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Abstract

Abramsky and Coecke’s categorical quantum mechanics (Cat-qm) is an en-

ticing start to what might one day be a reaxiomatisation of quantum mech-

anics. Unfortunately, most of its applications have been in the realm of

technology, not philosophy. We examine Cat-qm from a philosopher’s point

of view, and ask what it can do for quantum foundations. We show that ap-

plying the methods of Cat-qm to classical mechanics leads to a categorically-

formulated quantum-classical distinction, and take some steps in justifying

its principles. Since most philosophers of physics are unfamiliar with cat-

egory theory, we also provide an introduction to 2-category theory, written

for this audience.
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Chapter 1

Introduction

The cold beauty of category theory has tempted philosopher-physicists for

almost as long as the field exists [4]. To Hans Primas for example, writing

in the 1980’s, it is obvious that

the mathematical structure of [Von Neumann-Dirac] quantum

mechanics is a category having Hilbert spaces as objects and

unitary or antiunitary transformations as morphisms [56, p. 66].

It is equally obvious to him that quantisation could be done by a functor from

the category of symplectic manifolds and symplectic transformations into

the quantum category, but that nowadays a better approach is possible in

terms of the representation theory of of kinematical groups [56, p. 66]. More

recently, James Owen Weatherall has translated this newer approach to the

language of category theory [64]. Hans Halvorson and Dimitris Tsementzis

have recently revived the idea that a category can represent a theory, and

that a category of such categories can encode relations between theories [31].

These are broad-strokes applications of category theory to the philosophy

of science and the foundations of physics.

Applications of category theory to more concrete physical problems have
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been less frequent, and frequently less successful. Robert Geroch’s textbook

on mathematical physics — again, written in the 1980’s — uses category

theory as a unifying framework, but only as a stage on which to set more con-

ventional mathematics [24]. The book starts with categories, but by the time

it has treated sets, vector spaces, topological spaces, and measure spaces,

and we reach the chapter on Hilbert spaces [24, pp. 277–284], there is little

to no category theory to be found. This is not at all surprising, as a fully

categorical treatment of Hilbert spaces did not exist until 2022, when Chris

Heunen and Andre Kornell published their axioms for the category of Hil-

bert spaces [34]. In the 1960’s, Bill Lawvere tried to construct a categorical

theory of continuum mechanics, and more recently category theory has seen

some applications in quantum gravity and string theory [4], but overall its

impact on physics remains limited. Developing concrete categorical physics,

capable of modelling real-world systems beyond string theory and quantum

gravity, seems like a lost cause.

But it is tempting. Categories consist of objects connected by functors,

and (operational) physical theories describe systems whose states are connec-

ted by processes. Category theory promises to unify widely different math-

ematical concepts by finding their common structure, and physics tries to

unify widely different real-world processes by finding a common mathemat-

ical formalism. Hence, we ask:

Question 1.1. What concrete applications of category theory are

possible in physics?

Our point of departure is not string theory or quantum gravity, but

quantum computation. In 2004, Samson Abramsky and Bob Coecke pub-

lished “A categorical semantics of quantum protocols” [1], in which they
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showed that a categorical concept now known as dagger compact closed

structure with biproducts is capable of encoding correlations in finitary

quantummechanics. This allows for a categorical description of such quantum

protocols as teleportation and entanglement swapping. Further work on

graphical calculi for dagger symmetric monoidal categories has led to a dia-

gram language that promises to demystify some of the stranger aspects of

quantum theory [15].

This ties in with an older approach to demystifying quantum mechan-

ics, called reaxiomatisation. The idea here is that the weirdness of quantum

theory is due to its inefficient — or maybe even incorrect — formulation.

There might be a quantum formalism in which the phenomena we consider

weird now, are actually logical consequences of some easily accepted prin-

ciples. A good reaxiomatisation consists of a set of such principles from

which all of quantum mechanics can be derived, and nothing else. An even

better reaxiomatisation accounts for the differences between quantum and

classical mechanics by showing which principles must be added, altered, or

removed to go from the one theory to the other. Philosopher-physicists who

try to reaxiomatise quantum theory therefore ask:

Question 1.2. What are the correct principles of quantum and clas-

sical mechanics?

Abramksy and Coecke’s categorical quantum mechanics (Cat-qm) pro-

vides a bridge between the two questions. By formulating their categor-

ical semantics, they have made an Ansatz towards a reaxiomatisation of (a

fragment of) quantum theory, and found a way to model certain quantum

processes in completely categorical language. To fully answer question 1.2,

Cat-qm should also give us a way of doing categorical classical physics. We

therefore ask:
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Question 1.3. Can Abramsky and Coecke’s categorical semantics

for quantum protocols be translated to classical physics? If so, how?

In the rest of this introduction, we first discuss some basic concepts

of and motivations for category theory, to convince the reader that it is a

worthwhile field of study (§ 1.1). Then, in § 1.2, we discuss the basic concepts

of quantum mechanics and provide some context for Abramsky and Coecke’s

Cat-qm. We end with an outline of this Thesis (§ 1.3).

We have tried to make this Thesis as self-contained as possible and,

while writing, have kept in mind a reader who is not necessarily familiar

with category theory or quantum mechanics, but ideally is familiar with at

least one of these fields. No knowledge of physics is necessary, except for some

basic Hamiltonian mechanics and Liouville’s theorem. This information can

be found in any textbook on classical mechanics, for example §§ 1-2, 40-46

of [44]. The only mathematical prerequisites — beyond what is necessary

for the physics prerequisites — are some linear and abstract algebra, some

set theory and logic, and a smattering of measure theory and functional

analysis.

1.1 Category theory

Roughly speaking, category theory is the study of mathematical structure.

We can try to describe in abstract terms what that means, but it is more

illuminating to begin with some examples. We first provide three examples of

natural isomorphisms, one example of a natural transformation that is not an

isomorphism, and one non-example. Having done that, we briefly motivate

the concepts of functor and category, and then outline some important lines

of categorical enquiry.
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Example 1.4 (Eilenberg and Mac Lane [22]). Let K be a field and let

f : V →W be a linear map between finite-dimensional K-vector spaces. For

all such f, V,W there exist double dual spaces V ∗∗,W ∗∗, a double dual linear

map f∗∗ : V ∗∗ → W ∗∗, and linear bijections iV : V → V ∗∗, iW : W → W ∗∗

such that for all v ∈ V :

iW (f(v)) = f∗∗(iV (v)). (1.1)

We can represent this equation as a directed graph in which vertices repres-

ent mathematical objects and edges represent functions:

V V ∗∗

W W ∗∗

iV

iW

f f∗∗ (1.2)

We can see that both sides of the equation correspond to paths over the

graph, and that both paths start at the same place and take what is there

to the same destination.

Example 1.5 (Mac Lane [47, pp. 17–18]). Let S be a finite set with m

elements, and let #S = {1, . . . ,m}. Let T be another set and f any function

S → T . Then there exist bijections iS : S → #S, iT : T → #T , and a

function #f : #S → #T such that for all s ∈ S:

iT (f(s)) = #f(iS(s)). (1.3)
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Diagrammatically, we represent this as:

S #S

T #T

iS

iT

f #f (1.4)

Example 1.6. Let G be a group with operation •, and Gop its opposite.

Let H a group with operation ∗, and Hop its opposite. Then any group

homomorphism f : G→ H is also a homomorphism Gop → Hop, since

f(a •op b) = f(b • a) = f(b) ∗ f(a) = f(a) ∗op f(b). (1.5)

Again, given group isomorphisms i : G → Gop and iH : H → Hop, we have

a diagram:

G Gop

H Hop

iG

iH

f f (1.6)

These are all examples of natural isomorphisms: maps of maps between

mathematical structures that preserve certain structure. In the examples

above we saw that taking the double dual of finite-dimensional vector spaces

preserves — in some sense of the word — linear maps, that an isomorphism

of sets can preserve functions between sets, and that mapping a group to its

opposite preserves group homomorphism. Such rectangular diagrams appear

in every branch of mathematics, and we will see many more of them through-

out this thesis. A slightly more general concept is the natural transformation.

We can find these by letting go of the requirement that the horizontal arrows
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must be invertible:

Example 1.7. Let K be a field, and let X,Y be K-vector spaces of finite

or infinite dimension. Let g : V →W be a linear map, let ∗ denote the dual,

and let mX : X → X∗∗, mY : Y → Y ∗∗ be the canonical injective linear

maps. Again, we have a diagram:

X X∗∗

Y Y ∗∗

mX

mY

g g∗∗ (1.7)

Note that the diagram in example 1.4 can be “reversed” along the horizontal

axis to form the equally valid diagram

V ∗∗ V

W ∗∗ W

iinvV

iinvW

f∗∗ f (1.8)

but that such a reversal is not generally possible for g,X, Y since a bijection

from X∗∗ to X does not exist if X is infinite-dimensional.

To better understand what is special about natural isomorphisms and

natural transformations, we might also consider a non-example and ask why

it fails:

Example 1.8 (Mac Lane [47, exc. I.3.4]). Let ZG be the centre of a group

G, and let Zh be the restriction of a group homomorphism h : G→ H to ZG.

Let Sn be the symmetric group of degree n. Since S2 consists of an identity

element and one self-inverse element, and S3 has three self-inverse elements
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in addition to its identity (along with two non-self-inverse elements), there

exist three non-trivial group homomorphisms S2 → S3. Let f be one of

them.

Since S2 is Abelian, the canonical isomorphism h2 : S2 → ZS2 is an

identity, and Zf = f . Because S3 is centreless, ZS3 is the trivial group and

there exists exactly one homomorphism h3 : S3 → ZS3.

Now we have a problem. The image of ZS2 = S2 in Zf = f is larger than

ZS3, so Zf is not a homomorphism ZS2 → ZS3. We therefore cannot draw

the kind of rectangular diagram we drew for the previous four examples: the

right edge does not exist.

In the first four examples, we had some kind of procedure that turns

some kind of mathematical object (vector space, finite set, group) into a

related object (double dual space, finite ordinal, opposite group), and turns

homomorphisms of the first kind of object into homomorphisms of the second

kind of object in a way that preserves the homomorphism relations between

objects. In the non-example above, we have a procedure that restricts one

type of objects (groups) to another type (Abelian groups), and tries but fails

to restrict homomorphisms in the same way.

Category theory was born in the 1940’s when Samuel Eilenberg and

Saunders Mac Lane [22] realised that natural isomorphisms are an interest-

ing field of study in themselves. In order to study them rigorously, we must

be able to tell which procedures allow for natural isomorphisms. This leads

to the notion of functors: in the above examples, (−)∗∗, #, and (−)op are

functors, but Z is not. Before we can discuss functors in any detail, we must

be able to talk about their domains and targets, which are categories, collec-

tions of mathematical objects connected by homomorphisms. Category the-

ory classifies and characterises such categories, constructs functors between
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them, and studies natural transformations and isomorphisms.

We will make all of this more rigorous in due time. For now, we will

sketch a few prominent features of the category-theoretical landscape.

One line of enquiry involves studying categories themselves and looking

for generalisations of categories. For example, if C and D are categories, we

can view them as objects and view the functors F : C → D as homomorph-

isms of these objects. And if we take functors to be objects, we can regard

natural transformations as homomorphisms of functors. We will also make

all of this more rigorous in due time: the main idea here is that categorical

structure can exist at multiple levels, so we can expand our understanding

of categories to two-tiered, three-tiered, n-tiered, ∞-tiered categorical struc-

tures.1 Any m-tiered category, it turns out, can be quite easily described as

an m+ n-tiered category satisfying certain conditions, which suggests that

the most natural setting in which to study categories is that of ∞-tiered cat-

egories. Most of this Thesis takes place in the realm of 2-tiered categories,

and we will rarely go higher. See [5] for more on higher category theory.

Another approach is topos theory. This investigates categories called

topoi which are equipped with some structure that makes them sufficiently

similar to the category of sets and functions that they can act as a setting

in which to study both geometry and logic. These have some applications in

quantum field theory and quantum gravity, and might have further-reaching

implications for more branches of physics. See e.g. [19]. We will not use any

topos theory in this Thesis.

Adjunctions are a third prominent feature of category theory. We provide

two examples, and then discuss their use:

1We say “n-tiered category” instead of the more common “n-category” because to use
more formal language would imply a higher level of rigour and formality than we have
provided so far. Our discussion up to now is informal, and our terminology should reflect
some of that.
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Example 1.9. First, recall the construction of the free group. For S any set,

we can construct an alphabet set AS whose elements are: a symbol e ̸∈ S, all

the members of S, and for every s ∈ S a symbol sinv. The free group FS con-

sists of all the equivalence classes of finite sequences of elements of AS , where

two sequences are equivalent if the one can be transformed into the other

by (repeated) insertion or removal of the element e or subsequences ssinv,

sinvs, with s ∈ S. The group operation of FS is sequence concatenation.

Now let F be a functor that maps every set S to the corresponding free

group FS and every function of sets to the corresponding homomorphism

of free groups. Let U be the functor that sends any group to its underlying

set, and any group homomorphism to the corresponding function between

sets. Since S is a generating set of the group FS, any function from S

to the underlying set UG of a group G uniquely defines a homomorphism

from FS to G. Also, every homomorphism FS → G defines a unique set-

to-set function from S to UG. Hence, we have a bijection ϕS,G from the

set Hom(FS,G) of group homomorphisms FS → G to the set [S,UG] of

functions S → UG. For g : FS → G a group homomorphism, ϕS,G(g) is the

restriction Ug|S of Ug to S.

For any function f : T → S and group homomorphism h : G → H, we

construct the functions:

Hom(Ff, h) : Hom(FS,G) → Hom(FT,H)

Hom(Ff, h)(g) = h ◦ g ◦ Ff
(1.9)

and

[f,Uh] : [S,UG] → [T,UH]

[f,Uh](i) = Uh ◦ i ◦ f
(1.10)
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where ◦ denotes function composition. Then:

[f,Uh] (ϕS,G(g)) = [f,Uh] (Ug|S)

= Uh ◦Ug|S ◦ f

= Uh ◦Ug ◦ f

(1.11)

where the last equality holds because S is the target of f , and also:

ϕT,H (Hom(Ff, h)(g)) = ϕT,H(h ◦ g ◦ Ff)

= U(h ◦ g ◦ Ff)|T

= Uh ◦Ug ◦ f

(1.12)

where the last equality holds because UFf |T is the restriction to T of the set-

to-set function corresponding to the group homomorphism Ff , so UFf |T =

f . This gives us a natural isomorphism:

Hom(FS,G) [S,UG]

Hom(FT,H) [T,UH]

ϕS,G

ϕT,H

Hom(Ff, h) [f,Uh] (1.13)

which encodes a relationship between the functors F and U. We call them

adjoint functors, and we say that F is the left adjoint to U and U is the

right adjoint to F. Such a relationship is called an adjunction, and exists

wherever we have some notion of a free object with an underlying set.

Example 1.10. Let A a poset ordered by ≤, and B a poset ordered by ≼.

The order-reversing functions L : A → B and R : B → A form an antitone
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Galois connection if for all a ∈ A, b ∈ B:

a ≤ RLa b ≼ LRb. (1.14)

An immediate consequence is that (La ≽ b) ⇐⇒ (a ≤ Rb). Now let a′ ≤ a

and b′ ≼ b: then La ≽ b implies La′ ≽ b′, and a ≤ Rb implies a′ ≤ Rb′. This

lets us draw a diagram of logical implication:

La ≽ b a ≤ Rb

La′ ≽ b′ a′ ≤ Rb′

(1.15)

which is very similar to eq. (1.13). The fact that the horizontal edges are

biconditionals while the vertical edges need only be implications in one dir-

ection corresponds to the fact that the horizontal arrows in our examples of

natural isomorphisms have to be isomorphisms, while be the vertical arrows

need only be homomorphisms. Here too, we have an adjunction, and here

too, we call L and R adjoint functors, with L the left and R the right adjoint.

Adjunctions encode similarities between functors which in turn encode

similarities between categories. In example 1.9, the functor U sends every

group to the set that is most similar to it, which it does by “forgetting” the

group properties. (We call such functors forgetful .) The functor F takes a set,

and uses it to build a group in the most efficient way it can: by only positing

those relations which are required by the group axioms, and extending the

set where necessary. The free-forgetful-adjunction encodes a duality between

these two ways in which two categories are similar.

The fact that L and R in example 1.10 are also adjoint functors tells us

that these are dual to each other in a way similar to how F and U are dual
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to each other. Postulating that a ≤ RLa and b ≼ LRb imposes a duality on

our functors: the abundance of Galois connections across all of mathematics

is evidence of its usefulness.

All of this is hand-wavy: in what sense are L and R functors, and what are

the morphisms of posets-considered-as-categories? We will return to these

questions later. For now, we have shown that the concepts of category theory

— adjunction, natural isomorphism or transformation, functor, category —

unify a broad range of mathematical structures. We have also shown that

the core concepts — natural isomorphism, adjunction — depend on quite

some lower-level concepts — functor, category, morphism — and that we

cannot study the former rigorously until we understand the latter.

1.2 Quantum reaxiomatisations

We now turn to the second line of enquiry that underlies this Thesis. We

begin by stating the postulates of quantum mechanics in two forms: the pure

state formalism, which is probably the most familiar, and the more general

density operator formalism. We then show how some strange effects follow,

and discuss reaxiomatisation programmes in more detail.

The postulates for pure states are as follows:

Postulates 1.11 (Pure state formalism).

Pure-I to every isolated quantum system S there corresponds a complex

Hilbert space H, and the state of S at any time is a unit vector

|ψ⟩ ∈ H;

Pure-II the time evolution of a quantum system is governed by the Schrödinger

equation: iℏ∂t |ψ⟩ = Ĥ|ψ⟩, where ℏ is a constant and Ĥ is a self-

adjoint operator, called the Hamiltonian, on H;
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Pure-III to every observable M there corresponds a set {Mm} of meas-

urement operators, where the indices m refer to the possible out-

comes, with
∑

mM
†
mMm equal to the identity operator I (the

dagger † denotes the adjoint of an operator, which is not in gen-

eral a categorical adjoint);

Pure-IV the probability of an M -measurement on a system in state |ψ⟩

yielding the outcome m is ⟨ψ|M †
mMm|ψ⟩, and the state of the

system immediately after the measurement is Mm|ψ⟩√
⟨ψ|M†

mMm|ψ⟩
;

Pure-V if the system S with state |ψ⟩ ∈ H is combined with the system

S̃ with state |ψ̃⟩ ∈ H̃, then the state of the combined system is

|ψ⟩ ⊗ |ψ̃⟩ ∈ H ⊗ H̃.

A consequence of the second postulate is that for every time t there

exists a unitary operator Ût : H → H, so that if our system is in state |ψ⟩ at

time 0, it occupies state Ût|ψ⟩ at time t. Also, note that we are using Dirac

notation: |ψ⟩ (“ket ψ”) denotes a vector, and ⟨ψ| (“bra ψ”) its adjoint.

When dealing with closed systems, we may represent measurements by

projection operators. To every observable X there corresponds a self-adjoint

operator X̂, and the expectation value of X conditional on a state |ψ⟩ is

⟨ψ|X̂|ψ⟩. It follows, then, that X is guaranteed to take the value m if

X̂|ψ⟩ = m|ψ⟩. The probability of X taking the value m, conditional on

|ψ⟩, is ⟨ψ|Pm|ψ⟩, where Pm is a projection operator onto the eigensubspace

of X̂ corresponding to the eigenvalue m.

Every ket is a linear map C → H and every bra is a linear map H → C,

so a ket-bra |ψ⟩⟨ψ| is a linear map H → H. If ⟨ψ|ψ⟩ = 1, then |ψ⟩⟨ψ| is

a projection operator onto the subspace [|ψ⟩] spanned by |ψ⟩, since for all

|ϕ⟩ ∈ H:
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(i) (|ψ⟩⟨ψ|)|ϕ⟩ = |ψ⟩⟨ψ|ϕ⟩ ∈ [|ψ⟩], so the range of |ψ⟩⟨ψ| is [|ψ⟩];

(ii) (|ψ⟩⟨ψ|)(|ψ⟩⟨ψ|) = |ψ⟩(⟨ψ|ψ⟩)⟨ψ| = |ψ⟩⟨ψ|, so |ψ⟩⟨ψ| is idempotent.

This gives us a convenient way of representing unit vectors in H as operators

on H, and leads to a more general set of postulates:

Postulates 1.12 (Density operator formalism).

DensOp-I to every isolated quantum system S there corresponds a Hil-

bert space H, and the state of S at any time is given by a

density operator ρ =
∑

k pk|ψk⟩⟨ψk| acting on H, where the

|ψk⟩ are vectors in H, and the pk are positive real numbers

that sum to 1;

DensOp-II if Û describes the time-evolution of the vectors in H, then the

time evolution of the density operator is given by ρt = ÛρÛ †;

DensOp-III same as Pure-III;

DensOp-IV the probability of an M -measurement yielding the outcome

m when S is in state ρ is Tr
(
M †
mMmρ

)
, and the state of S

immediately after the measurement is MmρM
†
m

Tr
(
M†

mMmρ
) ;

DensOp-V if S is in state ρ : H → H and S̃ is in state ρ̃ : H̃ → H̃, then

the combined system is in state ρ⊗ ρ̃ : H⊗ H̃ → H⊗ H̃.

We call ρ a pure state if it can be written as |ψ⟩⟨ψ| or, equivalently, if

Tr
(
ρ2
)
= 1. If ρ is not a one-dimensional projection operator or, equival-

ently, if Tr
(
ρ2
)
< 1, then we call ρ a mixed state.

In both sets of postulates, the second contradicts the fourth: is measure-

ment a preferred physical process which interrupts the unitary evolution?
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Does this mean that it is physically relevant whether or not we measure a

system? And what kind of probabilities are we dealing with here, anyways?

To answer these questions is to solve the measurement problem. We will not

do that in this Thesis.

For more details on the postulates of quantum mechanics, see §§ 2.2,

2.4 of [54]. Their consequences include the possibility of entanglement and

teleportation: we discuss entanglement here, and teleportation later in this

Thesis.

Definition 1.13. SystemS with corresponding Hilbert spaceH and system

S̃ with the corresponding Hilbert space H̃ are entangled if their combined

state |Ψ⟩ ∈ H⊗ H̃ cannot be written as the tensor product of one vector in

H and one vector in H̃.

Definition 1.14. A qubit is a system whose corresponding Hilbert space is

C2. A computational basis is an orthonormal basis of a qubit.

Example 1.15 (Einstein, Podolsky, and Rosen [23]). Let Q1 and Q2 be

qubits, and equip both with the computational basis {| ↑⟩, | ↓⟩}. We choose

M↑ = | ↑⟩⟨↑ | and M↓ = | ↓⟩⟨↓ | as our measurement operators.

One physical realisation of this setup is an electron, of which we meas-

ure the spin. The state α| ↑⟩ + β| ↓⟩ corresponds to a probability |α|2 of

measuring spin up, and a probability |β|2 of measuring spin down.

Now we put our two electrons in the epr-state

|EPR⟩ = 1

2

√
2 (| ↑⟩ ⊗ | ↓⟩+ | ↓⟩ ⊗ | ↑⟩) (1.16)

where the first term in each tensor product refers to Q1, and the second

to Q2. We then move the electrons a great distance apart: we give Q1 to

Alice, and Q2 to Bob. |EPR⟩ cannot be written as a tensor product |ϕ⟩⊗ |ψ⟩
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with |ϕ⟩, |ψ⟩ ∈ C2, so the qubits are entangled and it is impossible for a

measurement operator to affect only one of the electrons: any measurement

of one is a measurement of both.

When Alice and Bob receive their electrons, there is no matter of fact

about the spin of either electron: there is an ontic probability of 1
2 of spin

up, and an ontic probability of 1
2 of spin down for each. However, when Alice

measures the spin of her particle and gets the result spin up, this changes

the state to:

(| ↑⟩⟨↑ | ⊗ I)|EPR⟩ = | ↑⟩ ⊗ | ↓⟩ (1.17)

Now Bob’s electron is guaranteed to have spin down. If the quantum state

truly encodes everything concerning the electron about which there is a

matter of fact, then Bob’s electron could not be ascribed a spin property

until Alice measured hers, and a measurement at one location has instantly

affected something arbitrarily far away. If the quantum state — and therefore

quantum theory — provides an incomplete description of reality, then what

is the complete theory? This is the epr paradox.

The above setup also lets us illustrate the difference between pure and

mixed states. First, we choose a second basis:

|+⟩ = 1

2

√
2 (| ↑⟩+ | ↓⟩) |−⟩ = 1

2

√
2 (| ↑⟩ − | ↓⟩) , (1.18)

in which both vectors encode a probability 1
2 of spin up and 1

2 of spin down.

Then we put an electron in the superposition state |ψ⟩ = 1
2

√
2 (|+⟩+ |−⟩).

Both terms in the sum are superpositions of states; they interfere, resulting

in an eigenstate of our spin operator:

|ψ⟩ = 1

2
(| ↑⟩+ | ↓⟩+ | ↑⟩ − | ↓⟩) = | ↑⟩ (1.19)
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so the electron is guaranteed to have spin up. Now consider the density

matrix ρ = 1
2 |+⟩⟨+| + 1

2 |−⟩⟨−|, built up out of two states which both have

a 1
2 probability of spin up and a 1

2 probability of spin down. Here the spin

down states do not interfere away:

ρ =
1

4
[(| ↑⟩+ | ↓⟩) (| ↑⟩+ | ↓⟩) + (| ↑⟩ − | ↓⟩) (| ↑⟩ − | ↓⟩)]

=
1

2
| ↑⟩⟨↑ |+ 1

2
| ↓⟩⟨↓ |

(1.20)

so each measurement outcome still has a probability of 1
2 . We might say

that in a superposition |ψ⟩ = α|ϕ1⟩ + β|ϕ2⟩ the system is in the state |ψ⟩

with probability 1 and in either of the states |ϕ1⟩ or |ϕ2⟩ with probability

0, while in a mixed state ρ = |α|2|ϕ1⟩⟨ϕ1| + |β|2|ϕ2⟩⟨ϕ2|, the system has a

probability |α|2 of being in the state |ϕ1⟩ and a probability |β|2 of being in

the state |ϕ2⟩.

The above formalisms are unintuitive, unanschaulich, and derive para-

doxical consequences in unsatisfying ways. Worse yet, they might be in-

complete, incompatible with relativity, or even self-contradicting. One way

to approach this problem, is to interpret quantum mechanics. Interpreting

a theory might mean establishing correspondences between entities in the

theory and the physical world, to attach a comprehensible picture to the

not-yet-comprehended theory. It might also involve adding or removing pos-

tulates to make the theory more palatable [42]. But all such interpretations

take the original postulates as their starting point, and must therefore in-

herit at least some of their problems. Might there be a better theory, built on

an entirely different foundation, that recovers all the predictions of quantum

mechanics without the weirdness?

The postulates of quantum theory were first formalised by John von

Neumann in 1932 [52], but already in November 1935, half a year after epr,
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he wrote in a letter to Garrett Birkhoff:

I would like to make a confession which may seem immoral: I do

not believe absolutely in Hilbert space any more (quoted in [57,

p. 493]).

Less than a year later, Birkhoff and Von Neumann published “The logic of

quantum mechanics” [12]. They identify experimental propositions about S

with closed subspaces V ,W of H, negation with the orthogonal complement

V ⊥, conjunction of V and W with the intersection V ∩W , and disjunction

with the closed linear sum V +W or, equivalently,
(
V ⊥ ∩W⊥)⊥. We then

have a non-distributive orthocomplemented lattice of experimental propos-

itions about S corresponding to closed subspaces of H. This gives rise to

quantum logic, and forms a first step towards a reaxiomatisation of quantum

theory.

A reaxiomatisation or reconstruction tries to dissolve the problems of

interpretation by building a theory that makes the same predictions, out of

different postulates. It takes a set of physical principles that are considered

basic, foundational, or intuitive, represents them mathematically and then

deduces the formalism of the theory from them [2, 29, 32].

Put differently, a reaxiomatisation differs from an interpretation in that

an interpretation takes the current theory as its starting point and looks

for physical principles to match it, while a reconstruction takes physical

principles, and builds a theory around them. As Rovelli famously puts it:

quantum mechanics will cease to look puzzling only when we

will be able to derive the formalism of the theory from a set

of simple physical assertions (“postulates,” “principles”) about

the world. Therefore, we should not try to append a reasonable
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interpretation to the quantum mechanics formalism, but rather

to derive the formalism from a set of experimentally motivated

postulates [61, p. 1639].

From the 1960’s onwards, a horde of reaxiomatisations has been proposed,

often based on Birkhoff and Von Neumann’s: see [29] for an overview. Many

of these flounder on postulates Pure-V and DensOp-V. Just like the Birkhoff-

Von Neumann reaxiomatisation, they can describe single systems, but not

the correlations between combined systems [28].

A more modern line of enquiry, started in the 1990’s, asks which con-

straints we must place on information transfer between systems in order to

recover quantum mechanics. See [32] for a brief overview. Perhaps the most

spectacular result of such programmes is the proof given by Rob Clifton, Jeff

Bub, and Hans Halvorson (collectively known as cbh) in 2003, that three

information-theoretic conditions — no cloning, no signalling, and no secure

bit commitment — guarantee that the observables of a theory are quantum

mechanical [13]. In 2004, a seemingly unrelated paper by Samson Abramsky

and Bob Coecke showed that if one takes physical systems to be objects of

a category, and operations performed on them to be morphisms, then im-

posing dagger compact closed structure with biproducts on that category

allows one to model a good number of quantum processes [1]. The axioms

of Cat-qm also give rise to a flow of quantum information [15].

Both approaches can be criticised for assuming too much. cbh prove

their theorem within the framework of C*-algebras, which is already quite

restrictive [32]. In fact, Halvorson himself would later criticise cbh for this

assumption, and wonder whether it is at all possible and desirable to con-

struct a theory from a small number of principles [30]. Similar attacks can

be launched against Cat-qm, though Abramsky and Coecke do not seem
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to have attracted any yet. One reason for this might be that Cat-qm has

never been a complete theory: the requirement that the quantum mechanical

category be dagger compact closed limits us to quantum mechanics in finite-

dimensional Hilbert spaces. But that requirement is quite an assumption.

We therefore ask:

Question 1.16. Which physical principles can justify dagger com-

pact closed structure with biproducts?

We have now posed four questions, none of which we are capable of

answering in one Thesis. In the next section we narrow these down further,

and describe our approach to answering them.

1.3 Outline of the Thesis

This Thesis consists of two parts. In the first, we provide an introduction

to the study of 2-categories aimed at philosophers, physicists and those who

work in between. In the second, we examine categorical physics in general,

and categorical classical mechanics in particular.

Now why should we write another treatise on category theory? Surely

there are enough of those already. Nevertheless, most philosophers of physics

are unfamiliar with the field, and the introductory texts available today are

not well suited to this audience.

For example, Saunders Mac Lane’s classic Categories for the Working

Mathematician [47] provides an in-depth discussion of adjunctions and uni-

versal properties, but the topics important to us are almost afterthoughts in

the later chapters (monoidal, symmetric monoidal, and closed categories),

or did not exist at the time it was written (dagger compact closure). Emily

Riehl’s Category Theory in Context takes a similar approach and introduces
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some key structures early on — monoidal categories, rings, and monoids in

the section on diagram chasing [59, § 1.6], for example — but again the topics

important to our purposes are relegated to a brief appendix [59, § E.2].

Other commonly cited texts take too slow a pace and provide too little

coverage of the material leading up to dagger compact closed structure,

or no coverage at all. Examples include Basic Category Theory by Tom

Leinster [46], and Category Theory by Steve Awodey [3].

Coecke, co-inventor of Cat-qm, has written and co-written quite some

expository material on the topic (eg. [15, 17]), but we consider much that

work unsuitable too since he does his best to avoid discussing the underlying

mathematical details.

The texts most suited to our audience and purposes might be Bob Coecke

and Éric Paquette’s “Categories for the practising physicist” [18], and Chris

Heunen and Jamie Vicary’s Categories for Quantum Theory [35], but these

too have problems. The former contains much material we do not need, and

its treatment of adjoints is unsatisfying. It provides solid physical motiva-

tions, but very little mathematical motivation for the structures it discusses.

The latter contains excellent coverage of dagger compact closed categories,

but here too, the mathematics is unmotivated. Many definitions are little

more than long lists of axioms that lead to very little understanding of the

material. To those who are already convinced that category theory is the

right approach to quantum theory and want to learn to do the computations,

it is a perfect book. To philosophers (whether or not they are “of physics”),

it is unsatisfactory.

In chapter 2, we therefore provide a bottom-up introduction to the study

of 1-categories. We do not discuss adjunctions and universal properties which

many of the established texts begin with, but take as direct a route to
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2-categories as possible. These are the natural setting in which to study

monoidal categories, which are the topic of chapter 3.

In the second part, we discuss categorical physics. Chapter 4 examines

the categorical structure of physical theories. We take as our starting point

Coecke’s observation that the general structure of an operational physical

theory is that of a category [15], and then ask:

Question 1.17. Which categorical structure must every operational

physical theory have?

We show that every such theory must have symmetric monoidal struc-

ture. We then discuss Abramsky and Coecke’s categorical semantics [1] in

detail: adding three assumptions — that our physical category is a sub-

category of the category of complex Hilbert spaces and linear maps, that

adjunctions encode correlations, and that biproducts encode indeterministic

branching — leads to finitary quantum mechanics. Hence, the correct prin-

ciples of a significant part of quantum mechanics are these three.

But a good reaxiomatisation should also distinguish quantum from clas-

sical mechanics. In chapter 5 we ask:

Question 1.18. How many of these principles apply to classical

mechanics as well?

To answer this, we attempt to translate the categorical semantics for

quantum protocols to the classical protocols. Koopman-Von Neumann mech-

anics [41, 53] provides a Hilbert space formulation of classical mechanics, and

therefore is the natural setting for such a translation. We show that classical

mechanics cannot be done in finite-dimensional Hilbert spaces, and that a

category for classical physics therefore cannot have the same kind of ad-

junctions as the quantum category. And because there are no adjunctions,
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biproducts do not appear there in the same natural way as in quantum

mechanics.

We conclude that neither Hilbert spaces nor tensor product structure are

characteristics of quantum theory, but that any categorical quantum theory

must allow for adjunctions and biproducts. We discuss some implications

that a recent axiomatisation of the category of Hilbert spaces [35] has for

these results.
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Part I

Mathematical Preliminaries
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Chapter 2

Category theory

Many mathematical structures form natural collections connected by struc-

ture-preserving maps, such as sets with functions, groups with group ho-

momorphisms, vector spaces with linear maps, and topological spaces with

continuous functions. Set theory is too austere to study these collections

without significant added baggage: they are the subject of category theory.

Originally intended as a language for algebraic topology, category the-

ory — like set theory — has grown into an independent mathematical field

with elegant and surprising results of its own, and quite some foundations

potential — though in the opposite direction to set theory. Whereas set

theorists axiomatise the two-place predicate ∈, and thereby break mathem-

atical structures down to their many smallest components, category theor-

ists axiomatise a three-place composition predicate for structure-preserving

maps. They generalise and abstract, so as to show that seemingly separate

structures are all instances of a far larger single thing ([43] attributes this

two-place-three-place distinction to William Lawvere).

The most elegant and rigorous introduction to category theory available

today might be Mac Lane’s Categories for the Working Mathematician [47];
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one of the best reference works (and a moderately good introduction) is

the nLab [55], a collaborative website written by and for category theorists.

Unfortunately, both are nigh-indecipherable to anyone who is not a working

mathematician. Other textbook discussions are more accessible, but they

often discuss category theory in an unmotivated way (such as the otherwise

excellent Categories for Quantum Theory by Heunen and Vicary [35]), or

hide it behind hundreds of pages of motivating mathematical preliminaries,

as a topic among topics (such as George Bergman’s Invitation to General

Algebra and Universal Constructions [11]).

We strive for a balance between the three extremes. In this chapter and

the next, we try to be as rigorous as possible while keeping our narrative

intuitively motivated and readable to non-mathematicians. This often means

delaying generalisations for longer than most texts: for example, we discuss

products and coproducts before functors, and only later point out that the

former are instances of the latter. This allows us to provide several examples

of products, coproducts, and other constructions, so that we have a stock of

well-understood examples at hand before tackling natural transformations

and similarly abstract material. It also means re-deriving some well-known

results from the perspective of the quantum mechanic or the philosopher

of physics. While most authors are content to build structures out of loose

components that mathematics already had “lying around” and then show

that the result fits some aspect of quantum mechanics, we try to justify

the structures and generalisations we use, with the mathematical structure

of quantum mechanics as our starting point. Our goal, then, is to write a

text as readable and motivated for philosophers as Steve Awodey’s Category

Theory [3], but faster-paced, as focused for quantum theory as Heunen and

Vicary’s [35], but better motivated, and perhaps with a shadow of Mac
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Lane’s [47] elegance and rigour.

In this chapter, we define some of the most important algebraic structures

for category theory. We start with categories themselves (§ 2.1), and then

discuss functors (§ 2.4), and finally natural transformations (§ 2.6). We define

a number of categories, some of which (HilbC, FdHilbC) are important for

categorical approaches to quantum mechanics. Others (NToset, N2Poset)

are useful examples of concepts that might otherwise be difficult to illustrate.

Along the way, we also discuss other structures including poset and toset

categories (§ 2.2); products, coproducts, and lattices (§ 2.3); as well as groups

and their representations (§ 2.5). Our presentation of the material is mostly

based on Heunen and Vicary [35] and Mac Lane [47].

2.1 Categories

It is possible, in principle, to define categories without referring to sets and

classes, types, or any other foundational system of mathematics (e.g. [45]),

though few sources actually do this. It is also possible to define categories

in a foundations-agnostic way, which many texts do. Because foundations of

mathematics are not our main concern, and because we expect our audience

is more familiar with set theory than with other foundational systems, we

define categories in terms of sets and classes.

Definition 2.1. A category C consist of a class C0 of objects, a class C1 of

morphisms, and a partial function ◦ : C1×C1 → C1 called the composition

rule, such that:

(i) C1 is partitioned by the ordered pairs of C0: for all A,B ∈ C0, there

exists a hom-set or hom-class C1 (A,B) ⊆ C1, and every morphism

f ∈ C1 belongs to exactly one such hom-class. We write A
f−→ B for
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f ∈ C1 (A,B); in that case we say that A is the domain of f (or:

A = dom f) and that B is the codomain of f (or: B = cod f);

(ii) g ◦ f is defined if and only if dom g = cod f ;

(iii) for all A,B,C ∈ C0, the composition rule maps C1 (B,C)×C1 (A,B)

to C1 (A,C);

(iv) the composition rule is associative, i.e. for all A
f−→ B, B

g−→ C, and

C
h−→ D, with A,B,C,D ∈ C0 the following diagram commutes:

A B

C D

f

g

h

g ◦ f
h ◦ g (2.1)

(v) for allA,B ∈ C0 there exist identity morphisms A
idA−−→ A andB

idB−−→ B

such that the following diagram commutes for all A
f−→ B:

A A

B B

idA

f

idB

f

f
(2.2)

A diagram commutes if all paths that follow the arrows and have the same

start and end-points are equivalent.

Many mathematical structures naturally form categories, with instances

of the structure as objects, and structure-preserving maps as morphisms.

Here are some examples:
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Example 2.2. In the category Rel:

(i) Rel0 is the class of all sets;

(ii) Rel1 (A,B) is the class of all binary relations between A and B;

(iii) idA = {(a, a) | a ∈ A};

(iv) the composition of A
R−→ B and B

S−→ C is {(a, c) | ∃b(aRb ∧ bSc)}.

The diagram

A

B C

R

S

T
(2.3)

commutes in Rel if for all (a, c) ∈ T there exists a b ∈ B such that aRb and

bSc.

Example 2.3. In the category Set:

(i) Set0 is the class of all sets;

(ii) for all A,B ∈ Set0, Set1 (A,B) is the class of all functions A→ B;

(iii) identity morphisms are identity functions.

The diagram

A

B C

f

g

h
(2.4)

commutes in Set if for all a ∈ A we have h(a) = g(f(a)).

Example 2.4. In the category VectK:

(i) the objects are all the vector spaces over the field K;
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(ii) the morphisms are all the bounded linear transformations between

K-vector spaces;

(iii) composition is function composition;

(iv) identity morphisms are identity functions.

FdVectK is the restriction of VectK to only the finite-dimensional K-vector

spaces. HilbK has all the Hilbert spaces over the field K as its objects

and all the bounded linear transformations between them as its morphisms.

FdHilbK has all the finite-dimensional K-Hilbert spaces as its objects and

all the linear transformations between them as its morphisms The commut-

ation conditions for eq. (2.4) in VectK, FdVectK, HilbK, and FdHilbK are

the same as those in Set.

Clearly, there is some kind of inclusion relation between Set and Rel,

and a similar relation between HilbK and FdHilbK. We formalise this by

defining subcategories.

Definition 2.5. A category C is a subcategory of the category D if:

(i) C0 ⊆ D0,

(ii) for all A,B ∈ C0, C1 (A,B) ⊆ D1 (A,B),

(iii) C and D have the same identities, and the same composition rule.

C is a full subcategory of D if C1 (A,B) = D1 (A,B) for all A,B ∈ C0, and

C is a wide subcategory of D if C0 = D0.

Hence, Set, VectK, FdVectK, HilbK and FdHilbK are all subcategor-

ies of Rel; the categories VectK, FdVectK, HilbK, and FdHilbK are sub-

categories of Set; and FdHilbK is a full subcategory of both HilbK and

FdVectK.
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Recall that according to definition 2.1, the objects and the morphisms

in a category C both form classes. If we had only spoken of sets, category

theory would be vulnerable to the paradoxes of set theory: the category of

all categories invites the same problems as the set of all sets. We can make

precise the way we dodge these paradoxes, by imposing “size restrictions”:

Definition 2.6. A category C is locally small if every hom-class C1 (A,B)

is a set. It is small if C0 and C1 are both sets.

Note that smallness implies local smallness, but that the inverse does

not hold. For example, the category Set is locally small — the class of all

functions between two sets is a set — but is is not small since Set0 is the

class of all sets.

The categorical analogue to the class of all sets is the category of all small

categories. (It is possible to create a category-like structure whose objects

are categories that are not small [47, p.23 f.], but we will not do that.)

Locally small categories let us dodge set-theoretical paradoxes in certain

circumstances (for example, when working with enriched categories) while

preserving some of the flexibility of non-small categories.

Many more familiar mathematical concepts have exact categorical equi-

valents, such as the following:

Definition 2.7. A morphism f is an endomorphism if dom f = cod f ; the

morphism A
f−→ B is an isomorphism if there exists a morphism B

f inv−−→ A

such that

f inv ◦ f = idA and f ◦ f inv = idB (2.5)

In that case, A and B are said to be isomorphic objects, and we write

A ≃ B. Every object is isomorphic to itself by its identity morphism, and

isomorphism is transitive: A ≃ B and B ≃ C imply A ≃ C.

37



In Set the isomorphisms are exactly the bijective functions.

Definition 2.8. A morphism B
m−→ C is monic (or: m is a monomorphism)

if for each object A and all morphisms A
f−→ B, A

g−→ B we have

m ◦ f = m ◦ g ⇒ f = g. (2.6)

That is, the commutativity of:

B

A

A

C

f

idA

g

m (2.7)

implies f = g.

The dual notion to monomorphism is the epimorphism. A morphism

C
e−→ B is epic if for all B

f−→ A, B
g−→ A we have

f ◦ e = g ◦ e⇒ f = g. (2.8)

That is, the commutativity of

B

A

A

C

f

idA

g

e (2.9)

implies f = g.

As becomes clear from the above diagrams, mono- and epimorphisms

are dual in the sense that each can be defined as the other with the arrows

reversed. We will see several more such dualities in the remainder of this

Thesis.

In Set, the monomorphisms are all and only all the injective functions,
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and the epimorphisms are all and only all the surjective functions.

Every isomorphism is both monic and epic, but the converse does not

hold. By taking a subcategory of Set, imposing some extra structure on its

objects, and discarding all morphisms that do not respect that structure, we

can construct epimorphisms that are not surjective and therefore not iso:

Example 2.9 (nLab, [60, prop. 2.1]). In the category Ring whose objects

are all the rings, and whose morphisms are all the ring homomorphisms, the

canonical inclusion Z i−→ Q is monic, since it is injective.

Now let f, g : Q → Q be ring homomorphisms. For any a
b ∈ Q we then

have f
(
a
b

)
= f(a) (f(b))−1 and g

(
a
b

)
= g(a) (g(b))−1, so f = g if and only

if for all z ∈ Z: f(z) = g(z). Therefore f ◦ i = g ◦ i implies f = g, so i is epic

but not surjective.

A fundamental dogma of category theory is that the most abstract con-

cepts deserve the most attention. Hence, we will not speak of objects when

describing something that can be defined in terms of morphisms and — later

on — we will always prefer functors over morphisms, and natural transform-

ations over functors.

2.2 Constructions on categories

We now move on to constructions on categories. We have already seen one

kind, namely subcategory-of. Here we consider two more.

Definition 2.10. The product category of categories A and B is the cat-

egory A×B in which:

(i) the class (A×B)0 of objects of A×B is the class of all ordered pairs

(A,B) with A ∈ A0 and B ∈ B0;
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(ii) the class (A×B)1 ((A,B), (A′, B′)) of morphisms (A,B) −→ (A′, B′)

in A×B is the class of all ordered pairs (f, g) with A
f−→ A′ and

B
g−→ B′;

(iii) composition is pairwise: (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′);

(iv) identity morphisms are ordered pairs of identity morphisms: id(A,B) =

(idA, idB).

Consider the category NToset in which:

(i) the objects are the natural numbers;

(ii) for every object n there exists a morphism n −→ n+ 1;

(iii) no two objects have more than one morphism between them;

(iv) all diagrams commute (as long as their morphisms exist). In fact, a

morphism in NToset is nothing more than an arrow from one object

to another.

This category is a totally ordered set under the relation

A ≤ B ⇐⇒ there exists a morphism A −→ B, (2.10)

since:

(i) by definition 2.1, there exists a morphism A −→ A for every object A

(reflexivity);

(ii) by definition 2.1, if morphisms A −→ B and B −→ C exist, then so does

a morphism A −→ C (transitivity);

(iii) morphisms A −→ B and B −→ A both exist if and only if A = B

(antisymmetry);
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(iv) for all objects A and B, there exists a morphism A −→ B or a morphism

B −→ A (totality).

In the product category N2Poset = NToset×NToset, we define:

(A,B) ⪯ (A′, B′) ⇐⇒ there exists a morphism (A,B) −→ (A′, B′). (2.11)

N2Poset is a partially ordered set under ⪯: it still satisfies the axioms of

reflexivity, transitivity, and antisymmetry, but it has incomparable objects

such as (2, 1) and (1, 2).

Having seen the above examples, we can define poset and toset categories:

Definition 2.11. A category C is a poset if for all A,B ∈ C0, C1 (A,B) ∪

C1 (B,A) is either empty, or a singleton set. C is a toset if for all A,B ∈ C0,

C1 (A,B) ∪C1 (B,A) is a singleton set.

In both cases, reflexivity and transitivity follow from definition 2.1, and

antisymmetry follows from the current definition plus the requirement that

every object has an identity morphism. In the case of a toset, totality follows

from the requirement that for all A,B ∈ C0, there must exist either a

morphism A −→ B or a morphism B −→ A, since otherwise C1 (A,B) ∪

C1 (B,A) would be empty.

Our final construction on categories is the opposite category:

Definition 2.12. The opposite category Cop of a category C has the same

objects as C, but has morphisms in the opposite direction. Where C has a

morphism A
f−→ B, Cop has B

fop−−→ A.

For example, NTosetop is a total order of the natural numbers under

the relation ≥.

41



2.3 Constructions in categories

The constructions we have seen so far — subcategory, product category,

opposite category — relate categories to each other. We now examine five

ways objects and morphisms within a category may relate to each other. We

first discuss products and their dual notion, coproducts. We then discuss

initial objects and their dual notion, terminal objects. We end by defining

zero objects.

Consider the Cartesian product of sets. For A,B,X arbitrary sets, any

two functions f : X → A and g : X → B define a canonical function

f × g : X → A × B, such that the values of f(x) and g(x) are recoverable

from (f × g)(x). The category-theoretical product generalises the Cartesian

product on sets, and reveals to us a class of similar constructions, such as

the meet of a poset.

Definition 2.13. Let A and B be objects in a category. Their product is

an object A Π B along with morphisms A Π B
πA−−→ A and A Π B

πB−−→ B,

such that any morphisms X
f−→ A and X

g−→ B define a unique morphism

X
fΠg−−→ AΠB for which the following diagram commutes:

AΠBA B

X

f g

f Π g

πA πB

(2.12)

A category has finite products if for all objects A and B, it contains an

object AΠB.

Consider the following examples:

Example 2.14. In the category FdVectK, let {|ai⟩}i, {|bj⟩}j , {|xk⟩}k form
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bases of A, B, X. Also let f =
∑

i,k fik|ai⟩⟨xk| be a morphism X
f−→ A and

g =
∑

j,k gjk|bj⟩⟨xk| a morphism X
g−→ B. We then define

AΠB = A⊕B (2.13)

with f Π g, πA, and πB given by the following block matrices:

f Π g =

f
g

 (2.14)

πA =

[
idA 0

]
(2.15)

πB =

[
0′ idB

]
(2.16)

where 0 and 0′ are appropriately-sized zero matrices.

The product morphism f Π g maps each |ψ⟩ ∈ X to f |ψ⟩ ⊕ g|ψ⟩, where

f |ψ⟩ ∈ A and g|ψ⟩ ∈ B. The morphisms πA and πB send the subspaces

f(X) and g(X) of A⊕B to A and B. It follows then, that

πA ◦ (f Π g) = idA ·f + 0 · g

= f

(2.17)

and

πB ◦ (f Π g) = 0′ · f + idB ·g

= g

(2.18)

so eq. (2.12) commutes. Hence, FdVectK has finite products given by the

direct sum.
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Example 2.15. Products in Rel are disjoint unions:

AΠB = A ⊔B := {(a, ⋆), (b, •) | a ∈ A, b ∈ B} (2.19)

where ⋆ and • may be chosen freely, as long as ⋆ ̸= •. For X R−→ A and

X
S−→ B, we define:

R Π S = {(x, (a, ⋆)), (x, (b, •)) | x ∈ X,xRa, xSb} (2.20)

πA = {((a, ⋆), a) | (a, ⋆) ∈ A ⊔B} (2.21)

πB = {((b, •), b) | (b, •) ∈ A ⊔B} (2.22)

According to the definition in example 2.2, eq. (2.12) commutes if for all

x ∈ X:

xRa ⇐⇒ ∃c(x(R Π S)(c, ⋆) ∧ (c, ⋆)πAa) (2.23)

and

xRb ⇐⇒ ∃c(x(R Π S)(c, •) ∧ (c, •)πBb) (2.24)

To see that the first of these conditions holds, note that if c = a, then

(c, ⋆)πAa. All that we need to prove, then, is xRa ⇐⇒ x(R Π S)(a, ⋆),

which follows directly from the definition of RΠS. The proof for the second

condition is similar, so eq. (2.12) commutes.

Example 2.16. For objects A = (a, a′) and B = (b, b′) in N2Poset, let

A Π B = (min(a, b),min(a′, b′)). Clearly, A Π B ⪯ A and A Π B ⪯ B. Now

let X = (x, x′) also be an object in N2Poset. If X ⪯ A then x ≤ a and

x′ ≤ a′; if X ⪯ B then x ≤ b and x′ ≤ b′. So if X ⪯ A and X ⪯ B, then
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X ⪯ AΠB, and the following diagram commutes:

AΠBA B

X

(2.25)

Hence, AΠB is a product in N2Poset. As AΠB is defined for all objects

A and B, N2Poset has finite products.

Recall that in a poset, for all A, B, and X, the following properties:

(i) AΠB ⪯ A;

(ii) AΠB ⪯ B;

(iii) if X ⪯ A and X ⪯ B then X ⪯ AΠB.

are exactly the definition of the meet, and note that they always define a

product. Therefore, products in posets are always meets and vice versa.

Now consider the disjoint union of sets. For any sets A and B there exist

canonical functions κA : A→ A⊔B and κB : B → A⊔B. Any two functions

f : A→ X and g : B → X then define a unique function f ⊔ g : A⊔B → X

such that (f ⊔ g) ◦ κA = f and (f ⊔ g) ◦ κB = g. The coproduct generalises

this property of ⊔, and reveals connections to other constructions.

Definition 2.17. Let A and B be objects in some category. Their coproduct

is an object A ⨿ B along with morphisms A
κA−−→ A ⨿ B and B

κB−−→ A ⨿ B

such that any two morphisms A
f−→ X and B

g−→ X define a unique morphism
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A⨿B
f⨿g−−→ X for which the following diagram commutes:

A⨿BA B

X

f g

f ⨿ g

κA κB

(2.26)

A category has finite coproducts if for all objects A and B, it has an

object A⨿B.

Here are some examples:

Example 2.18. For any objects A,B,X, and morphisms A
f−→ X, B

g−→ X

in FdVectK, let:

A⨿B = A⊕B (2.27)

f ⨿ g =

[
f g

]
(2.28)

κA =

idA
0

 (2.29)

κB =

 0′

idB

 (2.30)

where, again, 0 and 0′ are appropriately-sized zero matrices. It follows then,

that

(f ⨿ g) ◦ κA = f · idA+g · 0

= f

(2.31)
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and

(f ⨿ g) ◦ κB = f · 0′ + g · idB

= g

(2.32)

so eq. (2.26) commutes. Therefore, FdVectK has finite coproducts given by

the direct sum.

Example 2.19. The disjoint sum is a coproduct in Rel; for relations A
R−→

X and B
S−→ X, let R ⨿ S, κA, and κB be the converses of the morphisms

R Π S, πA, and πB defined in example 2.15. The diagram in definition 2.17

then commutes.

In both FdVectK and Rel, the products are also coproducts, and vice

versa. This is because a product in a category is a coproduct in its opposite,

and because FdVectK and Rel are equal to their opposites. In our next

example, this is not the case.

Example 2.20. For any objects A = (a, a′) and B = (b, b′) in N2Poset,

let A ⨿ B = (max(a, b),max(a′, b′). Clearly, A ⪯ A ⨿ B and B ⪯ A ⨿ B.

Now let X = (x, x′) also be an object in N2Poset. If A ⪯ X then a ≤ x

and a′ ≤ x′; if B ⪯ X then b ≤ x and b′ ≤ x′. So if A ⪯ X and B ⪯ X then

A⨿B ⪯ X and the following diagram commutes:

A⨿BA B

X

(2.33)

Hence, A⨿B is a coproduct in N2Poset. As A⨿B is defined for all objects

A and B, N2Poset has finite coproducts.
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Recall that in a poset, for all A, B, and X, the following properties:

(i) A ⪯ A⨿B;

(ii) B ⪯ A⨿B;

(iii) if A ⪯ X and B ⪯ X then A⨿B ⪯ X.

are exactly the definition of a join. Therefore, coproducts in posets are always

joins, and vice versa. This lets us define a lattice in category-theoretical

language.

Definition 2.21. A lattice is a poset category with finite products and

coproducts.

We return to Set again. Note that for each set A there exists an empty

function ∅ → A. Also, for each singleton set {⋆}, there exists a unique

function A→ {⋆}. The following notions generalise this:

Definition 2.22. An object I is initial in a category C if there exists a

unique morphism I −→ A for each object A of C. An object T is terminal

in C if for each A ∈ C0 there exists a unique morphism A −→ T . An object

that is both initial and terminal is a zero object.

Here are some examples:

(i) 0 is initial in NToset and terminal in NTosetop;

(ii) a bounded lattice is a lattice with an initial object and a terminal

object;

(iii) the zero vector space is a zero object in VectK;

(iv) in Rel, the empty set is a zero object;
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(v) in the category of all groups, with group homomorphisms as morph-

isms, all groups of order 1 are zero objects.

Note that a category may have many — even infinitely many — initial,

terminal, or zero objects. In Set, for example, there are infinitely many

singletons, and in the category of groups there are infinitely many trivial

groups. Since these are all isomorphic, it does not matter which we use, so

we can still speak of the initial/terminal/zero object. This use of the occurs

frequently in category theory.

A property that will turn out useful later on is that in a category with a

zero object 0, any objects A and B have at least one morphism 0A,B between

them, given by the composition of A −→ 0 and 0 −→ B.

2.4 Functors

The existence of constructions on and in categories suggest the idea of func-

tors, which are mappings between categories. Many constructions on and

in categories, as we shall see later on, can be described and studied in a

more concise and general way if we work at the level of functors instead of

objects and morphisms. We first define several kinds of functors and provide

examples. Then we discuss equivalence functors in more detail.

Definition 2.23. A functor between categories C and D is a mapping

F : C → D which:

(i) sends objects to objects;

(ii) sends morphisms to morphisms;

(iii) sends identity morphisms to identity morphisms: F (idA) = idF (A);
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(iv) preserves commutativity of diagrams: for all A
f−→ B and B

g−→ C in

C, F (g ◦ f) = F (g) ◦ F (f).

Additionally, every functor is either covariant or contravariant . A covari-

ant functor preserves the directions of morphisms:1 C1 (A,B) is mapped to

D1 (F (A), F (B)). A contravariant functor reverses their directions:C1 (A,B)

is mapped to D1 (F (B), F (A)). From now on, when we do not specify the

variance of a functor, it is covariant.

An endofunctor is a functor from a category to itself. A contravariant

endofunctor is a functor from a category to its opposite. A bifunctor is a

functor whose domain is a product category.

If a functor C → D maps every object of C to the same object D ∈ D0,

and maps every morphism in C to idD, we call it a constant functor . An

endofunctor F : C → C is an identity if F (C) = C and F (f) = f for every

object C and morphism f of C.

Here are some examples of functors:

Example 2.24. If C is a category with finite products, then the product

is given by a bifunctor Π : C×C → C. If C has finite coproducts, then we

have a bifunctor ⨿ : C×C → C.

Example 2.25. There exists a contravariant endofunctor F : NToset →

NTosetop, in which every object k of NToset is mapped to the object 2k in

NTosetop. This functor maps the toset of natural numbers with ≤ to that

of even natural numbers with ≥.

Example 2.26. There exists a constant functor G : Rel → NToset which

maps every object to the number 12, and every morphism to id12.

1This is one of only two cases in all of category theory where “co” does not mean
something is flipped around. The other instance is “cone”, but we will not discuss those.
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Example 2.27. Consider the category FdMatK in which the objects are

the natural numbers, the morphisms m −→ n are all the n×m matrices over

the fieldK, identity objects are identity matrices, and morphism composition

is matrix multiplication.

There exists a functor H : FdMatK → FdVectK which maps every

object n of FdMatK to the vector space Kn, and every n×m matrix M to

the function Km → Kn :: |ψ⟩ 7→ M|ψ⟩.

Intuitively, it is clear that FdMatK and FdVectK are very similar categor-

ies, and that the functorH expresses this similarity. The objects of FdMatK

may seem to ‘carry less information’ or ‘be simpler’ than those of FdVectK,

but the category-theoretician is not very interested in the internal struc-

ture of objects: morphisms matter more. Since every n ×m matrix over K

defines a linear map from an m-dimensional to an n-dimensional K-vector

space, there seems to be a canonical mapping for morphisms between the

two categories.

But the morphisms have to belong to objects: without a canonical object-

to-object map, there can be no canonical morphism-to-morphism map. It is

not at all clear from the definition of FdVectK whether we regard, say,

the Banach spaces Kn
Banach and the inner product spaces Kn

inner as separate

objects. If they are indeed separate objects, to which one should we map the

object n of FdMatK? And what of the vector space of all m×n K-matrices:

is this the same object as Kmn
Banach or Kmn

inner, or is it yet another object?

The most category-theoretical solution is not to worry about such fine-

grained distinctions between objects. As long as Kmn
matrices, Kmn

Banach, Kmn
inner,

and all other mn-dimensional K-vector spaces are at least isomorphic, it

does not matter which one we use. The isomorphisms will ‘give us access’

to all the others.
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In this spirit, a functor like H, which expresses some similarity between

two categories, is called an equivalence if it provides a bijective mapping of

objects and morphisms of the one category, to objects and morphisms of the

other, up to some isomorphism of objects. Here is a more formal definition:

Definition 2.28. A functor K : C → D is an equivalence if it is:

(i) full, i.e. for all A,B ∈ C0, the function

C1 (A,B) → D1 (K(A),K(B))

f 7→ K(f)

(2.34)

is surjective;

(ii) faithful, i.e. for all A,B ∈ C0, the function

C1 (A,B) → D1 (K(A),K(B))

f 7→ K(f)

(2.35)

is injective;

(iii) essentially surjective on objects (eso), i.e. for eachD ∈ D0, there exists

a C ∈ C0 such that D ≃ K(C).

Categories C and D are equivalent if there exists an equivalence C → D.

Consider again the functor F : NToset → NTosetop of example 2.25. For

any objectsm and n, the hom-sets NToset1 (m,n) and NTosetop1 (2n, 2m)

either both contain one element (if m ≤ n), or both are empty (if m >

n). Therefore, the functions NToset1 (m,n) → NTosetop1 (2n, 2m) are all

bijections, so F is full and faithful.

Because morphisms m → n and n → m both exist in NTosetop iff

m = n, no object in NTosetop is isomorphic to any object other than itself.
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Since, additionally, the object-to-object function of F is not surjective, F

is not eso. This means that the categories NToset and NTosetop are not

equivalent by F .

Now for the functor G : Rel → NToset of example 2.26. For all objects

A and B of Rel, G defines a function Rel1 (A,B) → NToset1 (12, 12).

Since NToset1 (12, 12) is a singleton set, all these functions are surjective

but they are not all injective, so G is full but not faithful. Since the object-

to-object function of G is not surjective on NToset and no distinct objects

of NToset are isomorphic, G is not eso.

As we already hinted, H : FdMatK → FdVectK is an equivalence. For

each object m of FdMatK, let H(m) be the inner product space Km. Since

all vector spaces of the same dimension over the same field are isomorphic,

every object of FdVectK is isomorphic to some object H(m) of FdVectK,

so H is eso.

For all natural numbers m and n, H defines a function

Hm,n : FdMatK1 (m,n) → FdVectK1 (Km,Kn) (2.36)

which sends every n × m K-matrix M to the function |ψ⟩ 7→ M|ψ⟩. This

relation between matrices and linear functions is bijective, so H is both full

and faithful. This completes the proof that H is an equivalence.

Remark 2.29. We might expect that the existence of an equivalence func-

tor C → D implies that there also exists an equivalence functor D → C.

However, this is not immediately obvious from definition 2.28, and the proof

given by Mac Lane [47, p. 91 f.] is surprisingly involved. If we had taken a

truly categorical approach in this chapter, by introducing universal proper-

ties as soon as possible, we could have proven this in a few lines, but that
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approach has its own problems.

2.5 Groups as categories

The existence of identity morphisms and the associativity of morphism com-

position are built into the definition of a category. It therefore seems reas-

onable to define certain algebraic structures by mapping their elements to

morphisms. Here we discuss one category-theoretical way to define monoids

and groups.

A monoid is usually defined as a set that is closed under some associative

binary operation, and has an identity element. Equivalently: a monoid is a

group without the requirement that there are inverses. Hence, every group

is a monoid. Some examples of monoids that are not groups are the set of

natural numbers with the operation of addition, or the rotations of the plane

by k radians, where k = 0, 1, 2, . . ., with the operation of composition. Here

is a category-theoretical definition:

Definition 2.30. A monoid is a (locally) small category with only one

object. The identity morphism is the identity element of the monoid, and

morphism composition is the monoid operation.

The following examples will help to clarify and motivate the definition:

Example 2.31. Consider the category RotR2, whose only object is the set

R2. The morphisms of RotR2 are rotation matrices of the form:

Rk =

cos k − sin k

sin k cos k

 , (2.37)

where k = 0, 1, 2, . . . Composition of morphisms is matrix multiplication,

which is commutative on these matrices: Rj ◦ Rk = Rj+k = Rk ◦ Rj . The
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identity morphism is

R0 =

1 0

0 1

 . (2.38)

The set RotR2
1 = {R0, R1, R2, . . .} of all morphisms is a monoid: all ele-

ments are composable, composition is associative, the set is closed under

composition, and there is an identity element. It is easily verified that this

applies to all and only all small single-object categories. Hence, the category-

theoretic monoid consists of a conventional monoid, along with an object.

To see why we have to add an object to the conventional definition,

consider the category N where N1 = N, j ◦ k = j + k, N0 = {⋆}, and ⋆ is

an unspecified object. Even though the natural numbers do not act on ⋆ in

any way, this category fulfils all the requirements of definition 2.1:

(i) N1 is partitioned into one part by N0, as N1 = N1 (⋆, ⋆);

(ii) j ◦ k is defined for all j, k ∈ N1 (⋆, ⋆);

(iii) the composition operation ◦ maps N1 (⋆, ⋆)×N1 (⋆, ⋆) to N1 (⋆, ⋆);

(iv) the operator ◦ is associative: j◦(k◦l) = j+(k+l) = (j+k)+l = (j◦k)◦l;

(v) and there is an identity morphism: 0 ◦ k = 0 + k = k = k + 0 = k ◦ 0.

Additionally, N is equivalent to RotR2 by a functor F , defined as:

F (⋆) = R2 (2.39)

F (k) = Rk (2.40)

We can see then, that N is an abstract and RotR2 a concrete monoid, in

the same sense that a group can be abstract or concrete. The object of an

abstract monoid provides a slot, in which a functor can place an object for a
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concrete monoid to act upon. In this particular case, the abstract monoid N

is the natural numbers under addition; RotR2 is a monoid representation

of N — a concept completely analogous to that of a group representation.

To move from monoids to groups, we need to add inverses. Since monoid

elements are morphisms in a single-object category, and any morphism with

an inverse is an isomorphism, we have the following definition of a group:

Definition 2.32. A group is a monoid in which all morphisms are isomorph-

isms.

Here are some examples:

Example 2.33. We can extend the category RotR2 by adding an inverse

morphism

R−k =

 cos k sin k

− sin k cos k

 (2.41)

for each Rk. The result is a group of automorphisms of the plane. It is equi-

valent to the category Z, whose only object is ⋆ and whose morphisms are

all the integers, with addition as composition. Just as in N, the morphisms

of Z do not have to act on ⋆ in any way to fulfil the definition of a category.

Example 2.34. Let Cn denote the category with one object — again, call

it ⋆— and morphisms c, c2, c3, . . . , cn, where cn = id⋆ and c
k = c ◦ c ◦ · · · ◦ c︸ ︷︷ ︸

k copies of c

.

Every morphism in Cn can be written as ck for some k and has cn−k as its

inverse, since ck ◦ cn−k = cn = cn−k ◦ ck.

These categories Cn are exactly the (abstract) finite cyclic groups.

Now let G and H be (conventional) groups, where G has identity element

eG and H has identity eH . Recall that a group homomorphism from G to

H is a function m which:
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(i) sends elements of G to elements of H;

(ii) sends identity to identity: m (eG) = eH ;

(iii) preserves group structure: for all f, g ∈ G: m(fg) = m(f)m(g).

These are three of the four functor axioms given in definition 2.23; the only

thing missing is an object-to-object map.2 But since a group-as-category

has only one object, only one object-to-object map is possible between two

groups. Hence, every group homomorphism determines a unique functor

between groups, and vice versa. Recall also, that a representation of an

abstract group G is a homomorphism from G to the automorphism group

of a vector space. This gives us:

Definition 2.35. A group representation is a functor from a group to

VectK.

2.6 Natural transformations

One level higher than the functor, is the natural transformation. Just as

a functor is a map between categories, a natural transformation is a map

between functors.

Definition 2.36. Given functors F : C → D and G : C → D, a natural

transformation τ : F •−→ G assigns a morphism τA in D1 to every A ∈ C0,

such that the following diagram commutes for all A
f−→ B in C:

F (A) G(A)

F (B) G(B)

τA

τB

F (f) G(f) (2.42)

2We need not worry about co- or contravariance, because a group is a category with
only one object.
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We then say that τ : F •−→ G is natural in A. If every τA is iso, then τ is a

natural isomorphism or natural equivalence and the functors F and G are

naturally isomorphic or naturally equivalent. Instead of τ : F •−→ G we then

write τ : F ∼= G.

Now let F and G be bifunctors B×C → D. Then τ is natural in B and

C if the diagrams

F (B,C) G(B,C)

F (B′, C) G(B′, C)

τB,C

F (f) G(f)

τB′,C

F (B,C) G(B,C)

F (B,C ′) G(B,C ′)

τB,C

F (g) G(g)

τB,C′

(2.43)

commute for all (B,C)
f−→ (B′, C) and (B,C)

g−→ (B,C ′). The diagram on

the left fixes C and shows that τ is natural in B; the one on the right fixes

an object B and shows that τ is natural in C.

Because every morphism (B,C)
(f,g)−−−→ (B′, C ′) in a product category

factors as

(
(B,C)

(f,idC)−−−−→ (B′, C)
)
◦
(
(B′, C)

(idB′ ,g)−−−−−→ (B′, C ′)
)
, it follows

from the functoriality of F and G that naturality in B and C implies nat-

urality in (B,C).

Another, perhaps more intuitive way to phrase the definition of a natural

transformation is as follows: F : C → D and G : C → D both create an

image of C0 in D0. When we say that a natural transformation τ : F •−→ G

maps F to G, we mean that it maps the picture drawn by F to the picture

drawn by G, while preserving the commutativity of all diagrams. This map-

ping takes place in the category D, so for every C ∈ C0, there must exist a

morphism F (C)
τC−→ G(C) in D.

Naturality in a given variable means that varying that variable preserves

the commutativity of all morphism compositions, as shown in the following
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diagram, where τ is natural in A:

F (B)

F (A)

F (C)

G(B)

G(A)

G(C)

τA

τB

τC

F (f)

F (g)

F (g ◦ f)

G(f)

G(g)

G(g ◦ f) (2.44)

This commutes because it is composed of three quadrangles (F (A)−G(A)−

G(C)− F (C) and the two trapezia), all of which commute by naturality of

τ , and two triangles which both commute because F and G are functors.

This definition is best illustrated with some examples:

Example 2.37. Given two K-Hilbert spaces C andD, the set of all bounded

linear maps C → D is itself a K-Hilbert space, so every hom-set in HilbK

is also an object of HilbK. We can therefore construct a bifunctor L :

HilbK
op×HilbK → HilbK which sends the objects C and D to the Hilbert

space L(C,D) = HilbK1 (C,D).

For morphisms, L is a map from linear maps between Hilbert spaces to

linear maps between Hilbert spaces of linear maps between Hilbert spaces:

for all x ∈ L(C,D), B
g−→ C, and D

h−→ E, L(g, h) maps x 7→ h ◦ x ◦ g.

The result is a linear map B
g−→ C

x−→ D
h−→ E. If we also have A

f−→ B and

E
i−→ F , composition is defined as:

(L(f, i) ◦ L(g, h))x = L(f ◦ g, i ◦ h)x (2.45)

= i ◦ h ◦ x ◦ g ◦ f. (2.46)

This gives a linear function A→ F by a long detour: A
f−→ B

g−→ C
x−→ D

h−→

E
i−→ F . Note that L is covariant in its second, and contravariant in its first
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variable: the pair (g, h), consisting of a morphism B −→ C and a morphism

D −→ E is mapped to a morphism L(C,D)
L(g,h)−−−−→ L(B,E).

We can also define a bifunctor ⊗ : HilbK×HilbK → HilbK which maps

Hilbert spaces B and C to B⊗C. For every object (B,C) in HilbK×HilbK

there then exists a bounded linear function ϕB,C : L(B,C) → B ⊗ C, given

by: ∑
j,k

mj,k|ck⟩⟨bj | 7→
∑
j,k

mj,k|bj⟩ ⊗ |ck⟩ (2.47)

where {|bj⟩}j and {|ck⟩}k are orthonormal bases of B and C.

Now let A
f−→ B =

∑
i,j fij |bj⟩⟨ai| and C

g−→ D =
∑

k,l gkl|dl⟩⟨ck|, where

{|ai⟩}i and {|dl⟩}l are orthonormal bases of A and D. We then have:

L(f, g)
∑
j,k

mjk|ck⟩⟨bj | =
∑
i,j,k,l

mjkfikgjl|dl⟩⟨ai| (2.48)

[f ⊗ g]
∑
i,j

mjk|bj⟩ ⊗ |ck⟩ =
∑
i,j,k,l

mjkfikgjl|ai⟩ ⊗ |dl⟩. (2.49)

This in turn gives us ϕA,D ◦ L(f, g) = (f ⊗ g) ◦ ϕB,C . Since ϕA,D, ϕB,C ,

L(f, g), and f ⊗ g are all morphisms of HilbK, that is equivalent to stating

that the following diagram commutes:

L(B,C) B ⊗ C

L(A,D) A⊗D

ϕB,C

ϕA,D

L(f, g) f ⊗ g (2.50)

If we let f = idB or g = idC , then this proves that ϕ is natural in B and C.

Because every ϕB,C is a bijection, ϕ is a natural isomorphism L ∼= ⊗.

Example 2.38 (Group intertwiner). Fix a natural number n > 0 and con-

sider the functors F : Cn → FdVectR and G : Cn → FdVectR, given
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by:

F (⋆) = G(⋆) = R3 (2.51)

F
(
ck
)
=


cos
(
2kπ
n

)
− sin

(
2kπ
n

)
0

sin
(
2kπ
n

)
cos
(
2kπ
n

)
0

0 0 1

 (2.52)

G
(
ck
)
=


cos
(
2kπ
n

)
0 − sin

(
2kπ
n

)
0 1 0

sin
(
2kπ
n

)
0 cos

(
2kπ
n

)
 (2.53)

F and G are both group representations, where F (Cn) is the group of

rotations of R3 around the z-axis by increments of 2π
n radians and G (Cn) is

the group of rotations of R3 around the y-axis by increments of 2π
n radians.

A natural transformation ι : F •−→ G must assign to ⋆ a morphism

F (⋆)
ι⋆−→ G(⋆) such that the following commutes for all ck:

F (⋆) G(⋆)

F (⋆) G(⋆)

ι⋆

ι⋆

F
(
ck
)

G
(
ck
) (2.54)

That is, ι⋆ is a matrix that solves

ι⋆F
(
ck
)
= G

(
ck
)
ι⋆ (2.55)

for all k. The matrix

ι⋆ =


1 0 0

0 0 1

0 1 0

 (2.56)
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is a solution: it is easily verified that


1 0 0

0 0 1

0 1 0

 ·


cos
(
2kπ
n

)
− sin

(
2kπ
n

)
0

sin
(
2kπ
n

)
cos
(
2kπ
n

)
0

0 0 1



=


cos
(
2kπ
n

)
0 − sin

(
2kπ
n

)
0 1 0

sin
(
2kπ
n

)
0 cos

(
2kπ
n

)
 ·


1 0 0

0 0 1

0 1 0

 . (2.57)

What this tells us is that F (Cn) and G (Cn) are similar, in that the

action of ι⋆ — namely, swapping the y and z-axis in R3 — swaps between

the actions of both concrete groups. Since ι⋆ is an invertible matrix, it is

an isomorphism on R3, so ι is not just a natural transformation, but also a

natural isomorphism.

Of course, it would have been easier to figure this out by examining

the matrices directly instead of looking for a natural transformation. In the

next example, we use a natural transformation to define groups — not as

categories by themselves, but as objects in categories — and already set

up some ideas that will return in the chapter on monoidal categories. The

example after that is far shorter, and brings us back to more standard linear

algebra.

Example 2.39. Let Ab be the category whose objects are all the Abelian

groups and whose morphisms are all their homomorphisms. It has finite

products, given by the direct sum, and for every object there must exist an

associative addition operation, an identity element, and inverses. We first

use products and morphisms to provide an identity element, an addition op-

eration, and inverses. Then we postulate a natural transformation to ensure
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the addition is associative.

First, we require that for each group G in Ab there exist a morphism

G⊕G
σ−→ G such that the following commutes:

G G⊕G

GG⊕G

η ⊕ idG

σidG ⊕η

σ

idG (2.58)

We call σ the addition of G: it maps any pair of group elements to the

sum of those elements in G. Equation (2.58) tells us that for any element g

of G:

σ(η(g), g) = g = σ(g, η(g)). (2.59)

Clearly then, η is a morphism which turns any element of G into the identity

element.

By definition, such a morphism must exist. Since Ab has a zero object,

there must exist homomorphisms G
0−→ 0 and 0

η′−→ G for every group G, and

since the image of a homomorphism from a group of order 1 to any other

group contains only the identity of the target group, we can construct η as

η = η′ ◦ 0. (2.60)

We use a similar tactic to create inverses. Let G
i−→ G be a homomorph-

ism that maps each element of G to its inverse. (Note that “element” means

“morphism in a category that is an Abelian group”, and that such a ho-

momorphism can only exist if G is Abelian.3) Then we require that the

3A similar construction can be done for the category of all groups, if we take as our
morphisms the homomorphisms and the antihomomorphisms.
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following diagram commutes for every G:

GG⊕G G⊕G

GG⊕G G⊕G

idG ⊕ idG idG ⊕ idG

i⊕ idG idG ⊕iη

σ σ

(2.61)

The right-hand rectangle of eq. (2.61) tells us that σ(g, i(g)) = η(g), i.e. that

adding a group element to its inverse on the right is the same as turning

that element into the group identity. The rectangle on the left tells us that

σ(i(g), g) = η(g).

So far, we have seen that every object in a category with finite products

and a zero object, in which eq. (2.58) and eq. (2.61) commute for every

object G, fulfils all the group axioms except associativity. To satisfy this last

condition, we need a natural isomorphism. Let ⊕(⊕, 1) : (Ab×Ab)×Ab →

Ab and ⊕(1,⊕) : Ab× (Ab×Ab) → Ab, where 1 is the identity functor

on Ab, be functors that map the three-fold products of the category Ab

to the subcategory of three-fold direct sums of groups, and let there be

an associator natural isomorphism α : ⊕(⊕, 1) ∼= ⊕(1,⊕) such that the

following commutes for all objects G1, G2, G3, H1, H2, H3 and morphisms

Gk
fk−→ Hk:

(G1 ⊕G2)⊕G3 G1 ⊕ (G2 ⊕G3)

(H1 ⊕H2)⊕H3 H1 ⊕ (H2 ⊕H3)

αG1,G2,G3

αH1,H2,H3

(f1 ⊕ f2)⊕ f3 f1 ⊕ (f2 ⊕ f3) (2.62)

The above diagram tells us, that applying group homomorphisms before

switching around the parentheses is the same as applying them after moving
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the parentheses.

In order for G and σ to satisfy the group associativity axiom, we need

the following diagram to commute:

GG⊕G G⊕G

(G⊕G)⊕G G⊕ (G⊕G)
αG,G,G

σ ⊕ idG idG ⊕σ

σ σ

(2.63)

This uses the natural isomorphism α to tell us that for any elements f, g, h

of G:

σ(σ(f, g), h) = σ(f, σ(g, h)). (2.64)

In general, we call diagrams like eq. (2.62) the naturality conditions for nat-

ural transformations, and diagrams like eq. (2.63) the coherence conditions

for categories.

Having seen how functors and natural transformations can work together

to define algebraic structures, we now move on to a more concise example:

Example 2.40 (Mac Lane [47, p. 16]). Let CRing be the category whose

objects are all the commutative rings and whose morphisms are all their

homomorphisms. Let Grp be the category of all groups with all group ho-

momorphisms. Let GLn : CRing → Grp be a functor that maps each

K ∈ CRing0 to the group of all invertible n × n matrices over K, and

each homomorphism f ∈ CRing1 to a function that maps the matrix with

entries kij to the matrix with entries f(kij). And let (−)× : CRing → Grp

be a functor that maps each K ∈ CRing0 to its group of units K×, and

each ring homomorphism K
f−→ K ′ to its restriction to K×.

Since the determinant detK(M) of an invertible matrix M over the ring
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K is an element of K×, and since matrix determinants are calculated the

same way for all rings, the following diagram commutes for all K:

GLn (K) K×

GLn (K
′) K ′×

detK

detK′

GLn (f) f× (2.65)

Hence, det is a natural transformation GLn
•−→ (−)×. Because taking de-

terminants is not an invertible operation, det is not a natural isomorphism.

We now discuss some properties of natural transformations, which will

lead up to the concept of a functor category:

Lemma 2.41. Let C and D be any categories, let F,G,H be functors

C → D, and let τ : F •−→ G, υ : G •−→ H be natural transformations. Then τ

and υ can be composed to construct a natural transformation ϕ : F •−→ H.

Proof. The construction is as follows:

F (d) H(d)

G(d)

F (d′) H(d′)

G(d′)

ϕd = υd ◦ τd

τd υd

ϕd′ = υd′ ◦ τd′

τd′ υd′

F (f) G(f) H(f) (2.66)

The naturality quadrangles for τ and υ, and the two triangles all commute

by definition, so the entire diagram commutes, with the rectangle stating

the naturality conditions for ϕ. We write ϕ = υτ for this composition.
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Lemma 2.42. For any functor G, there exists an identity natural isomorph-

ism 1 : G ∼= G:

G(c) G(c)

G(c′) G(c′)

1c = idG(c)

1c = idG(c′)

G(f) G(f) (2.67)

For any functors F,H and natural transformations τ : F •−→ G, υ : G •−→ H,

we then have 1τ = τ and υ1 = υ.

These properties motivate the following definition:

Definition 2.43. Given categories C and D, their functor category [C,D]

has all the functorsC → D as its objects, and all the natural transformations

between such functors as its morphisms. Lemmata 2.41 and 2.42 prove that

[C,D] is indeed a category.

Here are some examples:

Example 2.44. If G is a group, then [G,VectK] has all the representations

of G on K-vector spaces as its objects, and all the intertwiners between

representations as its morphisms.

Example 2.45. If P and Q are poset categories ordered by ⪯, then the

objects of [P,Q] are the order-preserving maps from P to Q. Now let F,G

be objects of [P,Q]. In order for there to exist a natural transformation

τ : F •−→ G, there must exist morphisms F (p)
τp−→ G(p) and F (p′)

τp′−−→ G(p′)

in Q for all p, p′ ∈ P0 where p ⪯ p′, since otherwise the diagram

F (p) G(p)

F (p′) G(p′)

τp

τp′

(2.68)
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does not exist, let alone commute. Therefore, τ : F •−→ G exists if and only

if for all p, p′:

p ⪯ p′ ⇒ F (p) ⪯ G(p) ∧ F (p′) ⪯ G(p′). (2.69)

Hence, [P,Q] is a partial order of order-preserving maps between posets,

where F ⪯ G iff there exists a natural transformation F •−→ G. If we let

p′ = p in eq. (2.69), we get:

F ⪯ G ⇐⇒ ∀p : F (p) ⪯ G(p). (2.70)

In particular, any category that can be written as [P,P], [[P,P], [P,P]],

[[[P,P], [P,P]], [[P,P], [P,P]]], aut cetera, is a poset. It might not even seem

far-fetched to combine these various structures into one: a poset, equipped

with order-preserving maps, between which there exist order-preserving maps,

between which there exist order-preserving maps, et cetera. Since every pair

of consecutive rungs in this ladder forms a category, does that mean we

can define “higher-order categories”? We answer this question in the next

chapter.
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Chapter 3

Monoidal categories

Monoidal categories generalise categories of vector spaces equipped with

tensor products. This broader structure includes categories of modules with

their tensors, functor categories with “horizontal composition”, and poset

categories with initial or terminal objects and finite coproducts or products.

Most important for our purposes is that categorical quantum mechanics

takes place inside monoidal categories.

The standard way of introducing monoidal categories is to display one or

two pages worth of axioms and commutative diagrams, including the fear-

some pentagon equation (examples include Mac Lane [47], and Heunen and

Vicary [35]). Others, such as Awodey, make these structures a bit more intu-

itive by first pointing out the classical monoidal structure of strict monoidal

categories [3, p. 79]. But when the time comes to weaken the strict definition

down to isomorphism, Awodey too resorts to spelling out the long definition

[3, pp. 168–171]. A third approach is that taken by the nLab, which men-

tions in passing, alongside the usual definition, that a monoidal category is

a weak 2-category with only one 0-cell [51]. Our introduction to monoidal

categories combines the best of Awodey’s and the nLab’s pedagogy: first
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we discuss the strict monoidal structure of a strict 2-category with a single

0-cell, then we generalise to weak 2-categories, after which we justify the

pentagon equation in terms of the conventual definition. Finally, we discuss

some applications and the graphical calculus.

To do so, we first list several categories with tensor-like bifunctors (§ 3.1),

and show in § 3.2 that one of these is equivalent to a strict 2-category with

only one 0-cell (independently defined by Samuel Eilenberg and Max Kelly

[21], and Jean-Marie Maranda [49]). To describe the other examples in a

similar manner, we move on to a more general structure, namely the weak

2-category, as defined by Bénabou [9]. In § 3.3 we define this structure and

show how each of our examples is equivalent to a weak 2-category with one

0-cell. That is our first definition of a monoidal category.

Because one of its elements is poorly motivated, we discuss the con-

ventional definition in terms of 1-categories in § 3.4, following the original

questions that Bénabou [7] and Mac Lane [48] asked, and the answers they

gave. That is our second (but historically the first) definition of a monoidal

category.

Equipped with two ways of studying the same structure, we then ex-

amine the way in which these two definitions are the same. This leads to

the concepts of vertical categorification and oidification. We then have the

necessary background to discuss the linear structure of monoidal categories:

we start with scalars (§ 3.6), followed by braiding and symmetry (§ 3.7), a

more general perspective on adjunctions (§ 3.8), and finally closed and com-

pact closed structure (§ 3.9). This material naturally leads to a graphical

calculus for tensor products, which we discuss in § 3.10.
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3.1 Some motivating examples

Example 3.1. For any category C, consider the category [C,C] of all endo-

functors onC. Since the objects of [C,C] are functors, they can be composed

like functions: let [G • F ]x = G (F (x)) for all F,G ∈ [C,C]0, with x ∈ C0

or x ∈ C1; and for any morphisms τ : F •−→ F ′, υ : G •−→ G′, let υ • τ be a

natural transformation G • F •−→ G′ • F ′.

G •F is guaranteed to exist in [C,C] because it is an endofunctor on C,

as is G′ • F ′. Also, note that τ : F •−→ F ′ implies G(τ) : G • F •−→ G • F ′.

Therefore, υ • τ can be constructed as follows:

(υ • τ)x = υF ′(x) ◦G(τx), (3.1)

so υ • τ is guaranteed to exist in [C,C].

Now let idC be the identity functor onC. Then for all objects F, F ′, G,G′, H

and all morphisms F
τ−→ F ′, G υ−→ G′ of [C,C], we have:

idC •F = F = F • idC (3.2)

[G • F ] υ•τ−−→
[
G′ • F ′] (3.3)

H • [G • F ] = [H •G] • F (3.4)

Example 3.2. Let 1 be the category with a single object ⋆ and a single

morphism id⋆, and let Cat be the category whose objects are all the small

categories, and whose morphisms are all the functors between small categor-

ies. Let A×B be the product category of A and B, and let F ×G = (F,G).

Then for anyA,A′,B,B′,C ∈ Cat0, and functors F : A → A′,G : B → B′,
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we have:

1×A ≃ A ≃ A× 1 (3.5)

(A×B)
F×G−−−→ (A′ ×B′) (3.6)

A× (B×C) ≃ (A×B)×C (3.7)

Example 3.3. Let ⊗ be the usual tensor product on VectK. Then for any

objects A,A′, B,B′, C and morphisms A
f−→ A′, B

g−→ B′ of VectK, we have:

K⊗A ≃ A ≃ A⊗K (3.8)

(A⊗B)
f⊗g−−→ (A′ ⊗B′) (3.9)

A⊗ (B ⊗ C) ≃ (A⊗B)⊗ C (3.10)

The common thread between all these examples is the existence of a bi-

functor under which the set of objects of each category becomes a monoid up

to isomorphism. This suggests that we can regard the objects of [C,C], Cat,

and VectK as morphisms of some categorical monoid, and the morphisms of

[C,C], Cat, VectK then become higher-order morphisms — i.e. morphisms

between morphisms. We now make this idea more precise.

3.2 Strict 2-categories

Consider again the category Cat. Its objects are all the small categories,

and its morphisms are all the functors between small categories. On top of

all this, there are also natural transformations which map morphisms —

i.e. functors — to morphisms, and therefore are “higher-order morphisms”

or “2-morphisms”. We call Cat-with-natural-transformations the strict 2-

category Cat. It consists of:
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(i) a class Cat0 of categories;

(ii) a class Cat1 of functors;

(iii) a class Cat2 of natural transformations.

Cat1 is partitioned by the ordered pairs of Cat0, and Cat2 is partitioned

by the ordered pairs of Cat1, so that for all A,B ∈ Cat0, there exists a

category [A,B].

In diagrams, we use single arrows for functors, and double arrows for

natural transformations:

A B

F

F ′

τ (3.11)

Because Cat has categorical structure on multiple levels, natural trans-

formations can be composed in multiple ways. There is “horizontal” com-

position, like this:

A B C

F

F ′

τ

G

G′

υ ⇒ A C

G • F

G′ • F ′

υ • τ (3.12)

and “vertical” composition, like this:

A B

F

F ′

F ′′

τ

υ

⇒ A B

F

F ′′

υ ◦ τ (3.13)

By pasting curved-morphism diagrams together and then pulling them
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apart, we get:

A B C

F

F ′

τ

G

G′

υ

A B C

F ′′

F ′

τ ′

G′′

G′

υ′

◦ = A B C

F

F ′

F ′′

τ

τ ′

G

G′

G′′

υ

υ′

= A B

F

F ′

F ′′

τ

τ ′

• B C

G

G′

G′′

υ

υ′

(3.14)

which proves that (υ′ • τ ′) ◦ (υ • τ) = (υ′ ◦ υ) • (τ ′ ◦ τ). Similarly, when

VectK is equipped with the tensor product ⊗, we have (f ′ ⊗ g′) ◦ (f ⊗ g) =

(f ′ ◦ f)⊗ (g′ ◦ g).

By now, the similarities between examples 3.1 to 3.3 and the strict 2-

category Cat are clear enough to motivate the following definition:

Definition 3.4 (Eilenberg and Kelly [21], Maranda [49]). A strict 2-category

C (formerly known as a hypercategory, category of the second type, or 2-

category) consists of a class C0 of 0-cells, a class C1 of 1-cells, and a class

C2 of 2-cells, such that:

(i) C0 and C1 form a category;

(ii) for every pair (A,B) of 0-cells, there exists a hom-category C (A,B),

whose objects are all the 1-cells in C1 (A,B), and whose morphisms

are 2-cells in C2 (A,B);

(iii) every 2-cell is a morphism of exactly one hom-category;
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(iv) any pair (τ, υ) of 2-cells with dom υ = cod τ can be vertically composed;

(v) for each triple (A,B,C) of 0-cells, there exists a horizontal composition

bifunctor □ : C (B,C)×C (A,B) → C (A,C).

We write τ : f ⇒ f ′ : A→ B to indicate that τ is a 2-cell with domain f and

codomain f ′, where f and f ′ are both 1-cells with domain A and codomain

B.

Vertical composition of 2-cells is morphism composition in a hom-category.

Given 2-cells τ : f ⇒ f ′ : A → B and υ : f ′ ⇒ f ′′ : A → B in C (A,B),

their vertical composition is υτ : f ⇒ f ′′ : A→ B.

Given τ : f ⇒ f ′ : A → B, υ : g ⇒ g′ : B → C, and ϕ : h ⇒ h′ : C → D

in a strict 2-category, horizontal composition is associative on 1-cells:

h□(g□f) = (h□g)□f (3.15)

so we can leave out the parentheses and write both sides of the equation

as h□g□f . In fact, horizontal composition on 1-cells is simply morphism

composition in the category C. The horizontal composition of the 2-cells τ

and υ is υ□τ : gf ⇒ g′f ′ : A→ C. Here, too, □ is associative:

ϕ□(υ□τ) = (ϕ□υ)□τ : h□g□f ⇒ h′□g′□f ′ : A→ D (3.16)

Remark 3.5. This definition can be extended upwards to make strict

3-categories, 4-categories, and n-categories, all the way up to strict ∞-

categories. It also extends downwards: a strict 1-category is just a category, a

0-category is a class, and, less obviously, a (-1)-category is a truth value. Al-

ternatively, we could say that every strict n-category is a strict ∞-category

in which all the k-cells for k > n are identities [5, pp. 10–13].
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A direct consequence of eq. (3.15), is that for any 0-cells A,B,C,D,E

and 1-cells A
f−→ B, B

g−→ C, C
h−→ D, D

i−→ E in a strict 2-category, we have:

i□(h□(g□f)) = (i□h)□(g□f) = ((i□h)□g)□f

= (i□(h□g))□f = i□((h□g)□f)
(3.17)

where □ is the composition operator for 1-cells, and that for every 0-cell C,

there exists a 1-cell idC such that

(g□ idC)□f = g□f = g□ (idC □f) (3.18)

for all 1-cells f, g with dom g = C = cod f .

Note also, that if we read the bifunctor • in example 3.1 as a horizontal

composition functor on 1-cells and 2-cells, it becomes clear that [C,C] is

equivalent to a strict 2-category whose only 0-cell is C, whose 1-cells are the

functors C → C, and whose 2-cells are the natural transformations between

the 1-cells.

We have thus defined a 2-category whose horizontal composition has

the same effect as the functor •. Unfortunately, the rather clean framework

of strict 2-categories does not allow enough room to do the same for Cat

with the bifunctor ×, or VectK with ⊗. For that, we need a more general

structure called the weak 2-category.

3.3 Weak 2-categories

A weak 2-category is identical to a strict 2-category, except that eqs. (3.15)

to (3.18) both hold only up to isomorphism. For this to be possible, there

must exist a set of iso-2-cells for all composable 1-cells f, g, h, i, by which
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the pentagon equation:

i□ ((h□g)□f)

i□ (h□(g□f))

(i□h)□(g□f)

((i□h)□g)□f (i□(h□g))□f

(3.19)

and the triangle equation:

g□f

(g□ idC)□f g□(idC □f)
(3.20)

both commute (with dom g = C = cod f). Unfortunately, this greatly com-

plicates the definition:

Definition 3.6 (Bénabou [9]). A weak 2-category C (formerly known as a

bicategory) consists of a class C0 of 0-cells, a class C1 of 1-cells, and a class

C2 of 2-cells, such that:

(i) C0 and C1 form a category;

(ii) for every pair (A,B) of 0-cells, there exists a hom-category C (A,B),

whose objects are all the 1-cells in C1 (A,B), and whose morphisms

are 2-cells in C2 (A,B);

(iii) every 2-cell is a morphism of exactly one hom-category;

(iv) any pair (τ, υ) of 2-cells with dom υ = cod τ can be vertically composed;

(v) for each triple (A,B,C) of 0-cells, there exists a horizontal composition

bifunctor □ : C (B,C)×C (A,B) → C (A,C);

77



(vi) there exists an associator natural isomorphism α : (−□−)□− •−→

−□(−□−), natural in all three variables;

(vii) for every 0-cell A, there exist a left unitor natural isomorphism λA :

idA□− •−→ 1 and a right unitor natural isomorphism ρA : −□ idA
•−→ 1,

where 1 is the identity functor on C.

Vertical composition in a weak 2-category is the same as vertical composition

in a strict 2-category, and the notation τ : f ⇒ f ′ : A → B has the same

meaning in both types of 2-categories.

To every triple f : A → B, g : B → C, h : C → D of 1-cells, the

associator assigns an iso-2-cell αh,g,f : (h□g)□f ⇒ h□(g□f), so that the

following commutes for all 2-cells τ : f ⇒ f ′, υ : g ⇒ g′, ϕ : h⇒ h′:

(h□g)□f h□(g□f)

(h′□g′)□f ′ h′□(g′□f ′)

αh,g,f

αh′,g′,f ′

(ϕ□υ)□τ ϕ□(υ□τ) (3.21)

Additionally, the associator must provide the iso-2-cells for which eq. (3.19)

commutes:

(i□h)□(g□f)

((i□h)□g)□f

(i□(h□g))□f

i□ ((h□g)□f) i□ (h□(g□f))
idi □αh,g,f

αi,(h□g),f

αi,h,g□ idf α(i□h),g,f

αi,h,(g□f)

(3.22)

And finally, the unitors assign iso-2-cells λAg and ρAf to the 1-cells g□ idA
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and idA□f so that eq. (3.20) commutes:

g□f

(g□ idA)□f g□(idA□f)
αg,idA,f

ρAg □ idf idA □λA
f

(3.23)

Corollary 3.7. A strict 2-category is a weak 2-category in which all the α,

λA, and ρA are identities.

Now recall example 3.2, and let the monoidal category Cat with tensor

product × and unit 1 be a weak 2-category whose horizontal composition

functor is the Cartesian product, whose only 0-cell is an anonymous ob-

ject o, whose 1-cells are all the small categories, whose 2-cells are all the

functors between small categories, and where ido = 1. Then for all 1-cells

A,B,C with objects A,B,C and morphisms a, b, c, the associator assigns

to (A×B)×C the functor that maps

((A,B), C) 7→ (A, (B,C)) (3.24)

((a, b), c) 7→ (a, (b, c)). (3.25)

The left unitor assigns to 1×A the functor λoA that maps

(⋆,A) 7→ A (3.26)

(id⋆, a) 7→ a. (3.27)

and the right unitor assigns to A× 1 the functor ρoA that maps

(A, ⋆) 7→ A (3.28)

(a, id⋆) 7→ a, (3.29)
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In general, we define monoidal categories as follows:

Definition 3.8. A monoidal category with tensor product □ and unit K is

a weak 2-category whose horizontal composition functor is □, whose only

0-cell is ⋆, and where id⋆ = K. Instead of λ⋆A and ρ⋆A, we simply write λA

and ρA.

A strict monoidal category is a monoidal category which is also a strict

2-category.

Here are some examples:

Example 3.9. We have already shown that [C,C] is equivalent to a strict

2-category with one 0-cell. This makes it a strict monoidal category. Its unit

is the identity functor on C.

Example 3.10. VectK with the usual tensor product ⊗ is equivalent to a

monoidal category with unit K, in which the 1-cells are the K-vector spaces

and the 2-cells are the bounded linear maps between them. The associator

assigns the bijection

αA,B,C : (|a⟩ ⊗ |b⟩)⊗ |c⟩ 7→ |a⟩ ⊗ (|b⟩ ⊗ |c⟩) (3.30)

with |a⟩ ∈ A, |b⟩ ∈ B, |c⟩ ∈ C to each triple (A,B,C) of K-vector spaces,

and the unitors assign mappings

λA : 1⊗ |a⟩ 7→ |a⟩ (3.31)

ρA : |a⟩ ⊗ 1 7→ |a⟩ (3.32)

to every K-vector space A.

So far, we have defined strict and weak 2-categories, and shown that

each of the examples in § 3.1 is equivalent to some type of 2-category with
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one 0-cell. Unfortunately, our definition of a weak 2-category contains the

rather complicated and poorly motivated pentagon equation (3.22). The

next section tries to make its presence more palatable.

3.4 Categories with multiplication

Consider some set S with a binary operation ∗ : S × S → S. If for all

s, t, u ∈ S : (s ∗ t) ∗ u = s ∗ (t ∗ u), then all iterations of the operation ∗

with the same multiplicity, regardless of how we place the parentheses, are

equal, and we call ∗ associative. To prove that ∗ is unital, it suffices to show

that there exists an element e ∈ S such that for all s ∈ S: e ∗ s = s = s ∗ e.

The categorical case is more complicated. For C a category equipped with a

bifunctor □ : C×C → C, associativity of □ is not expressed as an equation,

but as a natural isomorphism α : □(□, 1) ∼= □(1,□), where 1 is the identity

functor on C. For products of more than three objects, we can “extend” α,

as we show below.

A problem then arises: it is sometimes possible for two n-fold products to

be isomorphic via two different “extensions” of α, which breaks associativity.

We say that □ is coherently associative if, for any n-fold iterations F and G

of □, there is only one way to “extend” α to form an isomorphism F ∼= G.

As we show below, this fixes associativity.

Unitality is given by two natural isomorphisms, one for the unit on the

left, and one for the unit on the right. These can be broken in the same way

as the associativity natural isomorphism. □ is a coherently unital operation

on C if such breaking cannot occur.

In the 1960s, various mathematicians working from various directions

independently arrived at the question:
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Question 3.11. Which limitations must we place on the associativ-

ity and unitality transformations in order for □ to be a coherently

associative and unital operation on the objects of C?

In this section, we discuss the answers given by Bénabou [7] and Mac

Lane [48]. These lead to a second definition of monoidal categories. While

messier than the 2-categorical definition, it provides some more justifica-

tion for the pentagon equation and provides the necessary background for

the coherence theorem, which we will need in order to define the graphical

calculus and give monoidal categories their linear structure.

We first define categories with multiplication, and some other auxiliary

concepts, and then show how exactly associativity can be broken. We then

discuss Mac Lane’s proof that the pentagon equation guarantees associativ-

ity of all n-fold products, and show how Mac Lane and Bénabou defined

what we now call monoidal categories in terms of 1-categories.

Definition 3.12 (Mac Lane [48]). C is a category with multiplication1 □ if

there exists a bifunctor □ : C ×C → C. Examples include categories with

finite products, categories with finite coproducts, and categories with tensor

products.

In a category with multiplication, the multiplication can be iterated any

number of times:

Definition 3.13. In a category C with multiplication □, the identity func-

tor 1 : C → C is the iterate of the functor □ (or: □-iterate) with multiplicity

1. If F is a □-iterate with multiplicity m and G is a □-iterate with multi-

plicity n, then □(F,G) : Cm+n → C is a □-iterate with multiplicity m+ n.

1Note that Mac Lane’s “categories with multiplication” are not the same as the
“catégories avec multiplication” described by Bénabou in [7]. The latter are what we
nowadays call monoidal categories.
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Now let C be a category with multiplication □, and α a natural iso-

morphism □(□, 1) ∼= □(1,□). Let K be the unit object of □ and let λ

and ρ be natural isomorphisms □(K, 1) ∼= 1 and □(1,K), defined for every

□-iterate A as:

λA : K□A 7→ A (3.33)

ρA : A□K 7→ A (3.34)

Also let id be the identity natural isomorphism 1 ∼= 1. We can have α, λ, ρ

apply to arbitrarily large □-iterates by giving them iterates as parameters. If

F,G,H are □-iterates with multiplicities l,m, n, then αF,G,H : (F□G)□H ∼=

F□(G□H) is a natural isomorphism between two iterates of multiplicity

l + m + n. Similarly, λF : K□F ∼= F and ρF : F□K ∼= F both map

a □-iterate of multiplicity l + 1 to a □-iterate of multiplicity l. We can

restrict α, λ, ρ to subformulae of iterates by □-iterating them with id. For

□-iterates E,F,G,H, for example, idE □αF,G,H is the natural isomorphism

E□((F□G)□H) ∼= E□(F□(G□H)).

We can now construct a category of iterates of □ on C:

Definition 3.14. The objects of It (C,□) are all the □-iterates of all mul-

tiplicities. Its morphisms are the following natural transformations (along

with all their compositions):

(i) for any iterate A, It (C,□) has λA, λ
inv
A , ρA, ρ

inv
A , and an identity

natural isomorphism idA : A •−→ A;

(ii) for any triple A,B,C of iterates, It (C,□) has αA,B,C and αinv
A,B,C ;

(iii) for any pair f : A •−→ A′, g : B •−→ B′ of morphisms in It (C,□), there

is also a morphism f□g : A□B •−→ A′□B′ in It (C,□).
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Note that every morphism in It (C,□) is iso.

The morphisms of It (C,□) represent all the ways in which we can elim-

inate or introduce units, or shift parentheses in iterates of □. But while

the definitions of these isomorphisms closely match the unitality and asso-

ciativity equations for sets, they are not as powerful. Consider the following

example where associativity and unitality are broken in a category with

multiplication:

Example 3.15. In the category HilbK, let ⊗ be the usual tensor product,

and K the unit object. For all vectors |a⟩ ∈ A, |b⟩ ∈ B, |c⟩ ∈ C, we define

α, λ, and ρ as follows:

αA,B,C : (|a⟩ ⊗ |b⟩)⊗ |c⟩ 7→ −|a⟩ ⊗ (|b⟩ ⊗ |c⟩) (3.35)

λA : 1⊗ |a⟩ 7→ −|a⟩ (3.36)

ρA : |a⟩ ⊗ 1 7→ −|a⟩ (3.37)

The objects of It (HilbK,⊗) are all the possible tensors on K-Hilbert spaces;

its morphisms are all the ways of shifting parentheses or adding or remov-

ing units in K-Hilbert space tensors. Hence every well-formed diagram in

It (HilbK,⊗) should commute, since the order in which we shift around

parentheses and add or remove units in a tensor should not matter. But

consider the following diagram:

A⊗B

(A⊗K)⊗B

A⊗ (K⊗B)

αA,B,C

idA ⊗λB

ρA ⊗ idB

(3.38)

The diagram is well-formed because every morphism is connected to the
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correct domain and codomain, but it does not commute: the results of both

paths from (A ⊗ K) ⊗ B to A ⊗ B differ by a minus sign. This means that

with associativity and unitality defined as above, the order in which we shift

parentheses and remove units changes the outcome.

In order to avoid such non-associativity and non-unitality, we need to

ensure that any two morphisms in It (C,□) with the same domain and

codomain are identical, in which case we call It (C,□) coherent and say

that □ is coherently unital and associative. Bénabou was the first to observe

this [7, ax. 1], albeit in very different terms, but Mac Lane was the first

to provide a simple set of constraints on α, λ, and ρ that guarantee such

coherence.

To make It (C,□) coherent, we first construct the wide subcategory

it (C,□) of It (C,□) as follows:

(i) for each □-iterate A: idA is a morphism in it (C,□);

(ii) for all □-iterates A,A′, A′′, it (C,□) contains a morphism αA,A′,A′′ ;

(iii) if it (C,□) contains morphisms f : A •−→ A′ and g : B •−→ B′, then

it (C,□) contains a morphism f□g : A□B •−→ A′□B′.

All the morphisms of it (C,□) are iso, and are either identity natural iso-

morphisms, or natural isomorphisms that shift parentheses around in iter-

ates. We call a morphism A
f−→ A′ in it (C,□) a directed path from A to A′

if it does not contain any instances of αinv, that is, if it does not move any

parentheses to the left.

Now we can determine which constraints on α (and therefore, mutatis

mutandis, on αinv) guarantee that it (C,□) is coherent.

Theorem 3.16 (Mac Lane [48, thm. 3.1]). For C a category with multiplic-

ation □, and associativity given by the natural isomorphism α : □(□, 1) ∼=
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□(1,□), the iterate category it (C,□) is coherent if and only if for all □-

iterates A,B,C,D, the pentagon equation commutes:

A□ ((B□C)□D) A□ (B□(C□D))

(A□B)□(C□D)

((A□B)□C)□D

(A□(B□C))□D

idA □αB,C,D

αA,(B□C),D

αA,B,C□ idD α(A□B),C,D

αA,B,(C□D)

(3.39)

Proof sketch. Let H1 = 1, and for n ≥ 2, let Hn = □(1, Hn−1), which is

the □-iterate of multiplicity n that has all the closing parentheses at the

end. To prove that it (C,□) is coherent, all we need to show is that for each

□-iterate of multiplicity n, there exists only one directed path F •−→ Hn in

it (C,□). We prove this by rank induction.

For F a □-iterate with multiplicitym and G a □-iterate with multiplicity

n, define a rank function:

r(F□G) = r(F ) + r(G) +m− 1 (3.40)

and let r(H1) = 0. For all n we then have r(Hn) = 0.

If r(F ) = 0, then F = Hm, so exists only one directed path F •−→ Hm.

Now let F = E□D be a □-iterate of rank r, and let the theorem have been

proven for all □-iterates with rank lower than r. Let e and f be two directed
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paths starting at F , and consider the following diagram:

E□D

F ′ F ′′

M

Hn

e f

(3.41)

Let all the dashed morphisms be directed paths. The codomain of a directed

path must have rank lower than or equal to that of the domain, so if for all

F , e, and f there exists an object M such that the diagram commutes, then

the theorem holds for iterates of rank r.

If e = f , then F ′ =M = F ′′. If e ̸= f , there is a small number of possible

values of e and f , which Mac Lane exhausts one by one. The only case where

the existence of M does not follow trivially is when E = ((A□B)□C),

e = αA,B,C□ idD, and f = α(A□B),C,D.

In that case, eq. (3.41) becomes:

((A□B)□C)□D

F ′ = (A□(B□C))□D F ′′ = (A□B)□(C□D)

M = A□ (B□(C□D))

Hn

A□ ((B□C)□D)

idA □αB,C,D

αA,(B□C),D

e = αA,B,C□ idD f = α(A□B),C,D

αA,B,(C□D)

(3.42)

Since this is just a distorted version of the pentagon equation, commutativity
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of eq. (3.39) implies commutativity of eq. (3.42), and therefore guarantees

the existence of M . Commutativity of eq. (3.39) therefore implies coherence

of it (C,□). Since coherence of it (C,□) implies commutativity of eq. (3.39)

as a special case, this completes the proof.

We can make It (C,□) coherent by extending the coherence conditions

for it (C,□).

Theorem 3.17 (Mac Lane [48, thm. 5.2], Kelly2 [39, thm. 3’, 6, 7]). For C

a category with multiplication □ and unit object K, with associativity given

by α, and unitality by λ and ρ, It (C,□) is coherent if and only if eq. (3.39)

and the triangle equation:

A□B

(A□K)□B A□(K□B)
αA,K,B

ρA□ idB idA □λB

(3.43)

commute for all □-iterates A,B,C,D

Proof sketch. We have already proven that the coherence of it (C,□) follows

from eq. (3.39), so all we need to show is that the actions of λ and ρ commute

with each other and with the action of α. Again, we need only consider a

small number of cases:

B□C

(K□B)□C

K□(B□C)

(I)αK,B,C

λB□C

λB□ idC

A□B

(A□B)□K

A□(B□K)

(II)αA,B,K

idA □ρB

ρA□B

K

K□K

K□K

(III)idK□K

λK

ρK

(3.44)

If all these diagrams commute for all □-iterates A,B,C, then It (C,□) is co-

herent. To prove that (I) commutes, we set B = K in the pentagon equation

2Mac Lane’s formulation contained some redundant conditions, which Kelly removed.
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(3.39), and apply α, λ and ρ a few more times [39, p. 400]:

A□ ((K□C)□D) A□ (K□(C□D))

(A□K)□(C□D)

((A□K)□C)□D

(A□(K□C))□D (A□C)□D

A□(C□D)

idA □αK,C,D

αA,(K□C),D

αA,K,C□ idD α(A□K),C,D

αA,K,(C□D)

idA □(λC□ idD)

idA □λC□D

(ρA□ idC)□ idD

(idA □λC)□ idD

αA,C,D

ρA□ idC□D
(3.45)

The outside of the diagram commutes as a special case of the pentagon

equation; the two quadrangles commute due to the naturality of α; and the

top left and bottom right triangles commute due to eq. (3.43). The dashed

triangle gives us the commutativity of (I). If we invert all the instances of α

in the pentagon, a similar trick proves that (II) commutes.

For case (III), note that the following diagrams commute due to the

naturality of λ and ρ:

K□(K□K) K□K

K□K K

λK□K

idK □ρK ρK

λK

(IV)

(K□K)□K K□K

K□K K

ρK□K

ρK□ idK
ρK

ρK

(V) (3.46)

Due to (V), we have ρK□K = ρK□ idK , and a similar argument gives

us λK□K = idK □λK . By plugging A = B = K into eq. (3.43), we get

ρK□ idK = (idK □λK) ◦ αK,K,K , and by setting A = B = K in condition

(II), we get ρK□K = (idK ρK)□αK,K,K . Since all the morphisms involved are

iso, this reduces to idK □λK = idK □ρK , and therefore λK□K = idK □ρK .
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Then (IV) proves that λK = ρK , so case (III) commutes.

This proves that commutativity of eqs. (3.39) and (3.43) implies coher-

ence of It (C,□). Because commutativity of eqs. (3.39) and (3.43) is a special

case of this coherence, the proof is complete.

At the beginning of this section, we asked which conditions were neces-

sary to guarantee coherent associativity and unitality in a category equipped

with a bifunctor. The monoidal category was originally defined as an answer

to that question:

Definition 3.18. A monoidal category is a category with a coherently as-

sociative and unital bifunctor, called the tensor . Equivalently: a monoidal

category is a category C, equipped with a bifunctor □, an associator natural

isomorphism α, a unit object K, and unitors λ and ρ, such that It (C,□)

is coherent. Equivalently: C is a monoidal category with tensor product □

and unit K if and only if eqs. (3.39) and (3.43) commute for all □-iterates

on C.

A strict monoidal category is a monoidal category in which, for all objects

A,B,C, the morphisms αA,B,C , λA, and ρA are identities.

The above definitions are equivalent to definition 3.8 in a way we will

make more precise later on.

We sometimes use Bénabou’s notation, where M = ⟨M,□,K, α, λ, ρ⟩

stands for “M is the monoidal category formed by adding the tensor product

□, the associator α, and the unitors λ, ρ to the category M, and choosing

K as the unit object”, but not always. We sometimes use this notation to

distinguish between a monoidal category and its underlying category, and

we never use it for a 2-category with one object.

A useful term introduced by Bénabou [7] is canonical morphism. For
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C = ⟨C,□,K, α, λ, ρ⟩ a monoidal category, a canonical morphism in C is

any of the following:

(i) idA, ρA, λA for A ∈ C0;

(ii) αA,B,C for A,B,C ∈ C0;

(iii) f inv for f a canonical morphism;

(iv) f ◦ g, f□g for f, g canonical morphisms.

A useful theorem that follows from that definition is:

Theorem 3.19 (Coherence for monoidal categories). In a monoidal cat-

egory, any diagram in which all the morphisms are canonical, commutes.

Proof. Immediate from theorem 3.17 and definition 3.18.

Definition 3.18 suggests several more examples of monoidal categories:

Example 3.20. The monoidal category SetK = ⟨Set,×,K, α, λ, ρ⟩ has the

Cartesian product as its tensor, and the singleton set K as its unit.

Example 3.21. Let the category G be a group, and let some associative

bifunctor −□− : G×G → G distribute over morphism composition. That

is, let:

(h□g)□f = h□(g□f) (3.47)

h□(g ◦ f) = (h□g) ◦ (h□f) (3.48)

(h ◦ g)□f = (h□f) ◦ (g□f) (3.49)

for all morphisms f, g, h of G. Since G has only one object, that object acts

as the unit of the operation □, so G is a strict monoidal category.
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Now let 0 be the identity morphism of the sole object of G, and note

that:

f□0 = f□(0 ◦ 0) = (f□0) ◦ (f□0). (3.50)

Composing the leftmost and rightmost side with (f□ id)inv gives:

(f□0) ◦ (f□0)inv = (f□0) ◦ (f□0) ◦ (f□0)inv (3.51)

0 = f□0. (3.52)

And by a similar argument, 0□f = 0. If there exists a morphism 1 such that

1□f = f = f□1 (3.53)

for all morphisms f , then we have:

(g ◦ f)□(1 ◦ 1) = (g□(1 ◦ 1)) ◦ (f□(1 ◦ 1)) (3.54)

= (g□1) ◦ (g□1) ◦ (f□1) ◦ (f□1) (3.55)

= g ◦ g ◦ f ◦ f (3.56)

and

(g ◦ f)□(1 ◦ 1) = ((g ◦ f)□1) ◦ ((g ◦ f)□1) (3.57)

= g ◦ f ◦ g ◦ f (3.58)

so g◦g◦f ◦f = g◦f ◦g◦f . By composing both sides with ginv and f inv, we get

g ◦ f = f ◦ g, so G is an Abelian group, and a ring. Morphism composition

is addition and □ is multiplication.

This proves that adding a distributive strict monoidal structure to an

Abelian group and choosing a 1 turns that group into a ring (which is not at
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all surprising: a ring is an additive Abelian group that is also a multiplicative

monoid, with multiplication distributing over addition). Note, also, that this

□ is exactly the tensor product of Abelian groups.

Example 3.22. Every poset category P with finite products and a maximal

object ⊤ is strict monoidal with the meet ∧ as its tensor product and ⊤ as

its unit, since for all P,Q,R ∈ P0, we have:

(P ∧Q) ∧R = P ∧ (Q ∧R)

⊤ ∧ P = P = P ∧ ⊤

The following diagram proves that the existence of morphisms P
f−→ P ′ and

Q
g−→ Q′ implies the existence of a morphism P ∧Q f∧g−−→ P ′ ∧Q′:

P ∧QP Q

P ′ ∧Q′P ′ Q′

πP πQ

f ∧ g
f g

πP ′ πQ′

(3.59)

The horizontal arrows exist by definition of the meet. Composing f and g,

with πP and πQ gives the diagonal arrows, and f∧g then exists by definition

of ∧ (cf. eq. 2.12). This construction guarantees that the morphisms of P

are well-behaved under the tensor product.

Example 3.23. By a similar argument, every poset category with a minimal

object ⊥ is strict monoidal, with the join as its tensor product, and ⊥ as its

unit.

We have now provided and studied two different definitions of monoidal

categories, and stated that both are somehow “equivalent”. But clearly they
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are different: one uses 1-categories, and the other uses 2-categories. We now

make more precise the way these two definitions are the same.

Recall that a class is a 0-category, and that a group therefore is a 0-

category with some added structure. At the same time, a group can be

defined as a 1-category with one object and all morphisms iso. In formulating

this second definition, we have taken an object defined as an n-category with

some “external” structure, and redefined it as an n+ 1 category with some

“internal” structure. This second definition is a vertical categorification of

the first.

In exactly the same way, a (strict) monoidal category can be defined as

a (strict) 2-category with one object, but also as a 1-category with some

additional structure. The first definition is a vertical categorification of the

second.

There is also another kind of categorification: just as we can generalise

from a group to a groupoid by using a partial instead of a total operation, we

can equivalently generalise a single-object-category-with-all-morphism-iso to

a category-with-all-morphisms-iso. This is the horizontal categorification or

oidification of the 0-categorical group. In general, an oidification takes a

structure X, defined as an n-category with one object and added structure

S, and generalises it to an X-oid, defined as an n-category with additional

structure S and any number of objects [36].3

In the next section, we make some forays into the categorical theory of

C*-algebras by first defining a more general, oidified structure, and then

shrinking it down a bit. This directly motivates the categorical study of

linear structure.

3If this terminology had been applied consistently from the start, then 2-categories
would have been called monoidal monoidoidoids!
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3.5 Enriched categories and C*-algebras

Consider the category VectK. For any two K-vector spaces A, B, the hom-

set VectK1 (A,B) is itself a K-vector space and therefore also an object of

VectK. Instead of hom-sets, we say that VectK has hom-objects. There is,

of course, no reason that the hom-objects of some category C have to be be

objects of C itself:

Definition 3.24 (Bénabou [8]). A category C is enriched over the monoidal

category M (or: C is an M-category) if every hom-class of C is an object of

the category M.

The monoidal structure of M lets us identify morphism composition in

C with the tensor product of objects in M.4 In fact, equipping a category M

with a monoidal structure is equivalent, from M’s point of view, to enriching

some category over M. Enrichment will allow us to define rings and algebras

categorically.

Here are some examples:

(i) every locally small category is enriched over Set, since each of its

hom-classes is a set.

(ii) every strict 2-category is equivalent to a 1-category enriched over the

monoidal category Cat.

(iii) let Ab be the monoidal category ⟨Ab,⊗,Z, α, λ, ρ⟩, where ⊗ is the

usual tensor product on Abelian groups. Then a ringoid is a small

Ab-category.

(iv) a ring is a one-object Ab-category: example 3.21 says this same thing

4It is sometimes possible to enrich a category over a non-monoidal category, but we
will not do this.
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from the point of view of the enriching category Ab instead of the

category being enriched.

(v) an algebroid over the field K is a category enriched over the monoidal

category VectK. Hence, an algebroid is a ringoid (because VectK is

a subcategory of Ab) and all the morphisms in an algebroid can be

multiplied by scalars (because the hom-sets are vector spaces). A unital

associative algebra is an algebroid with only one object: this is exactly

equivalent to the usual definition, where an algebra over the field K is

a ring that is also a K-vector space.

Now consider the category BanK, which is the full subcategory of VectK

with objects restricted to only theK-Banach spaces.BanK is the correspond-

ing monoidal category with the projective tensor product. This lets us define

C*-algebras:

Definition 3.25 (Ghez, Lima, and Roberts [25]). A C*-category (more

precisely: a C*-algebroid) is a BanC-category C∗Cat such that:

(i) there exists an antilinear contravariant endofunctor (−)∗ : C∗Cat →

C∗Catop which is an identity on objects and an involution on morph-

isms;

(ii) for each morphism f of C∗Cat, ∥f∗f∥ = ∥f∥2;

(iii) for each morphism A
f−→ B of C∗Cat, there exists a morphism A

g−→ A

such that f∗f = g∗g.

A C*-algebra is a C*-category C∗Alg with only one object. We can then

see that the first condition above guarantees that C∗Alg is a *-algebra, and

the second is the C*-identity. The third condition serves to eliminate some
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pathological cases, and is entirely trivial when there is only one object. We

will not discuss it any further.

We have now seen how to describe C*-algebras in the language of cat-

egory theory, and how this formulation makes clear the relations between

algebras, rings, and vector spaces. However, some of our language was de-

cidedly uncategorical: how should we interpret terms like “antilinear” or

∥f∥2 in a categorical way? In the next sections, we answer this by examin-

ing the linear and (sometimes) symmetric and closed structure of monoidal

categories.

3.6 Linear structure

While it may seem uncategorical to speak of the internal structure of objects,

the objects of a monoidal category carry all their structure on the outside, in

their morphisms. Consider how every element of a field K uniquely defines

a linear function K −→ K; hence every endomorphism of K in VectK corres-

ponds to an element of K and vice versa. Similarly, there exists a bijection

between morphisms K −→ V and vectors in V . This motivates the following:

Definition 3.26. In the monoidal category ⟨M,□, I, α, λ, ρ⟩:

(i) a scalar is a morphism I −→ I;

(ii) a vector is a morphism I −→ A, where A can be any object of M that

is not I.

In SetK , where the monoidal unit is a singleton set K, each morphism

from K to a non-empty set A selects one element of A. Hence every vector

in SetK corresponds to exactly one element of one set, and vice versa. The
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only scalar in SetK is idK , which selects the sole element of the singleton

set.

In the monoidal category Cat, the unique functor 1 → 1 is the only scalar.

Vectors are functors 1 → A, each of which selects from A a single object

along with its identity morphism. Hence every vector in Cat corresponds to

a smallest-possible subcategory of some small category. In all these cases, a

vector selects a smallest possible component of an object.

The remainder of this section is devoted to vectors and scalars in mon-

oidal categories. We first show that the scalars of a monoidal category form

a commutative monoid, and that the tensor product on a monoidal category

is always bilinear. In the next section, we discuss dual objects, leading to

bras and kets, partial trace, and complex conjugates. We can then categor-

ically interpret the non-categorical language we used in our introduction to

C*-algebras above.

First, note the following useful lemma:

Lemma 3.27 (Interchange law). Let F be a bifunctor A ×B → C. Then

for all morphisms f, f ′ in A, g, g′ in B:

F (f, g) ◦ F (f ′, g′) = F (f ◦ f ′, g ◦ g′) (3.60)

provided dom f = cod f ′ and dom g = cod g′.

Proof.

F (f, g) ◦ F (f ′, g′) = F
(
(f, g) ◦ (f ′, g′)

)
(by definition 2.23)

= F (f ◦ f ′, g ◦ g′) (by definition 2.10)
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In a monoidal category C with tensor □, set A = B = C and F = □, to

obtain

(f□g) ◦ (f ′□g′) = (f ◦ f ′)□(g ◦ g′) (3.61)

This monoidal version of the interchange law lets us prove that all scalars

in a monoidal category commute:

Proposition 3.28 (Kelly and Laplaza [40, prop. 6.1]). Let C = ⟨C,□,K, α, λ, ρ⟩,

and let f and g be scalars. Then f ◦ g = g ◦ f .

Proof. The following diagrams commute due to the naturality of λ and ρ:

K□K K

K□K K

λK

idK □f f

λK

K□K K

K□K K

ρK

g□ idK g

ρK

(3.62)

Hence f = λK ◦ (idK □f) ◦ λinvK and g = ρK ◦ (g□ idK) ◦ ρinvK . Due to the

coherence theorem (3.19) λK = ρK and λinvK = ρinvK , so g = λK ◦ (g□ idK) ◦

λinvK . To finish the proof, we apply the interchange law twice:

g ◦ f = λK ◦ (g□ idK) ◦ (idK □f) ◦ λinvK

= λK ◦ (g□f) ◦ λinvK

= λK ◦ (idK □f) ◦ (g□ idK) ◦ λinvK

= f ◦ g

(3.63)

In monoidal categories that have only one scalar, such as Set and Cat,

this is entirely trivial: the sole scalar cannot but commute with itself. How-

ever, proposition 3.28 does place meaningful constraints on monoidal cat-
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egories with more complex unit objects, as we shall see below. But first,

note that proposition 3.28 is an instance of the Eckmann-Hilton argument .

Let a class S be closed under two unital, associative binary operations •

and ⋆, such that (a ⋆ b) • (c ⋆ d) = (a • c) ⋆ (b • d) for all a, b, c, d ∈ S; then

Eckmann-Hilton states that ⋆ and • must be the same operation, with the

same unit, and that this operation is commutative [20].

Now let K-Mod be the category whose objects are all the left K-

modules, with K a commutative ring, and whose morphisms are all the

homomorphisms between such modules. Let M = ⟨K-Mod,⊗,K, α, λ, ρ⟩,

with ⊗ the usual tensor product on modules. How should we interpret com-

position of scalars with other scalars, or with vectors of M?

Recall that the elements of the ring K are exactly the endomorphisms

of the object K, which are homomorphisms K −→ K. Let × be the multi-

plication operation of K, and let ◦ denote morphism composition. We can

define × as a bifunctor, so by the interchange law we get:

(a× b) ◦ (c× d) = (a ◦ c)× (b ◦ d) (3.64)

and then the Eckmann-Hilton argument tells us that composition of an

endomorphism k of K with some other morphism (i.e. some element of a

K-module) is equal to multiplication by k.

Now consider the more general case where K is a non-commutative ring,

and let k be the commutator ideal of K:

k = {ab− ba | a, b ∈ K} (3.65)

If we make K-Mod a monoidal category with the usual tensor product,

then for all j, k ∈ K, we have j ◦ k = k ◦ j due to proposition 3.28 (i.e. an
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Eckmann-Hilton argument with operations ◦ and ⊗). The action ofK on any

module M must then factor through the quotient ring K/k, so composition

of K-endomorphisms, generally speaking, is a multiplication that discards

any non-commutativity. Since this is just a roundabout way to define a

tensor product on modules of a commutative ring, the proposition essentially

tells us that a monoidal category of modules can only be defined over a

commutative ring. Similar constraints, of course, apply to all other monoidal

categories with multiple scalars.5

Another consequence of the interchange law and Eckmann-Hilton is that

the bifunctor □ on a monoidal category is bilinear. For any vectors u, v, and

scalar k:

(u ◦ k)□v = (u ◦ k)□(v ◦ idK)

= (u□v) ◦ (k□ idK)

= (u□v) ◦ k

= (u□v) ◦ (idK □k)

= u□(v ◦ k)

(3.66)

This is exactly why the monoidal bifunctor is often referred to as a tensor

product.

We have thus far shown that the objects and morphisms of a complex

monoidal category carry much of the familiar structure of vector spaces,

albeit in a far more general way. Now we will discuss categorical generalisa-

tions of dual spaces and complex conjugates. First we introduce symmetric

and closed monoidal categories, followed by a 2-categorical generalisation

of adjunctions. Then we study closed symmetric monoidal categories, and

5Proposition 3.28 was published in 1980 and, despite its power, was mostly forgotten
until Abramsky and Coecke reintroduced it in 2004 as a key component of categorical
quantum mechanics [1].
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show how some useful properties follow.

3.7 Braiding and symmetry

Note that in many monoidal categories A□B is isomorphic to B□A for all

objects A, B. If all these isomorphisms together form a natural isomorphism,

compatible with the tensor, the category is braided:

Definition 3.29 (Joyal and Street [37, def. 2.1, 2.2]). ⟨C,□,K, α, λ, ρ, γ⟩

is a braided monoidal category if ⟨C,□,K, α, λ, ρ⟩ is a monoidal category,

and the isomorphism γA,B : A□B •−→ B□A is natural in A and B, and the

following diagrams commute:

(A□B)□C

A□(B□C)

(B□C)□A

(B□A)□C

B□(A□C)

B□(C□A)

γA,B□ idC

αB,C,A

αA,B,C

γA,B□C

αB,A,C

idC □γA,C

(3.67)

A□(B□C)

(A□B)□C

C□(A□B)

A□(C□B)

(A□C)□B

(C□A)□B

idA □γinv
C,B

αinv
C,A,B

αinv
A,B,C

γinv
C,A□B

αinv
A,C,B

γinv
C,A□ idB

(3.68)

The natural isomorphism γ is called the braiding of the monoidal category.

Of the monoidal categories we have seen so far, most were braided though

not all. Consider the following not-always-braided category:
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Example 3.30. Recall the functor category [C,C] of example 3.1, which

is strict monoidal with functor composition as the tensor, and the identity

functor as the unit. Let CX be the constant endofunctor onto the object X

of C.

Then for all objects A,B,Z of C: [CA •CB]Z = A and [CB •CA]Z = B.

Therefore the isomorphism γCA,CB
exists if and only if A ≃ B, so [C,C] is

braided if and only if all objects of C are isomorphic.

The braiding of a monoidal category provides it with some degree of

commutativity. If the tensor product is “as commutative as possible”, then

the category is symmetric monoidal:

Definition 3.31 (Mac Lane [48]). A braided monoidal category ⟨C,□,K, α, λ, ρ, γ⟩

is a symmetric monoidal category if the natural transformation γ is its own

inverse:

A□B B□A

A□B

γA,B

γB,A
idA□B

(3.69)

Note that if a braided monoidal category is symmetric, then each of the two

diagrams in definition 3.29 implies the other, so we need only specify one.

Examples of symmetric monoidal categories include Set, where γA,B is

the mapping (a, b) 7→ (b, a) for all a ∈ A, b ∈ B; and NToset with the tensor

product m□n = max(m,n) and identity 0, where γm,n = idm□n. Braided

monoidal categories that are not symmetric tend to be a bit more involved.

Here is an example by Joyal and Street [37, ex. 2.1]:

Example 3.32. Let P be the Euclidean plane and let Cn be the the space of

subsets of P with cardinality n. Now choose n distinct points p1, p2, . . . , pn

along a line ℓ on P , and let ω : [0, 1] → Cn be a loop starting at the
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set {p1, p2, . . . , pn} ∈ Cn. Draw a three-dimensional graph of ω (which will

consist of n distinct non-intersecting curves) in P × [0, 1], and then project

the graph onto the plane ℓ × [0, 1]. For n = 5 the result may be something

like this:

t = 0

t = 1

ℓ

ℓ

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

(3.70)

Now let π1(n) be the fundamental group of Cn; that is, π1(n) is the group of

homotopy equivalence classes of all the loops [0, 1] → Cn. The braid category

BraidP has the natural numbers as its objects; morphisms are given by:

BraidP 1 (m,n) =


π1(n) if m = n

∅ otherwise.

(3.71)

BraidP becomes a strict monoidal category with tensor ⊕ and unit object

0, if we take m ⊕ n = m + n for objects, and for morphisms ψ, ω, we take

ψ⊕ω to be the loop formed by placing ψ next to ω (horizontal composition

in the most literal sense). To make BraidP a braided monoidal category, let

γm,n be the loop in π1(m+n) in which the leftmost m strands pass over the

rightmost n strands. For example, γ2,3 is the loop:

t = 0

t = 1

ℓ

ℓ

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

(3.72)
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and γinv2,3 is:

t = 0

t = 1

ℓ

ℓ

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

(3.73)

Note that γinv2,3 is not equal to γ3,2: in the former, the leftmost three strands

pass under the rightmost two, and in the latter they go over. This proves

that BraidP is a braided monoidal category that is not symmetric.

With braiding and symmetry defined, we now return to a concept we

last saw in the introduction. We discuss adjunctions again, but now in a

2-categorical setting.

3.8 Adjunctions again

In the introduction, we described how adjunctions are a central concept of

category theory, but only described them in a 1-categorical setting. Given

their importance, it seems there should also be higher-categorical notions of

adjunction. We begin this chapter with an example of a 1-categorical adjunc-

tion in a 2-category, after which we show how the 1-categorical definition

can be raised into 2-categories.

Example 3.33 (Tensor-hom adjunction). Let f : U → V and g : W → X

be morphisms in FdVectK, let ⊗ denote the usual tensor product, and

let − ⊗ Z denote the functor that sends any object V to V ⊗ Z, and any

morphism f to f ⊗ idZ . Let L be the functor we used in example 2.37.

If we choose bases {u}, {v}, {w}, {x}, {z} of U , V , W , X, Z, and let ∗

denote the dual basis, we get a family of bijections (recall that a vector in
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V is a map K → V , and its dual is a map V → K):

ϕV,W : L (V ⊗ Z,W ) ≃ L (V,L (X,W ))

ϕV,W (w ◦ [v∗ ⊗ z∗]) = [w ⊗ z∗] ◦ v∗
(3.74)

Applying L([v ⊗ z] ◦ [u∗ ⊗ z∗], x ◦ w∗) to w ◦ [v∗ ⊗ z∗] gives

x ◦ w ◦ w∗ ◦ [v∗ ⊗ z∗] ◦ [v ⊗ z] ◦ [u∗ ⊗ z∗] = x ◦ [u∗ ⊗ z∗], (3.75)

and applying L(v ◦ u∗, L(1, x ◦ w∗)) to w ◦ [z∗ ⊗ v∗] gives

x ◦ w∗ ◦ w ◦ [z∗ ⊗ v∗] ◦ v ◦ u∗ = x ◦ [z∗ ⊗ u∗], (3.76)

so by linearity we have for all V ⊗ Z
l−→W :

ϕU,X ([L(f, g] (l)) = [L(f, L(idZ , g))] (ϕV,W (l)) . (3.77)

This means we have a natural isomorphism

L(V ⊗ Z,W ) L(V,L(Z,W )

L(U ⊗ Z,X) L(U,L(Z,X))

ϕV,W

ϕU,X

L(f ⊗ Z, g) L(f, L(idZ , g) (3.78)

which makes −⊗ Z and L adjoint functors.

We will soon generalise our understanding of adjunctions. But first recall

how in example 3.1 the natural transformation τ : F •−→ F ′ : C → C was

composed with the functor G : C → C to form the natural transformation

G · τ = G(τ) : G • F •−→ G • F ′, and the natural transformation υ : G •−→ G′

combined with the functor F to form the natural transformation (υ ·F )x =
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υF (x) : F • G •−→ F • G′. Visually, G · τ maps the top path to the bottom

path in the diagram:

C C C

F

F ′

τ

G

G

idG
(3.79)

so it is equal to the horizontal composition idG□τ . By a similar argument,

υ · F = υ□ idF .

For any 2-cells λ : F ⇒ F ′ : c → d and µ : G ⇒ G′ : d → e in any

weak 2-category, the whiskerings G ·λ and µ ·F are defined as the horizontal

compositions:

c d e

F

F ′

λ

G

G

idG ⇒ c e

G□F

G□F ′

G · λ (3.80)

c d e

F

F

idF

G

G′

µ ⇒ c e

G□F

G′□F

µ · F (3.81)

Such composition of 1-cells with 2-cells lets us define adjunctions in 2-

categories.

Definition 3.34 (Maranda [49]). In a weak6 2-category C, an adjunction

is a 4-tuple ⟨L,R; η, ε⟩ consisting of 1-cells L : c→ d, R : d→ c, and 2-cells

6Maranda only discusses strict 2-categories in [49], but the definition he gives is easy
to extend to weak 2-categories.
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η : idc ⇒ R□L, ε : L□R⇒ idd, such that the following diagrams commute:

L

L□ idc

L□(R□L)

(L□R)□L idd□L L

ρcL
inv

L · η

αinv
L,R,L

ε · L λd
L

idL

R idc□R (R□L)□R

R□(L□R)

R□ idd

R

λc
L
inv η ·R

αR,L,R

R · ε

ρdR

idR

(3.82)

In a strict 2-category, this collapses down to:

L

L□R□L □L

L · η

ε · L

idL

R R□L□R

R

η ·R

R · ε
idR

(3.83)

We call L the left adjoint of R and R the right adjoint of F . We call η the

unit and ε the counit of the adjunction, and we write L ⊣ R.

Note the similarities of the unit and counit equations to our requirement

in example 1.10 that

a ≤ RLa b ≼ LRb. (3.84)

We now understand that the posets we used in that example are 1-cells in the

strict 2-category Cat2 of small categories, functors, and natural transform-
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ations,7 and that a ≤ a′, b ≼ b′ indicate the existence of morphisms a −→ a′,

b −→ b′. Equation (3.84) then defines natural transformations idA
•−→ RL

and LR •−→ idB. If we set Z = K, we can easily translate example 3.33 to

unit-counit language as well:

Example 3.35. In the monoidal category FdVect, K is a 1-cell, as is every

vector space. Again, let ∗ denote the dual space. Then under any choice of

basis {v} for the vector space V , we obtain an adjunction by taking:

ηV (k) =
∑
j

kv∗j ⊗ vj (3.85)

εV (vi ⊗ v∗j ) = v∗j vi (3.86)

and extending by linearity. Hence V ⊣ V ∗. Note that it does not matter

which basis we choose, because ηV (k) is a multiple of the identity matrix,

which is basis-independent.

We end this section with a few useful results.

Theorem 3.36 ([47, thms. IV.1.1, IV.1.2]). In Cat2, definition 3.34 is

equivalent to the informal definition of adjunction that we gave in the in-

troduction.

Proposition 3.37 (Gray [27, prop. I, 6.3]). Let L : c → d, L′ : d → e,

R′ : e → d, and R : d → c be 1-cells in the 2-category C. Then L ⊣ R and

L′ ⊣ R′ together imply L′□L ⊣ R□R′.

Proof. Let η, ε be the unit and counit of L ⊣ R, let η̃, ε̃ be those of L′ ⊣ R′,

and let 1d be the identity 2-cell on idd. Because horizontal composition is

7Not to be confused with the monoidal category Cat considered as a weak 2-category
with one 0-cell, in which 1-cells are categories, 2-cells are functors, and there are no natural
transformations.
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bifunctorial, it is subject to the interchange law:

(η̃□1d) ◦ (1d□ε) = (η̃□ε) = (idR′□L′ □ε) ◦ (η̃□ idL□R) (3.87)

so the following diagram commutes:

idd□L□R R′□L′□L□R

idd□ idd R′□L′□ idd

η̃□ idL□R

η̃□1d

1d□ε idR′□L′ □ε (3.88)

Now assume C to be a strict 2-category, and consider the diagram:

R□L□R□R′ R□R′□L′□L□R□R′

R□R′ R□R′□L′□R′

R · η̃ · (L□R)

R · η̃ ·R′

R · ε ·R′ (R□R′□L′) · ε ·R′

R□R′

R□R′

η · (R□R′)

idR□R′

idR□R′
(R□R′) · ε̃

(3.89)

The rectangle commutes due to eq. (3.88), and the two small triangles com-

mute due to eq. (3.83), so the entire diagram commutes. Working out a

similar diagram starting at L□L′ will prove that L′□L ⊣ R□R′ with unit

(R · η̃ · L) ◦ η and counit ε̃ ◦ (L′ · ε ·R′).

If C is not strict, then we can construct a larger version of eq. (3.89)

that includes instances of α, λ, and ρ.

Above, we have proved that all the scalars of a monoidal category com-

mute. But instead of discussing more linear structure, we digressed on braid-
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ing, symmetry and adjunctions. All of this was to set the stage for closed

categories which have many useful linear properties, such as dual objects.

Those are the topic of the next section.

3.9 Closed categories

Recall how in example 2.37, the functor L : HilbK
op × HilbK → HilbK

mapped any two objects A and B of HilbK to the hom-object of bounded

linear maps A → B, and how, in the category Cat, [P,Q] denotes the

category of functors P → Q (definition 2.43). We can easily generalise this

idea.

In a category C, let the internal hom-functor [ , ] : Cop ×C → C map

every pair A,B of objects of C to the hom-object [A,B] of C, which is as

similar to the set C1 (A,B) as is possible in C. Let Hom denote the functor

that sends any objects A,B of C to the set C1 (A,B), considered as an

object of Set. In that case, there will exist a functor V : C → Set such that

the following diagram commutes in Cat:8

Cop ×C C

Set

[ , ]

V
Hom

(3.90)

A category C has internal hom if there exist an internal hom-functor Cop×

C → C.

A motivating example by Eilenberg and Kelly [21, pp. 421–422] is the

category BK whose objects are all the Banach spaces over the field K, and

whose morphisms are all the linear maps f : A→ B with norm ∥f∥ ≤ 1. The

8Stricly speaking, this would limit hom-functors to small categories. While there are
ways around this limitation, we will not work them out here: we will simply pretend that
all locally small categories are small.
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hom-functor maps every pair A,B of Banach spaces to the Banach space

[A,B] of all linear maps A → B, and the functor V sens this hom-space

to the operator ball B1 (A,B), considered as a set. This hom-functor has a

unit object, as every K-Banach space A is isomorphic to [K, A].

Now consider the functor LA = [A,−] : BK → BK. When applied to

objects, its meaning is clear: LA(B) = [A,B], but what happens when we

apply it to a morphism? Due to eq. (3.90), we should have V
(
LA(f)

)
=

Hom(idA, f) for all B
f−→ C, so LA(f) should be a morphism from [A,B] to

[A,C]. For all objects B and C, then, LA lets us define a mapping from [B,C]

to [[A,B] , [A,C]]. All these maps together form a natural transformation

LAB,C : [B,C] •−→ [[A,B] , [A,C]] (3.91)

that is natural in B and C.

We have now seen the most important data that define the closed cat-

egory:

Definition 3.38 (Eilenberg and Kelly [21, pp. 428–429]). A closed category

is a locally small category C along with the following:

(i) a functor V : C → Set,

(ii) a hom-functor [ , ] : Cop ×C → C,

(iii) a unit object K,

(iv) a natural isomorphism i : − •−→ [K,−],

(v) for each object A, a morphism K
jA−→ [A,A],

(vi) for each objectA, a natural transformation LA : [−,−] •−→ [[A,−] , [A,−]],
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such that eq. (3.90) commutes, and several other coherence conditions hold:

First, the compatibility of [ , ], i, j, and L, as expressed by the commut-

ativity of the following equations:

[A,B] [[K,A] , [K,B]]

[A, [K,B]]

LK
A,B

[
iA, id[K,B]

]
[idA, iB ]

(3.92)

[A,B] [[A,A] , [A,B]]

[K, [A,B]]

LA
A,B

[
jA, id[A,B]

]
i[A,B]

(3.93)

K [B,B]

[[A,B] , [A,B]]

jB

LA
B,Bj[A,B]

(3.94)

Second, the pentagon equation for closed categories must commute:

[[[A,B] , [A,C]] , [[A,B] , [A,D]]]

[[B,C] , [[A,B] , [A,D]]]

[[B,C] , [B,D]]

[C,D] [[A,C] , [A,D]]
LA

L[A,B]

[
LA, id

]

LB

[
id, LA

]

(3.95)

And finally, for every object A:

jA = i[A,A] (idA) . (3.96)

113



This definition is rather unintuitive, and we will only rarely use it expli-

citly. Before continuing, we show that BK is indeed a closed category:

Example 3.39. The category BK becomes a closed category if, as stated

above, we let [A,B] be the Banach space of linear maps A→ B; and we let

V be the functor that maps every Banach space B to the unit ball V B ⊂ B

centered around the origin, considered as a set, and maps every morphism

f : A → B to the restriction V f = f |V A : V A → V B. The unit object K

of BK considered as a closed category is K, so iA is the canonical mapping

A→ [K, A] for each A. We have already defined LA.

For each object A, the canonical isomorphism i[A,A] : [A,A] 7→ [K, [A,A]]

sends idA to the K-linear map f : 1 7→ idA, so eq. (3.96) holds if jA is the

restriction fV K of 1 7→ idA to the ball VK = {k ∈ K | |k| ≤ 1}.

That eqs. (3.92) to (3.94) commute is easy to verify by chasing a test

function along the two paths of each diagram. For eq. (3.95), we need an

additional lemma, for which we interrupt this example.

Lemma 3.40. Let F,G : C → D be functors between locally small cat-

egories, and let FA,B denote the function that sends each morphism A
f−→ B

in C to F (A)
F (f)−−−→ F (B) in D. Let Hom be the external hom-functor on

D. Then τ is a natural transformation F •−→ G if and only if the following

diagram commutes for all objects A,B of C:

Hom (A,B) Hom (F (A), F (B))

Hom (G(A), G(B)) Hom (F (A), G(B))

FA,B

Hom
(
idG(A), τB

)
GA,B

Hom
(
τA, idG(B)

)

(3.97)
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Proof. Chase a morphism A
f−→ B through eq. (3.97):

f F (f)

G(f) G(f) ◦ τA = τB ◦ F (f)
(3.98)

The bottom right corner states exactly the definition of natural transform-

ation as given in eq. (2.42).

We can now finish our demonstration that BK is a closed category:

Example 3.39 (continued). Due to the above lemma, eq. (3.95) says that,

if V is faithful, LAB,− is a natural transformation [B,−] •−→ [[A,B] , [A,−]].

Because V is indeed faithful on BK, we need only prove that the following

diagram commutes for all C
f−→ D:

[B,C] [[A,B] , [A,C]]

[B,D] [[A,B] , [A,D]]

LA
B,C

LA
B,D

[idB , f ]
[
id[A,B], [idA, f ]

] (3.99)

Since this is merely the statement that LA is natural in its second argument,

eq. (3.95) commutes and BK is a closed category.

We have now seen that definition 3.38 is quite cumbersome to work with.

Fortunately, a shortcut is sometimes available:

Proposition 3.41 (Eilenberg and Kelly [21, prop. II.4.1]). Let C be a

category with multiplication □ and internal hom-functor [ , ]. Let K be

an object of C, and let pA,B,C be an isomorphism [A□B,C] ≃ [A, [B,C]],

natural in A, B, and C. Then the following statements are equivalent:
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(i) C is a monoidal category with tensor product □ and unit K;

(ii) C is a closed category with unit object K.

This motivates the following definition, formed by applying V to p:

Definition 3.42. A locally small category C is a closed monoidal category

with unit K if it is both a monoidal category with unit K and a closed

category with unit K, and the tensor product is left adjoint to the internal

hom.

Some examples of closed monoidal categories are Set with the Cartesian

product, and K-Mod with the tensor product of modules. Note that not

every monoidal category that is closed is a closed monoidal category: VectK

is a closed category, and we can form a monoidal category by choosing

the direct sum as our tensor product (and the empty vector space as the

unit object), but then the isomorphism pA,B,C does not exist for all objects

A,B,C, and the tensor and internal hom do not have the same unit. There-

fore ⟨VectK,⊕, ∅, α, λ, ρ⟩ is a closed and monoidal category, but not a closed

monoidal category.

This relationship between closed and monoidal structure is often said

to point out the “correct” tensor product: the most correct tensor is the

one that is adjoint to the internal hom. That is why, out of all the pos-

sible products, coproducts, and other bifunctors, we almost always use ⊗ on

modules, and × on Set.

A closed symmetric monoidal category is a symmetric monoidal category

that is also a closed monoidal category. One common example is FdHilbK,

which also has some other interesting properties:

Example 3.43. Let FdHilbK,⊗ denote the monoidal category formed by

equipping FdHilbK with the usual tensor product, and for every object H
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of FdHilbK,⊗, let [H,K] = H∗, where ∗ is the Hermitean adjoint. Note that

the usual definition of ∗ from functional analysis makes it a contravariant

endofunctor on FdHilbK,⊗. Then for all finite-dimensional K-Hilbert spaces

A, B, we have [A,B] = B ⊗A∗, and there exists an isomorphism

pA,B,C : [A⊗B,C] ∼= [A, [B,C]] (3.100)

natural in A, B, and C, so by proposition 3.41, FdHilbK,⊗ is a closed

monoidal category.

For any fixed K-Hilbert space H, we can then formulate a tensor-hom

adjunction in FdHilbK,⊗:

ϕA,B : Hom (A⊗H, B) ∼= Hom(A,B ⊗H∗) (3.101)

where the functor L(A) = A⊗H is left adjoint to R(B) = B⊗H∗ = [H, C].

The unit of this adjunction is

ηHA =
∑
i,j

(⟨ai| ⊗ ⟨hj |)⊗ (|ai⟩ ⊗ |hj⟩) (3.102)

with {|ai⟩} and {|hk⟩} arbitrary orthonormal bases of A and H. The counit

is the evaluation map:

eval |χ⟩ ⊗ ⟨ψ| = ⟨ψ|χ⟩ (3.103)

These have the useful property that for any morphism H⊗A
f−→ H⊗B:

TrH (f) = ρB◦
((
εHK ◦ γH∗,H

)
⊗ idB

)
◦αH,H∗,B◦idH⊗f◦αinv

H∗,H,A◦
(
ηHK ⊗ idA

)
◦λinvA

(3.104)

as is easily, though laboriously, verified by computation.

We can use whiskerings to define trace in a nicer way:
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Definition 3.44. The trace of a 2-cell A□B f−→ C□B in a compact closed

category is the 2-cell:

TrB (f) = λ ◦ ((ε ◦ γ) · C) ◦ α ◦ (B∗ · f) ◦ αinv ◦ (η ·A) ◦ λinv (3.105)

where unnecessary subscripts are omitted, and η, ε are the unit and counit

of the adjunction B ⊣ B∗.

Our previous discussion of braiding, symmetry, and adjunctions, com-

bined with closedness, has given us quite a toolbox with which we can ex-

amine the linear structure of (certain subtypes of) monoidal categories. We

have discussed scalars, dual objects, and tensors in detail; along the way we

picked up traces and the relationship between tensors and duals. All of this

culminates in the notion of a compact closed category:

Theorem 3.45 (Kelly [38]). The following statements are equivalent:

(i) C is a closed monoidal category, where for all 1-cellsA,B,C: [A,B□C] ≃

B□ [A,C];

(ii) C is a symmetric monoidal category where every 1-cell A has a left

adjoint A∗.

In that case, A∗ = [A,K], A∗∗ = A, and (−)∗ is a contravariant endofunctor

on C. We then call C a compact closed category , and A∗ the dual object of

A.

Now recall the uncategorical language we used earlier: norms, multiplica-

tion, and complex conjugates. We have now seen that scalars are endomorph-

isms of the monoidal unit, so a norm is simply a functor that sends every

A
f−→ B to some K

∥f∥−−→ K, and multiplication is composition of scalars.

118



In a compact closed category, applying the ∗-functor to a scalar gives the

complex conjugate. For vectors, the dual gives us bras and kets.

Definition 3.46. In a compact closed category with unit object K, let

K
|a⟩−→ A be a vector. We then call |a⟩ a ket , and we call ⟨a| ≡ |a⟩∗ a bra.

We are now fully equipped to speak in categorical terms about vector

spaces, C*-algebras, and many of their constructions. Unfortunately, our

diagrams have grown ever larger, and our equations ever longer. We end

this chapter by introducing a graphical language that tames such oversized

and over-complicated diagrams as eq. (3.89).

3.10 The graphical calculus

In this section, we introduce a second graphical language which (at the cost

of some minor details) greatly simplifies our diagrams: so much so, that

almost all diagrams that we draw from now on are in this second format. It

is also a useful computational tool: theorems 3.48 and 3.50, below, tell us

that a statement is derivable from the axioms for a specific type of category if

and only if it derivable by the graphical manipulation of diagrams, following

rules given by the dialect of the graphical language specific to that type

of category. This visual manipulation is often far easier than the diagram

chasing and manual equation solving we have been doing so far.

The graphical calculus is a generalisation of Penrose’s tensor calculus (see

[62] and the references therein for an historical overview). Whereas Penrose

used lines to represent vector spaces and boxes for functions, we use lines to

represent 1-cells, and boxes (or circles, triangles, ...) for 2-cells. Regions of the

plane, separated by 1-cells, represent 0-cells. We read horizontal composition

right-to-left, and vertical composition bottom-to-top. So instead of writing
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B
f−→ A, we draw:

A
f

B
(3.106)

If we also have C
g−→ B, then we draw C

f□g−−→ A as:

A
f

B
g

C
(3.107)

and the diagram

A B C

f ′

f

τ

g′

g

υ (3.108)

becomes:

A f

ττ

f ′

B g

υυ

g′

C

(3.109)

We mentioned above that the graphical calculus loses some detail. In

particular, we do not draw any identity 1-cells and 2-cells. So instead of

A

idA

A

and

A f

idfidf

f

B

(3.110)

we simply draw:

A

and

A

f

B

(3.111)

Another lost detail is associativity: the graphical calculus makes no dis-
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tinction between

A
f

B
g

C
h

D
(3.112)

and

A
f

B
g

C
h

D
(3.113)

Nor does it distinguish

□ from ◦ (3.114)

Note that the above is a graphical statement of the interchange law; and

note that we’ve stopped labelling our 0-cells. Almost all the 2-categories

we discuss in this thesis are monoidal, so there usually is only one 0-cell

anyways.

Also note that 2-cells may join and split 1-cells. For example, let τ :

f□g ⇒ h : B → A and υ : h ⇒ i□j : B → A be 2-cells, and let f : C → A,

g : B → C, h : B → A, i : D → A, j : B → D be 1-cells. We can capture all

this information in one simple picture:

f
τ

h

υ
i j

g

A B

C

D

(3.115)

To see the power of this calculus let L be left adjoint to R. We draw the
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unit η and counit ε as:

η

L R
and

R

ε

L

(3.116)

It is often nicer to write L as a downward-pointing arrow, and R as an

upward-pointing arrow. We can then reduce the above diagrams to:

and (3.117)

so the monstrous diagrams of eq. (3.82) become:

= (3.118)

= (3.119)

These yanking equations are instances of a more general rule:

Definition 3.47. In the graphical calculus, diagrams Γ and ∆ are equivalent

by planar isotopy (or Γ
iso
= ∆) if each can be continuously deformed into

the other within its bounding rectangle, without introducing (or removing)

any 1-cell crossings, without sliding any 2-cell over another, and without

changing the domain or codomain of the diagram beyond associative and

unital isomorphism.
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For example:

iso
=

̸iso=

(3.120)

A diagram Γ with input strandsA1, . . . , Am and outputs strandsB1, . . . , Bn

is equivalently a 2-cell □m
i=1Ai

γ−→□n
j=1Bj . This allows for:

Theorem 3.48. Let Γ,∆ be diagrams in a monoidal category, and let γ, δ be

the corresponding 2-cells. Then γ ≃ δ follows from the axioms for monoidal

categories if and only if Γ
iso
= ∆.

This lets us simplify several complex diagrams and proofs. Proposi-

tion 3.37 now reduces to the equations:

iso
= (3.121)

and

iso
= (3.122)

both of which obviously hold.

If our monoidal category is also braided, then the braid isomorphisms
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are the boxes:

A□B

γA,BγA,B

B□A

=

A B

B A

B□A

γinv
A,Bγinv
A,B

A□B

=

B A

A B

(3.123)

and if the category is symmetric monoidal, we may simply draw:

A□B

γA,BγA,B

B□A

=

A B

B A

(3.124)

The statement that γA,B is natural in A and B then reads:

∀f, g :

ggff

iso
=

gg ff

(3.125)

and the braided hexagon eqs. (3.67) and (3.68) become:

iso
= (3.126)

iso
= (3.127)

Because we can now cross and uncross our 1-cells, and slide 2-cells over

these crossings, we have effectively added a third dimension to our graph-

ical calculus: instead of by rectangles, our diagrams are now bounded by

rectangular cuboids. Theorem 3.48 then has an obvious three-dimensional
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extension:

Definition 3.49. In the graphical calculus, diagrams Γ and ∆ are equivalent

by spatial isotopy (or Γ
sp. iso
= ∆) if each can be continuously deformed into

the other within its bounding cuboid, without any 1-cells or 2-cells touching

each other, and without changing the domain or codomain of the diagram

beyond braided, associative, and unital isomorphism.

Theorem 3.50. Let Γ,∆ be diagrams in a braided monoidal category, and

let γ, δ be the corresponding 2-cells. Then γ ≃ δ follows from the axioms for

braided monoidal categories if and only if Γ
sp. iso
= ∆.

Note that in a monoidal category, eqs. (3.123) to (3.127) are definitions

of 2-cells which must obey theorem 3.48, whereas in a braided monoidal cat-

egory they are, respectively, an abbreviation, an abbreviation, a statement,

a consequence, and a consequence of spatial isotopy.

A further advantage of the graphical calculus (besides its simplification

of many braid equations) is that it simplifies definition 3.44, of trace in a

compact closed category:

Definition 3.51. The partial trace over A of a 2-cell A□B f−→ A□C in a

compact closed category is the 2-cell:

TrA (f) = ff

B

C

A∗ (3.128)

where

= . (3.129)
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This concludes our mathematical preliminaries. We now have all the

background necessary to discuss categorical quantum and classical mechan-

ics.
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Part II

Categorical Physics
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Chapter 4

The Categorical Structure of

Physical Theories

The motivating intuition for our definition of categories at the beginning

of chapter 2 was mathematical structures (objects) connected by structure-

preserving maps (morphisms). As we studied more and more categories,

the structure of definition 2.1 turned out to be more general than that. In

monoids, groups, and posets, the morphisms do not necessarily operate on

the object or objects in any way, and in BraidP all the morphisms are

endo, so they cannot connect objects. In this chapter, without changing our

mathematical definitions, we further expand our intuitive picture of what

categories are, and categorically define physical theories.

We first discuss some pre-theoretical intuitions of what an operational

physical theory ought to be able to do, and show that these correspond to the

structure of a symmetric monoidal category (§ 4.1). Then we show in § 4.2

how this structure, with the additional assumptions that we are working

in FdHilbC and that adjunctions encode correlations, lets us describe the

quantum teleportation protocol and prove its correctness, and suggests wider
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applications of categorical physics. Unfortunately, these applications are far

less straightforward than we might initially expect; § 4.3 briefly discusses

the problems with categorical classical physics.

4.1 Pre-theoretical intuitions

Most of the structures we discussed in chapter 2 were concrete categories.

That is, categories in the sense of our motivating intuition: Set, VectK, and

Rel all consist of mathematical objects — sets, perhaps with some extra

structure — each one connected, with specific structure preserved, to all the

others by morphisms. In addition, we defined some structures — such as

categories, posets, categories with finite products, or monoidal categories —

of which the concrete categories are models. These are abstract categorical

structures, which were the main focus of chapter 3.

But there is no reason to restrict our understanding of categories to

those containing mathematical structures: in fact, Bob Coecke and Éric

Paquette extend this dichotomy with “real-world categories”, whose objects

are systems that exist in the “real world”, and whose morphisms are trans-

formations of real-world systems [18]: one of Coecke’s favourite examples

is the cooking category where objects are foods (potato, cooked potato,

spiced potato, mashed potato, ..., carrot, cooked carrot, ...), and morphisms

are preparations (peeling, cooking, spicing, mashing, ...). Since our topic is

quanta and their mechanics (not cooking and menus), our first example is

the category PhysOp of physical systems (both quantum and classical) and

laboratory operations (also defined in [18]).

So what kind of category is PhysOp? It seems reasonable to ask that

every operational physical theory have the following properties, all of which

PhysOp would have too:
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OpTh-I We do not have to take the entire universe into account for every

calculation we make: instead, we can get reasonable approxima-

tions by considering smaller systems in isolation.

OpTh-II If we can perform an operation f in the laboratory, which turns

system A into system B, and an operation g that turns system

B into system C, then we can also perform a third operation —

call it g ◦ f — that transforms A into C.

OpTh-III We can choose to do nothing to a system.

OpTh-IV Any two systems A, B can be composed to form a system A□B.

OpTh-V There exists an empty system.

OpTh-VI If we can perform the operations A
f−→ A′ and B

g−→ B′ separately,

we can also perform them in parallel: A□B f□g−−→ A′□B′.

OpTh-VII A□B and f□g are, for every conceivable purpose, just as good

as B□A and g□f , though they are generally not the same.

OpTh-VIII Switching the order of the terms in A□B or f□g around twice,

is the same as doing nothing.

OpTh-I to OpTh-III tell us that physical systems must be the objects, and

that operations must be the morphisms of PhysOp. OpTh-IV to OpTh-VI

imply that PhysOp has a monoidal structure, OpTh-VII that it is braided,

and OpTh-VIII that it is symmetric.

OpTh-VII is particularly important, as it states that we can keep track

of individual systems even when they are composed. For example, if A is a

beaker of sodium hydroxide, and B an oscilloscope, then OpTh-VII tells us
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that

NaOHaq □ oscilloscope
add HClaq □ plug in−−−−−−−−−−−−→ NaClaq □ oscilloscope (4.1)

is not the same process as

NaOHaq □ oscilloscope
plug in □ add HClaq−−−−−−−−−−−−→ blown fuse □ broken oscilloscope

(4.2)

along with similar statements for other permutations of A, B, f , g.

Note that □ is not the usual tensor product or direct sum; nor are A and

B vector spaces of any kind. The systems under consideration are, at this

stage of reasoning, nothing but physical objects, and A□B means nothing

else than consider both A and B. Also note that we consider NaOHaq and

NaClaq two different systems, while oscilloscope and plug in (oscilloscope) are

both states of the same system. We could of course have taken a more

detailed view, where plug in is not an endomorphism of the oscilloscope sys-

tem, or a far more general view, where NaOHaq, NaClaq, oscilloscope, and

broken oscilloscope are all states of the system neutronp □ protonq □ electronr,

for very large values of p, q, r. The exact demarcation of systems is context

dependent.

4.2 First applications to quantum mechanics

The above description of categorial physics might seem both too abstract

to be usable, and too obvious to be of any interest. In this section and the

next, we address those criticisms. We first discuss quantum teleportation, the

study of which motivated much of the early research in categorical quantum

mechanics. This setting lets us flesh out the quantum-mechanical part of
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PhysOp, and shows that our initial set of pre-theoretical assumptions needs

two additions in order to encode all of non-relativistic quantum mechanics.

Then we briefly touch on the difficulties involved in categorical classical

physics.

Let Q1, Q2, Q3 be qubits, and let B be a device that performs a Bell

measurement, let U be a device that performs a unitary operation on a

qubit, and let epr be a procedure that puts two qubits in an epr

state. Then the following diagram depicts quantum teleportation [10] in

PhysOp:

Bell measurementBell measurement

eprepr

UxyUxy

B |ψ⟩ Q2 Q3 U

B Q1 Q2 |ψ⟩ U

(4.3)

provided the unitary operation Uxy performed by U depends on the result of

the measurement performed by B in the correct way. The Bell measurement

and the unitary correction will perfectly transfer the mystery state of Q1 to

Q3, while only exchanging two bits of classical information.

Categorical quantum mechanics began when Bob Coecke and Samson

Abramsky sought to remove B and U from this diagram, and make the

effect of this 2-cell — teleportation — more evident from its structure [1,

15, 16]. The three key insights here are that compact closed structure lets

us represent entangled state preparations and measurements, that the left

and right adjoint arrows point in the direction of information flow, and that

biproducts allow for branching to occur in a single diagram. We discuss each

of these, in as categorical a language as possible.

First, note that for all 1-cells C, D in a compact closed category with
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identity 1-cell K, there exists a bijection [C,D] ≃ [K,C∗□D], given by

“bending the wire” [15]:

C

ff

D

7→
C∗

ff

D

. (4.4)

We write the right-hand side of this equation as ⌜f⌝, which we call the name

of f .

If we take PhysOp to be compact closed, identify its objects with finite-

dimensional Hilbert spaces, and choose ⊗ as the tensor, then every name

has the form

k 7→ k
∑
i,j

fi,j⟨ci| ⊗ |dj⟩ (4.5)

with {⟨ci|}i, {|dj⟩}j orthonormal bases of C, D. Therefore, the right-hand

side of eq. (4.4) encodes a correlation between C and D.

In particular, let C and D be qubits, let {|ci⟩}i, {|dj⟩}j both be compu-

tational bases, and let f be one of the following matrices:

β1 =
1√
2

1 0

0 1

 β2 =
1√
2

0 1

1 0


β3 =

1√
2

1 0

0 −1

 β4 =
1√
2

0 −1

1 0


If f = β4, for example, then ⌜f⌝ is the mapping

k 7→ k√
2

∑
i,j

0 −1

1 0


i,j

⟨ci| ⊗ |dj⟩ =
k√
2
(|c0d1⟩ − |c1d0⟩) , (4.6)
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where |cidj⟩ ≡ ⟨ci| ⊗ |dj⟩. And if we write the Bell states as

|b1⟩ =
1√
2
(|c0d0⟩+ |c1d1⟩) |b2⟩ =

1√
2
(|c0d1⟩+ |c1d0⟩)

|b3⟩ =
1√
2
(|c0d0⟩ − |c1d1⟩) |b4⟩ =

1√
2
(|c0d1⟩ − |c1d0⟩)

then setting f = βi and bending the wire generates the mapping ⌜f⌝ =

⌜βi⌝ : k 7→ k√
2
|bi⟩.

Now recall that in the graphical calculus, we don’t have to draw identity

1-cells or 2-cells, but it is not forbidden to do so. And because K is the

identity 1-cell of our compact closed category:

=

K

idK

K

= idK
(4.7)

that is, the empty system is equivalent to idK . Since idK = 1 in the category

of finite-dimensional Hilbert spaces and linear maps, we then have:

C∗

βmβm

D

=

C∗

βmβm

D

idK

(4.8)

where the right hand side is a mapping

empty system 7→ 1 7→ |bm⟩. (4.9)

Hence, a name is a procedure that maps the empty system to an entangled

state — i.e. an entangled state preparation.
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Instead of bending the lower wire up in eq. (4.4), we could have also bent

the upper wire down, giving a bijection

C

ff

D

7→

C

ff

D∗

. (4.10)

The right-hand side of this equation is the coname ⌞f⌟ of f . Intuitively,

this would represent the opposite of an entangled state preparation — a

measurement of an entangled pair, yielding a specific outcome — and this

is indeed so (but more on that later).

Theorem 3.3 of [16] then tells us that the teleportation protocol of

eq. (4.3) is equal to the left-hand side of:

βkβk βnβn

UxyUxyβkβk

iso
=

βkβk

(4.11)

The isotopic equivalence proves the correctness of the protocol. The right-

hand side of the diagram depicts a 2-cell that takes three input strands at

the bottom and produces three output strands at the top. The value at the

leftmost input strand is sent to the rightmost output strand, the values of

the middle and right inputs are discarded, and the values of the left and

middle outputs form an entangled pair in the Bell state |bk⟩. Note that the

equivalence holds only when Uxy ◦ βn ◦ βk = id (but more on that later).
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On the right hand side, there appears to be some kind of flow. This can-

not be the movement of a physical system, as our notation does not encode

that; rather, the arrow is often said to point in the direction of informa-

tion flow. This is the second key insight underlying categorical quantum

mechanics.

This protocol might at first seem retrocausal, as the arrow in the middle

of the left-hand side points backwards in time, but that is not the case.

First, we should note that once the Bell measurement is performed, the

arrow cannot go forwards in time. The pre-measurement states of Q1 and

Q2 provide no information on the post-measurement states, so the arrow

along Q1 must either stop or change direction. Also note that if we know

the state of Q1 before the measurement, and we know the measurement

outcome — that is, the state at the top of the counit — then we know the

state Q2 had before the measurement. Hence, we can follow the information

flow along Q1, over the top of the counit, and down into Q2. And if we know

the state of Q2 after the entangled state preparation, and we know how the

entangled state was prepared — that is, we know what βn is — then we

know the state in Q3 after the entangled state preparation. The protocol

is not retrocausal, because backwards information flow does not affect the

past from the future; it merely allows an observer in the future to calculate

past states. (Since all the operations encountered along the way are unitary,

this also works in the opposite direction.)

Above, we promised to discuss measurements and the isotopic equival-

ence in eq. (4.11) in more detail. We now introduce biproducts, and use

them to tie up these loose strands.

Recall definition 2.13, which states that the product of two objects A,B

in a category C is an object C of C, along with morphisms C
πA−−→ A and
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C
πB−−→ B, satisfying certain conditions. We then call ⟨C, πA, πB⟩ a product

tuple. Similarly, definition 2.17 lets us characterise the coproduct C of A

and B in terms of a coproduct tuple ⟨C,A κA−−→ C,B
κB−−→ C⟩. The biproduct

A ⊕ B of A and B arises out of ⟨A Π B, πA, πB⟩ and ⟨A ⨿ B, κA, κB⟩ as

follows:

Definition 4.1. For A,B objects in a category C with a zero object, the

biproduct of A and B is an object A ⊕ B of C, along with morphisms κA,

κB, πA, πB such that ⟨A⊕B, πA, πB⟩ is a product tuple, ⟨A⊕B, κA, κB⟩ is

a coproduct tuple, the following diagram commutes:

A⊕B

A

A

B

B

idA

κA

πA

idB

κB

πB

(4.12)

and both πA ◦ κB and πB ◦ κA are zero morphisms.

A category has finite biproducts if A⊕B exists for all objects A and B

(i.e. zero matrices, empty relations: anything that factors through the zero

object).

Examples of categories with finite biproducts areVectK, with biproducts

given by the direct sum, andRel, with biproducts given by the disjoint union

(cf. examples 2.14, 2.15, 2.18, and 2.19). In both cases the product is also a

coproduct, so AΠB = A⨿B, and in both cases the projections AΠB
πA−−→ A,

AΠB
πB−−→ B are the left inverses of the injections A

κA−−→ A⨿B, B
κB−−→ A⨿B.

Now let {A1, . . . , Am} and {B1, . . . , Bn} be finite sets of objects in some

category with finite biproducts. Then any morphism
⊕m

j=1Aj
f−→ ⊕n

i=1Bi

is uniquely characterised by how every component of its domain is mapped

to each component of its codomain — that is, by all the morphisms fi,j =
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πBi ◦ f ◦ κAj — and we may write:

f =


f1,1 . . . f1,m
...

. . .
...

fn,1 . . . fn,m

 . (4.13)

This matrix representation of morphisms lets us reconstruct the usual rules

for matrix manipulation. First, for morphisms A1
f−→ B1, A2

g−→ B2, we

define:

f ⊕ g =

 f 0A2,B1

0A1,B2 g

 : A1 ⊕A2 7→ fA1 ⊕ gA2. (4.14)

Then, we define addition of A
f−→ B and A

g−→ B as:

f + g = (idB ⨿ idB) ◦ (f ⊕ g) ◦ (idAΠ idA). (4.15)

For example, in VectK, f + g is the mapping:

|a⟩

idA
idA


7−−−−−→ |a⟩ ⊕ |a⟩

f 0

0 g


7−−−−−−→ f |a⟩ ⊕ g|a⟩

[
idB idB

]
7−−−−−−−−−→ f |a⟩+ g|a⟩ (4.16)

where the last + denotes ordinary addition. In Rel, R+ S is the relation:

A 7→ {(a, ⋆), (a, •) | a ∈ A} 7→
{
(b, ⋆), (b′, •)

∣∣ aRb, aSb′} 7→
{
b, b′

∣∣ aRb, aSb′} ,
(4.17)

so R+ S = R ∪ S.

This addition operation is associative, commutative, and has the zero

morphism 0A.B as its unit, so every category with finite biproducts is en-

riched over the category CMon of commutative monoids. (In Ab-enriched
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categories with finite biproducts, all the usual rules of matrix algebra ap-

ply to morphisms-considered-as-matrices: these are the linear categories.)

For our purposes, it is enough that for any morphisms
⊕

k Ak
f−→ ⊕

j Bj ,⊕
k Ak

g−→⊕
j Bj , and

⊕
j Bj

h−→⊕
iCi the following familiar rules hold:

(f + g)j,k = fj,k + gj,k (4.18)

(h ◦ f)i,k =
∑
j

hi,j ◦ fj,k. (4.19)

Note that VectK is Ab-enriched — and therefore linear — so in that cat-

egory, this matrix algebra is simply the block matrix algebra; in the limit

where all the Ak, Bj , Ci are K, we have reconstructed the usual matrix

calculus.

In the generalised matrix calculus, it is easy to show that □ distributes

over ⊕. For any finite biproduct
⊕n

k=1Ak and object B, there exists an

isomorphism

υB =


πA1□ idB

...

πAn□ idB

 :

(
n⊕
k=1

Ak

)
□B →

n⊕
k=1

(Ak□B) . (4.20)

Many more useful constructs in FdHilbC, such as unitarity and self-

adjointness, can be defined in terms of the adjoint. All we need to categorify

this, is a contravariant endofunctor (−)† that is an identity on objects and

an involution on morphisms, chosen such that the associators and unitors

are unitary, such for all morphisms f, g, (f ⊗ g)† = f † ⊗ g†, and such that

for all objects A: γA,A∗ ◦ ε†A = ηA. If such a †-functor exists, we call our

category dagger compact closed .

Biproducts and the adjoint in dagger compact closed categories imme-
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diately lead to bases and spectral decompositions [1]. If we define

n ·A ≡
n⊕
k=1

A (4.21)

then a basis of an object X in a category with tensor unit K is a unitary

isomorphism n · K baseX−−−→ X. For example, in FdVectK, a basis of the n-

dimensional vector space X is a (non-unique) bijection that sends every(
k1
...
kn

)
∈ K⊕ . . .⊕K to a vector in X.

Spectral decompositions take some more effort:

Definition 4.2 ([1, §7.4]). A spectral decomposition of an object A is a

unitary isomorphism

A
U−→
⊕
k

Ak (4.22)

along with morphisms

qk = U † ◦ κAk
: Ak → A (4.23)

pk = πAk
◦ U : A→ Ak (4.24)

and projectors:

Pk = qk ◦ pk : A→ A, (4.25)

where κAk
and πAk

are the biproduct injections and projections.

The above is a generalisation of the familiar projection operators onto

disjoint subspaces of a Hilbert space: the Pk are all self-adjoint, idempotent,

and orthogonal, and
∑

k Pk = idA.

A spectral decomposition is non-degenerate if it sends A to n ·K.

Projectors and biproducts then let us discuss branching:

Definition 4.3 ([1, §8]). Given a spectral decomposition A
U−→ ⊕n

k=1Ak
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with projectors Pk, a measurement is a morphism

⟨Pk⟩nk=1 ≡


P1

...

Pn

 : A→ n ·A. (4.26)

We call the projectors measurement branches. If U is non-degenerate, we

can also describe the measurement in terms of the observation branches

pk : A→ K:

⟨pk⟩nk=1 =


p1
...

pn

 . (4.27)

Now we return to eq. (4.11). The Bell measurement has four possible

outcomes corresponding to the conames ⌞βm⌟. That is, the value of m in-

dicates the measurement outcome, which in turn determines Uxy. In terms

of definition 4.3, the measurement stage of the teleportation protocol can

then be written as a matrix of observation branches:

⟨Bell⟩ = ⟨⌞βk⌟⟩4k=1 =



⌞β1⌟

⌞β2⌟

⌞β3⌟

⌞β4⌟


. (4.28)

The distributivity of □ over ⊕ lets us model classical communication. Given

a biproduct 4·K of observation branches, the morphism υQ3 maps the tensor

product (4 ·K)□Q3 — four branches of one measurement, tensored with one

system in one branch — to 4 · (K□Q3) — four branches, each containing a

measurement outcome and a qubit.

The teleportation protocol then reads [1, thm. 9.2, simplified — removed
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some normalising constants and other unnecessary information]:

Q1

Q1□(Q∗
2□Q3)

(Q1□Q∗
2)□Q3

(4 ·K)□Q3

4 ·Q3

4 ·Q3

(idQ1 □⌜βn⌝) ◦ ρinvQ1
produce epr pair

αinv
Q1,Q

∗
2 ,Q3

spatial delocation

⟨βk⟩4k=1
teleportation observation

(4 · λQ3) ◦ υQ3 classical communication

⊕4
k=1

(
βinv
k ◦ βinv

n

)
unitary correction

(4.29)

For an experimenter in the k-th branch, this protocol looks as follows:

βkβk βnβn

βinv
nβ
inv
n

βinv
kβ
inv
kβkβk

iso
=

βkβk

. (4.30)

The box Uxy in eq. (4.11) has now been expanded to the two boxes βinvn

and βinvk : the first is there because Uxy depends on which entangled state

was prepared; the second because Uxy depends on the two bits gained from

the Bell measurement. The fact that k ranges from 1 to 4 reflects that two

classical bits are exchanged.

Equation (4.30) does not show the α, λ, and ρ of eq. (4.29), because the
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graphical calculus does not show associativity and unitality isomorphisms.

It does not show any biproducts, because it only displays one branch. The

isotopic equivalence holds because βinvk ◦ βinvn ◦ βn ◦ βk = id.

So far, we have shown how to categorically describe certain quantum-

mechanical phenomena, but in so doing, we moved out of PhysOp and

into FdHilbC. We also had to add two more postulates to our list of pre-

theoretical intuitions:

OpTh-IX Adjunctions encode correlations.

OpTh-X There exist finite biproducts.

The eight pre-theoretical postulates, and the two post-theoretical, allow us to

formulate teleportation-like protocols and physics-like statements in a com-

pact closed category with biproducts, but leave us with a problem: OpTh-IX

and OpTh-X are not at all intuitive or pre-theoretical. Another problem is

classical mechanics, as we shall see now.

4.3 The problem of classical mechanics

Common wisdom holds that if quantum mechanics takes place in the cat-

egory of Hilbert spaces, then classical mechanics should take place in the

category of symplectic spaces (eg. [56, p. 66]). This approach comes with

two major problems. The first is that until recently no one has actually

managed to categorically describe classical mechanics in this way. The sym-

plectic category is ill-behaved [65], and the only categorification of classical

mechanics we know of that uses it is due to Baez, Weisbart, and Yassine,

published as recently as 2021 [6]. Before 2021, any discussion of classical

mechanics in or as the category of symplectic spaces was ill-founded. The
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second problem is that useful comparisons of quantum and classical mech-

anics get harder to make as the relevant categories get more different.

Ideally, we would be able to construct a category that models at least the

first eight of our pre-theoretical intuitions, so that we may find out which

of our post-theoretical additions — OpTh-IX and OpTh-X – are specific to

quantum mechanics. Furthermore, since compact closed structure is more

general than quantum mechanical structure, constructing categorical clas-

sical mechanics might help us identify more categorical structures common

to all physical theories.

In the next chapter, we will construct the classical subcategory ofPhysOp,

and try to translate as much of Cat-qm as possible into that category. Our

guiding empirical principle there, is that classical observables depend only

on the positions and momenta of the particles involved.
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Chapter 5

Categorical Classical

Mechanics

Koopman-Von Neumann mechanics (kvn) is our bridge from categorical

physics to classical mechanics. Developed in the 1930’s by Bernard Koop-

man and John von Neumann [41, 53], it expresses the Liouvillean of classical

statistical mechanics as an operator on a Hilbert space of functions from a

phase space to the complex numbers. The modulus squared of an appropri-

ately chosen function will be a probability distribution on the phase space,

whose time-evolution by the Liouvillean operator is exactly as predicted by

classical statistical mechanics.

Our presentation of kvn is somewhat unorthodox. In § 5.1 we discuss

Koopman’s lemma in the usual way, but where most authors would intro-

duce commutation relations between position and momentum operators, and

then derive more physics from that, we take a more general view of observ-

ables as nothing more than real-valued functions on the phase space, from

which self-adjoint operators arise on the Hilbert space. For a more conven-

tional overview of modern-day kvn, see §2 of [50]. Our unusual treatment
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of observables triggers a superselection mechanism which Ennio Gozzi and

Danilo Mauro noticed and did their best to avoid [26], but which we are

quite happy to exploit: we accept a few inelegancies in our classical theory,

and in return we get a nice categorical quantum-classical barrier. In classical

mechanics, we learn, there can be no pure superpositions.

That is half of our barrier. The other half is the width or narrowness

of the quantum or classical subcategory of PhysOp. In § 5.2 we discuss

the coarse-graining of kvn observables and prove the main theorem of this

chapter: that the Hilbert space which one uses for Koopman-Von Neu-

mann mechanics must be infinite-dimensional. We discuss uncorrelated kvn-

systems in § 5.3, from which it follows immediately that the kvn subcategory

of PhysOp is symmetric monoidal.

The main motivation of categorical quantum mechanics was the ability

of compact closed structure to encode quantum correlations. In § 5.4 we

conjecture, and provide some reasons to believe, that there is no classical

analogue to Abramsky and Coecke’s categorical description of quantum cor-

relations.

5.1 An overview of Koopman-Von Neumann clas-

sical mechanics

Let S be a dynamical system with phase space Γ, generalised coordinates

qk, conjugate momenta pk, and Hamiltonian H. For some energy level E, we

define

Ω = {ω ∈ Γ | H(ω) = E} . (5.1)

For every t ∈ R, let there exist an automorphism St of Ω that sends every

ω to the phase space point that S would occupy at time t if it occupied the
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point ω at time 0. The St compose as [St1St2 ]ω = St1+t2ω, so:

S0ω = ω (5.2)

(S1St2)St3 = St1 (S2St3) (5.3)

StS−t = S0 (5.4)

Now recall that in any phase space Γ with general point γ, the integral

∫
dγ (5.5)

is invariant under canonical transformations, so
∫

dω is invariant under

St. Also let ϕ be any Lebesgue measurable function Ω → C for which the

integrals

∫
Ω
|ϕ| dω (5.6)∫

Ω
|ϕ|2 dω (5.7)

are finite. The equivalence classes (with two functions equivalent if they

differ only on a region with zero measure) of all such functions together

form a Hilbert space H when equipped with the inner product

⟨ϕ|ψ⟩ :=
∫
Ω
ϕ∗ψ dω, (5.8)

where ∗ denotes the complex conjugate. For every St, let the operator Ut :

H → H be given by

[Utϕ]ω = ϕ (Stω) , (5.9)

and recall the following useful result:
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Lemma 5.1 (Koopman’s lemma [41]). The operators Ut form a continuous

one-parameter unitary group.

Due to Stone’s theorem [58, thm. viii.8], there must exist a self-adjoint

operator D : H → H, such that

Utϕ = eitDϕ. (5.10)

We may then write Utϕ as a time-dependent function ϕ(t, ω). Its derivative

is

∂ϕ

∂t
(t, ω) =

[
dUt
dt

]
ϕ(ω)

= [iDUt]ϕ(ω)

= iDϕ(t, ω)

(5.11)

We now have at our disposal a Hilbert space of functions which at-

tach to every point on Ω a value which moves across Ω along the time-

evolution paths of S, and we know that there exists a self-adjoint operator

that provides the time-derivative of each function in H. One possible inter-

pretation of the values ϕ(ω) is that for every ϕ such that ⟨ϕ|ϕ⟩ = 1 and

every suitable region ∆ ⊆ Ω, the integral
∫
∆ |[Utϕ] (ω)|2 dω represents the

epistemic probability of S occupying the phase space region ∆ at time t.

In classical statistical mechanics, every physically realisable probability

distribution ρ(t, ω) on Ω is a solution to the Liouville equation:

∂ρ

∂t
=
∑
k

(
∂H

∂qk

∂ρ

∂pk
− ∂H

∂pk

∂ρ

∂qk

)
, (5.12)

and if ϕ is a solution, then so is ϕ∗ϕ. Hence, we choose D = −L as the
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self-adjoint generator of Ut, where L is the Liouvillean operator:

L = i
∑
k

(
∂H

∂qk

∂

∂pk
− ∂H

∂pk

∂

∂qk

)
, (5.13)

so that:

i
∂ϕ

∂t
= −Dϕ

= i
∑
k

(
∂H

∂qk

∂

∂pk
− ∂H

∂pk

∂

∂qk

)
ϕ.

= Lϕ

(5.14)

This is a classical version of the Schrödinger equation.

We could also have worked the other way around. First we construct a

Hilbert space and then we build a unitary group. Choosing our Ut such that

the group is generated by −L guarantees that any everywhere-differentiable

unit vector ϕ will evolve in time as a solution to the Liouville equation, and

therefore that the St represent the correct time-evolution of S.

Definition 5.2. If the probability distribution on Ω is given by ρ(ω) =

ϕ∗(ω)ϕ(ω), we call |ϕ⟩ a kvn-state of S. If S occupies the phase space point

ω, we call ω the physical state of S.

Having defined the states and dynamics of S in terms of H, we can

extract expectation values of observables from our probability distributions:

Definition 5.3. An observable ofS is any function Ω → R. The expectation

value of an observable X conditional on a kvn-state |ϕ⟩ is

⟨X : ϕ⟩ =
∫
Ω
X(ω)|ϕ(ω)|2 dω. (5.15)

Every such observable gives rise to a self-adjoint operator X̂ : H → H,
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defined as: [
X̂ϕ
]
ω = X(ω)ϕ(ω). (5.16)

These operators form a real Abelian algebra on H.

Now we seem to have a problem. Gozzi and Mauro [26] point out that

in such a setup, every operator commutes with every other operator and

therefore a superselection mechanism sets in. Given two eigenstates of some

operator Ẑ

Ẑ|ϕ1⟩ = z1|ϕ1⟩

Ẑ|ϕ2⟩ = z2|ϕ2⟩
(5.17)

and any observable X, we have ⟨ϕ1|X̂|ϕ2⟩ = 0 because the supports of

the functions |ϕ1⟩ and |ϕ2⟩ are disjoint: |ϕ1⟩ is supported on some subset

of {ω ∈ Ω | Z(ω) = z1}, and |ϕ2⟩ on some subset of {ω ∈ Ω | Z(ω) = z2}.

Hence if the time-evolution operator of our system is to be an observable

— as is the case in quantum mechanics — no movement is possible, as

no observable can change in value. Fortunately, the Liouvillean depends

not only on qk and pk but also on ∂qkϕ and ∂pkϕ and therefore is not an

observable. Unfortunately, because our systems are now capable of time-

evolving from one superselection sector into another, there is no a priori

reason to believe any conservation laws still hold.

Another rather unpleasant consequence of our setup is that H might not

be separable, as it becomes a direct sum (or a direct integral [26])
⊕

iHi of

perhaps uncountably many superselection sectors.

All of this is unacceptable to Gozzi and Mauro [26]. They show that there

is interesting physical information to be extracted from the Liouvillean, so

it is desirable for it to be an observable. Also, they point out that there is
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no point in using a Hilbert space of complex-valued functions if all the ob-

servables are to be real-valued functions. Introducing additional observables

λ̂qk = −i∂qk , λ̂pk = −i∂pk makes the algebra of observables non-Abelian

(since [q̂j , λ̂qk ] = [p̂j , λ̂qk ] = iδjk), prevents the superselection from setting in,

and makes L an observable.

We choose instead to accept those inelegancies that are resolved by in-

troducing the λ̂’s in exchange for a nicer categorical structure, as we will

demonstrate below. First, note that yet another consequence of this decision,

as pointed out in [26], is that all superpositions of eigenstates corresponding

to different eigenvalues are indistinguishable from mixed states.

Let |ϕ⟩ = α1|ϕ1⟩ + α2|ϕ2⟩ be a unit vector, where |ϕ1⟩, |ϕ2⟩ are unit

eigenstates of X̂:

X̂|ϕ1⟩ = x1|ϕ1⟩

X̂|ϕ2⟩ = x2|ϕ2⟩
(5.18)

Then ⟨ϕ1|ϕ2⟩ = ⟨ϕ2|ϕ1⟩ = 0, so the expected value of an X-measurement

conditional on |ϕ⟩ is:

⟨X : ϕ⟩ = ⟨ϕ|X̂|ϕ⟩

= x1|α1|2⟨ϕ1|ϕ1⟩+ x2|α2|2⟨ϕ2|ϕ2⟩

= x1|α1|2Tr (|ϕ1⟩⟨ϕ1|) + x2|α2|2Tr (|ϕ2⟩⟨ϕ2|) .

(5.19)

From now on we will write all kvn-states as density operators. In the next

section, we explore and prove some consequences of this formulation of kvn,

including that classical mechanics is not possible in finite-dimensional Hil-

bert spaces.
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5.2 Coarse-graining of KvN observables

In categorical quantum mechanics, quantum correlations and protocols de-

pend on the compact closed structure of FdHilbC: the right adjoint of the

Hilbert space A is its dual space A∗. This adjunction is well-behaved only

if A∗∗ = A, so Abramsky and Coecke’s categorical semantics for quantum

protocols only works because finitary quantum mechanics is possible. In this

section, we prove that finitary kvn is not possible, which suggests that a dif-

ference between the quantum and classical subcategories of PhysOp is their

width: the quantum subcategory must, and the classical subcategory cannot

be wide.

First, we define coarse-graining of observables as a possible route to

finite-dimensional classical mechanics. From the functional composition prin-

ciple (FUNC), we derive the operator relation principle (OPREL), and then

we show that every mapping of coarse-grained observables to a finite-dimen-

sional Hilbert space violates OPREL. Throughout this section we assume that

we can define a flat probability density function on Ω: to assume otherwise is

to assume finitary kvn is impossible, since otherwise we could define states

on infinitely many disjoint regions of Ω. These would be pairwise orthogonal,

and we would therefore need an infinite-dimensional Hilbert space. Hence,

we need only consider those Ω for which µ(Ω) <∞, where µ is the Lebesgue

measure on Ω. We emphasise that this is not the same as the Lebesgue

measure on the total phase space Γ.

Definition 5.4. Let X : Ω → I ⊆ R be an observable, let I1, I2, . . . , In be a

partition of I, and for each Ik let ∆k = {ω ∈ Ω | X(ω) ∈ Ik}. For any such
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partition, we call the observable

X(ω) =


1 if ω ∈ ∆1

...

n if ω ∈ ∆n

(5.20)

an n-coarse-graining of X. If I is a finite set, X is already (isomorphic to) a

coarse-graining of itself. We write Pr
(
X = k

)
for the probability of ω lying

in ∆k.

By analogy with finitary qm, we might expect that coarse-graining all

the observables of S lets us downgrade H to Cd, for some finite d, without

loss of information at the coarse-grained level. Below, we prove that this is

impossible.

First, we should define “loss of information at the coarse-grained level”.

If all we know about S is the probabilities Pr
(
X = k

)
for some n-coarse-

graining of an observable X, then we can represent our state of knowledge

as an element of a Hilbert space Cd, with n ≤ d. We represent X as a

self-adjoint operator X̂ with eigensubspaces eig (xk), state the Born rule: a

density operator ρ : Cd → Cd corresponds to the probabilities

Pr
(
X = k

)
= Tr

(
PXk ρ

)
, (5.21)

where PXk is a projection onto eig (xk).

Now let Y be an m-coarse-graining of the observable Y (with corres-

ponding phase space regions ∆′
1,∆

′
2, . . . ,∆

′
m). Since our knowledge of S

only assigns probabilities to the ∆k’s as a whole, we know nothing of how

the probabilities are distributed inside the ∆k’s, so we assume a flat distri-

153



bution. The same applies to the ∆′
k’s, so the probability Pr

(
Y = j : X = k

)
of Y = j conditional on X = k is proportional to the measure of ∆′

j ∩∆k.

This gives us a coarse-grained classical version of the functional composition

principle:

Lemma 5.5 (Functional composition (FUNC)). For all X, Y as above:

Pr
(
Y = j

)
=

n∑
k=1

Pr
(
Y = j : X = k

)
Pr
(
X = k

)

=
n∑
k=1

µ
(
∆′
j ∩∆k

)
µ (∆k)

Pr
(
X = k

)
,

(5.22)

where µ is the Lebesgue measure on Ω.

FUNC guarantees that every coarse-graining of every observable provides

us with epistemic probabilities for all the values of all the coarse-grainings

of all other observables. If a downgrading of the Hilbert space from infinite

to finite dimensions does not respect FUNC, then it loses information at the

coarse-grained level.

If Ŷ is the self-adjoint operator on Cd corresponding to Y , and the

density operator x̂k is a trace-one eigenstate of X corresponding to the

value k, then we have an operatorial version of FUNC:

Lemma 5.6 (Operator relation principle (OPREL)). For every k in the

spectrum of X, there exist trace-one eigenstates ŷ1, ŷ2, . . . , ŷm of Ŷ corres-

ponding to the eigenvalues 1, 2, . . . ,m, such that each x̂k can be written

as:

x̂k =

m∑
j=1

pj ŷj (5.23)
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with the real constants pj defined as:

pj =
µ
(
∆′
j ∩∆k

)
µ (∆k)

. (5.24)

If a map from the coarse-grained observables of S to the self-adjoint

operators on Cd violates OPREL, it also violates FUNC and therefore breaks

the relations between the Pr
(
X = k

)
and Pr

(
Y = j

)
, so knowledge of the

probabilities of X no longer provides information about the probabilities of

Y . Such a map is incompatible with the laws of physics.

We can now prove the main theorem of this section:

Theorem 5.7. No map from the set of all n-coarse-grained observables of S

to the self-adjoint operators on any finite-dimensional Hilbert space respects

OPREL.

Proof. Let X1 be an n-coarse-graining of the observable X, and let X̂1 :

Cd → Cd be the corresponding self-adjoint operator for some d ≥ n. Let our

full knowledge of S be given by the density matrix ρ = p0x̂0 + p1x̂1, where

p0 + p1 = 1, and x̂0, x̂1 are eigenstates of X̂1 corresponding to ω ∈ ∆0 and

ω ∈ ∆1.

Let X2 be another n-coarse-graining of X, with eigenstates x̂2, x̂0,1 cor-

responding to ω ∈ ∆2 and ω ∈ ∆0,1 = (∆0 ∪∆1) \∆2, where ∆2 ⊂ ∆1 and

µ (∆2) < µ (∆1).

Since every eigenstate of X2 corresponding to outcome 2 is also an ei-

genstate of X1 with outcome 1, we have eig (x2) ⊆ eig (x1) where eig (xk)

denotes the eigensubspace of X̂k corresponding to ω ∈ ∆k. And by definition

of ∆2, OPREL implies that there exist non-zero real constants p′0,1, p
′
2 such

that for some x̂1:

x̂1 = p′0,1x̂0,1 + p′2x̂2. (5.25)
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Hence eig (x1) ̸⊆ eig (x2), so dim (eig (x1)) > dim (eig (x2)) where dim de-

notes the vector space dimension.

We can then choose n-coarse-grainings X3, X4, . . . , Xd+1 and regions

∆2 ⊃ ∆3 ⊃ ∆4 ⊃ . . . ⊃ ∆d+1, and repeat this entire process, showing

that dim (eig (x1)) > dim (eig (x2)) > dim (eig (x3)) > dim (eig (x4)) > . . . >

dim (eig (xd+1)), from which it follows that dim (eig (x1)) > dim
(
Cd
)
. Con-

tradiction: there is no finite d such that the n-coarse-grainings of any ob-

servable X can be represented as self-adjoint operators on the Hilbert space

Cd in a way that respects OPREL.

The fact that the above theorem applies to maps whose domain is the

set of all n-coarse-grained observables is not an oversight. Due to FUNC,

every n-coarse-grained observable provides information about every other n-

coarse-grained observable, so if we can send one n-coarse-grained observable

to one self-adjoint operator, there is a canonical extension of that map to

all n-coarse-grained observables. We also acknowledge that even considering

only n-coarse-grained observables for some fixed n, or ignoring the algebra or

vector space structure of coarse-grained observables, is already at odds with

FUNC: a simpler proof might be possible if we include more of the structure

of observables. However, a proof that a small set of observables is already

too complex to be embedded in any finite-dimensional Hilbert space strikes

us as more powerful than a proof that a larger algebra is unembeddable.

The above proof might suggest that we can choose uncountably many

coarse grained observables (for example, for every real number v, we might

choose as a 2-coarse-graining of the velocity of some particle the question

“Is the velocity greater than v?”) for which there exists an uncountable

set of eigensubspaces {eig (xr)}r∈R such that r < s implies dim (eig (xr)) >

dim (eig (xs)). It turns out that no such choice of coarse-grainings exists.

156



This in turn suggests that by limiting our observables to only those which

are coarse-grained, we can reduce our unseparable Hilbert spaces to spaces

that are separable, which is sometimes useful. We explore that further in

§ 5.4; for now all we will do is prove the theorem.

Let R be an arbitrary subset of R and let
{
Xr

}
r∈R be a set of coarse-

grained observables. Let {x̂r}r∈R be eigenstates of the Xr, and {eig (xr)}r∈R
eigensubspaces, corresponding to ω ∈ ∆r. Again, we make sure to choose

our coarse-grainings such that for all s > t: ∆s ⊂ ∆t and µ (∆s) < µ (∆t).

Theorem 5.8. If r < s implies dim (eig (xr)) > dim (eig (xs)) for all r, s ∈

R, then R is countable.

Proof. For all r ∈ R, we define:

∆∗
r = {ω ∈ ∆r | ∀s > r : ω ̸∈ ∆s} . (5.26)

Since all the ∆∗
r are pairwise disjoint subsets of Ω, we have:

∑
r∈R

µ (∆∗
r) ≤ µ(Ω), (5.27)

and because µ(Ω) is finite, this implies that only countably many ∆∗
r have

non-zero measure. This does not contradict our hypothesis that s > t implies

µ (∆s) < µ (∆t), because

µ (∆t)− µ (∆s) = µ

( ⋃
t<u<s

∆∗u

)
. (5.28)

The right hand side may still be greater than zero, even if for all t < u < s:

µ (∆∗
u) = 0, since measures need only be countably additive.

However, OPREL implies that there exist eigenstates x̂∗r and x̂∗, corres-

ponding to ω ∈ ∆∗
r and ω ∈ ∆r \ ∆∗

r , such that for every eigenstate x̂r
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corresponding to ω ∈ ∆r:

x̂r =
µ (∆∗

r ∩∆r)

µ(∆r)
x̂∗r +

µ ((∆r \∆∗
r) ∩∆r)

µ(∆r)
x̂∗

=
µ (∆∗

r)

µ(∆r)
x̂∗r +

µ (∆r \∆∗
r)

µ(∆r)
x̂∗,

(5.29)

so if µ (∆∗
r) = 0, there exists an eigenstate x̂s = x̂∗ for some s > r such that

x̂r = x̂s. Since every eigenstate of Xs = s is also an eigenstate of Xr = r,

µ (∆∗
r) = 0 implies that for some s > r: eig (xr) is isomorphic to eig (xs).

There can only be countably many r such that µ (∆∗
r) > 0, so if we

are to have dim (eig (xr)) > dim (eig (xs)) for all r < s, then R must be

countable.

This theorem is useful, because it implies the following:

Corollary 5.9. There exist a separable complex Hilbert space H such that

all the coarse-grained observables of any systemS can be represented as self-

adjoint operators on H without violating FUNC. Furthermore, there exists a

basis {|in⟩}n∈N such that every |in⟩ is an eigenstate of every coarse-grained

observable. We call this a finegrained basis for S.

5.3 Combined systems

As a prelude to correlated kvn-systems, we now examine combined systems

in general. We begin by discussing categories of completely positive maps,

and then show that the kvn-subcategory of PhysOp is such a category. It

follows immediately that all of our pre-theoretical intuitions about PhysOp

hold in the kvn-subcategory.

Definition 5.10 (Selinger [63]). A dagger on a categoryC is a contravariant

endofunctor (−)† : C → C that is an identity on objects and an involution
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on morphisms. A dagger category is a category on which a dagger is defined.

A morphism f is a dagger monomorphism if f †◦f = id, and f is a dagger

epimorphism if f ◦ f † = id. If a morphism is both dagger monic and dagger

epic, it has a left inverse and a right inverse and therefore is iso; such a

morphism is called a dagger isomorphism or a unitary morphism. If f = f †,

then f is self-adjoint .

Example 5.11. Let K be a field on which a conjugation operation † and

an absolute value | | are defined such that for each k ∈ K: |k| · |k| = k† · k.

Examples include C with the complex conjugate and R with the identity.

Then an identity-on-objects functorVectK → VectK that sends every linear

map to its †-conjugate transpose (and as a special case: every scalar to its †-

conjugate) is a dagger. This is a generalisation of the dagger compact closed

categories we used in § 4.2.

Definition 5.12 (Selinger [63]). A dagger symmetric monoidal category is

a symmetric monoidal category that is also a dagger category, such that for

all morphisms A
f−→ B, C

g−→ D:

(f□g)† = f †□g† (5.30)

and for all objects A,B,C, the associator αA,B,C , the unitors λA, ρA, and

the braiding γA,B are unitary.

In dagger symmetric monoidal categories, we use asymmetric boxes to

show the action of the dagger:

A

ff

B

B

f†f†

A

(5.31)
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We can now define an equivalence relation on the morphisms of any

dagger symmetric monoidal category [14]:
(
A□C f−→ B

)
≃
(
A□D g−→ B

)
if

and only if for all M
h−→ (N□A):

B

f†f†

A

h†h†

M

hh

A

ff

B

N

N

C =

B

g†g†

A

h†h†

M

hh

A

gg

B

N

N

D (5.32)

We write [f ] for the equivalence class containing f . For any dagger sym-

metric monoidal category C, we can now construct a mixed-state category

Mix (C):

Definition 5.13 (Coecke [14, def. 1.2]). ForC a dagger symmetric monoidal

category, Mix (C) is the category in which:

(i) the objects and identities are those of C;

(ii) the morphisms are the equivalence classes [f ] of morphism of C;

(iii) [g] ◦ [f ] is the equivalence class that contains

ff

gg

(5.33)
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(iv) [f ]□[g] is the equivalence class that contains

ff gg
(5.34)

Any such category Mix (C) is symmetric monoidal, as is easily verified.

Now let |ϕ⟩ be a pure state. We recall that |ϕ⟩ is a map from C to H, and

that every ⟨ϕ| = |ϕ⟩† is a map H → C. We also recall that a time evolution

operator Ut acts on a density operator ρ as ρt = UtρUt
†. It follows, then,

that two unitary maps V,W : H → H have experimentally indistinguishable

actions on pure states if the effect of V on any |ϕ⟩⟨ϕ| is the same as that of

W . That is, if for all |ψ⟩:

V |ϕ⟩⟨ϕ|V † =W |ϕ⟩⟨ϕ|W †. (5.35)

Diagrammatically, this becomes:

H

V †V †

H

ψ†ψ†

C

ψψ

H

VV

H

C

C

C =

H

W †W †

H

ψ†ψ†

C

ψψ

H

WW

H

C

C

C (5.36)

For the more general case, let ρ =
∑

k pk|ϕk⟩⟨ϕk| with the |ϕk⟩ pure unit
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eigenstates of some operator, corresponding to distinct eigenvalues so that

⟨ϕj |ϕk⟩ = δjk. Then:

ρ =
∑
k

pk|ϕk⟩⟨ϕk|

=
∑
j,k

√
pj
√
pk|ϕj⟩⟨ϕj |ϕk⟩⟨ϕk|,

(5.37)

so for every such ρ there exists a self-adjoint operator
√
ρ =

∑
k

√
pk|ϕk⟩⟨ϕk|

such that
√
ρ
√
ρ † = ρ. Again, the unitary maps V and W are indistinguish-

able if V
√
ρ
√
ρ †V † =W

√
ρ
√
ρ †W † for all ρ.

Two mixed states ρ and ρ′ are experimentally indistinguishable if they

provide the same results under any measurement. Since the probability of

any outcome xm of an X-measurement when our system is in a pure state

|ϕ⟩ is
∫
∆m

|ϕ(ω)|2 dω = ⟨ϕ|χm|ϕ⟩ (where ∆m = {ω ∈ Ω | X(ω) = xm} and

χm(ω) equals one for ω ∈ ∆m, zero otherwise), we have:

Pr (X = xm : ρ) =
∑
k

pk Tr (χm|ϕk⟩⟨ϕk|)

=
∑
k

pk⟨ϕk|χm|ϕk⟩

=

(∑
k

pk⟨ϕk|
)
χm

(∑
k

|ϕk⟩
)
,

(5.38)

Now we note that χm = χ†
m = χ†

mχm and that all the pk are positive reals.

It then follows that if for all χm:(∑
k

4
√
pk⟨ϕk|

)
χm

(∑
k

|ϕk⟩ 4
√
pk

)
=

(∑
k

4

√
p′k⟨ϕ′k|

)
χm

(∑
k

4

√
p′k|ϕ′k⟩

)
,

(5.39)

then the pure state ρ̊ =
∑

k |ϕk⟩ 4
√
pk is experimentally indistinguishable

from the similarly defined ρ̊′. Furthermore,
√
ρ = ρ̊†ρ̊, so ρ and ρ′ are ex-
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perimentally indistinguishable. Because this holds regardless of our choice

of operator that we place between ρ̊ and ρ̊′, or ρ and ρ′, we also have ρ̊ ≃ ρ̊′

and ρ ≃ ρ′.

From here it follows that any states, time-evolutions, or — by a sim-

ilar proof — observables are experimentally indistinguishable if and only

if they belong to the same equivalence class in Mix (HilbC). Hence, up

to experimental indistinguishability, the kvn-category is the subcategory of

Mix (HilbC) whose objects are all the infinite-dimensional complex Hilbert

spaces, along with C. Any pair of indistinguishable operators must have

the same norm, and the hom-sets of Mix (HilbC) inherit their complete-

ness in the operator norm from HilbC, so the hom-sets of Mix (HilbC) are

Banach spaces. This, along with the dagger, is enough to make Mix (HilbC)

a C*-algebroid.

5.4 Correlated systems

We now have almost all the tools necessary to make plausible the following:

Conjecture 5.14. There is no categorical semantics of classical protocols.

We begin by discussing monoidal equivalence, and make more precise

what it means for kvn-systems to be correlated. Then we discuss Heunen

and Vicary’s Ansatz for describing classical correlations, and show why it

cannot work. At the end of this chapter, we are left with one dead end and

zero leads towards a categorical semantics for classical protocols.

First, recall that every functor F : C → D respects morphism compos-

ition: F (f ◦ g) = F (f) ◦ F (g). A monoidal functor F : C → D is one that,

in addition, respects the tensor product: there exists a natural transforma-

tion F (U)□F (V ) •−→ F (U ⊗ V ), satisfying some coherence conditions. The
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following definition spells these out. If it is overly verbose, that is to make it

unambiguously clear which of the two tensor products is being used where.

Definition 5.15 (Bénabou [7, def. 3]). Let C = ⟨C,⊗, i, α, λ, ρ⟩ and D =

⟨D,□, I,A,Λ,P⟩ be monoidal categories. Then a monoidal functor (origin-

ally: morphisme de catégories avec multiplication) Fβ,µ : C → D is an or-

dinary functor F : C → D along with a morphism I
β−→ F (i) and a natural

transformation µ : F (−)□F (−) •−→ F (−⊗−), natural in both variables.

Fβ,µ must respect the associativity (up to isomorphism) of the tensor

products. That is, for all objects u, v, w of C, the hexagon equation must

commute:

(F (u)□F (v))□F (w)

F (u⊗ v)□F (w)

F ((u⊗ v)⊗ w)

F (u)□(F (v)□F (w))

F (u)□F (v ⊗ w)

F (u⊗ (v ⊗ w))

AF (u),F (v),F (w)

F (αu,v,w)

µu,v□ idF (w)

µu⊗v,w

idF (u) □µF (v),F (w)

µu,v⊗w

(5.40)

Note that because α and A are natural equivalences, the horizontal ar-

rows can also point in the other direction. The above diagram tells us

that (F (u)□F (v))□F (w) and F (u)□(F (v)□F (w)) can both be mapped to

F ((u⊗ v)⊗w) and F (u⊗ (v⊗w)): both inputs are isomorphic, as are both

outputs, so where we place the parentheses does not matter.

Fβ,µ must also respect the unitality (up to isomorphism) of the tensor
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products. That is, for any object u of C, the following must commute:

I□F (u)

F (u)

F (i)□F (u)

F (i⊗ u)

β□ idF (u)

F (λu)

ΛF (u) µi,u

F (u)□I

F (u)

F (u)□F (i)

F (u⊗ i)

idF (u) □β

F (ρu)

PF (u) µu,i (5.41)

In both rectangles, the bottom horizontal and left vertical arrows may point

in any direction. The diagrams tell us that while a monoidal functor need

not map i to I, the object F (i) of D should still act like a unit when tensored

with the F -image of any object of C.

Example 5.16. Let P and Q be toset categories ordered by ≤. The objects

of Q are all the natural numbers, including 0, and the objects of P can be

any non-empty subset of the strictly positive natural numbers, with smallest

element p. We can turn both into the monoidal categories P and Q by

choosing the tensor product m□n = max(m,n). Then the unit of P is p,

and the unit of Q is 0.

Now letG be the inclusion functorP ↪→ Q. To form the monoidal functor

Gβ,µ : P ↪→ Q, let β be the unique morphism 0 −→ p and let µm,n be the

morphism idmax(m,n) in Q, for all objects m,n of P.

The hexagon equation holds trivially, because G is an identity on objects

and P and Q both have the same tensor product. It is easily verified that

the two diagrams in eq. (5.41) commute for P and Q.

Note that while G(p) is not the unit of Q, for any object n of P we have

max(G(p), G(n)) = G(n) = max(G(n), G(p)), so G(p) behaves like a unit

whenever it is tensored with the G-image of an object of P.

Example 5.17. Recall the category FdMatK of example 2.27. It becomes

a monoidal category if we take integer multiplication as the tensor product
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on objects, and the Kronecker product as the tensor product on morphisms.

The equivalence functor H : FdMatK → FdVectK becomes the mon-

oidal equivalence Hβ,µ if we let β = idK and µm,n : Km ⊗ Kn ∼= Kmn. We

can form a monoidal equivalence H ′
β′,µ′ : FdVectK → FdMatK as follows:

H ′(U) = dimV (5.42)

H ′(f) = f (5.43)

β′ = id1 (5.44)

µU,V = idH′(V )·H′(W ) (5.45)

for any objects V,W and morphism f of FdVectK, where dim denotes the

vector space dimension.

Note that, even though H ′
β′,µ′ replaces vector spaces with natural num-

bers, nothing is lost: all the vectors, scalars, and linear maps of FdVectK

still exist in H ′
β′,µ′ (FdVectK). This confirms our dogma from § 2.1, that

morphisms are more important than objects.

On to correlated kvn-systems. For all practical purposes, our knowledge

of any real-world classical system will be limited to a finite set of values of

coarse-grained observables, say
{
Y k = yk

}
k∈K for some index set K, where

all the Y k are coarse-grained observables. Note that the Y k need not all be

coarse-grainings of the same observable: they might be coarse-grainings of

the positions of various particles, for example. If every Y k is an nk-coarse-

graining of some observable, then there exists some observable Z which has

an n-coarse-graining Z (with n ≤ ∏
k∈K nk) whose eigenstates correspond

to all the possible sets
{
Y k = yk

}
k∈K for some fixed K and

{
Y k

}
k∈K . For

all practical purposes, we can therefore define correlations of kvn-systems

as follows:
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Definition 5.18. SystemsS and S̃ are correlated if there exist anm-coarse-

grained observable W of S and an n-coarse-grained observable U of S̃ (we

call these the correlating observables), along with real constants pjk ∈ [0, 1]

for all 1 ≤ j ≤ m, 1 ≤ k ≤ n, such that

Pr
(
U = k : W = j

)
= pjk, (5.46)

and for all j:
n∑
k=1

pjk = 1. (5.47)

Also, there must exist i, j, k for which pik ̸= pjk.

The first part of the definition tells us that every outcome of a W -

measurement defines a probability distribution over U , and the second tells

us that there must exist at least one pair of W -outcomes which induce

different distributions over U : otherwise there would be no correlation.

Any correlation between kvn-systems defines a stochastic matrix with

entries pjk, and therefore a morphism in FdMatC. Due to the monoidal

equivalences between Mix (FdHilbC) and FdMatC on the one hand [14,

thm. 2.3, 35, example 7.29], and between FdMatC and FdHilbC on the

other, to every diagram that commutes in any one of these categories there

corresponds a commuting diagram of the same shape in each of the others.1

Since FdHilbC has compact closed structure, FdMatC andMix (FdMatC)

must have it too. Heunen and Vicary see a possible path to a categorical

semantics for classical protocols here [35, pp. 241–242].

Theorem 5.7 prohibit this entire line of reasoning. As we have shown, no

element of a finite-dimensional Hilbert space can fully characterise a kvn-

1This hand-wavy statement can be made rigorous, but we will not do that: the intuitive
picture is clear enough in this case.
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state, so any protocol formulated in terms of correlated kvn-systems using

finite-dimensional stochastic matrices will hold only up measurement of the

correlating observables. More formally, theorem 5.8 and corollary 5.9 imply

that any kvn-state of a systemS can be characterised up to indistinguishab-

ility under coarse-grained measurement by an equivalence class [ρ] of density

matrices ρ =
∑

n∈N pn|in⟩⟨in|, where {|in⟩}n∈N is a finegrained basis for S.

Given any finite set Y = {Y k = yk}k∈K of measurement outcomes, there

are infinitely many equivalence classes that are compatible with Y and can

be experimentally distinguished by observables outside Y . This stands in

stark contrasts with quantum protocols. If we teleport the state |ψ⟩ ∈ C2 of

qubit 1 to qubit 3, then no measurement operator on C2 can distinguish the

pre-teleportation state of qubit 1 from the post-teleportation state of qubit

3.

In this chapter we have shown that the kvn-subcategory KvNOp of

PhysOp is the C*-algebroid whose objects are the all the infinite-dimensional

complex Hilbert spaces, along with the Hilbert space C. For any objects A,B

of KvNOp, the hom-set KvNOp1 (A,B) consists of all the ≃-equivalence

classes of morphisms in HilbC1 (A,B). Since all the objects of KvNOp

are also objects of HilbC and all the morphisms are linear, KvNOp is a

subcategory of HilbC. Quantum mechanics can be done in terms of pure

states as well as in terms of density matrices, in finite-dimensional as well

as infinite-dimensional Hilbert spaces, so QuantOp can be identified with

the entire category HilbC.

We had to treat all kvn-states as mixed because of our choice to define

the classical observables as all and only all functions Ω → R. Had we used the

more conventional λ̂’s instead, then we could have used pure states instead.

This would have made our description of kvn simpler, but we would have to
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accept that the value of a classical observable may depend not only on the

coordinates and momenta of our system, but also on our state of knowledge.

That contradicts our postulate that all classical observables have values

independent of our state of knowledge. We would also have found a less sharp

quantum-classical divide: instead of a split along finite-infinite-dimensional

and pure-mixed-state lines, we would only have had finite-infinite.

Our formulations of FUNC and OPREL, and our proofs of theorems 5.7

and 5.8 do not depend on whether or not there are λ̂’s, so no formulation of

kvn should allow for finite-dimensional Hilbert spaces. Since all categorical

descriptions of correlated systems — and therefore of classical or quantum

protocols — depend on compact closed structure, we conjecture, with high

confidence, that there is no categorical semantics for classical protocols.
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Chapter 6

Conclusion

Over the past few decades, quantum reaxiomatisations have undergone an

operational turn. As quantum technology advanced and physics research

shifted from describing quantum systems in aggregate to manipulating indi-

vidual systems, the strange properties of the quantum world have changed

from liabilities to resources, and foundations research has moved away from

the Birkhoff-Von Neumann style of reaxiomatising towards more information-

theoretic and computational approaches. Consequently, the barrier between

quantum philosophy and quantum engineering is breaking down. We might

draw an analogy to the study of (non-quantum) logic and computation: a

good deal of work that a hundred years ago would be labelled as mathem-

atics or the theory of electrical engineering is now being done in philosophy

departments.

With the publication of their categorical semantics, Abramsky and Coecke

placed themselves on top of this barrier, ready to move in either direc-

tion, into engineering or into philosophy. Unfortunately, categorical quantum

mechanics has mainly fallen to the engineering side and, however permeable

the barrier may be, has mostly stayed there. In this Thesis, we have ex-
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amined Cat-qm from a philosopher’s point of view, and tried to turn it into

a good — or perhaps even: better — reaxiomatisation.

Categorical quantum mechanics takes for granted that finite-dimensional

quantum mechanics takes place in, or that the mathematical structure of

the theory is that of, a dagger compact closed category with biproducts: the

empirical validity of the protocols it describes is thought to validate this

assumption. But the empirical validity of protocols that cannot be under-

stood without significant physical and mathematical baggage is hardly the

kind of principle that should underlie a reaxiomatisation. If Abramsky and

Coecke are as serious about reaxiomatising quantum mechanics — or at

least its finitary fragment — as they claim to be [1, p. 2], then they need a

set of physical principles, and they need to be able to account for differences

between quantum and classical protocols.

In the Mathematical Preliminaries to this Thesis, we have explained

how compact closed structure arises from symmetric monoidal structure

combined, in a compatible way, with an adjunction (theorem 3.45), and in

§ 4.1 we deduced from eight reasonable assumptions (OpTh-I to OpTh-VIII)

that every operational physical theory, when represented as a category, must

be symmetric monoidal. In § 4.2 we used Abramsky and Coecke’s categor-

ical quantum mechanics to show that by adding three assumptions — that

our category is FdHilbC, that adjunctions encode correlations, and that

biproducts encode indeterministic branching — we end up with finitary

quantum mechanics in a dagger compact closed category with biproducts.

A satisfying reaxiomatisation should account for these three additional as-

sumptions in terms of physical principles, and identify which of them are

specific to quantum mechanics.

In chapter 5 we developed categorical classical mechanics along these
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same lines. We showed that classical mechanics can be done in Hilbert

spaces, but only if they are infinite-dimensional (theorem 5.7). This follows

from the assumption that observables in classical mechanics are all and only

all the real-valued functions of phase space, and that the state of a clas-

sical system is a probability distribution over phase space. This contrasts

with quantum mechanics, where observables may depend on the state of the

system without reference to an underlying phase space, as was the case in

example 1.15. It follows then, that there can be no compact closed structure

in classical mechanics; nor does the biproduct arise in that context.

We now have a series of implications:

physical theory ⇒ closed symmetric cat. (6.1)

physical theory ⇒ Hilbert spaces (6.2)

dagger compact closed cat. with biprod. ⇒ quantum mechanics (6.3)

observables X : Ω → R ⇒ no compact closed cat. (6.4)

observables X : Ω → R ⇒ no biprod. (6.5)

observables X : Ω → R ⇒ classical methanics (6.6)

from which we can draw one definitive and one tentative conclusion. First,

we conclude that, contrary to oft-held wisdom (c.f. [28]), Hilbert spaces

and tensor product structure are necessary for, but not characteristic of,

quantum theory. Second, we conjecture that due to the absence of compact

closed structure in categorical classical mechanics, it is not possible to for-

mulate a categorical semantics for classical protocols (conjecture 5.14). We

also note that implications 6.1 and 6.4 to 6.6 are all built on solid physical or

metaphysical principles, while 6.2 and 6.3 are in need of further justification.

Further research should try to justify from first principles the use of Hil-
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bert spaces in physics: not just for quantum, but also in classical mechanics.

A good starting point might be Heunen and Vicary’s recent axiomatisation

of the category of Hilbert spaces. In addition to dagger symmetric monoidal

structure, their axioms are [34]:

(i) the monoidal unit is a simple monoidal separator: there are exactly

two equivalence classes of monomorphisms into K, where
(
A

f−→ K
)
≃(

B
g−→ K

)
iff there exists an isomorphism A

i−→ B such that g ◦ i = f .

Also, for all K h−→ A, K i−→ B, any morphisms f, g : A ⊗ B → C are

equal iff f ◦ (h⊗ i) = g ◦ (h⊗ i).

(ii) there is a zero object, and there are finite biproducts; every biproduct

injection is a dagger monomorphism.

(iii) for any pair of morphisms f, g : A → B, there is a dagger equaliser:

that is, a dagger monomorphism E
e−→ A such that for any morphism

X
m−→ A: if f ◦m = g ◦m, then m factors through e.

(iv) every dagger monomorphism is the kernel1 of some morphism.

(v) the wide subcategory whose morphisms are all and only all the dag-

ger monomorphisms has directed colimits. To explain this axiom goes

beyond the scope of this Thesis.

The second part of the first axiom could be phrased in terms of state evol-

utions being indistinguishable if they act the same way on any combined

system, but this raises the question why such a requirement must be formu-

lated for combined systems in the first place. Heunen has conjectured that

the second axiom might relate to measurement or superselection [33], which

1The kernel of a morphism f is the equaliser of f and the zero morphism. In VectK
and all its subcategories, this categorical definition is equivalent to the usual definition
from linear algebra.
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matches the use of biproducts in quantum mechanics. However, biproducts

play no meaningful role in categorical classical mechanics, even though every

operator superselects in that theory. The dagger also remains to be justified.

Heunen has conjectured that it relates to the conservation of information

[33], and its role in the formulation of time-reversed quantum mechanics

does seem to support this.

Finally, we should note that nothing we have written (beyond the intro-

duction, that is) fully determines quantum mechanics. Nor does our categor-

ical description of the kvn category fully determine Koopman-Von Neumann

mechanics. We have provided necessary conditions to characterise quantum

and classical mechanics, but have no yet been able to formulate sufficient

principles.
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Notation

Index of notation and selected terminology. Numbers refer to the pages

where the entries are defined.

Categories

1, 71

Ab, 62

BanK, 96

BanK, 96

BK, 111

BraidP , 104

Cat, 71, 79

Cat2, 108

CMon, 138

Cn, 56

CRing, 65

FdHilbK, 36

FdHilbK,⊗, 116

FdMatK, 51

FdVectK, 36

Grp, 65

HilbK, 36

It (C,□), 83

it (C,□), 85

K-Mod, 100

Mix (C), 160

N, 55

N2Poset, 41

NToset, 40

PhysOp, 129

Rel, 35

RotR2, 54

Set, 35

SetK , 91

VectK, 35

Z, 56
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Symbols and notation

∗, 147

†, 158

0A,B, 49

∗, 118

≃, 37

□, 75, 77

αA,B,C , 78

ε, 108

η, 108

λA, 80

λBA , 78

ρA, 80

ρBA , 78

τ : F ∼= G, 58

τ : F •−→ G, 57

τ : f ⇒ f ′ : A→ B,

75, 78

A,B,C, ..., 33

A,B,C, ..., 90

A×B, 39

A
f−→ B, 33

A⊕B, 137

A⨿B, 45

AΠB, 42

baseX , 140

C0,C1, 33

C1 (A,B), 33

C2, 74

C (A,B), 74, 77

[C,D], 67

[C,D], 111

Cop, 41

cod, 34

detK , 65

dom, 34

⌜f⌝, 133

⌞f⌟, 135

f + g, 138

Fβ,µ : C → D, 164

f ⊕ g, 138

g ◦ f , 33

GLn, 65

Hom, 111

id, 34

K×, 65

L, 59

L ⊣ R, 108

⟨L,R; η, ε⟩, 107

⟨M,□,K, α, λ, ρ⟩,

90

⟨C,□,K, α, λ, ρ, γ⟩,

102

n ·A, 140

Pk, 140

⟨X : ϕ⟩, 149
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Terminology

∞-category, 75

0-category, 75

0-cell, 74

1-category, 75

1-cell, 74

2-category

strict, 74

weak, 77

2-cell, 74

abstract categorical structure,

129

adjoint

left, 16, 108

right, 16, 108

adjoint functor, 16

adjunction, 16

in a 2-category, 107

algebra, 96

algebroid, 96

associator, 64, 78, 90

basis, 140

computational, 21

bifunctor, 50

biproduct, 137

finite, 137

bounded lattice, 48

bra, 119

braid category, 104

braided monoidal category, 102

braiding, 102

C*-algebra, 96

C*-algebroid, 96

canonical morphism, 90

categorical structure

abstract, 129

categorification

horizontal, 94

vertical, 94

category, 33

braid, 104

braided monoidal, 102

closed, 112

closed monoidal, 116

closed symmetric monoidal,

116

compact closed, 118

concrete, 129

dagger, 159

dagger compact closed, 139

dagger symmetric monoidal,
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159

enriched, 95

equivalent, 52

functor, 67

linear, 139

locally small, 37

monoidal, 80, 90

opposite, 41

product, 39

real-world, 129

small, 37

strict monoidal, 80, 90

symmetric monoidal, 103

with multiplication, 82

C*-category, 96

cell, 74, 77

classical observable, 149

closed category, 112

compact, 118

dagger compact, 139

closed monoidal category, 116

closed symmetric monoidal

category, 116

coherence conditions, 65

commutator ideal, 100

compact closed category, 118

dagger, 139

computational basis, 21

coname, 135

concrete category, 129

coproduct, 45

finite, 46

coproduct tuple, 137

correlated kvn-systems, 167

correlating observable, 167

counit, 108

dagger, 158

dagger category, 159

dagger compact closed category,

139

dagger epimorphism, 159

dagger isomorphism, 159

dagger monomorphism, 159

dagger symmetric monoidal

category, 159

density operator, 20

dual object, 118

Eckmann-Hilton argument, 100

endomorphism, 37

enriched category, 95

entangled systems, 21

epic, 38

epimorphism, 38
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equivalence by planar isotopy, 122

equivalence by spatial isotopy,

125

eso, 52

essentially surjective on objects,

52

finegrained basis, 158

forgetful functor, 17

full subcategory, 36

functor, 49

adjoint, 16

bi-, 50

constant, 50

contravariant, 50

contravariant endo-, 50

covariant, 50

endo-, 50

equivalence, 52

eso, 52

faithful, 52

forgetful, 17

full, 52

identity, 50

internal hom-, 111

iterate of, 82

monoidal, 164

fundamental group, 104

group, 56

fundamental, 104

group intertwiner, 60

group representation, 57

hexagon equation, 164

hom-functor

internal, 111

hom-category, 74, 77

hom-class, 33

hom-object, 95

hom-set, 33

horizontal categorification, 94

horizontal composition, 75

interchange law, 98

internal hom, 111

internal hom-functor, 111

isomorphism, 37

isotopy

planar, 122

spatial, 125

iterate of a functor, 82

ket, 119

KvN-correlation, 167

KvN-state, 149

lattice, 48

bounded, 48
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left adjoint, 16, 108

left unitor, 78

linear category, 139

M-category, 95

measurement, 141

measurement branch, 141

measurement operator, 19

mixed state, 20

monic, 38

monoid, 54

monoidal category, 80, 90

braided, 102

closed, 116

closed symmetric, 116

dagger symmetric, 159

strict, 80, 90

symmetric, 103

monoidal monoidoidoid, 94

monomorphism, 38

morphism, 33

canonical, 90

dagger epi-, 159

dagger iso-, 159

dagger mono-, 159

endo-, 37

epic, 38

iso-, 37

monic, 38

self-adjoint, 159

unitary, 159

name, 133

natural equivalence, 58

natural isomorphism, 58

natural transformation, 57

naturality conditions, 65

naturality in a variable, 58

n-category, 75

non-degenerate, 140

object, 33

dual, 118

hom-, 95

initial, 48

isomorphic, 37

terminal, 48

zero, 48

observable

classical, 149

correlating, 167

observation branch, 141

oidification, 94

opposite category, 41

partial trace, 118

pentagon equation, 78, 86
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for closed categories, 113

physical state, 149

planar isotopy, 122

poset, 41

product, 42

finite, 42

product tuple, 137

projector, 140

pure state, 20

qubit, 21

real-world category, 129

right adjoint, 16, 108

right unitor, 78

ringoid, 95

scalar, 97

self-adjoint morphism, 159

spatial isotopy, 125

spectral decomposition, 140

state

kvn, 149

mixed, 20

physical, 149

pure, 20

strict monoidal category, 80, 90

structure

abstract categorical, 129

subcategory, 36

full, 36

wide, 36

symmetric monoidal category, 103

closed, 116

dagger, 159

tensor, 80, 90

the, 49

toset, 41

trace, 125

partial, 118

triangle equation, 79, 88

unit, 108

unitary morphism, 159

unitor, 78, 90

vector, 97

vertical categorification, 94

vertical composition, 75, 78

whiskering, 107

wide subcategory, 36
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