
MSc Research

Evaluating vegetation regeneration rates after drought

Niek Geelen, 6538169

Utrecht University
Department of Physical Geography

The Netherlands
31/01/24

1st Supervisor: Dr. Ir. Niko Wanders
2nd Supervisor: Jennie C. Steyaert



Abstract

Drought events have accelerated and intensified in recent decades. In the 21st century, the
number and duration of severe drought events are expected to increase even further. The impact
on crops and natural vegetation has already become more pronounced over the last years, as crop
yield losses increase and forest fires become more frequent. This creates increasing pressure on
water demand and food security globally. Therefore, it is important to understand not only the
impact of droughts on vegetation but also the regeneration of vegetation in post-drought periods.
In this study, vegetation regeneration rates in Nebraska (United States) are determined using
the Standardized Precipitation Evapotranspiration Index (SPEI) and the Enhanced Vegetation
Index (EVI). The results show that the correlation coefficient between the SPEI and EVI is
generally high for grassland (0.8 - 1.0) and low for cropland (∼ 0.2). The time shift, days
between the two datasets at the highest possible correlation coefficient, is between 75 and 125
days for grassland which is mainly dependent on the local topography which is the main driver
of groundwater flow and therefore hydraulic gradients in the area. Various factors, including the
water table, rooting depth, groundwater recharge delay, recharge area, local depressions filled
with water, as well as soil moisture, contribute to deviations in time shifts and recovery times
within the study area. The average recovery time of grassland is approximately 3.97 months
(121 days), while for cropland it is 3.64 months (111 days). The drought timing is shown to
be important in the recovery time. The later a drought ends in the growing season, the longer
the vegetation regeneration time. Between the drought time or intensity and the vegetation
regeneration time, no significant correlation was found, as soil moisture presumably dominates
the drought recovery time. The results of this study provide insight into the vegetation recovery
time of both grassland and cropland. Understanding these dynamics is crucial for enhancing
large-scale hydrological models, such as PCR-GLOBWB 2.0, by incorporating accurate estimates
of vegetation water demands during post-drought periods. As soil moisture is projected to
decline further in the future, this research highlights the significance of acknowledging extended
periods for drought recovery, thereby contributing to a more comprehensive assessment of the
potential impacts of drought on vegetation regeneration for better sustainable water resource
management.

1



Contents

1 Introduction 3

2 Methods 6
2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Land cover dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 SPEI dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 EVI dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Soil moisture dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Smoothing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The identification of drought events and recovery time . . . . . . . . . . . . . . . 8
2.5 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 11
3.1 Dynamics of time series grassland and cropland . . . . . . . . . . . . . . . . . . . 11
3.2 Drought impact on vegetation greenness . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Impact of drought length and intensity on vegetation regeneration time . . . . . 14
3.4 Effect of drought timing on vegetation regeneration time . . . . . . . . . . . . . . 16

4 Discussion 18
4.1 Drought impact on land cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Spatial patterns of vegetation recovery . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Assess recovery time based on drought separation . . . . . . . . . . . . . . . . . . 22

5 Conclusion 24

6 Appendix 30

2



1 Introduction

Droughts are an unpredictable natural phenomenon that affects many aspects of society and
the environment globally. Due to ongoing climate change and anthropogenic drivers, extreme
weather events, such as droughts and floods, have accelerated and intensified over the last
decades. The number and duration of severe drought events are expected to increase even fur-
ther in the 21st century (Wang et al., 2014). As a result, the percentage of the world exposed
to severe drought events will increase from 5% to 40% (Burke et al., 2006). Severe drought can
have devastating effects, such as significant crop yield losses, an increased risk of forest fires,
exacerbated and intensified land degradation and desertification, and increased competition for
resources.

The impact of droughts on crop production has become more pronounced over the last few
years. A study by Wang et al. (2013) showed that Nepal suffered a severe winter drought in
the years 2008 and 2009, which caused agricultural production to decline by 50%. In the year
2002–2003, India faced one of the worst and most exceptional drought episodes which made the
land incapable of cultivation throughout the year. Whereas 68% (over 600 million) of the people
are dependent upon agriculture in those regions and were therefore severely affected (Dutta
et al., 2015). In Europe, the annual economic losses associated with drought are growing, reach-
ing on average 6.2 billion euros per year during recent decades (Potopová et al., 2016). During
the 2012 drought in the US nearly two-thirds of the country was affected by drought. Drought
conditions were the most severe in the West, Great Plains, and Midwest where most of the
agricultural production in the US occurs. In this year the agricultural losses were estimated at
$30 billion (Rippey, 2015)

In various regions across the globe, food shortages are already occurring due to population
growth. With the impact of droughts, it is expected this issue will be exacerbated. Population
growth and economic development create more pressure on global water demands (Vörösmarty
et al., 2000). In combination with climate change and changing precipitation amounts, water
shortages will occur at more locations in the future which can lead to more frequent droughts
(Trenberth, 2008). These droughts will have a major impact on agriculture which is the primary
source of livelihood in many regions (Li et al., 2009; Lesk et al., 2016). To create sufficient crop
production for population growth irrigation is used. Currently, it is the sector that consumes
most of the renewable water resources (Tsur, 2005; Chirouze et al., 2014). With a better under-
standing of the magnitude and duration of droughts on vegetation growth, large-scale models
such as PCR-GLOBWB 2.0 (Sutanudjaja et al., 2018) can be improved, and better estimations
of potential water shortages can be made. Currently, PCR-GLOBWB 2.0 (Sutanudjaja et al.,
2018) simulates irrigation with generalized equations to ensure crops receive the correct amount
of water under typically climatic conditions. In the case of a drought, the crop dies, and water
is no longer provided to these cells until the next rain event. This simplification is useful in cal-
culating water demand; however, after a drought, vegetation needs time to recover and regrow
resulting in a post-drought period with reduced water demand.

Keyantash and Dracup (2002) defined three types of droughts with slightly different criteria;
meteorological drought which results from precipitation deficits, agricultural drought which is
identified based on total soil moisture deficits, and hydrological drought which is related to a
shortage of streamflow. All these types of droughts occur during a period of insufficient precip-
itation, but agricultural and hydrological droughts also include a shortage of soil moisture to
replace losses by evapotranspiration which is critical for crop growth (Yao et al., 2023). Diverse
vegetation types respond differently to drought. Generally, crops have a shallow root system
which means it is dependent on the top part of the soil for water. Natural vegetation is most of

3



the time deeper rooted and therefore longer connected to the water table causing it to recover
faster from a drought. Generally, insufficient precipitation causes water stress, in combination
with high temperatures this affects plant health and heat stress (Chirouze et al., 2014). The
recovery of vegetation to pre-drought conditions is largely dependent on the drought timing
relative to the growing season. The growing season is important for the evapotranspiration and
thus the soil moisture, which determines whether vegetation recovery occurs within a single or
multiple growing seasons (Li et al., 2023).

Several indices that include different climatic variables, such as precipitation, temperature,
and soil moisture have been developed to indicate droughts globally. The most widely used are
the Palmer Drought Severity Index (PDSI), the Standardized Precipitation Index (SPI), and the
Standardized Precipitation-Evapotranspiration Index (SPEI). The PDSI is developed by Palmer
(1965) and incorporates antecedent and current precipitation, evapotranspiration, and a physi-
cal water balance model. However, a major limitation of the PDSI is that it calculates droughts
on a fixed time scale of ∼ 12 months. This means it cannot accurately analyze meteorological
and agricultural droughts that occur over shorter time scales. The SPI does not have this prob-
lem as it calculates droughts at different time scales only using the precipitation. Therefore,
this drought index can be used for meteorological, agricultural, and hydrological applications.
The SPEI is an advanced version of the SPI, based on a monthly climatic water balance (i.e.,
precipitation minus evapotranspiration) which means both precipitation and temperature vari-
ables are included for calculating droughts at different time scales. As a result, droughts can be
monitored with respect to severity, duration, onset, extent, and expiration (Potop et al., 2012).

In the study of Joo et al. (2017), four plant species (switchgrass, miscanthus, prairie and
maize/soybean) were monitored during the 2012 US drought. The initial response of the species
was different, mainly due to their different rooting depths. However, as drought intensified,
the evapotranspiration rates drastically declined which resulted in a large water deficit. During
and after the drought, vegetation recovery and evapotranspiration lagged associated with the
depleted soil moisture. Evapotranspiration rates vary with water availability and the physiolog-
ical status of plants. During these post-drought periods, evapotranspiration rates will be low in
the beginning and increase as vegetation recovers (Davis et al., 2017). Different factors such as
drought severity, duration and soil moisture are of interest for the ecosystem stability (Schwalm
et al., 2017).

With further global warming and the increase in drought events, it is important to under-
stand not only the impact of droughts on vegetation but also the regeneration of vegetation
in post-drought periods. With the increasing frequency of drought events, regions with longer
vegetation recovery times are more likely to be exposed to new drought events before they are
fully recovered. When ecosystems cannot fully recover they are more susceptible to experience
a gradual loss of vegetation during future droughts and transition into a new equilibrium state
(Xu et al., 2021; Huang et al., 2015). The combined effects of drought severity, duration and the
length of drought recovery have the most impact on the ecosystem health and are responsible
for their transitioning (Jiao et al., 2021; Fathi-Taperasht et al., 2022; Müller and Bahn, 2022;
Yao et al., 2022).

Historically, no research has been done on crop regeneration and there is limited research on
vegetation regeneration after a drought (Anderegg et al., 2015; Schwalm et al., 2017; Yu et al.,
2017; He et al., 2018; Liu et al., 2019; Yao et al., 2022, 2023). With the increasing pressure on
water demand and food security, the regeneration of crops can be vital in estimating crop yields,
subsequent food security, economic output, and water availability globally.

Therefore, the current study aims to analyze vegetation regeneration after droughts with the
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help of a drought and vegetation index. An additional objective of the study was to determine
whether soil moisture impacts vegetation regeneration in the post-drought periods.
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2 Methods

2.1 Study area

The research focuses on Nebraska, a state in the United States with the highest agricultural
receipts and the most irrigated land (14.8 percent of all irrigated cropland in the United States
(USDA, 2022)). It is part of the Great Plains, the region that was severely hit by the 2012
drought (Lal et al., 2012). This drought was caused by the back-to-back La Niña episodes of
2010–11 and 2011–12. The U.S. corn yield was reduced by over 25 percent during this event
(Rippey, 2015). Due to this intense drought, a large range of crop recovery times is expected.

Figure 1 shows the land cover of the study area in 2020. The east of Nebraska predominantly
consists of croplands (95 to 98 °W), primarily featuring cropland rainfed herbaceous cover.
Towards the west (98 to 104 °W), the land cover almost entirely consists of grassland. This is
the region where the Great Plains start and the elevation increases. At 41 °N, the North Platte
River runs from west to east through the study area. Around this river large cropland areas are
present. This is due to the large amount of irrigation wells present in the basin (NeDNR, 2023),
which are mainly placed along the river because of the good accessibility and water quality.

Figure 1: Land cover of Nebraska (Copernicus Climate Change Service, 2019). Land cover
classes in Appendix table 1

2.2 Datasets

Datasets used in this study are carefully selected based on their characteristics and resolution.
For land cover classification, global datasets such as Modis, ESRI LULC (ESA), Global Land
Cover Network (GLC-SHARE) and also the national dataset MRLC (NLCD) were considered.
Even though some had the advantage of a smaller resolution size, the classification was not as
comprehensive as in the ESA CCI LC dataset. Here a separation between irrigated and rainfed
cropland was made, which is considered quite important in this study, therefore the ESA CCI
LC dataset is used in the research.

For drought indices, a broad spectrum of datasets has been developed over the years. The
most common ones are the SPI, SPEI, PDSI and the Palmer Z-index. Both the PDSI and the
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Palmer Z-index have a timescale between 9 and 12 months, while SPI and SPEI are available for
timescales between 1 and 48 months. As vegetation recovery is expected to occur in a few months
after a drought, shorter timescales are expected to be of greater relevance in this analysis. The
SPEI dataset is selected over the SPI due to its enhanced features (section 2.2.2).

The vegetation canopy greenness is available in NDVI, kNDVI and EVI datasets. EVI is the
only dataset with corrections for some atmospheric conditions and canopy background noise.
But is also more sensitive in areas with dense vegetation. Therefore, this is the most suitable
dataset to use in the research.

At a global scale, multiple soil moisture datasets are available from different satellites, e.g.
AMSR2, ASCAT, Sentinel-1, SMAP, SMOS, ESA-CCI, and LSM. These products differ in terms
of spatiotemporal resolution, coverage, and data sources. The ESA-CCI dataset has the largest
temporal availability and is therefore used for the analysis.

All datasets were accessed on 10-07-2023 (July 10, 2023). Due to different temporal avail-
ability, there is chosen to analyze all the data from 2003 to 2020.

2.2.1 Land cover dataset

The global land cover (LC) dataset is released by the European Space Agency (ESA) Climate
Change Initiative (CCI) (Copernicus Climate Change Service, 2019). The ESA CCI land cover
dataset contains 29 consistent global land cover maps on an annual basis from 1992 to 2020,
with a spatial resolution of 300 m. This small spatial resolution and extensive classification on a
global scale have made it attractive to use in this study. The land cover dataset is divided into 22
classes which have been defined using the United Nations Food and Agriculture Organization’s
(UN FAO) Land Cover Classification System (LCCS). The complete legend with land cover
classes is given in Appendix table 1.

2.2.2 SPEI dataset

SPEI (Standardized Precipitation Evaporation Index) is an index representing the degree of
drought obtained by quantifying precipitation, potential evapotranspiration, and temperature.
A positive SPEI indicates wet conditions, and a negative SPEI indicates dry conditions. Most
studies related to drought analysis have used either the Palmer Drought Severity Index (PDSI)
(Palmer, 1965) or the Standardised Precipitation Index (SPI) (McKee et al., 1993). SPEI is a
relatively new drought index formulated based on precipitation and PET (Potential evapotran-
spiration) (Vicente-Serrano et al., 2010). The SPEI is similar to the standardized precipitation
index (SPI), but it includes the role of temperature. This means an increase in water demand
as a result of increasing evapotranspiration rates can be identified by this drought index and
correspond to higher drought intensities. The temporal resolution of this dataset is monthly
and the spatial resolution is 0.5°, data is available from January 1901 to June 2023. SPEI is
available on multiple timescales (1, 3, 6, 12 and 24 months), in this research the 3-month SPEI is
used. The 3-month SPEI is based on the cumulative water deficit or surplus over the preceding
3 months. For this research, it is expected that the hydrological droughts, in combination with
soil moisture conditions which respond to precipitation variances on a relatively short timescale,
show the best signatures. Therefore, the 3-month timescale was chosen for the SPEI data.

2.2.3 EVI dataset

The Enhanced Vegetation Index (EVI) (Didan, 2015) shows the vegetation canopy greenness,
which is a composite property of canopy structure, chlorophyll and leaf area. EVI is developed as
an improvement upon the Normalized Difference Vegetation Index (NDVI), it corrects for some
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atmospheric conditions, takes changes in canopy structure into account and is more sensitive in
areas with dense vegetation. These improvements provide a more accurate and comprehensive
measure of vegetation health and vigor. EVI data is produced on 16-day intervals and with a
spatial resolution of 5.6km. Preprocessed data was available from 2003 to 2021.

2.2.4 Soil moisture dataset

The ESA-CCI soil moisture (SM) (Dorigo et al., 2023) data was developed to provide a long-
term climate data set for evaluating long-term trends. Hydrological and agricultural processes,
runoff generation and drought development are all influenced by soil moisture. In this study, soil
moisture was used to evaluate vegetation sensitivity to soil moisture in post-drought periods.
Hereby, the ACTIVE product, version 08.1 was used, which covers a period from 05-08-1991 to
31-12-2022. The product is representative of the first few centimeters of soil (∼ 0 − 5cm) and
is provided in percent of saturation [%], with a spatial resolution of 0.5°. From the daily soil
moisture data, a monthly average was calculated, this had to do with the processing time of all
daily files.

2.3 Smoothing of data

There is noise present in the time series of SPEI, EVI and SM, to reduce this a smoothing
window was used. In this case, it was decided to use the Hanning window. This is a weighted
average window that is mostly used in signal processing and data analysis. The Hanning window
allocates greater weight to central data points while gradually reducing influence towards the
window boundaries. By using this smoothing there is a refined balance between noise reduction
and the retention of essential signal features. In this research, the length of the Hanning window
was set at 6 months, due to different temporal resolutions the actual window length differs
between the datasets. For example, the length of the smoothing window for SPEI and SM is 6
because the temporal resolution is monthly. While for EVI the length of the smoothing window
is 12, due to the temporal resolution of 16 days.

In the time series of the soil moisture gaps occur, depending on the location. These gaps
can occur when there are no meaningful soil moisture retrievals, for example in areas with dense
vegetation, large fractional coverage of water or ice, strong topography, or extreme desert areas.
When there are no values available the smoothing window brings the time series of the soil
moisture gradually to 0%. These values, although not representative of reality, are unavoidable
in the presence of data gaps. In the study area used in this research, there is no data available
during the winter months (e.g. December, January and February), this is most likely due to
snow coverage.

2.4 The identification of drought events and recovery time

To identify drought events and vegetation recovery the SPEI and EVI were used. To sort all
the data into different vegetation types the LC was used. To prevent any generalization in the
LC data, the datasets of SPEI, EVI and SM were converted to a 300m spatial resolution. The
corresponding data analysis was done pixel by pixel in Python.

First, drought events were identified, droughts were considered to begin when SPEI was
less than -0.5 and end when SPEI was greater than -0.5. Because the SPEI data was monthly
available, an interpolation was performed when the SPEI intersected with the threshold of -
0.5. On top of that, three conditions were set to prevent incorrect data from being used in the
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analysis. I) When there is less than 1 month between two droughts, they are combined into one
drought. Ecosystems cannot recover on such short notice, so in most cases, the first drought
already has a significant impact (Yao et al., 2022). Therefore, they are combined and considered
as one drought. II) Drought events have to last at least 1 month. The temporal resolution of
SPEI is monthly, a drought time of less than 1 month would result in only one data point falling
below the threshold. This leads to inaccurate estimations of drought time, and the drought
event would not last long enough to make a serious impact on the vegetation greenness. III)
The drought has to start and end within the time series. If the time series starts with SPEI
below -0.5 or/and ends below -0.5, the drought is removed. The drought time and intensity can
not be accurately calculated from these drought events and would therefore distort the data of
complete drought events.
Once the droughts were determined, the drought intensity was derived from the SPEI data.
The drought intensity is the minimum value the SPEI reaches during a drought event. This
is done to determine whether not only drought time but also drought intensity correlates with
vegetation recovery time.

Secondly, the corresponding vegetation anomalies in the EVI data are identified. With the
help of the statsmodels.tsa.seasonal.seasonal decompose package in Python, the seasonality is
removed from the EVI data. Hereby the additive model is used, this means the magnitude of
seasonality does not change over time. By entering the period, which should correspond to an
entire seasonal cycle, the package identifies the trend of the seasonal cycles over the entire time
series. In this case, the EVI data has an annual resolution of 23, and therefore the period is set
to 23. The package also filters out the residual noise, to only remain with the trend of the time
series. From this trend, the mean and standard deviation (SD) are calculated. Then the SD is
subtracted from the mean, to visualize negative vegetation anomalies. With this new threshold
(-SD), regular declines in vegetation caused by grazing or harvesting are not counted as negative
vegetation anomalies. Also in this time series, the negative vegetation anomaly was removed
when the start of EVI was below the -SD or/and ended below the -SD. To prevent incomplete
vegetation recovery times from being used in the data analysis.

Thirdly, a coupling between identified droughts and negative vegetation anomalies was made.
The samples with droughts but no negative vegetation anomaly within six months after or one
month before the drought started were removed. Just like samples with negative vegetation
anomalies but no droughts within six months before or one month after the start of the negative
vegetation anomalies were removed. Only samples with drought and a negative vegetation
anomaly within six months after or one month before the start of both, are selected for the
analysis. Figure 2 shows two events where a drought and negative vegetation anomaly match.
These are the 2006 and 2012/2013 drought, the other grey-colored areas in figure 2 have no
matching events and are therefore not included in the analysis. When there a multiple negative
vegetation anomalies within this boundary, the duration of every single anomaly is calculated
and the longest one is selected for the corresponding drought. In the few cases where multiple
droughts correspond to one negative vegetation anomaly within this boundary, the process was
converted and the longest drought was selected.

Lastly, the vegetation regeneration time was calculated, this was done in two different ways.
Within a negative vegetation anomaly, the minimum value and the corresponding date are de-
termined. The vegetation recovery time starts from this ’minimum’ date and ends when the
EVI time series is greater than the -SD. This will be called the ’first method’ and is shown with
the purple arrow in the highlighted section of figure 2. In the ’second method’ the end of the
recovery time remains the same. Only the start is determined differently, the end of a drought
is classified as the beginning of the vegetation recovery period. This method is shown with the
dark green arrow in the highlighted section of figure 2.
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Figure 2: a) SPEI time series, droughts indicated in grey. b) EVI time series, negative
vegetation anomaly indicated in grey. The highlighted section provides a magnified view, with
two arrows indicating the methods used for the calculation of vegetation regeneration time

2.5 Cross-correlation

To analyze how well the SPEI and EVI data match a cross-correlation is carried out. This is
done with the numpy.correlate function. The inputs for this function are the SPEI data and
the deseasonalized EVI data. Because the SPEI data has a different temporal resolution and
is measured at different dates compared to the EVI, it first had to be interpolated to the same
dates. For this interpolation, the unsmoothed SPEI time series is used. This gave some slight,
but no significant, changes in the time series. To correctly smooth the data for this correlation,
the Hanning window length was set to 12 for both the SPEI and EVI time series.

Before the two time series were cross-correlated, they first had to be standardized. By
standardizing these time series all values range between -1 and 1. For this the commonly used
standardization is used:

EVIstandardized =
EVI−Mean

SD× length(EVI)

SPEIstandardized =
SPEI−Mean

SD

Between these two standardized time series the cross-correlation was made. From this cor-
relation the maximum value was extracted, which represents the best possible fit between the
time series. The time between the best possible fit and the original time series is referred to as
’time shift’. So, this represents the number of days to shift the SPEI over the EVI time series
to the best possible fit. Because this applies to the entire time series, it may give a distorted
picture for droughts. Therefore, a correlation is also made for parts of the time series where
droughts were present. The start of this selection is the beginning of the drought (SPEI below
-0.5) and ends when the negative vegetation anomaly ends (above -SD).
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3 Results

3.1 Dynamics of time series grassland and cropland

Figure 3 shows the time series of the drought index and the vegetation greenness for grassland.
During wet periods the EVI goes above the mean and during dry periods it goes below the mean
and even below the -SD threshold when the drought is severe, this shows the EVI is responsive to
the SPEI. The extreme 2012/2013 drought is visible in the SPEI and also causes an immediate
response from the EVI, in which the vegetation greenness goes far below the mean. The 2006
drought causes the EVI to decrease but not below the threshold, after a short wet period the
SPEI decreases to approximately 0. This wet period was not long enough for the vegetation
to recover from the drought, as the EVI went below the threshold in 2007. These vegetation
responses are not included in the analysis as the SPEI does not fall below the threshold but it
shows the frequency of drought periods also has an impact on vegetation greenness. The short
droughts in figure 3 also create a response in the EVI but only to deviate around the mean, so
from this time series only the 2012 drought is used in the analysis.

Figure 3: Time series of SPEI and EVI for grassland at location 40°48’00.0”N 100°27’00.0”W

Figure 4 shows the time series of the drought index and the vegetation greenness for cropland.
For cropland, the EVI also responds to the SPEI, but patterns that cannot be explained by
droughts also arise. The small droughts at the beginning of the time series are not visible at
all in the EVI, most likely due to irrigation. The 2012 drought also appears in this time series
such as the 2006 drought and the aftermath in 2007, which caused the vegetation greenness to
remain below the -SD threshold for a considerable duration. During the winter of 2008/2009,
the EVI was higher than average, while in the winter of 2009/2010 it was suddenly far below
the mean. This trend is absent in the SPEI as no prolonged wet or dry periods occur at this
time. In the study of Fontana et al. (2007) a similar occurrence was observed and linked to the
cultivation of winter crops. The winter crop area fluctuates from one year to another and is
therefore not consistent over the time series. For this area, winter crops were likely cultivated
in 2008/2009, resulting in a high vegetation greenness. Conversely, in 2009/2010, the area was
presumably left bare, resulting in a low vegetation greenness. These vegetation responses in
cropland are not included in the analysis as the SPEI does not fall below the threshold but it
shows that anthropogenic influences change the vegetation greenness in the area. As a result,
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vegetation recovery times may not be uniform across the time series.

Figure 4: Time series of SPEI and EVI for cropland at location 40°36’00.0”N 102°00’00.0”W

3.2 Drought impact on vegetation greenness

The land cover pattern is reflected in the relation between the drought index and the vegetation
greenness, as expected from the time series in section 3.1. The correlation values for the best fit
are shown in figure 5a. The correlation coefficient is below 0.4 for all unnatural vegetation types,
i.e. cropland. In natural vegetation, a striking difference is present. Grassland shows correlation
values higher than 0.5. Especially in the middle of Nebraska, between 41 to 42 °N and 98 to 102
°W, the correlation coefficient is high as it approximately reaches 1.0. Towards the northwest
where the elevation increases, the correlation becomes lower. Still, the correlation coefficient in
the entire study area is higher for grassland than cropland. In the northwest corner of Nebraska,
a relatively small area is covered in natural vegetation consisting of trees or other tall vegetation.
This area shows the same poor correlation as the cropland. In figure 5b this area, such as most
of the cropland is grey. Meaning that there was a negative time shift. These areas are masked,
because it does not make sense if negative vegetation anomalies occurred before droughts. The
cropland areas that are not masked show a contrasting image. They have a time shift of larger
than 200 days for the best correlation coefficient. These values do not correspond at all to the
natural grassland that surrounds these areas.
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Figure 5: Cross-correlation between drought index and vegetation greenness. a) Highest
possible Correlation coefficient (-) for the cross-correlation. b) Time shift (days) between the

two datasets at the highest possible correlation coefficient

For the areas with a low correlation coefficient, it is difficult to accurately estimate the time
shift. All areas where the correlation coefficient is lower than 0.4 have a time shift that is nega-
tive or higher than 200 days. In the center of Nebraska where the Great Plains start (41 to 42
°N, 98 to 102 °W) the time shift shows more accurate values. Around the North Platte River,
it is on average 125 days, further north the time shift decreases to an average of 75 days.

This same cross-correlation is also carried out for selected time periods. Namely, from the
beginning of the droughts till the end of the vegetation recovery (end of negative vegetation
anomaly). The results of this correlation are shown in figure 6. The white areas mean there was
no drought corresponding to a negative vegetation anomaly. Most of these no data points are
in areas with cropland. For the cropland areas where the correlation coefficient is calculated,
the values are again lower than for natural grassland. The correlation coefficient for cropland
is on average 0.5, for grassland it is around 0.8 and in some areas even up to 1.0. In figure 6a
the correlation coefficient for grassland in the center of Nebraska is around 0.8, but is increasing
towards the northwest. While in figure 5a the values are decreasing in that direction.
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b

Figure 6: Cross-correlation between droughts and negative vegetation anomalies. a) Highest
possible correlation coefficient (-) for the cross-correlation. b) Time shift (days) between the

two datasets at the highest possible correlation coefficient

The time shift for cropland areas in this correlation also differs from the rest. Again almost
all values for the time shift are negative or larger than 200. These time shifts match the lower
correlation values of figure 6a. North of the North Platte River, again the slight decrease in
time shift is visible but it is less pronounced than in figure 5b. The regions covered by grassland
with a higher correlation coefficient generally show a larger time shift, on average between 100
and 125 days. For the regions with a slightly lower correlation coefficient, the time shift is also
smaller, on average varying between 25 and 100 days.

The angled pattern in figure 6 is due to the satellite resolution. This is visible in the southeast
corner of Nebraska, where the cropland shows low correlation values and time shifts that differ
compared to the surroundings. Because the SPEI dataset has the largest spatial resolution it
will dominate the angled pattern in the figure.

3.3 Impact of drought length and intensity on vegetation regeneration time

The predominant vegetation types in the study area are grassland and cropland rainfed herba-
ceous cover. These two vegetation types are therefore used to analyze the impact of drought
length and intensity on vegetation recovery. The error bars in figures 7 and 8 represent a 90
percent confidence interval (5th percentile to 95th percentile). Values can deviate far around
the mean but the extreme outliers, which are potentially incorrect but not filtered out by this
method, are not displayed by this confidence interval.

Figure 7a, b and c show the vegetation regeneration time of grassland based on the drought
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Figure 7: Vegetation recovery of grassland classified by drought length and intensity. a-c)
Recovery time based on drought time. d-f) Recovery time based on drought intensity

time. While figure 7d, e and f show the vegetation regeneration time based on drought inten-
sity. The vegetation regeneration time of figures 7a and d is the time of the negative vegetation
anomaly. the duration from the point at which the EVI falls below the -SD threshold until it
surpasses the -SD threshold again. The vegetation regeneration in figure a increases from 190
to 350 days, for a drought time between 0 and 300 days. Despite the increasing drought time
from this point up to 450 days, the vegetation recovery remains relatively consistent around 350
days. Figure d shows a similar pattern, the vegetation recovery time increases for a drought
intensity between -0.5 to -1.5, but then the recovery time also stabilizes around 350 days for
higher drought intensities. Figures 7b and e show the vegetation recovery time calculated with
the ’first method’, mentioned in section 2.4. The minimum value in the negative vegetation
anomaly and the corresponding date are determined. The vegetation recovery time starts from
this ’minimum’ date and ends when the EVI time series is greater than the -SD. Using this
method, there is no clear relation visible between the drought time or intensity and vegetation
regeneration time. The recovery time remains around the mean of 121 days for all drought time
lengths and intensities. In figure b the error bars increase in range till the 250 days of drought
time, and then they become smaller again. This is most likely due to the amount of samples
available for the analysis. Most droughts have a length between 0 and 250 days, longer droughts
are less common and will therefore have fewer outliers in the data. For the droughts in the
category 400/450 days, the number of data points has become so scarce that the error bars show
relatively accurate estimation for the vegetation recovery. Figures 7c and f show the ’second
method’, mentioned in section 2.4, to calculate the vegetation recovery time. The end of the
recovery time remains the same but the start of the vegetation recovery period is set as the end
of a drought. The limitation of this method was that the vegetation sometimes recovered before
the drought ended. This produced negative values that distorted the analysis. To prevent this,
the negative values were removed from the data. The vegetation recovery shows a remarkable
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pattern, the vegetation regeneration time becomes shorter as the drought time or intensity in-
creases. However, the mean recovery is slightly higher with this method, namely 135 days.

Figure 8 shows similar plots as figure 7, but these represent the vegetation recovery time of
croplands. All these plots have a capricious pattern in comparison to figure 7. The vegetation
regeneration time of cropland, calculated by the same two methods, generally shows the same
trend as the one for grassland. In the figures 8b and e the values remain around the mean of
111 days for all drought lengths and intensities. In figures 8c and f the vegetation regeneration
time declines as droughts elongate or become more intense. The mean recovery calculated by
this method is 158 days. Only figures 8a and d do not show a similar kind of pattern. The
vegetation regeneration time in figure a is quite high (∼ 290 days) for drought times of 50/100
and 100/150 days. But shows a general increase during droughts from 150 to 450 days.

a b c

d e f

Figure 8: Vegetation recovery of cropland classified by drought length and intensity. a-c)
Recovery time based on drought time. d-f) Recovery time based on drought intensity

3.4 Effect of drought timing on vegetation regeneration time

In addition to the drought length and intensity, the drought timing is also used to investigate
the impact on the vegetation recovery time (Figure 9). For this analysis, the data calculated by
the ’second method’ (section 2.4) for vegetation regeneration time is used. The drought timing
indicates the month in which the drought ended. Therefore, the ’second method’ (section 2.4)
was the most logical option as the vegetation regeneration time was already calculated from
the end of the drought. For example, when a drought ends in January for the land cover type
grassland, the vegetation has a mean recovery time of 78 days. This is just over 2.5 months,
so the vegetation will be recovered between mid-March and mid-April (depending on when the
drought in January ended). This mean recovery time was calculated for all months where the
droughts ended.

The recovery time in both grassland and cropland show exceptionally high values for the
months March and May, in comparison to the surrounding months. When these months are
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excluded from consideration, both the graphs for grassland and cropland show a trend in vege-
tation regeneration time. For grassland, the vegetation regeneration time increases from 78 to
234 days, between the months January and October. In November and December, the recovery
time declines fast towards 100 days. For the months September and October where the mean
regeneration time is relatively high, also the error bars have a wide range. Especially towards
the upper limit the regeneration time is uncertain. So, when a drought ends in these months
recovery could take much longer than the average shows. Rainfed cropland shows a different
pattern in the vegetation regeneration time (figure 9b). Here the regeneration time increases
between February and July, from 85 to 296 days. Then it gradually decreases until December
to 73 days. The months June to September show the highest regeneration time of around 275
days. The error bar of these months also indicates a wide range of values, meaning that the
regeneration time is quite insecure.

a b

Figure 9: Vegetation recovery classified by drought timing. a) Grassland. b) Cropland
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4 Discussion

4.1 Drought impact on land cover

The study area consists, after the conversion to the 300 m x 300 m spatial resolution grid, of
4,570,992 pixels per time step. During the 18 years in which the data analysis was carried out,
a total of 36,290 pixels occurred with a change in land cover type. This means only 0.79% of
the land cover has changed over all these years. The predominant transformation observed was
the conversion of grassland (57%) to cropland rainfed herbaceous cover (41%). The majority of
these transitions are most likely anthropogenic, as they evolved into rainfed cropland. Since it
covers such a small area, the low correlation coefficients found in figure 6 are not caused by land
cover changes.

The predominant land cover at lower elevations in the east of the study area is cropland
rainfed herbaceous cover (figure 1). All areas classified as this land cover have correlation values
lower than 0.4 (figure 5). However, higher correlations were expected for this land cover type, as
rainfed crops depend on the amount of precipitation and are therefore impacted by droughts. In
the study of Ray et al. (2018) results indicate that droughts had a more pronounced impact on
the yield of rainfed crops compared to their corresponding irrigated crops. Not only the yield,
but the whole physiology, growth and biomass production of crops is impacted by droughts.
After 40 days the Leaf Area Index of rainfed crops starts to differ from irrigated crops. After
60 days, a significant difference between the crop types is visible (Delfine et al., 2001). Since
the leaf area is a significant component in determining the vegetation greenness of the EVI, this
difference should be noted after processing the data from the satellite sensors.

Taking a closer look at the land cover in figure 1 shows that no single pixel in the area is
classified as irrigated cropland. According to USDA (2022), Nebraska has the most irrigated
cropland in the United States. Because of this contradiction, a closer look was taken at satellite
images of the area. The satellite image in figure 10 clearly visualizes that the area is covered
with irrigated cropland. In the entire study area, many more regions like these are classified as
rainfed cropland instead of irrigated cropland. This incorrect classification most likely explains
the low correlation coefficient, as irrigated croplands have a minor drought response (Lu et al.,
2020; Deb et al., 2022).

Due to this incorrect classification, the vegetation regeneration time for cropland in the
figures 8 and 9 will not be completely accurate. Irrigated and rainfed cropland have a different
drought response but are classified in the same class. This also explains the deviation of figure
8a and d, compared to figure 7a and d. The duration of the negative vegetation anomaly of
cropland does not appear to be dependent on the drought time or intensity, unlike grassland.
For irrigated cropland, this is a logical response but not for rainfed cropland, as it depends
on climatic variables. No further separation could be made in the data analysis, as they were
classified together in the land cover data. Different land cover classification datasets, such as
Modis, ESRI LULC, MRLC or Global Land Cover Network were considered to be used in the
research. However, due to a lower temporal or spatial resolution and also fewer land cover
classes they were not suitable. On top of that, all these datasets made no distinctions between
crop types. The ESA CCI land cover dataset was the only one to separate rainfed and irrigated
cropland, but as shown in figure 10 there are quite large classification errors in this separation.

An accurate separation between these classes is important to evaluate the impact of droughts,
mainly on rainfed croplands. The number and duration of severe drought events are expected
to increase in the future (Wang et al., 2014). This leads to more water shortages, especially
for rainfed vegetation. But the water demand of irrigated croplands will also increase (Zhang
and Lin, 2016), which brings higher economical costs (Lopez-Nicolas et al., 2017). The increas-
ing water demand will probably be resolved by extracting more groundwater. This mitigation
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Figure 10: Satellite image of cropland in Nebraska (40°30’37”N 101°47’14”W)

strategy has major implications on nearby natural vegetated areas (Elmore et al., 2006). As
groundwater levels decrease and aquifers are depleted (Konikow and Kendy, 2005).

The accurate separation between irrigated and rainfed cropland can be made with the
LGRIP30 v001 dataset (Teluguntla et al., 2023). LGRIP data are produced using Landsat
8 time-series satellite sensor data for the 2014-2017 time period, from which a nominal 2015
product is created. Since a very small part of the land cover changed over the years (0.79 %),
no large deviations are expected to arise by using this nominal product. The dataset’s spatial
resolution of 30 meters ensures an accurate differentiation between irrigated and rainfed crop-
land. Appendix figure 14 shows the LGRIP30 v001 dataset for the study area. Large parts of
Nebraska are classified as irrigated cropland, in contrast to ESA CCI land cover dataset (Coper-
nicus Climate Change Service, 2019) where everything was classified as rainfed cropland. Due
to the high spatial resolution and the corresponding extended calculation time, the analysis was
limited to a small area at the border between Nebraska and Colorado, highlighted in Appendix
figure 14. The results of this analysis are displayed in Appendix figures 15 and 16. Due to the
small spatial scale of the area, data was not present in all classes of drought time and intensity.
Consequently, the results may not be entirely reliable, potentially exhibiting a different trend
over a larger geographical area. In this small area differences between irrigated and rainfed crop-
land arise, the average vegetation recovery time for irrigated cropland in figure 15b (calculated
with the ’first method’, mentioned in section 2.4) is 151 days and remains relatively equal over
all drought lengths. The average vegetation recovery time for rainfed cropland in figure 16b is
171 days and shows a slight increase with increasing drought lengths. The difference between
the regeneration time of these two crop types is probably caused by irrigation. Future research
could expand the performed analysis by combining the land cover datasets. If data is identified
as cropland (all types) by the ESA CCI land cover, the LGRIP30 v001 dataset can differentiate
between irrigated and rainfed cropland. It would be intriguing to investigate whether the slight
differences that seem to arise between the two crop types also hold for larger spatial areas. So,
large-scale hydrological models like PCR-GLOBWB 2.0 (Sutanudjaja et al., 2018) can be im-
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proved through the estimation of crop water requirements for both irrigated and rainfed crops
across various drought lengths and intensities during the recovery period.

4.2 Spatial patterns of vegetation recovery

Highest correlation coefficients are found for grassland at modest altitudes in the center of the
study area. Further to the northwest where the altitude increases the correlation coefficient
is slightly lower. This worsening correlation is induced by climatic conditions. In the study
area, winters can be dominated by snowy conditions, especially at higher altitudes (Fassnacht
et al., 2016). This snow coverage can interfere with the correlation between SPEI and EVI
as the vegetation greenness can not be accurately measured. During a drought, there is less
precipitation or higher evapotranspiration rates than normal. Less or no snow will then be
expected, even at higher altitudes (Bathke et al., 2014). Consequently, the correlation coefficient
in figure 6a is also high (almost 1.0) at elevated altitudes. These higher values, however, are
somewhat less reliable as the cross-correlation is performed over a selected time period. The
cross-correlation in figure 5 is performed over the entire time series of 414 data points. While in
figure 6 the cross-correlation can be limited to only a few data points. This shorter time series
can make the cross-correlation less significant, making it easier for uncertainties to arise.

These uncertainties are also visible in figure 6b. The time shift does not show a clear
distribution over the study area. While the time shift in figure 5b showed lower time shifts
further from the North Platte River. This is due to the hydraulic gradient in the area. The
river causes a low hydraulic head in the region, so most groundwater flows towards this stream.
Therefore, the water table in the river valley is high. But the elevation quickly increases from the
river valley towards the Great Plains. This creates a larger unsaturated zone at the slopes near
the river valley, visible with the Real-Time Groundwater Monitoring Network of the University
of Nebraska–Lincoln (UNL, 2023). The water table in the monitoring well at the slope next to
the North Platte River is on average 60 feet below the land surface. While monitoring wells on
the Great Plains show the water table is between 1 and 20 feet below the surface. The larger
unsaturated zone is a disadvantage for vegetation because they have to root deeper to reach the
water table (Fan et al., 2017). At the Great Plains, the elevation does not show these steep
differences. Hence, the water table in this area is closer to the surface, allowing vegetation roots
to access water without the need to extend as deeply. The thicker unsaturated (or vadose)
zone, also causes a groundwater recharge delay (Wossenyeleh et al., 2020). Groundwater flow in
the vadose zone is driven by gravity, which means the water flows vertically through this zone
to recharge groundwater. The thicker the vadose zone the longer it takes for precipitation to
reach the groundwater table and therefore causes a delayed response. During a severe drought,
there is a prolonged period of precipitation reduction. The thick vadose zone causes a delayed
response in the groundwater table, which means it decreases later in the drought. The moment
precipitation returns to mean values the groundwater table keeps decreasing as precipitation
first needs to flow through the thick vadose zone. This causes the groundwater recharge delay
and longer vegetation recovery times in areas with thicker vadose zones. This is supported by
the study of Rossman et al. (2014), which estimated the vadose zone lag time in Nebraska. The
results show the longest vadose zone lag times in areas with a thick vadose zone. The areas
with long vadose zone lag times align with those in this study demonstrating large time shifts,
illustrated in figure 5b and mainly figure 6b. Indicating that long vadose zone lag times result
in a delayed vegetation response. On top of that, the Great Plains are also a recharge area,
the water table is first to increase here after a drought. Climate change will enhance the effect
because more precipitation will fall as rain instead of snow, increasing the recharge rates in the
area (Crosbie et al., 2013). The combination of the water table, rooting depth, groundwater
recharge delay and the recharge area causes the time shift, the time it takes for the EVI to
respond on the SPEI, to be shorter further from the North Platte River. The difference in time
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shift is quite significant, as on average near the river it is 125 days, and deeper onto the Great
Plains it is towards 75 days.

Another factor that may contribute to the vegetation regeneration time, and cause the more
scattered distribution of the time shift in figure 6b, can potentially be explained by taking a
closer look at the land cover of Nebraska. Figure 1 shows a lot of blue patches in the grass-
land, these are naturally formed local depressions filled with water. In the regions with lots of
these depressions, there is no or a very low time shift (below 50 days). In regions where these
depressions are not present in the grassland, the time shift can go up to 150 days. Therefore
it is likely the vegetation is using these local depressions filled with water to limit the drought
impact. While the areas without availability to water, logically are more affected and need more
time to recover from droughts. The different recovery times of the vegetation can also be caused
due to a difference in the response time to first recharge by precipitation. For both a low and
high time shift in the grassland the time series for soil moisture are reviewed, these are shown
in Appendix figures 17 and 18. The soil moisture for the location with a low time shift (figure
18) seems to be less responsive to droughts than the location with a high time shift (figure 17).
This can be due to the naturally formed local depressions or due to an unavailability of data,
explained in section 2.3. On the contrary, the soil moisture in figure 18 recovers slower after the
2012/2013 drought than in figure 17. This would indicate a shorter vegetation recovery time in
figure 17 than in figure 18. This contradiction ensures that pinpointing an exact reason for the
vegetation recovery time remains elusive, preventing a definitive conclusion as to what causes
the difference in this region.

The illogical correlation and time shifts in the southeast corner of the study area (figure 6)
are caused by spatial differences between the datasets. In this case, the SPEI is the cause of
the deviating values. The large spatial resolution is visible in the area compared to the smaller
resolution of the EVI. The bad correlation values are sharply cut from the surrounding regions.
As only droughts are selected and the same deviations are not visible in figure 5, it means that
the SPEI deviates at this location only during the droughts and vegetation recovery. A smaller
spatial resolution of the data could potentially resolve this problem. The transition between
areas will be smoother and the SPEI can be determined more accurately for the area.

Decreasing the spatial resolution also has a downside, as it costs more time to process all
the data. Already, the study area was limited in size due to the large processing and calculation
time. Parallelization is a possible solution to reduce the computational time for the performed
calculations. By parallel processing, tasks are distributed across multiple cores or processors.
The computational time can be decreased to 10% of the original time (Samuel, 2012). This
is a significant decrease which makes it easier to process larger areas of interest. When the
computational time is reduced, it would be useful to spatially upscale this research to larger
areas. First to several states in the U.S. or even to the entire U.S., to compare the vegetation
regeneration time between different regions and climatic zones. It can even be compared to
different regions across the world, such as the Rhine Meuse basin, to assess the validity of these
relationships. The advantage of this is that the results become more significant and relations
can be applied to larger areas rather than being limited to the study area. But, the upscaling
has to be done without losing sight of the regional characteristics. In the study area used in this
research significant differences already occurred, while this is geomorphological not a challenging
area.
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4.3 Assess recovery time based on drought separation

The length of the negative vegetation anomalies shows almost a linear trend between 0 and 300
days (figure 7a). For every class, the vegetation recovery increases with approximately 25 days
as the drought time increases with 50 days, until it remains stable around a recovery time of
350 days. Similarly, the drought intensity increases linearly between -0.75/-1.0 and -1.25/-1.5
with 60 days per class (figure 7d). Also, in this figure it remains stable around the recovery
time of 350 days. This shows that the drought time and intensity certainly have an impact
on the grassland. But from some intensity and drought length, the impact on the vegetation
remains the same as it does not stay longer than 350 days below the -SD, even for droughts that
take longer. In the figures 7b and e, the vegetation recovery is calculated by the ’first method’
(section 2.4). Where it continually moves around the mean of 121 days for all the different
drought lengths and intensities. This means the vegetation regeneration time is not dominated
by drought characteristics. In the study of Yao et al. (2023) soil moisture was found as the dom-
inant factor for recovery time. Currently, soil moisture dominates the drought recovery time
of almost 60% of the assessed land worldwide. Due to the acceleration and intensification of
drought events, soil moisture is expected to decline in over 65% of the regions worldwide in the
future. This will lead to longer drought recovery times and exacerbate the effects of droughts on
vegetation. Also, in this research soil moisture dominates the recovery time. It does not matter
how intense the drought was, the recovery time always stays around 121 days. But it can de-
viate between 10 and 300 days dependent on the soil moisture content during the recovery period.

In figure 7c and f the recovery time declines the longer or more intense a drought becomes.
This is due to a limitation in the method (’second method’, mentioned in section 2.4) used to
calculate the recovery time. Generally, the longer a drought lasts the more intense it is (Appendix
figure 11). This also means for longer droughts the impact on the vegetation already becomes
visible during the drought, despite the delayed response between these two (figure 5b). Severe
and extreme droughts take more time to return to normal conditions or in this case the -0.5
threshold. In this time conditions improve, the drought becomes less severe, and vegetation can
already start to recover. By the time the drought reaches the threshold of -0.5, the vegetation
already had time to recover. Therefore, moderate droughts which have a delayed vegetation
response outside the drought, show a longer recovery time than severe droughts.

By decreasing the threshold for droughts to -1.0, drought times decrease. As drought times
decrease, vegetation has less time to recover within the drought and the problem in the calcu-
lation of the ’second method’ should become less pronounced. Appendix figure 13 shows the
vegetation recovery times of grassland with a decreased threshold. As expected the general re-
generation time increases to 125 days now mild droughts are excluded from the analysis. Figure
13c and f still show decreasing vegetation regeneration times for increasing drought times, which
matches the trend observed in figure 7c and f. The desired effect has not been achieved by de-
creasing the threshold, the limitation in the ’second method’ remains and the vegetation recovery
time still decreases for longer drought times. By decreasing the threshold for droughts also the
conditions set in section 2.4 should be revised. By decreasing the threshold the drought(s) with
an intensity between -2.25 and -2.5 did not meet the requirements and is therefore excluded
from the analysis.

However, the mean regeneration time for grassland in figure 7 does not differ much between
the two methods, 121 and 135 days respectively. Other studies that investigated the recovery
time found varying results. Anderegg et al. (2015) found a recovery time of 1-4 years from severe
droughts by examining tree rings. Schwalm et al. (2017) calculated that in 75% of the cases
where vegetation recovers after a drought, it takes less than 6 months. But in the last decades
longer recovery times become more frequent and can even reach 24 months. Yu et al. (2017)
found a recovery time of ∼ 80 days for grassland. By using the MODIS DSI product to detect
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drought occurrences and determine the recovery from the Ecosystem GPP. He et al. (2018) also
used the GPP to determine the ecosystem recovery and found a recovery time between 21 and
36 days. But in the latest study of Yao et al. (2023) the same method is implemented as in this
research. Only different vegetation indexes are used, they used LAI, kNDVI and SIF whereas
in this research EVI is used. When the recovery time was calculated with the ’first method’
(section 2.4) the recovery time was 3.11, 3.22 and 3.05 months respectively. That is close to the
average recovery times found in this research, 3.97 months (121 days) for grassland and 3.64
months (111 days) for cropland.

The vegetation recovery classified by drought timing (figure 9) exhibits a discernible pattern
for both grassland and cropland. For grassland the recovery time increases till the month of
October. When a drought ends in this month it needs the most time to recover to a pre-drought
state. This corresponds to the growing season of natural vegetation in the northern hemisphere,
here the growing season begins in late April-early May and ends late September-early October
(Volesky et al., 2005). When a drought ends in October the growing season is over and no
favorable conditions are met for the recovery of vegetation. Vegetation has to wait till the
beginning of the growing season to recover. This is the difference between the regeneration
time of April and October, 100 days vs 220 days. The time between the end and beginning of
the growing season is 5 months (150 days). Therefore, the later a drought ends in the growing
season the more time vegetation needs to recover. The severity of the drought when it ends
in September or October can influence the regeneration time strongly. Regeneration times can
increase to 600 days if a severe drought ends in these months.

Cropland shows a slightly different vegetation recovery in relation to drought timing. Here
the peak of the regeneration time is already reached in July. This again corresponds to the
growing season of in this case cropland. Most crops are grown from late spring (May) and need
at least 80 days to grow (Kukal and Irmak, 2018). From April a steep increase in regeneration
time is visible till it reaches its peak in July. When a drought ends in this month it has the
longest regeneration time as the growing season is over. From this moment it has to wait till
May of next year before crops are grown there again, therefore the regeneration time is exactly
300 days (10 months). Also, here the severity of the drought plays an important role. In some
cases the regeneration time goes up to 700 days, meaning a year after the drought hit the area
the ecosystem was not recovered enough to grow crops. Again, soil moisture plays an important
role in the length of these regeneration times. As crops are not as deeply rooted as natural
vegetation, they are highly dependent on the soil moisture in the topsoil (Holzman et al., 2014).
If this is not properly recharged after a drought, crops can not grow in the area.

The outliers of March and May are present in both grassland and cropland. Meaning the
deviations in the data are not limited to land cover classes and therefore occurred over the entire
study area. There are multiple possible explanations for these deviations. The first one is that
the drought frequency played a role in the regeneration time (Jiao et al., 2021). If two droughts
followed in short succession, the vegetation did not have time to recover in between. This can
eventually lead to a longer recovery time after the second drought. The second explanation can
be that the droughts ended in March or May lasted long or were quite intense. In combination
with a disproportionate sampling frequency over the months, deviations may occur. An under-
sampling is indeed visible in March (Appendix figure 12). Only in 0.02% (n = 0.0002) of the
pixels a drought did end in this month, almost all of which correspond to one drought. This
drought is relatively short and moderate but shows large variations in recovery time. As these
deviations are observed in both grassland and cropland, it suggests potential minor inaccuracies
in the EVI time series or vegetation was not yet recovered from a previous drought, resulting in
above-average regeneration times. The month of May is not under-sampled (n = 0.05) compared
to the other months, therefore the most logical explanation for the deviation in the vegetation
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regeneration time here is the drought frequency. Vegetation took longer than average to recover
from two or multiple consecutive droughts in the month of May.

5 Conclusion

In this study, a coupling is defined between the drought index and vegetation regeneration in
Nebraska, United States. To properly assess varied responses to drought events and their sub-
sequent impacts on vegetation regeneration times, a difference is made between grassland and
cropland. Results show a clear link between land cover types and their response to droughts,
correlation coefficients are usually much higher for grassland (0.5 - 1.0) than cropland (0.0 -
0.4). Especially in the central part of Nebraska where the Great Plains begin, grassland exhib-
ited higher correlation coefficients, emphasizing its vulnerability and responsiveness to drought
events. Cropland, influenced by anthropogenic factors like irrigation and crop cultivation, dis-
played no correlation patterns. Hence, it becomes important to distinguish between rainfed and
irrigated cropland in future studies. This can be achieved by combining the ESA CCI land cover
and the LGRIP30 v001 dataset. Preliminary testing of the analysis using the LGRIP30 v001
dataset over a limited spatial area yielded promising results. Consequently, further improvement
of the analysis with this dataset could offer a more comprehensive understanding of the diver-
gent responses between rainfed and irrigated cropland in future studies. The time shifts, the
time it takes for the EVI to respond to the SPEI, for grassland follows certain spatial patterns
that are induced by local topography which is the main driver of groundwater flow and there-
fore hydraulic gradients in the area. Various other factors, including the water table, rooting
depth, groundwater recharge delay, recharge area, local depressions filled with water, as well as
soil moisture, contribute to deviations in time shifts and recovery times within the study area.
Vegetation regeneration time for grassland remains around 121 days for all the different drought
lengths and intensities. So, droughts are not the dominant component in vegetation recovery,
soil moisture is. Recovery time for cropland has a capricious pattern, due to a mixture of rainfed
and irrigated cropland in the data. Nevertheless, the average recovery time is close to that of
grassland, as it is 111 days. Although drought length and intensity do not play a dominant
role in vegetation recovery, drought timing does. If droughts end late in the growing season,
vegetation requires more time to recover. Usually, it takes until the next growing season for it
to recover. But when the drought is severe, soil moisture requires more time to recharge and
vegetation recovery can take over one year. Emphasizing the importance of considering drought
timing and soil moisture in future studies of vegetation recovery. This research contributes to
the understanding of vegetation responses to drought, providing valuable information for large-
scale hydrological models such as PCR-GLOBWB 2.0. In the future, soil moisture is projected
to decline, our insights underscore the need for accurate estimates of vegetation water demands
during post-drought periods. This, in turn, can inform sustainable water resource management
strategies, crucial for mitigating the escalating impacts of drought on global ecosystems. Reduc-
ing computational time would enhance the feasibility of upscaling this research to larger areas.
This would allow for a comprehensive comparison of vegetation regeneration times and the pre-
dominant factors controlling them across various regions and climatic zones. Such a comparison
could contribute to a more accurate global estimation of water demands during post-drought
periods.
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6 Appendix

Figure 11: Drought intensity (-) vs drought time (days)

Figure 12: Normalized sampling size (n) of drought timing
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a b c

d e f

Figure 13: Vegetation recovery of grassland classified by drought length and intensity, with the
minimum threshold for droughts set at -1.0. a-c) Recovery time based on drought time. d-f)

Recovery time based on drought intensity

Figure 14: Land cover of Nebraska with accurate separation between irrigated and rainfed
cropland. Zoomed area is used for analysis
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Figure 15: Vegetation recovery of irrigated cropland classified by drought length and intensity
based on figure 14. a-c) Recovery time based on drought time. d-f) Recovery time based on

drought intensity

a b c

d e f

Figure 16: Vegetation recovery of rainfed cropland classified by drought length and intensity
based on figure 14. a-c) Recovery time based on drought time. d-f) Recovery time based on

drought intensity
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Figure 17: Time series of a)SPEI b)EVI and c)SM at location 41°27’00.0”N
101°03’36.0”W,which corresponds to a high time shift in figure 6b
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Figure 18: Time series of a)SPEI b)EVI and c)SM at location 42°03’00.0”N
100°36’00.0”W,which corresponds to a low time shift in figure 6b
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Land Cover Value

No data 0

Cropland rainfed 10

Cropland rainfed herbaceous cover 11

Cropland rainfed tree or shrub cover 12

Cropland irrigated 20

Mosaic cropland 30

Mosaic natural vegetation 40

Tree broadleaved evergreen closed to open 50

Tree broadleaved deciduous closed to open 60

Tree broadleaved deciduous closed 61

Tree broadleaved deciduous open 62

Tree needleleaved evergreen closed to open 70

Tree needleleaved evergreen closed 71

Tree needleleaved evergreen open 72

Tree needleleaved deciduous closed to open 80

Tree needleleaved deciduous closed 81

Tree needleleaved deciduous open 82

Tree mixed 90

Mosaic tree and shrub 100

Mosaic herbaceous 110

Shrubland 120

Shrubland evergreen 121

Shrubland deciduous 122

Grassland 130

Lichens and mosses 140

Sparse vegetation 150

Sparse tree 151

Sparse shrub 152

Sparce herbaceous 153

Tree cover flooded fresh or brakish water 160

Tree cover flooded saline water 170

Shrub or herbaceous cover flooded 180

Urban 190

Bare areas 200

Bare areas consolidated 201

Bare areas unconsolidated 202

Water 210

Snow and ice 220

Table 1: Land cover classes from UN FAO Land Cover Classification System
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