNNs, but DeepAbstract does not support convolution layers. For this reason we decided

to convert the convolution layers to fully connected layers for our first approach, which

will be explained in detail in section 3.3. The flowchart in Figure 3.1 shows an overview

of the initial approach. A CNN will be trained on the GTSRB dataset and converted to

a fully connected neural network, by converting all convolution layers to fully connected

layers. The new DNN will be fed into DeepAbstract, which computes the clusters and the

25

set of cluster representatives (CR). Additionally, the abstract FCNN is computed, which

will be discarded for our current analysis 1. In the next step of the flowchart, the original

CNN is analyzed by ABS. The cluster representatives of the fully connected layer can be

directly inferred back to positions in the original convolution layer. This is explained in

section 3.5. The idea is, that the cluster representatives will have similar Input/Output

Figure 3.1: Flowchart DeepAbstract + ABS approach with layer conversion

behaviour as the neurons in their respective cluster and therefore performing the ABS

analysis on the smaller subset of cluster representatives should produce similarly accurate

results, while reducing the number of neurons that need to be analyzed and consequently

the computational load. The set of CRs is used in ABS to compute the compromised

neuron candidates, which ABS then uses to reverse engineer the trojan trigger. This re-

verse engineered trigger is used to test whether it can successfully subvert the models

predictions to the target label.

The first approach has the limitation, that a CNN will drastically increase in size

when being converted to a FCNN. The reason for this phenomenon is explained in section

3.3. For larger models, this leads to unreasonably high computation cost and network

size. To combat this limitation, a new approach (Figure 3.2) was created, which does not

convert the model itself, but the feature output of each convolution layer. The flattened

output is fed into DeepAbstract in order to compute the CRs. This new method improves

on computation time and facilitates the usage of large CNNs, but it does not allow the

creation of an abstract FCNN. The details will be explained in section 3.4.

1The abstract FCNN is only necessary when utilizing DeepAbstract’s full algorithm, including finding
the optimal K value. This is not done due to technical limitations, which are explained in section 3.3

26

Figure 3.2: Flowchart DeepAbstract + ABS approach without layer conversion

3.2 Preliminary neuron activation analysis

One premise of our approach is that the clusters which are determined by DeepAbstract

are still as meaningful when inputting clean images as they are when inputting trojaned

images. One could argue that a group of neurons that is clustered by Input/Output

similarity on clean images does not necessarily exhibit the same behaviour on images that

contain a trigger. We want to show that activation values which correlate on clean inputs

also correlate on trojaned inputs. To test this premise, we trained a FCNN on trojaned

data. The FCNN was then fed trojaned images and the three neurons with the highest

activation values were selected for further analysis.

Figure 3.3: Activation values of three selected neurons. Left: Clean inputs;
Right: Trojaned inputs

Figure 3.3 shows the activation values over 15 images without (left) and with (right)

the presence of a trigger. We can see that in both cases the neuron values are highly

correlated and that the trojaned images produce much higher activation values. To make

sure this behaviour is not present in all cases, we test three random neurons as well. Figure

27

3.4 shows that the random neurons do not exhibit the same correlation behaviour as the

previous neurons.

Figure 3.4: Activation values of three random neurons. Left: Clean inputs;
Right: Trojaned inputs

It is important to note that while this experiment was repeated multiple times, no

in-depth analysis was performed. These preliminary results serve as an initial indication

rather than a definitive validation of our method. The experiments and results presented

in chapters 4 and 5 will provide a definitive answer to the research questions.

3.3 Converting a CNN to a FCNN

DeepAbstract’s implementation only works with fully connected neural networks. Given

that CNNs are more prevalent in computer vision applications compared to FCNNs, and

considering that existing literature on neural trojan detection predominantly focuses on

CNNs, we have to be able to utilize CNNs in our testing scenarios. Fully connected

layers are just special cases of convolution layers [46], therefore we decided for the initial

approach to convert the CNN’s to FCNN’s by first converting convolution layers to fully

connected layers. Afterwards, the remaining network needs to be adapted to handle the

Inputs and Outputs of the FC layer. Figure 3.5 shows an example of a convolution layer

that is converted to a fully connected layer and how the mathematical operations would

match. This example shows a 3 × 3 × 1 input with a 2 × 2 kernel with stride = 1 and

padding = 0. The resulting feature output is therefore of size 2×2. In the first step of the

operation, the kernel is applied to the upper left corner of the input, creating neuron 1 as

28

Figure 3.5: Converting the convolution operation to a fully connected/linear operation

feature output. This is highlighted in figure 3.5. The value of neuron 1 is calculated by

A ∗w1+B ∗w2+D ∗w3+E ∗w4. We can convert this to a linear operation by flattening

the input to a single dimension and setting the weights of the connections to neuron 1 to

be the same weights as the kernel, at the positions where the kernel is applied (A,B,D,E)

and 0 at all remaining connections (C,F,G,H,I).

Similarly, the values of neurons 2, 3 and 4 would be calculated by multiplying the input

values (B,C,E,F), (D,E,G,H) and (E,F,G,I) with the kernel weights (w1−w4) respectively.

The conversion to linear would also set the weights to w1−w4 where the kernel is applied

and 0 elsewhere. The following matrix is the full weight matrix for the linear layer in our

example (adapted from [10]):

w1 w2 0 w3 w4 0 0 0 0

0 w1 w2 0 w3 w4 0 0 0

0 0 0 w1 w2 0 w3 w4 0

0 0 0 0 w1 w2 0 w3 w4

(3.1)

This conversion still works if the padding and stride parameters are different. The

output size will be dependent on padding (P), kernel size (kh ∗ kw), input size (Hin ∗Win)

29

and stride (s) and can be calculated with the following formulas [25]:

Hout =
Hin + 2P − kh

s
+ 1 (3.2)

Wout =
Win + 2P − kw

s
+ 1 (3.3)

More details of the equivalence of this conversion can be read in the work of Ma & Lu

[25]. After implementing the conversion, we conducted extensive testing to ensure its

functionality. Input images were inserted into the original CNN and the converted FCNN

and we could observe that the output layer activation values were equal. Therefore the

equivalence of these layers can be confirmed.

The second step is to integrate the converted layers into the neural network. The con-

volution layers cannot simply be replaced by the converted linear layers, as this is incom-

patible with the remaining architecture. Other layers in the network, such as MaxPooling

or Flatten layers will be dependent on receiving multidimensional inputs. A MaxPool-

ing layer will reduce the layer dimension and will iterate over all filters. For example,

a MaxPooling layer with the standard parameters (stride=2, padding=0) will reduce a

28× 28× 6 (height×width× no. of channels) input to 14× 14× 6. Therefore, it expects

a 3-dimensional input. A linear layer however would provide a flattened, 1-dimensional

output. The solution is to unflatten the layer by reshaping it to the output size of the

corresponding output layer. Table 3.1 lists the architecture of the LeNet [16] CNN and

the architecture of its converted FCNN.

30

Layer in CNN Input size Output size Layer in FCNN Input size Output size

Conv2D2 (32,32,3) (28,28,6)
Flatten (32,32,3) 3072
Linear (Converted) 3072 4704
Unflatten 4704 (28,28,6)

ReLU (28,28,6) (28,28,6) ReLU (28,28,6) (28,28,6)

Maxpool3 (28,28,6) (14,14,6) Maxpool2 (28,28,6) (14,14,6)

Conv2D4 (14,14,16) (10,10,16)
Flatten (14,14,6) 1176
Linear (Converted) 1176 1600
Unflatten 1600 (10,10,16)

ReLU (10,10,16) (10,10,16) ReLU (10,10,16) (10,10,16)

Maxpool2 (10,10,16) (5,5,16) Maxpool2 (10,10,16) (5,5,16)

Flatten (5,5,16) 400 Flatten (5,5,16) 400

Linear 400 120 Linear 400 120

Linear 120 84 Linear 120 84

Linear 84 43 Linear 84 43

Table 3.1: Architecture of the LeNet CNN and its corresponding converted FCNN

The input size of the first layer is 32 × 32 × 3 because that is the size of the images

in the GTSRB dataset (32 × 32 pixels and 3 channels for RGB). The output size of the

last linear layer is 43, as this layer is the classification layer and the number of classes in

the GTSRB dataset is 43. The output size of the first Conv2D layer can be calculated

using the previously mentioned formula 3.2. Hout/Wout =
32+2∗0−5

1 +1 = 28. This returns

an output size of 28 × 28 × 6, given that the number of filters is set to 6. To be able to

replace that Conv2D layer in the network, we need to replace it with something that takes

the same 3-dimensional input and returns the same 3-dimensional output as the Conv2D

layer. Therefore we replace it with a block consisting of Flatten + Linear + Unflatten.

The flatten layer takes the 32×32×3 input and flattens it to size 3072. The linear layer is

composed of 4704 neurons, which corresponds to the flattened output size of the Conv2D

layer (28 × 28 × 6 = 4704). The Unflatten layer reshapes the 1-dimensional output of

4704 back to a 3-dimensional output of 28× 28× 6. In the LeNet architecture, the second

Conv2D layer is replaced in a similar manner. There, the converted linear layer consists of

1600 neurons. The remaining layers of the LeNet network are unaffected by the conversion

2Kernel size: 5x5, Stride: 1, Padding: 0, No. of Filters: 6
3Kernel size: 2x2, Stride: 2, Padding: 0
4Kernel size: 5x5, Stride: 1, Padding: 0, No. of Filters: 16

31

and can be copied over to the FCNN.

The size of the converted linear layer is an indication of how much the layer conversion

affects the layer size. The first converted linear layer will have 4704 neurons and an input

of 3072 neurons, creating a weight matrix with 14.450.688 weights. For comparison: the

original convolution layer had only 450 weights, calculated by

kh ·kw ·number of Filters current layer·number of Filters Previous Layer = 5·5·6·3 = 450

(3.4)

The weight matrix (3.1) in our mock example was already quite sparse. Each row of 9

values (given the 3 × 3 input) contains only 4 nonzero weights (given the 2 × 2 kernel).

The weight matrix of our LeNet example will be even more sparse, having only 75 nonzero

weight values (5×5×3 = kernel size × 3 input filters) per row consisting of 3072 (32×32×3

input size) values. The layer size directly affects the file size of the trained network. With

our LeNet example, the original CNN takes up 1.5MB of disk space while the converted

FCNN uses 61MB. AlexNet [15] has a size increase from 15MB to 185MB. Our own CNN,

which consists of six convolution layers and no linear layer apart from the classification

layer has an even larger increase in size from 1MB to 1250MB. If we want to train and

convert larger models, such as VGG [31], which will already have a size of over 200MB

as CNN, then the conversion to FCNN fails due to lack of GPU memory in our system.

In order to overcome this size limitation, we have devised a new method, that avoids

converting the entire CNN to a FCNN, which will be explained in the following chapter.

It should be noted that for normal classification tasks, there is almost no difference

in runtime between the CNN and FCNN. This may seem unintuitive, given that the

FCNN is several magnitudes larger than the CNN. However, both networks undergo similar

mathematical operations when presented with an input image. Instead of having a sliding

window on the input image for the kernel to iterate through, this operation is already

integrated in the weight matrix of the linear layer.

32

3.4 Reshaping feature output

The second method, as shown in Figure 3.2, gets rid of the conversion to fully connected.

As explained in chapter 2.6, DeepAbstract computes the activation values of all neurons

in a layer and clusters the neurons based on the similarity of those activation values. For

the K-means clustering, DeepAbstract expects the activation values in a format, which

is given as output by fully connected layers. Since we want to utilize convolution layers,

we need to change the layer outputs. We modify this process by taking the original

convolution layer to compute the activation values and then flatten those activation values

to resemble the activation values of the fully connected layer. Going back to the LeNet

architecture (see table 3.1), the first convolution layer will compute activation values with

the output size (28,28,6). This will be flattened to size 4704. DeepAbstract will utilize

these activation values to compute the clusters and cluster representatives. This method

has several advantages and disadvantages compared to the CNN to FCNN conversion.

Most importantly, the computation time and size are reduced and it allows us to

analyze larger CNNs such as VGG, which previously would be limited by the GPU memory

capacity and could not be converted. The downsides are, that DeepAbstract will not create

an abstract FCNN and cannot use binary search to determine the best K Parameter

for the K-means algorithm. DeepAbstract’s original implementation would test different

parameters for the K value in K-means using binary search and settle on the lowest

K, therefore the highest degree of network pruning, which does not impact the model

accuracy. For this step, the models must undergo pruning, specifically the removal of

neurons in clusters that were not determined as cluster representatives, resulting in a

more compact, pruned network. The pruning is only possible if the clustering is computed

on fully connected layers. The neurons which are selected to be removed, will correspond

to neurons in the fully connected layer. However, in convolution layers, they correspond

to positions in the filters, and not to the entire filter. We cannot prune parts of a filter,

which is why pruning on convolution layers is not possible with DeepAbstract. Therefore,

we cannot run binary search to determine the optimal K parameter and instead have to

33

set it to a fixed value.

3.5 Adaptations to ABS

In the previous step we have computed the set of cluster representatives based on either

the converted FCNN or the reshaped activation values. We now need to modify ABS

to perform the stimulation analysis only on the subset of cluster representatives. Upon

analyzing the ABS code5, we noticed that the stimulation of neurons is done slightly

differently to what is reported in the ABS paper [20]. When ABS analyzes a convolution

layer, it iterates through every output feature channel in that layer, stimulating it with

a range of values that is determined by the maximum activation value in the respective

layer. The following steps broadly describe the algorithm.

A. For each convolution layer in the neural network:

1. Input 43 images (1 of each class) to calculate the maximum activation value

2. Define a set of stimulation values vs, based on the maximum value

3. For each output feature channel, it sets the activation value of the entire feature

channel to a value v ∈ vs

4. Analyze the highest shift in output layer activation for each of the 43 classes

5. Outliers with very high elevation difference (see fig. 2.12) are marked as Compro-

mised Neuron Candidates (CNC)

B. CNC are passed to the next step of reverse engineering

Step 1 inserts 43 images into the network and calculates the maximum activation value

per layer. If, for example, layer 1 has the maximum activation value of 15, then in step

2, a value set vs, based on the maximum activation value is created. For example: [0, 15,

30, 45] could be a set of stimulation values. In step 3, each neuron will be stimulated with

each of these values, meaning that we will keep the activation values of all other neurons

5https://github.com/naiyeleo/ABS

34

in the layer at their original values, but the activation value of the stimulated neuron will

be set to a value of vs. Let us look at step 3 in more detail. In case of LeNet, the first

Conv2D layer will output a feature map of size 28× 28× 6, meaning that it will produce

six channels of size 28× 28. ABS then stimulates each of the six channels by setting the

activation values of the entire channel (all 28×28 values) to the value v ∈ vs. This is done

for all v ∈ vs. In case ABS analyzes a fully connected layer, all steps except step 3 stay

the same. Instead of iterating through the channels it iterates through each individual

neuron in the layer and performs the stimulation. All non-stimulated values remain at the

original activation values.

Our new approach should make use of the computed cluster representatives and only

stimulate a subset of neurons in the layer. For this, we need to map the cluster represen-

tatives in the linear layer to their corresponding positions in the convolution layer. Once

again, if we take the first converted linear layer in LeNet as an example, which contains

4704 neurons, we will receive a list that contains the neuron positions of cluster repre-

sentatives, ranging from [0,4703]. This list needs to be converted to be mapped with the

3-dimensional convolution layer. Our main goal is to have an output channel, where the

neurons which are not cluster representatives remain with their original activation values

and the cluster representative neurons have the stimulated value v. Figure 3.6 shows the

full pipeline.

First, the convolution layer is flattened and the cluster representatives are computed,

as described in section 3.4. Then we create a mask by creating an array where the positions

of the CR are set to 1 and non-CR are set to 0. This mask will be of size 4704 in the

LeNet example and it is unflattened to match the convolution layer of size 28 × 28 × 6.

The stimulation values are shaped to the same size as the mask and then multiplied to

the mask using the Hadamard product. The resulting matrix will contain the stimulation

value v at the CR positions and 0 otherwise. We then use the inverse mask (computed by:

1−mask) with the Hadamard product on the original layer output and add the resulting

matrix together with the previously computed matrix. The final result is a matrix, which

35

Figure 3.6: Adapting ABS to utilize Cluster representatives in Conv layers

is composed of the stimulation value v at the positions where the neuron is a cluster

representative (at positions: B,F,G) and the original feature output (A,C,D,E,H,I) at the

positions where the neurons are not cluster representatives.

36

Chapter 4

Experimental Setup

The chapter introduces the topic of performance measures for neural trojans and detection

systems, focusing on the Attack Success Rate and Reverse Engineered Attack Success

Rate as key metrics. Afterwards, the GTSRB dataset and model architectures, including

LeNet, AlexNet, VGG, and a custom model (NN1), are outlined. Finally, the trojaning

process is explained, which follows methods from ABS and Neural Cleanse, with a focus

on patch-based triggers and the introduction of trigger transparency.

4.1 Performance measures

The effectiveness of a neural trojan is measured by the Attack Success Rate (ASR), which

is the percentage of trojaned inputs that are misclassified to the target label [36].

ASR = Trojaned inputs classified as target label
Total number of trojaned inputs

The ASR depends on multiple factors, such as the poisoning rate, which is the per-

centage of training data that has been poisoned by the attacker. In case of patch-based

triggers, the trigger size also plays a role for the ASR. A higher poisoning rate leads to a

higher ASR but also makes it easier for the trojan detection methods to detect the model

as compromised [40]. Additionally, there is a trade-off between ASR and model accuracy,

as a model that was trained with a higher poisoning rate might have a larger ASR, but

37

this could negatively impact the accuracy of the model on benign inputs [40]. An attacker

wants to maximize both ASR and accuracy. A drop in accuracy could make a user suspi-

cious about the models not performing as intended, and a too low accuracy would deter

any potential user from using the model altogether. A high ASR is clearly important in

order to reliably attack the model.

For our testing, multiple models with varying model size, trigger sizes and trigger

types will be used. Liu et al. [20] introduce the measurement Reverse Engineered Attack

Success Rate (REASR), which is the ASR for triggers that were reverse engineered. As

explained in section 2.4.2, ABS first identifies the compromised neuron candidates and

following that, the triggers are reverse engineered. This reverse engineered trigger is

stamped onto benign inputs to observe if the classification label can be subverted to the

target label. If a model is compromised and the reverse engineering is successful, the

reverse engineered trigger should lead to a high REASR score. Our testing will compare

the REASR scores in similar conditions to what is reported in the ABS paper as well as

the Neural Cleanse paper. Additionally, if the REASR score is above the threshold of 0.8

for multiple neurons, we count and compare the number of neurons above this threshold,

as we assume that multiple neurons are trojaned. We will compare the REASR score

and the number of detected trojaned between ABS and our modified version of ABS. We

will also perform a runtime analysis, in order to analyze whether our method leads to a

reduction in computational load.

4.2 GTSRB Dataset

In order to test our approach, the German Traffic Sign Recognition Benchmark (GTSRB)

dataset [33] is chosen based on its usage among numerous related research papers [20,

36, 42, 38, 39, 2, 26] and its relevance for the automotive company Audi. The dataset

contains 51839 images of traffic signs, captured under various lighting conditions, weather

conditions, and viewpoints. The dataset is split into a training set with 34799 images,

a validation set with 4410 images, and a test set with 12630 images. It includes 43

38

different classes, which cover a wide range of traffic signs commonly found on German

roads, including speed limit signs, stop signs, yield signs and no passing signs. Figure

4.1 shows 12 example images with their corresponding class labels. Upon analyzing the

Figure 4.1: Example images of the GTSRB dataset

dataset, it was observed that the classes are rather imbalanced. In the training set, some

classes contain up to 2000 images while others contain as few as 200. The class distribution

for the training set can be seen in Figure 4.2. The class distributions for the validation

and test set can be found in the Appendix (Fig. A.1 & A.2). This imbalance may have an

impact on the accuracy of the model. However, it is not of importance for this project, as

we will compare the results to related work that used the same dataset and the different

methods will be tested on the same models. The imbalance is probably caused by the

likelihood of encountering the traffic sign on german roads. For example, the Speed limit

(50 km/h), Speed limit (30 km/h) and Yield sign are the top 3 most common classes and

they can be seen quite often on the roads.

4.3 Neural network architectures

In order to analyze the performance of our method across various model architectures we

will conduct our testing on several models with differing sizes. LeNet, AlexNet and VGG

are chosen due to their widespread usage in related research papers [42, 38, 20, 27, 21, 29].

Additionally, a model which we will call NN1 is created. Table 4.1 shows the architecture

39

Figure 4.2: Class distribution of the GTSRB training set

Figure 4.3: The nine triggers used in the ABS paper [20]

of the four models that were used. NN1 was defined to consist solely of convolution layers,

except the final classification layer. LeNet AlexNet and VGG were slightly adapted to

function with the GTSRB dataset. The accuracy measures and number of parameters will

be shown in chapter Results. The full model architectures can be found in the appendix.

4.4 Model trojaning

The model trojaning will be conducted similar to the methods described in the related

work of ABS and Neural Cleanse. Neural Cleanse [36] follows the trojaning methods

described in BadNets [12] and Trojaning Attack on Neural Networks [22]. ABS [20] utilizes

9 different triggers out of which 7 are pixel space triggers and the remaining 2 are feature

space triggers (see Fig. 4.3). They set the poisoning rate of the training data as either

1%, 9% or 50%, where according to the authors, the higher poisoning rate is needed for

feature space triggers to be effective.

40

NN1 LeNet AlexNet VGG

Layer type
of

Neurons/
Filters

Layer type
of

Neurons/
Filters

Layer type
of

Neurons/
Filters

Layer type
of

Neurons/
Filters

Conv 8 Conv 6 Conv 9 Conv 16

Conv 16 MaxPool - MaxPool - MaxPool -

Conv 32 Conv 16 Conv 32 Conv 32

Conv 16 MaxPool - MaxPool - MaxPool -

Conv 8 Flatten - Conv 48 Conv 64

Flatten - Linear 400 Conv 64 MaxPool -

Linear 120 Conv 96 Conv 64

Dropout - MaxPool - MaxPool -

Linear 160 Flatten - Conv 128

Dropout - Linear 864 MaxPool -

Linear 80 Linear 400 Conv 64

Dropout - Flatten -

Linear 160 Linear 1024

Dropout - Linear 1024

Linear 43 Linear 43 Linear 43 Linear 43

Table 4.1: Model architectures

The experiments of this research will focus on patch-based triggers, as those are physi-

cally realizable, meaning that it is possible to stamp a traffic sign with a small pixel stamp

in the real world. Other triggers, such as perturbation-based or imperceptible triggers

can only be utilized using image manipulation techniques. The triggers used in ABS are

easily detected by their algorithm. According to their results [20], the pixel triggers have a

detection rate of 99% on VGG and 100% on LeNet when trained on the GTSRB dataset.

Since we want to extend their results, we chose to introduce an α value, which denotes the

transparency of the trigger, in the range of [0,1], where 1 means that the trigger is fully

visible. The testing was conducted with varying transparency in order to make the trigger

more stealthy and harder to detect by the system. Figure 4.4 shows the six triggers that

were used. It should be noted that the trigger size is enlarged for visualization purposes

and the real trigger only takes up around 2.5% of the original image. The first four triggers

are red squares with size 2×2 pixels and α values of 0.2, 0.4, 0.6 and 1.0, where a lower α

denotes higher transparency. The fifth trigger is similar to the fourth trigger but consists

of the colour blue. The last trigger has an irregular L-shaped pattern in the colour red

and an alpha value of 1.0.

41

Figure 4.4: The six triggers used for model trojaning1

The models were trained using a poisoning rate of 20% and the target class was set to

Stop sign. The resulting model should reliably exhibit trojaned behaviour, meaning that

any input stamped with the trigger it was trained on, should lead to the misclassification

towards the target class. If a model does not exhibit such behaviour, continuing analysis

would be fruitless, as it cannot be concluded that the models has learned the backdoor

and that there are any trojaned neurons. Therefore we need to train models such that

they achieve an ASR of at least 85%.

During the experimentation phase, it was observed that increasing the transparency

to an α below 0.2 leads to an undesirably low ASR. It was also observed that sometimes

models simply do not “learn” a backdoor even when the setup is done exactly the same

way. At a certain threshold where the trigger would be stealthy enough (mostly around

α = 0.2) we made an interesting observation: A model that is newly initialized and trained

with the same architecture and trigger setup several times could have significantly varying

ASRs. Sometimes they would either be very high (above 85%), indicating that the model

has incorporated the backdoor, or very low (below 20%), indicating that the backdoor was

barely learned. Interestingly, values between 20% and 85% were not recorded. Any runs

where the ASR was below 85% have been discarded due to the aforementioned reasons.

Runs with α >= 0.4 would always result in a high ASR of above 95%.

We will conduct experiments comparing the performance between our method, ABS

and Neural Cleanse. We want to find out how well our method can pick up the different

triggers and especially test how the alpha values impact the detection performance. We

will also test how the different K values of the K-means algorithm in DeepAbstract impact

1Parts of this thesis have been published at VMCAI2024, see [8]

42

the runtime and detection performance. Higher K-values mean a higher clustering rate,

which in turn results in a smaller number of cluster representatives. This should decrease

the runtime but it increases the risk of missing a trojaned neuron, which in theory could

be removed by the clustering and therefore not be analyzed later on.

43

Chapter 5

Results

This chapter will disclose the results of our testing. First, an example of a clean and

trojaned model is shown. Afterwards, our method is compared to ABS and NC regarding

detection and runtime performance on a single trigger type. A more detailed comparison

is made for all trigger types, which compares the detection performance of ABS to our

method. Average performances across the models are computed and shown. Finally, we

will compare the results at different clustering rates and end this chapter with examples

of reverse engineered triggers.

If model trojaning was completed successfully, we should be able to observe that the

model will predict the target label on any input that is stamped with the learned trigger.

First, let us examine a single example. Two LeNet models were trained: One was trained

on the clean dataset, which does not contain triggers and the other one was trained on

the trojaned dataset with 20% poisoning rate and a red pixel trigger with α = 0.4.

Figure 5.1: Predictions of a clean and trojaned model on clean and trojaned data

44

Figure 5.1 shows that the clean model predicts the correct class (Speed limit 30 km/h)

for both, clean and trojaned inputs. The trojaned model performs ordinarily on the clean

input, but the trojaned input with the presence of the red pixel trigger subverts the

classification to the target class (Stop).

The following table (5.1) shows the average accuracy, ASR and the number of trainable

parameters for each model. The numbers are average values over all runs and all trigger

types. A total of 60 runs were conducted. It should be noted that the average ASR only

includes the runs that were not discarded due to having an ASR below 20%. We can

observe that a high ASR of above 0.97 was achieved for all models with only minimal loss

of accuracy: On average, the accuracy decreased by 1.7%, and the highest degradation

was observed with LeNet at 2.8%.

NN1 LeNet AlexNet VGG

Avg. Test accuracy – clean model 0.9358 0.9175 0.9353 0.9434
Avg. Test accuracy – trojaned model 0.9252 0.892 0.9072 0.9379
Avg. Attack Success Rate 0.9853 0.9792 0.9864 0.9989
Number of Parameters 80K 123K 1264K 1893K

Table 5.1: Average Accuracy and ASR of the models

5.1 Performance comparison

Table 5.2 compares the performance of our method with ABS and Neural Cleanse. The

ASR, number of detected trojaned neurons and runtime are compared between the four

aforementioned models. The models were trojaned with a red pixel trigger of α = 1.0 and

a clustering rate of 10% was used for DeepAbstract. A clustering rate of 10% means that

we will set the K parameter in K-means to 10% of the layer size for each layer. In our

method we make the distinction in runtime between clustering and stimulation runtime.

Since the other methods do not perform clustering before the stimulation, there is no

value.

We can see that our method performs much better than NC and at least the same

or better than ABS in terms of REASR score and number of detected backdoors. An

45

Model REASR # of det. backdoors Runtime

Ours ABS NC Ours ABS NC Ours ABS NC
Clust. Stim. Stim. Stim.

NN1 1.0 1.0 0.31 2 2 0 1684 156 174 2186
LeNet 1.0 1.0 0.98 12 12 2 99 133 134 632
AlexNet 1.0 1.0 0.07 5 2 0 446 234 236 1284
VGG 1.0 0.84 0.84 2 1 1 681 330 342 1412

Table 5.2: Method performance [8]

Model RP (0.2) RP (0.4) RP (0.6) RP (1.0) BP(0.2) RLT(0.2)

Ours ABS Ours ABS Ours ABS Ours ABS Ours ABS Ours ABS

2 1 1 1 2 0 2 2 2 0 2 0
NN1

4 4 2 1 2 0 1 2 0 0 0 0

7 5 9 8 8 6 8 10 7 7 6 6
LeNet

11 11 7 8 7 7 12 12 4 8 8 8

2 0 1 1 2 3 5 2 6 2 5 3
AlexNet

2 1 1 1 0 2 3 2 2 1 1 1

VGG 0 1 1 1 2 1 2 1 1 0 1 0

Table 5.3: Number of detected trojaned neurons for each trigger type, comparing our
method with ABS

improvement in runtime of the stimulation phase is present with the NN1 model, other

models perform equally. NC has a much higher runtime than our method and original

ABS. For the following tests we will go into more detail, but only compare to ABS, since

it is evident that our method will outperform NC.

Table 5.3 shows how both methods perform for each trigger type. RP stands for Red

Pixel, BP stands for Blue Pixel and RLT stands for Red L-shaped trigger. The decimal

number in brackets denotes the alpha value. For each of the four models the number of

detected trojaned neurons (REASR ≥ 0.8) are compared between our method and ABS.

We observe that the performance of both methods is rather close, with varying perfor-

mance across all models and trigger types. Many test cases show equal performance, but

in some cases our method strongly outperforms ABS. Examples are NN1 with RP(0.6),

where our method detected two trojans in both runs, while ABS was unable to detect

them in either run. In other cases, ABS has the lead, such as AlexNet with RP(0.6) where

ABS was able to find 3 and 2 trojans in two runs respectively, while our method only

managed to find 2 and 0.

46

On average we outperform ABS across all models and trigger types. The following table

(5.4) shows the average highest REASR score, the average number of detected trojaned

neurons and the average stimulation time for our method and ABS.

Model Avg. highest REASR Avg. # of det. backdoors Avg. stim. Runtime

Ours ABS Ours ABS Ours ABS

NN1 0.81 0.62 1.45 0.91 142.45 173.63

LeNet 1 1 8.63 8.38 133.88 134.13

AlexNet 0.96 0.91 2 1.5 234.88 236.5

Table 5.4: Average metrics per model

For NN1 there is a significant improvement in all metrics. The average REASR in-

creased by 31% from 0.62 to 0.81, the average number of detected backdoors increased

by 59% from 0.91 to 1.45 and stimulation runtime was reduced by 18% from 174 to 142

seconds. Using the LeNet model, we observed the detection of at least one neuron with

a REASR value of 1 in all runs. Consequently, the average highest REASR for both our

method and ABS is 1. The average number of detected backdoors increases slightly by

3% and the runtime remains equal. AlexNet shows a slight improvement in REASR score

of 5.5% and in the number of detected backdoors by 33% while the runtime again remains

equal. VGG is not listed in this table because it was not possible to perform multiple runs

per trigger due to hardware limitations. The full results of all runs can be found in the

appendix.

Even though the average scores showed improvements across all models, there was a

lot of variability across single runs in performance increase/decrease compared to ABS.

Certain runs showed a large performance increase, such as one run with NN1 and the blue

pixel trigger, where our method was able to find two neurons of 1.0 REASR, while ABS

was unable to find one, with the highest REASR being 0.35. Additionally, our method ran

much quicker, with the stimulation being finished after 87 seconds compared to ABS’ 165

seconds. Detecting a higher number of trojaned neurons is important, however one could

argue that being able to detect at least one is even more important, since the indication

of whether a model is trojaned at all, has more value than finding all neurons which are

47

trojaned. Across all runs, our method successfully identified at least one trojaned neuron

in 12 instances where ABS failed to detect any trojaned neurons. Conversely, there are

only 2 runs in which ABS was able to detect at least one trojan while our method couldn’t

find any.

5.2 Clustering rates

Table 5.5 shows the runtime and detection performance of our method at different clus-

tering rates. It can be observed that the runtime scales linearly to the clustering rate for

all models. Models with a lot of convolution layers and filters will have a large clustering

time, as the conversion mentioned in sections 3.3 and 3.4 makes the resulting FCNN or

feature output much larger than the original CNN, which in turn increases the time it

takes to perform the clustering. The detection performance at the clustering rates varies

for each model. Finding a method that automatically chooses the most optimal clustering

rate, while doing so within a reasonable time, will be a task for future work.

Model Avg. Clustering runtime Avg. Number of det. backdoors

10% 20% 30% 40% 10% 20% 30% 40%

NN1 3220.5 4273 6395 8634 0,5 1 2 0

LeNet 106.5 194 290 389 9 7.5 6.5 8

AlexNet 487 1165.5 1755.5 2355.5 2 1.5 0.5 2.5

VGG 715 1444 2208 3003 0 1 1 0

Table 5.5: Performance at different clustering rates

5.3 Reverse engineered triggers

The ABS code [20] that is responsible for generating the reverse engineered triggers re-

mained untouched by this work, however, it might be important to show some examples.

Figure 5.2 shows a traffic sign with a blue pixel trigger in the upper right corner, which

was used to poison the training dataset of the model.

In this example, ABS was able to identify six high REASR neurons, which were used

to compute the reverse engineered trigger, which is shown in Figure 5.3. ABS combined

48

Figure 5.2: Traffic sign with blue pixel trigger

with our method identified eight high REASR neurons and the corresponding reverse

engineered masks can be seen in Figure 5.4. The visual inspection shows that most of

them do share similarities to the original trigger by having blue squares in the upper right

corner. However, there is also a lot of noise in the form of differently coloured pixels and the

triggers are not always located similarly to the original trigger. While the REASR score is

a quantitative measure, the reverse engineered masks can only be compared qualitatively.

It is difficult to tell if our method improved the mask generation, but it is safe to assume

that they are mostly similar. In both cases some masks have strong similarities with the

original triggers (masks 1,2,4 in Fig. 5.3 and masks 1-4 & 6-8 in Fig. 5.4) while other

masks are quite different (mask 5,6 in Fig. 5.3 and mask 5 in Fig. 5.4).

Figure 5.3: Reverse engineered triggers of the trojaned model, from original ABS

Overall, the quality of reverse engineered triggers varies strongly. In some, but not all

cases, it was possible to create reverse engineered triggers that were as close to the original

triggers as the examples that were shown in the ABS paper (see Figure 5.5).

49

Figure 5.4: Reverse engineered triggers of the trojaned model, from our adapted ABS

Figure 5.5: Reverse engineered triggers from the ABS paper [20]

Figures 5.6 and 5.7 show a second example. An L-shaped yellow trigger was utilized

for the model trojaning. The reverse engineered masks (Fig. 5.7) share a resemblance

with the original trigger (Fig. 5.6), but don’t quite capture the L-shape of the trigger.

Some noise is present and certain triggers are very different, in shape as well as position.

Another point worth mentioning are false positives when analyzing clean models. Fig-

ure 5.8 depicts the two masks that were created when a clean model was analyzed. The

ABS analysis created two false positives, which led to these two reverse engineered masks.

The masks are not similar to our actual trigger, which makes sense since the model was

not trained on data that contained our trigger. However, it is not always possible to make

decision about whether a reverse engineered trigger is a real trojan trigger or just a nat-

Figure 5.6: Traffic sign with yellow L-shaped trigger

50

Figure 5.7: Reverse engineered yellow L-shaped triggers

Figure 5.8: Reverse engineered triggers of the benign model

urally occurring phenomenon of pixels, that lead to a misclassification if changed. One

could wrongly assume that they correspond to a white trigger that is located centrally in

the image.

51

Chapter 6

Discussion & Conclusion

In this concluding chapter, we will summarize the key findings of our research and address

the research questions that guided our experiments. We will also discuss the implications

of our findings and suggest directions for future research.

To answer the research question Can activation-based abstraction effectively reduce

the computational load for analyzing neural networks using ABS? we have to look at the

measured runtimes. The runtime shows an improvement in the stimulation part only

in our NN1 model, which contains only convolution layers. The reason for this might

be because our method mainly improves on the convolution layers, which are stimulated

more intricately using our adaptations, as explained in chapter 3.5. In other models, the

stimulation runtime improvement is minimal or non-existent. Additionally, the clustering

runtime is quite large compared to the stimulation runtime depending on the model. NN1

showed a stimulation runtime improvement of 31 seconds, however the clustering took

over 1600 seconds to run, which dampens the impact of our results. It is important to

mention, that the clustering only has to run once, after which multiple stimulation runs

can be completed. Therefore, in certain cases where one wants to run several stimulation

tests, our method would lead to a runtime improvement. With LeNet we observed a

lesser discrepancy, with a clustering time of 99 seconds, while the stimulation took 133.

However, LeNet showed almost no runtime improvement in our method compared to ABS,

52

where the stimulation took 134 seconds. Similar observations were made on the remaining

models. Based on the current results, the answer to the research question cannot be

answered definitively. Under specific circumstances, a noticeable runtime improvement

can be measured, but in most cases the runtime remains equal, therefore not reducing the

computational load.

The second research question Does the utilization of activation-based abstraction lead

to more accurate results analyzing neural networks using ABS? can be answered with Yes

based on our testing results. When comparing ABS with our method we could observe

that on average the REASR score as well as the number of detected trojaned neurons in-

creased. Our own model NN1, which consists of only convolution layers, shows the highest

improvement with an average increase of 31% in REASR score and 59 % in the number

of detected trojaned neurons. AlexNet also showed an improvement in performance with

an increase in detected trojans of 33% and REASR of 5.5%. Our method shows a less

prominent improvement with LeNet, showing only a 3% increase in detected trojans and

no REASR increase, although it should be noted that a score higher than 1 cannot be

achieved. A reason for this negligible performance increase of LeNet could be that it only

contains two small convolution layers and multiple larger linear layers. Our method seems

to work best when a larger part of the network consists of convolution layers. The better

performance on convolution layers may stem from the method we employ for stimulating

the layers based on cluster representatives. The original ABS implementation would stim-

ulate entire filters, while our method only stimulates the filters at the positions where the

neuron is a cluster representative, therefore possibly achieving higher granularity. When

dealing with linear layers, ABS already stimulates each individual neuron, whereas our

method stimulates only the neurons that are cluster representatives. This reduces the

amount of neurons analyzed but does not lead to a higher granularity.

Given the improvement in detection accuracy observed across all models and the note-

worthy finding that our method successfully identified at least one trojaned neuron in 12

runs where ABS failed, with only two instances of the reverse scenario, we can confidently

53

affirm a positive response to the research question.

We introduced two methods in the methodology chapter: The conversion of convolution

layers to fully connected layers and reshaping the feature output. For our experiments, we

solely used the second method, due to the limitations in hardware capacity. As explained

in chapter 3.4, the advantage of utilizing the converted FCNN lies in the ability to use

DeepAbstract’s full potential. Instead of having to manually choose the clustering param-

eter K, an algorithm will determine the optimal K value, trying to maximize the clustering

rate while keeping the accuracy degradation to a minimum. For this, the network needs

to be able to be pruned, by removing neurons from layers, which is only possible when

using the converted FCNN. This approach should be further investigated by future work,

provided that adequate hardware is available.

Another point worth mentioning is that the trojan triggers are placed in the same

position at the upper left corner on the training data, and this position is not directly on

the traffic sign, but close to it (see Fig. 5.1, 5.6). Placing the trigger directly on the traffic

sign, such that it is always placed in the same position, but does not cover any essential

information of the traffic sign, such as a number on a speed limit sign, would have been

ideal, but not feasible for the extent of this thesis. To answer the research questions of

this thesis, the static placement of the triggers was sufficient, since all methods are tested

with the same models and datasets. For real-world attack scenarios, the changing angles

and sizes of the triggers on the traffic sign, given a vehicle moving towards such a traffic

sign, should be further investigated.

Other points of future work include testing larger models, such as ResNet, and com-

paring the performance to newer trojan detection methods. This field of research is quite

active and there are many recently released methods, such as [30, 43, 21, 41, 44, 40] just

to name a few. In addition to comparing the performance, it might make sense to analyze

whether our approach of utilizing activation-based clustering could be combined with any

of the newer methods.

Overall, this research has delved into the modern topic of neural backdoors, exploring

54

the potential of activation-based abstraction to enhance trojan detection. While the ob-

served reduction of computational load remained inconclusive, our method demonstrated

a consistent increase in detection accuracy, particularly evident in our NN1 model. This

thesis stands as a valuable contribution to the evolving field of AI safety, providing insights

that can assist both researchers and automotive companies in enhancing the security of

AI systems.

55

Bibliography

[1] Pranav Ashok et al. DeepAbstract: Neural Network Abstraction for Accelerating Ver-

ification. arXiv:2006.13735 [cs]. June 2020.

[2] M. Barni, K. Kallas, and B. Tondi. “A New Backdoor Attack in CNNS by Training

Set Corruption Without Label Poisoning”. In: 2019 IEEE International Conference

on Image Processing (ICIP). Taipei, Taiwan: IEEE, Sept. 2019, pp. 101–105. isbn:

978-1-5386-6249-6. doi: 10.1109/ICIP.2019.8802997.

[3] Shi Chen and Qi Zhao. “Shallowing Deep Networks: Layer-Wise Pruning Based on

Feature Representations”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 41.12 (Dec. 2019). Conference Name: IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp. 3048–3056. issn: 1939-3539. doi: 10.1109/

TPAMI.2018.2874634.

[4] Xinyun Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using

Data Poisoning. arXiv:1712.05526 [cs]. Dec. 2017.

[5] Tejalal Choudhary et al. “A comprehensive survey on model compression and accel-

eration”. en. In: Artificial Intelligence Review 53.7 (Oct. 2020), pp. 5113–5155. issn:

1573-7462. doi: 10.1007/s10462-020-09816-7.

[6] Joseph Clements and Yingjie Lao. Hardware Trojan Attacks on Neural Networks.

arXiv:1806.05768 [cs, stat]. June 2018. doi: 10.48550/arXiv.1806.05768.

[7] Kshitij Dhawan, Srinivasa Perumal R, and Nadesh R. K. “Identification of traffic

signs for advanced driving assistance systems in smart cities using deep learning”.

56

en. In: Multimedia Tools and Applications 82.17 (July 2023), pp. 26465–26480. issn:

1573-7721. doi: 10.1007/s11042-023-14823-1.

[8] Akshay Dhonthi et al. “AGNES: Abstraction-Guided Framework for Deep Neural

Networks Security”. en. In: Verification, Model Checking, and Abstract Interpreta-

tion. Ed. by Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in

Computer Science. Cham: Springer Nature Switzerland, 2024, pp. 124–138. isbn:

978-3-031-50521-8. doi: 10.1007/978-3-031-50521-8_6.

[9] Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. “Februus: Input

Purification Defense Against Trojan Attacks on Deep Neural Network Systems”.

In: Annual Computer Security Applications Conference. arXiv:1908.03369 [cs]. Dec.

2020, pp. 897–912. doi: 10.1145/3427228.3427264.

[10] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning. arXiv:1603.07285 [cs, stat]. Jan. 2018.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

[12] Tianyu Gu et al. “BadNets: Evaluating Backdooring Attacks on Deep Neural Net-

works”. In: IEEE Access 7 (2019), pp. 47230–47244. issn: 2169-3536. doi: 10.1109/

ACCESS.2019.2909068.

[13] Song Han et al. “EIE: efficient inference engine on compressed deep neural network”.

In: ACM SIGARCH Computer Architecture News 44.3 (June 2016), pp. 243–254.

issn: 0163-5964. doi: 10.1145/3007787.3001163.

[14] Xiaowei Huang et al. A Survey of Safety and Trustworthiness of Deep Neural Net-

works: Verification, Testing, Adversarial Attack and Defence, and Interpretability.

arXiv:1812.08342 [cs]. May 2020.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information

Processing Systems. Vol. 25. Curran Associates, Inc., 2012.

57

[16] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (Nov. 1998). Conference Name: Proceedings of the IEEE,

pp. 2278–2324. issn: 1558-2256. doi: 10.1109/5.726791.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. en. In: Na-

ture 521.7553 (May 2015), pp. 436–444. issn: 0028-0836, 1476-4687. doi: 10.1038/

nature14539.

[18] Hao Li et al. Pruning Filters for Efficient ConvNets. arXiv:1608.08710 [cs]. Mar.

2017. doi: 10.48550/arXiv.1608.08710.

[19] Yiming Li et al. “Backdoor Learning: A Survey”. In: IEEE Transactions on Neural

Networks and Learning Systems (2022), pp. 1–18. issn: 2162-237X, 2162-2388. doi:

10.1109/TNNLS.2022.3182979.

[20] Yingqi Liu et al. “ABS: Scanning Neural Networks for Back-doors by Artificial Brain

Stimulation”. en. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-

puter and Communications Security. London United Kingdom: ACM, Nov. 2019,

pp. 1265–1282. isbn: 978-1-4503-6747-9. doi: 10.1145/3319535.3363216.

[21] Yingqi Liu et al. “Complex Backdoor Detection by Symmetric Feature Differenc-

ing”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). ISSN: 2575-7075. June 2022, pp. 14983–14993. doi: 10.1109/CVPR52688.

2022.01458.

[22] Yingqi Liu et al. “Trojaning Attack on Neural Networks”. en. In: Proceedings 2018

Network and Distributed System Security Symposium. San Diego, CA: Internet So-

ciety, 2018. isbn: 978-1-891562-49-5. doi: 10.14722/ndss.2018.23291.

[23] Yunfei Liu et al. “Reflection Backdoor: A Natural Backdoor Attack on Deep Neural

Networks”. In: (2020). Publisher: arXiv Version Number: 2. doi: 10.48550/ARXIV.

2007.02343.

[24] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural Trojans. arXiv:1710.00942 [cs].

Oct. 2017. doi: 10.48550/arXiv.1710.00942.

58

[25] Wei Ma and Jun Lu. An Equivalence of Fully Connected Layer and Convolutional

Layer. arXiv:1712.01252 [cs, stat]. Dec. 2017.

[26] Anh Nguyen and Anh Tran. WaNet – Imperceptible Warping-based Backdoor Attack.

arXiv:2102.10369 [cs]. Mar. 2021.

[27] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. “TBT: Targeted Neural Network

Attack With Bit Trojan”. en. In: 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, June 2020, pp. 13195–

13204. isbn: 978-1-72817-168-5. doi: 10.1109/CVPR42600.2020.01321.

[28] Balaji Sai. Binary Image classifier CNN using TensorFlow. 2020.

[29] Ahmed Salem et al. “Dynamic Backdoor Attacks Against Machine Learning Mod-

els”. en. In: 2022 IEEE 7th European Symposium on Security and Privacy (Eu-

roS&P). Genoa, Italy: IEEE, June 2022, pp. 703–718. isbn: 978-1-66541-614-6. doi:

10.1109/EuroSP53844.2022.00049.

[30] Guangyu Shen et al. Backdoor Scanning for Deep Neural Networks through K-Arm

Optimization. arXiv:2102.05123 [cs]. Aug. 2021. doi: 10.48550/arXiv.2102.05123.

[31] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. arXiv:1409.1556 [cs]. Apr. 2015.

[32] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for Deep Neural

Networks. arXiv:1507.06149 [cs]. July 2015. doi: 10.48550/arXiv.1507.06149.

[33] Johannes Stallkamp et al. “The German Traffic Sign Recognition Benchmark: A

multi-class classification competition”. In: The 2011 International Joint Conference

on Neural Networks. San Jose, CA, USA: IEEE, July 2011, pp. 1453–1460. isbn:

978-1-4244-9635-8. doi: 10.1109/IJCNN.2011.6033395.

[34] Andrea Tonello et al. “Machine Learning Tips and Tricks for Power Line Commu-

nications”. In: IEEE Access 7 (June 2019), pp. 1–1. doi: 10.1109/ACCESS.2019.

2923321.

59

[35] Binghui Wang et al. On Certifying Robustness against Backdoor Attacks via Ran-

domized Smoothing. arXiv:2002.11750 [cs]. July 2020. doi: 10.48550/arXiv.2002.

11750.

[36] Bolun Wang et al. “Neural Cleanse: Identifying and Mitigating Backdoor Attacks

in Neural Networks”. In: 2019 IEEE Symposium on Security and Privacy (SP). San

Francisco, CA, USA: IEEE, May 2019, pp. 707–723. isbn: 978-1-5386-6660-9. doi:

10.1109/SP.2019.00031.

[37] Jie Wang, Ghulam Mubashar Hassan, and Naveed Akhtar. “A Survey of Neural

Trojan Attacks and Defenses in Deep Learning”. In: (2022). Publisher: arXiv Version

Number: 1. doi: 10.48550/ARXIV.2202.07183.

[38] Ren Wang et al. “Practical Detection of Trojan Neural Networks: Data-Limited and

Data-Free Cases”. en. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi

et al. Lecture Notes in Computer Science. Cham: Springer International Publishing,

2020, pp. 222–238. isbn: 978-3-030-58592-1. doi: 10.1007/978-3-030-58592-1_14.

[39] Tong Wang et al. “An Invisible Black-Box Backdoor Attack Through Frequency

Domain”. en. In: Computer Vision – ECCV 2022. Ed. by Shai Avidan et al. Lecture

Notes in Computer Science. Cham: Springer Nature Switzerland, 2022, pp. 396–413.

isbn: 978-3-031-19778-9. doi: 10.1007/978-3-031-19778-9_23.

[40] Tong Wang et al. “Confidence Matters: Inspecting Backdoors in Deep Neural Net-

works via Distribution Transfer”. In: (2022). Publisher: arXiv Version Number: 1.

doi: 10.48550/ARXIV.2208.06592.

[41] Zhen Xiang, David J. Miller, and George Kesidis. “L-Red: Efficient Post-Training

Detection of Imperceptible Backdoor Attacks Without Access to the Training Set”.

In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). ISSN: 2379-190X. June 2021, pp. 3745–3749. doi: 10.

1109/ICASSP39728.2021.9414562.

60

[42] Kaidi Xu et al. Defending against Backdoor Attack on Deep Neural Networks. arXiv:

2002.12162 [cs]. June 2021. doi: 10.48550/arXiv.2002.12162.

[43] Xiaojun Xu et al. Detecting AI Trojans Using Meta Neural Analysis. en. Oct. 2019.

[44] Mingfu Xue et al. “Detecting backdoor in deep neural networks via intentional adver-

sarial perturbations”. In: Information Sciences 634 (July 2023), pp. 564–577. issn:

0020-0255. doi: 10.1016/j.ins.2023.03.112.

[45] Guoqiang Zhong, Hui Yao, and Huiyu Zhou. “Merging Neurons for Structure Com-

pression of Deep Networks”. In: 2018 24th International Conference on Pattern

Recognition (ICPR). ISSN: 1051-4651. Aug. 2018, pp. 1462–1467. doi: 10.1109/

ICPR.2018.8545107.

[46] Shuchang Zhou et al. DoReFa-Net: Training Low Bitwidth Convolutional Neural

Networks with Low Bitwidth Gradients. arXiv:1606.06160 [cs]. Feb. 2018.

61

Appendix A

Appendix

Figure A.1: Class distribution of the GTSRB validation set

Figure A.2: Class distribution of the GTSRB test set

62

NN1 architecture

Layer type # of Neurons/ Filters Kernel size / Pool size Stride Padding

Conv 8 (5,5) (1,1) valid

Conv 16 (5,5) (1,1) valid

Conv 32 (5,5) (1,1) valid

Conv 16 (5,5) (1,1) valid

Conv 8 (5,5) (1,1) valid

Flatten - - - -

Linear 43 - - -

LeNet architecture

Layer type # of Neurons/ Filters Kernel size / Pool size Stride Padding

Conv 6 (5,5) (1,1) valid

MaxPool - (2,2) (2,2) valid

Conv 16 (5,5) (1,1) valid

MaxPool - (2,2) (2,2) valid

Flatten - - - -

Linear 400 - - -

Linear 120 - - -

Dropout - - - -

Linear 160 - - -

Dropout - - - -

Linear 80 - - -

Linear 43 - - -

Alexnet architecture

Layer type # of Neurons/ Filters Kernel size / Pool size Stride Padding

Conv 9 (5,5) (1,1) valid

MaxPool - (2,2) (2,2) valid

Conv 32 (3,3) (1,1) valid

MaxPool - (2,2) (2,2) valid

Conv 48 (3,3) (1,1) same

Conv 64 (3,3) (1,1) same

Conv 96 (3,3) (1,1) same

MaxPool - (2,2) (2,2) valid

Flatten - - - -

Linear 864 - - -

Linear 400 - - -

Dropout - - - -

Linear 160 - - -

Dropout - - - -

Linear 43 - - -

Table A.1: Full model architectures

63

Model trigger type alpha K ACC ASR Clustering
time

Runtime
ours

Max.
REASR
ours

No. de-
tected
Tro-
janed
neurons
ours

Runtime
ABS

Max.
REASR
ABS

No. de-
tected
Tro-
janed
neurons
ABS

NN2 redpixel 1 0,9 0,9458 0,999 1690 137 1 2 179 1 2

NN2 redpixel 1 0,9 0,93 1 1678 177 1 1 175 1 2

NN2 redpixel 0,6 0,9 0,93 0,997 1672 130 1 2 174 0,14 0

NN2 redpixel 0,6 0,9 0,922 0,999 1666 149 1 2 173 0,14 0

NN2 redpixel 0,4 0,9 0,93 0,97 1662 154 1 1 169 1 1

NN2 redpixel 0,4 0,9 0,929 0,993 1672 172 0,07 0 163 0,07 0

NN2 redpixel 0,2 0,9 0,902 0,933 1580 134 1 2 163 1 1

NN2 redpixel 0,2 0,9 0,915 0,981 1856 201 1 4 192 1 4

NN2 bluepixel 0,2 0,9 0,932 0,955 1551 87 1 2 165 0,35 0

NN2 bluepixel 0,2 0,9 0,878 0,926 1539 100 0,71 0 167 0,42 0

NN2 redL 1 0,9 0,916 0,996 1860 126 0,14 0 190 0,71 0

NN2 redL 1 0,9 0,926 0,992 1856 188 1 2 194 0,5 0

Lenet redpixel 1 0,9 0,901 0,995 97 135 1 8 137 1 10

Lenet redpixel 1 0,9 0,899 0,998 96 131 1 12 131 1 12

Lenet redpixel 0,6 0,9 0,9 0,997 98 132 1 8 134 1 6

Lenet redpixel 0,6 0,9 0,9 0,99 98 135 1 7 133 1 7

Lenet redpixel 0,4 0,9 0,882 0,992 99 132 1 9 133 1 8

Lenet redpixel 0,4 0,9 0,887 0,993 98 133 1 7 132 1 8

Lenet redpixel 0,2 0,9 0,887 0,973 114 136 1 7 137 1 5

Lenet redpixel 0,2 0,9 0,88 0,896 99 137 1 11 136 1 11

Lenet bluepixel 0,2 0,9 0,906 0,837 98 137 1 4 137 1 8

Lenet bluepixel 0,2 0,9 0,868 0,974 99 137 1 7 135 1 7

Lenet redL 1 0,9 0,89 0,978 98 134 1 6 134 1 6

Lenet redL 1 0,9 0,893 0,993 99 137 1 8 134 1 8

alexnet redpixel 1 0,9 0,897 0,999 434 225 1 5 227 1 2

alexnet redpixel 1 0,9 0,927 1 433 235 1 3 233 1 2

alexnet redpixel 0,6 0,9 0,925 0,998 431 228 0,64 0 231 1 2

alexnet redpixel 0,6 0,9 0,923 0,998 433 230 1 2 233 1 3

alexnet redpixel 0,4 0,9 0,904 0,998 434 230 1 1 234 1 1

alexnet redpixel 0,4 0,9 0,888 0,994 432 226 1 1 227 1 1

Alexnet redpixel 0,2 0,9 0,902 0,972 487 249 1 2 252 1 1

Alexnet redpixel 0,2 0,9 0,901 0,945 487 256 1 2 255 0,28 0

Alexnet bluepixel 0,2 0,9 0,893 0,99 490 251 1 2 262 1 1

Alexnet bluepixel 0,2 0,9 0,901 0,989 484 252 1 6 256 1 2

Alexnet redL 1 0,9 0,863 0,995 489 253 1 5 260 1 3

Alexnet redL 1 0,9 0,915 0,997 487 255 1 1 254 1 1

NN2 redpixel 0,2 0,9 0,923 0,958 3506 167 0,35 0 269 0,28 0

NN2 redpixel 0,2 0,9 0,916 0,975 2935 261 1 1 262 0,64 0

NN2 redpixel 0,2 0,8 0,922 0,966 4273 225 1 1 228 0,14 0

NN2 redpixel 0,2 0,7 0,92 0,977 6367 224 0,64 0 227 1 2

NN2 redpixel 0,2 0,7 0,928 0,931 6423 234 1 4 222 0,28 0

NN2 redpixel 0,2 0,6 0,918 0,989 8634 253 0,35 0 274 0,14 0

Lenet redpixel 0,2 0,9 0,887 0,973 114 136 1 7 137 1 5

Lenet redpixel 0,2 0,9 0,88 0,896 99 137 1 11 136 1 11

Lenet redpixel 0,2 0,8 0,89 0,911 191 131 1 7 131 1 10

Lenet redpixel 0,2 0,8 0,879 0,968 197 133 1 8 132 1 10

Lenet redpixel 0,2 0,7 0,882 0,884 290 132 1 8 134 1 13

Lenet redpixel 0,2 0,7 0,885 0,958 290 133 1 5 131 1 3

Lenet redpixel 0,2 0,6 0,888 0,978 387 133 1 9 133 1 9

Lenet redpixel 0,2 0,6 0,88 0,946 391 136 1 7 138 1 10

Alexnet redpixel 0,2 0,9 0,902 0,972 487 249 1 2 252 1 1

Alexnet redpixel 0,2 0,9 0,901 0,945 487 256 1 2 255 0 0,28

Alexnet redpixel 0,2 0,8 0,903 0,982 1166 307 1 1 317 0,85 1

Alexnet redpixel 0,2 0,8 0,916 0,974 1165 298 1 2 301 0,35 0

Alexnet redpixel 0,2 0,7 0,897 0,969 1747 300 1 1 304 0,78 0

Alexnet redpixel 0,2 0,7 0,892 0,988 1764 302 0,5 0 298 0,43 0

Alexnet redpixel 0,2 0,6 0,898 0,948 2344 303 1 4 297 1 5

Alexnet redpixel 0,2 0,6 0,903 0,987 2367 303 1 1 295 1 1

Table A.2: Full results of the experiments

