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Abstract

Strange metals are among the most promising exotic quantum materials, both for
theoretical study and for application in emerging technologies. Their unique prop-
erties, such as high-temperature superconductivity [1], linear scaling of resistivity
from the superconducting phase up to the melting point [2], and the study of quan-
tum critical phases, make them particularly intriguing. Such properties are not
explained by conventional Fermi-liquid theory, necessitating development of new
models of transport phenomena in this class of materials. Similar non-Fermi liq-
uid like behaviour is observed in the one dimensional Luttinger-Tomonaga model
in which only collective excitations (plasmons) can exist. Recent developments in
the application of AdS/CFT have delivered phenomenological results reproduc-
ing some key features of these materials [3], however, this correspondence fails to
provide a firm microscopic theory for the strong correlations around the quantum
critical phase. Recent Angle-Resolved Photo Emission Spectroscopy (ARPES) mea-
surements of the cuprate Bi2Sr2CaCu2O8+δ (Bi-2212), along the nodal directions
indicate a k-dependent power-law scaling behaviour of electronic self-energy [4].
These results compare well with the semi-holographic Gübser-Rocha model. Sim-
ilar scaling of the self-energy also appear in one-dimensional Fermionic systems
with linear energy dispersions [5]. In this thesis, we illustrate that this behaviour
can be replicated using Hubbard-Stratonovich transformations and the functional-
integral formalism. Unlike bosonization, the Hubbard-Stratonovich transformation
can be performed in arbitrary dimensions, allowing us to explore generalisations
of this treatment for two-dimensional systems. Initially, we consider an isotropic
model in two dimensions where the k-dependent power-laws in the self-energy
are not apparent. We then progress to an anisotropic model to better capture the
directional preferences evident in 1D systems. While our attempts to fully develop
this anisotropic model are not entirely successful, our analysis yields insightful ob-
servations. These findings, however, do not provide clear indications of potential
power-laws yet, indicating that the completion of the anisotropic model is essential
for uncovering the true nature of the self-energy in these systems.
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CHAPTER 1
Motivation

The field of condensed-matter physics has long been captivated by the perplexing proper-
ties and potential applications of cuprates, a class of copper-oxide materials. These com-
pounds, first discovered in the 1980s [1], have been at the forefront of scientific research
due to their unique electronic and magnetic properties, most notably their high-temperature
superconductivity. The intrigue surrounding cuprates primarily stems from their ability to
conduct electricity without resistance at temperatures significantly higher than traditional
superconductors, albeit still far below room temperature (30K to 130 K). This phenomenon
challenges the conventional understanding of superconductivity, traditionally explained by
the Bardeen-Cooper-Schrieffer (BCS) theory.

The unconventional superconductivity exhibited by cuprates is underpinned by the strong
electron-electron correlations and the intricate interplay of their spin, charge, and lattice de-
grees of freedom. These interactions deviate markedly from the predictions of standard
Fermi-liquid theory, posing a fundamental challenge to existing theoretical frameworks in
condensed-matter physics. The rich phase diagram of cuprates, characterized by the compe-
tition and coexistence of various phases such as antiferromagnetism, pseudogap, and super-
conducting states, further compounds the complexity and allure of these materials. Such a
multifaceted phase diagram not only underscores the sensitivity of these compounds to ex-
ternal parameters like doping, pressure, and magnetic fields but also provides fertile ground
for exploring novel quantum phenomena.

Moreover, the study of cuprates has been instrumental in the development of advanced
experimental techniques. Techniques such as angle-resolved photoemission spectroscopy
(ARPES), scanning tunneling microscopy, and resonant inelastic X-ray scattering have been
refined and extensively applied to probe the electronic structure and dynamics of cuprates.
These methodologies have yielded invaluable insights into the nature of the superconduct-
ing gap, the pseudogap phase, and the interplay between various excitations in these mate-
rials.

In addition to their scientific intrigue, cuprates hold significant promise for technological
applications. The high critical temperatures of these materials make them strong candidates
for practical superconducting applications, potentially revolutionizing fields such as power
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1. MOTIVATION

transmission, magnetic resonance imaging (MRI), and the development of compact particle
accelerators. The understanding gleaned from studying cuprates may also guide the synthe-
sis of new materials that exhibit room-temperature superconductivity, a long-standing goal
in the field.

In this thesis we explore the possible dependence of the self energy of the Green’s function on
momentum. This dependence was found in a couple of different papers. Firstly, Smith et al.
found this relation in one of their experiments [4] . They examined the electronic self-energy
in strange-metal cuprates using angle-resolved photoemission spectroscopy (ARPES). In
these measurements a cuprate is irradiated with high-energy photons. Electrons are then
emitted from the material due to the photoelectric effect. The kinetic energy and the angle of
emission of these electrons are then measured. From these measurements, one can deduce
the energy and momentum of the electrons while they were inside the material.

The results of the experiment suggests that the data fits a theory from the semi-holographic
model based on Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. In this
framework, an electron interacts with a conformal field theory (CFT), and the self-energy be-
comes proportional to the correlation function in the CFT. This model predicts k-dependent
spectral functions that aligns very well with the high-precision ARPES data and naturally
includes a power-law dependence of momentum in the self-energies with smoothly vary-
ing scaling exponents. This semi-holographical model is the only model we know of that
predicts this power-law behaviour naturally.

The study done by Smith et al. observes that this model fits the collected data better than the
standard Lorentzian functions, suggesting that the nodal self-energy of electrons in strange-
metal cuprates (specifically in the single-CuO2-layer cuprate Bi-2212) is dependent not only
on frequency (ω) and temperature (T) but also on the magnitude of momentum away from
the Fermi momentum (k − kF). This can be seen in Figure 1.1 demonstrating an examination
of the MDC (Momentum Distribution Curve) lineshapes derived from nodal ARPES data.
It specifically discusses the issue of fitting these MDCs with Lorentzian functions and the
emergence of significant residuals when trying to fit the experimental data, which suggest
that a simple Lorentzian is not sufficient to capture the behaviour of the spectral function,
especially at higher binding energies.
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1. MOTIVATION

Figure 1.1: Close look at MDC lineshapes for UD32 nodal ARPES data. a − c: a trio of
MDCs at energies indicated, with symmetric peak fits in red. The residuals grow as the
binding energy grows. Here d shows the resulting 2Σ′′(ω)/vF = Γ(ω) from the symmetric
fits, where Σ′′ is imaginary part of the self-energy, vF the fermi velocity and Γ is the width
of the Lorentzian. e − g: The same three MDCs now fit in purple using our model given
by semi-holographic model, including the holographically-predicted k dependence, with V
set to -1. The residuals are clearly superior to the symmetric fit for energies further from εF.
h: The imaginary part of the self-energy 2Σ(k, ω)/vF = ΓH(k, ω) at the peak position k∗(ω)
(red), which includes the k-dependent self-energy (blue), and the free fitting parameter G0
(green) [4].

Panels (a) through (c) display MDCs at different binding energies, with symmetric
Lorentzian fits shown in red. The residuals of these fits (the differences between the fits and
the actual data) grow with increasing binding energy, indicating that the Lorentzian fit is less
accurate at higher energies. Panels (e) through (g) present the same MDCs but now fitted
with a model that includes a k-dependent self-energy, which is indicated in purple. The fit
residuals in these panels are much smaller than those from the Lorentzian fits, especially
at energies further from the Fermi level (εF), suggesting that the k-dependent self-energy
provides a better description of the data.

On the theoretical front, Khodas et al. [5] has made advancements in understanding
momentum-dependent power-laws from a condensed matter perspective. Their research
explores the time-ordered Green’s function of fermions situated deep within the Fermi sea
in a one-dimensional system. This analysis is underpinned by the linearisation of the energy
spectrum, offering insightful perspectives into the underlying physical processes.

In Chapter 3, our study successfully replicates the findings of the work by Khodas et al., em-
ploying the path-integral formalism complemented by the Hubbard-Stratonovich transfor-
mation, a technique detailed in Chapter 2. Building upon this foundation, Chapter 4 extends
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1. MOTIVATION

the methodology to formulate a two-dimensional model within an isotropic framework. The
ultimate objective of this research, however, is to develop a model for an anisotropic system,
a context which more closely mirrors the behaviour of cuprates.

The motivation for this focus on anisotropy is twofold. Firstly, existing literature, including
the work by Khodas et al. [5], confirms the feasibility of inducing momentum-dependent
power-law behaviour in a one-dimensional system. This finding suggests that an anisotropic
system might exhibit similar characteristics, behaving as a quasi one-dimensional system
due to its directional properties. Secondly, the intrinsic complexity and diversity of cuprates
necessitate a more specified approach, one that an anisotropic model is better equipped to
provide.
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CHAPTER 2
Theoretical background

2.1 Electron liquids

2.1.1 Fermi-liquids

Fermi-liquids are an important concept in condensed-matter physics, particularly in provid-
ing insights into the behaviour of electrons in many-electron systems at low temperatures.
The Fermi-liquid theory, developed by physicist Lev Landau in the 1950s, extends the con-
cepts of quantum mechanics and statistical mechanics to describe the behaviour of many-
particle systems, like electrons in a metal. To understand Fermi-liquids, it’s useful to start
with the concept of a Fermi gas. In a Fermi gas, particles (such as electrons) obey the Pauli
exclusion principle and are treated as non-interacting. The energy of the highest occupied
state at absolute zero temperature is known as the Fermi energy εF.

In a real material, however, particles interact with each other. Fermi-liquid theory extends
the concept of a Fermi gas to include these interactions. It postulates that even in the pres-
ence of interactions, the low-energy excitations of the system can still be described by quasi-
particles. These quasi-particles have properties like charge and spin, similar to electrons, but
their effective mass, lifetime, and other properties can be different due to interactions. They
are a key concept in Fermi-liquid theory, providing a bridge between the idealised world of
non-interacting particles and the complex reality of interacting systems.

At absolute zero temperature (T=0), all states up to the Fermi level are occupied. This creates
a sharp Fermi surface. The distribution of particles at T=0 is a step function, indicating a clear
distinction between occupied and unoccupied states. In this case the spectral density would
exhibit sharp peaks corresponding to well-defined energy levels. However, when including
interactions, these peaks broaden. This broadening signifies the formation of quasi-particles
and dictates the lifetimes of excitations within the system. The degree of overlap and the
resulting spectral density shape are crucial in understanding the dynamical properties of
Fermi-liquids.

While it is highly effective in describing the low-temperature properties and behaviors near
the Fermi surface, the theory might not be applicable in scenarios with strong correlation
effects or in systems that are far from equilibrium.
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2. THEORETICAL BACKGROUND

2.1.2 Luttinger liquids

In higher dimensions, the concept of Fermi-liquids, with their quasi-particle excitations, ef-
fectively describes the behaviour of simple electron systems. However, in one-dimensional
(1D) systems, this paradigm does not hold due to the unique nature of electron-electron
interactions. In 1D, an electron attempting to propagate interacts with its neighbours, lead-
ing to the impossibility of independent electron motion. This requirement for collective be-
haviour starkly contrasts with higher-dimensional systems and invalidates the application
of Fermi-liquid theory in 1D. Consequently, one-dimensional electron gases exhibit drasti-
cally different physical properties compared to their higher-dimensional counterparts.

The most significant consequence of these interactions in 1D is the emergence of what is
known as a Luttinger liquid [6]. The Luttinger liquid model is essential for describing 1D
systems because it captures the collective nature of excitations, a fundamental characteristic
absent in Fermi-liquids. In a Luttinger liquid, the traditional Fermi surface is replaced by
two points, corresponding to right-moving and left-moving fermions. This model involves
linearising the energy spectrum around these two points, leading to a description in terms
of these two types of fermionic excitations.

The linearisation of the energy spectrum in Luttinger liquids means that the energy-
momentum relationship, as seen in Figure 2.1, is approximated as linear. In this framework,
the Fermi sea concept, where states below the chemical potential are filled, is replaced by
a “Dirac” sea with an infinite number of negative energy states, which often has to be ad-
dressed by adding a momentum cut-off. While the two systems differ at large momenta,
their low-energy physics is remarkably similar.

Figure 2.1: Transition from the original model of fermions with band curvature (a) to a model
with a linear spectrum (b). This change necessitates introducing two species of fermions:
right (R) and left (L) moving fermions, extending the spectrum to all values of k, and leading
to an infinite number of negative energy states. A cutoff on the momentum is applied to
make the model well-defined [7].

This approach is not just a mathematical convenience but a physical necessity due to the
altered nature of quasi-particles in 1D. Unlike in higher dimensions, where quasi-particles
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2. THEORETICAL BACKGROUND

have a well-defined lifetime and behave similarly to free electrons, the excitations in a Lut-
tinger liquid are collective modes that do not correspond to individual particle-like excita-
tions. These collective excitations, characterized by their linear dispersion, are crucial for
understanding the unique properties of 1D systems and the breakdown of the Fermi-liquid
picture.

Furthermore, the Luttinger model is notable for its solvability through bosonisation [8]. This
technique effectively maps the problem of interacting fermions onto a simpler problem in-
volving non-interacting bosonic modes. In this framework, the low-energy excitations are
not fermionic quasi-particles as in Fermi-liquid theory but collective modes that can be de-
scribed in terms of bosons, such as charge-density waves or plasmons.

2.1.3 Cuprates

As detailed in Chapter 4, the discovery of high-temperature superconductivity in cuprates
in 1986 [1] revolutionized the field of condensed-matter. In this section, we will go into
a bit more depth into the charactristics of cuprates, starting with it’s phase diagram. A
phase diagram depicts various phases and transitions that occur under different conditions
as a function of temperature and doping level. Doping refers to the addition or removal
of impurities into the CuO2 layers of the cuprate, which significantly alters the electronic
properties. An overview of the key phases present in the phase diagram are depicted in
Figure 2.2.

Figure 2.2: Heuristic phase diagram of the copper-oxide superconductors. In the strange
metal, the resistivity is a linear function of temperature[9].

At zero or very low doping, cuprates are typically antiferromagnetic insulators. In this
phase, the copper atoms exhibit a regular pattern of magnetic moments (spins), which are
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2. THEORETICAL BACKGROUND

aligned in an alternating up-down configuration. This phase is characterised by a lack of
electrical conductivity. As the doping level increases, the material enters the superconduct-
ing phase at lower temperatures. This is the phase where the material exhibits zero electrical
resistance and expels magnetic fields (the Meissner effect). The temperature below which
this occurs is called the critical temperature (Tc). The superconducting phase in cuprates is
unusual because, as we previously mentioned, it occurs at much higher temperatures than
in conventional superconductors.

At temperatures above the superconducting phase and at a certain range of doping levels,
cuprates exhibit the properties of a strange metal. In this phase, the resistivity of the material
varies linearly with temperature, and the material does not exhibit the characteristics of a
Fermi-liquid.

At temperatures above the superconducting phase but below a characteristic temperature
(which is higher than Tc), the pseudogap phase appears. In this phase, there’s a partial gap
in the electronic density of states. The nature and origin of the pseudogap phase are not fully
understood and are a subject of ongoing research.

If the doping level is increased beyond the optimal level for superconductivity, the mate-
rial enters the overdoped region. In this region, the critical temperature starts to decrease,
and the material eventually becomes a more conventional Fermi-liquid, losing its high-
temperature superconducting properties. In many cuprate superconductors, there is evi-
dence of phase separation [10] and inhomogeneities [11], meaning that different phases can
coexist in different regions of the material. This aspect adds further complexity to the phase
diagram.

Cuprates are furthermore characterized by their layered structure, which typically includes
planes of copper and oxygen atoms [2]. The exact composition can vary, with different ele-
ments like lanthanum, yttrium, or bismuth added to the copper-oxide layers. These varia-
tions lead to different properties in different cuprates. A couple of these promising cuprates
are detailed in Figure 2.3.
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2. THEORETICAL BACKGROUND

Figure 2.3: Atomic structure of cuprate superconductors. (a) Generic structure of cuprates,
consisting of alternately stacked CuO2 planes and charge reservoir (CR) blocks. (b) Top-
view of a CuO2 plane, with the black dashed square showing the unit cell. (c–f) Atomic
composition of the following cuprates: (c) La2CuO4, (d) YBa2Cu3O7, (e) Bi2Sr2CuO6 and (f)
Bi2Sr2CaCu2O8. Figure by J. N. van Stralen [12].

2.2 Hartree theory

Hartree theory [13], part of the Hartree-Fock method, is a self-consistent field approach to
solve the many-body Schrödinger equation for systems of interacting particles. The key
feature of Hartree theory is its focus on the average field created by all particles. It takes
into account the Coulomb interaction between particles, but treats it in an averaged, mean-
field way. This approximation is often valid when long-range Coulomb interactions are
more significant than short-range exchange interactions. In a one-dimensional setting this
is the theory of bosonisation, since averaging out interactions mimic the transformation of
fermions into bosons that occurs in this theory.

In Hartree theory, the focus is on the average potential felt by a particle due to all other
particles, rather than on the specific quantum states occupied by individual fermions. This
approximation is often reasonable when exchange effects are less significant compared to the
direct Coulomb interactions. When describing the external momentum dependence of the
time-ordered Green’s function, Hartree theory can be sufficient if the primary concern is un-
derstanding how particles interact with an external field or momentum transfer, especially
when long-range interactions dominate. The simplification of ignoring exchange effects al-
lows for a more straightforward analysis of how the system responds to external momentum
inputs.
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2. THEORETICAL BACKGROUND

It’s important to note that while Hartree theory can provide valuable insights, it has limita-
tions. In Hartree theory, the effects of the Pauli exclusion principle are not explicitly consid-
ered. It may not accurately capture all the physics in systems where exchange and correla-
tion effects are important. In such cases, more sophisticated methods like Hartree-Fock or
beyond might be necessary.

2.2.1 Hubbard-Stratonovich transformation

In the Hartree theory we use the Hubbard-Stratonovich transformation. This is a pivotal
technique in quantum field theory and statistical mechanics, providing a pathway to convert
interacting fermionic systems into more tractable forms. This transformation plays a crucial
role in the study of many-body systems, particularly in simplifying interactions character-
ized by four-point correlation functions. At the heart of the Hubbard-Stratonovich transfor-
mation lies the idea of introducing auxiliary fields to decouple complex interactions. The
auxiliary field, often interpreted as an effective field, encapsulates the collective behavior of
the original fermionic system.

By integrating out the fermionic degrees of freedom in the path integral formulation, we
arrive at an effective action solely in terms of these bosonic fields. This process effectively
treats the complicated four-point functions, leaving behind a theory with only quadratic
terms in the fermionic fields, which are then easily handled. The effective field theory that
emerges from this procedure is exact. We can then use a type of mean-field approximation to
treat the auxiliary field and capture the low-energy, long-wavelength physics of the original
system. It can provide insights into various phenomena like superconductivity, magnetism,
and charge density waves, offering a framework to explore phase transitions and collective
excitations.

2.2.2 Implementation

The conventions and equations we use in this section are those of the book “Ultracold Quan-
tum Fields” (U.Q.F.) [14]. Let us consider the action for an interacting gas of spinless atoms,
given by

S [ϕ∗, ϕ] =
∫ h̄β

0
dτ
∫

dxϕ∗(x, τ)

{
h̄

∂

∂τ
− h̄2∇2

2m
− µ

}
ϕ(x, τ)

+
1
2

∫ h̄β

0
dτ
∫

dx
∫

dx′ϕ∗(x, τ)ϕ(x, τ)V
(
x − x′

)
ϕ∗ (x′, τ

)
ϕ
(
x′, τ

)
.

(2.1)

Next, we consider the following identity for the functional integral over the real field κ(x, τ),
which is related to the density,

1 =
∫

d[κ] exp
{

1
2h̄

(
κ − Vϕ∗ϕ

∣∣∣V−1
∣∣∣ κ − Vϕ∗ϕ

)}
. (2.2)

Here, the integration measure now contains the factor exp
{

Tr
[
log
(
−V−1/h̄

)]
/2
}

, which
is thus seen to cancel the result coming from the Gaussian functional integral. This last
procedure is mainly done for notational convenience, where we also note that the absorbed
term merely amounts to a numerical prefactor, which is therefore often of little physical
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2. THEORETICAL BACKGROUND

importance. We note that in the above equation the short-hand notation in the exponent
actually means

1
2h̄

∫ h̄β

0
dτdτ′

∫
dxdx′

(
κ(x, τ)−

∫
dx′′ϕ∗ (x′′, τ

)
ϕ
(
x′′, τ

)
V
(
x′′ − x

))
V−1 (x − x′

)
δ
(
τ − τ′) (κ

(
x′, τ′)− ∫

dx′′V
(
x′ − x′′

)
ϕ∗ (x′′, τ′) ϕ

(
x′′, τ′)) ,

(2.3)

where we also explicitly wrote out the matrix structure in imaginary time. Inserting the iden-
tity of equation 2.2 in the partition function conveniently cancels the fourth-order interaction
term in the original action. However, it also introduces an extra path integral over the field κ,
as we explicitly see below. This generalizes the Hubbard-Stratonovich transformation to the
present case of quantum field theory. To also be able to calculate the exact atomic Green’s
function G (x, τ; x′, τ′) after the Hubbard-Stratonovich transformation, we add the current
terms −h̄(J | ϕ)− h̄(ϕ | J) to the action, leading finally to the partition function

Z [J, J∗] =
∫

d [ϕ∗]d[ϕ]
∫

d[κ] exp
{
−1

h̄
S [ϕ∗, ϕ] + (J | ϕ) + (ϕ | J)

}
× exp

{
1

2h̄

(
κ − Vϕ∗ϕ

∣∣∣V−1
∣∣∣ κ − Vϕ∗ϕ

)}

=
∫

d [ϕ∗]d[ϕ]
∫

d[κ] exp
{

1
2h̄

(
κ
∣∣∣V−1

∣∣∣ κ
)
+ (J | ϕ) + (ϕ | J)

}
× exp

{(
ϕ
∣∣∣(G−1

0 − Σ
)∣∣∣ ϕ

)}
,

(2.4)

where the Hartree-like selfenergy is given by

h̄Σ
(
x, τ; x′, τ′; κ

)
= δ

(
τ − τ′) δ

(
x − x′

)
κ(x, τ). (2.5)

Since the resulting functional integral has become quadratic in the atomic fields, we can
integrate them out exactly. In this manner, we obtain an action only for the κ field, which we
call the effective action Se f f [κ]. As a result, we find

Z [J, J∗] =
∫

d[κ] exp
{

1
2h̄

(
κ
∣∣∣V−1

∣∣∣ κ
)
∓ Tr

[
log
(
−G−1

)]
− (J|G|J)

}
≡
∫

d[κ] exp
{
−1

h̄
Seff[κ]− (J|G|J)

}
,

(2.6)

where the inverse Green’s function G−1 (x, τ; x′, τ′; κ) satisfies the equation

G−1 (x, τ; x′, τ′; κ
)
= G−1

0
(
x, τ; x′, τ′)− Σ

(
x, τ; x′, τ′; κ

)
=− 1

h̄

{
h̄

∂

∂τ
− h̄2∇2

2m
− µ + κ(x, τ)

}
× δ

(
τ − τ′) δ

(
x − x′

)
,

(2.7)

which follows from equation 7.48 of U.Q.F. [14] for the non-interacting inverse Green’s func-
tion and equation 2.5 for the self-energy. By inverting the above equation, we obtain

11



2. THEORETICAL BACKGROUND

{
h̄

∂

∂τ
− h̄2∇2

2m
− µ + κ(x, τ)

}
G
(
x, τ; x′, τ′; κ

)
= −h̄δ

(
τ − τ′) δ

(
x − x′

)
, (2.8)

where this Green’s function is actually not equal to the exact atomic Green’s function, but
rather is related to it. To see this, we consider the definition of the exact atomic Green’s
function G (x, τ; x′, τ′), which is given by

G
(
x, τ; x′, τ′) = −

∫
d [ϕ∗]d[ϕ]ϕ(x, τ)ϕ∗ (x′, τ′) exp

{
−1

h̄
S [ϕ∗, ϕ]

}
=

∓1
Z[0, 0]

δ2

δJ∗(x, τ)δJ (x′, τ′)
Z [J, J∗]

∣∣∣∣
J=0

.
(2.9)

Using equation 2.6, we find that

G
(
x, τ; x′, τ′) = ∫

d[κ]G (x, τ; x′, τ′; κ) exp
{
−Seff[κ]/h̄

}∫
d[κ] exp {−Seff[κ]/h̄}

. (2.10)

To summarize the results of this subsection, we recall that we have performed a Hubbard-
Stratonovich transformation to a new collective field κ, which is an exact transformation and
allows us to remove or decouple the fourth-order interaction term. The downside of the pro-
cedure is that we have now also introduced an additional path integral over this collective
field κ. Since the action becomes quadratic in the atomic fields after the transformation, we
can integrate these fields out exactly. The resulting path integral over κ can no longer be
performed exactly, because the logarithm contains terms up to any order in κ. To still be able
to extract physical results, we are thus forced to make approximations.
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CHAPTER 3
One-dimensional model

In this chapter, our objective is to replicate the findings of Khodas et al. [5] through the appli-
cation of path integral formalism and the Hubbard-Stratonovich transformation technique.
Khodas et al.’s study explored a linearised system of one-dimensional fermions (Luttinger-
liquid), focusing on the calculation of the Green’s function for fermions situated deep within
the Fermi sea, which they aptly termed “deep” fermions. To align with their methodology,
we define these deep fermions as being located at a momentum q. With this assumption, we
can split the wave function into three parts

ϕ(x, τ) = eikFxϕR(x, τ) + e−ikFxϕL(x, τ) + eiqxϕd(x, τ). (3.1)

where ϕR/L(x, τ) represent the wave-function of the right and left moving fermions re-
spectively and ϕd(x, τ) the wave-function deep fermions. With this splitting of the wave-
function, the action for an interacting gas of spinless atoms, given by equation 2.1, becomes

S [ϕ∗, ϕ] =∫ h̄β

0
dτ
∫

dx ϕ∗
d(x, τ)

{
h̄

∂

∂τ
− ih̄2q

m
∂

∂x
+

h̄2q2

2m
− µ + κ(x, τ)

}
ϕd(x, τ)

∫ h̄β

0
dτ
∫

dx ϕ∗
R(x, τ)

{
h̄

∂

∂τ
− ih̄vF

∂

∂x
+

h̄k2
F

2m
− µ + κ(x, τ)

}
ϕR(x, τ)∫ h̄β

0
dτ
∫

dx ϕ∗
L(x, τ)

{
h̄

∂

∂τ
+ ih̄vF

∂

∂x
+

h̄k2
F

2m
− µ + κ(x, τ)

}
ϕL(x, τ),

(3.2)

where vF = h̄kF/m is the Fermi-velocity. We assume a linear dispersion relation εR/L
k =

±h̄vFk, like in the Luttinger-liquid model. In this case we can approximate the wave func-
tion ϕ(x, τ) to be slowly varying. It allows us to act with the spatial derivative on the fast
oscillating exponential mainly, neglecting second-order derivatives of ϕ(x, τ). In this system
the Green’s function equation for the deep fermions becomes

13



3. ONE-DIMENSIONAL MODEL

{
h̄

∂

∂τ
− ih̄2q

m
∂

∂x
+

h̄2q2

2m
− µ + κ(x, τ)

}
Gd
(
x, τ; x′, τ′; κ

)

= −h̄δ
(
τ − τ′) δ

(
x − x′

)
,

(3.3)

where G (x, τ; x′, τ′; κ) = Gd (x, τ; x′, τ′; κ) eiq(x−x′). Referring back to equation 2.10, the time-
ordered Green’s function Gd (x, τ; x′, τ′) is then obtained by averaging over the Gaussian
fluctuations of the κ field

Gd(x, τ; x′, τ′) =
〈

Gd
(
x, τ; x′, τ′; κ

)〉
κ

=

∫
d[κ]Gd(x, τ; x′, τ′, κ) exp−Se f f [κ]/h̄∫

d[κ] exp−Se f f [κ]/h̄
,

(3.4)

where ⟨...⟩κ denotes the time-ordered averaging over the slowly varying field κ. From equa-
tion 3.3 we notice that the κ-field seems to be minimally coupled. We can use this, and apply
the following local gauge transformation [5, 15], to reveal how the auxiliary field couples to
the Green’s function

ϕd(x, τ) → ϕd(x, τ)eiθ(x,τ). (3.5)

We then employ the shifted wave function in the context of the Green’s function, represented
as ⟨ϕ̃d|G−1

d |ϕ̃d⟩. Through this application, we aim to extract the behaviour of the density field

⟨ϕ̃d|G−1
d |ϕ̃d⟩ =

∫ h̄β

0
dτ
∫

dx ϕ̃∗
d

{
h̄

∂

∂τ
− ih̄2q

m
∂

∂x
+

h̄2q2

2m
− µ + κ(x, τ)

}
ϕ̃d =

∫ h̄β

0
dτ
∫

dx ϕ∗
d

{
h̄

∂

∂τ
[1 + iθ(x, τ)]− ih̄2q

m
∂

∂x
[1 + iθ(x, τ)] +

h̄2q2

2m
− µ + κ(x, τ)

}
ϕd,

(3.6)

where ϕ̃d(x, τ) = ϕd(x, τ)eiθ(x,τ). It allows us to solve the equation

h̄
∂

∂t
θ(x, t) +

h̄2q
m

∂

∂x
θ(x, t) + κ(x, t) = 0, (3.7)

where we Wick-rotated (τ → it) to real time [16]. To solve the equation, we Fourier transform
both the κ(x, t) field and the gauge shift θ(x, t) to momentum space and solve for θ(x, t)

θ(x, t) =
∫ dk

2π

∫ dω

2π

iκ(k, ω)

−h̄ω + h̄2q
m k

ei(kx−ωt). (3.8)

The derivation is given in Appendix A.1 for the two-dimensional case, but is analogous in
one dimension. Referring back to equation 3.4, and reminding ourselves that Gd (x, t; x′, t′) ∼

14



3. ONE-DIMENSIONAL MODEL

⟨ϕd (x, t) ϕ∗
d (x′, t′)⟩, the full fermionic Green’s function for the deep fermions can now be

written as

G
(
x, t; x′, t′

)
= G0

(
x, t; x′, t′

)
eiq(x−x′)

∫
d[κ] exp

{
i[θ(x, t)− θ(x′, t′)]− Seff[κ]/h̄

}∫
d[κ] exp {−Seff[κ]/h̄}

, (3.9)

where G0 (x, τ; x′, τ′) is the non-interacting Green’s function given in Appendix A.5. After
averaging over the κ-field, we are left with

G
(

x, t; x′, t′
)
= G0

(
x, t; x′, t′

)
exp

{
iq(x − x′)− 1

2

〈[
θ(x, t)− θ(x′, t′)

]2
〉

κ

}
. (3.10)

By plugging in expression 3.8, we can write the exponent as

[
θ(x, t)− θ(x′, t′)

]2
= 2

∫ dk
2π

∫ dω

2π

κ(k, ω)κ(−k,−ω)

(−h̄ω + h̄2q
m k)2

×
(

1 − cos
(
k(x − x′)− ω(t − t′)

))
,

(3.11)

where the derivation is given in Appendix A.2. And thus the Green’s function can be written
as

G
(
x, t; x′, t′

)
= G0

(
x, t; x′, t′

)
eiq(x−x′) exp

{
−
∫ dk

2π

∫ dω

2π

⟨κ(k, ω)κ(−k,−ω)⟩
(−h̄ω + h̄2q

m k)2

×
(
1 − cos

(
k(x − x′)− ω(t − t′)

))}
.

(3.12)

Next, we want to find an expression for the two-point correlation function of the density
field in one dimensions. Note that Gκ(k, ω) = −i⟨T [κ(k, ω)κ(−k,−ω)]⟩, where the negative
imaginary unit i appears due to the rotation to real time and T specifies that the Green
function is time-ordered. To find an expression for the two-point correlation function of the
density field we can use equation 8.139 from U.Q.F. [14]

⟨κ(k, ω)κ(−k,−ω)⟩ = iGκ(k, ω) =
ih̄

V−1 − Π(k, ω)
. (3.13)

This expression is based on the random phase approximation (RPA) of section 8.7.2 of the
same book, where the term Π(k, ω) is the expression for the bubble diagram (also called the
’polarisation operator’) and represents the diagram containing the closed loop consisting of
two fermion lines. Another interesting feature of a one-dimensional fermionic system is the
fact that all interaction loops containing more than two external lines are zero. That was the
observation first made by Dzyaloshinskii and Larkin [17]. It is called the Loop Cancellation
theorem and makes it so that (RPA) mentioned above becomes exact.
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3. ONE-DIMENSIONAL MODEL

V in the above equation denotes the Coulomb potential, responsible for mediating long-
range interactions. The focus of this analysis is on low-energy excitations near the Fermi
surface. In such scenarios, the detailed implications of the long-range Coulomb interaction
tend to diminish. This change in significance is largely due to the screening effect: electrons,
being inherently charged, repel each other under the Coulomb interaction. However, this
repulsion is moderated by the rearrangement of nearby electrons, which reposition them-
selves in reaction to local electric fields. This rearrangement, known as the screening effect,
effectively reduces the extent of the Coulomb potential’s long-range effect. As a result, con-
sidering the Coulomb potential as a constant offers a reasonable and effective simplification
for our purposes.

Continuing with the derivation, we find that the Hartree loop diagram with two legs, also
shown in Figure 3.1, is the standard polarisation operator. This operator can be obtained, for
the left-movers with εL

k = −h̄vFk, via equation 8.137 of U.Q.F.

ΠL (k, iωn) =
1
π

−k
h̄vFk + ih̄ωn

, (3.14)

where the derivation is given in Appendix A.3. Analogously for the right moving fermions,
with εR

k = h̄vFk, we find

ΠR (k, iωn) =
1
π

k
−h̄vFk + ih̄ωn

. (3.15)

Deep inside the Fermi sea there are no particle-hole pairs being created. Consequently
Πd (k, iωn) = 0.

Figure 3.1: Diagram of the leading-order polarisation bubble [18].

Since, in this context, polarisation refers to the density response of the system, we need to
sum of the contributions from both chiralities. This is because the polarization operators ef-
fectively measure changes in electron density, and the total change is the sum of the changes
due to left-moving and right-moving electrons. The total response of the system is a collec-
tive response given by

Π (k, iωn) = ΠR (k, iωn) + ΠL (k, iωn) =
2

h̄π

k2vF

k2v2
F + ω2

n
. (3.16)
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3. ONE-DIMENSIONAL MODEL

We then apply the analytic continuation iωn → ω. Substituting equations 3.13 and 3.16 into
3.12 we obtain

G
(
x, t; x′, t′

)
= G0

(
x, t; x′, t′

)
eiq(x−x′)

× exp

{
−iV

h̄

∫ dk
2π

∫ dω

2π

k2v2
F − ω2

k2v2 − ω2
1 − cos(k(x − x′)− ω(t − t′))

(ω − vqk)2

}
.

(3.17)

Here vq = h̄q
m is the velocity around point q and v = vF

√
2V

πh̄vF
+ 1 is the renormalized ve-

locity. By splitting the fractions, we can split write the integrand into four separate terms.
Then, we apply the Residue Theorem for evaluating the ω-integral. The Residue Theorem
is expressed as

∮
γ f (z)dz = 2πi ∑ Res ( f , ak), where Res( f , c) is the residue of f at c, defined

as Res( f , c) = 1
(n−1)! limz→c

dn−1

dzn−1 ((z − c)n f (z)). This approach allows for a more structured
and understandable computation of the integral involving ω, as is shown below for the in-
tegrals in the exponents

−iV
h̄

∫ dk
2π

∫ dω

2π

[
1
k

(
c1(q)

ω − vk
− c2(q)

ω + vk
+

c3(q)
ω − vqk

)
+

c4(q)(
ω − vqk

)
2

]

× (1 − cos(k(x − x′)− ω(t − t′))

=
V
h̄

∫ dk
2π

(
c1(q)(cos(k(x̄ − vt̄))− 1)

k
− c2(q)(cos(k(x̄ + vt̄))− 1)

k

−
c3(q)

(
cos

(
k(x̄ − vq t̄)

)
− 1
)

k
− c4(q)t̄ sin

(
k(x̄ − vq t̄)

))
,

(3.18)

where the coefficients ci are given in Appendix A.3 and we wrote x̄ = x − x′ and t̄ = t −
t′ for notational convenience. Note that the integrals over momentum would diverge at
large momenta. It is thus necessary to impose a momentum cutoff. A simple way to do
this analytically is to add the integral e−Λ|k|, which mimics a finite bandwidth [7]. We use
Feynman’s Integral Trick [19] to evaluate the three terms, where we show how the first term
is evaluated as an example in Appendix A.4. If we perform the integral over k in equation
3.18 and substitute in the ci’s, we are left with the terms

V
2πh̄

(
v2 − v2

F
2v (v − h̄q/m) 2 log

(
(x̄ − vt̄)2

Λ2 + 1
)
− v2

F + v2

2v (v + h̄q/m) 2 log
(
(x̄ + vt̄)2

Λ2 + 1
)

+

(
v2 − (h̄q/m)2) 2

2
(
v2 − v2

F
)

h̄q/m
log
((x̄ − vq t̄

) 2

Λ2 + 1
))

.

(3.19)
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3. ONE-DIMENSIONAL MODEL

Notice that the last term of 3.18 evaluates to zero, since this term is odd in k. Substituting
this back into equation 3.17 means that the final expression for the Green’s function for the
deep fermions in one dimension is given by

G
(
x, t; x′, t′

)
= G0

(
x, t; x′, t′

)
eiq(x−x′)

× exp

{
V

2πh̄

(
v2 − v2

F
2v (v − h̄q/m) 2 log

(
((x − x′)− v(t − t′))2

Λ2 + 1
)

− v2
F + v2

2v (v + h̄q/m) 2 log
(
((x − x′) + v(t − t′))2

Λ2 + 1
)

+

(
v2 − (h̄q/m)2) 2

2
(
v2 − v2

F
)

h̄q/m
log
(
((x − x′)− h̄q/m(t − t′))2

Λ2 + 1
))}

.

(3.20)

This can be rewritten and reduces to a form displaying the momentum-dependent power-
law behaviour of the form

G
(
x, t; x′, t′

)
= G0

(
x, t; x′, t′

)
eiq(x−x′)

(
((x − x′)− v(t − t′))2

Λ2 + 1
) −j1V

(v−h̄q/m)2

×
(
((x − x′) + v(t − t′))2

Λ2 + 1
) −j2V

(v+h̄q/m)2
(
((x − x′)− v(t − t′))2

Λ2 + 1
) j3V(v2−(h̄q/m)2)2

h̄q/m

,

(3.21)

where ji are given in Appendix A.3. The first two parts of our expression match the
momentum-dependent power-laws found in Khodas et al.’s work [5]. The last term is due
to the contribution of the double-pole at ω = vdk, which Khodas et al. neglected in their
evaluation.

When comparing our results with those obtained by Khodas et al., we observe that the log-
arithmic terms in both analyses exhibit a similar structure. The first to terms of equation
3.20 can be compared to the logarithmic terms in the results of Khodas et al., represented

by −µ2
k

4 log (1 + iλ1(x + vt)) and
−µ2

2pF+k
4 log (1 + iλ2(x − vt)), where µk ∼ V

|k| with k denoting
the external momentum, V the interaction potential and λi are the introduced cutoff terms.
Notably, the prefactors of these logarithmic expressions are inversely proportional to the
square of the external momentum, i.e. (1/|k|2), as is also the case in our result of equation
3.20. A distinctive aspect of our findings in equation 3.20, in contrast, is that the arguments
of the logarithms depend on the squared coordinates of position and time. However, if we
interpret the results of Khodas et al. such that the arguments of their logarithms are taken in
absolute value, we can employ the relation log(|1 + ix|) = 1

2 log(1 + x2) to reformulate their
expressions in a manner that incorporates terms squared in both space and time.
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CHAPTER 4
Two-dimensional model

4.1 Isotropic model

In this chapter, we aim to expand the methodologies established in Chapter 3 to a two-
dimensional (2D) framework. This aligns better with the effectively two-dimensional nature
of cuprates. Our approach in two dimensions mirrors that of the one-dimensional case, with
a few key distinctions, particularly in terms of directional properties. In this section we will
focus on an isotropic model, characterised by the isotropic dispersion relation εk = h̄2k2

2m . Sub-
sequently, in the next section we introduce anisotropy into our model to better replicate the
behaviour observed in cuprates. In our analysis, the Green’s function is evaluated around a
specific point q, here the dispersion is linearised around this point. This process is similar to
adjusting the momentum by a vector q, which can be interpreted as the incorporation of an
external momentum. Around the momentum q the action of 2.1 becomes

S [ϕ∗, ϕ] =∫ h̄β

0
dτ
∫

dxϕ∗(x, τ)

{
h̄

∂

∂τ
− ih̄2(q · ∇)

m
+

h̄2q2

2m
− µ + κ(x, τ)

}
ϕ(x, τ).

(4.1)

Here we assumed, due to the linear dispersion around the point q, that the wave function
ϕ(x, τ) is slowly varying in this point. We thus neglect the second order spatial derivative
on the wave function, similarly to what we did in the one-dimensional case. In this system
our Green’s function equation becomes

{
h̄

∂

∂τ
− ih̄2(q · ∇)

m
+

h̄2q2

2m
− µ + κ(x, τ)

}
Gq
(
x, τ; x′, τ′; κ

)

= −h̄δ
(
τ − τ′) δ

(
x − x′

)
,

(4.2)

where G (x, τ; x′, τ′; κ) = Gq (x, τ; x′, τ′; κ) eiq·(x−x′). The term −ih̄2(q·∇)
m represents the cou-

pling between the particle’s momentum and the external momentum. Also, h̄2q2

2m is a cor-
rection to the energy due to the presence of the external momentum. The resulting Green’s

19



4. TWO-DIMENSIONAL MODEL

function Gq (x, τ; x′, τ′; κ) now describes the propagation of particles in this modified envi-
ronment. Analogous to 1D, we can apply the gauge transformation ϕ̃(x, τ) = ϕ(x, τ)eiθ(x,τ)

to the field in order to extract the κ dependence of the Green’s function. This allows us to
solve

h̄
∂

∂t
θ(x, t) +

h̄2|q|
m

∇q̂ · θ(x, t) + κ(x, t) = 0, (4.3)

where ∇q̂ is the divergence in the q-direction and we Wick-rotated back to real time. To
solve the relation, we then Fourier transform both the κ(x, t) field and the gauge shift θ(x, t)
to momentum space

θ(x, t) =
∫ dk

(2π)2

∫ dω

2π

iκ(k, ω)

−h̄ω + h̄2|q|
m q̂ · k

ei(k·x−ωt). (4.4)

This derivation is presented in Appendix A.1. Similar to the process outlined in equations
3.8 to 3.11 for the one-dimensional scenario, our focus now shifts to evaluating the function

G
(
x, t; x′, t′

)
=G0

(
x, t; x′, t′

)
eiq·(x−x′) exp

{
−
∫ dk

(2π)2

∫ dω

2π

⟨κ(k, ω)κ(−k,−ω)⟩
(−h̄ω + h̄2|q|

m q̂ · k)2

×
(
1 − cos

(
k · (x − x′)− ω(t − t′)

))}
,

(4.5)

where G0 (x, t; x′, t′) is the non-interacting retarded Green’s function, given in Appendix A.5.
After applying equation 3.13, we continue with the computation of the polarisation opera-
tor in a two-dimensional setting. The polarisation operator is defined, using RPA, as per
equation 8.137 in U.Q.F. [14]

Π(k, iωn) = 2
∫ dk′

(2π)2
NFD(εk+k′)− NFD(εk′)

εk+k′ − εk′ − ih̄ωn
. (4.6)

To evaluate the scalability of the methodologies applied to the one-dimensional system, we
initially investigate their applicability to a basic isotropic two-dimensional system. Within
this context, we adopt the quadratic isotropic dispersion relation in two dimensions, given
by

εk =
h̄2k2

2m
, (4.7)

where εk represents the energy of a state characterised by wave vector k, h̄ is the reduced
Planck’s constant and m denotes the mass of the particle. In the long wavelength limit, the
distinctions between linear and quadratic dispersion relations in constructing the polarisa-
tion operator become negligible due to the dominance of lower-order terms that accurately
capture the system’s response. However, the adoption of the quadratic dispersion relation
is pursued not out of necessity but for the sake of theoretical completeness. This approach
ensures that our model remains robust and generalizable, capable of accounting for nuanced
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physical phenomena that emerge as one moves slightly away from the strict long wavelength
limit. Following this, we proceed to formulate the polarisation operator as

Π(k, iωn) =
1

2π2

∫
dk′ NFD(εk+k′)− NFD(εk′)

h̄2

2m (k2 + 2k · k′)− ih̄ωn
. (4.8)

Since we are primarily interested in the low- energy physics, we make an expansion around
k=0 to work in the long-wavelength limit. The numerator of the expression then becomes

NFD (εk+k′) ≃

NFD (εk′) +
∂NFD (εk′)

∂k′ · k = NFD (εk′) +
h̄2

m
∂NFD(ε)

∂ε

∣∣∣∣∣
ε=εk′

k′ · k + . . .
(4.9)

We can neglect the terms quadratic in k in this limit. We also use the analytic continuation
iωn → ω at this point. Expanding the denominator in the limit k/ω → 0 yields

Π(k, ω) ≃ − 1
2π2

∫
dk′

(
1 +

h̄2

m
k · k′

h̄ω

)
h̄2

m
k · k′

h̄ω

∂NFD(ε)

∂ε

∣∣∣∣∣
ε=εk′

. (4.10)

First, note that the integral linear in k · k′, vanishes because the integrand is antisymmet-
ric. Second, since ∂NFD(ε)/∂ε is strongly peaked at low temperatures around the chemical
potential, we have that

∂NFD(ε)/∂ε ≈ −δ(µ − ε). (4.11)

This results in the expression

Π(k, ω) = − k2

2π2

(
h̄

mω

)2 ∫ 2π

0
dϑ cos2(ϑ)

∫
dk′k′3

∂NFD(ε)

∂ε

∣∣∣∣∣
ε=εk′

≃ k2

2π

(
h̄

mω

)2 ∫
dk′k′3δ(µ − ε)

=
µ

πω2h̄2 k2,

(4.12)

where we changed the variables of integration dk′ = m
h̄2k′

dε and k′ =
√

2mε
h̄2 . Next, we focus on

solving the integrals within the exponent of equation 4.5. We can choose the direction of the
real space coordinates in such a way that the x-coordinate lies in the direction of k and q lies
in the kx-direction. This simplifies the cosine term like (1 − cos (k · (x − x′)− ω(t − t′))) →
(1 − cos (kx(x − x′)− ω(t − t′))), where x = (x, y), and the double pole is fixed at the posi-
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tion q̂ · k = kx. If we first integrate over the ky direction from −∞ to ∞, we get

− ih̄
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

V−1 −
µ
(

k2
x + k2

y

)
πω2h̄2

−1

(1 − cos (kx x̄ − ωt̄))

(−h̄ω + h̄2|q|
m kx)2

=
ih̄πc
2µ

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dkx

2π

ω2√
c2k2

x − ω2

(1 − cos (kx x̄ − ωt̄))
(ω − vqkx)2 ,

(4.13)

where c =
√

µV
πh̄2 is the speed of sound in the material and vq = h̄|q|

m is the velocity around
point q. We also use x̄ = x − x′ and t̄ = t − t′ for notational convenience again.

In contrast with the one-dimensional system, a distinct difference becomes apparent at this
stage of the calculation. In the one-dimensional scenario, we encountered simple poles aris-
ing from the two-point correlation function of the density field. However, in the current
context, we are dealing with two branch singularities instead, as is seen in Figure 4.1. This
variation substantially modifies the system’s behaviour, a point that will be further apparent
later in the calculation.

Out[ ] =
Re[ω]

Im[ω]

X X
-c kx c kx

Contour

Figure 4.1: Singularities of equation 4.22 in the complex ω-plane, where X denotes a branch
singularity, the dotted line the branch cuts and we plotted the Feynman contour for the time-
ordered Green’s function.

The two branch singularities are identified at distinct locations: one on the positive and one
on the negative real ω-axis. To effectively manage this integral, we deform the contour to
lie on the imaginary frequency axis, thereby bypassing the branch cuts. This manoeuvre
involves analytic continuations ω → iωn and t → −iτ. Additionally, we expand the double
pole at the endpoint of one of the branch cuts as ω2

(ω−kvq)2 ≈ c2

(c−vq)2 . This approximation

eases the mathematical handling of the problem, and is justifiable by the dominant influence
of the behaviour near the branch points on the system’s response.

Furthermore, the term (1 − cos (kx x̄ − ωnτ̄)) is simplified to cos (kx x̄ − ωnτ̄). We do this
because the term 1√

c2k2
x−ω2

diverges when ω approaches infinity. Much like the harmonic
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4. TWO-DIMENSIONAL MODEL

series ∑∞
n

1
n diverges. This step necessitates inclusion in the final expression of the Green’s

function in a normalisation factor. Since the cosine term pertains to the correlation between
the coordinates x − x′ and t − t′, we claim the integral retains the essential behaviour of the
system we aim to explore. Collectively, these modifications collectively enable the execution
of the ωn-integral as follows

h̄πc3

2µ(c − vq)2

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dωn

2π

cos (kx x̄ − ωnτ̄)√
c2k2

x + ω2
n

=

h̄c3

2µ(c − vq)2

∫ ∞

−∞

dkx

2π
cos (kx x̄)K0

(
|τ̄|
√

k2
xc
)

,

(4.14)

where Kν(x) denotes the modified Bessel function of the second kind. Lastly, the integration
over kx space is performed to obtain the expression

2π2h̄c3

µ(c − vq)2

∫ ∞

−∞

dkx

2π
cos (kx x̄)K0

(
|τ̄|
√

k2
xc
)
= ξ(|q|) 1

|x̄|
√

c2|t̄|2
x̄2 + 1

, (4.15)

where ξ(|q|) = h̄c3

4πµ(c−vq)2 and acts as a coherence length. We also Wick-rotated back to real
time. Putting this evaluation back into equation 4.5, yields the full expression for the Greens’
function

G
(
x, τ; x′, τ′) = G0

(
x, t; x′, t′

)
eiq·(x−x′) exp

{
ξ(|q|)√

c2|t − t′|2 + |x − x′|2

}
. (4.16)

In this expression, the momentum-dependent power-laws of the one-dimensional case are
absent. This suggests that a more intricate system may be required to exhibit such behaviour.

We observe that when x − x′ = 0 and t − t′ = 0, the contribution of the self energy to the
exponential term diverges. This phenomenon likely arises from the oversimplification of
the term (1 − cos (kx x̄ − ωnτ̄)) to cos (kx x̄ − ωnτ̄), as the divergence noted in this context
appears to be related to the divergence observed in equation 4.16. Consequently, we have to
remark that the presented results do not hold for infinitesimally small values of x − x′ and
t − t′.

4.2 Anisotropic model

To capture the momentum-dependent power-law behaviour observed in one-dimensional
systems, we introduce an anisotropy to our two-dimensional model to impose a preferred
direction in our system. If the directionality is sufficiently pronounced, it effectively acts as
a quasi one-dimensional system. Given that cuprates exhibit an anisotropic energy disper-
sion, such a system also aligns more closely with the experimental observations reported by
Smith et al. [4]. For our theoretical model, we adopt a tight-binding energy dispersion. We
begin our analysis of the new model from the starting point of equations 3.13 and 4.5. The
next step in our derivation is then the evaluation of the polarisation operator with the new
energy dispersion. In the limit of T → 0, we can approximate the polarisation operator from
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4. TWO-DIMENSIONAL MODEL

equation 4.6 as

Π(k, iωn) = 2
∫ dk′

(2π)2

NFD(εk+k′)− NFD(εk′)

εk′+k′ − εk′ − ih̄ωn

≈ 2
∫ π/2a

−π/2a

dk′

(2π)2

(
1

εk′ − εk′−k − ih̄ωn
− 1

εk+k′ − εk′ − ih̄ωn

)
,

(4.17)

since the Fermi-Dirac distribution is a Heaviside step function in the limit T → 0. We also
performed a shift in variables k′ → k′ − k in the term NFD(εk+k′). The tight-binding en-
ergy dispersion relation is given by εk = E0 − 2t(cos(ak̃x) + cos(ak̃y)), where a is the lat-
tice constant, t is the hopping energy and E0 is the energy of the free particle. As in the
isotropic model, we expand around k = 0. We also shift the coordinates by 45 degrees:
k̃x → 1√

2
(ky + kx) and k̃y → 1√

2
(ky − kx). The reason for this shift will become clear down

below.

We then integrate k′x and k′y over the Fermi area
[

π
2a , π

2a

]
, where we assumed a half-filled band.

We can make this approximation in the integration boundaries since low-energy excitations
are the most relevant for our model, and these excitations occur near the Fermi surface.
For many physical systems, especially at low temperatures, this approximation captures the
essential physics because the states far from the Fermi surface are either completely filled or
empty and thus do not contribute significantly to the processes being considered. We finally
retrieve for the polarisation operator the expression

Π(k, ω) =
(

k2
x + k2

y

) 8t
π2ω2h̄2 −

(
k4

x + k4
y

) a2t
3π2ω2h̄2 − k2

xk2
y

2a2t
π2ω2h̄2

=
24ρ

ω2

(
k2

x + k2
y

)
− a2ρ

ω2

(
k4

x + k4
y

)
− 6a2ρ

ω2

(
k2

xk2
y

)
= Πisotropic(k, ω)− 4a2ρ

ω2

(
k2

xk2
y

)
,

(4.18)

where ρ = t
π2 h̄2 and we used the analytic continuation ω → iωn. Also, we suppressed

terms O
(
ω−4). We can easily observe the anisotropy in this operator by noticing that the

coefficient of the k2
xk2

y term is six times larger than that of the k4
x + k4

y term, a significant
deviation from the isotropic ratio of two. This also indicates that the bigger contribution
of the polarisation operator is along the anti-nodal direction, a consequence of the rotation
of the coordinate system. With the goal of mimicking the quasi one-dimensional system
discussed in Chapter 3, we have successfully introduced a directional bias.

Given that at present we have not been able to calculate the complete Green’s function, the
most feasible alternative is to analyse the singular behaviour of the system. We can perform
the integration of the ky-coordinate inside of the exponent of equation 4.5, to retrieve the
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expression

−
∫ ∞

−∞
dω

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

(
V−1 − Π(k, ω)

)−1 (1 − cos (kx x̄ − ωt̄))

(−h̄ω + h̄2|q|
m kx)2

=
−iπaV√

2

∫ ∞

−∞
dω

∫ ∞

−∞
dkx

(1 − cos (kx̄ − ωt̄))

(−h̄ω + h̄2|q|
m k)2

×
ω2

√
12 −

√
a2
(

a2k4
x − 24k2

x +
ω2

ρV

)
− 3a2k2

x√
k2

x (a2k2
x − 24) a2ρV + ω2

√
(a4k4

x − 6a2k2
x + 18) 8ρV − a2ω2

.

(4.19)

Integrating out one of the momentum directions, we have a opportunity to draw some
parallels between this expression and our previous models. An interesting observation
is that the term stemming from the two-point function ends up having four branch-
cuts after integration. Specifically, these occur at ω = ±kx

√
ρV
√

24 − a2k2
x and ω =

±
√

8ρV
a2

√
a4k4

x − 6a2k2
x + 18. This is quite a contrast to the 1D case, where we encountered

two simple poles at a similar juncture in the derivation. The current state of the anisotropic
model seems to display more similarities to the 2D isotropic model.

Another approach to understanding the singular behaviour in our system is to examine the
manner in which the poles of the expression converge towards the kx-axis. We can find these
poles by solving the expression

1
V

− Π(k, ω) = 0. (4.20)

In a 2D isotropic system, these poles form a circle in the kx − ky plane. But in an anisotropic
system, things get more interesting. The shape of the poles gets deformed, as can be seen in
Figure 4.2.
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Figure 4.2: The blue line in the figure shows the pole structure of the two-dimensional tight-
binding model, as defined by equation 4.21. This is illustrated by plotting the dimensionless

relation k∗y = ±
√√

(8k∗2
x − 48) k∗2

x + 144 − ω̃ − 3k∗2
x + 12, where k∗x = akx, k∗y = aky, and

ω̃ = a2ω2

ρV . Here, ω̃ = 1 is selected for the visualization. Conversely, the red line represents
the solution to equation 4.20, wherein the polarisation operator is approximated to first order
in kx, centered around the point kx,0.

Here the blue graph is the solution to equation 4.20 for ky and is given by the function

ky = ±

√√√√√(8k2
x −

48
a2

)
k2

x +
144
a4 − ω2

ρVa2 − 3k2
x +

12
a2 . (4.21)

Next, we delve into the phenomena occurring at the singularities on the kx-axis. The pres-
ence of branch cuts here may indicate a parallel with the isotropic system. To explore this,

we initially expand the polarisation function around the point kx,0 =

√
12
a2 −

√
144ρ−a2ω2

ρa4 ,

where this point is determined by identifying the positive root of equation 4.21. Expanding
the polarisation operator to first order in kx around this point, we find that the solution of
equation 4.20 for ky are described by

ky =

√
l1 + l2kx +

√
l3 + l4kx + l5k2

x, (4.22)

with the coefficients li detailed in Appendix B.2. equation 4.22 is plotted as the red graph
in Figure 4.21. From this, we can see that the singularities at the kx-axis show a square root
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behaviour, quite similar to what we see in the isotropic case. At this point in the analysis, this
result would suggest a Green’s function more similar to that of the 2D isotropic model. This
would suggest there is also a lack of momentum-dependent power-laws in the anisotropic
system. Although, equation 4.19 is still quite different from the isotropic case, we cannot rule
out any power-laws until we found a complete result of the time-ordered Green’s function.
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CHAPTER 5
Conclusion and outlook

This thesis, centered around the complex behaviours of fermionic systems, especially in the
context of cuprates, has tried to make advancements in understanding the unique properties
of these materials. The motivation for this study, as detailed in Chapter 1, stems from the fas-
cinating and perplexing properties of cuprates, such as high-temperature superconductivity
and their deviation from conventional Fermi-liquid theory [2]. The experimental findings by
Smith et al. [4] using ARPES on strange metal cuprates and the theoretical advancements by
Khodas et al. [5] in one-dimensional systems provided foundational starting point for our
research.

In Chapter 3, we successfully replicated the findings of Khodas et al. [5], using path integral
formalism and the Hubbard-Stratonovich transformation. This approach proved effective in
understanding the one-dimensional behaviour of fermionic systems, setting a strong foun-
dation for further exploration in higher dimensions.

The first section of Chapter 4 extends this study to two-dimensional model within an
isotropic framework. We discovered that the momentum-dependent power laws apparent
in one-dimensional cases were absent, hinting at the need for a more complex system to ex-
hibit such behaviour. The model also showcases the versatility of the Hubbard-Stratonovich
transformation in investigating non Fermi-liquid behaviour and proved to be instrumental
in extending the study to higher dimensions.

We then progressed to develop a model for an anisotropic system in the second section of
Chapter 4. After integrating out one of the momentum directions, we observed similarities
with the isotropic 2D model, like the emergence of branch cuts. This proved to be a dis-
appointing results, since we were hoping to find a system more closely resembling the 1D
model with simple poles, due to the the directional dependence.

Looking forward, it would be valuable to completely finish the anisotropic model if possible.
This because of the strong experimental evidence that suggest the momentum-dependent
power-laws better describe cuprate systems. Although the explorations made in this thesis
point towards a model with similarities more closely related to the 2D isotropic system, we
will only be certain once the anisotropic model is completed in full.
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APPENDIX A
Derivations

A.1 Gauge transformation

κ(x, t) =
∫ dk

(2π)2

∫ dω

2π
κ(k, ω) ei(k·x−ωt). (A.1)

θ(x, t) =
∫ dk

(2π)2

∫ dω

2π
θ(k, ω) ei(k·x−ωt). (A.2)

If we plug these Fourier transforms back into equation 4.3 we get

(
h̄

∂

∂t
+

h̄2|q|
m

∇q̂

) ∫ dk
(2π)2

∫ dω

2π
θ(k, ω) ei(k·x−ωt)

= −
∫ dk

(2π)2

∫ dω

2π
κ(k, ω) ei(k·x−ωt),

(A.3)

which leads to

∫ dk
(2π)2

∫ dω

2π
ei(k·x−ωt)

(
−ih̄ω +

ih̄2|q|
m

q̂ · k

)
θ(k, ω)

= −
∫ dk

(2π)2

∫ dω

2π
κ(k, ω) ei(k·x−ωt).

(A.4)

This equation can be rewritten as

θ(x, t) =
∫ dk

(2π)2

∫ dω

2π

iκ(k, ω)

−h̄ω + h̄2|q|
m q̂ · k

ei(k·x−ωt), (A.5)

Where we used equation A.2 on the left hand side.
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A.2 Cross terms of the gauge transformation

When evaluating 3.11 we calculate the cross terms as follows

θ(0, 0)θ(0, 0) =
∫ dk

(2π)2

∫ dω

2π

iκ(k, ω)

−h̄ω + h̄2|q|
m q̂ · k

∫ dk′

(2π)2

∫ dω′

2π

iκ(k′, ω′)

−h̄ω′ + h̄2|q|
m q̂ · k′

=
∫ dk

(2π)2

∫ dω

2π

κ(k, ω)κ(−k,−ω)

(−h̄ω + h̄2|q|
m q̂ · k)2

.

(A.6)

In a translationally invariant system, momentum is conserved. When considering a two-
point correlation function of fluctuations or perturbations in the field κ the conservation
of momentum implies that any momentum k gained by one part of the system must be bal-
anced by an equal and opposite momentum −k elsewhere. This is reflected in the correlation
function by the property that the momenta at the two points are equal and opposite. Thus,
choosing k′ = −k and ω′ = −ω aligns with momentum conservation.

θ(x, t)θ(x′, t′) =
∫ dk

(2π)2
dk′

(2π)2

∫ dω

2π

dω′

2π

−κ(k, ω)κ(k′, ω′)

(−h̄ω + h̄2|q|
m q̂ · k)(−h̄ω′ + h̄2|q|

m q̂ · k′)

× ei(k·x−ωt)ei(k′·x′−ωt′) =
∫ dk

(2π)2

∫ dω

2π

κ(k, ω)κ(−k,−ω)

(−h̄ω + h̄2|q|
m q̂ · k)2

ei(k·(x−x′)−ω(t−t′)).

(A.7)

Similarly

θ(x′, t′)θ(x, t) =
∫ dk

(2π)2

∫ dω

2π

κ(k, ω)κ(−k,−ω)

(−h̄ω + h̄2|q|
m q̂ · k)2

e−i(k·(x−x′)−ω(t−t′)), (A.8)

(θ(x, t))2 =
(
θ(x′, t′)

)2
=
∫ dk

(2π)2

∫ dω

2π

κ(k, ω)κ(−k,−ω)

(−h̄ω + h̄2|q|
m q̂ · k)2

. (A.9)

A.3 Polarisation operator left moving fermions 1D

Calculating the polarisation operator for the left fermions in one dimension, we start with
equation 4.6

ΠL (k, iωn) = 2
∫ dk′

(2π)

NFD
(
εL

k+k′
)
− NFD

(
εL

k′
)

εL
k+k′ − εL

k′ − ih̄ωn

=
1
π

∫ ∞

−∞
dk′

1
εL

k+k′ − εL
k′ − ih̄ωn

(
1

e(h̄vF(k+k′)−µ)/kbT + 1
− 1

e(h̄vFk′−µ)/kbT + 1

)
.

(A.10)
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We then plug in the disperion relation given by εL
k = −h̄vFk and do the integral to get

ΠL (k, iωn) =
1
π

−1
h̄vFk + ih̄ωn

∫ ∞

−∞
dk′
(

1
e(h̄vF(k+k′)−µ)/kbT + 1

− 1
e(h̄vFk′−µ)/kbT + 1

)

=
1
π

−k
h̄vFk + ih̄ωn

.

(A.11)

A.4 Evaluating the k-integral in one dimension

In evaluating the last integral of the one dimensional model, we use a Feynman trick. We
start by taking a derivative with respect to the cutoff Λ

f (Λ) =c1

∫ ∞

−∞
dk

1
k

e−Λ|k| (1 − cos(k(x̄ − vt̄))

∂ f (Λ)

∂Λ
=− c1

∫ ∞

−∞
dke−Λ|k| (1 − cos(k(x̄ − vt̄)) .

(A.12)

We then perform the integral over k

∂ f (Λ)

∂Λ
=− c1

2x2

Λ (Λ2 + x2)
. (A.13)

And finally integrate with respect to Λ to get the desired result

f (Λ) =− c1

∫
dΛ

2x2

Λ (Λ2 + x2)

f (Λ) =c1 log
(Λ2 + (x̄ − vt̄)2

Λ2

)
.

(A.14)

A.5 Non-interacting Green’s functions

For one dimension the non interacting Green’s function is given by

G0(x, x′; t, t′) =
∫

dk
∫

dω ei(k(x−x′)−ω(t−t′)) −h̄
−h̄ω + εk − µ

. (A.15)

For two dimensions the non interacting Green’s function is given by

G0(x, x′; t, t′) =
∫

dk
∫

dω ei(k·(x−x′)−ω(t−t′)) −h̄
−h̄ω + εk − µ

(A.16)
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APPENDIX B
Coefficients

B.1 Poles in one dimension

The coefficients for the intermediate steps of the derivation of the Green’s function in one
dimension are given by

c1 =
v2 − v2

F
2v
(
v − vq

)
2

, (B.1)

c2 =
v2

F + v2

2v
(
vq + v

)
2

, (B.2)

c3 =

(
v2 − v2

q

)
2

2
(
v2 − v2

F
)

vq
, (B.3)

c4 =
v2

F − v2
q

v2 − v2
q

. (B.4)

The coefficients for the final result of the derivation of the Green’s function in one dimension
are given by

j1 =
1

2πh̄
v2

F − v2

2v
, (B.5)

j2 =
1

2πh̄
v2

F + v2

2v
, (B.6)

j3 =
1

2πh̄
1

2
(
v2 − v2

F
) . (B.7)
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B.2 Anisotropic model

The coefficients for how the poles converge on the x-axis in the two dimensional anisotropic
model are given by

l1 = 3

√
144ρ − a2ω2

ρa4 + 48a−2, (B.8)

l2 = −6

√√√√√144ρ − a2ω2

ρa4 + 12a−2, (B.9)

l3 =
336
√

144ρ2 − ρa2ω2 − 13a2ω2 + 4176ρ

a4ρ
, (B.10)

l4 = −
8
(

5
√

144ρ − a2ω2 + 72
√

ρ
)

a2√ρ

√√√√√144ρ − a2ω2

ρa4 + 12a−2, (B.11)

l5 =
36
a2

(√
144ρ − a2ω2

ρ
+ 12

)
. (B.12)
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