
Utrecht University

Graduate School of Natural Sciences

Game and Media Technology Master Thesis

Assessing Alternatives to the Surface Area Heuristic

for Bounding Volume Hierarchy Construction

Author
Athos L. van Kralingen
ICA6037062

In Cooperation With
Traverse Research

Traverse Research Supervisors
Dr. ing. J. Bikker
Ing. M. Oomen

Supervisor
Dr. P. Vangorp

Second Supervisor
Prof. dr. A.C. Telea

August 13, 2023

Abstract

Ray tracing has long been a widespread technique for high-quality offline renderings.
Research into acceleration structures for real-time ray-tracing has paved the way for the
millions to billions of rays involved to be traced, but the heuristic cost model used for the
construction of some of the highest-quality acceleration structures to date, the Surface Area
Heuristic (SAH), has long remained the same despite being known to rely on assumptions
that rarely all hold.

This thesis explores alternatives to the greedily applied SAH cost model for constructing
Bounding Volume Hierarchies. First, a fully non-greedy evaluation method is introduced
to compare against the standard greedy construction algorithm. While methods for con-
structing Bounding Volume Hierarchies exist that achieve a far lower cost than the original
greedy method, they are not guaranteed to achieve the global optimum. This method is
then used to measure the impact of a non-greedy versus a greedy evaluation on the quality
of a Bounding Volume Hierarchy in terms of the Surface Area Heuristic cost in low primitive
count scenes.

Secondly, this research extensively compares previously proposed alternatives and im-
provements to Surface Area Heuristic. Their ray-tracing performance is specifically tested
on the differences in assumptions related to the rays and their distributions and compared
against SAH. To our knowledge, these alternative heuristics were previously only compared
to the Surface Area Heuristic or previous versions of the heuristic that they propose an
improvement for and not against each other. The ray-tracing performance of the hierarchies
constructed using these alternative heuristics is compared against SAH and each other. The
constructed hierarchies are evaluated with the cost model suggested by Aila et al. [1] that
can be used to estimate their expected ray-tracing performance.

Observations show that the impact of greedy evaluation is limited to about 5% for the
tested maximum of 15 triangles, but the found trend predicts that this difference may
be upwards of a factor of a 2.5 lower cost for non-greedy evaluation at only a thousand
triangles, in line with other construction algorithms discussed by e.g., Meister et al. in 2022
[2]. There is almost no measured difference when the same is evaluated for 12 triangles as
three uniformly sized tetrahedra of aspect ratio 1.

Heuristics that provide an alternative to each of the assumptions of the Surface Area
Heuristic are observed to deliver at least comparable performance for given viewpoints.
Outliers of superior performance are primarily based on the scene in which the measurements
are taken. Compared to the Surface Area Heuristic, the time per ray can decrease by over
30% for given viewpoints in and up to 5% for animated paths through scenes. Reductions
of even over 50% are observed for specific ray distributions for these static viewpoints.
Additionally, it is observed that some of the heuristics that require viewpoint-dependent
input information to construct the hierarchy show a limited performance impact of under
5% in most scenes.

Alternative heuristics are found to produce similar and sometimes superior quality BVHs
by the quality metrics described by Aila et al., but the embedding of occlusion information
causes the metrics to seemingly underestimate the ray-tracing performance.

Our research concludes that the impact of greedy versus non-greedy evaluation is small
in terms of measured tree cost for small scenes, but the linearity of growth in relation to
the number of primitives shows that the impact of greediness may be significant. Though
the greedy SAH-based top-down construction performs the best on average, the alternative
heuristics applied greedily show superior ray tracing performance for the majority of tested
scenes individually, and it is shown that selecting the construction heuristic to use should be
done per scene. Finally, we find that the adjusted cost metrics by Aila et al.[1] may underesti-
mate the ray-tracing performance for BVH construction techniques that use occlusion-based
information, indicating that their metric for scalar ray-tracing may not describe all factors
that relate to ray-tracing performance.

Contents

1 Introduction and Background 1
1.1 Ray Tracing . 1
1.2 Acceleration Structures . 1
1.3 BVH Traversal . 4
1.4 BVH Construction . 5
1.5 The Surface Area Heuristic . 5

1.5.1 SAH Assumptions . 7
1.6 Problem Definition . 7

2 Research Questions 9

3 Previous Work 10
3.1 Universal Improvement . 10

3.1.1 Split Bounding Volume Hierarchy . 10
3.1.2 End-point Overlap . 11
3.1.3 Leaf Count Variability . 12
3.1.4 Scene-Interior Ray Origin Metric . 13

3.2 Fixed Ray Distribution . 16
3.2.1 Preferred Ray Sets . 16
3.2.2 Ray Distribution Heuristic . 16
3.2.3 Occlusion Surface Area Heuristic . 18

3.3 Shadow Rays . 19
3.3.1 RTSAH . 20
3.3.2 Surface Area Traversal Order . 21
3.3.3 SRDH . 21

3.4 Non-greedy SAH Computation . 23
3.5 Final Notes . 23

4 Non-greedy SAH 24
4.1 Implementation . 24
4.2 Termination Criteria . 25
4.3 Split Plane Configuration Pruning . 26
4.4 Testing Methodology . 27
4.5 Results and Analysis . 28

4.5.1 Pruning Results . 30

5 Comparison of Alternative Heuristics 32
5.1 Implementation and Testing Methodology . 32
5.2 Results and Analysis . 35

5.2.1 Varying Ray Distributions as RRS . 35
5.2.2 Tests for Static Viewpoints . 37
5.2.3 Tests for Animated Camera Splines . 42

6 Conclusion 45
6.1 Non-greedy SAH Evaluation . 45
6.2 Comparison of Alternative Heuristics . 45

7 Future Work 47
7.1 Non-greedy SAH . 47
7.2 The Scene-Interior Ray Origin Metric . 47
7.3 Impact on Massively Parallel Devices . 48
7.4 Shadow Ray Heuristics . 48
7.5 Combining of Heuristics . 48
7.6 Stochastic Evaluation of BVH Quality . 48

Bibliography 50

Appendices 53

A Additional Heuristic Measurement Data 54
A.1 Intersection Tests Static Scenes . 54
A.2 Traversal Steps Static Scenes . 55
A.3 Intersection Tests Animated Scenes Without Rebuilds 56
A.4 Traversal Steps Animated Scenes Without Rebuilds 57
A.5 Intersection Tests Animated Scenes with Rebuilds Every 3 Frames 58
A.6 Traversal Steps Animated Scenes with Rebuilds Every 3 Frames 59
A.7 Intersection Tests Animated Scenes with Rebuilds Every Frame 60
A.8 Traversal Steps Animated Scenes with Rebuilds Every Frame 61

1 Introduction and Background

1.1 Ray Tracing

Ray tracing is a technique in computer graphics that can render images of objects with high
fidelity to mimic the real-world traversal of light by following the path light takes along a ray.
This technique extends to fields outside of rendering, such as for audio [3] and physics, but is
mostly known for its use in computer-generated images. In 2018, NVidia started releasing GPUs
under the RTX name [4], which contain dedicated hardware for ray tracing intended for use in
real-time rendering applications such as video games; other hardware vendors followed suit in
recent years [5]. This introduction improved the popularity of ray tracing, but well before that,
it was already prevalent for ground truth reference and the movie industry [6], for example.

With ray tracing, a ray is cast into the scene, where it is tested against the geometry to
determine a potential intersection and processes the result for further evaluation of shading
effects. The approach that is used today was formalized by Whitted [7]. Later work by Kajiya
introduced the Rendering Equation [8], which defined the integral that would allow for evaluating
the shading of surfaces. They also introduced the concept of path tracers, which approximate
the integration of this integral through a Monte Carlo process. Primary rays are cast from
the camera into a scene of to-be-rendered objects, which recursively reflect off these objects’
surfaces, continuously bouncing until they reach a light source. Randomness in the directions of
these rays is used to approximate the integral and converge towards ground truth once sufficient
samples are taken. Examples of reflections that can occur within the scene are specular and
diffuse reflections, depending on the surface material properties. As the ray is reflected, its path
will ultimately end at a light source that, together with the surface attributes, determines an
output color for belonging to the cast primary ray.

Path tracing implicitly models effects such as shadows, reflections, and ambient occlusion,
but ray tracing can be more generalized to model these effects individually [9, 10]. Reflections
in the form of diffuse and specular rays were suggested in the initial discovery by Whitted [7],
with approaches for real-time use-cases studied, for example, by McGuire & Mara in 2014 [10].
Shadow rays are used to find obstructing geometry between a to-be-shaded point and a light
source, showing a cast shadow instead of a lit surface point if such obstructions are found; an
application already explored by Appel in 1968 [11]. Landis in 2002 [12] was one of the first found
sources to formalize the use of ambient occlusion rays, which are used to mimic local shadowing
effects of global illumination by measuring geometric obscurance locally per the model by Zhukov
et al. [13].

In order for these effects to be rendered, ray tracers require many rays to be cast, where each
ray has to individually check for intersection against the scene geometry. In rendering, geometry
is commonly formed out of smaller primitives, usually triangles, where each ray traced needs to
be tested for intersection against each individual triangle. With modern-day scenes composed of
millions of triangles and using at least one primary ray per pixel, a naive approach would require
trillions of intersection tests for just these primary rays. To prevent this, implementations of
ray tracing use acceleration structures to group the primitives in a scene such that unnecessary
intersection tests can be filtered and significantly reduced.

1.2 Acceleration Structures

Acceleration structures divide the scene primitives such that redundant intersection tests can
efficiently be eliminated for large subsets of those primitives. The most commonly used tech-
niques in real-time rendering employ a hierarchical tree-like recursive partitioning scheme that
recursively partitions either the space around the primitives or the sets of primitives themselves.

1

Figure 1: A visualization of how a 2-dimensional k-d tree represents a set of primitives in a scene. The
red segments, sp1 and sp2, represent splits parallel to the x-axis, while the green segment represents one
parallel to the y-axis

The two most commonly used in ray-tracing for real-time rendering are the k-d tree [14] and
Bounding Volume Hierarchy (BVH) [15].

The k-d tree recursively splits the space of the primitives into two partitions along the x-, y-
or z-axis, represented by a split plane. The built structure contains nodes of two types: interior
and leaf nodes. Interior nodes represent locations at which the space is split in half and store the
axis and position of the split plane, as well as references to its direct child nodes that represent
the subspaces induced by this split plane. A leaf node only contains references to the primitives
contained within its subspace and has no child nodes. An example is given in Figure 1, where
sp1..3 respectively represent the split planes of the first three subdivisions created for the k-d
tree. The interior node representing split plane sp1 has two child nodes: a leaf node that only
references the primitive t1 and an interior node that represents the split plane sp2, which with
the subdivision sp3 ultimately contains leaf nodes for t2..4. As shown with t3, primitives may
straddle the split plane and are therefore referenced by multiple leaf nodes. In this example, t3
is referenced in the leaf node left of sp2 and above sp3.

As a result of these recursive spatial subdivisions, a k-d tree can reduce the intersection queries
in the best case to a complexity of O(log n) by recursively eliminating half of the primitive space
with each traversal step.

Different from the k-d tree, the BVH recursively splits the scene primitives into n sets,
where n is the chosen degree of the BVH. Nodes store tightly enclosing bounding volume for
an approximate, overestimated representation of the union of the primitives that lie inside of
it. Interior nodes of a BVH only store the bounding volume rather than the split axis and
position of the split. Leaf nodes also store these bounding volumes along with the references
to contained primitives. The bounding volumes can be of any primitive type, such as a sphere
or tetrahedron, but this is commonly an axis-aligned bounding box (AABB) due to them fitting
the space sufficiently tightly and the low cost for ray-AABB intersection tests that are needed
during traversal. Examples of valid BVHs using AABBs are shown in Figure 2.

Construction algorithms often assume a degree of two, but other multiples of two are regularly
used. However, BVHs with degree two are often modified after initial construction [16, 17, 18].

2

(a) (b)

Figure 2: Two valid BVH registrations for the same set of primitives; the left shows no overlap between
the bounding volumes of sibling nodes, while the right shows an overlap due to t4 straddling a split plane.
The AABB edges are colored alternatively based on their hierarchy depth

BVHs mentioned throughout this text are therefore assumed to be of a degree of two and use
AABB as volumes, without loss of generality.

There are some other differences to a k-d tree. BVHs do not use the surrounding space
to determine the subdivision of primitives; any grouping of the primitives and nodes makes a
valid BVH, and the representative bounding volumes may overlap, see Figure 2b. This potential
overlap of bounding volumes and arbitrarity in the configuration of nodes implies that, unlike
traversing down a k-d tree, there is no guarantee that the search space will be reduced with each
step. Therefore most construction algorithms for BVHs do split the set of objects based on their
sorted position along one of the axes like k-d trees, but this split plane is not stored explicitly
and does not necessarily separate the primitives spatially in their entirety.

Another implication of the allowed overlap of the bounding volumes is that primitives strad-
dling such an implicit split plane do not have to be referenced by both nodes, as the BVH is valid
either way. In the example in Figure 2b, the primitive t4 lies partially in the bounding volume
for the parent node of t1 and t2 and partially in the one of t4 and t3, but is here only stored in
the latter. This can lead to a lower memory usage than an equivalent k-d tree.

Both data structures have multiple high-performance and highly parallel construction algo-
rithms available [19, 20, 21], but k-d tree construction suffers from a lower bound of O(n log n)
time [22]. The BVH being trivially valid allows for construction algorithms such as the LBVH by
Lauterbach et al. [23] that can be constructed in O(n). Extensive performance tests by Vinkler
et al.[24] also show the additional primitive references k-d trees resulting in increased memory
usage in, with worst cases of up to ten times as many nodes and 14 times as many triangle
references compared to their respective BVH. They additionally demonstrate that ray-tracing
performance can decrease by over 40% in selected scenes for the k-d tree as a result of this,
despite reducing the number of ray-primitive intersection tests and traversal steps compared to
a BVH. These aspects have made the BVH more commonly used for ray tracing in recent years.

3

1 F indF i r s t I n t e r s e c t i o n (rootNode , ray) :
2

3 i f i s L e a f (rootNode) then
4 c l o s e s t I n t e r s e c t i o n = {}
5 f o r p r im i t i v e in p r im i t i v e s (rootNode) do
6 i f i n t e r s e c t s (ray , p r im i t i v e) and d i s t ance (i n t e r s e c t i o n) < d i s t ance (

c l o s e s t I n t e r s e c t i o n)
7 c l o s e s t I n t e r s e c t i o n = i n t e r s e c t i o n
8 return c l o s e s t I n t e r s e c t i o n
9 e l s e i f i n t e r s e c t s (ray , boundingBox (rootNode)) then

10 i n t e r s e c t i o n = ∅
11 i f i n t e r s e c t i o nL e f t = F indF i r s t I n t e r s e c t i o n (l e f tCh i l d (rootNode) , ray) then
12 i n t e r s e c t i o n = i n t e r s e c t i o nL e f t
13 i f i n t e r s e c t i o nR i gh t = F indF i r s t I n t e r s e c t i o n (r i gh tCh i ld (rootNode) , ray) and
14 d i s t ance (i n t e r s e c t i onR i gh t) < d i s t ance (i n t e r s e c t i o n) then
15 i n t e r s e c t i o n = in t e r s e c t i o nR i gh t
16 return i n t e r s e c t i o n
17 e l s e
18 return ∅

Listing 1: First-hit traversal for a BVH

1.3 BVH Traversal

Traversal of a BVH to find a primitive intersection is considered trivial. Starting at the root
node and given the ray, an intersection is first tested against the bounding box of the BVH’s
root node, i.e., the one enclosing the entire space of primitives. If the ray is found to intersect
the bounding box, there is a possibility of intersection with a primitive in one of the root’s child
subtrees, and the bounding volumes of the root’s child nodes should therefore be tested in the
same manner. For each child node volume intersected, the child node will be set as the traversal’s
new root node, and the process is repeated until neither child node’s volume is intersected. If
the current root node is a leaf node, one of its primitives may be intersected by the ray, requiring
a ray-primitive intersection for all of its primitives.

After an intersection is found, the result returned by the algorithm depends on the traversal
scheme. Meister et al., in their survey on BVHs [21], identify the following three traversal
schemes:

1. First-hit traversal

2. Any-hit traversal

3. Multi-hit traversal

First-hit traversal returns the primitive intersected by the ray if it is the one closest to the
ray origin out of all primitives intersecting it. Most shading algorithms use this as they require
surface information about the first intersected primitive for computing the emitted color of the
surface. Any-hit traversal returns any primitive lying between the ray origin and the directional
extent or some possible endpoint, regardless of which primitive would be hit first. This gives
sufficient information for applications such as shadow rays, which only require knowing whether
any occluding object lies between the ray origin and a particular light source. Multi-hit traversal
is for applications that depend on the surface information of all intersected primitives, such as
light traversing through translucent objects. First-hit and any-hit traversal are the most common
and, therefore, will be primarily discussed. Pseudocode for a recursive first-hit traversal is given
in Listing 1.

4

1.4 BVH Construction

A BVH construction algorithm splits the original set of primitives recursively until a termination
criterion is met. The goal is to determine at build-time which configuration results in the
minimum number of intersection tests and traversal steps at runtime. This requires making two
primary decisions: where to split the set of primitives and which termination criterion or criteria
to use.

Splitting the set of primitives is, in practice, done using a split plane, as explained in Sec-
tion 1.2. The next decision is where this split plane should be placed, which Rubin & Whitted
already found to be a non-trivial decision [15]. Initial approaches used a straightforward ap-
proach of placing the split plane at the spatial median of the primitive set along a given axis.
This, however, has no guarantee of being the split plane with the best ray tracing performance.

MacDonald & Booth suggested the use of a cost function to determine the quality of a split
plane location [25].

They find that using a cost function with the probability of intersection of the surrounding
volume leads to a high correlation between cost and ray-tracing performance. They express
the cost of an acceleration structure trough as a summation of costs per node, with the full
expansion in Equation 1. A heuristic is used to estimate the probability of intersection for the
nodes induced by a potential split plane, where a higher probability of intersection results in a
higher cost.

Croot =
1

SA(root)
· (Ct ·

∑
N∈I

pN + Ci ·
∑
N∈L

Tn · pN) (1)

Here L and I and the set of leaf nodes and interior nodes of the BVH, respectively; Ci is the
cost of performing a ray-primitive intersection; Ct the cost of adding a new node, adding two
ray-bounding volume intersection tests; T l and Tr the number of primitives in the respective
left or right child node; and pl|r the probability a ray will intersect the node’s respective left or
right child node. Note that Ct and Ci are user-defined estimates of their respective costs. This
cost function is evaluated for all or a set of candidate split planes, and the lowest cost candidate
split plane is used for subdivision.

This cost metric is then used to define the cost of a particular split plane as in Equation 2
and, subsequently, find the local minima when subdividing a primitive set for bounding volume
hierarchy construction.

C = Ct + Ci(pl · Tl + pr · Tr) (2)

Here, pl|r and Tl|r are the respective intersection probabilities and number of triangles in the
left and child nodes induced by the split plane.

As will be covered in Section 3, the chosen heuristic to estimate this probability can have
significant performance implications. The performance differences can vary based on the scene
and other variables. An extreme case in an example comparison of two heuristics can be found
in the research by Vinkler et al. [26] in which a performance difference can be seen up to a factor
of four for their rotated Power Plant scene.

1.5 The Surface Area Heuristic

MacDonald & Booth presented their cost function alongside a heuristic that can be used in
the cost function: the Surface Area Heuristic (SAH) [25]. They found that, under certain
conditions, the probability of intersection between a ray and a node in an acceleration structure

5

1 Subdivide (rootNode) :
2

3 foreach pr im i t i v e in rootNode
4 s p l i t = spl itAtBoundary (p r im i t i v e)
5 i f co s t (s p l i t) < co s t (b e s t Sp l i t)
6 b e s t Sp l i t = s p l i t
7

8 i f t e rminat ionCr i t e r i aMet (rootNode , co s t (b e s t Sp l i t)) then
9 return makeLeaf (rootNode)

10 e l s e
11 Subdivide (l e f tNode (b e s t Sp l i t))
12 Subdivide (r ightNode (b e s t Sp l i t))

Listing 2: Top-down BVH Construction

is proportional to the ratio of the node surface area over the subtree’s root node surface area,
see Equation 3.

psah =
SAn

SAp
(3)

Inserting these probabilities into the cost function from Equation 2 leads to the formula in
Equation 4, which has SAp, SAl, and SAr as the respective surface areas of the parent node, left
child, and right child node AABBs. Since the division by SAp is the same for each split plane
candidate, it is usually omitted.

Csah = Ct + Ci(
SAl

SAp
· Tl +

SAr

SAp
· Tr) (4)

Evaluating Equation 4 for all possible split planes of a BVH node, the split plane minimizing
C for the theoretical best ray trace performance can be found. Havran shows that the minimum
of this cost function always lies at the boundary of a primitive along a given axis [27], meaning
only evaluation of split planes positioned at the boundaries of primitives is needed. Once an
optimal split plane for a hierarchy level is found, this process is repeated for each created child
node downwards until a termination criterion is met. This process assumes that the created
nodes will remain leaf nodes. It will only select the split plane that immediately lowers the local
cost, despite the possibly lowered cost if it were subdivided further. This identifies the evaluation
as a greedy algorithm.

The cost function of Equation 4 is also commonly used for defining a termination criterion.
Subdivision is stopped once the lowest cost candidate split plane exceeds the cost of the parent
node if that parent node were to remain a leaf node. Retaining the previous notation where the
division by SAp is factored out, a potential termination criterion for SAH becomes as shown in
Equation 5. An example of this top-down BVH construction is shown in Listing 2.

C ≥ SAp · Ci · (Tl + Tr) (5)

Calculating the SAH for all potential split planes is computationally expensive: for n scene
primitives, there are n − 1 candidate positions to place the split plane along each axis with a
total of (n − 1) ∗ 3 candidates. Several optimizations have been proposed to limit the number
of split plane evaluations. A now common approach proposed by Wald et al. [28] is binning.
The space within the parent bounding box is split into k+1 uniform bins along the chosen split
axis, where n = min(T − 1, λ) and λ a user-configured integer. Rather than evaluating a split
plane at every primitive’s extents, potential split plane candidates are limited to the boundary
between every two bins. This reduces the number of split plane candidates for each hierarchy

6

level to k. A second potential optimization is to only consider split planes along the parent
node’s AABB’s longest axis. Typical values for λ are powers of two up to 16. With binning and
using the optimization to only evaluate the longest axis, ray tracing performance is reduced by
at most 9% and, on average, closer to 5%. At the same time, construction time decreases by
approximately a factor of ten for evaluated scenes [28].

As shown in the survey of BVH construction algorithms by Meister et al. [21], alternative
construction methods to the top-down construction in Listing 2 are used, but SAH is still fre-
quently used even for other construction approaches. Two primary causes of SAH being the most
used construction heuristic. First, evaluating the intersection probability of a single BVH node
is cheap, as calculating the surface area of an axis-aligned bounding box can be done using only
few operations. This is essential for situations where construction speed dominates performance.
Secondly, the work by Aila et al. [1] shows that a desired Pearson correlation coefficient of 0.99 r
between nanoseconds per ray and SAH is often achieved, indicative of a good correlation between
SAH cost and ray-tracing performance.

1.5.1 SAH Assumptions

If it is assumed that, based on the formulations by MacDonald and Booth [25], the surface area
directly models the probability of intersection and assuming exact values are known for Ci and
Ct, the cost function and termination criterion should theoretically give us the optimal BVH.
However, for the probability of intersection to be proportional to the surface area, the following
assumptions need to hold [25, 29, 1]:

1. Ray origins and directions are uniformly distributed.

2. Ray origins have to lie outside the scene’s bounding box.

3. Rays do not terminate inside the scene.

The first assumption means that all rays fired into the scene will have a uniform distribution
of origins and directions. A different distribution could skew the resulting probabilities. This
is similarly true for the second assumption, where rays starting from inside the scene are not
correctly estimated. The third assumption implies that ray intersections are tracked beyond the
first-encountered hit, as is required for multi-hit traversal.

1.6 Problem Definition

The Surface Area Heuristic has long been one of the main heuristics chosen to guide the construc-
tion of k-d trees and BVHs. Several suggested optimizations have made it reasonably inexpensive
to compute a SAH-based BVH [28]. Though a SAH-based cost function generally yields a BVH
with significantly better ray tracing performance than using median splits, it has been shown
that a lower SAH cost does not always lead to better performance. As addressed previously, the
research by Aila et al. [1] shows that despite a correlation coefficient r of 0.99 between SAH
and the measured nanoseconds per ray for several scenes, some scenes also show values as low
as 0.652. This while values of 0.90 and under were already observed for insufficient correlation
of metrics in practice.

Causes for this deviation are, in part, the assumptions listed in Section 1.5.1, which for ray
tracing will rarely all hold simultaneously. First, ray origins and directions rarely form a uniform
distribution. An example is tracing primary rays, which will originate from a single location
and directions limited to within the camera field of view. Countering the second assumption,
ray origins are often close to the objects to be tested for intersection and lie within the scene.

7

While primary rays commonly originate from outside the scene, diffuse, specular, and shadow
rays are cast from surfaces inside. This generally causes the total number of rays originating
from inside the scene to outnumber the ones starting outside it. The final assumption holds only
for multi-hit traversal but rarely for first-and any-hit traversal. Rays that miss all geometry will
satisfy this, but other rays should not pass through after the first primitive intersection. As an
example for these latter two traversal types, a primitive p fully occluding another primitive po
would make it impossible for a ray to intersect po, while SAH would indicate that its probability
is still proportional to po’s surface area.

In addition to these assumptions, SAH is evaluated for every level in the hierarchy separately
in a greedy fashion. The decision where to place the split plane assumes that the result of the
split is two leaf nodes rather than potential interior nodes that have to evaluate SAH for their
own split decision subsequently. The minimal SAH value on one particular hierarchy level may
not lead to a split plane that yields the minimization of SAH over the entire hierarchy. This
greedy approach may therefore yield a hierarchy inferior to a non-greedy approach. The exact
impact of this greedy approach is unknown.

To summarize, the minimization of the SAH cost can be used to produce BVHs that are
considered of high quality, but the implications of these assumptions make it so that SAH cannot
accurately model the ray tracing performance for all applications. Greediness means that a full
minimization of this cost function is rarely achieved and can further impact the quality of a
BVH.

The following chapters will further explore how our research relates to these assumptions,
which alternatives have already been created, and discuss the testing of and a testing framework
for assessing these alternative solutions.

8

2 Research Questions

The assumptions needed for SAH to be accurate and the non-greedy evaluation means there is
potential for higher quality BVHs, possibly depending on factors such as the ray distribution or
scene. As such, it seems necessary to accumulate the research of recent years into improvements
to SAH and alternative heuristics that can overcome the limitations mentioned in Section 1.5.1.
As SAH is still a frequently used metric for performance correlation, this research should also
show whether any of these alternative heuristics leads to a significant difference in correlation to
performance.

Finally, the greedy evaluation of SAH should be researched, as the greedy algorithm of List-
ing 2 only uses local minima. Mapping the impact compared to a non-greedy evaluation may
lead to finding potentially better ray-tracing performance.

This leads us to our main research question: how can we construct the optimal BVH for ray
tracing using existing heuristics and evaluation methods, regardless of construction time?

This research question is broken down into the following four research questions.

1. With which BVH construction heuristic can we obtain the optimal BVH in terms of ray
tracing performance for a specific scene and ray distribution, regardless of construction
time?

2. With which BVH construction heuristic can we obtain the optimal BVH in terms of ray
tracing performance for the average scene and with varying ray distributions, regardless of
construction time?

3. Which existing alternative heuristic results in the best correlation between the estimated
tree quality and actual ray tracing performance?

4. What is the impact of the greedy nature of top-down SAH-guided BVH construction on
the final tree quality in terms of the resulting SAH?

In Section 3, the previous work that covers all these research questions will be discussed.
Section 4 will detail an implementation for non-greedy evaluation and the impact of greediness,
and Section 5 will compare the alternative heuristics discussed in Section 3.

9

3 Previous Work

Over the years, multiple methods have been introduced to improve or completely replace SAH
as a heuristic. Construction algorithms that also modify the depth-first traversal algorithm of
Listing 1 are not discussed, as the primary interest is in what heuristic has the best correlation to
intersection probability and with that, BVH quality. Some discussed heuristics deviate slightly
from this, but in subsequent research, these have been adapted to standard depth-first traversal.

3.1 Universal Improvement

The first category of existing improvements to SAH that we define are heuristics or changes to
the BVH that can improve ray tracing performance for any ray type but do not necessarily for
every scene. To build the BVH, no information or assumptions are required about which rays or
with which distributions rays will be traced.

3.1.1 Split Bounding Volume Hierarchy

The Split BVH (SBVH) by Stich et al., [30] is a well-known extension to the BVH, although it
still uses the unmodified SAH as a heuristic to guide the partitioning at each hierarchy level.
Instead, it has the following changes compared to a regular SAH-based BVH:

1. Primitives are not restricted to be referenced by a single leaf node but can rather be
referenced by multiple.

2. Split planes can also split spatially rather than as sets of objects.

The removal of the restriction of the first change above does not functionally affect the
traversal of a BVH. Still, it is theoretically not a necessary restriction for a regular BVH, as
it will always split the object set such that duplication cannot occur. This is different for the
SBVH, which may split the object set spatially and have primitives that lie in both partitions,
having to reference that primitive in both resulting nodes.

The motivation for introducing this possibility of spatial splits is inspired by earlier research
by Ernst & Greiner [31]. Essentially, SAH for BVHs is found to rely on another assumption next
to the three listed in Section 1.5.1: BVH nodes that do not share their subtree are assumed not
to overlap.

When two such nodes do overlap, a traversing ray may intersect both child nodes at the same
intersection point. As a result, ray traversal must evaluate both child nodes for intersection.
For first-hit traversal, at most one child node will contain the desired intersection. This means
that the overlap of nodes can increase the number of traversal steps and primitive intersection
tests, decreasing ray-tracing performance. This fourth assumption is similar to the assumption
that rays do not terminate on intersection, but this adds to it as overlapping nodes lead to
unnecessary evaluations regardless of whether a primitive in either node was intersected or not.
The assumption is also specific to a BVH, as the nodes of a k-d tree would not be able to overlap.

The solution to such overlap by Ernst & Greiner uses a pre-processing step to deal with
large primitives that cause overlap. The SBVH is a continuation that takes a slightly different
approach. SBVH construction starts the evaluation of an object split; the same procedure as
the top-down construction of Listing 2. Using SAH, evaluate each candidate split plane and
select the best one to partition the objects into two sets. The first added step is to calculate the
overlapping area of the split plane induced nodes’ bounding boxes and measure its surface area.
If the overlap surface area over the surface area of the BVH root node exceeds the user-specified

10

1 FindBestSpl i tCandidate (Root , Node) :
2

3 pa r t i t i on1 , p a r t i t i o n 2 = FindBestSAHSplit (Node)
4 i f SA(Aabb(pa r t i t i o n 1) ∩ Aabb(pa r t i t i o n 2)) / SA(Root) ≥ α then
5 bins = Se l e c t Spa t i a lB i n s (Node)
6 c l i pp edPr im i t i v e s = Cl ipPr imit ivesPerBin (Pr im i t i v e s (Node) , b ins)
7 bestBin = nu l l
8 foreach bin in bins do
9 l e f t P a r t i t i o n , r i g h tPa r t i t i o n = c l i pp edPr im i t i v e s [bin]

10 i f SAH(l e f t P a r t i t i o n , r i g h tPa r t i t i o n) < SAH(bestBin) then
11 bestBin = bin
12 end
13 pa r t i t i on1 , p a r t i t i o n 2 = l e f t P a r t i t i o n , r i g h tPa r t i t i o n
14 return pa r t i t i on1 , p a r t i t i o n 2

Listing 3: SBVH Construction

α, a spatial split is evaluated as well. The spatial split first selects N spatial bins to divide the
primitives into. Next, any primitive spanning multiple bins is clipped to the bounding box of the
bin, and the clipped bounding box is used to evaluate SAH again per candidate split plane at
the boundaries of each spatial bin. The best split plane candidate amongst these is used as the
final split. Pseudocode for this algorithm can be found in Listing 3. The authors also propose
an optimization on top of this known as reference unsplitting, which further reduces the total
SAH cost.

The traversal of the BVH remains identical, as there are no changes to the intersection tests
and traversal decision-making. However, the number of references to a primitive doubles every
time it is clipped via a spatial split, increasing memory usage to some extent. Stich et al. show
that an SBVH improves performance by up to 39% for primary rays for standard scenes and
more for SAH worst-case scenarios. Vinkler et al. [26], while evaluating another heuristic in 2012,
show even more such worst-case scenarios in which the SBVH outperforms a regular SAH-based
BVH by up to a factor of four in ray tracing performance. The authors’ suggested α of 10−5

limits the average memory overhead to under 30%, though they report outliers of as much as
103%. Another downside is that this approach has been found harder to optimize than normal
BVH construction techniques. For traditional BVHs, the primary example is the LBVH [23] that
can construct a BVH in O(n) and is considered relatively straightforward to parallelize.

3.1.2 End-point Overlap

In 2013, Aila et al. [1] explored the idea that SAH may not be the only correlation factor for ray
tracing performance of BVHs. Similar to the intuition behind the SBVH, they also note that
overlap is a major factor but formulate a slightly more specific metric: the end-point overlap
(EPO).

EPO measures the overlap between triangles and sub-tree nodes that they are not a child of.
This means that similar to the SBVH algorithm, we perform clipping of the primitives against
the node volumes, but for EPO the metric involves clipping each primitive in the entire BVH
against each interior node that is not an ancestor. EPO is the total surface area of these clipped
primitives. A visualization of what EPO represents is shown in Figure 3.

Currently, EPO is purely a BVH metric and not implemented as a heuristic for BVH construc-
tion. It only intends to find a better correlation between BVH cost and ray tracing performance.
Aila et al. tested nine different construction algorithms, with and without explicit optimization
over SAH and both top-down and bottom-up algorithms. They found that incorporating EPO
into SAH through a linear function increases the Pearson correlation coefficients between the

11

Figure 3: A visualization of EPO. EPO is the marked area of t1 and t2 within aabbN

heuristic and scalar ray tracing performance from an average of r of 0.915 to 0.994 over their
tested scenes. Especially interesting is that the found worst-case correlation coefficient over all
scenes increased from an r of 0.652 to 0.988.

One caveat is that the combined metric requires a scene-dependent weighing factor α, as seen
in Equation 6,

(1− α) · SAH + α · EPO (6)

With 0 ≤ α ≤ 1. For the mentioned increase in correlation, α was hand-configured for every
scene. Using a single α of 0.71 for all scenes decreases the average Pearson coefficient to r 0.98,
which still significantly improves over SAH.

Along with the observed performance correlations, they also note that top-down BVH builders
are generally better at implicitly optimizing EPO. For these, the separation of primitives into min-
imal surface area bounding volumes does minimize overlap to some extent. Bottom-up builders,
on the other hand, start at the individual primitives and build upwards, which makes them
unable to minimize this overlap in the same manner as it recursively merges nodes upwards.

Currently, an EPO-based heuristic for greedy evaluation has not been construed. However,
this metric can still be used to gain insight into the implicit optimization of EPO for other
heuristics and evaluate their expected hierarchy costs compared to their ray-tracing performance.

3.1.3 Leaf Count Variability

Not only did Aila et al. [1] introduce end-point overlap, but they also introduced a quality metric
named leaf count variability (LCV). Modern raytracing is often parallelized, using single instruc-
tion multiple data (SIMD) or through other massive parallelization devices like the GPU. Even
with EPO, SAH does not correlate very well with ray tracing performance once executed using
instruction-level parallelism on the CPU Or GPU. This is mostly caused by how these methods
need to trace multiple rays through the BVH simultaneously: a performance hit will occur if
the rays simultaneously traced will differ in the number of leaf nodes that they intersect. The
instructions for SIMD-like architectures require operation in lockstep. Therefore, a ray-primitive
intersection can not be performed at the same time as a traversal step, and a performance hit
occurs when the number of leaf nodes is not uniform for all simultaneously traced rays.

Aila et al. summarize such a characteristic to the LCV metric in Equation 7,

12

LCV =
√
E[N2

l]− E[Nl]2 (7)

Where E is the expected value for the number of rays intersecting leaf nodes and Nl is the
number of leaf nodes intersected. In other words, LCV is the standard deviation of the number
of leaf nodes intersected per ray. To accurately predict the performance for SIMD-based ray-
tracing, LCV is then combined with EPO, SAH, and another scene-dependent weighting factor
β into the convex function shown in Equation 8.

(1− α− β) · SAH + α · EPO + β · LCV (8)

Measuring this for their tested set of BVH builders improves correlation coefficients even further
than EPO when raytracing is done using their SIMD raytracer. Compared to the combined
metric from Equation 6, correlation coefficients improve from a minimum of an r of 0.907 up to
0.988; and, on average, from an r of 0.979 up to 0.993.

The main downside of LCV is that it requires a form of sampling for the expected value of
the number of leaves intersected by rays, but the only way of evaluating this is by tracing rays
through the BVH. This makes LCV generally only suitable as a quality evaluation metric of a
constructed BVH and not something to optimize during construction.

3.1.4 Scene-Interior Ray Origin Metric

(a) The middle slice of regions for the high-quality
approximation

(b) The region and difference in solid angle evalua-
tion for the fast approximation

Figure 4: A 2-dimensional slice of the subdivided regions of the parent bounding box used for approx-
imating the scene-interior ray origin metric

Fabianowski et al. in 2009 [29] changed SAH’s assumption of rays starting outside of the scene
and proposed an approximation specifically for rays starting inside the scene. This change is,
in particular, beneficial for the previously mentioned use case of diffuse rays that will originate
from surfaces within the scene.

They first derive that the intersection probability between a ray origin x and a BVH node
N is equal to the fractional solid angle between the ray origin and N , assuming ray directions
are still uniformly distributed. This can be computed by projecting N ’s visible faces onto a unit
sphere centered around x and summing the covered surface area of each projected face. Doing
this for every possible ray origin xi that lies outside the bounding box of node N but inside

13

the scene bounds S. Averaging this and normalizing for the scene bounds leads to equation
Equation 9.

pN ≈ V (N)

V (S)
+

1

V (S)

∫
S\N

ax
4π

dx (9)

S are the scene bounds, N is the node in evaluation, V is the volume of the respective bounding
box, and ax is the solid angle of all faces of N projected onto the ray origin x. Specifically, ax
is the surface area of N visible from x. The integral is used to average this for all points inside
the volume of S but outside of N , measuring the average visible surface area of the entire node
N within the scene bounds. This causes the heuristic, in contrast to SAH, to assume ray origins
always lie within the scene bounds.

The integral in Equation 9 is one that cannot be expressed through elementary functions
such as summations, meaning it has no closed-form solution. Instead, two approximations are
defined: one that favors BVH quality and another that favors BVH construction speed.

Their first approximation is considered the higher quality approximation of Equation 9. The
faces or N are extended to planes, which split the 3D space around node N into 26 regions of
possible ray origins within S, as displayed in Figure 5 as 3D visualization of the regions and
Figure 4a as a 2D slice of a subsection of these regions. Each region Ri contains the origins
x0..26 from which a single face or unique tuple of faces Ni is visible. Rather than evaluating all
possible ray origins x within a region Ri, only the center of each region Ri is used to find a solid
angle ai per region. This results in the formula in Equation 10.

pN ≈ V (N)

V (S)
+

1

V (S)

26∑
i=1

V (Ri)
ai
4π

(10)

Here, V is again the volume of the bounding box or respective region formed by the subdivision
of S.

Figure 5: A 3D view of a slice of the regions at one side of the bounding box with each region center
xi

The second proposed approximation is less accurate but can offer lower construction times.
Rather than also considering the crossing of the planes of N as separate regions, only the six
overlapping regions R′

i are considered that each contains the origins x from which the respective

14

face Ni is visible. In other words, there are six regions, with each region R′
i corresponding to

the volume of points from which at least the face Ni is visible; one such region is displayed in
Figure 4b where x0 represents one of the possible ray origins in the region R′

0. These regions
can also be described as the union of regions from the high-quality approximation from which
the face Ni is visible. Given Figure 4a, the slice of the four regions displayed would change to
R′

0 = R0 ∪ R1 ∪ R2, R
′
1 = R0 ∪ R3 ∪ R5, R

′
2 = R5 ∪ R6 ∪ R7 and R′

3 = R2 ∪ R4 ∪ R7, meaning
that unlike the previous definition, the regions overlap. Note that the respective 3D regions
are a union of more regions, but this description is limited for illustration purposes to only the
regions that are shown in Figure 4a. Additionally, the solid angle is approximated using the
relative surface area of the face Ni to its corresponding region R′

i; see equation Equation 11.
This approximation relies on the property that the center of a larger region will lie further away
from the AABB of N , amounting to a smaller solid angle. This means that both the surface area
ratio and solid angle have a positive relation to the size of the region R′

i relative to the AABB
of N .

pN ≈ V (N)

V (S)
+

1

V (S)

6∑
i=1

V (R′
i)
SA(Ni)

SA(R′
i)

(11)

The authors integrated this modified heuristic into a k-d tree builder. For the majority of their
tested scenes, they achieved a reduced number of traversal steps and intersections performed.
Outliers show decreases in traversal steps by as much as 25%, intersections by as much as 21%,
and an FPS increase of up to 7.5%. However, the performance increase can vary significantly,
as seen from the average results and standard deviations in Table 1. The average performance
difference between the two approximations is rather small, and one test case even shows situations
in which the fast approximation of Equation 11 does not yield any performance increase, while
their higher quality approximation of Equation 10 does. It should be noted that their reported
results in terms of FPS may give a false impression compared to measurements such as rays per
second [32].

The authors’ tests were limited to primary, shadow, and reflection rays. The type of reflection
rays tested for is unspecified, but it is assumed from the images that these are specular. Similarly,
these images show that the camera seems to be placed inside the scene bounding box, which would
also cause all ray origins to lie inside it, favoring their described metric. As not all real situations
have the viewpoint inside the scene, there may be a measurable impact on primary rays with
this metric. Additionally, assuming the reflection rays they tested for are considered specular
reflection rather than diffuse, there may be ray distributions such as diffuse reflections that are
more uniformly distributed throughout the scene, more closely matching the intended use.

Finally, it seems possible for this new metric to be merged into the metric with EPO and
LCV in the form of Equation 8, possibly finding an even better correlation.

Traversals Intersections FPS
Plane Primitive

HQ Approximation Average -7.7% -10.4% -7.1% +3.5%
HQ Approximation Stdev. 11.8% 8.7% 3.4% 2.7%

Fast Approximation Average -11.0% -4.1% -5.2% +3.2%
Fast Approximation Stdev. 10.4% 17.3% 5.6% 2.6%

Table 1: Performance characteristics of using the interior ray metric compared to SAH and standard
deviation for the metric measured. Measurements by Fabianowski et al. [29].

15

3.2 Fixed Ray Distribution

SAH is used because it approximates the intersection probability given that the distribution of
rays is uniform, which as discussed in Section 1.5.1, is rare in practice. Instead of changing
the cost metric to another generalized model, this assumption of SAH can also be alleviated by
building a BVH for a specific ray type or set of rays. This means a BVH may only be optimal
for a given set of rays and decrease in performance when the scene or camera changes, though
the BVH may be reusable at least partially if there exists temporal coherence between frames.
Alternatively, a BVH built for one type of ray can still be preferred if that ray type dominates
the other distributions the BHV is used for or by having multiple BVHs, one per ray type.

3.2.1 Preferred Ray Sets

Bittner & Havran first demonstrated specialization for ray distributions in 1999 by adjusting
SAH to a preferred distribution or ray set [33]. They introduce metrics for three distributions of
rays, of which two are relevant to primary rays: correcting for parallel projection and perspective
projection. Their third metric is similar to what was done later in the work by Fabionowski et
al, see Section 3.1.4, where they specialize the acceleration structure for a uniform distribution
from inside the scene. The spherical distribution is covered more extensively by the metric
by Fabionowski et al. for the ray distributions of interest, so we will focus specifically on the
modifications by Bittner & Havran for primary rays.

For parallel and perspective rays, they observe that the probability of intersection can be
found through the projection of a node N AABB onto the parallel or perspective projection
plane and then clipping it to the viewing frustum. The probability of the ray intersecting a
node N can then be expressed using Equation (12), where pN represents the new probability of
intersecting node N , SAprojected is the projected surface area of N onto the projection plane and
S the bounding box of the root node.

pN =
SAprojected(N)

SAprojected(S)
(12)

Though they only perform tests in four different scenes, the primitive intersection tests per ray
are observed to decrease by 29% on average and traversal steps by 16%.

This work is interesting because it shows the possibility of improving ray tracing performance
through simple heuristic changes but is limited to primary rays. Despite that, using this as a
separate BVH that only traces primary rays or a weighted combination, with the change proposed
by Fabianowski et al. mentioned in Section 3.1.4 seems like an option worth considering if the
performance for primary rays significantly improves.

3.2.2 Ray Distribution Heuristic

The aspect of specializing an acceleration structure to a specific ray distribution was concep-
tualized through the Ray Distribution Heuristic (RDH) by Havran & Bittner [34], which they
suggested for the construction of k-d trees. They present the notion of a representative ray set
(RRS); a subset of the to-be-cast rays that accurately represents the total ray distribution. The
RRS has several possible definitions for an animation frame i:

• The RRS for frame i is a subset of the rays cast in frame i.

• The RRS for frame i is a subset of the rays cast in frame i− 1.

• The RRS for frame i is a subset of the rays cast in all animation frames.

16

Given an RRS with one of the above definitions, a split plane candidate is evaluated by
determining which rays intersect the bounding box of the left partition and which intersect the
right partition. The probability of intersection is then estimated per Equation 13.

pRDH
{L|R} =

|R{L|R}|
|R|

(13)

RL and RR are the set of rays intersecting the left and right child node, respectively, and R is
the set of rays intersecting the parent node. A visualization of the RRS per child node can be
seen in Figure 6.

The resulting probability itself is not found to be a fully suitable heuristic, so an interpolation
between the probability found through RDH and SAH is used; see Equation 14. The weight, w, is
defined by a separate function listed in Equation 15, with α and β being pre-configured constants.
With the author suggested values of α = 0.9 and β = 0.1, this results in a function that strongly
decreases the influence of RDH on the estimated probability once the RRS shrinks to below one
hundred rays. The cost function remains the same as in Equation 2, where p = pRDH .

pRDH
{L|R} = w · pRDH

{L|R} + (1− w) · pSAH
{L|R} (14)

w = α · (1− 1

1 + β
· |R| (15)

Their experiments compare their method to only a BVH build using SAH to guide split plane
decision-making. The average rendering time for only primary rays was observed to go down by
approximately 15%, though the results include scenes with increases of over 10% and one with a
decrease of over 44%, showing that variance can be high. It is also observed that RDH performs
better relative to SAH when there is relatively high occlusion in the scene. The authors also
show that the RRS can be subsampled with low impact on performance. Reducing the RRS
by sampling only one ray per 4x4 pattern still gave results that outperformed SAH by 6% on
average.

When shadow rays and three diffuse bounces are included to simulate path tracing, the
performance compared to SAH is actually worse by 5%. If this performance were equal, it
would be explained by the combination of ray distributions being more uniform compared to
only primary rays, closer to the SAH assumption about ray uniformity. However, the worse
performance than SAH may be caused by the 4x4 sampling pattern of the RRS that is used;
results for higher densities other than for casting only primary rays are not presented. Although
the primary rays may follow a coherent pattern, the diffuse rays, for example, will be much more
uniformly scattered, possibly requiring more dense sampling for better results.

Another possible influence is how the subsampling is performed. When subsampling the
rayset by subsampling the set of primary rays, the number of diffuse bounces varies more greatly
per primary ray than the in the original RRS. Especially for second and third bounces, the
intersections of rays with nodes may be sparse and a reduction by one ray may significantly
influence the approximated intersection probability. The path tracing results for highly occluded
scenes are not included, which are scenes that may result in a higher ratio of primary rays leading
to first, second, and third diffuse bounces.

The reported measurements are not separated by ray distribution. If the RRS consists of
significantly more primary rays than those of other distributions, the primary rays may improve
more than, for example, shadow rays. Since RDH specifically aims to capture the ray distribution
and the observation of the authors regarding the uniformity of rays for additional diffuse bounces,
it may be worthwhile building and tracing per ray distribution separately.

17

Figure 6: A visualization of the representative ray set for each child node

One important note regarding the weight function is that this might not necessarily translate
directly to BVHs. For k-d trees, the union of the sets of rays intersecting the left and right child
nodes is the set of rays intersecting the parent node. This union may be a proper subset for
a BVH, as the union of child node bounding box volumes does not necessarily form the parent
bounding box. As a result, weighing by the number of rays intersecting the parent node may be
incorrect.

3.2.3 Occlusion Surface Area Heuristic

As covered in the previous sections, occlusion is a significant factor for rays traversing a BVH.
With a different approach, Vinkler et al. [26] introduced the Occlusion Surface Area Heuristic
(OSAH). The general idea is to add a visibility term to the building process by using visibility
information from the previous frame to guide the building of the BVH instead. This is similar
to the RDH process of using a representative ray set.

As noted by Vinkler et al., a BVH of only the visible primitives is shallower and implicitly
requires fewer traversal steps during traversal. Their approach is a cost function that favors
placing the invisible triangles in a subtree separate from the visible ones. The cost function is as
per Equation 16.

p{left|right} = w ·
NV

{left|right}

NV
left +NV

right

+ (1.0− w) ·
SA{left|right}

SAN
(16)

NV
left and NV

right are the number of visible primitives in the respective partition for the candidate
split, SA the respective surface areas, N the current node we are evaluating the cost for and w
a user-defined weight to blend between the SAH factor and the visibility factor. The authors
use a weight of w to 0.9 but also mention that this is scene dependent. In any situation, a value

18

of 1.0 is not advised, as the SAH term should be included for tie breaks. This formula is and
cannot be used if all triangles in the parent node are either considered visible or invisible. In
these situations, SAH is used.

Similar to how the surface area is the probability of intersection relative to the parent node,
the number of visible triangles can be used in the same manner. The higher the estimated number
of triangles that will be intersected, the higher the probability that a node will be intersected.
This is also similar to RDH, except that the construction does not rely on the size of the ray
set and that the assigned visibility is binary. This binary visibility has the property that fully
separating visible from invisible triangles leads to a low cost, as the fraction for the node with no
visible triangles is zero at w = 1. A downside is that nodes that are intersected very infrequently
are considered equal to those intersected for nearly every ray and by the notion of the OSAH
factor in Equation 16, would be optimized the same.

To counter this, the algorithm applies a depth limit and a viability condition. The viability
condition first determines whether an OSAH split is worth considering and uses SAH otherwise.
Both the best splits using SAH and OSAH are computed and the OSAH split is only performed
if OSAH is considered to hide more primitives. For OSAH, the number of hidden primitives
is considered to be the number of primitives in the found child node with the lower number of
visible primitives, as it aims to hide these from the traversal path of visible triangles. For SAH,
this is considered the maximum over the number of primitives in each split-plane induced child
node, as these triangles are hidden and excluded from the hierarchy for the sibling node assuming
that the node with more triangles contains the primitives that are not desired to be encountered
during traversal. This condition is summarized in Equation 17.

Nh =

{
Tleft if NV

left < NV
right,

Tright else

Nh > max(TSAH
left , TSAH

right)

(17)

TSAH
left|right are the respective numbers of primitives in the left and right partitions for the best

SAH split and Nh is the number of primitives hidden from the traversal path for visible triangles
by the best OSAH split. In an ideal situation, Nh only considers the invisible triangles due to
the OSAH cost favoring a full split between invisible and visible if possible.

The authors implement OSAH specifically for an SBVH, though there is no notion that it
does not transfer to a regular BVH. Compared to the SBVH by Stich et al., render times decrease
by about 17% in high-occlusion scenes. They also conduct their tests to measure the results for
specific ray distributions: primary, shadow, ambient occlusion, diffuse, and path tracing, with
each showing improvements between 13% and 18% and high consistency between different ray
distributions.

There is no mention of experiments with OSAH in a normal BVH, which may indicate that
the performance increase for this is suboptimal. Experiments will have to show whether the
difference in impact is substantial.

3.3 Shadow Rays

Some heuristics that have been researched are specialized to shadow rays. Shadow rays are
specifically used to test for any obstruction between a ray origin and the endpoint, the light
source. Unlike primary and diffuse rays, it is irrelevant which primitive is intersected first but
rather whether any object is hit along this path at all. For shadow rays, the traversal can be
terminated once any intersected objects have been found, which is used as a property for the

19

following heuristics to optimize ray traversal. Other optimizations are used explicitly during the
construction of the BVH.

Though the interest of this research lies explicitly in the construction of the BVH and not
its traversal, it is briefly discussed how these modifications of traversal can be used during
construction only instead.

3.3.1 RTSAH

The ray termination surface area heuristic (RTSAH) by Ize & Hansen [35] is a heuristic that
exploits the aspect of being able to terminate rays early for shadow rays. This modifies the
traversal by determining at BVH traversal which node has a lower cost for testing an intersection,
favoring nodes with high probabilities of intersection as these allow the traversal to terminate.
SAH is used to determine these probabilities of intersection.

For interior nodes, several probabilities are first defined for a ray to pierce its child nodes:
plr is the probability of hitting both left and right child nodes, pjl that of hitting only the left
child and pjr that of only hitting only the right child node. The latter two can be expressed in
terms of plr: p{jl|jr} = p{l|r} − plr, with pl|r the probabilities of intersecting the left or right,
regardless of whether the other child node was intersected. They also define the probability of
intersecting empty space as pe = 1− (pjl + pjr + plr). These definitions are then used to define
separate costs of entering the left and right child nodes, which can be used to determine the cost
of entering either child node first, as described in Equation 18.

{left|right}First = Ct + p{l|r} · C{l|r} + p{jl|jr} · (Ct + C{r|l}) + Pe · Ct (18)

Ct is again the cost of traversal and p{l|r} · C{l|r} the cost of having to traverse the respective
left or right child node. leftF irst and rightF irst are the respective costs of traversing the left
or right child node individually. At the time of traversal, only the minimum cost amongst the
child nodes matters. The result is that child nodes with a lower cost are explicitly traversed
before those of lower intersection probability, leading to potentially fewer traversal steps and
intersection tests. The traversal of paths through the BVH that have significant empty space are
penalized, as these are unlikely to lead to an intersection and, therefore, an early termination.
To evaluate the probabilities pjl and pjr of the cost function in Equation 18, the probabilities pl
and pr need to be determined, which is done through SAH.

They also propose an approximation where they set pe = 0, meaning the probability of
traversing empty space when going to a child node is zero and removes the need for computing
the previously mentioned form factors, improving construction times.

Their experiments compare the front-to-back traversal of a SAH-constructed BVH to their
modified traversal. In their four test scenes for BVHs, speed-ups between 44% and 50% were
observed compared to standard traversal for a SAH-constructed BVH. The approximation has a
performance impact compared to the full evaluation between 10% and 16%. It should be noted
that the speed-ups compared to SAH are almost entirely from shadow rays that do intersect with
geometry, as this leads to earlier termination than normal SAH. For shadow rays that do not
intersect geometry, the speed-up is negligible, as there is no early termination of traversal.

Changing the BVH’s traversal order falls outside the scope of our research. Still, a promising
aspect of the proposed cost function is that it represents a probability of intersection that can
be used as a heuristic. With as in Listing 1, it can be assumed that traverse the left child node
is always fully traversed before the right child node. This allows for using RTSAH as a BVH
construction heuristic that also considers the ordering of child nodes or does this as a post-process
step. In other words, during construction, the lower cost child node should be set to be the left

20

child node and the higher cost as the right, based on the assumption that the left child node’s
path will always be traversed first.

3.3.2 Surface Area Traversal Order

Surface Area Traversal Order (SATO) by Nah & Manocha [36] is a modification to RTSAH that
primarily aims to reduce the pre-processing performance of RTSAH. Despite the aim of reduced
times, the cost function is significantly changed from RTSAH and shows different performance
characteristics. Three different traversal order schemes are presented, but this will focus on the
traversal order that leads to improved ray-tracing performance over RTSAH.

SATO is heavily based on the two properties that can be observed with SAH-based construc-
tion:

1. Higher-level nodes of the hierarchy are more likely to contain large primitives.

2. The probability of a node containing larger primitives in its subtree is directly related to
the surface area of the node’s bounding box.

They use this to define their PrimSATO submetric, which assigns a lower cost for the traversal
of the node with the higher average surface area of primitives within that subtree. In other words,
if the average surface area of all primitives of all leaf nodes in the left subtree is higher than that
of the right, we traverse to the left node first. Due to the listed assumptions, this should give
the quickest path to finding a potential occluder for shadow rays. They also propose using the
maximum surface areas rather than the average.

The result of PrimSATO is directly used as the traversal order function, similar to the one
listed for RTSAH in Equation 18. The results for PrimSATO show that it slightly outperforms
RTSAH and outperforms front-to-back traversal of a SAH-built tree by a factor of 1.52 on
average. The results of using the maximum surface area are slightly less consistent and show
lower performance gains.

Like our comment for RTSAH, the authors note that a BVH can be built such that the left
node is the best option to traverse first without needing any runtime information. This again
leaves us options for experimentation to compare against other methods.

3.3.3 SRDH

The Shadow Ray Distribution Heuristic (SRDH) by Feltman et al. [37] can be seen as a com-
bination of RTSAH and RDH. Their approach uses a second BVH specifically for shadow rays,
which the representative rayset is used on.

Similar to RTSAH, costs are determined for traversing a particular child node. They gener-
alize the general decision-making of traversal as a kernel function, which will determine whether
the left or right child node is to be evaluated first by returning a value between zero and one for
a ray r. similar to the RTSAH cost function in Equation 18. For example, if we desire to traverse
front-to-back with ray r with node N , the kernel function will return one if the left child node
of N is closer to the origin of r and zero if the right child of N is closer. This kernel function
can be defined on a per-node basis.

This definition can then be used for a cost model for estimating split plane costs like for
RDH and SAH. Given a representative ray set R, the total split plane cost for a ray r ∈ R is a
combination of the kernel function as defined above, the ray hitting the sibling node and the ray
hitting a primitive within the subtree of the child node. This leads to the total cost function in
Equation 19

21

1 SRDHBuild (P, R) :
2

3 i f l ength (P) < s p l i t t i n gTh r e sho l d then
4 return CreateLeaf (P)
5

6 minCost = ∞
7 b e s t Sp l i t = nu l l
8 foreach (l e f t P a r t i t i o n , r i g h tPa r t i t i o n) in Objec tPar t i t i on s (P) do
9 foreach ke rne l in ke rn e l s do

10 i f R i s empty then
11 co s t = SAH(l e f t P a r t i t i o n , r i g h tPa r t i t i o n)
12 e l s e
13 co s t = SRDH(l e f t P a r t i t i o n , r i gh tPa r t i t i on , kerne l , R)
14 i f co s t < minCost
15 minCost = cos t
16 b e s t Sp l i t = (l e f t P a r t i t i o n , r i gh tPa r t i t i on , ke rne l)
17

18 r r s L e f t = RRSExcludingIntersectWith (R, (1 − b e s t Sp l i t . k e rne l) , b e s t Sp l i t . k e rne l)
19 r r sR ight = RRSExcludingIntersectWith (R, b e s t Sp l i t . kerne l , b e s t Sp l i t . r i g h t)
20 return Crea t e I n t e r i o r (SRDHBuild (b e s t Sp l i t . l e f t , r r s L e f t) , SRDHBuild (b e s t Sp l i t . r i ght

, r r sR ight) , b e s t Sp l i t . k e rne l)

Listing 4: Building a BVH with SRDH as heuristic

CSRDH(Pleft, Pright, k, R) =
∑
r∈R

(1− k(r) ·H(Pright, r)) · I(Pleft, r) · |Pright|

+(1− (1− k(r)) ·H(Pleft, r)) · I(Pright, r) · |Pright|
(19)

Pleft and Pright are the respective sets of primitives of the two partitions for a candidate split
plane, and k is the kernel function for N . Furthermore, H and I are binary functions, where H
returns one if there is at least one intersection between r and the set of primitives and I whether
r intersects the bounding box of N ; both return zero otherwise.

The build process iterates over all possible combinations of split plane positions and kernel
functions. Though the set of possible kernels is not fixed for the build process, the authors note
the examples of front-to-back, back-to-front, and a constant function (i.e., always select right or
left, independent of the ray). This is one of the main differences between RTSAH and SATO, as
SRDH dynamically changes the traversal scheme locally.

Once the lowest cost combination of split plane and kernel is found, we can recurse into the
created child nodes Nleft and Nright, with Rleft = {r ∈ R|k(r)H(p2, r) ̸= 1} and Rright = {r ∈
R|(1−k)(r)H(p1, r) ̸= 1} respectively. If the input RRS R is empty, SAH is used instead, similar
to RDH using SAH as a fallback. Pseudocode for this algorithm can be found in Listing 4. It
should be noted that the only stopping criterion for splitting into partitions is the number of
primitives that remain.

on traversal, we evaluate the kernel function k stored in each interior node to continue. The
authors note that a separate BVH is needed next to this one because the traversal function is
specific to any-hit traversal.

Their experiments show a speed-up of 41% compared to back-to-front and 44% compared to
RTSAH traversal. These speed-ups are significant, but curiously, RTSAH performed worse than
back-to-front traversal, with the latter being constructed through a SAH-built BVH.

Finally, we have also found it to be shared among these traversal order techniques that there
is the potential to re-order child nodes instead of storing which node is best to traverse. This is
no less true for SRDH, and an extension had been proposed by Ogaki & Derouet-Jourdan [38].
The changes reflect almost identically to those we stated for RTSAH and SATO.

22

3.4 Non-greedy SAH Computation

As noted previously, SAH as a cost function is applied is done greedily. The exact impact of this
greediness has been unknown. Only brief notes, such as in the work by Wald in 2009 [28], state
that in certain situations, the greediness performance impact can be observed when fewer split
plane candidates are evaluated than the total number of possibilities.

The computation of a non-greedy SAH acceleration structure was briefly explored in Havran’s
Ph.D. thesis [27]. The nature of the cost function in Equation 1 is subsequently shown to require
solving an NP-hard problem, with no polynomial-time algorithm known. This means that
finding a solution for a sizeable n is infeasible. In practice, Equation 1 has to be evaluated for
all possible hierarchies to find the lowest cost BVH. This constitutes a combinatorial problem
in which the combination of split plane positions at every possibly created level in the hierarchy
makes evaluation infeasible for any regular test scene.

Ng & Trigonov further show that the number of combinations is at least exponential [39].
Other than the research by Havran and proof by Ng & Trifonov, there is relatively little

exploration of this topic, though there has been research on producing lower SAH cost hierarchies
than top-down greedy construction.

Another approach for BVH construction with SAH cost values lower than top-down greedy
construction was proposed by Ng & Trifonov [39]. They use stochastic search and evolutionary
methods that find the best split plane with lower costs than the greedy approach. It is also
shown for these evolutionary algorithms, the convergence speed to a local optimum depends on
the scene. Yet, there is no method to escape these local minima.

In 2017, Wodniok & Goesele [40] suggested the possible SAH BVH by using temporary
subtrees to evaluate the SAH for each split plane position candidate. A temporary BVH for
the left and right partition at each split plane position candidate is constructed greedily. The
split plane position with the minimum cost for its left and right sub-hierarchies is chosen as the
split plane. This allows results in a partially, non-greedily evaluated BVH in O(n log2 n), but
does not yet pose the optimal. The sub-trees at every split-plane location are greedy, imposing
the same greediness implications only one level down. Additionally, binning is used for feasible
construction times, which does impact the total SAH cost negatively.

Finally, Kensler [41] uses simulated annealing with tree rotations for optimizing local SAH
beyond local minima and Meister et al. [2] use this further to create a baseline SAH cost for
BVH hierarchies. This improves the global SAH cost beyond top-down construction, but similar
to the previously discussed methods, this is not guaranteed to find the optimum.

3.5 Final Notes

The discussed alternative heuristics each address individual weaknesses of SAH. While these all
lead to improved performance, some are limited with regard to the extensiveness of performance
tests, and the heuristics are not evaluated against each other.

The nature of the greedy evaluation method has not evaluated extensively either. While the
other discussed methods can achieve lower than the construction algorithm of Listing 2, they still
do not guarantee the escape of local minima, and the exact distance from the global optimum
remains unknown.

23

4 Non-greedy SAH

In this section, the potential improvement of using a non-greedy evaluation method for calculating
the lowest SAH-cost BVH is experimented with and analyzed quantitatively.

As discussed previously, a cause for non-optimal BVH performance can be the greedy nature
of SAH-based construction methods. The evaluation of SAH in a non-greedy manner has been
briefly discussed in the thesis by Havran [27], who concludes that there is no known polynomial-
time algorithm to find a global optimum. The only known method is a combinatorial evaluation of
all split-plane candidates for every axis. Additionally, with a SAH-based termination condition,
all potential termination criteria must be similarly evaluated. The work by Ng and Trifonov shows
that the lower bound for the number of split-plane candidates to evaluate lies is exponential for
only one axis. Consequently, even evaluating scenes with few primitives can require significant
computation time. To explore the impact of greediness, our research focuses on scenes with very
few primitives with high numbers of different configurations to measure the impact of the greedy
approach on a small scale. This can give insight into the potential gains a non-greedy algorithm
may yield in practice. Additionally, a measurable difference for a low number of primitives
and the near-linear relation between the number of primitives and SAH in a scene, then such
differences should only increase.

4.1 Implementation

Our implementation for iterating all potential split plane combinations starts with an initial
configuration: a BVH in which every split plane is placed between the first and second primitive
of the sorted primitive subset. See Figure 7a for an example with five primitives. To find a
new configuration of split planes, post-order tree traversal is used to find the first node whose’
split plane position can be incremented to a new valid position. The split plane is moved, and
the traversal is terminated. Valid split plane positions lie between 0 and n − 1 for a subset
of n primitives. If the traversal encounters a node that does not have a next valid split plane
position, the split plane position for this node resets to its initial configuration, 0, and the post-
order traversal continues to the next node. Figure 7b shows the first new configuration of split
planes found after the initial configuration in Figure 7a. Once the algorithm is back at the initial
configuration of the BVH, the traversal has finished, and all options have been evaluated.

The primitives in each node are initially sorted along the x-axis, but this does not yet guaran-
tee the discovery of all split plane combinations, as the result can be different along all canonical
axes. Therefore, once a node has no next valid split position left, the axis is iterated next rather
than moving on to the next post-order traversal node. Once all split plane candidates over all
axes have been evaluated for a node, the traversal continues as previously described. Pseudocode
for the algorithm can be found in Listing 5.

24

1 FindNextSplitPlaneCombination (i n i t i a lCon f i g u r a t i o n , p r im i t i v e s) :
2 whi l e nextNode = PostOrderTraversa l (s p l i tCon f i g u r a t i o n)
3 i f Sp l i tP l anePo s i t i on (f i r s tNode) < NumberOfPrimitives (f i r s tNode) − 1
4 In c r ementSp l i tPos i t i on (f i r s tNode)
5 break
6 e l s e i f Sp l i tP laneAx i s (f i r s tNode) < 2
7 Rese tSp l i tP l anePos i t i on (f i r s tNode)
8 IncrementAxis (f i r s tNode)
9 break

10 e l s e
11 Rese tSp l i tP l anePos i t i on (f i r s tNode)
12 ResetAxis (f i r s tNode)

Listing 5: Iterate over all split plane candidates for a BVH

(a) The initial configuration (b) The state after the first iteration

Figure 7: Two steps of the algorithm of the split-plane exploration algorithm. Note that the object set
at the root is assumed to be sorted by the evaluated axis, and for illustration purposes, only one axis is
evaluated. The red marker indicates the current position of the split plane in the primitive set or subset.

At each discovered configuration, the BVH’s SAH cost is calculated as per Equation 1. Only
the minimum SAH cost BVH so far is kept.

4.2 Termination Criteria

Finding the non-greedy SAH build has little relation to building it greedily and no longer involves
a heuristic or cost function to evaluate; the total SAH is only calculated after construction. As
such, the SAH build termination criterion of Equation 5 can not be applied for non-greedy
evaluation. The other discussed termination criterion of stopping the subdivision when a node
shrinks to below a predefined number of primitives can still be applied. However, the greedy
algorithm using the cost-based termination criterion may be capable of constructing a BVH with
a lower SAH-cost value than the one from the non-greedy approach.

The non-greedy algorithm should, therefore, also iterate every possible threshold for the
number of primitives in a leaf in the same manner as is done for the evaluation of axes. The
number of combinations increases similarly, but instead with a n − 1 recurrence, where n is
the number of primitives in this subtree. This also leads to evaluating configurations unlikely
to yield a decrease in the total SAH cost for many scenes. As an example, for a scene of a
thousand primitives in which greedy SAH would have at most three primitives in a leaf node,

25

1 PruneSpl itPlaneCombinations (currentMinSAH) :
2 newBVH, le ftNode , r ightNode = nextSp l i tP lane ()
3 i f SAHCost(newBVH) > currentMinSAH
4 sk ipSp l i tP l ane sFor (l e f tNode)
5 sk ipSp l i tP l ane sFor (rightNode)
6 e l s e
7 currentMinSAH = min(SAHCost(newBVH, currentMinSAH))

Listing 6: Pruning subtrees with split plane candidates

not subdividing the root node will be an evaluated configuration that is severely unlikely to yield
a better BVH.

To partially combat this at the cost of losing the full guarantee at finding the optimal SAH
cost, we estimate the termination criterion using greedy SAH. From the greedy evaluation, the
maximum number of primitives of all leaf nodes is obtained. During iteration, the termination
criterion is then dynamically using the following:

i = min(i+ 1, max(Tn)
N∈Ngreedy

L

(20)

Where i is the number of primitives per leaf, Ngreedy
L is the set of leaf nodes in the greedily

constructed BVH, and T is the number of primitives in leaf node N . This definition ensures
that, at worst, the non-greedily constructed BVH’s cost equals that of the greedily constructed
one.

4.3 Split Plane Configuration Pruning

An immediate observation from Equation 4 is that the SAH cost of any subset of nodes is always
equal to or lower than the containing tree. When a new split plane option is evaluated via the
algorithm in Listing 5, two new subtree roots will be below that node with different SAH costs.
Suppose the newly created subtree root nodes combined with the existing nodes outside these
subtrees have a SAH cost higher than the minimal total SAH cost found so far. In that case, a
better SAH cost will never be found by evaluating the candidate split planes in the child nodes
of these newly created subtrees. Therefore, configurations of the current BVH containing these
newly induced nodes in it do not require further evaluation and are pruned by advancing the
iteration of Listing 5. Pseudocode for this pruning algorithm is in Listing 6.

Another observation is that a BVH constructed using greedy evaluation will be amongst the
evaluated BVHs for non-greedy evaluation. As the greedily evaluated BVH is likely of low-cost
compared to arbitrary configurations encountered during non-greedy evaluation, the initial found
lowest cost can be set to the SAH cost found for the BVH constructed using greedy evaluation.
As a result, candidate split planes that cannot improve to or below the SAH cost of the greedily
evaluated are pruned and, therefore, never evaluated. This is illustrated in Figure 8. In this
example, if the SAH cost of nodes N1..6 summed, as per Equation (1), exceeds the cost of any
previously found BVH, the nodes containing t1 and t2 are pruned from further evaluation and
the next split plane is found using Listing 5 starting from node N5.

A downside of this method of pruning of candidate split planes is the inconsistency, as the
number of branches of split plane combinations pruned depends on the calculated SAH costs
during the traversal. This makes it heavily dependent on the scene that it is used for and it is
currently unknown how many of the potential split plane candidates may be pruned. However,
the end result remains the same and the number of combinations of split planes never increases.

26

Figure 8: An overview of how the branches are pruned. The SAH of the nodes in the red marked area
is summed, as per Equation (1). If these nodes’ combined SAH cost exceeds the best-known SAH cost,
the nodes outside of the marked area are not evaluated.

4.4 Testing Methodology

Our tests aim to find the overhead of calculating the SAH cost of a scene greedily. Despite the
introduced optimizations of 4.3, the construction of the non-greedy optimal BVH for a scene with
only 15 triangles was observed to require the evaluation of trillions of built BVHs and may still
grow exponentially with the number of primitives, a far cry from the modern-day scenes with
millions of triangles in them. However, some of the impact of the standard SAH’s greediness
can still be measured on this smaller scale. To do so, the construction algorithm we applied the
construction algorithm to three types of scenes:

• Fully randomized triangles.

• Uniformly sized triangles at random displacement.

• Triangulated tetrahedra at random displacement.

This allows us to measure the average impact and differences in SAH cost between the greedily
and non-greedily constructed BVH, resulting from regularities and irregularities in scenes.

For the fully randomized triangles, sets of 15 triangles are generated in 50 different. For each
scene, the greedy and non-greedy SAH is calculated over subsets of size 3..15 of these triangle
sets. This estimates the impact of greediness as the number of triangles increases. The other
two types of scenes are intended to show more similarity to regular graphics test scenes, where
a grid of primitives is displaced through rotation and translation, with minimal spatial overlap
between these primitives. The tests consist of 25 input scenes of 12 triangles and, separately, 25
input scenes of 4 tetrahedra with an aspect ratio of one. Example configurations for these two
types of scenes can be seen in Figure 9.

27

(a) An example configuration of randomly displaced
triangles

(b) An example configuration of randomly displaced
tetrahedra

Figure 9: The test scenes for the randomly displaced triangles and tetrahedra, each of 12 triangles.

For all three test types, the resulting non-greedily built BVHs are compared to a greedy,
full-sweep evaluation counterpart using the algorithm described by McDonald & Booth [25].

4.5 Results and Analysis

We first want to explicitly state that this test data is limited: the number of primitives that
can be processed is unlikely to lead to definitive conclusions about the impact of greediness
that hold for scenes of more than the 15 triangles that were tested for. This analysis will cover
such extrapolated numbers. However, until algorithmic improvements are made for non-greedy
algorithms, the likelihood of this extrapolation being correct can only be speculated about.

The resulting SAH differences for the randomized triangles are displayed in Figure 10. Our
first observation is that, on average, the impact of greediness is minimal for the smallest scenes: a
percentual difference of approximately 0.5% for three triangles. This is as expected since the BVH
will automatically be shallow in depth, which is the optimal case for the greedy algorithm that
assumes the following subdivision will be the final one in this subtree. Although this difference
is higher for scenes of 15 triangles at approximately 5%, this difference is still minimal. For
reference, the comparison by Aila et al. [1], for example, shows that SAH differences of a factor
two are not uncommon for different types of greedy-SAH builders in scenes with hundreds of
thousands and up to millions of triangles. A second and more interesting observation is that
the percentual difference between greedy and non-greedy evaluation appears to increase over the
number of triangles. This is also expected due to the gradual increase in depth of the BVH
that needs to occur, but the linear growth of this ratio shows that the difference may become
significant. Following this trend, the impact on a thousand triangles would be upwards of a
factor of 2.5. This resembles the measured differences in SAH cost for different builders for even
larger scenes. However, a third observation from the data in this figure is that this trend may be
limited. The top 95th percentile of the percentual difference remains within the same bandwidth
over the number of triangles. For these scenes, the greedy algorithm is limited to a less than 5%
lower cost value for these particular scenes. As this measurement does not grow over the number
of triangles, it may indicate that the previously described upwards trend is more limited as this
upper bound and the mean would eventually cross.

28

Figure 10: A comparison of SAH costs for scenes of randomized triangles between a non-greedily and
greedily evaluated SAH cost for the BVH. The average and upper 95th percentile of ratios of the greedy
evaluation over the non-greedy evaluation cost are shown alongside it.

In Figure 11 the same differences in SAH cost are shown for the test scenes of the randomly
displaced tetrahedra and triangles alongside the data for scenes of 12 fully randomized triangles
as previously described. It can be observed that the impact varies. The tetrahedra scenes
show no measurable impact and are significantly more representative of real scenes than the
fully randomized triangles. This is an important aspect as if there is also limited scaling to the
number of tetrahedra, the impact of greediness for real use cases would be much more limited than
depicted by the randomized triangles. On average, the non-greedy evaluation of the randomly
displaced triangle scenes shows similar improvements to that of the fully randomized triangle
scenes. There may be an explanation for this difference with tetrahedra: tetrahedra are more
grouped together and thus relatively easier to determine optimal partitioning for. The triangles
of one tetrahedron should likely be grouped for the lowest SAH cost, which makes the decision
tree of which triangles to place in a single node more shallow by default; greedy evaluation excels
at this. However, given that measurable impact was observed for as few as three randomized
triangles as shown in Figure 10, the lack of improvement for tetrahedra is somewhat surprising.
This may indicate that more grouped and structured data may benefit significantly less from a
non-greedy evaluation, as the greedy evaluation can already perform at a near-optimal level.

29

(a) (b)

Figure 11: The difference in SAH between greedy and non-greedy SAH for the randomly transformed
tetrahedra and triangles

4.5.1 Pruning Results

While our research did not aim to optimize the calculation of non-greedily evaluated SAH-based
BVHs to make it more feasible, the discussed pruning step allows significant reductions in the
number of iterations needed to calculate the lowest SAH-cost BVH. As such, here we use this
opportunity to discuss some of the observed effects briefly.

With the previously captured data for the non-greedy SAH evaluation, the number of BVHs
constructed is also kept. The results for the number of BVHs that need to be evaluated for a
given number of triangles in the scene are shown in Figure 12.

As observed in Figure 12, the required number of constructed BVHs shows exponential growth
relative to the number of primitives without pruning, with a curve fit at 0.6875e2.038·n where n
is the number of primitives and an r2 of 0.999 for the prediction. This matches the expectations
set and deduced by Ng & Trifonov [39]. Split plane pruning, on average, shows some reduction
of the number of constructed BVHs, but only minimally on average. Some outliers show a much
more substantial reduction, such as the minimum for 14 triangles, which reduces an estimated 1.4
trillion evaluation to only 2.1 million. Such a reduction is not shown for subsets of the triangle
sets at m < 14, but the random nature may cause an added triangle to significantly increase the
SAH cost and lead to large subtrees of split plane configurations being pruned early. These are
considered coincidences for random scenes, but it still shows the potential of the reduction.

The data for tetrahedra and displaced triangles in Figure 13 shows noticeably more impact on
average. Especially for displaced triangles, this average reduction is over two orders of magnitude.

This observation is difficult to analyze, as the pruning solely relies on the found cost values
during an iteration of split plane configurations, for which we do not know an optimum. It is
also unknown beforehand whether the worst split plane configurations are attempted first, which
significantly impacts the final number of BVHs that need to be built for evaluation. However,
It can be concluded that, depending on the scene and how the scene primitives are structured,
split plane pruning is an effective optimization for non-greedy SAH evaluation.

30

Figure 12: Effect of split plane pruning on the number of BVHs needed for evaluation over the number
of triangles in the scene. Note the vertical logarithmic scale

Figure 13: Effect of split plane pruning on the number of BVHs needed for evaluation for 12 triangles
randomized, randomly displaced, and as tetrahedra, compared to evaluating these without pruning. Note
the vertical logarithmic scale

31

5 Comparison of Alternative Heuristics

The previous section focused on the possible performance improvements that can be obtained
from a non-greedy evaluation of the heuristic-based cost function. As discussed in Section 3,
these heuristics are not limited to SAH, and a better BVH can also be obtained by using different
heuristics in a greedy manner.

Each of these previously discussed heuristics has its distinct characteristics for ray-tracing
performance. Though in their respective research, each presented heuristic already analyzes their
performance through their own methodology, they vary in how extensively they are tested, which
measurements are taken for their test scenarios, and are not tested against each other in their
respective works. In short, they are tested in different frameworks. Except for shadow-ray-based
heuristics, there is little to no follow-up work that extensively explores their characteristics, pro-
poses improvements, or compares a selection of them. Especially the differences in measurements
used are important; Vinkler et al. [26], for example, cover an extensive performance analysis
that includes per-ray-distribution measurements and performance over animation sequences, but
these are not present for the other heuristics. This section discusses a framework for comparing
different heuristics that breaks down the performance measurements similar to the framework
by Vinkler et al. [26].

5.1 Implementation and Testing Methodology

An existing BVH top-down construction implementation on the CPU, provided by Traverse, is
used to implement the following five heuristics:

• SAH

• Scene-Interior Ray Origin Metric

• Perspective Adjustment using Preferred Ray Sets

• RDH

• OSAH

The BVH construction algorithm uses the binning approach by Wald [28] with ten bins for
all measured heuristics to speed up construction. Still, evaluation over all axes is preserved as
this was deemed feasible. Each heuristic uses the termination criterion in Equation 5.

Both suggested by Fabianowski et al. [29] approximations are implemented for the Scene-
Interior Ray Origin Metric as they might exhibit different performance characteristics for varying
ray distributions. The perspective-adjusted version of SAH and RDH using preferred ray sets
both originate as heuristics for k-d trees, but both their probability functions can be trivially
extended to BVHs. Similarly, the work of Vinkler et al. only implements OSAH for an SBVH,
but the probability functions seem equally applicable for a normal BVH.

The suggested subsampling pattern of 4x4 that was found by Bittner & Havran [34] to trade-
off construction and run-time performance well is used. For scenes with camera animation, the
RRS is either the set of rays from the starting viewpoint or, when animated, the set of rays from
the current animation frame. The impact of using varying ray distributions is also evaluated by
testing with only primary, shadow, AO, or both diffuse bounce rays as RRS. The used weights
are set to α = 0.9 and β = 0.1, as suggested by the authors.

The visibility information for OSAH is computed by ray tracing the scene at the same resolu-
tion as the proceeding test. No subsampling like for RDH was used, as the briefly experimented

32

subsampling at 4x4 was found to impact performance noticeably, and there has been no research
like that for RDH that would suggest this subsampling leads to visibility queries of sufficient
quality for the BVH construction. The weight of OSAH is set to 0.9 for all scenes, as is also done
by the authors.

These heuristics are tested over the following nine following test scenes:

• Stanford Bunny

• Dragon

• Sibenik Cathedral

• Sponza

• Conference Room

• Soda Hall

• Bistro

• San Miguel

These scenes from the tested viewpoints, along with their triangle counts, can be seen in
Figure 14.

Except for the Stanford Bunny and Dragon, the occlusion in these scenes is relatively high.
This is intentional, as it is generally more challenging for SAH due to its assumption that rays do
not terminate within the scene. Additionally, the measurements by Aila et al. [1] show a relatively
low correlation performance, for example, for the Soda Hall, San Miguel and Dragon scenes. This
allows for evaluating the correlation between the measured performance and the found hierarchy
costs in terms of SAH and EPO, as discussed in Section 3.1.2. Our testing framework does not
utilize SIMD during ray traversal, which would lead to increased performance, but introduces
additional complexities. As such, the LCV metric as per Section 3.1.3 is not included, as it is
not shown to improve the correlation to ray-tracing performance in Aila et al.’s tests.

Each test scene is tested from a static viewpoint and with an animated camera track that
moves the camera through the scene to record data from a more extensive set of viewpoints.
Except for Conference Room and the Sibenik Catedral, these viewpoints lie outside the building
interiors. The camera track aims to move the camera from an outside static viewpoint into
the scene and move throughout it. In theory, this would benefit heuristics that use visibility
information or assume ray origins lie inside of the scene, but we argue that the recorded track for
the camera represents practical use cases quite well. Each test with a moving camera is repeated
six times: the first as a warm-up run in which slightly higher render times were observed for the
first few frames, with the other five being the actual test runs.

33

(a) Bunny, 4,968 triangles (b) Dragon, 871,306 triangles

(c) Sponza, 262,267 triangles (d) Conference Room, 124,631 triangles

(e) Soda Hall, 2,167,238 triangles (f) San Miguel, 5,600,390 triangles

(g) Bistro, 3,872,281 triangles (h) Sibenik Cathedral, 75,283 triangles

Figure 14: The scenes rendered in Traverse Research’s proprietary ray-tracer from their respective
static viewpoints, along with the number of triangles in each scene.

34

As we are also interested in the extent of temporal coherence for RRS and OSAH, these
are separately evaluated for the animated scenes by testing them without rebuilding the BVH,
rebuilding the BVH every three frames, and rebuilding it every frame on a reference camera
animation of 10 FPS. Not rebuilding can show if the BVH can still be used reasonably well if the
visibility information or RRS is stale for long periods. The other two test cases show whether
there is a need to rebuild the BVH as frequently as every frame or if it suffices only to rebuild
infrequently. The constructed BVH is valid in all scenarios, but rebuilding every frame may be
sub-optimal for the frame in which the performance was measured.

A CPU path tracer evaluates the time per ray, traversal steps, and intersection tests for
primary, shadow, diffuse, and ambient occlusion rays. Diffuse rays sample uniformly, whereas
ambient occlusion is sampled according to a cosine-weighted distribution. It casts two bounces
of diffuse, with per bounce one shadow ray per light and three samples of ambient occlusion rays.
Diffuse and shadow rays use one sample per pixel and three samples of ambient occlusion per
pixel at a radius of 5.0. As three to five lights are located in every scene, three to five shadow rays
per bounce are cast. These relatively low sampling densities are compensated through longer-
duration tests and allow the usage of the camera animations. Diffuse bounces are limited to two
for testing purposes since the second diffuse bounces approach a random uniform distribution,
as briefly illustrated by Bikker [42]. It should be noted that the randomness is not deterministic
due to the multi-threaded nature of the application.

All tests were conducted on an AMD Ryzen 9 7900X 12-core processor with 64Gb of physical
memory, with the path tracer utilizing all cores and never exceeding the physical memory limit.
The scenes were traced at a resolution of 1280 by 720 pixels. The timings only include the time
needed to traverse the BVH measured using the ‘QueryPerformanceCounter‘ API.

5.2 Results and Analysis

The results of the tests are individually discussed for both the static viewpoints and animated
sequences. The discussion below focuses on the measurements in nanoseconds per ray, but
intersection tests and traversal steps have also been measured. These measurements can be
found in Appendix A.

5.2.1 Varying Ray Distributions as RRS

The results for evaluating RDH with varying distributions of rays in static scenes as inputs are
shown in the figures in Figure 15. For most scenes, the primary rays as RRS does not build
a suitable hierarchy and leads to much worse performance over all the ray distributions than
when all ray distributions are used for the RRS. Using only the diffuse rays as RRS performs
significantly better in all ray distributions but is still slower than using the entire set of rays.
There is generally no observed benefit of using a subset of the RRS specific to the ray distribution
for which the optimal ray tracing performance is desired. The only exception is Soda Hall, in
which the performance increases slightly for primary and diffuse rays with those respectively as
input RRS. As these are static captures from an outside perspective of the building, this may be
due to the limited number of diffuse rays in the scene. For the full RRS, the primary rays would
more likely dominate the number of diffuse rays, decreasing the relative accuracy of intersection
probabilities for diffuse rays. When diffuse rays are the only rays as input, this is balanced
differently. Still, the improvement is minimal compared to the overhead incurred for the other
test scenes. Therefore, the remainder of our tests uses all rays from the current frame for the
RRS of RDH.

35

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 15: The differences in ray tracing performance from a single viewpoint when different input
sets are provided as RRS. Each group represents the performance per ray distribution where either only
primary or diffuse from the RRS or the entire RRS was used.

36

5.2.2 Tests for Static Viewpoints

In Table 2, the results can be seen for evaluating the time measured per ray traced through the
BVH. This shows that the best heuristic depends quite heavily on the scene but shows comparable
performance between most despite their different definitions for intersection probabilities. Even
the fast approximation of the Scene-Interior Ray Origin Metric, denoted Int-Scene Fast, is often
not far off from the highest performance.

The main outlier is SAH using the perspective adjustment using Preferred Ray Sets as dis-
cussed in Section 3.2.1, denoted as P-SAH, which can only build high-quality hierarchies for a
few scenes such as Soda Hall. In those scenes, the performance is close to the other heuristics,
specifically to SAH. Although there was no indication this heuristic would perform well for other
ray distributions, for most of the scenes, even primary rays were slower by a significant margin
compared to other heuristics. It generally seems to perform the worst in closed scenes with high
occlusion. For San Miguel, no measurement could be obtained within a reasonable time as it did
not manage to render a single frame. Analysis of the constructed BVH quickly showed why: it
did not perform a single split. Two potential causes for the lack of performance can be identified.
First, as it performs well in static scenes where the viewpoint lies outside the scene’s bounding
box, one problem is likely related to primary rays starting inside this bounding box. Though
Bittner & Havran [33] specifically describe the edge-case where the viewpoint lies inside the
bounding box, no notable differences were observed between including or excluding this, and it
does not account for situations of projections of negative depth. Second, there is no description
of the termination criteria used for Havran & Bittner’s experiments, so it is possible that the
termination criteria of Equation 5 does not extend well for the characteristics of this heuristic.
This is illustrated by the lack of splitting performed for San Miguel.

Another outlier can be seen in Sponza for the Interior-Scene Ray Origin Metric High-Quality
approximation, denoted as Int-Scene HQ. This test performs worse than the fast approximation,
with primary rays being almost twice as slow. This would indicate that the fast approximation
has different performance characteristics than the High-Quality version.

Finally, it can be observed that the RDH metric seems to show some of the most promising
performance compared to the others, especially for shadow and ambient occlusion rays. Shadow
rays are much less uniform than diffuse rays, meaning an RRS can more accurately capture the
exact distribution.

37

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 186 195 193 239 198 189
diffuse 1st 577 583 592 706 565 572
diffuse 2nd 656 645 662 885 676 673
shadow 774 752 797 963 781 784

ao 522 516 526 609 511 524
total 446 444 456 546 448 450

Dragon

primary 161 158 164 165 181 159
diffuse 1st 1553 1549 1674 1773 1758 1535
diffuse 2nd 2053 2085 2153 2356 2389 2012
shadow 2574 2606 2764 3066 3232 2540

ao 1590 1582 1689 1775 1805 1556
total 911 913 969 1039 1078 896

Sponza

primary 1281 1290 657 10036 559 629
diffuse 1st 1419 1444 997 20716 870 991
diffuse 2nd 1479 1497 1444 47120 1316 1368
shadow 1214 1241 1085 25758 922 1031

ao 1146 1164 958 23374 842 928
total 1213 1234 966 22395 838 931

Sibenik

primary 837 816 903 2199 776 836
diffuse 1st 1126 1057 1228 5651 1082 1060
diffuse 2nd 1102 1084 1157 6319 1108 1128
shadow 1119 1107 1153 25015 1085 1087

ao 856 847 906 4613 857 828
total 1021 1007 1064 15959 998 992

Conference

primary 716 730 745 1543 685 795
diffuse 1st 989 1055 1092 4242 1013 1052
diffuse 2nd 1022 1107 1129 5603 1050 1106
shadow 1355 1360 1434 4628 1347 1427

ao 806 859 885 3866 826 875
total 1056 1088 1135 4182 1062 1127

Soda Hall

primary 429 410 500 438 478 519
diffuse 1st 518 486 594 532 485 485
diffuse 2nd 840 806 977 879 875 975
shadow 853 766 878 861 842 1054

ao 579 544 653 586 601 678
total 699 640 750 708 704 839

San Miguel

primary 1615 1634 1625 N/A 1653 1693
diffuse 1st 2467 2386 2432 2313 2387
diffuse 2nd 2856 2782 2810 2727 2750
shadow 2576 2502 2608 2505 2548

ao 1926 1857 1906 1807 1882
total 2255 2188 2256 2162 2219

Bistro

primary 2716 2804 2949 23946 2614 2791
diffuse 1st 3192 3125 3236 129434 3109 3321
diffuse 2nd 3677 3621 3710 183161 3660 3861
shadow 3276 3287 3429 65859 3223 3510

ao 2454 2379 2457 117251 2376 2563
total 2989 2970 3088 87381 2925 3167

Table 2: The measured nanoseconds per ray for each scene at a single viewpoint, separated by ray
distribution. The total is the total ray tracing performance per ray. For each row, the best result is in
boldface. Note that San Miguel for the P-SAH could not compute a single frame

38

For each of these scenes, the quality of the constructed BVH is displayed in Table 3. This lists
the hierarchy cost regarding SAH, EPO, and the weighted combination according to Equation 8.
In the scenes for which the value is known, the α values from Aila et al. [1] are used, though it
should be noted that the triangle counts are not precisely the same. The expected discrepancy
of the weights is minimal, as the layout of the scenes would still match closely.

As would be expected, SAH-based construction generally achieves the lowest SAH cost.
OSAH is similar to SAH for low occlusion scenes such as Dragon and Bunny, due to the low
occlusion likely causing it to defer to SAH almost entirely. In the other scenes, where there is
significant occlusion, OSAH leads to some of the highest SAH, if not the highest SAH cost. Also,
despite not explicitly minimizing the surface area, both approximations of the scene-interior ray
origin metric achieve relatively low SAH costs. SAH alone is known not to be a consistently good
indicator of ray-tracing performance, but similar and even worse differences can be observed for
EPO too. It is evident that these two metrics do not describe the ray-tracing performance of
OSAH well. The assumption of SAH that rays do not terminate on intersection is not fully
accounted for by EPO either, whereas OSAH does attempt to minimize this; perhaps another
metric needs to be factored in for defining how the constructed BVH handles occlusion.

Another observation is that the fast approximation of the Scene-Interior Ray Origin Metric
optimizes EPO well and, for two of the scenes, better than all other heuristics, but it is not
immediately obvious why this is. It does give some explanation for the relatively good ray-tracing
performance. While the α values obtained from Aila et al. may be different than the ground truth
for the version of Sponza that was tested here, both EPO and SAH are separately also lower than
SAH-based construction and the High-Quality approximation of the Scene-Interior Ray Origin
Metric, meaning this relative outcome would remain the same regardless of the weight. Both
approximations optimize SAH well, which is as expected: the solid angle is a notion of surface
area adapted for a nearby origin, and as the origin moves infinitely far away, it approaches the
surface area as used by SAH.

The P-SAH construction only produces builds of comparable quality for several scenes: pre-
cisely those in which the time per ray was not a multiple of the other heuristics. As shown for San
Miguel, the termination criterion estimates that no split should be performed. It is possible that
this cost-based termination criterion does not work for Preferred Ray Sets directly, as the metric
also explicitly covers an edge case in which the intersection probability to 1.0 if the viewpoint
lies inside the node of which the surface area is projected.

It can be concluded that heuristics such as RDH and the Interior-Scene still allow for opti-
mization similar to SAH of these metrics that have proven to correlate well to performance but
that the performance of OSAH is consistently underestimated. Additionally, the fast approxima-
tion for the Scene-Interior Ray Origin Metric clearly shows different characteristics in terms of
the produced tree quality compared to the High-Quality approximation. From this perspective,
the fast approximation may be well worthwhile to be evaluated for scenes that wish to optimize
more for EPO, even though the SAH cost is often worse.

39

Scene Cost Metric SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny
SAH 32.2 32.4 32.9 37.8 32.9 32.2
EPO 1.2 1.1 1.2 1.6 1.2 1.2

Dragon
SAH 56.4 57.1 58.4 70.5 98.2 58.7
EPO 1.3 1.3 1.5 1.8 2.4 1.4

SAH+EPOa=0.61 22.8 23.1 23.7 28.6 39.8 23.7

Sponza
SAH 94.8 95.6 109.4 203.4 99.5 113.2
EPO 23.4 23.7 25.2 51.7 22.3 27.1

SAH+EPOa=0.84 34.8 35.2 38.7 76 34.7 40.9

Sibenik
SAH 56.8 56.8 64.5 131.5 59.1 94.3
EPO 4.6 4.7 4.4 23.3 5 7.3

SAH+EPOa=0.76 17.1 17.2 18.8 49.2 18 28.2

Conference
SAH 57.3 63.7 62.1 164.7 60.8 75.2
EPO 7.6 10.6 10.7 27.4 8.6 16.2

SAH+EPOa=0.42 36.5 41.4 40.5 107.1 38.9 50.4

Soda Hall
SAH 126.2 128.8 173.9 142.9 154.9 151.2
EPO 40.4 38.7 34.5 46.8 49.1 64.8

SAH+EPOa=0.83 55.0 54.1 58.2 63.1 67.1 79.5

San Miguel
SAH 79.4 80.5 88.2 5600391.5 97.9 85.1
EPO 17.1 16.9 16.2 0.0 20.6 22.1

SAH+EPOa=0.72 34.5 34.7 36.3 1568109.6 42.2 39.8

Bistro
SAH 148 147.3 149.2 500.4 157.2 175.2
EPO 38.5 36.3 36.7 217.6 39.7 55.1

Table 3: The hierarchy costs in terms of SAH, EPO and the weighted combination used by Aila et al.
using the indicated α weight. The weights are obtained from the work by Aila et al.

40

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 89 95 90 94 98 89
diffuse 1st 556 570 562 614 571 557
diffuse 2nd 655 685 662 712 670 717
shadow 805 809 823 985 814 795

ao 521 517 527 558 522 506
total 285 289 290 320 293 282

Dragon

primary 133 135 128 133 248 131
diffuse 1st 1496 1543 1512 1667 3642 1522
diffuse 2nd 2023 2005 2014 2290 4933 2059
shadow 2570 2573 2609 2968 6286 2597

ao 1550 1530 1552 1704 3624 1557
total 684 684 685 759 1591 688

Sponza

primary 1052 1071 1161 1111 1114 1108
diffuse 1st 1404 1427 1567 1975 1570 1525
diffuse 2nd 1523 1533 1668 2822 1701 1658
shadow 1306 1342 1532 3080 1423 1529

ao 1189 1204 1299 2035 1317 1276
total 1248 1270 1401 2340 1372 1381

Sibenik

primary 626 615 660 699 671 792
diffuse 1st 1123 1072 1093 1195 1096 1170
diffuse 2nd 1143 1140 1189 1363 1253 1328
shadow 1182 1172 1177 1300 1149 1290

ao 884 886 895 967 914 963
total 1052 1045 1055 1158 1049 1154

Conference

primary 861 849 884 64927 919 843
diffuse 1st 981 1072 1085 82508 1065 992
diffuse 2nd 1026 1084 1105 75844 1096 1026
shadow 1303 1314 1380 80025 1346 1319

ao 819 867 880 66304 889 820
total 1046 1078 1115 73345 1104 1053

Soda Hall

primary 884 846 899 38685 1155 976
diffuse 1st 1043 1020 1054 52406 1264 1055
diffuse 2nd 1100 1090 1113 58627 1436 1193
shadow 1004 941 985 47794 1141 1085

ao 973 939 949 53303 1193 1013
total 994 945 977 49815 1174 1060

San Miguel

primary 1398 1336 1403 N/A 1914 1386
diffuse 1st 1911 1857 1894 2350 1897
diffuse 2nd 1996 1963 1999 2438 1971
shadow 1961 1895 1965 2267 1953

ao 1468 1423 1443 1719 1442
total 1722 1667 1712 2028 1705

Bistro

primary 1861 1847 1836 313822 1986 1935
diffuse 1st 2904 2855 2910 220796 2992 2926
diffuse 2nd 3219 3135 3219 209207 3323 3252
shadow 2986 2984 3025 168312 3065 3093

ao 2192 2110 2148 157152 2273 2221
total 2669 2635 2674 175099 2752 2742

Table 4: The measured nanoseconds per ray for each scene averaged over the entire camera animation,
separated by ray distribution. The total is the total ray tracing performance per ray. For each row, the
best result is in boldface. Note that San Miguel for the P-SAH is not included for these tests

41

5.2.3 Tests for Animated Camera Splines

For our animated tests, each scene is run with its distinct camera spline in the same manner as
the static viewpoints, for which the results are shown in Table 4. Due to the inability to build a
usable hierarchy in the previous test and the already discussed performance characteristics, the
San Miguel test is excluded for P-SAH.

For P-SAH and the other heuristics that are view-dependent, OSAH and RDH, the BVH
is only built at the initial position of the camera spline; these purely rely on the existence of
temporal coherence, which is very dependent on the scene. Without such coherence, these BVHs
are expected to perform worse due to the set of intersected nodes and visibility changing over
time. This logically leads to SAH and the Scene-Interior Ray Origin Metric outperforming OSAH
and RDH for the majority. However, OSAH is still found to be the fastest for two of the scenes.
This shows that the visibility information can be reusable to a greater extent than just using
that of the previous frame, as suggested by [26]. Additionally, RDH is shown to still perform
well for shadow rays, despite not rebuilding the BVH for subsequent frames with new ray sets.
The other differences are relatively small, and it depends from scene to scene which heuristic
performs better. No silver bullet heuristic can be identified for primary or diffuse rays.

In the final two test sequences, OSAH and RDH’s input visibility information and ray sets,
respectively, are updated every three frames and every frame. San Miguel and Bistro are excluded
due to their high build times. The results for these tests with rebuilds respectively every three
frames and every frame are shown in Table 5 and Table 6.

Especially RDH benefits from rebuilding the BVH regularly, showing speed-ups for most
scenes, and showing the highest performance in Soda Hall, at about 10% higher than the next
fastest. The Dragon scene does produce a much worse BVH than the average when only rebuilt
every three frames. The animation possibly caused specific frames to have BVHs of insufficient
quality in which it had a lower number of rays in the RRS. This is to some extent in line with the
observations by Havran & Bittner for ray-tracing of low-occlusion scenes, though our observation
is much more extreme than the maximum decrease of 12% observed in their work. One possible
explanation is the noted difference between k-d trees and BVHs; possibly, the weight function
needs to be modified to account for the child nodes not being an exact union of the parent ray
set.

The other results for RDH show the best ray-tracing performance for most scenes when
aimed, specifically when occlusion is high. Though Bittner & Havran did not experiment with
RDH path tracing for high-occlusion scenes, only tracing primary rays showed similar results to
ours with significant occlusion. Additionally, the animated sequences, excluding the Bunny and
Dragon scene, are either entirely or primarily rendered from the interior of the scene bounding
box. The Arena v1 and v2 scenes in Havran & Bittner’s original research were the only interior
scenes and showed the most significant speed-up over SAH for tracing primary rays.

OSAH shows improvements as well, but these are much more minor. The fundamental dif-
ference in these two heuristics is that RDH measures the number of rays intersecting, whereas
OSAH only analyzes whether any intersection for a primitive has occurred. The latter only
assigns a binary visibility, compared to RDH directly assigning a probability. As the rays and
viewpoints change with every frame during the animation, the probabilities may change signif-
icantly for RDH, but if the intersections for primitives and nodes only decrease while staying
above zero, the evaluation will remain the same.

One scene that does show a significant improvement when regularly rebuilding is Sibenik.
As the Sibenik camera animation starts at the exterior and moves inside to stay there for the
remainder of the animation, the visibility initially is likely poorly estimated. For Soda Hall, the
same type of animation sequence is implemented, but as the scene contains many gaps that allow

42

rays to bounce inside the building when viewed from the outside, the visibility information is likely
to be much more accurate. The performance likely decreases since once inside the building, the
available visibility information starts to decrease, and the camera may move somewhat quickly
to places behind closed walls that may have been traced from the starting viewpoint.

Additionally, a more subtle performance increase can be observed for shadow rays. RDH has
the highest shadow ray performance for nearly every scene tested, while OSAH is close to it and
faster for the Dragon scene. A potential cause may be the fixed endpoints for shadow rays. This
leads to specific ray distributions and accurate occlusion information, which RDH and OSAH do
well at.

Scene Ray Distribution RDH OSAH

Bunny

primary 93 89
diffuse 1st 553 577
diffuse 2nd 644 653
shadow 806 812

ao 506 510
total 285 285

Dragon

primary 6420 126
diffuse 1st 53565 1441
diffuse 2nd 75727 1977
shadow 67491 2490

ao 58991 1498
total 23615 659

Sponza

primary 976 1085
diffuse 1st 1327 1457
diffuse 2nd 1477 1544
shadow 1216 1399

ao 1133 1226
total 1178 1303

Sibenik

primary 619 632
diffuse 1st 998 1007
diffuse 2nd 1152 1129
shadow 1076 1113

ao 841 837
total 975 994

Conference

primary 833 865
diffuse 1st 979 1070
diffuse 2nd 1022 1114
shadow 1274 1392

ao 820 883
total 1032 1120

Table 5: The measured nanoseconds per ray for each scene averaged over the entire camera animation
when the BVH is rebuilt every three frames, separated by ray distribution. The total is the total ray
tracing performance per ray. For each row, the best result is in boldface.

43

Scene Ray Distribution RDH OSAH

Bunny

primary 88 91
diffuse 1st 551 556
diffuse 2nd 630 653
shadow 770 799

ao 489 517
total 274 284

Dragon

primary 145 125
diffuse 1st 1733 1467
diffuse 2nd 2504 1968
shadow 3200 2486

ao 1793 1474
total 810 654

Sponza

primary 926 1063
diffuse 1st 1297 1432
diffuse 2nd 1432 1533
shadow 1185 1379

ao 1106 1207
total 1147 1283

Sibenik

primary 551 626
diffuse 1st 937 1002
diffuse 2nd 1113 1129
shadow 1037 1105

ao 812 833
total 934 988

Conference

primary 832 857
diffuse 1st 988 1066
diffuse 2nd 1035 1101
shadow 1279 1388

ao 826 874
total 1038 1114

Table 6: The measured nanoseconds per ray for each scene averaged over the entire camera animation
when the BVH is rebuilt every three frames, separated by ray distribution. The total is the total ray
tracing performance per ray. For each row, the best result is in boldface.

44

6 Conclusion

In this section, we separately wrap up our findings for each of our research goals, regarding the
non-greedy evaluation of SAH and the testing framework for the other construction heuristics.

6.1 Non-greedy SAH Evaluation

Our initial goal was to find the impact of the greedy nature of top-down SAH-guided BVH
construction for the final tree quality in terms of the resulting SAH cost. This impact is shown
to be minimal, given the tested scenes. Multiple comparisons such as those by Meister & Bittner
and Aila et al. [2, 1] show that compared to differences between SAH-based builders, the impact
of greediness is negligible. However, the upward trend of measured greediness and SAH cost’s
linearity relative to the number of primitives in the scene may indicate that the difference in
performance can rise to that of a similar magnitude. Even the observed differences of averages
up to 3.5% and outliers at over 8% show that the de-facto greedy evaluation has measurable
room for improvement. As a result of the limitation regarding the number of primitives per
leaf, an even higher impact may be observable, but the expected additional impact is considered
minimal.

As stated previously, it is hard to draw any definitive conclusions from this analysis due to the
limited testing capabilities caused by the number of BVHs that require evaluation. Non-greedy
evaluation remains largely infeasible, as even with the proposed pruning solution, it requires the
evaluation of trillions of BVHs for only tiny scenes. Despite this, the pruning algorithm still
shows some promise as it, on average, reduces the number of BVHs required to be evaluated for
the structured scene data by two orders of magnitude and shows exceptional outliers of reductions
up to a factor of six orders of magnitude.

6.2 Comparison of Alternative Heuristics

To conclude our goal of finding the most optimal BVH in terms of ray-tracing performance for
the average and specific scenes and ray distributions, Section 5 compared a set of alternative
heuristics to SAH. The comparison of these heuristics shows that the performance of a cost
heuristic such as RDH is highly dependent on the ray distribution of the input set of rays,
seemingly more significant than the impact of subsampling as found by Havran & Bittner [34].
Except for the Soda Hall scene, the performance is at least two times worse when only the
primary or both diffuse distributions are used as input RRS. For Soda Hall specifically, the
approach of using only primary or only the diffuse rays may be worth it as it allows for a smaller
set of rays that require evaluation during construction and can slightly boost performance for
the given ray distribution. However, this was only measured for a single viewpoint.

The measurements for all construction heuristics show that the difference can be relatively
small but also that the best heuristic through all scenes depends on the exact scene, as can
be more thoroughly identified using the results in Table 2. RDH is the fastest for a significant
number of scenes, though it can perform significantly worse than other heuristics when there is
little occlusion and diffuse bounces. The heuristics used generally do not excel in one particular
ray distribution, although RDH shows to be slightly faster at shadow ray traversal, explained by
the consistent end-points.

When the BVH is not rebuilt for every frame, OSAH performs best for all scenes averaged
over all ray distributions. Standard top-down SAH does outperform OSAH for the Conference
Room and Soda Hall scenes, and the Scene-Interior Ray Origin Metric even more so.

Finally, the measurements in Table 3 lead to our occlusion about the best alternative heuristic
yielding the best correlation between estimated tree quality and actual ray tracing performance.

45

Although the respective metrics were not measured as the total cost of the tree, which is not
well-defined for metrics for OSAH, the performance was weighed against the metrics by Aila et
al. Outside of SAH, identifying the best heuristic through its relation with EPO and SAH, the
Scene-Interior Ray Origin Metric appears to be the best choice. Still, due to the SAH builder
producing the lowest SAH cost hierarchies and, compared to the other heuristics, relatively low
EPO values indicate SAH as a construction heuristic to remain the best for correlation between
performance and rays. It is also shown that the combined metric of EPO and SAH significantly
underestimates the performance of OSAH, meaning that other metrics may need to be added to
obtain an even more accurate performance correlation.

We conclude that if construction time is no factor, the best BVH for a given scene is often a
BVH using RDH. In the average case, the Surface Area Heuristic and Scene-Interior Ray Origin
Metric high-quality approximation perform well, especially when there is little occlusion. Still,
the overall best heuristic is more scene-dependent. If the desired performance lies in shadow
ray traversal, RDH and OSAH can also produce slightly better performance for scenes of high
occlusion. If only a single or a limited set of viewpoints is required, the optimal heuristic for
BVH for ray tracing largely depends on the scene and viewpoint for which measurements are
taken. Depending on the coherency of the scene primitives, using a greedy approach may have
minimal impact based on small-scale estimations.

46

7 Future Work

Our research lays a foundation for finding the best heuristic and evaluation of the heuristic for a
given scene and scenario through the heuristic comparisons and non-greedy evaluation algorithms
in our testing framework. From this starting point, we see a vast set of options for future research.

7.1 Non-greedy SAH

The non-greedy evaluation of SAH is an experiment that opens pathways for further research.
This research shows a starting point for evaluating and pruning a significant set of configurations
to test. However, further research may find new pruning-like methods to reduce the space of
possible configurations. Faster implementations may also help, such as GPU-based iteration,
but it should be noted that the current pruning algorithm relies on sequential evaluation and is
harder to translate to a parallel algorithm. Our pruning in the best-case scenario leads to six
orders of magnitude decrease in configurations, which would likely outperform any attempt at
parallelization. We estimate other pruning methods to be more effective than parallelization,
though a combination of both may be possible.

Extending the number of primitives is necessary to derive further conclusions, especially for
the structured data in the form of tetrahedra. For the current numbers, the virtually non-existent
impact on tetrahedra may pose implications for real test scenes in which data is commonly
authored to be grouped to some degree. It should also be researched whether the approximation
of the termination criterion limits the measured impact.

Additionally, as the BVH is only tested on its final cost value, the non-greedy evaluation can
be applied to any of the discussed heuristics from Section 3, including EPO. Further research
could determine whether the impact of greediness is different for different types of heuristic-
based cost functions used and, if differences are observed, analyze the cause for such differences.
A downside is that based on their definitions given in Section 3 and observations during the
experiments, though not outweighing the effect of the exponentially growing number of BVHs
to evaluate, the alternative heuristics can be severely more expensive to compute than for SAH.
Most of the tested heuristics have efficient methods suggested for greedy evaluation that re-
uses the data and often approaches the performance of calculating SAH, such as discussed in
Section 3.2.2. Still, it is unknown if these can be applied to modify the BVH in global cost
calculations.

Several methods have been discussed that optimize SAH beyond the greedy algorithm, such
as by use of simulated annealing [41], stochastic split-plane searches [39] or partially greedy
construction [40]. Adding comparisons to these methods can be used to measure the impact of
these approaches compared to non-greedy evaluation and then derive better conclusions about
the impact on significantly larger scenes for non-greedy SAH.

Finally, future work could also research the difference between greedy and non-greedy SAH
evaluation regarding the impact on ray-tracing performance directly. A measurable difference in
run-time performance could not be observed for the tested scenes due to the shallow hierarchy
or limitations of the used benchmark tool’s precision. If more sophisticated pruning possibilities
were found, the impact could be measured for the larger scenes it would allow for testing.

7.2 The Scene-Interior Ray Origin Metric

Our results show that both approximations of this metric as proposed by Fabianowski et al. [29]
perform very well in practice, though neither outperforms SAH. More interestingly, however, is
the discrepancies between the low-and-high quality approximations, where the fast approximation

47

performs better. Since this is observed to be significant in some scenarios, future work may be
able to find the parameters that lead to better performance for the fast approximation.

7.3 Impact on Massively Parallel Devices

Our tests focused on finding the best-fitting heuristic for each of the most common ray dis-
tributions, but these tests were performed on a CPU without explicit optimizations for using
SIMD.

As Aila et al. show, the Leaf Count Variance can noticeably impact BVH traversal perfor-
mance when instruction-level parallelism is present. As most modern real-time ray and path-
tracing solutions integrate this, primarily on the GPU, testing these same heuristics in a GPU
or CPU with SIMD implementation may be worthwhile.

7.4 Shadow Ray Heuristics

As outlined in Section 3, several heuristics are optimized for any-hit traversal, particularly for
shadow rays. Despite being intended for only that ray distribution, multiple reasons warrant in-
clusion in our testing framework of heuristics-based construction methods. First, such a heuristic
may not negatively impact the performance of other ray distributions, such as the diffuse and
primary rays, as seen with heuristics like the Scene-Interior Ray Origin metric. Sufficiently large
speed-ups for shadow rays compared to the impact on the other ray distributions mean a BVH
can be used for all ray distributions regardless. Moreso, these heuristics do not seem to have been
evaluated against the heuristics of this research outside of SAH. Research may also show they
perform better for other ray distributions than shadow rays, for example, due to the reordering
of child nodes being beneficial to other types of traversal. However, such research would also
require an analysis of why this would be true.

7.5 Combining of Heuristics

Heuristics such as OSAH and RDH use SAH to prevent degenerate hierarchies in situations lack-
ing data to build a well-performing BVH. Replacing SAH with either Scene-Interior Origin Ray
Metric’s approximations may lead to better results. Further specialized mixtures be researched,
such as using OSAH for all rays with a weighted blend between SAH and the Interior-Scene Ray
Origin Metric as a fallback. The proposed testing framework could be used to see if this leads
to particular speed-ups for rays whose origins lie inside the scene.

7.6 Stochastic Evaluation of BVH Quality

The recent work by Tessari et al. [43] shows the possibility of improving BVH construction
speed through initial construction over a stochastically selected subset of the input primitives.
Importance sampling is used to determine the primitives that contribute most to performance.
This technique leads to a factor 2 improved build times with similar quality hierarchies for top-
down construction. There is potential for applying this technique to other heuristics than SAH
for the initial high-quality BVH that it constructs over the stochastic subset, but we see even
more potential for two different use cases. First, using the stochastic subset may allow for a
reasonable measurement of the impact of greediness for scenes with higher primitive counts,
as only a subset needs to be evaluated. Second, our results show that the best heuristic can
be highly dependent on the scene. To select the best heuristic for a scene, this method may
be suitable for constructing BVHs with different heuristics over the importance sampled subset

48

and efficiently finding the best heuristic to use for the scene. However, for the estimated ray-
tracing performance of heuristics, the BVH quality metrics must ensure this is not severely
underestimated, as observed for OSAH.

49

Bibliography

[1] T. Aila, T. Karras, and S. Laine. “On quality metrics of bounding volume hierarchies”. In:
July 2013, pp. 101–107. doi: 10.1145/2492045.2492056.

[2] D. Meister and J. Bittner. “Performance Comparison of Bounding Volume Hierarchies
for GPU Ray Tracing”. In: Journal of Computer Graphics Techniques (JCGT) 11.4 (Oct.
2022), pp. 1–19. issn: 2331-7418. url: http://jcgt.org/published/0011/04/01/.

[3] C. Cao et al. “Interactive Sound Propagation with Bidirectional Path Tracing”. In: 35.6
(Dec. 2016). issn: 0730-0301. doi: 10.1145/2980179.2982431.

[4] NVIDIA RTX™ platform. July 2020. url: https://developer.nvidia.com/rtx.

[5] AMD RDNA™ 2. July 2021. url: https://gpuopen.com/rdna2/.

[6] P. Christensen and W. Jarosz. The Path to Path-Traced Movies. Jan. 2016. isbn:
9781680832112. doi: 10.1561/9781680832112.

[7] T. Whitted. “An Improved Illumination Model for Shaded Display”. In: Commun. ACM
23.6 (June 1980), pp. 343–349. issn: 0001-0782. doi: 10.1145/358876.358882.

[8] J. T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’86. New York, NY, USA:
Association for Computing Machinery, 1986, pp. 143–150. isbn: 0897911962. doi: 10.
1145/15922.15902.

[9] M. Agrawala et al. “Efficient Image-Based Methods for Rendering Soft Shadows”. In: Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 375–384.
isbn: 1581132085. doi: 10.1145/344779.344954.

[10] M. McGuire and M. Mara. “Efficient GPU Screen-Space Ray Tracing”. In: Journal of Com-
puter Graphics Techniques (JCGT) (Nov. 2014). url: https://jcgt.org/published/
0003/04/04/paper.pdf.

[11] A. Appel. “Some Techniques for Shading Machine Renderings of Solids”. In: AFIPS ’68
(Spring). Atlantic City, New Jersey: Association for Computing Machinery, 1968, pp. 37–
45. isbn: 9781450378970. doi: 10.1145/1468075.1468082.

[12] H. Landis. “Production-Ready Global Illumination”. In: L. Gritz (Ed.), RenderMan in
production: SIGGRAPH 2002 course 16. 2002.

[13] S. Zhukov, A. Iones, and G. Kronin. “An ambient light illumination model”. In: Rendering
Techniques ’98. Ed. by G. Drettakis and N. Max. Vienna: Springer Vienna, 1998, pp. 45–
55. isbn: 978-3-7091-6453-2. doi: 10.1007/978-3-7091-6453-2_5.

[14] J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”. In:
Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi: 10.1145/361002.
361007.

[15] S. M. Rubin and T. Whitted. “A 3-Dimensional Representation for Fast Rendering of Com-
plex Scenes”. In: vol. 14. 3. New York, NY, USA: Association for Computing Machinery,
July 1980, pp. 110–116. doi: 10.1145/965105.807479. url: https://doi.org/10.1145/
965105.807479.

[16] H. Dammertz, J. Hanika, and A. Keller. “Shallow Bounding Volume Hierarchies for Fast
SIMD Ray Tracing of Incoherent Rays”. In: Computer Graphics Forum 27.4 (2008),
pp. 1225–1233. doi: https://doi.org/10.1111/j.1467-8659.2008.01261.x.

50

https://doi.org/10.1145/2492045.2492056
http://jcgt.org/published/0011/04/01/
https://doi.org/10.1145/2980179.2982431
https://developer.nvidia.com/rtx
https://gpuopen.com/rdna2/
https://doi.org/10.1561/9781680832112
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/344779.344954
https://jcgt.org/published/0003/04/04/paper.pdf
https://jcgt.org/published/0003/04/04/paper.pdf
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1007/978-3-7091-6453-2_5
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/965105.807479
https://doi.org/10.1145/965105.807479
https://doi.org/10.1145/965105.807479
https://doi.org/https://doi.org/10.1111/j.1467-8659.2008.01261.x

[17] A. S. Pinto. “Adaptive Collapsing on Bounding Volume Hierarchies for Ray-Tracing”. In:
Eurographics 2010 - Short Papers. Ed. by H. P. A. Lensch and S. Seipel. The Eurographics
Association, 2010. doi: 10.2312/egsh.20101051.

[18] I. Wald, C. Benthin, and S. Boulos. “Getting rid of packets - Efficient SIMD single-ray
traversal using multi-branching BVHs”. In: 2008 IEEE Symposium on Interactive Ray
Tracing. 2008, pp. 49–57. doi: 10.1109/RT.2008.4634620.

[19] M. Shevtsov, A. Soupikov, and A. Kapustin. “Highly Parallel Fast KD-tree Construction
for Interactive Ray Tracing of Dynamic Scenes”. In: Comput. Graph. Forum 26 (Sept.
2007), pp. 395–404. doi: 10.1111/j.1467-8659.2007.01062.x.

[20] S. Popov et al. “Experiences with Streaming Construction of SAH KD-Trees”. In: Proceed-
ings of the 2006 IEEE Symposium on Interactive Ray Tracing, IEEE, 89-94 (2006) (Sept.
2006). doi: 10.1109/RT.2006.280219.

[21] D. Meister et al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”. In: Com-
puter Graphics Forum 40 (May 2021), pp. 683–712. doi: 10.1111/cgf.142662.

[22] I. Wald and V. Havran. “On building fast kd-Trees for Ray Tracing, and on doing that in
O(N log N)”. In: 2006 IEEE Symposium on Interactive Ray Tracing. 2006, pp. 61–69. doi:
10.1109/RT.2006.280216.

[23] C. Lauterbach et al. “Fast BVH Construction on GPUs”. In: Computer Graphics Forum
(2009). issn: 1467-8659. doi: 10.1111/j.1467-8659.2009.01377.x.

[24] M. Vinkler, V. Havran, and J. Bittner. “Performance Comparison of Bounding Volume
Hierarchies and Kd-Trees for GPU Ray Tracing”. In: Computer Graphics Forum 35.8
(2016), pp. 68–79. doi: https://doi.org/10.1111/cgf.12776.

[25] D. J. MacDonald and K. S. Booth. “Heuristics for Ray Tracing Using Space Subdivision”.
In: Vis. Comput. 6.3 (May 1990), pp. 153–166. issn: 0178-2789. doi: 10.1007/BF01911006.
url: https://doi.org/10.1007/BF01911006.

[26] M. Vinkler, V. Havran, and J. Sochor. “Visibility Driven BVH Build Up Algorithm for Ray
Tracing”. In: Computers & Graphics 36 (June 2012). doi: 10.1016/j.cag.2012.02.013.

[27] V. Havran. “Heuristic Ray Shooting Algorithms”. Ph.D. Thesis. Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, Nov. 2000. url: http://www.cgg.cvut.cz/~havran/phdthesis.html.

[28] I. Wald. “On Fast Construction of SAH-based Bounding Volume Hierarchies”. In: Proceed-
ings of IEEE Symposium on Interactive Ray Tracing 2007 (Oct. 2007), pp. 33–40. doi:
10.1109/RT.2007.4342588.

[29] B. Fabianowski, C. Fowler, and J. Dingliana. “A Cost Metric for Scene-Interior Ray Ori-
gins”. In: (2009). Ed. by P. Alliez and M. Magnor. doi: 10.2312/egs.20091046.

[30] M. Stich, H. Friedrich, and A. Dietrich. “Spatial splits in bounding volume hierarchies”.
In: Proceedings of the Conference on High Performance Graphics 2009 (HPG’09) (Aug.
2009), pp. 7–13. doi: 10.1145/1572769.1572771.

[31] M. Ernst and G. Greiner. “Early Split Clipping for Bounding Volume Hierarchies”. In:
2007 IEEE Symposium on Interactive Ray Tracing. 2007, pp. 73–78. doi: 10.1109/RT.
2007.4342593.

[32] T. Akenine-Möller and B. Johnsson. “Performance per What?” In: Journal of Computer
Graphics Techniques (JCGT) 1.1 (Oct. 2012), pp. 37–41. url: http : / / jcgt . org /

published/0001/01/03/.

51

https://doi.org/10.2312/egsh.20101051
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1111/j.1467-8659.2007.01062.x
https://doi.org/10.1109/RT.2006.280219
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1109/RT.2006.280216
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/https://doi.org/10.1111/cgf.12776
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://doi.org/10.1016/j.cag.2012.02.013
http://www.cgg.cvut.cz/~havran/phdthesis.html
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.2312/egs.20091046
https://doi.org/10.1145/1572769.1572771
https://doi.org/10.1109/RT.2007.4342593
https://doi.org/10.1109/RT.2007.4342593
http://jcgt.org/published/0001/01/03/
http://jcgt.org/published/0001/01/03/

[33] V. Havran and J. Bittner. “Rectilinear BSP Trees for Preferred Ray Sets”. In: 2001.

[34] J. Bittner and V. Havran. “RDH: Ray Distribution Heuristics for Construction of Spatial
Data Structures”. In: SCCG ’09. Budmerice, Slovakia: Association for Computing Machin-
ery, 2009, pp. 51–58. isbn: 9781450307697. doi: 10.1145/1980462.1980475.

[35] T. Ize and C. Hansen. “RTSAH traversal order for occlusion rays”. In: Comput. Graph.
Forum 30 (Apr. 2011), pp. 297–305. doi: 10.1111/j.1467-8659.2011.01861.x.

[36] J.-H. Nah and D. Manocha. “SATO: Surface Area Traversal Order for Shadow Ray Trac-
ing”. In: Computer Graphics Forum 33 (Mar. 2014). doi: 10.1111/cgf.12341.

[37] N. Feltman, M. Lee, and K. Fatahalian. “SRDH: Specializing BVH Construction and
Traversal Order Using Representative Shadow Ray Sets”. In: Proceedings of Conference on
High Performance Graphics 2012 (June 2012), pp. 49–55. doi: 10.2312/EGGH/HPG12/049-
055.

[38] S. Ogaki and A. Derouet-Jourdan. “An N-ary BVH Child Node Sorting Technique for
Occlusion Tests”. In: Journal of Computer Graphics Techniques (JCGT) 5.2 (June 2016),
pp. 22–37. issn: 2331-7418. url: http://jcgt.org/published/0005/02/02/.

[39] K. Ng and B. Trifonov. “Automatic Bounding Volume Hierarchy Generation Using
Stochastic Search Methods”. In: CPSC532D Mini-Workshop ”Stochastic Search Algo-
rithms” (2003).

[40] D. Wodniok and M. Goesele. “Construction of bounding volume hierarchies with SAH cost
approximation on temporary subtrees”. In: Computers & Graphics 62 (2017), pp. 41–52.
issn: 0097-8493. doi: https://doi.org/10.1016/j.cag.2016.12.003.

[41] A. Kensler. “Tree Rotations for Improving Bounding Volume Hierarchies”. In: Proceedings
of the 2008 IEEE Symposium on Interactive Ray Tracing (Sept. 2008), pp. 73–76. doi:
10.1109/RT.2008.4634624.

[42] J. Bikker. “Ray Tracing for Real-time Games”. PhD thesis. 2012. doi: 10.4233/uuid:
a5847568-c21e-4af1-b914-5d8139efc785.

[43] L. Tessari et al. “Stochastic Subsets for BVH Construction”. In: Computer Graphics Forum
42 (May 2023), pp. 255–267. doi: 10.1111/cgf.14759.

52

https://doi.org/10.1145/1980462.1980475
https://doi.org/10.1111/j.1467-8659.2011.01861.x
https://doi.org/10.1111/cgf.12341
https://doi.org/10.2312/EGGH/HPG12/049-055
https://doi.org/10.2312/EGGH/HPG12/049-055
http://jcgt.org/published/0005/02/02/
https://doi.org/https://doi.org/10.1016/j.cag.2016.12.003
https://doi.org/10.1109/RT.2008.4634624
https://doi.org/10.4233/uuid:a5847568-c21e-4af1-b914-5d8139efc785
https://doi.org/10.4233/uuid:a5847568-c21e-4af1-b914-5d8139efc785
https://doi.org/10.1111/cgf.14759

Appendices

53

A Additional Heuristic Measurement Data

A.1 Intersection Tests Static Scenes

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 0.73 0.72 0.72 2.68 0.73 0.73
diffuse 1st 4.01 4.01 4.0 13.85 4.06 4.01
diffuse 2nd 4.48 4.47 4.46 22.67 4.55 4.47
shadow 5.37 5.36 5.36 18.39 5.48 5.37

ao 3.42 3.41 3.41 9.47 3.47 3.42
total 2.81 2.8 2.81 9.12 2.85 2.81

Dragon

primary 0.3 0.3 0.3 0.31 1.17 0.29
diffuse 1st 6.22 6.24 6.21 6.23 20.09 6.23
diffuse 2nd 7.17 7.14 7.19 7.18 39.89 7.17
shadow 8.51 8.51 8.5 8.51 46.98 8.51

ao 6.33 6.33 6.34 6.35 25.68 6.34
total 3.17 3.17 3.17 3.18 14.5 3.17

Sponza

primary 6.06 6.48 5.12 1067.85 4.62 4.48
diffuse 1st 7.83 7.95 11.05 2161.04 9.85 9.4
diffuse 2nd 5.85 5.94 13.41 4851.6 11.21 8.32
shadow 4.91 4.96 8.67 2680.85 9.08 7.76

ao 4.98 5.14 9.42 2422.98 7.63 6.66
total 5.28 5.42 8.83 2329.25 7.92 6.98

Sibenik

primary 2.77 2.76 4.04 44.96 2.91 2.77
diffuse 1st 4.43 4.41 7.19 342.58 4.61 4.41
diffuse 2nd 5.1 5.1 8.07 420.7 5.35 5.09
shadow 6.14 6.11 7.24 2394.94 6.5 6.14

ao 3.84 3.84 6.12 317.61 4.02 3.83
total 5.15 5.13 6.78 1466.28 5.43 5.14

Conference

primary 7.14 6.19 4.83 69.81 6.8 7.17
diffuse 1st 10.78 10.08 7.77 305.62 10.91 10.79
diffuse 2nd 10.76 10.09 7.88 434.32 10.98 10.78
shadow 12.57 11.12 10.45 301.31 12 12.63

ao 8.44 7.66 6.01 290.43 8.56 8.45
total 10.37 9.3 8.03 292.16 10.18 10.4

Soda Hall

primary 2.08 2.02 10.13 2.34 2.67 2.14
diffuse 1st 1.47 1.48 6.33 3.01 1.83 1.53
diffuse 2nd 4.36 4.35 16.03 6.22 6.77 4.48
shadow 4.51 4.26 12.21 9.31 6.07 4.74

ao 2.93 2.89 10.57 3.87 3.86 3.01
total 3.55 3.4 11.15 6.39 4.74 3.7

San Miguel

primary 5.29 5.26 5.08 N/A 7.17 5.77
diffuse 1st 7.81 7.81 8.22 10.62 7.7
diffuse 2nd 9.22 9.21 9.55 13.92 9.05
shadow 8.16 8.21 8.53 11.84 8.31

ao 6.58 6.58 6.77 8.74 6.47
total 7.36 7.38 7.62 10.3 7.39

Bistro

primary 35.02 35.91 37.01 1889.39 34.63 34.03
diffuse 1st 29.14 29.24 29.32 12142.5 30.66 29.74
diffuse 2nd 32.83 32.56 33.03 17333.6 36.33 33.15
shadow 36.82 39.31 40.29 6090.48 39.94 39.56

ao 20.07 19.73 20.13 11119.6 21.51 20.4
total 30.77 32.05 32.78 8175.53 33.1 32.35

54

A.2 Traversal Steps Static Scenes

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 7.86 7.72 7.92 7.77 8.22 7.86
diffuse 1st 29.29 29.2 29.53 29.32 27.55 29.28
diffuse 2nd 31.72 31.61 31.89 31.81 30.44 31.66
shadow 37.01 37.2 37.61 38.67 36.02 37.01

ao 26.68 26.48 26.88 26.8 25.36 26.68
total 21.6 21.51 21.83 21.94 20.97 21.6

Dragon

primary 4.03 4.11 4.04 3.89 4.06 4.33
diffuse 1st 54.06 54.67 55.42 59.84 48.25 54.25
diffuse 2nd 61.97 62.36 63.71 70.96 52.8 62.8
shadow 72.47 73.85 74.86 89.2 63.02 73.15

ao 53.42 53.86 54.91 60.41 46.78 53.55
total 27.82 28.18 28.56 32.05 24.63 28.14

Sponza

primary 62.62 64.74 33.11 26.97 27.03 31.09
diffuse 1st 60.86 62.34 48.4 40.25 41.94 45.93
diffuse 2nd 57.92 58.9 61.68 52.14 53.96 60.24
shadow 54.64 55.98 54.29 42.91 44.51 50.6

ao 48.34 49.28 45.17 40.41 39.1 43.4
total 52.78 53.97 46.76 39.41 39.54 44.34

Sibenik

primary 37.04 35.05 39.04 79.07 33.73 37.68
diffuse 1st 39.85 40.14 40.86 80.11 37.43 40.7
diffuse 2nd 39.85 39.75 40.21 73.07 38.84 40.56
shadow 43.67 43.21 43.11 60.2 40.47 44.27

ao 31.43 31.53 31.46 53.49 30.4 31.85
total 39.06 38.78 38.89 59.88 36.69 39.62

Conference

primary 29.71 31.84 32.91 41.12 28.98 32.66
diffuse 1st 38.3 43.2 44.76 48.72 39.53 39.86
diffuse 2nd 38.32 43 44.06 49.45 39.75 39.89
shadow 55.88 57.58 60.41 70.62 55.73 57.12

ao 31.22 34.73 35.57 40.01 32.15 32.55
total 42.39 45.18 46.93 54.05 42.82 43.78

Soda Hall

primary 19.09 18.41 18.03 18.62 20.81 23.12
diffuse 1st 17.45 16.69 18.75 17.39 15.1 19.05
diffuse 2nd 34.51 32.85 35.03 35.3 32.62 37.74
shadow 43.44 39.28 39.43 41.85 41.25 51.23

ao 25.12 23.96 24.7 24.97 24.47 28.27
total 33.22 30.63 31.07 32.33 31.93 38.67

San Miguel

primary 64.58 65.78 64.68 N/A 65.28 68.62
diffuse 1st 76.64 76.19 76.58 70.34 77.14
diffuse 2nd 83.55 83.28 83.68 78.25 84.51
shadow 82.08 80.87 83.11 77.18 83.75

ao 63.09 62.57 62.52 58.5 64.22
total 72.85 72.15 73.05 68.29 74.33

Bistro

primary 127.51 131.76 135.65 168.97 120.85 130.22
diffuse 1st 119.91 118.4 120.01 130.46 113.12 127.06
diffuse 2nd 131.96 129.22 130.91 122.2 126.47 139.18
shadow 139.69 139.76 143.43 150.22 132.27 149.49

ao 92.25 89.9 90.82 94.13 86.35 98.09
total 122.4 121.73 124.35 131.05 115.61 130.34

55

A.3 Intersection Tests Animated Scenes Without Rebuilds

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 0.29 0.29 0.29 0.3 0.33 0.29
diffuse 1st 4.01 4.01 4.01 4.01 4.49 4.01
diffuse 2nd 4.56 4.57 4.56 4.57 5.08 4.57
shadow 5.65 5.64 5.64 5.63 6.29 5.64

ao 3.42 3.42 3.42 3.43 3.86 3.42
total 1.75 1.75 1.75 1.75 1.96 1.75

Dragon

primary 0.24 0.24 0.24 0.24 12.51 0.24
diffuse 1st 6.1 6.1 6.09 6.09 225.54 6.1
diffuse 2nd 7.1 7.1 7.1 7.09 278.25 7.08
shadow 8.42 8.41 8.42 8.43 330.62 8.42

ao 6.24 6.24 6.24 6.25 226.49 6.24
total 2.34 2.34 2.34 2.34 90.52 2.34

Sponza

primary 7.41 7.65 13.06 7.91 18.02 7.44
diffuse 1st 7.57 7.6 13.13 53.05 25.87 7.49
diffuse 2nd 5.89 5.89 11.88 121.66 25.77 5.77
shadow 5.45 5.46 8.66 186.85 20.53 5.46

ao 5.18 5.21 10.23 78.75 19.33 5.09
total 5.63 5.67 10.21 108.98 20.38 5.57

Sibenik

primary 3.04 3.09 7.1 3.11 5.36 3.11
diffuse 1st 5.72 5.72 7.8 5.6 10.18 5.76
diffuse 2nd 6.14 6.14 8.73 6.01 11.3 6.22
shadow 7.51 7.47 8.94 7.42 10.92 7.52

ao 4.61 4.62 6.98 4.52 8.49 4.66
total 6.21 6.19 8.15 6.13 9.82 6.24

Conference

primary 10.08 7.52 6.3 6670.64 9.88 9.77
diffuse 1st 9.9 9.6 7.76 8485.71 10.25 9.91
diffuse 2nd 10.2 9.5 7.71 7816.01 10.5 10.17
shadow 11.99 10.53 9.84 8215.3 11.51 12.01

ao 8.24 7.49 6.15 6854.77 8.49 8.21
total 10.11 8.99 7.89 7552.53 10.03 10.09

Soda Hall

primary 3.73 3.64 8.31 4108.76 15.05 3.81
diffuse 1st 3.87 3.67 8.66 5586.32 18.66 3.92
diffuse 2nd 4.23 4.06 9.96 6240.14 22.02 4.35
shadow 4.24 3.8 9.21 5179.8 14.47 4.62

ao 3.87 3.63 7.77 5693.73 16.12 3.91
total 4.08 3.74 8.7 5360.12 15.48 4.31

San Miguel

primary 4.73 4.74 8.1 N/A 86.59 4.7
diffuse 1st 6.92 6.89 8.83 56.36 6.95
diffuse 2nd 7.21 7.2 8.95 51.34 7.26
shadow 6.54 6.53 7.36 42.64 6.42

ao 5.41 5.37 6.69 35.63 5.43
total 6.01 6.0 7.26 42.92 5.98

Bistro

primary 19.51 19.61 19.34 32161.8 27.8 19.69
diffuse 1st 28.89 28.26 29.21 22059 40.82 28.79
diffuse 2nd 29.54 28.84 29.99 20875 43.45 29.42
shadow 32.14 33.34 33.85 16897 43.67 32.7

ao 19.52 18.42 19.17 15815 29.22 19.48
total 27.09 27.34 27.92 17611.9 37.95 27.38

56

A.4 Traversal Steps Animated Scenes Without Rebuilds

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Bunny

primary 3.04 3.01 3.07 3.23 3.07 3.08
diffuse 1st 28.65 28.82 29.1 31.02 27.86 28.6
diffuse 2nd 31.97 32.13 32.41 34.87 31.29 31.62
shadow 38.13 38.52 38.91 48.2 37.19 38.22

ao 26.53 26.55 26.87 28.72 25.84 26.46
total 13.22 13.26 13.43 15.12 12.95 13.24

Dragon

primary 3.26 3.3 3.32 3.61 2.48 3.4
diffuse 1st 52.36 52.72 53.61 58.37 32.61 52.75
diffuse 2nd 60.54 60.96 62.08 68.96 37.4 61.38
shadow 71.91 73.12 74.2 88.41 44.3 73.04

ao 52.43 52.72 53.7 59.16 32.3 52.74
total 20.7 20.9 21.24 24.03 13.09 20.97

Sponza

primary 50.71 50.91 53 51.17 47.91 54.05
diffuse 1st 60.35 60.48 64.21 62.29 57.37 66.56
diffuse 2nd 59.41 59.46 63.07 62.18 57.36 67.08
shadow 57.68 58.07 65.91 55.41 53.76 68.48

ao 49.77 49.81 51.75 51.62 47.75 54.24
total 53.58 53.75 57.82 54.05 50.83 60.3

Sibenik

primary 28.4 28.23 28.16 31.89 29.52 37.13
diffuse 1st 40.42 40.44 40.54 48.31 41.65 47.24
diffuse 2nd 42.41 42.43 42.75 51.31 44.34 50.08
shadow 46.6 46.16 46.39 54.32 46.02 54.25

ao 33.02 33.17 32.75 38.55 34.17 38.33
total 40.82 40.63 40.63 47.66 41.06 47.73

Conference

primary 36.46 38.35 39.99 40.87 38.31 36.89
diffuse 1st 38.21 44.14 45.5 40.98 40.57 39.86
diffuse 2nd 37.9 42.08 43.21 39.02 39.65 38.89
shadow 54.12 56.12 59.38 55.48 54.43 55.28

ao 31.82 35.42 36.1 32.28 33.37 32.69
total 42.19 45.16 47.05 43.37 43.27 43.21

Soda Hall

primary 42.16 40.2 40.02 46.71 51.05 47.25
diffuse 1st 42.18 41.14 39.85 44.89 48.61 46.23
diffuse 2nd 45.2 44.96 42.41 48.26 51.98 49.73
shadow 44.71 41.56 40.65 46.19 49.24 51.53

ao 40.02 38.8 36.62 42.37 45.95 43.8
total 42.97 40.69 39.32 44.96 48.3 48.52

San Miguel

primary 60.91 58.83 60.49 N/A 61.38 61.97
diffuse 1st 64.96 64.18 65 62.53 66.04
diffuse 2nd 64.03 63.29 64.08 61.44 65.14
shadow 67.57 65.55 68.23 65.13 68.89

ao 51.37 50.64 50.88 49.42 51.9
total 60.03 58.68 60.08 57.93 60.98

Bistro

primary 89.55 88.12 86.72 176.91 91.45 92.82
diffuse 1st 115.61 112.04 113.66 177.84 115.06 118.6
diffuse 2nd 120.05 115.83 118.09 168.78 118.56 123.5
shadow 130.05 127.94 129.25 190.6 127.27 135.19

ao 87.27 82.83 83.83 127.86 86.37 89.85
total 112.88 109.92 111.01 168.07 111.13 116.92

57

A.5 Intersection Tests Animated Scenes with Rebuilds Every 3 Frames

Scene Ray Distribution RDH OSAH

Bunny

primary 0.3 0.29
diffuse 1st 4.1 4.01
diffuse 2nd 4.66 4.57
shadow 5.79 5.64

ao 3.5 3.43
total 1.79 1.75

Dragon

primary 420.74 0.24
diffuse 1st 3489.6 6.1
diffuse 2nd 4887.81 7.09
shadow 4338.72 8.42

ao 3874.39 6.24
total 1538.63 2.34

Sponza

primary 7.7 7.5
diffuse 1st 7.97 7.62
diffuse 2nd 6.64 5.93
shadow 6.06 5.48

ao 5.67 5.26
total 6.15 5.69

Sibenik

primary 3.15 3.06
diffuse 1st 5.9 5.71
diffuse 2nd 6.4 6.13
shadow 7.67 7.51

ao 4.79 4.6
total 6.38 6.21

Conference

primary 9.64 7.91
diffuse 1st 10.18 9.77
diffuse 2nd 10.42 9.75
shadow 11.82 11.17

ao 8.43 7.79
total 10.12 9.43

58

A.6 Traversal Steps Animated Scenes with Rebuilds Every 3 Frames

Scene Ray Distribution RDH OSAH

Bunny

primary 3.02 3.05
diffuse 1st 27.79 28.68
diffuse 2nd 30.65 32.07
shadow 37.43 38.25

ao 25.63 26.57
total 12.9 13.25

Dragon

primary 2.77 3.38
diffuse 1st 40.62 52.19
diffuse 2nd 45.63 60.9
shadow 54.77 72.38

ao 40.08 52.29
total 16.0 20.79

Sponza

primary 47.48 53.01
diffuse 1st 57.19 63.36
diffuse 2nd 57.58 62.46
shadow 53.14 62.63

ao 47.37 52
total 50.41 56.79

Sibenik

primary 28.55 28.97
diffuse 1st 40.46 41.01
diffuse 2nd 43.4 42.93
shadow 44.81 47.12

ao 33.34 33.4
total 40.0 41.3

Conference

primary 37.02 38.98
diffuse 1st 39.33 44.1
diffuse 2nd 39.15 43.02
shadow 53.42 59.57

ao 32.82 35.85
total 42.46 46.9

59

A.7 Intersection Tests Animated Scenes with Rebuilds Every Frame

Scene Ray Distribution RDH OSAH

Bunny

primary 0.3 0.29
diffuse 1st 4.08 4.01
diffuse 2nd 4.64 4.58
shadow 5.75 5.64

ao 3.48 3.42
total 1.78 1.75

Dragon

primary 2.67 0.23
diffuse 1st 45.64 6.08
diffuse 2nd 68.77 7.09
shadow 76.88 8.44

ao 50.48 6.23
total 20.3 2.33

Sponza

primary 7.47 7.55
diffuse 1st 7.83 7.61
diffuse 2nd 6.47 5.93
shadow 5.85 5.48

ao 5.56 5.27
total 5.99 5.69

Sibenik

primary 2.91 3.07
diffuse 1st 5.56 5.71
diffuse 2nd 6.3 6.13
shadow 7.54 7.51

ao 4.66 4.6
total 6.21 6.21

Conference

primary 9.97 7.89
diffuse 1st 10.59 9.77
diffuse 2nd 10.57 9.74
shadow 12.23 11.17

ao 8.68 7.79
total 10.45 9.43

60

A.8 Traversal Steps Animated Scenes with Rebuilds Every Frame

Scene Ray Distribution RDH OSAH

Bunny

primary 3.0 3.05
diffuse 1st 27.61 28.62
diffuse 2nd 30.54 32
shadow 37.28 38.17

ao 25.48 26.51
total 12.83 13.22

Dragon

primary 2.83 3.33
diffuse 1st 42.5 51.99
diffuse 2nd 47.62 60.73
shadow 57.21 72.42

ao 41.89 52.13
total 16.68 20.66

Sponza

primary 45.59 52.54
diffuse 1st 56.04 62.7
diffuse 2nd 57.02 62.1
shadow 52.18 62.26

ao 46.56 51.67
total 49.46 56.41

Sibenik

primary 25.62 28.82
diffuse 1st 38.14 40.84
diffuse 2nd 42.81 42.81
shadow 43.85 47.0

ao 32.48 33.3
total 38.83 41.19

Conference

primary 37.0 39.05
diffuse 1st 39.86 44.16
diffuse 2nd 39.34 43.08
shadow 53.89 59.75

ao 33.13 35.89
total 42.83 47

Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

primary 429 410 500 438 478 519
diffuse 1st 518 486 594 532 485 485
diffuse 2nd 840 806 977 879 875 975
shadow 853 766 878 861 842 1054
ao 579 544 653 586 601 678
total 699 640 750 708 704 839

61

Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

primary 1281 1290 657 10036 559 629
diffuse 1st 1419 1444 997 20716 870 991
diffuse 2nd 1479 1497 1444 47120 1316 1368
shadow 1214 1241 1085 25758 922 1031
ao 1146 1164 958 23374 842 928
total 1213 1234 966 22395 838 931

62

Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

primary 884 846 899 38685 1155 976
diffuse 1st 1043 1020 1054 52406 1264 1055
diffuse 2nd 1100 1090 1113 58627 1436 1193
shadow 1004 941 985 47794 1141 1085
ao 973 939 949 53303 1193 1013
total 994 945 977 49815 1174 1060

63

Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

primary 133 135 128 133 145 125
diffuse 1st 1496 1543 1512 1667 1733 1467
diffuse 2nd 2023 2005 2014 2290 2504 1968
shadow 2570 2573 2609 2968 3200 2486
ao 1550 1530 1552 1704 1793 1474
total 684 684 685 759 810 654

64

Cost Metric SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

SAH 126.2 128.8 173.9 142.9 154.9 151.2
EPO 40.4 38.7 34.5 46.8 49.1 64.8
SAH+EPOa=0.83 55.0 54.1 58.2 63.1 67.1 79.5

ns/ray 699 640 750 708 704 839

Cost Metric SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

SAH 94.8 95.6 109.4 203.4 99.5 113.2
EPO 23.4 23.7 25.2 51.7 22.3 27.1
SAH+EPOa=0.84 34.8 35.2 38.7 76 34.7 40.9

ns/ray 1213 1234 966 22395 838 931

65

Scene Ray Distribution SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Conference

primary 716 730 745 1543 832 857
diffuse 1st 989 1055 1092 4242 988 1066
diffuse 2nd 1022 1107 1129 5603 1035 1101
shadow 1355 1360 1434 4628 1279 1388

ao 806 859 885 3866 826 874
total 1056 1088 1135 4182 1038 1114

Soda Hall

primary 429 410 500 438 769 1024
diffuse 1st 518 486 594 532 848 1106
diffuse 2nd 840 806 977 879 995 1253
shadow 853 766 878 861 815 1083

ao 579 544 653 586 822 1071
total 699 640 750 708 823 1084

66

Scene Cost Metric SAH Int-Scene HQ Int-Scene Fast P-SAH RDH OSAH

Soda Hall
SAH 126.2 128.8 173.9 142.9 154.9 151.2
EPO 40.4 38.7 34.5 46.8 49.1 64.8

SAH+EPOa=0.83 55.0 54.1 58.2 63.1 67.1 79.5

San Miguel
SAH 79.4 80.5 88.2 5600391.5 97.9 85.1
EPO 17.1 16.9 16.2 0.0 20.6 22.1

SAH+EPOa=0.72 34.5 34.7 36.3 1568109.6 42.2 39.8

Bistro
SAH 148 147.3 149.2 500.4 157.2 175.2
EPO 38.5 36.3 36.7 217.6 39.7 55.1

Carpenter
SAH 145.4 146.9 154.6 269.6 152.6 160.9
EPO 29.8 30 29.1 65.3 28.9 44.4

67

	Introduction and Background
	Ray Tracing
	Acceleration Structures
	BVH Traversal
	BVH Construction
	The Surface Area Heuristic
	SAH Assumptions

	Problem Definition

	Research Questions
	Previous Work
	Universal Improvement
	Split Bounding Volume Hierarchy
	End-point Overlap
	Leaf Count Variability
	Scene-Interior Ray Origin Metric

	Fixed Ray Distribution
	Preferred Ray Sets
	Ray Distribution Heuristic
	Occlusion Surface Area Heuristic

	Shadow Rays
	RTSAH
	Surface Area Traversal Order
	SRDH

	Non-greedy SAH Computation
	Final Notes

	Non-greedy SAH
	Implementation
	Termination Criteria
	Split Plane Configuration Pruning
	Testing Methodology
	Results and Analysis
	Pruning Results

	Comparison of Alternative Heuristics
	Implementation and Testing Methodology
	Results and Analysis
	Varying Ray Distributions as RRS
	Tests for Static Viewpoints
	Tests for Animated Camera Splines

	Conclusion
	Non-greedy SAH Evaluation
	Comparison of Alternative Heuristics

	Future Work
	Non-greedy SAH
	The Scene-Interior Ray Origin Metric
	Impact on Massively Parallel Devices
	Shadow Ray Heuristics
	Combining of Heuristics
	Stochastic Evaluation of BVH Quality

	Bibliography
	Appendices
	Additional Heuristic Measurement Data
	Intersection Tests Static Scenes
	Traversal Steps Static Scenes
	Intersection Tests Animated Scenes Without Rebuilds
	Traversal Steps Animated Scenes Without Rebuilds
	Intersection Tests Animated Scenes with Rebuilds Every 3 Frames
	Traversal Steps Animated Scenes with Rebuilds Every 3 Frames
	Intersection Tests Animated Scenes with Rebuilds Every Frame
	Traversal Steps Animated Scenes with Rebuilds Every Frame

