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Abstract

In an attempt to understand the density-density response of the cuprate superconductors, we
study plasmons in a layered strange metal using the Gubser-Rocha model. The latter is a
well-known bottom-up holographic model for a strange metal that is used here to describe
the strongly repulsive on-site interactions between the electrons in each copper-oxide (CuO2)
layer, whereas the long-range Coulomb interactions are incorporated by a so-called double-
trace deformation. To be able to model the bilayer cuprates more realistically, we consider in
particular the case of two closely-spaced CuO2 layers per unit cell. In the response we then obtain
for vanishing out-of-plane momentum both an optical and an acoustic plasmon, whereas for
nonvanishing out-of-plane momentum there are two acoustic plasmon modes. We present the
full density-density spectral functions with parameters typical for cuprates and discuss both the
dispersion and the lifetime of these plasmon excitations. We also compute the conductivity after
introducing disorder into the system and introduce the loss function to facilitate a comparison
with experimental results. Finally, we also treat the effects of Umklapp scattering and inter-layer
hopping on the density-density response.
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CHAPTER 1
Introduction

For decades condensed-matter physicists have found themselves scratching their heads over strange
metals, grappling with its defining properties that completely go against predictions from Fermi-
liquid theory. A standout feature, and perhaps the most perplexing one, is the perfect linear
relationship between resistivity and temperature in these materials [1–3], while in a Fermi liquid
the resistivity scales with temperature squared. Furthermore, the linear behavior exceeds the Mott-
Ioffe-Regel limit [4], which stipulates that the resistivity becomes constant at a certain temperature,
and even persists up to the material’s melting point. These strange properties are presumed to be
linked to the unusually strong interactions between charge carriers inside the strange metal [5, 6].
But so far a comprehensive explanation for all these properties remains unknown.
Strange metals were discovered as the metallic phase of certain high-temperature superconductors
called cuprates, which have a common structure of copper-oxide (CuO2) planes. In the 1980s
they sent a shock through the physics community due to their incredibly high critical tempera-
ture (Tc). Prior to the discovery of these high-temperature superconductors it was believed that
superconductivity might reach a dead end. Due to the fact that the conventional superconductivity
theory of Bardeen, Cooper and Schrieffer (BCS) [7] predicts a maximum critical temperature of
approximately 40 Kelvin [8]. Subsequently, this maximum was spectacularly violated by the cuprate
superconductors, see Fig. 1.1. After the first cuprate, many more were discovered and a critical
temperature of around 135 Kelvin was reached [9]. A satisfying explanation for this relatively
high temperature is still missing. For conventional superconductivity the normal metallic phase
was first described by Fermi-liquid theory, on which the workings of superconductivity was then
based. Therefore, it seems logical that we first need to properly grasp the strange metal in order to
understand the cuprate superconductors and perhaps increase the critical temperature in the future.
Achieving room-temperature superconductivity at atmospheric pressure is one of the greatest goals
of condensed-matter physics.

In this thesis, we use a holographic model to investigate the properties of charge-density oscillations,
better known as plasmons, in the strange-metal phase of cuprate superconductors. The plasmons
in this class of materials have been studied in several experiments before [11–19]. Our goal is to
attempt to gain more insight into these experiments, in particular by including one of the defining
characteristics of strange metals, the linear-in-T resistivity. It is usually assumed that an understand-
ing of these experiments requires a theory which models the effects of the strong on-site Coulomb
(Hubbard-U) repulsion between the electrons in the strange-metal phase. One way to achieve this
is to apply a technique that originates from string theory, known as the gauge/gravity duality or
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Chapter 1. Introduction 2

Figure 1.1: History of critical temperature of superconductors. The material
YBa2Cu3O7 is the first to surpass the liquid nitrogen temperature of 77 Kelvin. The
red dots indicate Nobel prizes awarded to the discoverers. Source: [10].

AdS/CFT correspondence [20]. This correspondence conjectures that there is a relationship between
a bulk gravity theory in an anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) on
its boundary. Since this is a bulk-boundary correspondence it is also known as the holographic
principle, which has proven in recent years to effectively describe low-energy properties of strongly
interacting systems [21]. This duality allows us to map the quantum field theory of the CuO2
layers to a more tractable problem on the gravity side. Since the birth of this correspondence a
vast amount of theories have been proposed, from these we will use the Gubser-Rocha model [22],
which is a special case of an Einstein-Maxwell-dilaton model. In this model the entropy scales
linearly with temperature, and hence the resistivity is also linear in temperature, which is one of the
defining features of a strange metal. Moreover, recent Angle-Resolved Photo-Emission Spectroscopy
(ARPES) experiments have been accurately described by the Gubser-Rocha model [23].

Ultimately, and most importantly for our purposes, this model gives us a long-wavelength density-
density response function for a single CuO2 layer. In principle this can only be obtained numerically,
but we will use a very accurate hydrodynamic approximation instead. The Gubser-Rocha response
function describes strongly interacting but ‘neutral’ electrons, implying that it describes the strong
on-site interactions inside each layer, but not yet the long-range effects of the Coulomb interactions
which are crucial for the existence of plasmons and thus need to be incorporated separately. To
incorporate these long-range interactions in the framework of the gauge/gravity duality, we need
to perform a so-called double-trace deformation of the conformal field theory [24, 25]. Our objective
is to determine, using this same double-trace deformation, whether the Gubser-Rocha model for a
strange metal leads to an improved understanding and interpretation of experimental results.
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Since our approach consists of a bottom-up holographic computation, we need to realize that
response functions are only determined up to an overall constant. This is due to the Newton’s
constant G in the gravity theory, which is not determined from our condensed-matter system. We
remedy this issue by noting that the density-density response function of the layered strange metal
ultimately contains a plasma frequency, which we use to fix this single undetermined constant such
that the holographically obtained plasma frequency matches exactly the experimentally measured
plasma frequency. Throughout this thesis, we show how this can be achieved very explicitly, after
which we present our final results in the form of the density-density spectral function that depends
solely on material parameters that can in principle be determined experimentally. The spectral
function will most clearly display the plasmon modes of the charge-density fluctuations, with a
sharp peak denoting a long-lived collective mode since the width of the peak determines its lifetime.
Moreover, it is directly related to the energy-loss function, which has been observed experimentally.

Although our approach proves to be highly general and predominantly analytical, for the sake
of concreteness, we focus on the cuprate Bi2Sr2CaCu2O8+x (Bi-2212), in the category of bismuth-
based cuprates. Fig. 1.2 presents a schematic illustration of the unit cell, revealing that the crystal
structure of this specific cuprate is somewhat complicated. Specifically, it features pairs of closely-
spaced CuO2 planes, with these pairs further separated by a larger distance. Notably, the unit cell
encompasses four CuO2 planes, instead of two, as adjacent pairs of CuO2 planes are rotated by 45
degrees relative to each other. Since we are mainly interested in the long-wavelength physics we do

Figure 1.2: The unit cell of Bi-2212, consisting of CuO2 planes separated by charge
reservoirs. Adjacent pairs of CuO2 planes are rotated by 45 degrees. Source: [26].

not consider this rotation and instead assume that each CuO2 layer is identical.

The thesis is structured as follows. We start by introducing Fermi-liquid theory for ordinary metals
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in Chapter 2. We discuss the resistivity and response function of these metals. Followed by the
introduction of strange metals in Chapter 3, focusing on the aspects that violate Fermi-liquid theory.
Moreover, we introduce Bi-2212 and its material parameters. Then, Chapter 4 is dedicated to
explaining the gauge/gravity duality and introducing the Gubser-Rocha model. In Chapter 5 the
first plasmon modes are presented in the form of a density-density spectral function, starting with
the simplest possible configuration, one layer. Followed by adding another layer at distance a,
resulting in a matrix structure in the response. Subsequently, the desired geometry of a bilayered
crystal is reached in Chapter 6 by stacking pairs of layers on top of each other with a distance l
between the pairs. The main results of the thesis are presented in this chapter. On top of computing
the spectral function we also compute the conductivity after introducing Planckian dissipation.
In turn this allows the computation of the loss function, making our results readily comparable
to experiments. Then we shift our focus to extensions of the model, first we consider Umklapp
scattering due to supermodulation and display the results in the form of spectral functions and
loss functions. Thereafter, we introduce hopping between the layers by altering the holographic
response function. The hopping induces a gap at zero in-plane momentum and amplifies the
out-of-phase mode significantly. At the end of the chapter we reduce the bilayer-crystal response to
a single-layer crystal, to verify the expression obtained with previous work in the literature. Then,
Chapter 7 contains computations for other cuprates by changing the material parameters used,
which allows for even more comparison with experiments.
Finally, in Chapter 8 we conclude this thesis and discuss possible future efforts to improve our
understanding of strange metals.



CHAPTER 2
Fermi-liquid Theory

In this chapter we shortly go over the background of condensed-matter physics, more specifically
Fermi-liquid theory. Because in order to know what is strange, we first need to know what is
normal.

First, we discuss how this theory came to existence, for which we have to go back to the 1950s. At
the end of this period Landau developed his Fermi-liquid theory, which became the bedrock of
condensed-matter physics, since it accurately describes metals in their normal state. Originally,
Landau proposed the theory to describe liquid Helium (3He to be exact) at low temperatures, but
later it was realized that it could be used for other fermionic systems as well.

Consider the concrete example of a gas of non-interacting electrons, with the ground state of this
gas given by a so-called Fermi sea of electrons, which means that the electrons fill up states up to
the Fermi momentum. All energy states below are filled up and gives rise to a boundary called the
Fermi surface, which separates the occupied states from the unoccupied states. Then, low-energy
excitations are formed when an electron is excited from the Fermi sea, these excitations are called
particle-hole excitations, since a hole is formed in the Fermi sea.
The next question to answer is: how is the Fermi liquid formed from a non-interacting Fermi gas?
This is done by creating a relation between eigenstate of the non-interacting gas with those of the
Fermi liquid. The interactions of the Fermi liquid are turned on adiabatically, which means infinitely
slow. Landau claimed that there is a one-to-one-correspondence between these eigenstates. The
particles described in Fermi liquid theory are not exactly the same as electrons anymore, but are
now quasiparticles with an effective mass that can deviate from the electron mass.

2.1 Resistance of metals

The electrical resistivity of metals in the Fermi-liquid picture is not a simple formula, but depends
on what interactions dominate. An important notion to introduce is the mean free path l for the
electrons. This quantity indicates the average distance an electron travels before a collision occurs.
The resistivity is inversely proportional to the average time between collisions, given by τ = l/vF,
with vF the Fermi velocity of the electrons. Therefore, the resistivity is inversely proportional to the
temperature-dependent mean free path,

ρ ∝ 1/l. (2.1)

5
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At low temperatures electron-electron scattering, giving rise to quadratic temperature dependence,
and scattering off impurities in the metal are most important. The latter causing a constant tempera-
ture dependence of the resistivity. Therefore, at low temperatures the resistivity is of the following
form

ρ ∼ ρ0 + Ae,eT2, (2.2)

where Ae,e a parameter characterizing the resistivity caused by electron-electron scattering.
Then in a higher temperature regime electron-phonon interactions dominate. Phonons are quantized
oscillations in the lattice. These interactions give rise to linear-in-T resistivity.

As it turns out the resistivity does not grow until the melting point of metals. Namely, in 1960
Ioffe and Regel reasoned that the mean free path cannot decrease indefinitely. A decrease in mean
free path would arise due to the fact that electrons are more likely to scatter of phonons if the
temperature increases. While the mean free path is typically much larger than the lattice spacing, it
cannot become smaller than this spacing. Since then the semi-classical picture of mean free path
breaks down. Due to the fact that you can expect that an electron can scatter at most at every atom.
This reasoning gives us a temperature at which the resistivity saturates and becomes constant and
this is called the Mott-Ioffe-Regel limit.

2.2 Random-Phase Approximation

To treat electron-electron interactions, we introduce the Random-Phase Approximation (RPA), a
well-known framework by which collective behavior of particles can be described. In the high-
density limit the theory even becomes exact. Central to RPA is the definition of the density-density
response function, denoted as χRPA(q, ω). This function captures the system’s response to density
perturbations characterized by momentum q and frequency ω, defined as

χRPA(q, ω) =
χ0(q, ω)

1 − V(q)χ0(q, ω)
, (2.3)

where χ0(q, ω) represents the non-interacting (bare) density-density response function and V(q) is
the effective interaction potential. If desired, a more elaborate exploration of the Random-Phase
Approximation and its applications is found in "Quantum Theory of the Electron Liquid" [27].
Another recommended book is "Ultracold Quantum Fields" [28].

An important implication of RPA is the fact that at long wavelengths the density-density response
is dominated by a collective excitation known as the plasmon [28]. These quasiparticles arise due to
long-range Coulomb interactions among electrons. The potential in the response function computed
in RPA becomes the Fourier transform of the Coulomb potential{

V(q) = e2

2ϵ0|q| , 2D

V(q) = e2

ϵ0q2 , 3D,
(2.4)

where 2D means that the system at hand is two-dimensional, but the Coulomb interactions still live
in three dimensions. Here, ϵ0 is the background dielectric constant and e is the electron charge. Since
in the condensed-matter systems of interest the Fermi velocity is much smaller than the speed of
light, the Coulomb potential is only dependent on momentum. The non-interacting density-density
response function is given by

χ0(q, ω) =
ne

m
q2

ω2 , (2.5)
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with ne the density of electrons and m the electron mass. Using this equation and Eq. (2.4) the
dispersion of a two-dimensional plasmon is derived by setting the denominator of Eq. (2.3) to zero.
Thus we obtain

ω(q) =

√
e2ne

2mϵ0
|q|. (2.6)

In three dimensions the Coulomb potential is inversely proportional to q2, which means that the
obtained plasmon mode is gapped. Therefore, in the limit q → 0 there is a plasma frequency

ωpl =

√
e2ne

mϵ0
. (2.7)



CHAPTER 3
Strange Metals

Having introduced Fermi-liquid theory, we now move on to a non-Fermi liquid: the strange
metal. This phase of matter is not described by Fermi-liquid theory and violates its principles in
many ways. The most striking property of strange metals is the linear temperature dependence
of the resistivity [1–3]. Contrary to Fermi-liquid theory, which predicts a quadratic temperature
dependence in the resistivity for electron-electron interactions. Additionally, the resistivity of strange
metals remains linear up to the material’s melting point, exceeding the Mott-Ioffe-Regel limit [4].
Another unexplained feature is the quadratic temperature dependence of the Hall angle [29–31].
The cause of these violations remain a mystery and have not been fully explained yet. All in all the
strange-metal phase is incredibly strange and has therefore been given a fitting name. But there are
actually more reasons to study the strange metal apart from its unusual features. Namely, cuprate
superconductors, found to have a high critical temperature, become strange metals in their normal
phase. And it is believed that understanding the strange metal is fundamental for grasping the
relatively high Tc of these materials.
In this chapter we first delve into cuprate superconductors in general and then consider a specific
cuprate, Bi2Sr2CaCu2O8+x, also known as Bi-2212, such that we are able to directly compare with
experiments.

3.1 Cuprate superconductors

In the 1980s a breakthrough occurred in the field of condensed matter when a mysterious class of
materials was found which remain superconducting up to relatively high temperatures. The highest
critical temperature observed for these materials, called cuprate superconductors, is about 135 K [9].
This incredible critical temperature is partly why the interest in these materials is so great, since
obtaining room-temperature superconductors is one of the greatest goals of the condensed-matter
community.

In Fig. 3.1 the phase diagram of a typical hole-doped cuprate is shown. The strange-metal phase
resides above the doping range with largest Tc. For our purposes the other aspects of this com-
plicated phase diagram are not important. Here the x-axis depicts the hole doping of the cuprate,
which shows how many electrons have been removed from the CuO2 layers. Then on the y-axis the
temperature is shown. We will attempt to model the strange-metal phase above the center of the
superconducting dome.

8
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Figure 3.1: A phase diagram of hole-doped cuprates as a function of temperature
and doping. The strange-metal phase is centered around a doping of approximately
0.19. Source: [32].

Figure 3.2: Generic structure of cuprates, the CuO2 planes are separated by charge
reservoirs. Source: [26].

The defining feature of cuprates is the stacking of CuO2 layers, as seen in Fig. 3.2, composed of a
square lattice of copper and oxygen atoms. In these layers the interactions between charge carriers
are unusually strong and it is believed that these interactions cause the peculiar properties. In
between these layers are charge reservoirs, whose atomic structure is much more complicated than
the CuO2 layers. Note that the resistivity along the axis perpendicular to the layers is 100 - 105 times
larger than the in-plane resistivity [33]. Although the charge reservoirs serve as insulating layers
there is coupling between the CuO2 planes due to the Coulomb force.
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Figure 3.3: The unit cell of Bi-2212, consisting of CuO2 planes separated by charge
reservoirs. Adjacent pairs of CuO2 planes are rotated by 45 degrees. Source: [26].

3.2 Bi2Sr2CaCu2O8+x (Bi-2212)

In this section we discuss some of the specifics of the cuprate that we have chosen to model, Bi-2212.
The unit cell is displayed in Fig. 3.3. The main aspect of interest is the bilayered structure, which
means that we have pairs of closely-spaced CuO2 planes stacked on top of each other. The distance
between the closely-spaced layers is 3.2 Å (where an angstrom is equivalent to 0.1 nm) and the
distance between the pairs of layers is 15.4 Å. The unit cell consists of four unit cells because
adjacent CuO2 planes are rotated by 45 degrees. We ignore this rotation because it does not affect
the long-wavelength physics on the scale of many unit cells. We consider all CuO2 layers to be the
same, thus the unit cell we analyze is comprised of only two CuO2 layers.
Moving on to specific CuO2 layer properties, the electron density n is approximately (0.25 Å−1)2,
which is computed by dividing the 0.85 electrons per Cu site by its surface, (3.8 Å)2. The 0.85
electrons per Cu site is due to the assumption of hole doping of 0.15. Then the Fermi velocity is
vF = 1.5eV Å/h̄ ≈ 2.28 × 105 ms−1. Additionally, there is the background dielectric constant of the
surrounding layers, ϵ/e2 = 4.5 × 55.263 × 10−4eV−1Å−1. Lastly, the most important parameter ,
since it enables the use of the holographic response function is the plasma frequency, h̄ωpl = 1.0 eV.



CHAPTER 4
Gauge/gravity Duality

We approach the challenge of describing the strong interactions among charge carriers in the CuO2
layers by using the gauge/gravity duality. This chapter serves as an introduction to this duality
and also gives us the density-density response function that incorporates the strong interactions.
We obtain this response function from the Gubser-Rocha model, which turns out to be well-suited
to model the strange metal.

4.1 Introduction to holography

As mentioned before, it seems that the strong Coulomb interactions in the CuO2 layers between
charge carriers cause the strange behavior of the cuprates. Therefore, it follows that we need a
clear description of these strong interactions to shed light on the workings of the strange-metallic
phase. At this point the holographic principle [20], also known as either gauge/gravity duality or
AdS/CFT correspondence, comes into the picture, since strongly correlated systems arise naturally
in this framework.

Hence, we go back in time to explore how this duality and its applications formed. The inception
of the gauge/gravity duality can be attributed to the insights of Juan Maldacena in the end of the
1990s [20]. Maldacena’s remarkable discovery presented a novel perspective, conjecturing that a
gravitational theory in Anti-de Sitter space (AdS) is equivalent to a non-gravitational, conformal
field theory (CFT) living on its boundary. This duality has opened new pathways to deal with
strongly interacting quantum systems by relating it to a gravity theory. Maldacena’s discovery alone
was not enough to apply the holographic principle in condensed-matter systems, more advances
were needed first. Gubser, Klebanov and Polyakov came to the rescue by providing a set of rules
to quantitatively relate results between the two theories [34]. Witten independently came up with
these rules as well [35], and hence the GKPW rule was born, which states that the partition functions
of both sides are equal. These rules allow for a holographic dictionary which is incredibly useful for
computations. Fast forward to more recent years and now the holographic principle is often used to
deal with strongly correlated systems [23, 36, 37].

With the journey of the holographic principle in the back of our mind we now move on to a more
mathematical explanation of the duality. Firstly, why is it called the gauge/gravity duality? Gravity
stands for the bulk gravitational theory in the Anti-de Sitter space, while gauge refers to the gauge
theory on its boundary. The Anti-de Sitter space is a solution to Einstein’s field equations with a

11
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negative cosmological constant [38]. The physics of the boundary is described by a conformal field
theory which is located at r → ∞. Here, r is the additional space coordinate of the bulk spacetime.
A conformal field theory is a theory that is invariant under transformations that preserve angles.
The correspondence is between the generating functional of the CFT and the partition function
of the bulk theory. To be more precise, the generating functional of the CFT with source hi for
the single-trace operator Oi is equal to the bulk partition function with the bulk field ϕi, with the
boundary value (at r → ∞) equal to the source hi, formulated in an equation as

Zgrav({hi(x)}) = ZQFT({hi(x)}). (4.1)

There are many good books and other resources that dive deeper into the intricacies of the duality
[21, 30, 39], in the meantime we focus on how the condensed-matter physicist utilizes the results.

For our purposes we use the fact that we can map strongly-coupled non-gravitational physics to
a weakly coupled perturbative gravity problem [39]. In practice, the correspondence is used by
analyzing the bulk theory to obtain an expression for the retarded Green’s functions of the boundary
theory. The starting point is then the action of the bulk gravity theory. The background solutions
of this action define the equilibrium properties of the boundary theory. To study the response of
the field theory to small perturbations we consider fluctuations of the classical fields in the bulk
on top of the background solution. This ultimately gives us a coupled set of equations. According
to the holographic dictionary [21, 30, 39, 40], finding such a solution with infalling-wave boundary
conditions at the black hole horizon allows us to extract all the retarded Green’s functions of the
system. These in-falling-wave boundary conditions essentially mean that energy is carried towards
the black hole instead of emerging from it, which makes sense physically.

4.2 Gubser-Rocha model

The specific holographic model used in this thesis is called the Gubser-Rocha model [22]. Why do
we use the Gubser-Rocha model? Well, one of the reasons is the fact that the background solutions
to the equations of motion can be computed analytically, which means we have to perform less
numerical calculations to obtain the desired results.
Secondly, the Gubser-Rocha model contains a scalar field called the dilation, such that in the
low-energy theory that emerges the dynamical critical exponent z = ∞ and the hyperscaling
violation exponent θ = −∞ both diverge, but their ratio is fixed to −1. This exact ratio ensures that
the entropy scales with temperature, which in turn means that we obtain the desired linear-in-T
resistivity of the strange metal.
Furthermore, the Gubser-Rocha model has been used to successfully describe certain experiments.
The model is dual to a quantum field theory characterized by ‘semi-local’ quantum-critical behavior,
which implies that the only momentum dependence in the electron self-energy is in the exponent,
i.e., h̄Σ(ω, k) ∝ ω(−ω2)νk−1/2. It represents a quantum-critical theory because the correlation
length diverges and its dynamical exponent obeys z = ∞. The significance of this result is that it
agrees with experimental observations. For example, upon tuning the adjustable parameters in the
holographic model such that νkF ≡ α, this self-energy can reproduce the ‘power-law liquid’ model,
h̄Σ′′(ω, k) ∝ ω2α, which very accurately describes the experimentally observed electron self-energy
in ARPES measurements near the Fermi surface in the nodal direction [41]. There is even another,
more recent, ARPES experiment that confirms the momentum dependence in the exponent and
shows that it can accurately describe the deviations from the ‘power-law liquid’ model away from
the Fermi surface [23]. These experiments thus indicate that the Gubser-Rocha model describes
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some aspects of the strange-metal phase, although there are other properties of the strange metal
that might not yet be accurately described by this model. For example, the anomalous scaling of the
Hall angle [29–31]. Although this quantity is not relevant for this thesis as we consider no external
magnetic field, we are aware that there might be need for a more advanced model which could
describe all of these properties simultaneously.

Next, we give the gravitational action for the model [37]

SGR = Sct +
c4

16πG

∫
drdtd2x

√
−g

[
R −

(∂µϕ)2

2
+

6
L2 cosh

(
ϕ√
3

)
− eϕ/

√
3

4g2
F

FµνFµν

]
, (4.2)

where r is the additional spatial dimension of the bulk spacetime, g is the determinant of the metric
tensor, R is the Ricci scalar and ϕ is the aforementioned dimensionless scalar field known as the
dilaton [42, 43]. Moreover, Fµν is the electromagnetic field strength tensor. Its coupling constant
is g2

F = c4µ̃0/16πG, with µ̃0 the dimension of a magnetic permittivity m kg C−2. Then, L is the
Anti-de Sitter radius, which is the radius of curvature of the AdS spacetime. Finally, Sct contains
the boundary counterterms that ensure that we have a well-defined boundary problem and that
the theory is properly renormalized. As mentioned before, the dilaton field ϕ is responsible for
being able to describe the typical strange-metal behaviour of linear-in-T resistivity and gives also a
linear momentum dependence in the exponent νk of the correlations. We can rewrite the action into
dimensionless quantities

S̃GR =
c3L2

16πh̄G

∫
dr̃ dt̃ d2 x̃

√
−g

[
R −

(
∂µϕ

)2

2
+ 6 cosh

(
ϕ√
3

)
− eϕ/

√
3

4
F̃2

µν

]
, (4.3)

by defining lengths in terms of L, energies in terms of h̄c/L and absorbing the gauge coupling in
the gauge field, then the prefactor of the action becomes NG ≡ c3L2/16πh̄G, which is related to the
large-N number of species of the boundary QFT [39]. We come back to this in principle unknown
constant and explain how to fix it by looking at the experimentally observed plasma frequency. The
thermodynamics of the two-dimensional strange metal is described by a background solution to
the following equations: the Einstein field equations for the metric gµν, the Maxwell equations for
the U(1) gauge field Aµ and the Klein-Gordon equation for the dilaton field ϕ. These equations can
be obtained by varying the above action

Rµν −
1
2

Rgµν = Tµν, ∇µ

(
eϕ/

√
3Fµν

)
= 0,

∇µ∇µϕ =
eϕ/

√
3

4
√

3
F2 − 2

√
3

L2 sinh(ϕ/
√

3),
(4.4)

with the energy-momentum tensor

Tµν =
1
2

∂µϕ∂νϕ +
eϕ/

√
3

2
Fµ

σFνσ − gµν

(
eϕ/

√
3

8
F2 +

(∂σϕ)2

4
+

3
L2 cosh(ϕ/

√
3)

)
. (4.5)

For the background the solutions to the equations of motion are function of r only. We then have
a set of equations (gtt = −1/grr, gxx = gyy, At, ϕ), which supports a fully analytical black-hole
solution with non-zero temperature and entropy [22]. Keeping in mind our goal of computing the
response functions, we also need to consider small external perturbations of this background and
we have to linearize the gravitational equations around the analytical black-hole solution. Then
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Figure 4.1: Density-density spectral function −Π′′ of a single layer with only strong
short-range interactions. This plot contains a linear sound mode, ω = vsq, and a
diffusive mode, ω = −iDdq2. The temperature is fixed at room temperature T = 293
K. In the left figure h̄ω ≤ 0.5 eV and in the right figure the range of h̄ω is decreased
to more clearly display the diffusive mode.

we obtain a coupled set of equations for the fluctuations (δgtt, δgtx, δgxx, δgyy, δAt, δAx, δϕ) that
can only be solved numerically. According to the holographic dictionary, finding a solution to the
linearized equations of motion with infalling-wave boundary conditions at the black-hole horizon
allows us to extract all the retarded Green’s functions of the system, and thus also the desired
density-density response function Π(ω, q), by studying the near-boundary behaviour of the field
fluctuations [39].

In this manner we arrive at the objective of this section, the two-dimensional single-layer response
describing the strong short-range interactions. In the low-temperature regime and at energies and
momenta much smaller than the Fermi energy and Fermi momentum, respectively, we can use a
hydrodynamic approximation to obtain [37, 44]

Π(ω, q) =
q2(ωD + iv2

s Ddχq2)

ω3 + iω2q2(2Ds + Dd)− ωq2v2
s − iv2

s Ddq4 , (4.6)

where we have used rotational invariance to write q ≡ |q| as a scalar. In addition, D is the Drude
weight, χ is the hydrodynamic compressibility, and we also define two diffusion constants Ds and
Dd that correspond to sound diffusion and charge diffusion, respectively. Finally, vs is the speed of
sound in the material. In Section 6.2 we compute the values of these parameters.

To gain insight into the behavior of this response function the spectral function is introduced. The
spectral function is defined as the imaginary part of the response function

−Π′′ = −Im[Π]. (4.7)

In Fig. 4.1 the spectral function is plotted with the use of variables in Eq. (4.6) typical for cuprates.
In a spectral function the intensity of modes is plotted as a function of momentum and frequency
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Figure 4.2: Density-density spectral function −Π′′ of a single layer with only strong
short-range interactions. The diffusive mode has disappeared due to the low temper-
ature, T = 10 K in this plot. Only the linear sound mode, ω = vsq, remains.

or energy, thus clearly showing the associated dispersion. It also captures the broadening of the
modes, which gives information about the lifetime of the modes. If the width is small the mode has
a long lifetime. In Fig. 4.1 there is a linear sound mode, ω = vsq, instead of a typical plasmon mode
expected in the presence of long-range Coulomb interactions and screening and with a square-root
dispersion ω ∝

√
q. The speed of sound is vs ≈ 0.76vF = 1.14 eV Å/h̄ = 1.73 × 105 m s−1 [37]. In

the limit T = 0 the diffusion constants vanish, as they show the same linear behavior in temperature
as the resistivity, and Eq. (4.6) simplifies to

Π(ω, q) =
q2D

ω2 − v2
s q2 , (4.8)

which indeed contains the sound mode ω = vsq. This equation is used in later sections to de-
rive the plasmon dispersion after introducing the long-range Coulomb interactions. At non-
zero temperatures the density-density response function contains also a diffusive mode with
ω = −iDdq2 +O(q4), which can be seen more clearly on the right side of Fig. 4.1.
The response function is analyzed for ω ≪ q, which means that in the denominator the cubed
and squared terms in ω are neglected. Then multiplying both nominator and denominator with
ω − iDdq2, so as to take most easily the imaginary part, this leaves the following formula for the
spectral function

−Π′′(ω, q) = ω
χ −D/v2

s
Ddq2 , for ω ≪ q. (4.9)

So for small ω the intensity approaches zero linearly at a fixed value of q, confirming what is shown
in Fig. 4.1. Furthermore, we see that for larger momenta the diffusive mode and the sound mode
merge together.
The diffusive mode is linearly dependent on temperature, consult Section 6.2 for details, and
therefore it disappears if we substantially lower the temperature, as seen in Fig. 4.2. The sound
mode is unaffected and remains the same as for room temperature.



CHAPTER 5
Plasmon Modes

In this chapter we finally start computing plasmon modes in the form of the density-density spectral
function. They arise due to the long-range Coulomb interactions that are included. Here we treat
two of the most simple geometries, starting with a single layer and thereafter placing another at a
distance a.

5.1 Two-dimensional plasmons

Now that we have an appropriate response function incorporating the strong but short-range
interactions in the two-dimensional strange-metal layer, long-range Coulomb interactions are
introduced. We do this by coupling dynamical photons to the density current Jµ. Thus in the
language of string theory we perform a so-called double-trace deformation [24, 25] of the conformal
field theory. In references [36, 45] it is explained more physically how to achieve this, but in practice
this means adding a boundary term to the gravitational action from Eq. (4.2) leading ultimately to

S =
1
2

∫
dtd2xdz

∫
dt′d2x′dz′ Jµ(x, z, t)Π−1

µν (x, t; x′, t′)Jν(x′, z′, t′)

−
∫

dtd2xdz
(

1
4

ϵFµνFµν − eAµ Jµ

)
, (5.1)

where z is the spatial direction orthogonal to the x-y plane and ϵ is the permittivity of the material
surrounding the strange-metal layer. The addition of this boundary term does not change the
linearized equations of motion, but it does change the boundary conditions for the field fluctuations
[39, 46].
The current is restricted to the x-y plane where the strange-metal layer is assumed to be located,
which gives the following equation for the current

Jµ(x, z, t) = Jµ(x, t)δ(z), (5.2)

but let the Coulomb interactions, i.e., the photons, live in three dimensions. It is important to make
this distinction because the momentum dependence of Fourier transformed Coulomb potential is
different in 2D. The Fourier transform of the current is

Jµ(ω, q, qz) =
∫

dzJµ(ω, q)δ(z)e−iqzz = Jµ(ω, q). (5.3)

16
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Figure 5.1: Density-density spectral function of a single layer with strong short-range
interactions and long-range Coulomb interactions. We see a square-root plasmon
mode in the density-density response, with ω ∝

√
q. The temperature is fixed at

room temperature T = 293 K.

It’s clear that there is no dependence on qz in the current. Note also that q is the in-plane momentum.
Then we perform the double-trace deformation, Fourier transform and integrate out the photon
field [36], to obtain the following action

S =
1
2

∫ dωd2q
(2π)3

∫ dqz

2π
Jµ(−ω,−q)

ηµνe2/ϵ

q2 + q2
z

Jν(ω, q). (5.4)

The next step is to integrate over qz and also include the density-density response Π, resulting in

S =
1
2

∫ dωd2q
(2π)3 Jµ(−ω,−q)χ−1

µν Jν(ω, q), (5.5)

where χµν is the current-current response function and is given by

χ−1
µν ≡ Π−1

µν +
e2ηµν

2ϵq
. (5.6)

Here, χ00 is the density-density response, χ0i is the density-current response and χij is the current-
current response.
χ00 is used for determining the behavior of a non-relativistic system where the velocity of the
electrons is much smaller than the speed of light, vF ≪ c. Note that we only have an expression for
Π00 and not for any of the other components. We substitute our expression obtained in Section 4.2,
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then the density-density response function of the two-dimensional layer is

χ00(ω, q) = χ =
Π(ω, q)

1 − Π(ω,q)e2

2ϵq

. (5.7)

Thus effects of the Coulomb potential e2/2ϵq are obtained in a similar manner as seen in the
Random-Phase Approximation (RPA) except that Π(ω, q) is not a non-interacting response function,
but contains interaction effects via the use of the Gubser-Rocha model. Since we are dealing with
a non-relativistic system, we neglect retardation effects and thus the Coulomb potential is taken
independent of frequency.

In Fig. 5.1 the resulting density-density spectral function −χ′′ is plotted. A dispersion ω ∝
√

q
is now clearly visible, as expected in a two-dimensional system. Using Eq. (4.8) the following
dispersion relation is obtained

ω =

√
e2D
2ϵ

q + v2
s q2. (5.8)

For low momenta q this equation reduces to a square-root plasmon mode and at large q sound
dispersion from the previous section is recovered. Furthermore, the width of the plasmon peak in
the spectral density quickly approaches zero as the momentum approaches zero, which indicates
that at long wavelengths the plasmons have a long lifetime. There is still a diffusive mode, but it is
barely visible in this figure, due to the large intensity of the plasmon mode. However, the diffusion
mode is essentially still the same as in the neutral response function.

Figure 5.2: Plasmon mode dispersion, in two-dimensional graphene calculated
within RPA, represented by the thick line. The plasmon mode resides in a triangle of
vanishing spectral density, which is shaped by the two thin solid lines representing
the inter-band and intra-band continua. Source: Fig. 1(a) of [47].

Having acquired our first spectral function, we make a comparison to a Fermi-liquid picture. We
choose to compare to graphene, since the holographic approach we have made is relativistic and
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because both systems are two-dimensional. The corresponding spectral function in Fig. 5.2 shows
the strongly peaked plasmon mode and two continua (inter-band and intra-band). The plasmon
is long-lived inside the triangle of negligible spectral density until it enters a continuum. In Fig.
5.1, however, the continuum has become widespread and the plasmon mode is always broadened
and the triangle shape of zero spectral density has disappeared completely. The spreading of the
continuum can be attributed to the absence of fermionic quasiparticle excitations in the holographic
approach, contrary to the Fermi-liquid picture.

5.2 Bilayer plasmons

The next step after computing the plasmon modes in a single layer is stacking another layer on
top at a distance a. The layers are only coupled by the long-range Coulomb interactions [48], since
the strong interactions are short-range. As in the previous section the density-density response
function of this bilayer system is derived. Since there are now two layers the expression for the
current changes to

Jµ(x, z, t) = Jµ
1 (x, t)δ(z + a/2) + Jµ

2 (x, t)δ(z − a/2), (5.9)

with the indices 1 and 2 referring to each layer. This current describes two layers parallel to x-y
plane separated along the z-axis by distance a. The Fourier transform of this current is given by

Jµ(ω, q, qz) =
∫ dz

2π

(
Jµ
1 (ω, q)δ(z + a/2) + Jµ

2 (ω, q)δ(z − a/2)
)

e−iqzz

= Jµ
1 (ω, q)eiqza/2 + Jµ

2 (ω, q)e−iqza/2,
(5.10)

which is then used to compute the effective boundary action, as in the previous section

S =
1
2

∫ dωd2q
(2π)3

∫ dqz

2π

(
Jµ
1 (−ω,−q)

Jµ
2 (−ω,−q)

)
ηµνe2/ϵ

q2 + q2
z

(
1 e−iqza

eiqza 1

)(
Jν
1 (ω, q)

Jν
2 (ω, q)

)
. (5.11)

Then the integral over qz is worked out to obtain

S =
1
2

∫ dωd2q
(2π)3

(
Jµ
1 (−ω,−q)

Jµ
2 (−ω,−q)

)
ηµνe2/ϵ

2q

(
1 e−qa

e−qa 1

)(
Jν
1 (ω, q)

Jν
2 (ω, q)

)
. (5.12)

Then combining this with the response function of strong short-range interactions in each layer,
which we assume to be equivalent, leads to the following response function

S =
1
2

∫ dωd2q
(2π)3

(
Jµ
1 (−ω,−q)

Jµ
2 (−ω,−q)

)Π−1
µν +

e2ηµν

2ϵq
e2ηµνe−qa

2ϵq
e2ηµνe−qa

2ϵq Π−1
µν +

e2ηµν

2ϵq


︸ ︷︷ ︸

χ−1
µν

(
Jν
1 (ω, q)

Jν
2 (ω, q)

)
. (5.13)

Now a matrix structure emerges in the response function. To analyze the matrix we take the
00-component needed to describe the condensed-matter system, as in the previous section. Then
we invert the 2x2 matrix to obtain the density-density response function matrix

χI J =
Π

(1 − Π e2

2ϵq )
2 −

(
Π e2

2ϵq e−qa
)2

(
1 − Π e2

2ϵq Π e2

2ϵq e−qa

Π e2

2ϵq e−qa 1 − Π e2

2ϵq ,

)
(5.14)
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Figure 5.3: Diagonal part of the density-density spectral-function matrix of two
layers with strong short-range interactions and long-range Coulomb interactions.
The two layers are separated by 3.2 Å. This distance is due to the experimental setup
that we model. We see the in-phase mode, ω ∝

√
q, and the out-of-phase mode,

ω ∝ q. The temperature is fixed at room temperature T = 293 K.

where I, J are the layer indices and thus refer to the components of the matrix. The total response
function of this bilayer system is defined as χ ≡ ∑I,J χI J .

After computing the response function, we plot the diagonal part of the density-density spectral
function in Fig. 5.3, i.e., −χ′′

I I . The meaning of this diagonal component is that it describes the modes
inside the corresponding layer and as seen in Fig. 5.3 there are two modes. One mode has in the
long-wavelength limit a square-root dispersion ω ∝

√
q, this is the in-phase mode, which represents

oscillations inside the two layers that are in-phase, therefore the dispersion has the same form as
the single-layer plasmon. The other mode displays linear dispersion ω ∝ q in the long-wavelength
limit and is called the out-of-phase mode, due to the oscillations being out-of-phase.
Upon substituting the zero-temperature Gubser-Rocha response the exact dispersion relations are
obtained

ω =

√
e2D(1 ± e−qa)

2ϵ
q + v2

s q2. (5.15)

The plus sign is for the in-phase mode and the minus sign is for the out-of-phase mode. Notice that
in the limit a → ∞, both dispersion reduces to the single-layer case, which is as expected for two
uncoupled layers. Next, dispersion is expanded for small q. The dispersion of the in-phase mode is

ω =

√
e2Dq

ϵ
+O(q3/2). (5.16)
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To lowest order this is similar to the single-layer dispersion. The only difference is an additional
factor of two under the square root. That is because the total density is twice as big as the single-layer
density, since there are two layers. In the dispersion this effectively doubles the Drude weight. For
the out-of-phase mode, using the minus sign in Eq. (5.15), the following expansion of the dispersion
is obtained

ω =

√
v2

s +
e2Da

2ϵ
q +O(q2). (5.17)

So the renormalized speed of sound of this mode is
√

v2
s + e2Da/2ϵ. The width of this mode

decreases less quickly and is wider over the whole range of q, compared to the in-phase mode.
Again there is also a diffusive mode, which is not visible in this plot range because of the intensity
of the plasmon modes. But it is the same as in the previous plots and has ω = −iDdq2.

Figure 5.4: The total density-density spectral function of two layers with strong
short-range interactions and long-range Coulomb interactions. The two layers are
separated by 3.2 Å. This distance is due to the experimental setup that we model.
Compared with Fig. 5.4 only the in-phase mode remains, ω ∝

√
q. The temperature

is fixed at room temperature T = 293 K.

Then, we also compute the total density-density response function, defined as the sum of all
components of the response matrix χI J . The total density-density spectral function −χ′′ is plotted
in Fig. 5.4 and only contains the in-phase mode. Physically, this follows from the fact that in the
total response function the out-of-phase modes from both layers cancel each other and only the
in-phase behavior remains.



CHAPTER 6
Layered Strange Metal

6.1 Bilayer crystal

In this chapter we arrive at the desired geometry, the bilayer crystal. We stack the bilayers treated
in the previous chapter in an infinite crystal and subsequently derive the spectral function of this
geometry. A unit cell of two layers is defined, with a separation of a between the two layers. Then
the distance between the centers of these bilayers is defined as l. If l = 2a this case reduces to a
periodic crystal of single layers all separated by a. This limit is discussed in a later section. First,
the appropriate Coulomb potential matrix for this layered case is derived. Thus we construct the
current operator of the crystal

Jµ(x, z, t) = ∑
n∈Z

Jµ
1 (x, z, t)δ(z − nl + a/2) + Jµ

2 (x, z, t)δ(z − nl − a/2). (6.1)

Then after Fourier transforming this expression becomes

Jµ(ω, q, qz) =
∫ dz

2π

(
∑

n∈Z

Jµ
1 (ω, q, z)δ(z − nl + a/2) + Jµ

2 (ω, q, z)δ(z − nl − a/2)

)
e−iqzz

= ∑
n∈Z

(
Jµ
1 (ω, q, nl)eiqza/2 + Jµ

2 (ω, q, nl)e−iqza/2
)

e−iqznl .
(6.2)

Then computing the effective boundary action like in previous sections

∆SC =
1
2

∫ dωd2q
(2π)3

∫ dqz

2π ∑
n,m

(
Jµ
1 (−ω,−q, nl − a/2)

Jµ
2 (−ω,−q, nl + a/2)

)
· ηµν

e2

ϵ

e−iqz(n−m)l

q2 + q2
z

(
1 e−iqza

eiqza 1

)
·
(

Jν
1 (ω, q, ml − a/2)

Jν
2 (ω, q, ml + a/2)

)
.

(6.3)

This equation is the bilayer-crystal equivalent of Eq. (5.4). From here all the details of the derivation
to the potential is given in Appendix A. We work out the integration over qz and then Fourier
transform the current, as

Jµ
1 (ω, q, nl − a/2) = (l/2π)

∫ π/l

−π/l
dpJµ

1 (ω, q, p)eip(nl−a/2). (6.4)

Then the sum over n and m can be worked out and eventually we obtain

22
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∆SC =
1
2

∫ dωd2q
(2π)3

∫ π/l

−π/l

ldp
2π

(
Jµ
1 (−ω,−q,−p)

Jµ
2 (−ω,−q,−p)

)
·

e2ηµν

ϵ
V(q, p) ·

(
Jν
1 (ω, q, p)

Jν
2 (ω, q, p)

)
, (6.5)

with the following expression for the 2 × 2 matrix V, with the same form as for a bilayered electron-
gas [49, 50],

V(q, p) =
1

2q(cosh ql − cos pl)

(
sinh ql (sinh q(l − a) + e−ipl sinh qa)e−ipa

(sinh q(l − a) + eipl sinh qa)eipa sinh ql

)
.

(6.6)
Notice that the diagonal components are equal, but the off-diagonal components are each other’s
complex conjugate. With the potential obtained we construct the inverse of the response function as

χ−1
µν = Π−1

µν +
e2ηµν

ϵ
V, (6.7)

where the holographic response function is multiplied by the 2 × 2 identity matrix. For the same
reason as in Chapter 5 we take the 00-component, such that the density-density response matrix is

χI J =

[
1
Π

(
1 0
0 1

)
− e2

ϵ
V
]−1

. (6.8)

The diagonal part of the density-density spectral-function matrix, −χ′′
I I , is plotted in Fig. 6.1

for multiple values for the Bloch momentum p. Each plot reveals two modes, arising from the
periodicity of bilayers in the out-of-plane direction. Consequently, a periodic band structure emerges
for both the in-phase and out-of-phase modes. Let’s now review each individual plot, starting
with Fig. 6.1(a), the case p = 0. Here, the in-phase mode manifests a gap at an energy level of 1.0
eV, signifying the plasma frequency ωpl for Bi-2212. This is because we’ve plugged this plasma
frequency in the response function. More on the derivation of parameters can be found in Section
6.2. For non-zero values of p the in-phase mode is not gapped anymore. In Fig. 6.1(b), pl = π/50,
the in-phase mode does approach 1.0 eV for smaller momenta but ultimately bends down to zero
at the longest wavelengths and obtains an acoustic character with a speed of sound that strongly
depends on the Bloch momentum. Indeed, in the other subplots, for larger values of p, the mode
becomes less steep for low momenta. For p = π/l, Fig. 6.1(d), the speed of sound of the in-phase
mode reaches its minimum and approaches the speed of sound of the Gubser-Rocha model for
the single layer. Conversely, the out-of-phase mode exhibits negligible dependence on p. This is
reasonable from a physical standpoint, given the minimal Coulomb coupling between different
bilayers in this scenario, owing to their charge-neutral nature. Also keep in mind that the domain
of p in the spectral function is [−π/l, π/l].

Then we move on to the total density-density spectral function, which is plotted in Fig. 6.2. It
is defined as the sum of all components of the response matrix in Eq. (6.8). Compared with the
diagonal component of the spectral-function matrix, the in-phase mode remains the same, but
the behavior of the out-of-phase mode has changed drastically. Essentially, the intensity of the
out-of-phase mode has acquired dependence on p, starting with vanishing intensity at p = 0
and reaching its maximum for p = π/l. The difference is caused by the presence of the phase
factor exp (±ipa) in the off-diagonal elements of the bilayer-crystal potential in Eq. (6.6). The total
density-density spectral function is used in later sections to define the total conductivity and the
loss function.
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Figure 6.1: Diagonal part of the density-density spectral-function matrix of a crystal
of bilayers. Each pair of layers is separated by a = 3.2 Å and the size of each unit
cell is l = 15.4 Å. Each subfigure has a different value of pl. In (a), pl = 0, the
in-phase plasmon mode is gapped as expected for a three-dimensional system and
we observe in addition an out-of-phase sound mode because we have two layers
per unit cell. In (b)-(d), pl is π/50, π/10 and π, respectively. Here, the out-of-phase
sound mode is almost unaffected by the out-of-plane momentum p, whereas the in-
phase plasmon mode is no longer gapped and has obtained also an acoustic behavior
at long wavelengths. The temperature is fixed at room temperature T = 293 K.
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Figure 6.2: Total density-density spectral function of a crystal of bilayers. Each pair
of layers is separated by a = 3.2 Å, and the size of each unit cell is l = 15.4 Å. In (a),
pl = 0, the in-phase plasmon mode is gapped as expected for a three-dimensional
system. Compared with Fig. 6.1 the out-of-phase mode is cancelled completely.
In (b)-(c), pl is π/50 and π/10, respectively. Here, the out-of-phase sound mode
appears, with intensity and width increasing as p increases. In (d), pl = π, the plot
shows the lowest speed of sound of the in-phase mode. Furthermore, the intensity
of the the out-of-phase mode reaches its maximum. The temperature is fixed at room
temperature T = 293 K.

Another perspective of the spectral function is given by fixing q and plotting as a function of Bloch
momentum p, as is done in Fig. 6.3. The increase in intensity of the out-of-phase mode is evident,
as well as the limited the dispersion of this mode. The in-phase mode, however, does possess
dispersion as a function of p, shaped similarly to a sine wave. The symmetry of the spectral function
around p = 0 is clear as well.

As in previous sections the zero-temperature Gubser-Rocha response is substituted to analytically
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Figure 6.3: The total density-density spectral function of a crystal of bilayers, with on
the x-axis the Bloch momentum p in units of π/l. The in-plane momentum is constant
at q = 0.1 Å−1. The dispersion of in-phase mode displays significant dependence on
p, contrary to the out-of-phase, which does not display this dependence. Only the
intensity of this mode is influenced by p. As mentioned previously, the out-of-phase
mode vanishes for p = 0.

compute the dispersion. The following expression is obtained

ω =

√
e2Dq

2ϵ

sinh ql ± | sinh q(l − a) + eipl sinh qa|
cosh ql − cos pl

+ v2
s q2. (6.9)

Again, the minus sign corresponds to the out-of-phase mode and the plus sign to the in-phase mode.
The first thing to check is if this dispersion reduces to the bilayer case in the limit l → ∞. This is
indeed true, because in this limit both sinh ql and cosh ql become equal to eql/2 and the complicated
fraction under the square root indeed exactly reproduces the result of the bilayer case in Eq. (5.15).
For p = 0 there is a gapped mode and using the above equation we can derive an equation for the
associated plasma frequency. Taking the limit q → 0 for the in-phase mode and p = 0, results in

ωpl =

√
2e2D

lϵ
. (6.10)

Here, the plasma frequency is defined in terms of the two-dimensional Drude weight D. But can
also be written in terms of the three-dimensional Drude weight D3D = 2D/l, which shows that the
plasma frequency equals the familiar result ωpl =

√
e2D3D/ϵ. Using these equations the dispersion

is rewritten as

ω =

√
ω2

pl
ql
4

sinh ql ± | sinh q(l − a) + eipl sinh qa|
cosh ql − cos pl

+ v2
s q2, (6.11)
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from which an expression for the two speeds of sound for p ̸= 0 follows. Namely,

v±(p) =

√
v2

s +
ω2

pl l

4
l ± |l + (eipl − 1)a|

1 − cos pl
. (6.12)

6.1.1 Conductivity

In this section we consider the conductivity of the bilayer crystal. First, the following formula for
the total density-density response function in the long-wavelength limit is obtained

lim
q→0

χ(ω, q, p = 0) =
2Dq2

ω2 − ω2
pl

, (6.13)

where χ = ∑I J χI J is the total density-density response function of the bilayer crystal. The above
expression is rewritten by factoring iω out in the denominator, leading to

χ(ω, q, p) =
2Dq2

−iω
1

iω +
ω2

pl
iω

. (6.14)

Next, recognize that the second denominator has the form of the continuity equation for the electron
density, together with both Ohm’s law and Gauss’s law. This can be derived as follows, start with
the continuity equation

∂n(x, t)
∂t

+∇ · j(x, t) = 0, (6.15)

together with Ohm’s law
j(x, t) = σE, (6.16)

and Gauss’ law

∇ · E(x, t) =
n(x, t)

ϵ
, (6.17)

and then substitute a plane-wave solution, the result is(
−iω +

σ(ω)

ϵ

)
n = 0, (6.18)

which means that the conductivity is

σ(ω) =
e2D3D

−iω
. (6.19)

Note the use of the formula for the plasma frequency ωpl =
√

e2D3D/ϵ. Furthermore, the same
result can also be obtained directly from the ‘neutral’ in-plane conductivity as

σ(ω) =
2
l

e2 lim
q→0

iω
q2 Π(ω, q) =

2e2

l
D

−iω
, (6.20)

which is as expected physically since Coulomb interactions do not affect the acceleration of the
total momentum due to the applied electric field. At this point the real part of the above expression
leads to a delta function centered around ω = 0, signaling the absence of momentum relaxation
in our theory. But in an experiment there is typically disorder in the sample. This disorder can
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be incorporated using the Planckian dissipation appropriate for the cuprates [51], by performing
the replacement ω → ω + i

τ in the right-hand side. Planckian dissipation gives the following
expression for the relaxation time τ

h̄
τ
= αkBT, (6.21)

with α a material parameter. For Bi-2212, it is approximately 1.1 ± 0.3 [51]. The fact that the
dissipation rate is linear in temperature aligns with the fact that the diffusion constants in the strong
short-range response function are also linear in temperature. So this is consistent with the use of the
Gubser-Rocha model for the strange-metal phase. After introducing Planckian dissipation in the
above manner, Eq. (6.19) becomes

σ(ω, τ) =
e2D3D

−iω + 1/τ
, (6.22)

displaying the Drude form with the dc-conductivity inversely proportional to temperature. Conse-
quently, the resistivity is linear in temperature, as required for strange metals.

6.1.2 Loss function

With the proper modelling of disorder in the cuprates determined we are now able to compute
the loss function, which can be measured in transmission electron energy loss spectroscopy (EELS)
experiments. Another aspect to take into account is the beam resolution that comes with performing
an experiment. The in-plane momentum resolution is incorporated in the experiments by defining
the following average loss function

L(ω, q0, p) =
2

∆q2
1

e−
(

q0
∆q

)2

+
√

π
q0
∆q

(
1 + erf q0

∆q

) ∫ ∞

0
dqqe−

(
q−q0

∆q

)2

Im

[
−

χ(ω + i
τ , q, p)

q2

]
. (6.23)

In this formula χ is again the total density-density response function of the bilayer crystal, and we
take the imaginary part, which shows that transmission EELS measures essentially the density-
density spectral function. We have incorporated disorder in the same fashion as in the previous
section, using Planckian dissipation, and performed the replacement ω → ω + i

τ . Then we average
with a Gaussian distribution centered around q0, denoting the measured in-plane momentum
transfer, and with a width ∆q that represents the experimental momentum resolution. The factor
in front of the integral acts as a normalization such that the intensity of the loss function can be
compared across a range of in-plane momentum.

In Fig. 6.4 the loss function L(ω, q0, p) is plotted for q0 = 0 and ∆q = 0.05 Å−1. For these parameters
the loss function exhibits a pronounced dependence on p. The blue graph, pl = 0, has its peak at
around 1.0 eV. Then as p increases the peak widens and decreases in intensity, as seen for pl = π/4.
In this case no discernible peak is left and the loss function has become incredibly broad. Upon
increasing p further a new peak appears around 0.15 eV, which corresponds approximately to
2h̄vs∆q for pl = π. The behavior on display in this figure can be explained by consulting the total
density-density spectral function of Fig. 6.2. Namely, as p is increased the spectral weight moves
towards lower energies, especially because we take q0 = 0 in this case and this mirrors what we see
in the loss function. The main difference is the width of the peaks, which is caused by the Planckian
dissipation included in the loss function.



Chapter 6. Layered Strange Metal 29

Figure 6.4: The loss function for q0 = 0. The uncertainty is characterized by ∆q = 0.05
Å−1. Multiple values of p are used, indicated in the legends, and we also describe
Planckian dissipation with α = 1.1. There is strong p dependence in this case.

In Fig. 6.5 the in-plane momentum is raised to q0 = 0.3 Å−1, with consequence that the p dependence
has almost disappeared. For clarity’s sake, only the two outermost values are plotted. The energy of
the plasmon peak for p = 0 has increased to around 1.35 eV. Meanwhile, the main peak of intensity
for pl = π has shifted to 1.3 eV and second peak has appeared, which can be attributed to the
out-of-phase mode. Once again, looking back at the bilayer-crystal spectral function of Fig. 6.2, it is
clear that dependence on Bloch momentum p decreases for larger in-plane momentum.

In these plots we have assumed a single value of p, but an experiment could also have uncertainty
in the out-of-plane momentum p, so we introduce also ∆p to model this but always centered at
p0 = 0. For us, the case of p0 = 0 is most relevant but this can be easily extended to any p0. This
leads to our final average loss function

L(ω, q0) =
2√

π∆p

∫ ∞

0
dpe−

(
p

∆p

)2

L(ω, q0, p). (6.24)

We have plotted this in Fig. 6.6 and we see that for smaller uncertainty ∆p only the 1.0 eV is visible,
while for larger uncertainty in p there are contributions from both small and large p. Such that there
are two peaks in the loss function. This is not due to the fact that there are two modes, but due
to the p dependence of the plasmon mode. We especially display this for q0 = 0, because this is a
value of the in-plane momentum with a great dependence on p. For larger in-plane momenta the
uncertainty in p does not make a significant difference.
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Figure 6.5: The loss function for q0 = 0.3 Å−1. The uncertainty is characterized by
∆q = 0.05 Å−1. Multiple values of p are used, indicated in the legends and we also
include Planckian dissipation with α = 1.1. Compared with Fig. 6.4 there is little
dependence on p. We have only plotted the outermost values of p, to make the figure
more clear. We also observe that the energy of the peak has increased compared to
Fig. 6.4. The smaller peak visible for pl = π is due to the out-of-phase mode.

Figure 6.6: The dependence of the average loss function on the out-of-plane momen-
tum resolution for q0 = 0, ∆q = 0.05 Å−1, p0 = 0, and α = 1.1.
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6.1.3 Umklapp scattering

In this section we introduce anisotropy in the CuO2 layers by incorporating Umklapp scattering,
a process in which charge carriers scatter off a periodicity in the layers [52, 53]. We compute the
response function and display the results in the spectral function and loss function.
The model used until now is rotationally invariant around the z-axis of the material, since we
assume the in-plane rotational invariance. However, there is a square lattice in the CuO2 layers
which breaks the rotational symmetry. Furthermore, in Bi-2212 there is a certain periodicity of
approximately 4.7 in the direction 45 degrees rotated from the lattice in reciprocal space [33]. In the
literature this periodicity is called supermodulation. This can be seen in the diffraction pattern of the
sample [26]. Since we are interested in the long-wavelength physics of the cuprates incorporating
the shorter period of the supermodulation is preferred over incorporating lattice sites themselves.

We introduce Umklapp scattering by rewriting the expression for the density fluctuations in real
space

n(x) = ∑
q

(
nq+q′ei(q+q′)·x + nqeiq·x + nq−q′ei(q−q′)·x

)
, (6.25)

where the vector q′ = (2π/4.7b, 0), with b = 5.31 Å. This quantity is the in-plane lattice unit, equal
to

√
2 times the distance between nearest copper atoms in the CuO2 planes. The definition of q′ is

such that the x-direction is taken as the direction of the supermodulation. We take only the two
nearest "neighbors" into account, since these have the most impact at long wavelengths.
We assume that these modes only couple to the main mode and not to each other. The strength of
the coupling is characterized by g, which results in the following expression,

S =
∫

d4x
(∫

d4x′n(x)χ(x − x′)−1n(x′) + gn2(x) cos (q′x)
)

. (6.26)

Upon Fourier transforming this expression we obtain a matrix structure. On the diagonal we
have the density-density response function of the bilayer crystal with the momentum offset by q′.
Furthermore, we have coupling matrices gI J on the center column and row. Concretely, we obtainnI,−q+q′

nI,−q
nI,−q−q′


χ−1

I J (q − q′) gI J 0
gI J χ−1

I J (q) gI J

0 gI J χ−1
I J (q + q′)


nJ,q−q′

nJ,q
nJ,q+q′

 .

The indices I, J indicate in which layer the density fluctuation is. This is because there is no
Umklapp scattering between two separate layers. Therefore, the matrix gI J is the 2 × 2 identity
matrix. χI J is the density-density response matrix for the bilayer crystal. We want to describe the
density fluctuations for momentum q, which means we need to solve for nq. Thus we obtain the
density-density response function that describes the Umklapp scattering,

X(q, ω) = ∑
I,J

[
χ−1

I J (q, ω)− g2 (χI J(q + q′, ω) + χI J(q − q′, ω)
)]−1

, (6.27)

where X is the total density-density response function including Umklapp scattering. When the
coupling is zero, this equation reduces to the total density-density response function without
Umklapp scattering, as expected.

The density-density spectral function is plotted in Fig. 6.7, showing the effect that the Umklapp
processes have on the plasmon modes. In this figure the in-plane momentum is taken in the
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Figure 6.7: The total density-density spectral function −X′′ in the qx direction for
p = 0. From left to right g = 0, 1, 10. For this value of p there is no out-of-phase
mode.

Figure 6.8: The total density-density spectral function −X′′ in the qx direction for
p = π

l . From left to right g = 0, 1, 10. For this value of p the out-of-phase mode is at
its maximum intensity.

direction of the supermodulation. Out-of-plane momentum p equals 0, which means that only the
in-phase mode is visible. Upon turning the Umklapp scattering on there appear two more modes in
the figure. They emanate from q = 2π

4.7b ≈ 0.25 Å−1, due to the period of the supermodulation. For
g = 1 these modes are very low intensity, while at g = 10 the intensity increases and an avoided
crossing becomes visible at approximately q = 0.1 Å−1.

Then in Fig. 6.8 the out-of-plane momentum p is increased to π
l , which means that the intensity

of the out-of-phase mode is now significant compared to the in-phase mode. It is clear that the
Umklapp scattering has much more impact on the spectral function for p = π

l . Namely, there are
two clearly visible avoided crossings for g = 10. Furthermore, there are modes which emanate from
zero energy at q = 2π

4.7b ≈ 0.25 Å−1.

The natural next step is to compute the loss function, since it allows us to see more clearly what the
effects of Umklapp scattering are for experimental setups. As in the previous section we include
Planckian dissipation to account for impurities.
In Fig. 6.9 the loss function is plotted for qx = 0.3 Å−1, which is in the direction of the supermod-
ulation. p = 0.3 Å−1 is taken, due to fact that in EELS experiments the in-plane and out-of-plane
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Figure 6.9: Loss function for (qx, qy) = (0.3, 0) Å−1 and p = 0.3 Å−1 with uncertainty
in p and q equal to 0.05 Å−1. The direction of the supermodulation is defined as qx.
The intensity of the plots for g = 1 and g = 10 have been amplified such that their
intensity is comparable with the g = 0 case. Therefore, comparing intensities across
different values of g is not possible.

momentum are assumed to be equal. Since this value is outside of [−π/l, π/l], it is the same as
taking the value minus 2π/l, then p ≈ −0.108. Since the spectral function is an even function of p,
the value of p = 0.108 delivers the exact same behavior of the loss function.
In the red plot, g = 0, there are two peaks visible. The greatest peak is at around 1.3 eV and the
smaller peak is at around 0.9 eV. For the g = 1 curve there has not changed much compared with
g = 0. Then for g = 10 both peaks have lower energy.

Then in Fig. 6.10 the loss function is plotted in the direction rotated 45 degrees from the supermodu-
lation. Compared with Fig. 6.9 the g = 10 case is now much more similar to the g = 0 case. It seems
that there is less effect from Umklapp scattering at this point in momentum space.

In Fig. 6.11 the loss function is now plotted for the in-plane momentum direction perpendicular to
the supermodulation. The g = 0 curve is still the same as in Fig. 6.9, since there is in-plane rotational
symmetry in that case, but in contrast the g = 10 plot has changed. Comparing this plot with Fig.
6.9 the energy of the lower energy peak has moved to approximately 0.8 eV and the higher energy
peak has moved to 1.25 eV. Remarkably, in between these two peaks the loss function approaches
zero intensity. It seems that the Umklapp scattering has caused more separation between the two
modes.

To summarize, new modes, with low intensity, are created due to Umklapp scattering. They cause
avoided crossings, which are visible in the spectral function. And in the loss function the new
modes lower the energies of the plasmon peaks. Furthermore, the rotational invariance is destroyed
and replaced by a periodicity of 180 degrees.
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Figure 6.10: Loss function for (qx, qy) = 1√
2
(0.3, 0.3) Å−1 and p = 0.3 Å−1 with

uncertainty in p and q equal to 0.05 Å−1. This plot is in the direction 45 degrees
rotated from the supermodulation. The intensity of the plots for g = 1 and g = 10
have been amplified such that their intensity is comparable with the g = 0 case.
Therefore, comparing intensities across different values of g is not possible.

Figure 6.11: Loss function for (qx, qy) = (0, 0.3) Å−1 and p = 0.3 Å−1 with uncer-
tainty in p and q equal to 0.05 Å−1. This plot is in the direction perpendicular to
the supermodulation. The intensity of the plots for g = 1 and g = 10 have been
amplified such that their intensity is comparable with the g = 0 case. Therefore,
comparing intensities across different values of g is not possible.
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Figure 6.12: Plasmon energy measured in Bi-2212 by Nücker et al. For constant
in-plane momentum q = 0.3 Å−1. Here, 0 degrees indicates the nodal direction of
the cuprate. Source: [13].

The angular dependence of the plasmon mode has been researched in the past. For example, the
optical plasmon was measured by Nücker et al [13]. They measured for in-plane momentum q = 0.3
Å−1 and obtained a periodicity of 90 degrees. But since supermodulation is only in one direction, it
gives a periodicity of 180 degrees. Therefore, supermodulation can never cause the pattern observed
in Fig. 6.12. Evidently, this calls for another explanation and deserves more attention in the future.

6.1.4 Hopping

Another feature we can implement in our model is hopping between the CuO2 layers. We achieve
this by adding a dispersion in the z-direction. First, we do an electron gas calculation to justify the
assumption that will be made for the density-density response function. We define

ϵ′q =
h̄2

2m
(q2

x + q2
y + αq2

z). (6.28)

Here x and y are the in-plane coordinates and z is the out-of-plane coordinate. The kinetic energy in
the z direction is characterized by α. Then compute the bubble diagram, as in Ultracold Quantum
Fields [28]

h̄Π(q, iωn) ≡
1

h̄β ∑
n′

∫ dq′

(2π)3 GH(q + q′, iωn + iωn′)GH(q′, iωn′), (6.29)

with the following expression for the Green’s function from Hartree theory

GH(q, iωn) =
−h̄

−ih̄ωn + ϵq′ − µ
. (6.30)
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The difference with the computation in UQF is that now there is anisotropy introduced in Eq. (6.28).
Note that the expression for bubble diagram is the density-density response function. Start with

Π(q, iωn) = 2
∫ dq′

(2π)3

NFD(ϵ
′
q+q′)− NFD(ϵ

′
q′)

ϵ′q+q′ − ϵ′q′ − ih̄ωn
. (6.31)

Then expanding the Fermi distribution NFD around q = 0, we obtain

NFD(ϵ
′
q+q′) = NFD(ϵ

′
q′) +

∂N(ϵ)

∂q′ · q +O(q2) (6.32)

= NFD(ϵ
′
q′) +

∂N(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ′

q′

× h̄2

m

 q′x
q′y

αq′z

 · q +O(q2). (6.33)

Having obtained this expression Eq. (6.31) can be simplified to obtain

Π(q, ω) ≃ 2
∫ dq′

(2π)3

h̄2(q′xqx + q′yqy + αq′zqz)

h̄2(q′xqx + q′yqy + αq′zqz)− mh̄ω

∂N(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ′

q′

. (6.34)

In the limit q/ω → 0, the denominator can be expanded, resulting in the following expression

Π(q, ω) ≃ −2
∫ dq′

(2π)3

(
1 +

h̄2

m
(q′xqx + q′yqy + αq′zqz)

h̄ω

)
h̄2

m
(q′xqx + q′yqy + αq′zqz)

h̄ω

∂N(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ′

q′

.

(6.35)
The integrand linear in q is antisymmetric and thus vanishes upon integration. For the quadratic
term the observation that the derivative of the Fermi distribution is strongly peaked around the
chemical potential is used. Therefore this can be approximated to a delta function

∂NFD(ϵ)

∂ϵ
≃ −δ(µ − ϵ). (6.36)

For this to integrable, the coordinates q′ need to be transformed such that ϵ′q′ can be expressed as
the square absolute value of a vector. To this end, q′′ is defined

q′′ =

 q′x
q′y√
αq′z

 . (6.37)

Rewriting the integral in terms of this variable achieves the desired expression for ϵ′. Moreover, it
leaves a factor 1/

√
α before the integral, the result is

Π(q, ω) ≃ − 2√
α

∫ dq′′

(2π)3

(
h̄

mω

)2

(q′′x qx + q′′y qy +
√

αq′′z qz)
2 ∂N(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ′

q′′

. (6.38)

Then rescale the z-component of q to simplify the integrand, thus defining

q2 =

 qx
qy√
αqz

 . (6.39)
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This leaves the following expression for Π as a function of q2

Π(q2, ω) ≃ − 2√
α

∫ dq′′

(2π)3

(
h̄

mω

)2

(q′′ · q2)
2 ∂N(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵ′

q′′

. (6.40)

Now the delta function can be substituted and the integration can be done in spherical coordinates,
giving

Π(q2, ω) ≃ 2q2
2

(2π)2
√

α

(
h̄

mω

)2 ∫
dq′′q′′4

∫ π

0
dθ sin θ cos2 θδ(µ − h̄2q′′2

2m
). (6.41)

The integral over θ results in 2/3, while for the integral over q′′ a bit more work is needed. First,
substitute u = q′′ and factor out h̄2/2m from the delta function. The integral over q′′ is then written
as

m
h̄2

∫ ∞

0
duu3/2δ

(
2mµ

h̄2 − u
)
=

m
2h̄2

(
2mµ

h̄2

)3/2

. (6.42)

Then putting these results together and transforming back to q gives

Π(q, ω) =

√
2

3π2
√

α

√
mµ3/2

h̄3ω2
(q2

x + q2
y + αq2

z). (6.43)

This equation can be simplified further by using that the chemical potential is equal Fermi energy
ϵF for low temperature, such that µ ≃ ϵF = (h̄2/2m)(3π2ne)3/2, resulting in

Π(q, ω) =
ne

2
√

αmω2 (q
2
x + q2

y + αq2
z). (6.44)

This result is different from the derivation in UQF for the isotropic case. Note that the whole
response function is divided by

√
α and that the z-component of the momentum is multiplied by α.

Now we extrapolate the results from the electron-gas computation to the holographic density-
density response function, such that it includes the p2 term. This results in the following response
function

Π′(ω, q, p) =

(
q2
√

α
+
√

αp2
)
(ωD + iv2

s Ddχ
(

q2
√

α
+
√

αp2
)

ω3 + iω2
(

q2
√

α
+
√

αp2
)
(2Ds + Dd)− ω

(
q2
√

α
+
√

αp2
)

v2
s − iv2

s Dd

(
q2
√

α
+
√

αp2
)2 .

(6.45)

The spectral function −Im[Π′] can be plotted for some α and p to give insight into the effects of
these variables, which is done in Fig. 6.13. The effects seen in the figures can be supported by
analysis of the response function. For example, the speed of sound is dependent on α and p, as

ω = vs

√
(q2+αp2)√

α
.

The effects of Coulomb interactions can then be incorporated in the same way as in previous sections
by performing the double-trace deformation. Effectively, the altered holographic response function
can be substituted into the equation of the total density-density response function.
For the bilayer-crystal case the total density-density spectral function is depicted in Fig. 6.14 for
α = 0.01. At shorter wavelengths this figure closely resembles Fig. 6.2. A notable difference is
the more pronounced out-of-phase mode, even surpassing the intensity of the in-phase mode for
pl = π. Moreover, both modes are now gapped due to the altered response function.



Chapter 6. Layered Strange Metal 38

Figure 6.13: Density-density spectral function of the strong interactions modified
to include hopping in the z-direction. The left figure is for p = 0, the case without
hopping. This figure serves as a reference for the other two figures. In the middle
figure α = 0.5 and p = 0, which gives a greater speed of sound. Then finally in
the right figure α = 1 and p = π/(4l). Note that l has no physical meaning in this
context but is equal to 15.4 Å. The effect of non-zero p is that a gap forms at zero
in-plane momentum.

Figure 6.14: Total density-density spectral function of bilayer crystal for α = 0.01.
From left to right pl equals π

10 , π
2 , π. Both modes are now gapped in the middle and

right figure due to the altered response function. For pl = π
10 it is unclear from this

figure whether there is a gap at q = 0. But from closer inspection it follows that both
modes are indeed gapped.
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Figure 6.15: Energy of the gaps of the in-phase and out-of-phase mode of the spectral
function of the bilayer crystal, at q = 0. The energy is plotted as function of Bloch
momentum p on the x-axis. Here α characterizes the dispersion in the z-direction as
in Eq. (6.45). The in-phase mode displays quadratic behaviour and the out-of-phase
mode shows a linear trend. The energy gap at p = 0 for the in-phase mode still
remains 1.0 eV as in previous sections.

To gain more insight into the effect of the added dispersion in the z-direction, the energy gap is
plotted as a function of Bloch momentum p in Fig. 6.14. The in-phase mode is still gapped at 1.0 eV
for p = 0, but now the in-phase mode is also gapped for non-zero p. From Fig. 6.14 it is clear that
the size of the gap is dependent on α as well. Larger α corresponds to larger energy gap.
Furthermore, the out-of-phase mode is now gapped as well, except for p = 0. Then for non-zero p
an energy gap arises in a linear fashion in the spectral function. Likewise for the in-phase mode, a
larger α means that the energy gap increases as well.

We can most easily derive the dispersion of these modes by substituting T = 0 into Eq. (6.45)

Π′(ω, q, p) =
( q2
√

α
+
√

αp2)D

ω2 − v2
s (

q2
√

α
+
√

αp2)
. (6.46)

To avoid a mess of an equation, define q′2(q, p) = q2
√

α
+
√

αp2, resulting in the following dispersion

ω =

√
e2Dq′2

2ϵq
sinh ql ± | sinh q(l − a) + eipl sinh qa|

cosh ql − cos pl
+ v2

s q′2. (6.47)

We use this equation to derive an expression for the energy gaps by taking the limit q → 0 for
p ∈ (0, π/l], to obtain

ω =

√
√

αv2
s p2 +

√
αp2 e2D

2ϵ

l ± |l + a(eipl − 1)|
1 − cos pl

, (6.48)
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with the plus and minus sign corresponding to the in-phase and out-of-phase mode, respectively.

6.2 Derivation of parameters

A crucial part of solving the holographic puzzle is determining the unknown prefactor NG of the
gravitational action, since this allows us to make the desired quantitative predictions. First, we
delve into how NG can be determined using the plasma frequency. This computation is necessary to
compare with experimental data. The following derivation holds only for the bilayer-crystal system,
since the plasma frequency is used to fix certain constants. Although upon correctly accounting for
a different three-dimensional structure, take for example a single-layer crystal, this derivation still
holds.
Now, the values of the various constants in Eq. (4.6), the Gubser-Rocha response function, are
derived. The starting point of this calculation is the thermodynamic equation of state for the electron
density inside each layer obtained from the holographic dictionary as [37]

n =
N′

G√
3

(
µ

h̄vF

)2
√

1 +
1
3

(
kBT

µ

)2

, (6.49)

where N′
G = NG/ẽ and ẽ is the dimensionless charge. Then rewrite this such that a formula for the

chemical potential µ in terms of the temperature T and the electron density n is obtained, which
results in

µ =

√√√√√√
√
(kBT)4 + 108

(
h̄vF

√
n√

N′
G

)4

− (kBT)2

6
. (6.50)

Then expand this near zero temperature to obtain

µ =
31/4h̄vF

√
n√

N′
G

−

√
N′

G

4 × 35/4
(kBT)2

h̄vF
√

n
+O(T4). (6.51)

Following the derivation of Mauri and Stoof [37], the result for the Drude weight of the Gubser-
Rocha theory as D = N′

Gµ(n, T)/
√

3h̄2 is used. Now, the relation between the Drude weight and
the plasma frequency is utilised to relate N′

G to the plasma frequency. Previously, an expression for
the Drude weight in a bilayer crystal was obtained in Eq. 6.10, given by

D = ω2
pl

lϵ
2e2 . (6.52)

The plasma frequency is essentially temperature independent [37], so it follows that the Drude
weight is temperature independent, since the other quantities in Eq. (6.52) are as well. Making use
of this observation the expansion for N′

G up to second order in temperature is derived with the
result that

N′
G =

(
31/4h̄
vF
√

n

ω2
pl lϵ

2e2

)2

+
1

2 × 33/2

(
31/4h̄
vF
√

n

ω2
pl lϵ

2e2

)4

×
(

kBT
h̄vF

√
n

)2

+O(T4). (6.53)

This expression is then used to derive all quantities in the holographic response function. Each
extensive parameter is multiplied by N′

G due to the fact that is the prefactor of the action. Further-
more, the density n should be divided by N′

G, since it is obtained from the square of the chemical
potential.
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The Drude weight is already calculated and can now be used to derive the hydrodynamic com-
pressibility χ via a relation obtained previously [37]. Up to lowest order in temperature χ = D/v2

s .
While at quadratic order in temperature the difference is given by

χ − D
v2

s
= 5.12(N′

G)
3/2
(

kBT
h̄vF

√
n

)2 √
n

h̄vF
. (6.54)

The factor (N′
G)

3/2 is due to the fact that the extensive parameters χ and D are multiplied by N′
G

and the density should be divided by N′
G.

Then the two diffusion coefficients are left, they characterize the charge diffusion and the sound
diffusion. These parameters are inversely proportional to the density n, which means they should
be multiplied by N′

G and are thus equal to [37]

Ds =
1

6
√

3
N′

G
kBT
h̄n

, (6.55)

Dd =
4π√

3
N′

G
kBT
h̄n

. (6.56)

These expressions conclude the calculation of the parameters in the holographic response function.
Then to compute spectral functions and other quantities a few more material parameters are
needed. For Bi-2212 that is of special interest to us here, the following material parameters are
used: h̄ωpl = 1.0 eV, l = 15.4 Å, a = 3.2 Å, ϵ/e2 = 4.5 × 55.263 × 10−4eV−1Å−1, vF = 2.28 × 105

ms−1, vs = 1.73 × 105 ms−1, and n = 6.25 × 1018 m−2. These values are used to plot the Bi-2212
density-density spectral functions and loss functions. Note that in particular N′

G ≃ 0.45 at zero
temperature.

6.3 Single-layer crystal

Until now the layered structure has been bilayered, which means that there are two periodicities.
Now, we remove one periodicity by taking the limit a → l/2, such that the bilayer model reduces to
a layered crystal with all neighboring layers having an equal distance l/2 between them. There
is also a bismuth-based cuprate which has this structure, given by Bi2Sr2CuO6+x, also known as
Bi-2201. The response function of this crystal has been computed before [36]. In that case the
intralayer physics was different, and did not represent a strange metal, but the long-range Coulomb
force is treated in the same way. We show now that our response function reduces to this case of a
single layer per unit cell in the limit a → l/2. This is to corroborate the expression for the crystal of
bilayers. From Eq. (6.8) we can deduce the following

detχ−1
I J =

(
Π−1

)2
− 2Π−1V11 + V2

11 − V12V21, (6.57)

where we have absorbed the e2/ϵ into the potential matrix for simplicity. Then we set out to find
the roots of this equation, since this determines the dispersion, by solving the quadratic formula for
Π−1, giving us

Π−1 =
2V11 ±

√
4V2

11 − 4(V2
11 − V12V21)

2
(6.58)

= V11 ±
√

V12V21. (6.59)
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Figure 6.16: The quantity V± in red is compared with Vsinglelayer in dotted black for
a fixed value of q = 0.3 Å−1 and as a function of the Bloch momentum p. The two
upper figures are plotted with value a = 0.45l, the two bottom figures for a = l/2.
The minus sign of V± corresponds to the out-of-phase mode with a lower value and
the plus sign to the in-phase mode with the higher value. In (a) and (c), we have
plotted the bilayer potential for p ∈ [−π/l, π/l] and then in (b) and (d) we have
periodically extended the minus sign solution to [−2π/l,−π/l] ∪ [π/l, 2π/l]. In
this plot l = 15.4 Å.

Thus telling us that the only relevant quantity related to the Coulomb-potential matrix in the
dispersion is V± ≡ V11 ±

√
V12V21. This can be compared to the same quantity of a crystal of single

layers given by [36]

Vsinglelayer =
sinh ql

2

2q(cosh ql
2 − cos pl

2 )
, (6.60)

with the distance between the layers taken equal to l/2. Note that we exclude the factor e2/ϵ again,
for sake of clarity. The corresponding expression for the bilayer case is

V± =
sinh ql ± | sinh q(l − a) + eipl sinh qa|

2q(cosh ql − cos pl)
. (6.61)

Here a is the distance between the layers in the unit cell and l is the distance between the unit cells.
We plot in Fig. 6.16 V± for a fixed value of l and change the value of a, then we compare this with
the single-layer result.
In Fig. 6.16(a) and 6.16(b) we have chosen a = 0.45l, which means that the two layers in the unit
cell are relatively far apart and the system approaches the limit of a crystal of equidistant layers. In
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Figure 6.17: Density-density spectral function of a crystal of single layers. The
distance between layers l/2 = 7.7 Å. In (a), pl = 0, there is a gapped plasmon mode.
In (b)-(d), pl is π/50, π/10 and π, respectively. Here is an acoustic plasmon mode
visible at long wavelengths, as in the crystal of bilayers. The temperature is fixed at
room temperature T = 293 K.

Fig. 6.16(a) we have plotted both quantities V± for p ∈ [−π/l, π/l]. Then in Fig. 6.16(b) we have
extended V− to [−2π/l,−π/l] ∪ [π/l, 2π/l]. This is to show that V± is already almost equal to the
single-layer result in the extended-zone scheme. Then in Fig. 6.16(c) we have plotted the limiting
case of a = l/2. We see that at p = ±π/l the two solutions are exactly matched to each other.
Finally, in Fig. 6.16(d) we extend the minus sign solution and see that V± is equal to the single-layer
potential for l/2, as expected. This means that in the limit a → l/2 the crystal of bilayers reduces to
the crystal of single layers. Which reinforces that the expression for the bilayer Coulomb potential
matrix is correct.

Moving forward, we evaluate the density-density spectral function of the crystal of single layers in
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Fig. 6.17. Comparing these figures with previous work [36], we see that this spectral function also
has a gapped mode for p = 0. The plasma frequency is the same, h̄ωpl = 1.0 eV. This is because the
three-dimensional density of electrons has not changed, since there still is one layer per l/2 in the
z-direction. And that is what determines the plasma frequency. Mathematically the reason is that
2n/l = n/(l/2). In the other subplots the behavior is as expected, it is similar to the in-phase mode
of Fig. 6.1. For pl/2 = π/50, the mode approaches 1.0 eV but then quickly goes to zero as q → 0.
For increasing p the mode becomes less steep for small q until for pl/2 = π the lowest speed of
sound is reached. In the limit T → 0 we can again derive the dispersion relation

ω =

√√√√ e2Dq
2ϵ

sinh ( ql
2 )

cosh ( ql
2 )− cos ( pl

2 )
+ v2

s q2. (6.62)

The plasma frequency is exactly the same as in the two-layer case, since the three-dimensional
density is kept constant. So the dispersion relation becomes

ω =

√
ω2

pl
ql′

2
sinh (ql′)

cosh (ql′)− cos (pl′)
+ v2

s q2, (6.63)

where l′ = l/2 is the distance between the layers. The plasma frequency is given by ωpl =
√

e2D/l′ϵ.
Using this equation we can derive the renormalized speed of sound

v(p) =

√
v2

s + ω2
pl

l′2/2
1 − cos (pl′)

, (6.64)

confirming that pl/2 = pl′ = π gives the lowest speed of sound. The above equation is not valid
exactly for p = 0, of course. Besides the plasmon mode, this spectral function also contains a
diffusive mode. Although this mode is not visible due its low intensity compared to the plasmon
mode. Finally, we wish to emphasize that the spectral function in Fig. 6.17 is in accordance
with a number of resonant inelastic X-ray scattering (RIXS) studies on the strange-metal phase of
cuprates with one CuO2 layer per unit cell. In two of these RIXS studies on the electron-doped
cuprate La2−yCeyCuO4+x (LCCO) [48] and the hole-doped cuprates La2−ySryCuO4+x (LSCO) and
Bi2Sr1.6La0.4CuO6+x (Bi-2201) [16], an acoustic plasmon dispersion is measured. The corresponding
RIXS intensity maps are qualitatively similar to Fig. 6.17, with the corresponding non-zero values
of pl′. The density-density spectral function in Fig. 6.17 is calculated using an approach that is
appropriate for strange metals, namely using the Gubser-Rocha model. This validates the conclusion
that the acoustic branches which are measured in RIXS studies can be attributed to an acoustic
plasmon.



CHAPTER 7
Plasmons in other cuprates

Having thoroughly treated Bi-2212, we move on to some other cuprates and compute the density-
density spectral function. This allows us to compare with more experimental data. We grasp this
opportunity by directly comparing with RIXS measurements performed on the plasmon energy of
the relevant cuprates. First, we treat a cuprate with bilayer-crystal structure, YBa2Cu3O7−x (YBCO).
Thereafter we deal with the single-layer crystal Bi2Sr2CuO6+x (Bi-2201), which is the simpler version
of the bilayer cuprate Bi-2212. In Table 7.1, we summarize the important parameters for these
cuprates.

Cuprate Overview
Cuprate Plasma Energy

(h̄ω (eV))
Distance between
layers (Bilayer)
(Å)

Distance between
layers (Single
Layer) (Å)

Bi-2212 1.0 15.4, 3.2 -
YBCO 1.4 11.7, 2.9 -
Bi-2201 0.85 - 12.3

Table 7.1: Overview of the important parameters of the cuprates treated in this thesis.
In the first column we name the cuprates, then in the second column the energy
gap of the optical plasmon. The third column contains the out-of-plane distances
for the bilayer-crystal cuprates, the first parameter is the distance between the pairs
of layers, the second the distance between two closely-spaced layers. In the fourth
column the distance between the layers in single-layer cuprates is shown.

7.1 YBa2Cu3O7−x (YBCO)

In 1987 it was announced that a cuprate was found with a Tc exceeding the temperature of liquid
nitrogen, approximately 77 K. They found the the Yttrium-based YBa2Cu3O7−x (YBCO), with a
critical temperature around 93 K [10]. This cuprate has a bilayer structure, similarly to Bi-2212,
although the atomic structure differs significantly from Bi-2212. Take a look at the unit cell displayed
in Fig. 7.1. A new phenomenon appears, namely CuO chains situated on top of the CuO2 planes.
This might complicate analysis of this cuprate, but we just assume that it is part of the charge
reservoir.

45



Chapter 7. Plasmons in other cuprates 46

Figure 7.1: Atomic structure of the unit cell of YBCO. Source: [10].

To compute the density-density spectral function we need the values of certain parameters. Firstly,
the distance between the layers is mentioned in the table at the start of this chapter. The background
dielectric constant is similar to the bismuth-based cuprates at approximately 4.5ϵ0 [12] and we also
assume the same Fermi velocity. In-plane lattice constants are a = 3.89 Å, b = 3.88 Å. We use these
parameters to go through the same process as in Section 6.2 and derive the other needed parameters.
Then we perform the double-trace deformation to obtain the density-density response function.

The spectral function is displayed in Fig. 7.2, together with data points from a recent paper [19].
It is clear that the data does not fit either the in-phase or the out-of-phase mode. For small in-
plane momentum the measured plasmon energy is between the two modes and as the in-plane
momentum is increased the measured energy moves to the out-of-phase mode. This deviation from
our predictions might be due to shortcomings of our model or there could be other causes.

It might that the measured plasmon is due to the superposition of two widened modes. To support
this claim, we plot the plasmon energy for a constant in-plane momentum in Fig. 7.3. It is clear that
the in-phase mode is more prominently present and therefore it is not unthinkable that upon even
further widening the peak might lie somewhere between the two modes.

Another effect that could be at play is inter-layer hopping. As we have seen in Section 6.1.4, it
induces a gap at zero in-plane momentum. This aligns with the the measured dispersion, which
does not to seem acoustic. Furthermore, the layers of YBCO are much closer together than those of
Bi-2212, thus possibly enhancing inter-layer hopping.
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Figure 7.2: Density-density spectral function of YBCO for pl = 0.2 π
l . The y-axis is

plotted for h, the in-plane momentum, in units of 2π/a, a the in-plane lattice constant.
The red dots is data from Figure 3(b) of [19].

Figure 7.3: Intensity of plasmon mode for constant in-plane momentum 0.02 × 2π/a,
with a the in-plane lattice unit. Widening of the modes achieved by substituting
h̄ω → h̄ω + i

40 . The intensity of the in-phase mode dominates the out-of-phase
mode.
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Figure 7.4: The unit cell of Bi-2201 contains three equidistant CuO2 planes. Adjacent
layers are rotated 45 degrees. Source: [26].

7.2 Bi2Sr2CuO6+x (Bi-2201)

This section is dedicated to the cuprate Bi-2201, the simpler counterpart of the cuprate Bi-2212,
with a layered structure consisting of equidistant copper-oxide planes. The structure formula is
Bi2Sr2CuO6+x. Note that the numbers in the nomenclature of these bismuth-based cuprates refer to
the structure formula. For example, there is no calcium atom in Bi-2201.
Firstly, the important parameters for this material are taken from Table 7.1, h̄ωpl = 0.85 eV, ϵ = 4.5ϵ0,
l = 12.3 Å. Using these parameters the two-dimensional Drude weight is calculated and allows the
density-density response to be computed as well by following the derivation in Section 6.2. Note
that the formula for the Drude weight is now

D = ω2
pl

lϵ
e2 , (7.1)

the factor two in the denominator has disappeared due to the single-layered nature of Bi-2201.
Since the plasma frequency is a bulk property and the Drude weight here is two-dimensional, the
distance between the layers is involved in the above formula. Keep in mind the formula for the
plasma frequency in terms of three-dimensional Drude weight

ωpl =

√
e2D3D

ϵ
, (7.2)

this elucidates the absence of the factor of two in Eq. (7.1).

Having computed the density-density response function of the strong interactions the double-trace
deformation can be applied to obtain the full density-density response function. Then the density-
density spectral function can be plotted and compared with experiment, as seen in Fig. 7.5. The
result is that the spectral function aligns with the dispersion measured in the experimental setup.
The data is obtained from Figure 2(c) of "Detection of Acoustic Plasmons in Hole-Doped Lanthanum
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Figure 7.5: Density-density spectral function for Bi-2201 for pl = −0.5 π
l . The y-axis

is plotted for h, the in-plane momentum, in units of 2π/a, a the in-plane lattice
constant. The red dots is data from Figure 2(c) of "Data from Detection of Acoustic
Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using
Resonant Inelastic X-Ray Scattering" [16].

and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering" in the form of
red dots [16]. Note that the uncertainty is not shown here and is quite significant. Especially the
low-momenta measurements have larger uncertainty.

Then in Fig. 7.6 another comparison is made with RIXS experiments. Only this time the out-of-plane
momentum dependence is plotted. The data plotted over the spectral function generally match,
except for the largest out-of-plane momentum. These measurements do have large error bars so are
not the most accurate.
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Figure 7.6: Density-density spectral function of Bi-2201 for q = 0.03 2π/a on the left
side and q = 0.05 2π/a on the right side, as a function of out-of-plane momentum.
The y-axis is plotted for I in units of 2π/c, with c twice the distance between the
layers. The red dots is data from Figure 2(c) of "Detection of Acoustic Plasmons in
Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant
Inelastic X-Ray Scattering" [16].



CHAPTER 8
Conclusion and Outlook

In this thesis we discussed a layered strange metal and computed the density-density response
of this system. More specifically, we considered a cuprate with a bilayer-crystal structure, as is
the case for Bi-2212. We modeled the strong short-range interactions in each CuO2 layer using
the holographic Gubser-Rocha model and we obtained the associated density-density response
function for these strong interactions from the gauge/gravity duality. In addition, we incorporated
the long-range Coulomb interactions by means of a double-trace deformation, which results in the
density-density response function of the layered strange metal. We calculated the density-density
spectral function for arbitrary values of the out-of-plane Bloch momentum p, and find both an
in-phase and an out-of-phase mode. We computed the dispersion of these modes and showed that
the in-phase plasmon mode is gapped for p = 0, while it has an acoustic nature at long wavelengths
for non-zero p. The out-of-phase mode always has an acoustic nature in the long-wavelength
limit and its dispersion is virtually independent of p. However, the intensity of the out-of-phase
mode does depend on p, starting with vanishing intensity at p = 0 and gradually increasing until
p = π/l.
Furthermore, we extracted the conductivity of the bilayer crystal from the density-density response
function, taking into account the disorder that is present in experiments by introducing Planckian
dissipation. In the parameter regime typical for cuprates there is always a Drude peak visible in the
conductivity with a dc-resistivity linear in temperature. Moreover, we used the total density-density
response function to construct the loss function which is measured in transmission EELS and we
discuss its behavior. In principle, the loss function only contains a single peak belonging to the in-
phase plasmon mode, since the intensity of the out-of-phase mode is smaller in the relevant regime
of p. Only when allowing for a large experimental uncertainty in the out-of-plane momentum
p, and with a transverse momentum close to zero, there are two wide peaks visible. The mode
around 1.0 eV is due to the contributions close to p = 0, while the lower energy peak arises from
contributions with a larger value of p. We also computed the effects of Umklapp scattering due to
supermodulation, the incommensurate periodicity in the lattice. We displayed the results in the
form of the density-density spectral function and the loss function. The main effect measured in the
loss function is that Umklapp scattering lowers the energy of the peaks, with the greatest shift in
the out-of-phase mode. Thereafter, we modeled hopping between the CuO2 layers by altering the
two-dimensional Gubser-Rocha response to include dispersion in the z-direction. This results in the
in-phase mode retaining its gap for non-zero p, while the out-of-phase mode also obtains a gap for
non-zero p.
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Then in Chapter 7 we computed the density-density response for Bi-2201, which has the structure
of a single-layer crystal. We obtained the spectral function of this geometry in Chapter 6 as a test
for the bilayer-crystal expression, but entering the parameters typical for Bi-2201 also allows us to
provide more results to compare with experimental data. And we also computed the density-density
response for YBCO, which has a bilayered structure, similar to Bi-2212.

Throughout this thesis, we made a number of assumptions to simplify the system. For example,
in the concrete example of Bi-2212 that we considered, there is a difference between the atomic
structure in between the pair of layers close to each other and in between the pairs of layers.
Therefore, the different dielectric constants might quantitatively influence the behavior of plasmons.
Another assumption we made is that there is rotational invariance in each layer, which is of course
not exactly the case, since there is a square lattice structure in the CuO2 layers. Although this
lattice structure does not influence the dispersion of the plasmon for small q, it does play a role for
larger values of q. Hence, it would be interesting to include the lattice in the future. Besides, many
cuprates are known to have an extra periodicity which modulates their atomic lattice, known as
supermodulation [33, 54], which we partially treat by including Umklapp scattering caused by the
periodicity. But it might also have other effects, such as charge-density waves.

Figure 8.1: Plasmon energy measured in Bi-2212 by Nücker et al. For constant
in-plane momentum q = 0.3 Å−1. Here, 0 degrees indicates the nodal direction of
the cuprate. Source: [13].

The findings in this thesis provide new insights into the plasmons in layered strange metals. In
particular, we notice that the holographic Gubser-Rocha model can reproduce the acoustic plasmon
branches that have been observed in RIXS experiments on cuprates [16,17]. Additionally, the results
contain many other aspects of the strange metal measured in experiments, like the linear-in-T
resistivity or the repeatedly measured optical plasmon mode. But there are definitely properties
that are not incorporated in the model, take for example the anisotropic dispersion of the optical
plasmon measured by Nücker et al [13]. Here, the optical plasmon was measured for in-plane
momentum q = 0.3 Å−1, but in different in-plane directions. Their results are displayed in Fig. 8.1.
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Since we assume rotational invariance our results do not display this anisotropy. Somehow this
has to be incorporated correctly. Although we did consider Umklapp scattering, which breaks the
rotational symmetry, it did not agree with the results found by Nücker et al. Thus indicating that
another solutions needs to be found.
A possible solution might still be Umklapp scattering, but then from the lattice itself. Since this
periodicity aligns with the measured periodicity of 90 degrees. A drawback is that the effect is most
likely very small for long wavelengths.
A more direct approach would be to impose angular dependence on the Gubser-Rocha response,
such that, for example, the speed of sound is dependent on the direction. This would require,
however, robust experimental arguments to justify it.

Another possible future endeavor could be reconsidering the holographic model that describe the
strong short-range interactions in the CuO2 layers. Although the Gubser-Rocha model has been
used to effectively to describe strange metals, it has also been proven that it can never describe all
properties of the strange metal [31]. It might be the case that another holographic model, which
does deliver all the desired properties, is needed to better understand the strange-metal phase.
Unfortunately, it is not possible to set certain requirements and immediately obtain the correct
holographic model, due to the nature of bottom-up computations. However, if a more suitable
holographic model is found and the density-density response function can be extracted, including
long-range Coulomb interactions is then achieved in the same manner as described in this thesis.

Looking back at the phase diagram of cuprates, notice that the behavior of these materials is greatly
dependent on doping. It would be interesting therefore to research how plasmons are affected by
doping. This could possibly help understand the strange-metal phase.

Finally, the goal of this thesis is to inspire more research into plasmons in layered strange metals,
either in the form of more experiments or in the form of more theoretical analysis. Hopefully, this
will improve our understanding of this mysterious phase of matter. It will be interesting to see
whether the approach using holographic models leads to more answers in the future.
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APPENDIX A
Bilayer-crystal Potential

The computation of the potential matrix of the bilayer-crystal geometry is quite long, therefore
we treat it extensively in this appendix. We pick up from Eq. (6.3) and from there work out the
expression to derive the potential matrix.

The starting point is thus the effective boundary action

∆SC =
1
2

∫ dωd2q
(2π)3

∫ dqz

2π ∑
n,m

(
Jµ
1 (−ω,−q, nl − a/2)

Jµ
2 (−ω,−q, nl + a/2)

)
· ηµν

e2

ϵ

e−iqz(n−m)l

q2 + q2
z

(
1 e−iqza

eiqza 1

)
·
(

Jν
1 (ω, q, ml − a/2)

Jν
2 (ω, q, ml + a/2)

)
.

(A.1)

This equation is the bilayer-crystal equivalent of Eq. (5.4). Although we now have to deal with two
summations and a more complicated integrand, we can actually first perform the integration over
qz, ∫ dqz

2π

e−iqz(n−m)l±iqza

q2 + q2
z

=
e−q|nl−ml∓a|

2q
, (A.2)

and substitute into the boundary action, to obtain

∆SC =
1
2

∫ dωd2q
(2π)3 ∑

n,m

(
Jµ
1 (−ω,−q, nl − a/2)

Jµ
2 (−ω,−q, nl + a/2)

)
· ηµν

e2

2ϵq

(
e−q|n−m|l e−q|nl−ml+a|

e−q|nl−ml−a| e−q|n−m|l

)
·
(

Jν
1 (ω, q, ml − a/2)

Jν
2 (ω, q, ml + a/2)

)
.

(A.3)

The next task is performing the summation over n and m, but we first need to rewrite the current
such that it does not contain the layer indices. To this end, we Fourier transform the periodicity of
the current over n and m to the Bloch momentum p, i.e.,

Jµ
1 (ω, q, nl − a/2) = (l/2π)

∫ π/l

−π/l
dpJµ

1 (ω, q, p)eip(nl−a/2). (A.4)
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The Bloch momentum is in the direction perpendicular to the layers, since the periodicity is in n
and m. Inserting the corresponding Fourier transform gives

∆SC =
1
2

∫ dωd2q
(2π)3

∫ π/l

−π/l

ldp
2π

∫ π/l

−π/l

ldp′

2π ∑
n,m

(
Jµ
1 (−ω,−q, p)eip(nl−a/2)

Jµ
2 (−ω,−q, p)eip(nl+a/2)

)
· ηµν

e2

2ϵq

(
e−q|n−m|l e−q|nl−ml+a|

e−q|nl−ml−a| e−q|n−m|l

)(
Jν
1 (ω, q, p′)eip′(ml−a/2)

Jν
2 (ω, q, p′)eip′(ml+a/2)

)
. (A.5)

The exponents can then be distributed to the corresponding matrix components, after which we
start with analyzing the sum over n and m. We take the bottom left component as example and
work it out,

∑
n,m

e−q|(n−m)l−a|+ip(nl+a/2)+ip′(ml−a/2)

= e−i(p′−p)a/2 ∑
m

eimlp′
(

∑
n<m

eq((n−m)l−a)+ipnl + e−qa+ipml + ∑
n>m

e−q((n−m)l−a)+ipnl

)
= e−i(p′−p)a/2(e−qa ∑

m
eimlp′−mlq ∑

n<m
eqnl+ipnl + ∑

m
e−qa+iml(p′+p) + eqa ∑

m
eimlp′+mlq ∑

n>m
e−qnl+ipnl)

= e−i(p′−p)a/2(e−qa ∑
m

eiml(p′+p) ∑
n<0

eqnl+ipnl + ∑
m

e−qa+iml(p′+p) + eqa ∑
m

eiml(p′+p) ∑
n>0

e−qnl+ipnl)

= e−i(p′−p)a/2 ∑
m

eiml(p+p′)

(
e−qa ∑

n<0
eqnl+ipnl + e−qa + eqa ∑

n>0
e−qnl+ipnl

)
.

(A.6)

In the first step the term independent of n and m is taken to the front and the absolute value is
worked out. Then we put all terms independent of n before the sum over n. In the third step m
is factored out such that the sum is either for n < 0 or n > 0 and there appears a common factor
before the sums over n. Recognize that the sum over m is a delta function and substitute it,

= e−i(p′−p)a/2 ∑
m

eiml(p+p′)

(
e−qa ∑

n<0
eqnl+ipnl + e−qa + eqa ∑

n>0
e−qnl+ipnl

)

=
2π

l
δ(p + p′)

(
∑
n>0

(e−nlq−inlp−qa + e−nlq+inlp+qa) + e−qa

)
e−i(p′−p)a/2

=
2π

l
δ(p + p′)

(
∞

∑
n=0

e−nlq−inlp−qa +
∞

∑
n=1

e−nlq+inlp+qa

)
e−i(p′−p)a/2

=
2π

l
δ(p + p′)

(
e−qa

1 − e−ipl−ql +
e−q(l−a)+ipl

1 − eipl−ql

)
e−i(p′−p)a/2.

(A.7)

In the first step the sum over negative n is inverted, thereafter eqa is absorbed into the first sum,
such that now it also sums over n = 0. Then, recognize the geometric series and substitute both
expressions. These two separate fractions can be combined by rewriting them such that they obtain
the same denominator, resulting in

2π

l
δ(p + p′)

(
sinh (l − a)q + eipl sinh qa

cosh ql − cos pl

)
e−i(p′−p)a/2. (A.8)
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After substituting Eq. (A.8) and the other matrix components and subsequently integrating over p′

the following result is obtained

∆SC =
1
2

∫ dωd2q
(2π)3

∫ π/l

−π/l

ldp
2π

(
Jµ
1 (−ω,−q,−p)

Jµ
2 (−ω,−q,−p)

)
·

e2ηµν

ϵ
V(q, p) ·

(
Jν
1 (ω, q, p)

Jν
2 (ω, q, p)

)
, (A.9)

with the following expression for the 2 × 2 matrix V, with the same form as for a bilayered electron-
gas [49, 50],

V(q, p) =
1

2q(cosh ql − cos pl)

(
sinh ql (sinh q(l − a) + e−ipl sinh qa)e−ipa

(sinh q(l − a) + eipl sinh qa)eipa sinh ql

)
.

(A.10)
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