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1 Introduction

The failure of standard quantization techniques when applied to the Einstein
field equations, characterized by the need for an infinite number of counterterms,
has led many to believe that, despite their success in describing large-scale
gravity, the Einstein field equations are in fact an effective field theory [1] of an,
as yet undiscovered, UV complete theory of quantum gravity.

Today one of the best clues we have about the nature of quantum gravity
is the holographic principle [2, 3]. Inspired by the discovery that the entropy
of a black hole is proportional to its area [4], the principle proposes that for
a quantum gravitational system with d spacetime dimensions, the system is
completely defined by a non-gravitational quantum field theory on a d − 1 di-
mensional spacetime. While the principle is just a conjecture, it was put on
much stronger ground when it was shown that certain string theories are dual
to conformal field theories with one less spatial dimension [5]. This duality is
today known as the AdS/CFT correspondence. While AdS/CFT was borne out
of string theory, today it very much has a life of its own, making far-reaching
impacts in various fields well outside the scope of quantum gravity, such as
condensed matter [6], QCD [7] and quantum information theory [8].

The connection with quantum information theory has been particularly im-
pactful, as it is now believed that information-theoretic ideas are essential to
understanding quantum gravity. This connection started with a generalization
of Bekenstein’s black hole entropy formula to the AdS/CFT context [9] which
led to the realization that the entanglement present in the CFT gives rise to the
emergent spacetime geometry. Shortly thereafter a connection between quantum
error correcting codes and the manner in which the gravitational information is
encoded in the CFT degrees of freedom was put forward [10]. The connection
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with entanglement has subsequently allowed for the construction of various toy
models of the correspondence based on tensor networks [11, 12].

Tensor networks are a tool originally used by the condensed matter com-
munity to build efficient approximations for the quantum states of many body
systems [13]. The way this efficiency is achieved is by designing the network
geometry such that it targets quantum states that have the same entanglement
structure as the state being approximated. It was first realized in [11] that
this geometrization of entanglement is conceptually similar to AdS/CFT and
in particular the multiscale entanglement renormalization ansatz (MERA) [14]
class of tensor networks exhibit some properties that are tantalizingly similar
to the AdS/CFT correspondence. Since then various new tensor network toy
models have been produced and refined [12, 15, 16, 17], and new, tensor network
inspired, conjectures about holography extending even beyond AdS/CFT have
been put forward [18, 19].

However, despite the success of tensor network models for holography, a sat-
isfactory understanding of how to model the dynamics of the emergent spacetime
has yet to develope. Some prior attempts at tackling this issue do exist [20, 21,
22], however they each have their limitations, and in particular none of them
allow for the possible simulation of bulk dynamics on a computer.

The goal of this thesis then, is to introduce a new way in which tensors
networks can be used to model holography such that that the emergent bulk
geomtery can be dynamically evolved. This manner in which this is achieved is
such that it is feasible to simulate the bulk for a reasonable system size.

The outline of the thesis is as follows. In section 2 we will give an overview of
some essential ideas from quantum information theory that will appear throught
the subsequent sections. In section 3 we will introduce the AdS/CFT corre-
spondence and outline the different versions of the extremal surface methods
for computing entanglement entropy. In section 4 we will review tensor net-
works with particular focus given to MERA as this will be the network type
we ultimately use to build our model. In section 5 we introduce the original
connection between MERA and holography as well as the HaPPY holographic
codes. We will discuss the feasibility of using each of these networks to model
dynamics. In section 6 we then explore two possible methods for modelling bulk
dynamics with tensor networks. The first, requiring more work to be fully real-
ized and finally, a version of MERA for which it is feasible that the dynamics
of the emergent spacetime can be simulated.

Throughout this thesis we will work in units for which c = ℏ = kB = 1.

2 Quantum Information Theory

Quantum information theory is, in essence, the study of noisy quantum systems
or the theory of communication of qubits over noisy channels. As such, the ob-
jects of interest are not vectors in a Hilbert space, but probabilistic ensembles of
quantum states. Given a set of n states {|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩} and a probability
distribution over these states {p1, p2, . . . , pn}, we can construct a density matrix
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given by,

ρ =

n∑
i=1

pi |ψi⟩ ⟨ψi| . (1)

As a consequence, we have promoted quantum states from elements of the
Hilbert space H to elements of the space of linear operators acting on the Hilbert
space, L(H). By construction density matrices are positive semi-definite, Her-
mitian matrices with trace one. Density matrices allow us to accommodate
both quantum and classical uncertainties in a single representation. As an
added bonus the global phase redundancy of the state vector representation is
no longer present, as the global phase factors from the bras and kets always
cancel. It is important to note that many different choices of ensemble and
distribution can correspond to the same density matrix and so the choice is not
unique. However in the case of non-degenerate eigenvalues a density matrix
does have a unique spectral decomposition, where the set of states are now an
orthonormal set containing the eigenvectors of ρ and the probabilities are the
eigenvalues.
The case most familiar from standard quantum mechanics, where there is no
classical uncertainty, is colloquially referred to as a pure state. In this case, the
density matrix is given by a rank one projection, ρ = |ψ⟩ ⟨ψ|. All other density
matrices of rank greater than one are referred to as mixed states.

We would, of course, like to be able to perform measurements on our quan-
tum system. In the density matrix formalism, this is done by computing the
trace of operators. Given an observable A and a density matrix ρ, the expecta-
tion value of A is given by,

⟨A⟩ρ = Tr [Aρ] . (2)

Similarly, a POVM measurement (positive operator valued measure) is a func-
tion µ(x) from a set of measurement outcomes Ω to the positive semi-definite
matrices acting on H, such that

∑
x∈Ω µ(x) = I. We then have that, given ρ,

Pr(x) = Tr[µ(x)ρ]. (3)

This is simply a restatement of Born’s rule in the language of density matrices.

2.1 Multipartite Systems

We will often be interested in not just single quantum systems, but composite
or multipartite systems. In such cases each subsystem will have its own Hilbert
space and the Hilbert of the whole system is obtained by taking the tensor prod-
uct of the subsystem Hilbert spaces. In other words, if our system is composed
of N subsystems were the Hilbert space of subsystem i is denoted Hi then the
full Hilbert space is,

H = H1 ⊗H2 ⊗ · · · ⊗ HN =

N⊗
i=1

Hi. (4)
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Note that the elements of such a space are by definition tensors or order N .
Quantum states are then given by,

|ψ⟩ =

d1∑
i1=1

d2∑
i2=1

· · ·
dN∑
iN=1

Ti1i2···iN |i1i2 · · · iN ⟩ , (5)

where di is the dimension of Hilbert space Hi and |i1i2 · · · iN ⟩ is short hand for
|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩ with {|ij⟩} being some basis for Hj . Density matrices
on such multipartite systems are again of the same form as Eq. (1), but with
the bras and kets being elements of a tensor product Hilbert space as we have
described.

2.1.1 The partial trace and reduced density matrices

Let’s now suppose that for some multipartite quantum system, we only have
access to a subsystem and the rest of the system, the environment, is a mystery
to us. What information do we have access to? This question is answered by
introducing a new operation called the partial trace. We can write the Hilbert
space for our subsystem and environment as H = HS⊗HE , where both Hilbert
spaces here may themselves be composed of multiple subsystems. Suppose we
want to measure some observable on the subsystem of interest, AS ∈ L(HS).
For some state on the entire system ρ ∈ L(H), the expectation value is given
by,

⟨AS⟩ = Tr [(AS ⊗ IE)ρ] . (6)

What we would like to know is whether there exists some density matrix for the
subsystem, ρS ∈ L(HS), such that,

⟨AS⟩ = Tr [(AS)ρS ] , (7)

for any observable or measurement AS . We can answer this by expanding and
equating (6) and (7).

Tr [(AS)ρS ] = Tr [(AS ⊗ IE)ρ]

dS∑
i=1

⟨i|S (AS)ρS |i⟩S =

dS∑
i=1

dE∑
j=1

⟨i|S ⟨j|E (AS ⊗ IE)ρ |i⟩S |j⟩E

=

dS∑
i=1

⟨i|S

 dE∑
j=1

(IS ⊗ ⟨j|E)(AS ⊗ IE)ρ(IS ⊗ |j⟩E)

 |i⟩S

=

dS∑
i=1

⟨i|S (AS)

 dE∑
j=1

(IS ⊗ ⟨j|E)ρ(IS ⊗ |j⟩E)

 |i⟩S ,

which leads us to,

ρS =

dE∑
j=1

(IS ⊗ ⟨j|E)ρ(IS ⊗ |j⟩E) ≡ TrE [ρ]. (8)
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The operation TrE is then the partial trace over HE . The resulting density
matrix ρS is referred to as the reduced density matrix on HS and encapsulates
all the information we have access to by restricting to S.
Important to note is that the partial trace of a density matrix always produces
a density matrix, i.e. a positive semidefinite matrix of trace one. Furthermore,
the reduced density matrix of a pure state is far from guaranteed to be pure,
and in fact, as we will see shortly its ’mixedness’ will serve as an important
measure of the entanglement between the system and the environment.

2.1.2 Purifications of quantum states

Flipping the script on this last statement about reduced density matrices we
can ask if, given a mixed state, does there exist a pure state on a larger Hilbert
space, such that its reduced density matrix is exactly our mixed state. This is
indeed the case and such a pure state is referred to as a purification. Suppose
our mixed state, ρ ∈ L(H), has the following spectral decomposition,

ρ =

r∑
i=1

pi |ψi⟩ ⟨ψi| , (9)

then any state of the following form is a purification of ρ,

|Ψ⟩ =

r∑
i

√
pi |ψi⟩ ⊗ |ei⟩ , (10)

where {|ei⟩} can be any orthonormal set that span a r dimensional subspace
of any auxiliary Hilbert space HE , with dimHE ≥ r. Showing this is indeed a
purification is straightforward,

TrE [|Ψ⟩ ⟨Ψ|] =

r∑
i

r∑
j

√
pi
√
pj |ψi⟩ ⟨ψj |Tr [|ei⟩ ⟨ej |]

=

r∑
i

r∑
j

√
pi
√
pj |ψi⟩ ⟨ψj | ⟨ej |ei⟩

=

r∑
i=1

pi |ψi⟩ ⟨ψi|

= ρ

2.1.3 Schmidt decomposition

The form that we acquired through purification in Eq. (10) is in fact extremely
convenient to work with in a much more general context. When dealing with
bipartite pure states, if we can represent such a state in this form, we have
immediate access to the eigenvalues (and so probability distributions) of both
reduced matrices, as well as the eigenvectors of both. Thankfully it is always
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possible to represent a bipartite state in this way, and this representation is
known as the Schmidt decomposition.

Definition 1. For any state, |ψ⟩ ∈ HA⊗HB, there is always a representation,
known as the Schmidt decomposition, of said state as follows,

|ψ⟩ =

r∑
i=1

si |ai⟩ ⊗ |bi⟩ ,

where si are real positive numbers called the singular values or Schmidt co-
efficients, and where {|ai⟩} and {|bi⟩} are orthonormal sets in HA and HB

respectively. Additionally, r is referred to as the Schmidt rank of |ψ⟩.

It is easy to see from the definition that the reduced density matrices of
|ψ⟩ ⟨ψ| are as follows,

ρA =

r∑
i=1

s2i |ai⟩ ⟨ai|

ρB =

r∑
i=1

s2i |bi⟩ ⟨bi| .
(11)

This immediately tells us something important.

• The reduced density matrices of a bipartite pure state both have the same
eigenvalues, namely the squares of the singular values of |ψ⟩.

A further useful property of the Schmidt decomposition is that it is unique up to
degeneracy of the singular values. This follows from the fact that the Schmidt
decomposition is really just the singular value decomposition in disguise, which
we will now show.

The key insight here is that HA ⊗ HB
∼= HA ⊗ H∗

B , which means every
state in HA ⊗ HB can be represented by a n × m matrix Ψ, where n and
m are the dimesions of the two respective Hilbert spaces. With our bipartite
state represented as a matrix, we can go to work applying the singular value
decomposition,

Ψ = USV †, (12)

where U and V are unitary and S is diagonal with real positive entries. Denoting
the columns of U and V as |ui⟩ and |vi⟩ respectively, and the diagonal entries
of S as si, the equation can be rewritten as

Ψ =

r∑
i=1

si |ui⟩ ⟨vi| . (13)

Written in this suggestive form it should be clear that the Schmidt and singular
value decompositions are indeed equivalent.
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2.2 Quantum Channels

Since we have expanded our definition of a quantum state from a vector in
Hilbert space to a positive semidefinite operator acting on a Hilbert space, it
should come as no surprise that we must also expand our definition for the types
of transformations we can perform on our states. By the linearity of quantum
mechanics, it is reasonable to expect that these transformations are linear. More
specifically they are linear maps from linear operators to linear operators de-
noted by L(L(H)). As these objects can be understood as operators acting on
the space of operators, it is common to refer to them as superoperators. How-
ever, this definition is of course far too broad for our purposes. We specifically
want superoperators that send quantum states to quantum states1. Superoper-
ators that satisfy the necessary conditions are called quantum channels and are
the most general form of transformation that can be performed on a quantum
state, whether that be time evolution, measurement, quantum communication,
or even renormalization [23].

So given a superoperator such as,

Φ : L(HA) → L(HB), (14)

how can we ensure that it is a quantum channel? In fact, this can be done by
imposing just two conditions.

Trace preserving: This first condition is quite self-explanatory. Since all
quantum states must have normalized trace, it would be an immediate disaster
if a quantum channel could change the trace of the input. This condition can
be expressed mathematically as follows.

Tr [MA] = Tr [Φ [MA]] , ∀MA ∈ L(HA). (15)

Complete positivity: The other essential property of a quantum state is
that it is a positive semidefinite operator. So one might expect that our second
condition for quantum channels should be that they must map PSD operators
to PSD operators. However, this condition is called positivity and in fact is
not strong enough. The issue arises when dealing with composite systems.
Suppose our superoperator Φ, is trace-preserving and satisfies positivity, then
any quantum state that we feed it as an input will indeed produce a quantum
state. However, suppose we have a composite system and only act with Φ on part
of our system, then this too should produce a quantum state. Such an operation
is described by acting on the whole system with the following superoperator,

Φ ⊗ IC : L(HA ⊗HC) → L(HB ⊗HC),

where I is the identity superoperator. It turns out that even if Φ satisfies
positivity, Φ ⊗ I may still send PSD operators to non-PSD operators! The
necessary condition then is complete positivity which deals with this issue in

1Actually we need to be slightly stricter than this as we are about to see
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the following, somewhat hamfisted manner. A superoperator given by (14) is
completely positive when,

(Φ ⊗ IC) [M ] ∈ PSD(HB ⊗HC),

∀ HC and ∀M ∈ PSD(HA ⊗HC).
(16)

With these two conditions in hand, we are now prepared to define a quantum
channel,

Definition 2. A quantum channel is a superoperator,Φ : L(HA) → L(HB), that
is both trace-preserving and completely positive as defined in Eq. (15) and Eq.
(16) respectively. Quantum channels are therefore often referred to as CPTP
maps.

While the above definition of a quantum channel is precise, it is a bit formal
and does not offer much physical intuition. However, there are two equivalent
ways of representing quantum channels that are much more intuitive and under
their own set of conditions satisfy complete positivity and the trace-preserving
condition. We turn to the first of these now.

2.2.1 Stinespring Representation

The Stinespring representation of quantum channels provides us with the most
physical intuition by decomposing any channel into three different steps, each
of which has a clear physical interpretation. The decomposition is as follows.
We first start by taking the tensor product of our input state with some pure
state. This obviously has a clear physical interpretation of adding a new par-
ticle to our system, a new qubit to our quantum computer, or something of
that ilk. Next, we apply a unitary transformation to our new expanded system.
As we know from standard quantum mechanics this is exactly how we describe
the transformation of closed quantum systems, including but not restricted to
the evolution generated by Hermitian generators. The last step is then to take
a partial trace over some subsystem (not necessarily the recently added sub-
system). Again this has an obvious interpretation of simply discarding part of
our system. Putting this together the Stinespring representation of a quantum
channel can be written as follows,

Φ[ρ] = TrE
[
U (ρ⊗ |ψ⟩ ⟨ψ|)U†] ,

where if Φ : L(HA) → L(HB), then |ψ⟩ ∈ HC and HA ⊗HC
∼= HB ⊗HE . We

can also further compactify the Stinespring representation by noting that the
act of adding a state and then acting unitarily can be achieved in one step by
instead acting with an isometry. We can therefore instead write,

Φ[ρ] = TrE
[
V ρV †] , (17)

where V : HA → HB ⊗ HE , and V †V = I. In fact, if we relax the isometry
condition and allow V to be any matrix, the form of Eq. (17) automatically
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guarantees the complete positivity of Φ. It is then the isometry condition that
ensures that the map is also trace-preserving. The form of the Stinespring
representation also has a clear analogy with the dynamics of open quantum
systems. Since we can treat open quantum systems as being subsystems of
a larger closed system, namely the subsystem and an environment, then the
dynamics of the closed system can be described unitarily, and the resulting
dynamics on the subsystem is obtained by taking the partial trace over the
environment. This composition of operations is clearly in close analogy with
the Stinespring representation [24].

2.2.2 Kraus Representation

While the intuition behind the Stinespring representation is very clear the need
to constantly refer to an auxiliary system is quite computationally cumbersome.
It would then be quite nice to be able to describe the action of a quantum channel
on a system with reference to only that system. The Kraus representation
has exactly this quality. The Kraus representation for a quantum channel Φ :
L(HA) → L(HB) is as follows,

Φ[ρ] =

r∑
i=1

EiρE
†
i , (18)

where the Ei’s linear maps from HA to HB . Just as with the Stinespring rep-
resentation, a map of this form is already guaranteed to be completely positive,
even without any constraints on the Ei’s. It is quite easy to find what con-
straints the Ei’s must satisfy so as to be trace-preserving. We simply need to
take the trace of Eq. (18) which gives,

Tr[ρ] = Tr

[
r∑
i=1

EiρE
†
i

]

= Tr

[
r∑
i=1

E†
iEiρ

]
,

where we have used the cyclic property of the trace. Since this must be true for
all inputs, ρ, the only possibility is that,

r∑
i=1

E†
iEi = I. (19)

The set of operators {Ei} are referred to as Kraus operators. It should be noted
that a quantum channel does not have a unique choice of Kraus operators.
However it is always the case that if,

Φ[ρ] =

r∑
i=1

EiρE
†
i =

r∑
i=1

FiρF
†
i ,
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then the sets {Ei} and {Fi} are related unitarily. That is,

r∑
j=1

UijEj = Fi, (20)

importantly the operation here is not matrix multiplication with U multiplying
each Ei, but a unitary transformation on the vector that has the Ei’s as its
entries. While the Kraus representation is not unique this unitary relation does
allow us to construct a unique orthogonal set, in the sense that,

Tr
[
E†
iEj

]
= f(i, j)δij . (21)

Such a decomposition of a superoperator (or in particular a quantum channel)
is equivalent to the eigendecomposition of an operator.

2.2.3 Choi Operator

So we have established two very useful representations of a quantum channel.
However, supposing we are given some superoperator that acts as some sort
of black box, in that we can input states and receive the output but we know
nothing about the internal structure. How can we tell if this superoperator
is a quantum channel or not? In fact, this can be checked quite easily. We
simply need to feed it one half of a maximally entangled state (conventionally
unnormalized)2. That is for some black box superoperator, Φ, we obtain,

JΦ =
∑
i,j

(I ⊗ Φ) [|ii⟩ ⟨jj|] ∈ L(HA ⊗HB). (22)

This object is referred to as the Choi operator of the superoperator Φ. The
usefulness of the Choi operator lies in the fact that if Φ is completely positive,
then JΦ will be a positive semidefinite operator. Furthermore if Φ is trace
preserving then, TrB [JΦ] = IA. Furthermore Eq. (22) defines an isomorphism
from the Hilbert space of superoperators to the Hilbert space of operators. This
isomorphism is referred to as the Choi-Jamio lkowski isomorphism [25, 26]. An
important example is in the case that the quantum channel is unitary, then the
Choi operator will be a maximally entangled pure state.

2.3 Entropy, Entanglement & Entanglement Entropy

2.3.1 Entropy

In information theory, both classical and quantum, entropy is a quantity of
central importance. Given a probability distribution, the entropy of said dis-
tribution can be understood as a measure of our lack of knowledge for said
distribution. For example, for a probability distribution that is highly concen-
trated we have close to complete knowledge about what outcome we can expect

2we shall discuss what is meant by maximally entangled shortly.
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and so the entropy is low. Alternatively, for an evenly spread distribution,
all outcomes will be equally likely and so, we have no knowledge about what
outcome to expect. Therefore, the entropy is high.

This notion was first quantified in classical information theory with the Shan-
non Entropy [27], given by,

S(p) =
∑
i

−pi log(pi). (23)

The generalization to quantum information theory is then straightforward and is
called the von Neumann Entropy. Given a density matrix, ρ, the von Neumann
entropy is given by,

S(ρ) = Tr[−ρ log(ρ)] =
∑
i

−λi log(λi), (24)

where the λi’s are the eigenvalues of ρ. The von Neumann entropy can also be
viewed as the expectation value of the Modular Hamiltonian, Hρ = − log(ρ),
i.e.

S(ρ) = ⟨Hρ⟩ = Tr[ρHρ] (25)

To see where the name comes from one can observe the similarity between
the expression for ρ in terms of Hρ and a thermal density matrix at inverse
temperature β and Hamiltonian H,

ρ = e−Hρ , ρth =
e−βH

Z
. (26)

What follows are some important properties of the von Neumann entropy. For
a density matrix ρ,

• S(ρ) ≥ 0, and S = 0 if and only if ρ is pure.

• S(ρ) ≤ log(rank(ρ)) ≤ log(dimH), the upper bound is saturated if and
only if ρ ∝ I, i.e. maximally mixed.

• S(ρ) = S(V ρV †), where V is an isometry, V †V = I.

• S(ρA ⊗ ρB) = S(ρA) + S(ρB)

• Subadditivity: S(ρAB) ≤ S(ρA) + S(ρB), [28]

• Strong Subadditivity: S(ρABC) + S(ρA) ≤ S(ρAB) + S(ρAC), [29]

Another type of entropy that will be useful to us is the Renyi entropy which
is given by,

Sα(ρ) =
1

1 − α
log(Tr[ρα]). (27)

The Renyi entropy is monotonically decreasing in α and in the limit α → 1,
produces the von Neumann entropy. The list of values of Sα(ρ) for all α ∈ N
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is called the entanglement spectrum. Knowing the entanglement spectrum is
equivalent to knowing all the eigenvalues of ρ. As we will see shortly the von
Neumann entropy is not just a measure of information but in certain cases, can
also be used as a measure of entanglement in a quantum state.

2.3.2 Entanglement

For multipartite quantum systems, we can classify the states of such systems
according to the amount and type of correlation that exists between subsystems.
The first class of states are the product states, which are of the form,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. (28)

These states are completely uncorrelated, a measurement outcome on one of the
subsystems gives us no information about the other subsystems. The next class
are known as separable states, these are statistical ensembles of product states,

ρ =
∑
i

pi ρ1,i ⊗ ρ2,i ⊗ · · · ⊗ ρn,i. (29)

These states may contain classical correlations between subsystems, in the sense
that for a pair of observables Aj and Ak supported on subsystems j and k, we
have that,

⟨AjAk⟩ρ =
∑
i

pi⟨Aj⟩ρj,i⟨Ak⟩ρk,i
. (30)

Specifically, since the set of product states is clearly a subset of the set of
separable states, then the set {separable}\{product} is the set of classically
correlated states. While separable states encapsulate all the properties of clas-
sical correlation, they are still just a small subset of the possible quantum
states on a multipartite system. The final class of states then are the en-
tangled states. Entangled states are defined to be the non-separable states, i.e.
{entangled} = {separable}c. These states contain correlation that is entirely
quantum in nature. States of this kind were first discovered by Einstein, Podol-
sky, and Rosen [30], where they were used to argue for the incompleteness of
quantum mechanics, in part because they seem to allow for instantaneous com-
munication between spatially separated systems. However, we know today that
this is not the case [31] and entangled states really do exist in nature. Unfortu-
nately, there is no general expression for the form of entangled states as there is
for the above cases, and indeed the task of determining whether some state is
entangled or not is often NP-hard [32]. Thankfully however we will mostly be
restricting our focus to entangled pure states. In this case and in particular in
bipartite systems entanglement can be quite easily understood

2.3.3 Entanglement Entropy

We first note that if we restrict to only considering pure states, then all possible
separable states are in fact just product states where the density matrices in

13



Eq. (28) are also pure. The definition of entangled states then also simplifies.
An entangled pure state is any state that cannot be written in the form,

|ψ⟩ =
⊗
i

|ϕi⟩ , (31)

where |ϕi⟩ ∈ Hi and the dimensions of Hi need not be the same. If we now
bipartition the system then the state can equivalently be written as,

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , (32)

where |ψA⟩ =
⊗

i∈A |ϕi⟩ and |ψB⟩ =
⊗

i/∈A |ϕi⟩. We see that Eq. (32) is already
in the form of a Schmidt decomposition with Schmidt rank, r = 1. Since
we know that the Schmidt decomposition is unique, we can deduce that any
bipartite state that has a Schmidt rank, r > 1 must be entangled.

An important feature of a pure product state is that its reduced density
matrices are also pure, and so have zero entropy. What this is saying is that
for a pure product state, it is possible to have perfect knowledge of a subsys-
tem without knowing anything about the environment. The phenomenon of
entanglement can somewhat roughly be understood as the delocalization of in-
formation in a quantum system. That is to say, in an entangled state, it is
not possible to have perfect knowledge of a subsystem without knowing about
the environment as well. We can formalize this idea by saying that the more
entangled a bipartite pure state is the higher the entropy of its reduced density
matrices will be i.e. the less we can know locally. In this context the entropy is
known as the entanglement entropy. We will now motivate this idea with a few
illustrative examples.

Schmidt rank: r > 1

We mentioned that any pure state with a Schmidt rank greater than 1 must be
entangled, so let’s now check the entropy of such a state, for example lets check
the case where r = 2,

|ψ⟩ =

2∑
i=1

si |ai⟩A |bi⟩B ,

ρA =

2∑
i=1

s2i |ai⟩ ⟨ai| ,

S(A) = −(p) log(p) − (1 − p) log(1 − p), 0 < p < 1

(33)

where to get to the third line we used the fact s2i are the eigenvalues and since
they must sum to one we can paramterize them by a single parameter, p. Note
that p cannot be 0 or 1 as this would reduce to the r = 1 case. Futhermore,
because ρA and ρB will always have the same eigenvalues, then S(A) = S(B).
This is a general feature of pure states. We can now deduce that S(A) is always
non-zero since p = 0 and p = 1 are the only roots of the expression. Furthermore,
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the maximum of the entropy is at p = 1/2, for which S(A) = log(2). Indeed
it can be shown that for any Schmidt rank r the maximum entropy is given by
log(r).

Maximally entangled states

A maximally entangled state is a bipartite state of the form,

|ψ⟩ =

d∑
i=1

1√
d
|ai⟩A |bi⟩B , (34)

where d is the dimension of the smaller of the two Hilbert spaces. The reduced
density matrix on the smaller of the two, let’s say A, is then given by,

ρA =
I

d
, (35)

from which it immediately follows that the entropy is the maximal, S(A) =
log(d). It is in this sense that the state is maximally entangled. If we only have
access to the smaller subsystem, we have no information about the state of that
subsystem.

With these examples, it should be clear why entanglement entropy is a suit-
able measure of entanglement in bipartite pure states. It’s important to note
that since the entanglement entropy only depends on the Schmidt coefficients, it
is impossible to increase the entanglement between the two subsystems by act-
ing with a local unitary, as this will just change the basis used in the Schmidt
decomposition won’t affect the coefficients. Unfortunately, entanglement in gen-
eral is much harder to measure, even in multipartite pure states. However, for
our purposes, entanglement entropy will suffice.

See [33, 34] for more in depth discussion of many of the topics in this section.

3 Holography & the AdS/CFT correspondence

The birth of holography can be traced back to the 1970’s when Bekenstein pro-
posed that in order to reconcile the second law of thermodynamics with black
hole physics a black hole must have an entropy [4]. Based on Hawking’s earlier
work [35] showing that the event horizon area is a strictly increasing quan-
tity, Bekenstein proposed that the entropy is proportional to the horizon area.
Hawking later strengthened this proposal [36] by investigating the behavior of
quantum fields near the event horizon in a fixed black hole geometry. He found
that with this inclusion of quantum mechanics, black holes are in fact thermal
objects with an entropy that is indeed proportional to the horizon area,

SBH =
A

4G
. (36)

This discovery by Hawking, is today much more well known by the layman for
the counter-intuitive suggestion that black holes are not black but in fact emit
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Hawking radiation. However, the result that black hole entropy is proportional
to the surface area is equally revolutionary. Thermodynamic entropy is un-
derstood to be an extensive property, in that it scales with system size, so an
entropy being proportional to the surface area of a system was an entirely new
phenomenon. In fact, if one were to demand that black hole entropy is exten-
sive, then one is automatically lead to a rudimentary example of the holographic
principle. That is, a black hole as seen by an external observer is holographically
described by degrees of freedom defined on its horizon. This idea is dubbed the
central dogma of quantum black holes in [37]. This was the first hint that a
complete theory of quantum gravity might be holographic [2, 3].

Today holography is being found, more and more, to be naturally described
within the language of quantum information theory, and it is exactly this information-
theoretic approach that we will focus on. In this section we will first introduce
the basics of black hole thermodynamics which will serve as a natural setup to
discuss the entanglement area laws [9, 38, 39, 40] in the most successful instance
of holography, the AdS/CFT correspondence[5].

3.1 Black hole thermodynamics

The first hint at some similarity between the laws of thermodynamics and the
behavior of black holes can be seen even at a classical level when determining
how a black hole responds to small amounts of matter falling into it. For ex-
ample, if we drop a particle of mass ∆M and angular momentum ∆J into the
black hole, the event horizon will very quickly settle to a new larger surface
area, with the change in area given by,

κ

8πGN
∆A = ∆M − Ω∆J, (37)

where κ is the surface gravity and Ω is the angular velocity of the horizon.
Following Bekenstein’s reasoning, since the area is strictly non-decreasing, we
posit that ∆A ∝ ∆S. We will take a further leap and also take T ∝ κ (we shall
vindicate this seemingly unfounded proposition shortly). After some rearranging
this gives us,

∆M = T∆S + Ω∆J. (38)

This equation of course bears a striking resemblance to the first law of ther-
modynamics, and as such is often called the first law of black hole mechanics.
Similarly, as discussed above Hawking showed [35] that classically,

∆A ≥ 0, (39)

which resembles the second law of thermodynamics. So it seems that even when
treated classically the horizon area is governed by laws that are at least struc-
turally similar to both the first and second law of thermodynamics. However,
assuming temperature is proportional to surface gravity seems somewhat pre-
sumptuous, so maybe this analogy should not be taken too seriously. But, as
we will now show when treated quantum mechanically black holes are thermal
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objects with exactly T = κ
2π . To show this we will first derive the Fulling-Davies-

Unruh effect, or more commonly just the Unruh effect[41, 42, 43]. Which will
then imply the Hawking effect as a consequence.

3.1.1 Unruh Effect

The surprising claim of the Unruh effect is that this thermal behavior of the
quantum vacuum is not special to black holes, but in fact is inherent to any
observer undergoing non-geodesic motion, even in flat space. Furthermore, the
temperature they experience is proportional to their proper acceleration. As we
will see this thermal behavior is inextricably linked to the presence of a horizon.
The trajectory of an object undergoing constant proper acceleration a is, in an
inertial frame, parameterized in terms of proper time as,

x =
1

a
cosh(aτ), t =

1

a
sinh(aτ). (40)

In light-cone coordinates, u = x+t√
2

, v = x−t√
2

, the spacetime can be divided into

four quadrants determined by the signs of u and v. These quadrants correspond
to the causal past and future of the origin, as well as the left and right spacelike
separated wedges. By expressing the accelerated trajectory in these new coor-
dinates, u = 1

a
√
2
eaτ and v = 1

a
√
2
e−aτ , it is clear to see that for positive a, the

accelerated object is forever bound to the (u > 0, v > 0) or the right spacelike
wedge. Therefore an observer following such a trajectory would see an effective
future and past horizon for v = 0 and u = 0 respectively. In the t = 0 Cauchy
slice, when both the inertial observer and accelerated observer are stationary,
we see that the origin acts as the horizon, which is a distance 1/a from the ac-
celerated observer. Furthermore, the union of all such trajectories, Eq. (40), for
positive a covers the right wedge, and since they are nonintersecting we can use
them to define a new coordinate system for the accelerated observer, namely,

ρ =
1

a
, θ = aτ. (41)

Where 0 < ρ < ∞ is the distance the accelerated observer measures to the
apparent horizon and −∞ < θ < ∞, the proper acceleration times the proper
time is known as the rapidity. These coordinates are known as Rindler coordi-
nates, and the |t| < x wedge that they cover is called the right Rindler wedge.
In terms of the Rindler coordinates the metric is of the form,

ds2 = −ρ2dθ2 + dρ2. (42)

With this in hand, we now determine the quantum vacuum in terms of the
Euclidean path integral in both coordinate systems and compare. As usual, we
first need to perform a Wick rotation, which we can achieve with θ = iθE , this
has the following effect on the inertial coordinates,

x = ρ cos(θE),

t = iρ sin(θE),
(43)
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which after a complimentary Wick rotation on the inertial coordinates, t = itE ,
gives,

x = ρ cos(θE),

tE = ρ sin(θE).
(44)

As a result the metric given by,

ds2 = dt2E + dx2,

= ρ2dθ2E + dρ2,
(45)

Evidently, the Rindler metric now has the form of Euclidean polar coordinates.
Under the assumption that the Hilbert space can be factorized into the left and
right wedge we can determine the vacuum amplitudes as follows,

(⟨ϕL| ⊗ ⟨ϕR|) |0⟩ ∝
∫ ϕ(t=0)=(ϕL,ϕR)

t→−∞
Dϕe−SE , (46)

where (ϕL, ϕR) is shorthand for ϕ(x) = ϕL(x) for x < 0 and ϕ(x) = ϕR(x)
for x > 0. However since it is now clear that in Euclidean space ∂θ generates
rotations this path integral can equivalently written as,∫ ϕ(t=0)=(ϕL,ϕR)

t→−∞
Dϕe−SE =

∫ ϕ(θ=−π)=ϕL

ϕ(θ=0)=ϕR

Dϕe−SE , (47)

and from this equivalence we can determine that,

(⟨ϕL| ⊗ ⟨ϕR|) |0⟩ ∝ ⟨ϕL| exp(−πHθ) |ϕR⟩ , (48)

where Hθ is the Hermitian observable that generates translations in θ. We can
finally then express the vacuum state in terms of Hθ,

|0⟩ ∝
∑
L,R

(⟨L| exp(−πHθ) |R⟩) |L⟩ ⊗ |R⟩ , (49)

where |L⟩ and |R⟩ are bases for the left and right Hilbert spaces respectively.
Since an accelerated observer only has access to the right Rindler wedge it then
follows that this observer sees the vacuum as follows,

TrL [|0⟩ ⟨0|] =
exp(−2πHθ)

Tr [exp(−2πHθ)]

=
exp

(
− 2π

a Hτ

)
Tr

[
exp

(
− 2π

a Hτ

)] (50)

where in the second line, we have simply converted back to the Rindler ob-
server’s proper time. Evidently, this is nothing more than a thermal state with
temperature,

T =
a

2π
(51)

which with constants restored is, T = ℏa
2πkBc

. This is a different derivation
from that originally used by Unruh, however this derivation emphasizes that
the source of the thermal behavior is in fact the entanglement between the left
and right Rindler wedges.
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3.1.2 Hawking Effect

Having now derived the Unruh effect we can quite easily derive the Hawking
effect with a simple implementation of the equivalence principle. To start with,
the Schwarzschild metric is given by,

ds2 = −
(

1 − rs
r

)
dt2 +

(
1 − rs

r

)−1

dr2 + r2dΩ2
2, (52)

where rs = 2GNM is the Schwarzschild radius. Our goal is to show that for
an observer hovering a constant small distance above the horizon, the space-
time is indistinguishable from Rindler space, i.e. flat spacetime as seen by an
accelerating observer. We begin with the following change of coordinates,

ρ =
√

4rs(r − rs)

θ =
t

2rs

(53)

where, just as before, ρ is the distance to the horizon as measured by a station-
ary, near horizon observer and θ is the rapidity of said observer. After such a
transformation the metric now has the form,

ds2 = − 4ρ2r2s
4r2s + ρ2

dθ2 +

(
1 +

ρ2

4r2s

)
dρ2 +

(
r2s +

ρ2

2
+

ρ4

16r2s

)
dΩ2, (54)

which for ρ≪ 1 and the angular component suppressed becomes,

ds2 = −ρ2dθ2 + dρ2. (55)

As promised the near horizon spacetime for a static observer is indistinguishable
from Rindler space, Eq. (42). We can therefore deduce that such an observer
will feel a temperature T (ρ≪ 1) = 1

2πρ . To determine the temperature for large

ρ we use the Tolman relation [44],

T (ρ)
√

−gθθ(ρ) = const. (56)

We can determine that for small ρ the constant is 1/2π. Therefore we have,

T (ρ) =
1

2π

√
4r2s + ρ2

4ρ2r2s
, (57)

for all ρ and from here we can deduce that the Hawking temperature which is
the temperature measured by an asymptotic observer is given by,

TH =
1

4πrs
=

κ

2π
, (58)

just as we proposed at the start of the section. With reference to Eq. (37). We
can fix the propotionality between A and S to obtain,

SBH =
A

4GN
. (59)
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If we restore the constants, SBH = kBc
3A

4GNℏ , we see that we have the fundamental
constants from general relativity, quantum mechanics and thermodynamics all
working in unison. However, we run into a problem here, since black holes in
fact radiate thermal energy, if nothing falls into the black hole then its mass will
slowly radiate away and so its surface area will decrease. It seems then that Eq.
(39) fails. However, the key insight here is that as the emitted Hawking radiation
is in fact entangled with modes in the interior of the black hole, this is in
exact analogy with the entanglement present between the left and right Rindler
wedges in flat space. We must therefore include the entanglement entropy in
our considerations. This provides us with the generalized second law [4],

Sgen =
A

4GN
+ Sout

∆Sgen ≥ 0,

(60)

where Sout is the entanglement entropy of the bulk fieds just outside the horizon.

3.2 the AdS/CFT correspondence

So far we have seen just hints of holography. However, the AdS/CFT correspon-
dence provides a theory where it is exactly realized. In the original proposal
[5] the correspondence was presented as a duality between a 3 + 1 dimensional,
maximally supersymmetric SU(N) Yang-Mills theory (a conformal field theory)
and a 4 + 1 dimesional anti de Sitter spacetime. This duality arose because
in type IIB string theory a stack of N D3 branes creates a geometry near the
branes that is AdS5 × S5. in the large N limit. The system, can therefore be
described by semiclassical gravity on an AdS5 background. However, it was
already a well know fact in string theory that N coincident D branes represents
SU(N) Yang Mills theory. Therefore, it must be the case that in the large N
limit where both the AdS and the CFT descriptions are valid, that these two
theories are equivalent! While the semiclassical AdS description is only valid
at large N the Yang Mills description is valid for any value of N . It is there-
fore proposed that the duality holds for all N , where away from the large N
limits the gravitational description moves away from the semiclassical limit and
towards a full quantum gravitational system. Clearly, then AdS/CFT satisfies
the holographic principle, since we have a D+1 dimensional theory of quantum
gravity being equivalently described by a D dimensional qunatum field theory!
Let’s now give a brief outline of the important features of anti-de Sitter space-
time and conformal field theory before presenting a more precise statement of
the correspondence.

3.2.1 Anti-de Sitter spacetime

AdS is a vacuum solution to the Einstein field equations such that the spacetime
has negative cosmological constant. In metric is given by,

ds2 = −
(

1 +
r2

l2AdS

)
dt2 +

(
1 +

r2

l2AdS

)−1

dr2 + r2dΩ2
d−1, (61)
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where l is the AdS radius related to the intrinsic negative curvature created by
the cosmological constant. The isometry group of the spacetime is SO(d, 2),
which is isomorphic to the Lorentz transformations in d + 2 dimensions. An
important feature of AdS is that lightlike trajactories can extend to the bound-
ary at spatial infinity and back again in finite proper time. Further still, any
timelike trajectories will also return to their starting point in finite propertime,
however they will not reach the asymptotic boundary. It is this quality that
makes AdS somewhat like a gravitational system ”in a box”.

3.2.2 Conformal field theory

A conformal field theory is a quantum field theory with an extended group of
spacetime symmetries, namely the Poincare group is extened to the conformal
group. There are then, two new types of symmetries. The first type is Dilata-
tions,

xµ → λxµ, (62)

where λ is some real number. The second type are called special conformal
transformations,

xµ → xµ + aµx2

1 + 2aνxν + a2x2
. (63)

The conformal group in d+1 dimensional spacetime is SO(d+1, 2), which is the
Lorentz group of a spacetime with an extra space and an extra time dimension.

An important feature of CFTs are the primary operators. These are oper-
ators commute with special conformal transformations, and under Dilatations
transform as,

O → λ−∆O, (64)

where ∆ is known as the conformal dimension of the primary. The descendents
of a primary are defined as, ∂nO, and have conformal dimension ∆ + n. One
of the reasons these operators are important is that for any CFT there exists
a one to one correspondence between the set of all primaries and descendents,
and a complete basis of the CFT Hilbert space. This feature is known as the
state-operator correspondence.

3.2.3 Statement of the correspondence

A precise statement of the correspondence is then as follows [45].

Definition 3. Any conformal field theory on an R ⊗ Sd−1 background is dual
to a theroy of quantum gravity on an asymptotically AdSd+1 spacetime, these
theories are dual in the sense that their Hilbert spaces are isomorphic,

HCFTd
∼= HAdSd+1 .

We will now give some important feature of the correspondence.
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Figure 1: Here we have the bulk boundary correspondence illustrated for
AdS3/CFT2. The CFT is defined on the surface of the cylinder while the
AdS spacetime lives in the interior.

Bulk-Boundary: The CFT can be understood live on the asymptotic bound-
ary of the spacetime. This follows from the extrapolate dictionary [46],

O(t, x) = lim
r→∞

r∆ϕ(t, r, x), (65)

where we see that a CFT primary, O with conformal dimension ∆ can be repre-
sented by a bulk field ϕ in the limit of spacial infinity, and so the CFT operators
are then defined at r → inf. We can then understand r as the emergent dimen-
sion. This concept is illusatrated in Fig. 1

Symmetries: The isometry group, the group of killing vector fields in the
bulk, is isomorphic to the global symmetry group of the conformal field theory,
SO(d, 2). Furthermore, generators of the CFT symmetry group get mapped to
the generators of the AdS isometry group. In particular the CFT Hamiltonian
gets mapped to the QG Hamiltonian and they have the same spectrum. Also
the dilatation generator of the CFT gets mapped to the generator of translations
r.

UV/IR: Since scaling transformations of the boundary correspond to trans-
lations in the radial direction in the bulk, imposing a cutoff on the bulk r < r∗

is equivalent to imposing a UV cutoff on the boundary. In this sense the short
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range features of the boundary are encoded in the bulk at large r and the long
range features are encoded at small r.

Thermal states: A thermal state of the CFT is dual to a black hole in AdS,
where the temperature of the black hole is that of the CFT. In particular, at
T = 0, i.e. the CFT vacuum, the corresponding bulk theory is the AdS vacuum
solution.

Parameters: The CFT side of the duality is described by two parameters, the
central charge, c, which can be seen as a counting of degrees of freedom (c ∼ N2),
and the coupling strength λ. The AdS side of the duality has two parameters in
the semiclassical limit, lAdS and GN and a third for string corrections lS . The
parameters of the two sides are then related by [47],

c ∝ (lAdS)d−1

GN
,

λ ∝
(
lAdS
lS

)γ (66)

3.3 Holographic Entanglement

As a consequence of the fact that thermal CFT states are dual to black holes in
AdS we can make an immediate connection between holography and entangle-
ment. We do this by constructing a purification of the thermal density matrix,
which in this scenario is referred to as a thermofield double state,

ρ =
1

Z
e−βH ,

|TFD⟩ =
1√
Z

∑
i

e−βEi/2 |Ei⟩ ⊗ |Ei⟩ ,
(67)

where |Ei⟩ are the energy eigenstates and Ei the corresponding eigenvalues.
What we have effectively done here however, is add another copy of the CFT
and entangle it with our original. It is interesting to ask then if this state of the
two CFT system also has a holographic dual. In [48] it was pointed out that this
expansion of the CFT system is exactly analogous to going from the one sided
black hole spacetime, to the maximally extended black hole spacetime. See
Fig. 2. In this exteneded spacetime the two CFTs are then defined on each of
the boundaries. In going from the density matrix to the thermofield double we
have recast the thermodynamic black hole entropy as an entanglement entropy
between the two CFTs. This is immedietley telling us something important
about entanglement in holographic theories. The entanglement seems to gener-
ate spacetime geometry [49]. To justify this claim, consider the state |Ei⟩⊗|Ei⟩.
This state would simply correspond to two disconnected static spacetimes, and
indeed so does every term in the superposition forming the thermofield double.
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Figure 2: Here we show the analogy between constructing the thermofield doulbe
of a CFT and extending the blackhole metric to the two sided maximally ex-
tended case

However, once these spacetimes are put in a superposition they become con-
nected through a wormhole with horizon area proportional to the entanglement
entropy. We will now present a series of increasingly general proposals for the
connection between boundary entanglement and bulk geometry.

3.3.1 Ryu-Takayanagi proposal

The Ryu-Takayanagi proposal [9] was the first work that formalized the connec-
tion between entanglement and geometry, it can be seen somewhat as a gener-
alization of the Bekenstein-Hawking entropy within AdS/CFT. The proposal is
as follows.

• For a particular Cauchy slice, Σ, of the boundary CFT, there is a corre-
sponding state, ρΣ. Assuming that the state is time reversal-symmetric
and that the Hilbert space can be factorized into two complementary spa-
tial regions A and Ā then we identify the entropy of the reduced density
matrix, ρA = TrĀ[ρΣ], with,

S(A) = min
γA∼A

(
|γA|
4G

)
, (68)

where γA is a bulk curve, ||̇ denotes the area and γA ∼ A means γA
is homologous to A, that is, together γA and A form the boundary of
hypervolume.
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Figure 3: A time reversal-symmetric Cauchy slice of the boundary theory has
been partitioned into A and Ā. The minimal surface homologous to A is shown
partitioning the bulk. For a pure state the area of this curve quantifies the
entanglement between A and Ā

So what the proposal is saying is that the entropy of a boundary subregion is
proportional to minimal area of a bulk surface homologous to the the boundary
subregion. In the case of pure bounary states the homology condition will reduce
to the condition that γA and A share a boundary, in this case the entropy is
an entanglement entropy, and example is shown in Fig. 3. In the case of mixed
states however the homology condition is necessary. For example in the case of
a thermal state the minimal surface for the entire boundary is exactly the event
horizon of the black hole in the bulk.

Note however that this proposal is only valid for time reversal-symmetric
slices. We would like then a more general, covariant prescription for obtaining
the entropy. Furthermore, this expression is to be understood as only valid in
the large N limit. That is the area contribution is the leading order term in a
1/N expansion for the entropy.

3.3.2 HRT proposal

Shortly after the RT proposal, it was generalized to a covariant version by
Hubeny, Rangamani and Takayanagi [38]. The generalization is relatively straight
forward. We must now find a surface homologous to our boundary region that is
extremal with respect to infinitesimal deformations of the surface. If more than
one extremal surface exists then the surface with the smallest area is selected. It
is straightword to see that in static spacetimes this reduces to the RT propsoal
since the RT surface is minimal with respect to spatial variations and maximal
with respecet to timelike variations. In this maximin quality leads naturally to
an equivalent statement of the HRT proposal[50].
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• For a particular Cauchy slice, Σb, of the boundary CFT, there is a family
of different bulk Cauchy slices,ΣB , that asymptote to Σb. To determine
the entropy of a reduced density matrix on a boundary region, A ⊂ Σb, we
determine first determine the minimal surface homolgous to A for each of
the bulk Cauchy slices ΣB and then determine the RT entropies of these
surfaces. The HRT surface and so the true entropy of the region is then
given by the maximum of these entropies.

S(A) = max
ΣB |∂ΣB=Σb

(
min

γ⊂ΣB&γ∼A

(
|γ|
4G

))
(69)

3.3.3 Quantum Extremal Surfaces

We mentioned already that the RT formula for the entropy is just the leading
term in a 1/N expansion. This of course is true for the HRT formula as well.
How then can we include corrections to our expression? This question was
answered in [39] and a subsequent a proposal for all orders was given in [40].
The proposal states that the entropy of a subregion is obtained by finding the
surface that extremizes the bulk generalized entropy Eq. (60) as opposed to to
just the area, where the Sout term is to be understood as the entropy of the bulk
reduced density matrix on the region bounded by A and this extremal surface.

S(A) = max
ΣB |∂ΣB=Σb

(
min

γ⊂ΣB&γ∼A

(
|γ|
4G

+ Sbulk(Σγ)

))
, (70)

where ∂Σγ = A ∪ γ.

3.3.4 Entanglement wedges

An interesting question about these boundary subregions we have been dealing
with is, given only the reduced density matrix of a boundary region, A, how
much of the bulk can we reconstruct? The answer to this question is something
called an entanglement wedge [51, 52, 50, 53, 54]. The entanglement wedge for
a boundary region A is given by the domain of dependence of any spacelike
surface that is bounded by the extremal surface. That is,

W(A) = Dbulk(Σγ), (71)

as shown in Fig. 4. The important feature of an entanglement wedge is that
any local bulk operator in W(A) can be reconstructed on the boundary A in
terms of some non-local CFT operator[55]. An intereting consequence of this
however is that since a single spacetime point can be in the entanglement wedge
of many different regions, this implies that a local bulk operator can be recon-
structed in many different ways on the boundary. This unintuiative property
of the AdS/CFT correspondence is a direct consequence of the quantum error
correcting properties of the duality [10].
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Figure 4: For the boundary region A (red), we have the entanglement wedge
W(A) which is the bulk domain of dependence of Σγ (blue).

4 Tensor Networks

Having reviewed the basics of quantum information theory and Holography we
will now introduce the starring role of this thesis, tensor networks. The current
section will be dedicated to explaining what exactly a tensor network is, as well
as introducing some particularly successful examples, with a focus on MERA
networks.

4.1 What is a tensor network?

Tensor networks are a method for constructing approximations to large tensors
by contracting together a number of smaller tensors. This method naturally
facilitates a graphical representation as a network, where the nodes of the net-
work are the tensors themselves and the edges represent the specific pattern of
contraction. The main qualities of this approach that make it so attractive are
twofold. Firstly, they allow for a huge reduction in the number of free param-
eters of the object of interest, allowing for many objects previously outside the
scope of numerical computation to be tackled. Secondly, by using a tensor net-
work representation, the network structure can often be chosen such that certain
properties which might typically be hard to visualize are made more manifest.
For example, the entanglement structure of many-body wavefunctions, as we
shall see shortly.
Tensor Networks were originally utilized by the condensed matter community as
a tool to approximate ground states of many-body systems[56]. However they
have since proven invaluable across many fields including quantum information
theory, lattice gauge theory [57], quantum chemistry [58] and even in computer
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A B C · · · D E
j1 j2 j3 jN−2 jN−1

i1 i2 i3 iN−1 iN

Figure 5: This is the tensor network graphical representation of Eq. (73), a
matrix product state. The open legs represent uncontracted indices, while the
legs which are attached to a tensor on both ends represent contracted indices.

science they have found use in the study of neural networks[59]. And lastly
of course, they have been recently been proposed as a method to understand
quantum gravity and holography[11].

For concreteness we shall henceforth restrict our discussion of tensor networks
to those representing quantum states on Hilbert spaces of many factors.
Suppose we are interested in a particular wavefunction, such as the ground state,
of a lattice system with N sites. Then for a particular T the wavefunction is
given by,

|ψ⟩ =

d∑
i1=1

d∑
i2=1

· · ·
d∑

iN=1

T i1i2···iN |i1i2 · · · iN ⟩ . (72)

It should be clear that such a wavefunction, being an element of
⊗N

j Hj , is
by definition a rank N tensor. It is also apparent that as N increases the
number of amplitudes required to describe the state is dN . This exponential
scaling makes simulating even moderately sized quantum systems on a classical
computer unfeasible.

As mentioned above, tensor networks generate an approximation of the true
wavefunction by decomposing the high rank tensor into many low rank ten-
sors and contracting over auxiliary indices. Using (72) as an example, we can
represent T by a chain of smaller tensors as follows,

T i1i2···iN = Ai1j1B
i2
j1j2

Ci3j2j3 · · ·D
iN−1

jN−2jN−1
EiNjN−1

, (73)

where Einstein notation is employed. Even for a relatively simple pattern of
contractions such as this the notation is already quite cluttered. However when
represented as a network, as in Fig. 5, it is much cleaner and more intuitive.
Let’s now count the number of parameters for each representation. As discussed
the original wavefunction is described by dN complex numbers. In our tensor
network representation, we can assume for simplicity that each of the contracted
j indices has dimension χ, which is referred to as the bond dimension. Then
the two tensors on the ends of the chain have dχ parameters, and the N − 2
other tensors have dχ2 parameters, and so the total number of parameters is
2χd + (N − 2)χ2d. Evidently then the original wavefunction requires O(dN )
parameters, while the given tensor network approximation requires O(N).
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So we have shown that by employing such a tensor network we can greatly
reduce the number of free parameters. However, we as of yet have no reason to
believe that such a structure is capable of providing a suitable approximation
to quantum states. In fact (73) and Fig.5 is an example of the well known class
of tensor network known as Matrix Product States (MPS). As we will see these
networks are very well suited to do dealing with gapped 1D systems.

4.1.1 Constructing a Matrix Product State

Suppose we know exactly an N -body state given by ψi1i2...iN , to build an MPS
approximation, we start by grouping the first N/2 indices into a single composite
index and act similarly for the remaining indices,

ψi1i2...iN → ψIJ , I = i1i2 . . . iN/2, J = iN/2+1iN/2+2 . . . iN . (74)

In this way we have reshaped our quanutm state into a typical matrix, which
allows us to perform the next step which is to perform a singular value decom-
position or equivalently a Schmidt decomposition.

ψIJ =
∑
K

U IKDKKV KJ

= U IK Ṽ KJ ,

(75)

where D is a diagonal matrix containing the singular in descending order, and
in the second line we have absorbed D into V . We can now iterate this process
and decompose the resulting matrices until we have a single tensor per physical
index. What we have obtained is an exact representation of the state in the form
of an MPS network. However, we placed no upper bound on the bond dimension
χ, meaning there is so far no computational advantange to this representation.
To impose a particular bond dimension we must truncate the matrices at each
decomposition step as follows. Using (75) as example we perform the following
alteration,

ψIJ →
χ∑

K=1

U ′IKD′KKV ′KJ , (76)

where D′ is again a diagonal square matrix but has now been truncated to be
χ× χ matrix containing the χ largest singular values, similarly U ′ and V ′ are
now isometries containing the first χ columns and rows of their counterpart
respectively. By holding onto the largest singular values we maximize fidelity
with the orignal state under such a truncation. This truncation can obviously
be implemented at each iteration of the decompostion, and by the end we will
obtain exactly a network as in Fig. 5 with the desired bond dimension. Lets
now discuss some properties of MPS that should be evident after the above
construction

Entanglement Entropy Since the MPS is constructed as a series of trun-
cated SVD’s the entanglement entropy of a subregion has an upper bound of
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log(χ), regardless of region size. This is exactly the entropy scaling (or lack
there of) we expect for the ground states of gapped 1D systems! [60]

MPS states span Hilbert space As we saw from our construction we can
start with any state in our many-body Hilbert space and construct an MPS
network that represents it exactly as long as we don’t truncate the singular
values. In other words in the χ → ∞ limit the ansatz of MPS states spans the
entire space, and as we decrease χ we target the corner of Hilbert space that
contains gapped 1D ground states.

MPS underlies DMRG The density matrix renormalization group (DMRG)
has been one of our best tools for classical simulation of 1D quantum systems
since it’s inception[56], and in fact can be viewed as a variational algorithm that
finds the MPS state of minimum energy for a given Hamiltonian. The success is
a consequence of the efficiency of MPS states as well as the low computational
cost of determining correlators and expectation values.

4.1.2 Geometrization of Entanglement

So far we have introduced the simplest class of tensor network, the matrix
product state, which as a consequence of its entropy scaling, we have seen is
particularly well suited to describing the ground states of gapped 1D systems.
However as we explored in section 2, different classes of quantum systems have
different area laws. We can therefore expect that for systems with more involved
area laws we will need different tensor network structures.
An immediate example is that of higher dimensional systems. Even without
entanglement arguments it is obvious that MPS has an inherent 1D structure,
and so cannot handle higher dimensional systems. The generalization is quite
intuitive, we again assign a single tensor per site and contract auxiliary indices
with neighbouring tensors leaving one uncontracted physical index per tensor.
As a result we have a tensor network with the structure of a net as opposed
to a chain. Such tensor networks are refered to as projected entanglement pairs
(PEPS). See Fig. 6. While these networks share a structural similarity to MPS
their properties are quite different. The fact that MPS states follow from a se-
quence of SVDs means that MPS states come equipped with a canonical form.
However, due to the more intricate structure of PEPS networks, these decom-
positions are no longer in our toolbox. In fact, this is a property of any network
structure that, like PEPS, contains closed loops. Additionally calculations of
exact scalar products of PEPS states, and so also computing correlators, is
exponentially hard. It is therefore necessary to implement additional approxi-
mations.
Despite these issues, it is true that PEPs states satisfy higher dimensional area
laws. This can be seen quite easily by considering for example a 2D PEPS. If
we are interested in the entanglement entropy of a particular region, it is quite
clear that it is upper bounded by the number of contracted legs that cross the
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Figure 6: Here we have shown a small region of a PEPS network where the blue
legs are the degrees of freedom of the system.

regions bounding surface, i.e. for some region A whose boundary ∂A intersects
n legs then the entanglement is bounded as follows,

S(A) ≤ n logχ = c(a)|∂A| logχ, (77)

where is c is the number of legs per unit area which depends on the particu-
lar lattice spacing a. Evidently then by taking quite logical generalizations to
PEPS, we can in theory target the low energy eigenstates of gapped systems in
any dimension.

Critical systems, however, have a logarithmic correction to the area laws of
gapped systems. How then, can we build tensor networks that exhibit this
property? In answering this question we can leverage the fact that critical
systems have an additonal symmetry, scale invariance, to our advantage. The
idea then is to build a tensor network, that mimics the action of a real-space
renormalization group flow. The RG scheme that lends itself best to a tensor
network representation is that of Kadanoff’s block spin transformation [61].
Let’s first make a naive attempt to construct such a network. In investigating
the flaws of this naive attempt we will gain some indication of what refinements
are neccessary.

The block-spin procedure is a very intuitive description of a renormalization
transformation. Given a quantum system defined on a lattice (for concreteness
we will work within the 1D case), the idea of Kadanoff is to partition our lattice
into blocks of neighbouring sites and then replace each block with a single
effective site in a new coarse-grained lattice. The result of this is that we should
obtain an effective theory for our original system that overall has less degrees
of freedom. Again, for concreteness, let’s restrict to the particular case of 2 to
1 blocking, i.e. each of our blocks before coarse-graining contains two lattice
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χ2 χ2

χ1 χ1 χ1 χ1

χ0 χ0 χ0 χ0 χ0 χ0 χ0 χ0

Figure 7: A simple example of a tensor network representation of a block spin
RG flow. Here the chain is partitioned into blocks of two spins and χi represents
the bond dimension of the spin chain after i renormalization steps.

sites3. Assigning to each site in our initial lattice a local Hilbert space L0
i , the

Hilbert space of our full system is then given by,

H0 =
⊗
i

L0
i . (78)

The Hilbert space of a single block is then given by,

B0
j = L0

2j ⊗ L0
2j+1,

=⇒ H0 =
⊗
j

B0
j

(79)

Our coarse-graining proceedure is then naturally described by the isometric
tensors Vi defined as follows,

V †
i : B0

i → L1
i , V

†
i Vi = I (80)

where L1
i are the local Hilbert spaces of our new effective system, H1 =

⊗
i L1

i .
We denote the dimension of the local Hilbert space at each iteration as χi =
dimLi with the χ0 = d, the local dimension of the original system. We can
now iterate this process to obtain an increasingly coarse-grained system, until
we have a bipartite system,

H0 → H1 → · · · → Hn = Ln ⊗ Ln. (81)

Such a process is naturally represented by a tensor network, as shown in Fig.
7. This block spin inspired tensor network belongs to a class of tensor networks
known as tree tensor networks (TTN), which are those networks that do not
have closed loops (therefore including MPS).

Having made our naive attempt at building an RG inspired tensor network to
tackle critical systems, let’s now see why it fails. First of all the network is clearly
translationally unsymmetric. Taking Fig. 7 as an example if we assume that
the system has periodic boundary conditions then we have a Z2 translational

3Typically the blocks are equal size, but this is not strictly necessary
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symmetry. This is obviously a big disadvantage when tackling systems with
translational symmetry which we often are. Second if we wish to obtain any
computational advantage from this representation we must impose an upper
bound on the bond dimensions χi. If we therefore set all bond dimensions (not
including uncontracted legs) to some universal χ, we will as usual obtain some
reduction in free parameters. However as a consequence we now have that for
regions of size 2n, there will always be some region of this size that is connected
to its complementary region through the network by a single leg. This means
that we have an approximately constant entropy scaling, just like in MPS case.

So, what went wrong here? In answering this question we will meet for the
first time the staring role of this thesis. That is, the muliscale entanglement
renormalization ansatz (MERA). We will delve into a full exploration of this
tensor network ansatz in the next section, but for now let’s reflect on what we
have learned about tensor networks and in particular how they relate entangle-
ment to geometry.
Entanglement is often depicted in popular science as some unusual string like
object connecting particles over large spatial separations. While no serious
physicist should take this image of entanglement seriously, what tensor net-
works provide us with is a somewhat analogous way of graphically representing
the entanglement structure of quantum states. The existence of entanglement in
a quantum state is really the root cause of the exponential growth of the param-
eters required to describe the state. If we consider a state with no entanglement
at all which in a lattice system with N sites corresponds to an N -fold product
state, we only need O(dN) parameters to describe the state. Contrary to this a
generic state in the Hilbert space requires O(dN ) parameters. However, we are
often interested in states that have a very particular entanglement structure,
for example local ground states which we have shown satisfy entanglement area
laws. What tensor networks achieve, is the construction of a structure that re-
quires less overall parameters to describe than a generic states while restricting
to classes of states that have a specific entanglement structure. As we have seen
the amount of entanglement between two regions is limited by the dimension of
the composite Hilbert space of the minimal number of legs in the network that
connect the two regions. This is very analogous to a fluid flowing through a
system of pipes where the internal contracted indices play the role of the pipes
and entanglement plays the role of the fluid. We have seen in PEPS, that the
necessary network geometry responds directly to changes in the system geome-
try (change of dimension). However this is not sufficient to describe states with
different entanglement structure like those of critical systems. As we will see in
the next section, it is exactly the failure to properly account for entanglement
that was the downfall of our initial attempt to build a tensor network for critical
states.
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4.2 Entanglement Renormalization

We now introduce the multiscale entanglement renormalization ansatz. Just as
our tree tensor network in the section above was built to replicate Kadanoff’s
block spin RG transformation, MERA is based on a new real-space renormal-
ization group transformation that is quite similar but importantly pays more
careful attention to the entanglement in the state. This new RG scheme is
refered to as entanglement renormalization.

Entanglement renormalization was first proposed by Vidal in [14]. The key
realisation of Vidal that lead to this proposal, is that in the standard block spin
approach, there is a failure to consider the entanglement between neighbouring
blocks before they are coarse-grained. This neglect of short range entangle-
ment is ultimately the reason that we can not expect a decent approximation
for moderate bond dimension. He therefore introduced a new type of tensor
dubbed the disentangler. The role of the disentanglers is to remove short range
entanglement between neighbouring blocks before the isometries of the usual
block spin procedure are applied. Exploring this more explicitly, we have as
before our initial Hilbert space described by (78), which again we partition into
two site blocks,

H0 =
⊗
j

B0
j . (82)

We then choose the disentanglers to be unitary operators that act on adjacent
pairs of sites that traverse the border between our blocks. Choosing for illus-
tration, a particular block B, we label the lattice sites directly adjacent to B as
α1 and α2, and label the lattice sites within B as β1 and β2. The disentanglers
that act on B are then defined as,

u1 : L0
α1

⊗ L0
β1

→ L0
α1

⊗ L0
β1
, u†1u1 = u1u

†
1 = I,

u2 : L0
β2

⊗ L0
α2

→ L0
β2

⊗ L0
α2
, u†2u2 = u2u

†
2 = I.

(83)

The goal in choosing our particular disentanglers is to minimize the amount of
short range entanglement between B and its environment, or equivalently reduce
the entropy of the reduced density matrix on B. Defining the reduced density
matrix on B and it’s neighbouring sites as ρα1β1β2α2

, the reduced density matrix
on B after the disentanglers is then given by,

ρ′β1β2
= Trα1α2

[
(u1 ⊗ u2)ρα1β1β2α2

(u†1 ⊗ u†2)
]
. (84)

So the correct choice of u1 and u2 are those that minimize the entropy of ρ′β1β2
.

There a multitude of ways of achieving this. One can treat the entropy of ρ′β1β2

as a functional, S : SU(4) ⊗ SU(4) → R+, and use optimization techniques
to find the minimum [20]. Other more sophisticated gradient descent methods
have been explored in [62], in this case the energy expectation value is used as
the cost function. It should be noted that the entropy will in most cases will
never go to zero as we are only removing the short range entanglement.
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α1 β1 β2 α2

· · · · · ·

Figure 8: Shown is the tensor network containing those tensors that act on
a particular block, B, within a single entanglement renormalization iteration.
The orange tensor represents the isometry while the blue tensors represent the
disentanglers. Indices β1 & β2 are the indices of B while α1 & α2 are the
immediately adjacent indices.

Figure 9: Tensor network representation of a 2 to 1 entanglement renormaliza-
tion process. Here the system of interest is spin chain of eight spins with periodic
boundary conditions. In each iteration, the disentanglers (blue squares) first re-
move entanglement between neighbouring blocks and the isometries (orange
triangles) then map the blocks to a single effective spin. After two iterations
the process terminates at the top tensor (blue circle). The white semi-circles
indicate edges that pass over the periodic boundaries.

After similarly applying disentanglers to the boundaries of all blocks we can
proceed with the coarse-graining. As before this is done by applying 2 to 1
isometries to our blocks, with isometies again defined by (80). The composition
of disentanglers and isometries then constitutes a single iteration of the entan-
glement renormalization transformation. If we started with a chain of N sites,
then after a single iteration we have a coarse-grained chain of N/2 sites (in the 2
to 1 case). The local Hilbert space dimesnion, χ, of this new chain may be larger
than the original dimenion, d, and this χ corresponds to the bond dimension as
before. A small section of the resulting network, centred around a single block is
shown in Fig. 8 We can now iterate this process by applying a sequence of these
ER layers to our chain, obtaining an increasingly coarse-grained chain at each
step, see Fig. 9. For finite systems we will eventually obtain a chain of only two
sites, at which point we insert a bipartite quantum state, thus closing all legs
bar those of the physical system, this state is refered to as the top tensor. For
a chain composed of 2n sites, it evidently take n− 1 ER layers to reach the top
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tensor. Additionally, as with all tensor networks the parameter that controls
both the computational cost of simulation and accuracy of approximation is the
bond dimension χ. If we start with an initial local dimension of d the first ER
iteration is capable of producing a coarse-grained chain with local dimension of
up to χ2. The same is true of all layers, that the maximum local dimension of
the resulting chain is given by χn+1 = χ2

n, where n denotes the number of ER
iterations already applied. Therefore if we wish to construct a network with
dominant bond dimension χ, we will need at least log(χ) − 1 transitional ER
layers that succesively increase the local dimension, at which point all remain-
ing layers have a fixed dimesnion χ. The collection of all states that can be
formed in this way for different choices of disentanglers and isometries forms a
variational ansatz known as the multiscale entanglement renormalization ansatz
(MERA) and algorithms have been establsihed by Vidal [63] to find the best
approximation to Hamiltonian ground state within this ansatz.

Now that we have introduced the MERA class of tensor networks, lets investi-
gate if they have truly triumphed over our previous attempt at representing 1D
critical systems4. First of all it is immediately apparent that MERA networks
contain a much higher degree (though not exact) of translational symmetry in
their structure, this can be seen as a consequence of the disentanglers stitching
the network together. However, this does come at a cost since our network
now contains closed loops, and as mentioned earlier this means we can now
longer use the Schmidt decomposition to find a canonical form for our network.
In fact MERA networks contain a very large amount of gauge freedom. This
can be seen quite clearly by inserting a unitary and its inverse on any leg and
then absorbing one each of these tensors into the definition of the neighbouring
disnentangler and isometry. This action will obvious not change the output
state but our network is now different. This issue of gauge freedom and finding
canonical forms will be very important in the holographic interpretation and we
will return to this issue later.
Next, we discuss the original motivating point, the scaling of entanglement
entropy. It was shown numerically by Vidal in his original paper [14], that
entanglement entropy does indeed scale as expected for critical systems,

S(L) =
c

3
log(L), (85)

where c is the central charge of the continuum limit CFT. Heuristically, this log-
arithmic scaling can be understood as a consequence of the inherent logarithmic
structure of the network itself. When we later explore the holographic properites
of MERA we will give a more analytic exploration of the entanglement entropy.

So MERA networks are indeed capable of exhibiting critical entanglement
entropy scaling, just as we set out to achieve, but this is far from the strength of

4In fact our earlier attempt is a special case of a MERA network where all disentanglers
are constrained to be the identity
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this ansatz. In particular, as a consequence of the all the tensors in the network
being isometric, the expectation values of local observables can be computed
extremely efficiently. This is a consequence of the fact that in contracting the
network with the observable and the conjugate network will result in many of
the tensors cancelling out. We therefore only have to consider a small subset of
the tensors in our calculations when computing local observables.

5 Holographic Tensor Networks

5.1 Holographic MERA

Some connections between MERA and holography should at this point already
be apparent. Both permit a D+1 dimensional representation of a D-dimensional
system, and both can be understood as a geometrization of the entanglement
in a quantum state. This apparent analogy lead Swingle to propose [11] that
MERA may be used as a toy-model for holography and may give insight into
holography beyond AdS/CFT. The idea is to view the network structure, which
necessarily has a hyperbolic geometry as a discrete analogy of the emergent
AdS spacetime, and to view the quantum state defined on the boundary as an
approximation of the CFT state.

We next expand on this proposal and give some more concrete arguements in
it’s favour. We will denote the full network as M and the boundary, on which
the quantum state is defined, as ∂M. We next define coordinates (z, x) on
the network, where z is in the radial direction and corresponds to the number
MERA iterations (z = 0 at the boundary) and x runs along the spin chain. We
will need the following two definitions to investigate the causal structure of the
bulk.

Definition 4. For a boundary region A ⊆ ∂M the causal past of A , C(A) ⊆ M,
is defined as the set of all tensors in the network that can be reached by starting
on A and tracing a path along the network edges in the direction of increasing
z.

Definition 5. For a boundary region A ⊆ ∂M, the past domain of the depen-
dace of A, D(A), is defined as the set of all tensors in the network such that all
paths of decreasing z intersecting the tensor must terminate on A.

Note that the ”time” related terminology here is related to the direction of
the isometric flow of the network from top tensor to boundary. However in the
holographic picture this is really a spacial dimension. It should be clear that
for any region A, D(A) is contained entirely within C(A), and that C(A) always
extends to the top tensor. These objects have been represented in Fig. 10.
What follows are some important properties of C(A) and D(A)

• The network defined by C(A) is always a quantum state, C(A) ∈ HA⊗Hγ1 ,
where HA is the Hilbert space corresponding to the boundary region A
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Figure 10: a) Here we have shown the domain of dependance, D(A) and causal
past, C(A), for a subregion A, where the light blue region is to be understood as
also part of C(A). b) Here the network has been equivalently decomposed into
the isometries D(A) (blue) and D(Ā) (orange) acting on the state Γ(A) (green).

and Hγ1 is the Hilbert space of the network legs that are intersected by
the bulk surface γ1, that bounds C(A).

• The network defined by D(A) is always an isometry, D(A) : Hγ2 → HA,
where Hγ2 is the Hilbert space of the network legs that are intersected by
the bulk surface γ2, that bounds D(A)

• The complement of D(A) is always C(Ā), where Ā is the boundary com-
plement of A. It follows then that D(A)×γ2 C(Ā) = D(Ā)×γ1 C(A) = M,
where ×γ is shorthand for the contraction of indices defined on surface γ.

• It will also be useful to define the state Γ(A) = D(A)† ×A C(A), with
Γ(A) ∈ Hγ1 ⊗Hγ2 .
From which it follows that

(
D(A) ⊗D(Ā)

)
×γ1∪γ2 Γ(A) = M.

• The minimal bulk curve (in terms of intersected legs) that shares its
boundary with A is exactly the smaller of the two curves γ1 and γ2.

For a computational point of view C is of great importance. If we wish to
compute the expectation value of an observable defined on a region A then we
only need to consider tensors in C(A), which greatly reduces the number of
contractions required compared to contracting the entire network. Additionally
it is a feature of any MERA that for large enough z the width of C is upper
bounded by some fixed constant that depends on the specific MERA being used.
The domain of dependence however is more interesting from a holographic point
of view, as it is the tensor network analog of the entanglement wedge. This is
because if we make some change to any of the tensors in D(A) the effect can
equivalently be achieved by acting on the original boundary state with a unitary
that has support on A.

38



5.1.1 The RT like entanglement structure of MERA

With Def. 4 and Def. 5 in hand, we can now show how the entanglement entropy
of MERA states satisfies a bound analogous to the RT formula of standard
holography. We begin by bipartitioning the boundary of our network, M, into
a connected subregion A and it’s complement Ā. Such that the state defined by
M is |M⟩ ∈ HA ⊗HĀ. As we outlined above we can rewrite |M⟩ as,

|M⟩ = (D(A) ⊗D(Ā)) |Γ(A)⟩ , (86)

where we have omitted the ×-notation as the implied contractions should be
clear from the context.
To determine the entanglement entropy across the two regions we start, as usual,
by taking the partial trace of |M⟩ over region Ā.

ρA = TrĀ [|M⟩ ⟨M|]
= D(A) TrĀ

[
(I ⊗D(Ā)) |Γ(A)⟩ ⟨Γ(A)| (I ⊗D†(Ā))

]
D†(A)

= D(A) Trγ1 [|Γ(A)⟩ ⟨Γ(A)|]D†(A)

≡ D(A)ργ2D†(A).

(87)

In the second line we have simply taken D(A) outside of the trace, and in
the third line we have used the cyclic property of the trace and the fact that
D(Ā) : Hγ1 → HĀ. Now determining the entropy it follows, from the invariance
under isometry property, that,

S(ρA) = S(ργ2). (88)

We can determine the upper bound on S(ρA) then by assuming that |Γ(A)⟩ has
maximal entanglement between γ1 and γ2, in which case,

S(ργ2) = log (min (dimHγ1 ,dimHγ2))

= log
(

min
(
χ|γ1|, χ|γ2|

))
= log (χ) min (|γ1|, |γ2|)
= log(χ)|γ∗|.

(89)

In the second line we have written the Hilbert space dimension in terms of the
bond dimension χ, and |γ|, the number of legs intersected by surface γ. In the
last line γ∗ denotes the shorter of the two surfaces. It then immediately follows
that,

S(ρA) ≤ log(χ)|γ∗|. (90)

We see then, that the upper bound on the entanglement entropy of a boundary
subregion, is proportional to length of the minimal bulk curve homologous to
the said boundary region. Evidently this is in exact correspondance with the
Ryu-Takayanagi formula. Of course there is the crucial difference that what we
have here is merely an upper bound and not an exact equality, and so it will
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therefore be important to ask what conditions are neccesarry for the bound to
be saturated. We will return to this question in the following section when we
introduce the HaPPY network and perfect tensors. Furthermore, since for a well
optimized MERA S(ρA) should be approximately the entanglement entropy of
a 1 + 1-dimensional CFT,

c

3
log

(
l

a

)
≤ |γ∗| log(χ). (91)

And by consequce of the network structure |γ∗| ≈ α log
(
l
a

)
, for some constant

α. Therefore,

c

3
≤ α log(χ)

R

2G
≤ α log(χ)

(92)

where in the second line we have used the identification of central charge with
AdS radius from the Ryu-Takayanagi formula.

5.1.2 Defining a metric for the MERA geometry

Taking seriously the idea that entanglement entropy corresponds to area (length
in 1+1D) in the bulk we can next define a metric for the emergent geometry.
Considering first the coordinate that runs along the lattice, the length of an
interval at constant z is given by x = azn, where az is the lattice spacing at
RG cutoff z and n is the number of sites the curve intersects. Defining a0 = a,
then for a binary MERA network we have az = a2z. Then for constant z the
differential entropy is given by,

dS ≤ log(χ)
2−zdx

a
. (93)

We next consider the scale coordinate z. Starting at the point (x0, z0) the
minimal number of legs crossed to reach (x0, z0 + 1) is either 1 or 2 depending
on the particular x0, this is a consequence of the fact that the MERA network is
not translation invariant. However, the distance is independent of z. Therefore
for constant x we get,

dS ≤ 2 log(χ)dz. (94)

We can now combine these results to obtain,

dS2 ≤ log2(χ)

(
4dz2 +

2−2zdx2

a2

)
, (95)

which after coordinate transform r = a2z, simplifies to,

dS2 ≤ log2(χ)

(
4

ln2(2)

dr2

r2
+
dx2

r2

)
. (96)
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Comparing this with the induced metric on a time slice of AdS3, we can imme-
diately see the similarity,

ds2 = R2

(
dr2

r2
+
dx2

r2

)
. (97)

Firstly, it is evident we must identify R with log(χ), and as (92) suggest this is
a reasonable identification. Secondly, we see that the main discrepancy arises
from the multiplicative factor ∽ 10 in front of the dr2 term, this discrepancy is
consequence of the lack of translation symmetry as mentioned earlier, but also
the fact that our RG scheme is discrete as opposed to continuous. However,
this discrepancy can be tamed slightly by noting that the bulk legs that are
traversed when moving in the radial direction are often the outgoing legs of the
isometries, which will, as a consequence of the nature of the disentanglers, have
lower entropy than other legs. This reduction in entropy in the radial direction
will somewhat suppress the larger multiplicative factor on the dr2 term in the
metric.
Furthermore since we are equating the length of a curve with the total entropy

of legs intersected, what we actually have is a measure of distance between the
tiles of the network, which have the legs as their edges and tensors as their
vertices. In other words the metric is in fact defined on the dual network and
not the tensor network itself, see Fig. 11b.

5.1.3 Some problems

So far we have seen that MERA shows some promising similarities with AdS/CFT.
We have an upper bound on entanglement entropy of boundary subregions that
has the same form as the RT formula, and we have defined a metric for the
bulk that has a hyperbolic geometry similar to spatial slices of anti-de Sitter
spacetimes. However the analogy is clearly not perfect. The most obvious issue
is that in both cases we have an upper bound and not an equality. However,
another issue with the interpretation is the behaviour of entanglement wedges.
As discussed, for any bipartition of the boundary the network correspondingly
decomposes according to (86). The issue is that there is a large bulk region,
corresponding to |Γ⟩, which does not belong in either the entanglement wedge
of A or the entanglement wedge of Ā. This is an issue because in true holog-
raphy we would expect the entanglement wedges of complementary regions on
the boundary to form complementary regions in the bulk5.

Both of these issues can in fact be traced back to the fact that MERA
networks are inherently anisotropic. First of all the existence of the top tensor
in effect selects a prefered centre in the bulk, in true AdS/CFT the centre at
r = 0 is simply a feature of the coordinante system where as in MERA this is a
genuine feature of the network geometry. The second source of this anisotropy
is the fact that the tensors in the network only act as isometries in the radial

5More precisely for a bulk Cauchy slice, ΣB , that contains the extremal surface and asymp-
totes to the boundary slice of interest, Σb = A∪ Ā, then (W(A)∩ΣB)∪ (W(Ā)∩ΣB) = ΣB
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(a)

(b)

Figure 11: Here we have shown a MERA network with peridoic boundary con-
ditions, (a), and it’s dual network, (b), where the nodes in the dual network
correspond to the tiles bounded by the legs of the original network. The red
edges correspond to crossing the outgoing legs of disentanglers and the blue
edges correspond to crossing the outgoing legs of isometries, and we can there-
fore expect the distance along blue legs to be shorter.
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direction. As we will see in the next section HaPPY networks have neither of
these anisotropic qualities and as a result resolve both of the issues discussed.

5.2 HaPPY networks: perfect tensors & error correction

HaPPY networks, named for the initials of the original authors [12], were devised
as a simple tensor network toy-model of holography, that would exhibit the
quantum error correcting properties expected of the bulk to boundary map in
AdS/CFT [10]. As a consequence of its construction it satisfies an RT formula
for the entanglement entropy, but as opposed to MERA this is an equality and
not an upper bound. HaPPY networks are also well suited to not only build
holographic states but build an isometric mapping from a subspace of the bulk
Hilbert space to the Hilbert space of the boundary. The resulting mapping
then exhibits behaviour similar to entanglement wedge reconstruction. We will
now introduce the key ingredient to HaPPY networks before outlining the full
construction.

5.2.1 Perfect tensors

As we discussed earlier one of the issues with holographic MERA is that the
tensors in the network only act as isometries in the radial direction, so if we could
restrict to tensors that act as isometries in any direct, i.e. for any bipartition of
its legs, then this issue would be resolved. It is exactly this quality that makes
perfect tensors, so called ”perfect”.

Definition 6. A perfect tensor, T , is a tensor of even order which for any
bipartition of its indices is proportional to an isometry from the smaller set of
indices to the larger set of indices.

Perfect tensors are actually based on a similar idea put forward by the quan-
tum information theory community a few years prior. With the goal of finding
classes of quantum states that would allow for improved versions of quantum
teleportation [64], absolutely maximally entangled (AME) states were intro-
duced [65]. These are multipartite states for which there is maximal entangle-
ment for any bipartition of the state. Under the Choi–Jamio lkowski isomor-
phism Eq. (22) theses states are then in one-to-one correspondence with perfect
tensors. A sufficient condition for a tensor to be perfect, is that for every bipar-
tition of the indices, such that both sets are equal in size, the tensor acts as a
unitary between the two sets of indices.

5.2.2 Construction of the network

The other issue with holographic MERA was that the existence of the top
tensor induces a preferred centre. HaPPY networks avoid this issue by using a
network structure that has a higher degree of symmetry. Namely, the network
structure is informed by some uniform tiling of the hyperbolic plane (equal
time slice of AdS3). A perfect tensor is then placed on each tile and legs are
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Figure 12: Examples of two possible contractions of the perfect tensor, T , with
its conjugate are shown. In both cases the result is proportional to the identity,
showing that T is indeed proportional to an isometry for both partitions. Fur-
thermore interpreting T as a state then the figures correspond to partial traces
resulting in reduced density matrices proportional to the identity, and so T is
indeed an AME state.

contracted between tensors whose tiles share an edge. By construction this
network will be invariant under a change of centre due to the isomorphisms
of the tiling. Obviously, any such tiling of hyperbolic space necessarily has an
infinite number of tiles. Practically however, we cannot deal with an infinite
tensor network so the network is terminated after a certain amount of layers.
This can be understood as analogous to an RG cutoff, it’s worth noting that
this cutoff will break this centre invariance we just invoked. However, HaPPY
networks restore this invariance in the infinite limit, whereas MERA necessarily
has a centre even in the infinite limit.

To give an example of this general construction, we can inscribe a hexagonal
tiling on the hyperbolic plane and then place a six-legged perfect tensor on each
tile, as shown in Fig. 13. Such a network will then produce (up to normalization)
a state at the boundary, |Ψb⟩. With the network constructed lets now inspect
some of it’s holographic properties

5.2.3 Ryu-Takayanagi in HaPPY states

In calculating the entanglement entropy of a subregion in MERA we were able
to use concepts like the causal past and domain of dependence in the network.
However these concepts are a consequence of the directionality of MERA, and
since we have done away with this in HaPPY, we will require a different ap-
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Figure 13: Here we have a HaPPY network based on a hexagonal tiling. Figure
taken from [12].

proach. The approach will similarly take advantage of the fact that the entan-
glement entropy between two regions is invariant under local isometries.

As usual we bipartition the boundary legs into two regions A and Ā. We
then select a tensor that has at least half of its legs uncontracted and in A.
We then contract the legs in A with the conjugate tensor. Because of the
perfect propert this produces the identity, and so we have effectively removed
the tensor from the network. This results in a new boundary subregion A′ for
which ∂A′ = ∂A but now extends into the bulk, including the legs that have
now become uncontracted by the removal of the tensor. We then search for a
new tensor to remove, the critera now being that it has at least half of its legs
uncontracted and in A′. Again we contract with its conjugate to remove the
tensor. We continue this process until no more tensors can be removed in this
manner. The resulting surface is labelled γA, and is exactly the minimal bulk
surface homologous to A. See Fig. 14

We can now apply the same process to the subregion, Ā, and we will find
that the resulting minimal surface is exactly that obtained from starting on A.
What this is telling us is that the HaPPY network can be decomposed according
to,

|Ψb⟩ =
(
D(A) ⊗D(Ā)

)|γA|⊗
j=1

∣∣Φ+
j

〉 ,

∣∣Φ+
j

〉
=

1
√
χ

χ∑
i=1

|i⟩γj ⊗ |i⟩γ̄j ∈ Hγj ⊗Hγ̄j ,

D(A) :
⊗
j

Hγj → HA, D(Ā) :
⊗
j

Hγ̄j → HĀ,

(98)
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Figure 14: We show here various intermidate steps in obtaining the RT surface.
a) Shows the partiton of the boundary into A and Ā and the minimal surface,
γA, already inscribed for clarity. b) - c) Show intermidiate steps in the process,
where some tensors have been removed as we describe and the new surfaces A′

and A′′ have been marked in blue. d) The point has been reached where tensors
can no longer be removed from the A side and we see that the resulting surface
corresponds exactly to γA. The same process is then applied to Ā.
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where the D(A) and D(Ā) isometries are formed from the composition of the
tensors we removed from the A and Ā side respectively. The appearance of the
maximally entangled states is a consequence of the fact that all tensors in the
network have been absored into eitherA or Ā so all that is left is the factors of the
identity that connect D(A) to D(Ā). However under the Choi–Jamio lkowski iso-
morphism the identity is equivalent to a maximmally entangled state. Therefore
by the invariance of entropy under isometries we know that the entanglement
entropy of A is exactly the entanglement entropy of the maximally entangled
states defined on γA, and so,

S(A) = |γA| log(χ). (99)

Therefore we have shown that HaPPY states indeed satisfy a Ryu-Takayanagi
equation for the entanglement entropy. Furthermore in comparison to MERA,
where for a bipartition of the boundary we could decompose the bulk according
to Eq.(86), where a large region of the bulk is unaccounted for by either entan-
glement wedge. Here we have that the union of the complementary wedges is
the entire bulk as we would expect in true AdS/CFT.

5.2.4 HaPPY codes: bulk to boundary maps

In the original paper [12], these HaPPY networks were used not just to build a
single boundary state but also to construct isometric maps from the bulk Hilbert
space to the boundary Hilbert space, in such a manner that the quantum error
correcting properties of holography are exhibited. To build these HaPPY codes,
we must leave some legs uncontracted, not just on the boundary but also in the
bulk. The resulting tensor network is understood not as a state on all the
uncontracted legs but as a map from the bulk legs to the boundary legs. We
will now outline the construction of such a map.

For brevity we shall construct the map using the same six-legged perfect
tensors as before. The difference being that we now use a pentagonal tiling
of the hyperboic plane and as before place a tensor on each tile, contracting
between neighbouring tiles. As a result we will now have a free leg in the bulk
for each tensor in the network, see Fig. 15 These legs are then understood as
the bulk Hilbert space, HB . We then have that the network defines an isometry,

M : HB → Hb, (100)

such that for a certain bulk state, |ΨB⟩, a boundary state can be obtain,

|Ψb⟩ = M|ΨB⟩ . (101)

Furthermore, the Ryu-Takayanagi formula satisfied by the HaPPY state con-
struction now generalises to a QES formula. This can be readily seen if we again
decompose the network into the two subnetworks defined by the minimal surface
for some bipartition of the boundary. Whereas before the subnetworks defined
isometries from the surface state to the boundary, we now have the isometies,

D(A) : Hγ ⊗HW → HA,

D(Ā) : Hγ̄ ⊗HW̄ → HĀ,
(102)
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Figure 15: Here we have the HaPPY map, the red dots are understood to be
the free bulk legs. Figure taken from [12]

where HW is the Hilbert space of the bulk legs in the entanglement wedge of A
and similarly for Ā. The full bulk Hilbert space is then, HB = HW ⊗HW̄ . It
follows then that we can equivalently write the boundary state as,

|Ψb⟩ = (D(A) ⊗D(Ā))
(
|Φ⟩γγ̄ ⊗ |ΨB⟩WW̄

)
, (103)

where |Φ⟩ is understood to be the collection of maximally entangled states that
straddle the minimal surface. The reduced density matrix on A is then given
by,

ρA = D(A) (Trγ̄ [|Φ⟩ ⟨Φ|] ⊗ TrW̄ [|ΨB⟩ ⟨ΨB |])D†(A), (104)

from which it follows the entanglement entropy of A is,

S(A) = |γA| log(χ) + S(W), (105)

where S(W) is the entanglement entropy of the bulk state between the two
wedges.

It is clear that in these HaPPY codes the bulk Hilbert space will always be
of smaller dimension than the boundary Hilbert space. We therefore are only
able to map bulk states to a subspace of the boundary Hilbert space, namely
the image of the HaPPY code. This may seem a disadvantage of the map
but in fact it is a key feature. It is exactly this quality that allows for the
quantum error correcting properties of the network, properties that are now
understood to be cruicial to understanding the AdS/CFT correspondence [10].
Indeed locality in the bulk can only be satisfied within certain code subspaces
of the theory. Furthermore by the fact that a local bulk operator can exist in
the entanglement wedge of many different regions simultaneously, this implies
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there are many different boundary operators that correspond to the same bulk
operator. This redundancy of the boundary representation would be paradoxical
if we did not restrict the bulk to a code subspace. Even the ability to equate
boundary entropy with a bulk area is a consequence of the code subspace and
in fact a property that is present in many QECCs even outside of holography
[66].

5.2.5 Some problems

It seems that HaPPY has overcome all of the issues MERA has when interpreted
holographically. We have shown that the Ryu-Takayanagi formula is satisfied
exactly, and that the entanglement wedges of complementary regions cover the
untire bulk. Furthermore, they easily generalize to maps from the bulk to the
boundary, satisfying now a QES like equation and exhibiting quantum error
correcting properties. However, these nice qualities have not come for free, and
in fact the price ultimately means that we cannot directly use HaPPY networks
in our goal of simulating bulk dynamics.

First of all, as we have shown, when computing the entanglement entropy of
a subregion the network can be restructured as a pair of isometries acting on a
collection of maximally entangled states. It is exactly this property that causes
the RT bound to be saturated. However, this also means that the entanglement
spectrum for any region is completely flat, meaning all the reduced density
matrix eigenvalues are the same or equivalently all Renyi entropies are the same.
Any quantum system that has a true holographic dual cannot possibly have such
simple entanglement structure [67]. The second problem, and the more damning
of the two for our purposes, is that HaPPY networks do not form a suitable
ansatz for any known physical system, least of all CFTs. Already from the first
issue we know they are not capable of reproducing the entanglement structure of
CFT states, but more importantly we are not capable of associating a boundary
Hamiltonian with the network, as we do in MERA. If we could somehow define a
suitable boundary Hamiltonian then one can imagine using the HaPPY code to
map this to a bulk Hamiltonian and from there simulate the bulk dynamics. It
seems then that we have two different ends of the spectrum here. On one hand
we have a network that accurately approximates ground states of CFTs while
also crudely exhibiting holographic properties, and on the other hand we have a
network that satisfies very clean and exact holographic properties but does not
have a real physical system associated with it. Our goal then in the next section
and the ultimate goal of this thesis, is to find a compromise between these two
extremes.

6 Tackling the dynamics problem

We now turn to the problem of trying to simulate bulk dynamics using holo-
graphic tensor networks. The idea of simulating real time evolution in tensor
networks is not a new one, and in fact efficient algorithms for MPS states, known
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Figure 16: Here we have represented an isometry (red) as a unitary (green) with
a state (blue) contracted on one leg

as time-evolving block decimation (TEBD) have existed for two decades [68].
Further still, an algorithm for time evolution of MERA was developed a few
years later [69]. However, these algorithms were designed for the purposes of
a condensed matter physicist, where only the output state is of interest. They
pay no heed to what is happening in the bulk. As we will see, there are a
few barriers to developing a concise interpretation of the bulk in a dynamical
context. We will explore in this section two possible ways of interpreting bulk
dynamics in tensor networks and discuss the strengths and weaknesses of both
attempts.

6.1 MERA as a bulk to boundary map

As we saw in the previous section HaPPY codes provide a very clear inter-
pretation of what is happening in the bulk. Within a certain subspace of the
boundary theory we have a precise map between bulk states and boundary
states. However, we cannot simulate dynamics as there is no Hamiltonian asso-
ciated to the system. A possible resolution to this is to modify MERA, which
can be assigned a Hamiltonian, such that it too forms a bulk to boundary map.
The key to this construction is the realization that any isometry can in fact be
represented as a unitary with a quantum state contracted with one of its legs.
This is straight forward to show. For some unitary, U : HA ⊗HB → HA ⊗HB

and state |ψ⟩ ∈ HA, we can construct an isometry as follows,

W = U (|ψ⟩ ⊗ IB) ,

W : HB → HA ⊗HB .
(106)

See Fig. 16 for the graphical representation. To show that W is indeed an
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Figure 17: Here we have a MERA map network with a periodic boundary. Each
tensor in the network is unitary and the purple dots represent free legs pointing
out of the page, these form the bulk Hilbert space.

isometry we simply contract with its conjugate,

W †W = (⟨ψ| ⊗ IB)U†U (|ψ⟩ ⊗ IB) ,

= ⟨ψ|ψ⟩ IB ,
= IB .

(107)

For some choice of |ψ⟩ we can construct any isometry W : HB → HA ⊗ HB

with an appropriate choice of U .
Using this idea, we can then replace every isometry in the original MERA

with a unitary where the extra leg has some state contracted with it. If we
also replace the two legged top tensor, which is a quantum state, with a 2 to
2 unitary then every tensor in the network is now a unitary and so we can
reinterpret the network as a unitary mapping from the bulk Hilbert space to
the boundary Hilbert space, where we interpret the states contracted with the
extra legs of the top tensor and isometries as forming the bulk state. Therefore,
by the unitarity of the network we can now, for a particular MERA network,
assign a bulk state to every boundary state. Denoting this unitary network
(without the contraction with bulk states) as M, then

M : HB → Hb,

M†M = MM† = I.
(108)

where HB and Hb are the bulk and boundary Hilbert spaces respectively. Such
a network can be seen in Fig. 17. It should be clear, that the original MERA is
in fact a special case of the MERA map where the bulk state is fully seperable,
i.e. has no entanglement. We will now briefly discuss what this modification
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Figure 18: The MERA map is decomposed according to the boundary bipar-
tition A and Ā. The green subnetwork, Γ(A), maps the W3 bulk subregion to
the surfaces γ1 and γ2. The red and blue subnetworks, D(A) and D(Ā), map
W1 and γ1 to A, and W2 and γ2 to Ā respectively.

has done to our RT bound of the original MERA, and then move on to discuss
using this network to simulate dynamics.

6.1.1 Entanglement entropy in the MERA map

For a particular bipartition of the boundary A and Ā, we decompose the net-
work, as with the oringal MERA, into Γ(A), D(A) and D(Ā). However, these
subnetworks now have different roles. They now all form unitary subnetworks.
Namely,

Γ(A) : HW3
→ Hγ1 ⊗Hγ2 ,

D(A) : HW1
⊗Hγ1 → HA,

D(Ā) : HW2
⊗Hγ2 → HĀ,

(109)

where HW1
, HW2

and HW3
are the Hilbert spaces of the bulk legs attached

to D(A), D(Ā) and Γ(A) respectively, and so HW1 ⊗ HW2 ⊗ HW3 = HB . As
before, Hγ1 and Hγ2 are to be understood as the Hilbert spaces of the contracted
legs that connect Γ(A) to D(A) and D(Ā) respectively. These subnetworks and
associated Hilbert spaces are all represented in Fig. 18. It will also be useful to
note that,

D(A) ×γ1 Γ(A) = C(A) : HW̄2
→ HA ⊗Hγ2 ,

D(Ā) ×γ2 Γ(A) = C(Ā) : HW̄1
→ HĀ ⊗Hγ1 ,

(110)
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where both C’s also form unitary subnetworks, and HW̄1
and HW̄2

are shorthand
for HW2 ⊗ HW3 and HW1 ⊗ HW3 respectively. For a particular bulk state,
|ΨB⟩ ∈ HB , we then obtain the boundary state by,

|Ψb⟩ =
(
IA ⊗D(Ā)

)
(IW2

⊗ C(A)) |ΨB⟩ ,
= (IĀ ⊗D(A))

(
IW1

⊗ C(Ā)
)
|ΨB⟩ .

(111)

In obtaining our modified RT bound it will be useful to calculate both ρA and
ρĀ, which by purity of the bulk state will have the same entropy. Starting with
ρA we get,

ρA = TrĀ
[(
IA ⊗D(Ā)

)
(IW2

⊗ C(A)) |ΨB⟩ ⟨ΨB |
(
IW2

⊗ C(A)†
) (
IA ⊗D(Ā)†

)]
,

= Trγ2W2

[
(IW2

⊗ C(A)) |ΨB⟩ ⟨ΨB |
(
IW2

⊗ C(A)†
)]
,

= Trγ2W2
[|ΦA⟩ ⟨ΦA|] ,

(112)

in the second line we used the cyclic property of the trace and in the second
line we define (IW2

⊗ C(A)) |ΨB⟩ = |ΦA⟩ ∈ HAγ2W2
. Similarly for ρĀ we get,

ρĀ = Trγ1W1
[|ΦĀ⟩ ⟨ΦĀ|] , (113)

where
(
IW1 ⊗ C(Ā)

)
|ΨB⟩ = |ΦĀ⟩ ∈ HĀγ1W1

. We can now use the strong sub-
additivity of the von Neumann entropy to form our RT bound,

S(Aγ2W2) + S(A) ≤ S(Aγ2) + S(AW2),

we are using a shorthand here where, for example, S(Aγ2) denotes the entropy
of the reduced density matrix of |Φ⟩A on HA ⊗Hγ2 . Now, by purity of |ΦA⟩ it
follows that,

S(Aγ2W2) = 0,

S(Aγ2) = S(W2),

S(AW2) = S(γ2).

Therefore strong subadditvity tells us that,

S(A) ≤ S(γ2) + S(W2) ≤ |γ2| log(χ) + S(W2), (114)

where the second inequality follows from the maximal value of S(γ2). Similarly
for |ΦĀ⟩, we get,

S(Ā) ≤ |γ1| log(χ) + S(W1). (115)

However, we know that S(A) and S(Ā) must be equal so we arrive at,

S(A) ≤ min (|γ1| log(χ) + S(W1), |γ2| log(χ) + S(W2)) . (116)

It is clear to see then that the RT-like bound on entanglement entropy from the
original MERA has now generalized to a QES-like bound in the MERA map.
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Furthermore, it is possible to carefully select the bulk state such that the QES
formula is saturated. Namely, if a state satisfies,

Trγmax

[
Γ(A)ρW3Γ(A)†

]
∝ I, (117)

where ρW3 is the bulk reduced density matrix on W3 and γmax is the larger of
the two γ curves, then the QES formula will be saturated. We can understand
such states as being somewhat analagous to the fixed-area states of [70]. Note
that such a state is only guaranteed to saturate the bound for the bipartition
A and Ā.

6.1.2 Bulk dynamics with the MERA map

As we mentioned above, the MERA map when the bulk state is fully separable
is equivalent to the original MERA tensor network. Without loss of generality
we can then choose our inital bulk state to be, |0⟩⊗n. Then for the boundary
Hamiltonian we are intereseted in, we can apply the usual variational algorithms
of [63] to approximate the ground state of our Hamiltonian. The end product
will then be a unitary map that, to a good approximation, maps the bulk state,
|0⟩⊗n, to the ground state of the boundary Hamiltonian. We can then associate,
|0⟩⊗n, with the bulk vacuum. Since we chose the bulk state ourselves this may
seem like circular logic, however it really just amounts to a choice of basis on the
Hilbert space of each bulk leg. For example we could equivalently have started
with the bulk state,

⊗n
i=1 |ψi⟩, but under a local change of basis this state can

be brought to |0⟩⊗n. Note however, that this assignment does assume that the
bulk vacuum state has negligible entanglement, we will return to discussing the
validity of this assumption shortly.

The optimist might assume that we have already achieved our goal. We
have a bulk to boundary map for some critical system, that provides a hy-
perbolic emergent geometry and exhibits at least approximately some of the
entanglement properties of holographic systems. Using the map we can send
the boundary Hamiltonian to a bulk Hamiltonian and from there simulate the
bulk dynamics. However, there is an issue hiding in the details. The problem
is that our choice of the unitaries that replaced the isometries of the original
MERA is underconstrained. To show this we assume that W can be equivalently
represented as,

W = U(|0⟩ ⊗ I),

= V (|0⟩ ⊗ I),
(118)

where U and V are unitary. V can then be written in terms of U as, V = UT ,
for some unitary T . Substituting we get,

U(|0⟩ ⊗ I) = UT (|0⟩ ⊗ I),

=⇒ (|0⟩ ⊗ I) = T (|0⟩ ⊗ I).
(119)

It is then straight forward to show that any T of the form,

T = IH0
⊕ T̃H⊥ , (120)
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satisfies this equation, where H0 = span{|0⟩ ⊗ |j⟩ |∀j} and T̃H⊥ is a unitary
acting on H⊥, the orthogonal complement of H0. Therefore the U ’s we obtain
from the optimization algorithm, can be replaced with any unitary V = UT ,
with T satisfying Eq. (120), and we will still have a bulk to boundary map that
sends |0⟩⊗n to the ground state. Crucially however, these networks will act very
differently on the rest of our Hilbert space. Therefore the bulk Hamiltonian we
obtain by the map is not unique. This redundancy could be interpreted as a
fundamental flaw in our construction or more optimistically a gauge symmetry of
the bulk theory, perhaps somehow reflecting diffeomorphism invariance. Either
way if we wish obtain a clear interpretation of the bulk we need a way to make
a canonical choice of T for each isometry, or in other words fix the gauge.
Unfortunately we have not been able to find a sensible way of doing this.

In [20], MERA was similarly used as a bulk to boundary map. The approach
used here to choose the tensors in the network is indeed constraining enough
that there is no redundancy in the choice of tensors. However this method is
dependent on first obtaining the boundary ground state exactly by diagonaliza-
tion. Obviously then this approach is not scalable and somewhat defeats the
purpose of tensor networks.

6.1.3 Closing remarks

Clearly this approach could be quite promising provided we can somehow fix
the gauge in the bulk theory. Let’s assume for a moment that this has been
achieved so that we can explore some features of such a map.

Bulk entanglement: N , χ and GN

In the construction of the map we assumed that the bulk vacuum state could be
assumed to have negligible entanglement. This seems like an unusual assump-
tion. However, as we know from our study of extremal surfaces in holography,
the leading term in the expression for entanglement entropy at large N is given
by the area of the extremal surface, this is an O(N2) contribution. The contri-
bution of the bulk entanglement is only a O(N0) correction. Therefore we can
expect that the fully separable bulk vacuum is a good approximation for large
N theories. Somewhat analogously, we know that in the original MERA, the
larger the bond dimension χ the better the approximation of the ground state.
Since we know that the original MERA is equivalent to the MERA map with
a fully separable bulk state, then it follows that large χ MERA maps are able
to better approximate the boundary ground state with a fully separable bulk
state. In this sense the large χ limit behaves similarly to the large N limit.
Furthermore we know that GN ∼ 1

N2 and in all our RT formulas log(χ) has
played the role of 1

4GN
, so we can loosely say log(χ) ∼ N2. If we also con-

sider the fact that increasing χ requires some transitional layers that increase
the local Hilbert space dimension this identification seems even more plausible.
Essentially large χ networks can be understood as geometrizing more of the
entanglement of the boundary, while networks with smaller χ geometrize some
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of the entanglement while leaving some to be interpreted as the entanglement of
bulk fields. In this sense there doesn’t seem to be a clear prescription for which
part of the entanglement structure is geometric in nature and which isn’t.

Bulk locality

We lastly comment on whether we can expect the bulk Hamiltonian that we
obtain to be local. In fact, it is unfortunately the case that in general we will
obtain a highly non local Hamiltonian. For example if our boundary Hamilto-
nian is composed of 2-local terms, e.g. σx ⊗ σx + I ⊗ σz in the critical Ising
model, then the corresponding term in the bulk will have support on the en-
tire bulk region defined by C(h). Where h is the 2 site boundary region that
the local term is supported on. We will then obtain for every local boundary
term, an operator that extends from the boundary all the way to the top tensor
with a width upper bounded by 3-bulk sites (in binary MERA). We can maybe
hope that in the summation of these terms the non-locality will cancel out but
there is no guarantee of this being the case. In [20] they found some evidence
that locality in the bulk is imposed dynamically, but their analysis was for an
Ising model boundary theory that is far from the critical point so whether the
holographic interpretation is valid is unclear. It is also possibility, that for a
particular boundary Hamiltonian there is a choice of T in our isometry to uni-
tary transformation that suppresses the nonlocal behaviour. However, even if
said T exists there is no clear way in which it could be determined.

6.2 Bulk dynamics from bond matrices

The second attempt at obtaining bulk dynamics from MERA will be built on
the original MERA network, i.e. no bulk legs. The prespective here will be to
interpret the manner in which the tensors themselves evolve in time as encoding
the bulk dynamics, as opposed to the previous attempt where the tensors are
held fixed. We will however, once again run into the problem of gauge fixing
as we did in the previous attempt. However, the gauge freedom here is of a
different nature, and we are able to provide a procedure for fixing the gauge.

6.2.1 Gauge freedom in tensor networks

The gauge freedom we are dealing it with here is actually a feature of any
tensor network. It arises from the fact that the insertion of the identity on
any contracted leg will obviously leave the network unchanged. However, if this
identity is then decomposed into some matrix X and it’s inverse X−1 we can
then absorb these two factors into the definition of tensors attached to the leg.

56



Figure 19: Here we have the graphical representation of the gauge freedom
demonstrated in Eq. (121)

This can be illustrated with the following simple example,

T ab = Uac V
c
b ,

= Uac δ
c
dV

d
b ,

= UacX
c
e(X−1)edV

d
b ,

= Ũae Ṽ
e
b ,

(121)

where in the last line we define Ũae = UacX
c
e and Ṽ eb = (X−1)edV

d
b . This

procedure is also outlined in the graphical representation in Fig. 19. The output
of this small tensor network is then unchanged for such a transformation. Since
this is valid for any invertable matrix X, and in larger tensor networks a similar
transformation can be applied to every contracted leg, there is clearly a large
amount of gauge freedom in all tensor networks. If then, we want to somehow
interpret the bulk dynamics as being encoded in the way the tensors evolve in
time we had better find a way to fix this gauge freedom. We will now present
two methods to do so for MERA networks.

6.2.2 Gauge fixing MERA

To begin our gauge fixing procedure we need to introduce the bond density
matrix, to do this it will useful to consider the sequence states defined by a
MERA, where the states in the sequence correspond to applying more and more
layers of isometris and disentanglers to the top tensor, i.e. for MERA network
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M we obtain

M → {|ψ0⟩ , |ψ1⟩ , |ψ2⟩ , |ψ3⟩ . . . },
|ψ1⟩ = W1 |ψ0⟩ ,
|ψ2⟩ = U1 |ψ1⟩ ,
|ψ3⟩ = W2 |ψ2⟩ ,
etc.

where |ψ0⟩ corresponds to the top tensor and Wi is the tensor defined by the
tensor product of all isometies in the ith layer, and similarly for Ui and the
disentanglers. With this in hand we can now define the bond density matrix.

Definition 7. For a some contracted leg, l, in a MERA network, M, there is
a unique state, |ψ⟩, in the sequence of states defined by M such that l is free.
We then define the bond density matrix of leg l as,

ρl = Trl̄ [|ψ⟩ ⟨ψ|] ,

where we have taken the partial trace over all other legs in |ψ⟩.

From here we have two options for how to fix the gauge. The first we
will present has the advantage of maintaining the unitarity of the individual
tensors in the network. Since this quality is essential for the efficient calculation
of expectation values this is obviously desirable. However, this choice doesn’t
really tell us anything about the emergent geometry. The second choice however,
will break unitarity but will allow for a more precise interpretation of the bulk
geomtry than we have seen so far.

Diagonal gauge The diagonal gauge is defined as the gauge choice in which
the bond density matrix on every leg is diagonalized. We start then by ob-
taining the bond density matrix for a leg as described in Def. 7, and then
eigendecompose the matrix,

ρl = Trl̄ [|ψ⟩ ⟨ψ|]

= ulDlu
†
l ,

(122)

from which it is straight forward to diagonalize,

Dl = Trl̄

[
(u†1 ⊗ Il̄) |ψ⟩ ⟨ψ| (u1 ⊗ Il̄)

]
. (123)

So we see that to diagonalize the bond density matrix we must absorb u†l into
the tensor attached to the leg on end the towards the centre of the network,
and then to prevent changing the state on the boundary we must also absorb
ul into the tensor attached to the leg on the boundary pointing end. Apply this
same process to every contracted leg in the network we will have then entirely
fixed the gauge freedom. However as we mentioned this has not provided us
with any new insights into the holographic properties of the network, other than
what has already been established in section 5. We turn now then to the other
option.
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Figure 20: a) A periodic MERA network with the centreless gauge applied,
where the blue circles are the bond matrices. b) The isometric flow has been
visualized for a particular bond matrix. The pink region is globally an isometry
from the shown bond matrix to the other legs at the same depth. The pink lines
then indicate the flow

Centreless gauge The centreless gauge follows directly from the diagonal
gauge. However, in applying this gauge we will not only alter the tensors them-
selves but also change the structure of the network itself. We begin with a
MERA network, M, that has already been put in the diagonal gauge, where
the sequence of states are now such that all 1-site density matrices are diagonal.
We then start by selecting a leg l, for which we also have the state, |ψ⟩, from
the sequence, which is the state such that l is an open leg. We then Schmidt
decompose |ψ⟩ between l and l̄,

|ψ⟩ =
∑
i

si |i⟩l |ei⟩l̄ , (124)

where we see that l is indeed diagonalized, and the |ei⟩ are orthonormal. Note
that in applying the diagonal gauge we already obtained the singular values si
since they are simply the square root of the eignvalues of ρl. We now define
Sl as the diagonal matrix of singular values, (S2

l = Dl). If the inverse of this
matrix is then applied to the state we will obtain an unnormalized maximally
entangled state,

(S−1
l ⊗ Il̄) |ψ⟩ =

∑
i

|i⟩l |ei⟩l̄ . (125)

However, we know that under the Choi-Jamio lkowski isomorphism this is equiv-
alent to an isometry from l to l̄

Vψ =
∑
i

|ei⟩l̄ ⟨i|l . (126)

We will return to this point in a moment as first we obviously need to insert
a factor of Sl so that the output of the network is not effected. However this
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time, instead of absorbing it into the definition of the other tensor on the leg
we will simply leave it on the leg as a bond matrix. We now also note that this
bond matrix is a quantum state under the Choi-Jamio lkowski isomorphism,

Sl =
∑
i

si |i⟩ ⟨i| ,

|Sl⟩ =
∑
i

si |i⟩ |i⟩ .
(127)

We see now why this is the centreless gauge, since after we apply this same
process to every contracted leg except those attached to the top tensor, we will
have a top tensor like state on every leg, and further still as a consequence of
the fact that,

(I ⊗ Vψ |Sl⟩) = |ψ⟩ , (128)

the global isometric property of the network can be shown to flow away from
any bond matrix to the boundary, no long exclusively the top tensor. It is
important to note that none of the individual tensors will be isometric as we
have absorbed non-unitary matrices into their definition. It is only the entire
subnetwork that defines Vψ that acts isometrically from l to l̄, and similarly for
each other leg in the network. A graphical representation of a MERA network
in the centreless gauge as well as a visualization of the isometric flow can be
seen in Fig. 20. The procedure here can be seen as a special case of the more
general method of gauge fixing networks with closed loops provided in [71].

6.2.3 Emergent geometry in the centreless gauge

We mentioned that at the cost of breaking unitarity in the centreless gauge we
would obtain a better understanding of the emergent bulk geometry. We now
turn our attention to this property.

As a consequence of the fact that we have extracted the singular values of
each bond onto the leg itself, we can now easily associate an entropy with each
leg in the network. Since S2

l = Dl, and Dl is simply the eigenvalues of the bond
density matrix, the entropy of the bond density matrix is as follows,

S(ρl) = Tr
[
−S2

l log
(
S2
l

)]
. (129)

Similar to how in section 5 we provided an upper bound on the entropy of a
bulk curve and then equated this to the length of the curve we can now provide
a similar but tighter bound on the entropy of a curve in the centreless gauge.
Namely for a bulk curve γ we have, as a consequence of subadditivity,

S(γ) ≤
∑
l∈γ

Sl (130)

where we are summing over all the legs that γ intersects, Sl here is a short
hand for S(ρl). First, we not that this is clearly a tighter bound as our previous
bound was just the maximum possible entropy. Second, this bound is actually
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state dependent where as the original was just a consequence of the network
structure. Finally we note the structural similarity between this equation and
the equation for curve length in relativity,∑

l∈γ

Sl ≈
∫
γ

ds. (131)

We can then postulate that the bond matrices in the centreless gauge approx-
imately define a metric like structure on the bulk that will change as we time
evolve the boundary state. We then propose the following method for extracting
bulk dynamics.

• For some critical Hamiltonian of the boundary system we apply the usual
variational algorithm [63] to obtain the ground state.

• We then perturb the system by changing one of the tensors in the network
to some other isometry or unitary.

• We apply the centreless gauge to the resulting network and record the
bond entropies.

• Using the algorithm of [69] we then time evolve the boundary state.

• At each time increment we again apply the centreless gauge and record
bond entropies.

The hope then is that from the data generated by this method, we can determine
some behaviour that is reminisent of how the induced metric on a sequence of
timeslices that foliate an AdS spacetime would evolve.

7 Conclusion

In this thesis, we have studied the prospects of using holographic tensor net-
works as models for bulk dynamics. We explored the strengths and weaknesses
of both MERA and HaPPY networks in achieving this goal. We found that
MERA networks have the advantage of having an associated Hamiltonian, al-
lowing for the simulation of time evolution. However, holographic properties are
only approximately satisfied. Counter to this, HaPPY networks exhibit many
holographic properties exactly, but unfortunately are not associated with any
physical system and so cannot be assigned a Hamiltonian. The goal then was
to find a middle ground between these two methods.

We presented two possible approaches. The first is based on a MERA net-
work that has been modified such that it describes a unitary map between the
bulk and boundary Hilbert spaces. Using this map a bulk Hamiltonian can then
be obtained from the Hamiltonian of the boundary. However, we ran into issues
with this attempt as the tensors in the network that posses the bulk legs are un-
derconstrained. This prevented us from obtaining a unique bulk Hamiltonian.
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In future work it may be possible to find a sensible constraint such that the
bulk Hamiltonian is unique. A potential approach to constrain these tensors
is to choose them such that bulk non-locality is maximally suppressed, but the
manner in which this can be achieved is unclear.

In the second approach we again use the MERA network, not as a bulk to
boundary map, but in its original form as an ansatz. In this approach we aimed
to interpret the the bulk dynamics in terms of how the tensors themselves evolve.
We again ran into a problem of the tensors being underconstrained. This was
manifestation of a property inherent to all tensor networks in which there is a
gauge freedom for every contracted leg in the network. However, we were able
to provide a method of fixing this gauge freedom such that the bulk geometry
is more manifest. In this centreless gauge a bond matrix is associated to every
contracted leg, and from these bond matrices an entropy can be obtained, which
the Ryu-Takayanagi proposal tells us is dual to a bulk area, or length in the case
of 1+1D boundary. The bond matrices then seem then to provide a metric like
structure in the bulk. We then propose a method that combines the centreless
gauge with the algorithms of [63] and [69] to record how this metric like structure
evolves in time.

There are some interesting open question in this centreless gauge approach.
First, how should we interpret the tensors in the network other than the bond
matrices? In the original MERA these are the isometries and disentanglers, but
our gauge-fixing approach breaks the isometric property of these tensors. It is a
certainty that there is more information about the bulk geometry to be gleaned
from these tensors since the single leg entropies defined by the bond matrices
provide a far from a complete picture of the entanglement structure. However
how to extract this information is unclear. It is also a possibility that the bulk
fields are encoded in these tensors but it is unclear if this notion can be made
precise. Another interesting question is, in what manner and to what degree do
the bond matrices provide a metric like structure? Generating some numerical
data with the method described will likely shed some light on this question, and
perhaps provide some insight into how the association can be made precise.
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