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Abstract

Automated Program Repair (APR) has emerged as a valuable tool for developers in

the software development and maintenance process. Despite recent advances in deep

learning (DL), the DL-based APR approaches still have limitations. A notable research

gap exists in the current state-of-the-art (APR) methods, as they often require domain-

specific knowledge and retraining when transitioning to different programming lan-

guages.

This study explores the potential of Large Language Models (LLMs), specifically

ChatGPT, as a promising alternative for patch generation, as they can potentially over-

come these limitations by not requiring domain knowledge and enabling seamless adap-

tation across different programming languages. The experiment focuses on exploring the

potential of ChatGPT as a method for generating software patches. Specifically, we in-

vestigate its performance using the benchmark Defects4j v2.0, conducting tests on a total

of 476 bugs. We assume perfect localization of the buggy lines for the purpose of the

experiment.

In our analysis, we compare the results of the ChatGPT-based patch generation with

other state-of-the-art APR methods. Our findings reveal that ChatGPT demonstrates a

comparatively weaker performance in this context. However, despite its current limi-

tations, our study highlights untapped potential within ChatGPT and other Large Lan-

guage Models (LLMs). With ongoing advancements and improvements, it is plausible

that LLMs may surpass existing methods and offer superior performance in the future.

However, LLMs like ChatGPT need further improvements and refinements to fully real-

ize their potential.
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1 Introduction

Software systems surround us in daily life. They assist us and provide services that aim to

improve our lives—for example, digital banking, healthcare diagnostic tools, and logistical

route-planning systems. However, the consequence of the essential roles software systems

play is that software bugs can be disastrous. For example, a bug in a rail company’s operat-

ing system can halt all train traffic in the country.

Moreover, bugs are ubiquitous, and finding and repairing them is a complicated, time-

consuming, error-prone, and a manual process. A report shows that debugging and validat-

ing account for 35-50% of a software developer’s time [1]. The cost of debugging, testing,

and verification is estimated to account for 50-75% of a software product’s total budget [2].

The excessively high cost of bug repair, plus the ever-growing importance because of the

evolving software, motivated the research community to find a solution to this problem.

The proposed solution is to repair programs automatically instead of manually. This ap-

proach gives programmers more time to develop because the algorithm will fix the mistakes

or oversights. The developer has more time to concern themselves with functionality re-

quirements instead of implementation. This approach is called Automatic (or Automated)

Program Repair (APR). These techniques reduce the cost of bug fixing by automatically gen-

erating patches for the developer. The aim is to generate fixes that a human developer would

produce, i.e. to eliminate bugs without causing software regression and maintain readabil-

ity of the code. Software regression is a phenomenon where a patch causes functionality

loss. So, it might fix the original bug, but it also causes new bugs.

Recently OpenAI introduced a new GPT language model ChatGPT[3]. It is an GPT-3.5

model, which users can interact with in conversational way. The model has been a huge

success with the public. The user-friendly chatbot interface has made the GPT model more
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(a) The request

(b) The generated fix

Figure 1: Example of fixing a bug using ChatGPT.

approachable for people outside of the field of AI. However, its capabilities of generating

texts has also raised a lot of questions about ethics, legislation, and labour. The model also

possess the capabilities of one of its predecessor Codex. Codex is the GPT model that pow-

ers the newly released GitHub Copilot. Copilot is an AI pair-programming tool that assists

the developer in the process of writing code. Codex, and therefore also ChatGPT, can un-

derstand and generate code up to a certain complexity. The models can execute various

tasks (to a varying degree), such as generating code from natural language, explaining code,

translating code between programming languages, providing time complexity, and bug fix-
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ing. ChatGPT outperforms Codex on all of these tasks. In figure 1, there is an example of a

prompt for bug repair using ChatGPT.

Moreover, The reason we believe that this experiment is interesting is that Large Lan-

guage Models (LLMs) are great at zero-shot or few-shot learning[4]. Traditional APR tech-

niques required substantial engineering efforts to develop the technique. Time spend in

analysing the repair program, repairing faults, and custom tailoring to the domain language.

On the other hand, ChatGPT is a general purpose model, which allows the model to adapt

easily to the prompt given by the developer in any language. Furthermore, using a LLM re-

moves the need for custom symbolic repair logic or retraining of a new model, and it allows

us to handle both syntactic and semantic bugs [5].

In this paper, we investigate whether ChatGPT can be applied to the challenging task

of APR patch generation. We evaluate and compare ChatGPT with other traditional APR

techniques. For the comparison, we used a benchmark called Defects4j v2.0, a collection of

reproducible bugs from open-source projects in Java. Additionally, we experiment which

prompt yields the best performance. The prompt engineering is an important step for the

results’ accuracy. You could see prompt engineering as a part of hyperparameter tuning

in traditional machine learning. The remainder of this proposal is structured as follows.

Section 2 discusses experiments which are related to our reasearch. Section 3 provides back-

ground literature on APR, the learning-based patch generation, and GPT-3 language models.

Section 4 presents the research methodology. In section 5, we will present the results and we

will discuss the results more in depth in section 6. Finally, we provide our conclusion of the

experiment in section 7.
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2 Related Work

In this section, we will discuss other papers that utilize Large Language Models (LLMS)

to tackle the APR problem. LLMs, which are typically employed for various Natural Lan-

guage Processing (NLP) tasks, have also shown promise in programming languages by fine-

tuning the model on code repositories, as exemplified by Codex[6]. A significant advantage

of LLMs is their unsupervised learning approach, enabling them to be applied across dif-

ferent domains without requiring retraining. These models are trained on massive datasets

containing billions of text/code tokens, and their architecture, based on transformers, excels

at handling sequences, making them particularly effective in the NLP domain.

Prior research has already compared different LLMs on real-world projects [7], where

nine LLMs were tested in different experimental settings: 1) complete function generation

- aiming to generate the patched function from a buggy one, 2) correct code infilling - gen-

erating the correct replacement code given the prefix and suffix of the buggy function, and

3) single line generation - fixing a bug by making a single line change with the bug loca-

tion provided. The experiments employed popular benchmark datasets, though multi-hunk

bugs were excluded from the test set. A hunk refers to portion of the code that could po-

tentially contain an error or bug. In other words, multiple hunks means that in order to fix

the bug, you have to patch multiple locations in the source code. Furthermore, the paper

does not specify how many patches are generated per bug. So, it is hard to compare the

results because the unknown amount of resources. Next, the time cost is considerable for

Codex, since it needs to be accessed through the OpenAI API, which also has a rate limit per

account. Additionally, the tested LLMs failed to leverage the failing test as crucial informa-

tion for bug fixing, and the absence of patch tracking led to computational inefficiency. The

models produced identical solutions, which is a waste of computational resources.
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Another study utilized ChatGPT in a conversational manner for patch generation [8, 9].

The approach adopted a conversational process by providing the ChatGPT with feedback

and so iteratively refining the solution. The feedback sent back to the model was the er-

ror message from the console. This approach addresses the issue of repeated patches by

leveraging previous answers. This allowed ChatGPT to identify plausible patches. Further-

more, whenever a plausible patch was found, the next step was to ask ChatGPT to gen-

erate alternative variations of this patch and produce additional candidate patches. This

is more efficient way of procuring plausible patches, which is essential. Plausible patches

have been shown to be valuable since they often share similar locations with the actual

correct patches[10, 11]. Nevertheless, similar to previous work, multi-hunk bugs were not

considered in the test set. Moreover, the conversational approach was slower compared to

generating the response only once. Especially, since the intermediate response has to be

tested if they pass the the test suite. Thus, the bug fix attempts are higher in quality, but cost

more resources.

Moreover, there exists a study that combines traditional APR techniques with LLMs [12].

The method involves utilizing Codex to generate code for a given programming task, fol-

lowed by employing APR tools like Tbar [13] and Recoder [14]. Despite this approach’s

potential benefits, it still inherits certain weaknesses inherent in traditional APR tools, such

as a limited search space and a lack of awareness of program dependencies.

An intriguing observation is that LLMs tend to make common mistakes similar to those

made by human programmers. This could be attributed to their training data, which largely

consists of code written by humans. This insight underscores the significance of under-

standing the relationship between LLMs and human programming practices, as it opens up

possibilities for more effective automated code repair techniques. Especially, since the goal

is to write patches that are comprehensible for human developers.
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While previous research has extensively explored LLMs, this paper delves deeper into

the specifics of ChatGPT, examining its strengths and weaknesses. Our objective is to pave

the way for a future where LLMs automatically fix any bugs in the code without any human

assistance. This necessitates a comprehensive understanding of ChatGPT’s capabilities and

the potential improvements needed to achieve this ambitious goal.

3 Background literature

In this section we will delve deeper in the literature concerning automated program repair,

language models, and OpenAI’s code completion model.

3.1 Automated Program Repair (APR)

Automatic program repair (APR) is the use of algorithms and techniques to automatically

generate patches for bugs or defects in software programs. The goal of APR is to reduce

the time and effort required to find and fix defects in software, which can save develop-

ment teams time and resources, and improve the reliability and stability of the software.

In addition, the patch should be comprehensible for the developers since it is vital for the

maintainability and readability of the code.

Fundamentally, APR can be considered a search problem. In the process of generating a

repair patch, the APR system must search through a space of potential patches to find one

that fixes the defect without introducing new problems. Every candidate patch is combi-

nation of possible modifications on the source code. This search can be performed using a

variety of algorithms and techniques, such as genetic algorithms, evolutionary algorithms,

or constraint-based search. The specific approach used will depend on the characteristics

of the defect and the program being repaired. However, there are some problems with this
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approach.

First, search space explosion is a phenomenon that occurs when the space of possible so-

lutions to a problem becomes too large to search effectively. It is particularly common in

APR, where the search space includes all possible patches that could be used to fix a defect

[15]. As the size of the program and the complexity of the defect increase, the number of

possible patches also increases, making it difficult for the APR system to effectively search

for a good solution. Further, it is possible that the search space used by an APR system does

not contain the correct patch. This can happen because the APR system is not able to effec-

tively search the entire space of possible patches, or if the space of possible patches is too

large to search completely. In these cases, the APR system may fail to find the correct patch

and instead return a patch that is only a partial or approximate solution to the defect. This

can reduce the effectiveness of the APR system and lead to incomplete or incorrect repairs.

To address search space explosion, APR systems may use a variety of techniques, such as

restricting the search space, applying heuristics to guide the search, or using more efficient

search algorithms.

Second, it is challenging to generate patches that do not introduce new defects, which

was mentioned earlier as software regression. To avoid software regression, it is important to

test the repair patch thoroughly to ensure that it fixes the defect without introducing new

problems or changing the behavior of the program in unintended ways. This can be done

using a variety of techniques, such as unit testing, integration testing, or regression testing.

Unit testing involves testing individual components or units of the program to ensure that

they are functioning correctly. Integration testing involves testing the program as a whole to

ensure that all of its components are working together properly. Regression testing involves

running a suite of tests on the program to ensure that the repair patch has not caused any

previously fixed defects to re-emerge. By using a combination of these techniques, it is
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possible to thoroughly test the repair patch and avoid software regression.

A family of techniques widely used in APR is called test suite based repair. A test suite,

consisting of input/output pairs, specifies the program’s functionality. It can be used as a

test oracle to drive the search for the correct patch. The oracle can be divided between the

bug oracle that exposes the bug in the code, and the regression oracle, which encapsulates the

required functionality of the code. The latter is an essential part of the suite because the

model could delete faulty code to pass all the test cases without the regression test. Further,

the inputs to test suite based repair techniques are the buggy program and a test suite, which

contains some passing tests as the specification of the expected behaviour and at least one

falling test as a specification of the bug to be repaired. The model attempts to generate as

output a patch that passes all the test cases.

Patches that pass all tests in the test suite are called plausible patches. The plausible patches

are not the final product. First, these patches will undergo a manual quality inspection

by developers. The developer chooses then which patches fulfil all requirements such as

readability, maintainability, and efficiency. The patches that pass the final inspection are the

correct patches (i.e. semantically equivalent to developers’ produced patches).

However, there lies a problem with the test based approach. A test suite might not en-

capsulate all necessary test cases for a complete program specification. The consequence is

that a patch might pass all the tests, but it would not fix the bug or cause software regression.

The problem patches are the plausible, but incorrect patches. These patches harm the source

code since they might introduce new undetected bugs or undetected regression. Further-

more, This phenomenon is called patch overfitting. A reason for patch overfitting is that correct

patches are sparse in the search space and vastly outnumbered by incorrect patches [15]. So,

it is not an easy problem to tackle. Nevertheless, there are ways to tackle overfitting. Those

solutions we will discuss in the Patch evaluation section.
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A typical APR process consists of 3 steps: 1) Fault Localisation, 2) Patch Generation,

and 3) Patch Evaluation. In the rest of this section, we discuss these steps in more detail.

Furthermore, in figure 2, we have organised some of the essential terms into a diagram for

ease of understanding.

Figure 2: Terminology Tree

3.1.1 Fault Localization

To fix a bug, we first have to find its origin. Even though compilers often have an error

logging system, the information in this log can point to the wrong location in the code. The

reason is that it provides the point of failure, which is different from its faulty origin. For

example, a variable gets assigned an incorrect value much earlier than the provided line

in the error log. So, finding the bug is a big expensive part of the debugging process and

largely depends on the developer’s knowledge and skill set.

Fault localisation techniques aim to localise potentially faulty code elements. Fault lo-

calisation originates from different disciplines. These techniques usually analyse various
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dynamic execution information to compute each program element’s suspiciousness (i.e. the

probability of failure). Next, it can rank the found elements based on their probability for

the developers or be used for the next step, patch generation. Researchers developed sev-

eral techniques to identify buggy lines, such as static analysis, code commit history, and

analysing unit test case. Please refer to these surveys for more details[16, 17].

3.1.2 Patch Generation

The buggy elements are modified based on transformation rules to generate various new

program variants. These program variants or patches are the candidates that will be tested

to discern whether it is the correct solution. This part of the process is the most challenging

because it concerns automating the human task of bug fixing. We have already mentioned it

before that we cannot brute force it because of the search space explosion. There are multiple

approaches for generating patches, such as using templates to transform the buggy code and

generate candidate patches. We will discuss the different classes of generation techniques in

next section.

3.1.3 Patch Evaluation

Patch evaluation is essential part of the process because incorrect but plausible patches harm

the bug-fixing process. In other words, these incorrect plausible patches can cause cause

software regression. For example, a possible strategy for patch generation is to delete the

buggy lines of code. This strategy can pass the test suite, but it is, in the end, undesirable for

the human developers. Therefore, the goal of patch evaluation is to filter out the incorrect

patches so that the correct ones remain.

We already explained the patch overfitting problem previous section, but it is most rele-

vant for patch evaluation. The key task of patch evaluation is to discern the correct patches
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from incorrect. A common practice in the program is to employ manual assessment for gen-

erated patches to assess their correctness. A patch is correct if and only if: 1) it is identical

to a human-written patch, or 2) the patch is semantically equivalent. Otherwise, the model

shows overfitting. A key metric to determine if models is overfitting, is precision. The pre-

cision in this context is the fraction of correct patches out of all the plausible patches.

However, manual assessment has three significant problems: difficulty, bias, and scale.

For the first problem, it is difficult to determine what is semantically equivalent during the

repair. Therefore, a developer needs the necessary expertise considering the code base. They

have to know the code requirements, whether a solution is scalable, and the coding stan-

dards for the code. Second, the person who executes the manual inspection is often respon-

sible for developing the code. So, this practice introduces bias in the inspection process.

Finally, the third problem is scale. The bigger the system becomes, the more bugs need a

manual inspection, and the number of bugs can outgrow the available resources.

Patch assessment is essential because it determines the effectiveness of fault localisation

and patch generation techniques. A possible solution to combat the previously described

problems is automatically detecting correct patches. These are the Automated Patch Cor-

rectness Assessment (APCA) techniques. These techniques allow researchers to test at scale

and reduce bias. APCA techniques can be either static or dynamic. Static techniques priori-

tise or filter out incorrect plausible patches by statistically analysing patches’ characteristics

(e.g. Anti-patterns [18]). Dynamic techniques generally leverage automated test generation

tools to identify correct patches among plausible ones (e.g. DiffTGen [19]).

3.2 Patch Generation Techniques

In this section, we will discuss three different patch-generation approaches. How do they

work? What advantage has an approach compared to others, and which challenges are they
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currently facing?

3.2.1 Search-based

A typical patch generation technique is Generate-and-Validate (GV) (aka search-based re-

pair), which iteratively creates candidate fixes, compiles them, and runs these candidates

against the given tests. The intuition behind it is to generate possible patches and test them

to see if they are plausible.

GV consists of two main techniques: heuristic-based and template-based. Heuristic-

based repair technique uses a mutation operator to explore the search space, representing

all possible modifications to the source code [20, 21, 22].

Heuristic repair generates patches by transforming the Abstract Syntax Tree (AST). An

AST is a tree representation of the code. See Fig 3 for an example of an AST. ASTs express

program structure at multiple levels of abstraction or granularity. One of the first heuristic

methods is GenProg[20]. GenProg uses genetic algorithms to traverse the search space. The

fitness of every candidate is the number of ’faults’ repaired plus the number of essential

functions that remain. The number of possible modifications grows exponentially, so that is

where the heuristic comes in to guide the search process.

The other primary technique is template-based (aka Pattern-based). This technique gen-

erates patches by transforming a buggy program using fix patterns/transformation tem-

plates [23, 24, 25, 26, 27, 13, 28, 29]. The trade-off of templates is readability and naturalness

instead of repair space size. The APR research community views template-based techniques

as the current state-of-the-art method among the traditional methods.

There are multiple ways to create these patterns. The first option is to create the fix

patterns manually. The advantage is that it is precise. On the other hand, this method is

prohibitive and error-prone. The second option is to infer patterns by mining them from
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Figure 3: Example of an Abstract Syntax tree from https://en.wikipedia.org/wiki/

Abstract_syntax_tree

existing patches[24]. There have also been other mining methods [28, 26]. Mining methods

result in a large number of fix patterns, which are sometimes trivial as an operator. For

example, the pattern only changes code style and its behaviour. The third option is using

pre-defined patterns. For example, unify fix patterns proposed in previous studies. The

fourth and last option is to infer patterns from statistics. Choose the patterns frequently

used in existing patches. For example, you could take the top-n most frequent code changes

as fix patterns.

However, The GV approach has two significant limitations. First, there is always the

possibility that the correct patch is outside the search space. The reason for this is that
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the approach has the assumption that the fix is in the code. However, finding a solution

for the bug is only possible if this is the case. The solution to this could be using more

modification operators. However, this gives rise to the second limitation. If there are too

many transformation operators, the search space explosion problem[15] arises. The search space

explosion problem happens when an ample search space contains many candidate patch

templates, but it is infeasible to validate them all. In other words, it is computationally too

costly to consider all the possible solutions.

3.2.2 Constraint-based

Constraint-based techniques have a different approach to generating patches. Instead of

generate-and-validate, it first sets constraints that the patched code should satisfy and then

uses them to synthesise a solution. Program synthesis is the task of constructing a program

that provably satisfies a given specification. It is different from program verification since

the program is a work in progress.

In detail, these techniques create a repair constraint for every test in the test suite. Next,

the method synthesises a solution from the disjunction of all found conditions. The method

obtains a solution to the constraints by constraint solving or other search techniques. The

key to the constraint-based approach lies in the constraint formulation rather than the pro-

cess of solving the constraints.

A more concrete example of the constraint-based approach is Nopol, a conditional state-

ment repair [xuan 2018 nopol]. Conditional statements are the perfect fit for constraint-

based techniques since all statements return either true or false. Additionally, if-conditions

are among the most error-prone elements in programs [source Martinez 2013].

Symbolic execution analyses a program to determine what inputs cause each part of

a program to execute. It uses symbolic values instead of the actual input values; thus, it
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creates an expression in terms of those symbols.

However, the problem with constraint-based techniques is that it overfits to test suite.

So, the methods cannot perform well on bugs not present in the test suite.

3.2.3 Learning-based

The uprise of advanced machine learning has caused waves in the scientific community, and

APR is no exception. The power of deep learning combined with a large number of patches

enables learning-based techniques to generate fixes for bugs [30, 31, 32, 33, 34, 35, 36, 14, 37].

An important note is that some of the previous patch generation techniques are enhanced by

machine learning, but not per se learning-based because in those cases it is not the core part

of the technique. Learning-based techniques typically view the problem of APR as a Neural

Machine Translation (NMT) problem and use NMT techniques from the field of Natural

Language Processing (NLP) to improve the performance of APR models. Consequently,

NMT systems have recently achieved state-of-the-art performance on program repair tasks.

NMT is commonly used for translation between natural languages. For example, a

model that translates French into Swedish. In the case of APR, it is translating buggy code

into (potentially) correct code. These models typically consist of encoder-decoder architec-

ture. Encoding means converting data into a required format, in our case, turning buggy

code into an intermediate representation. To decode means to convert a coded message into

intelligible language. So, the decoder turns the intermediate representation into a candidate

patch.

There are currently three different approaches of learning-based techniques. The first

method is to train a model by feeding it a large dataset of correct code. So, the model can

provide a probability of how likely a patch is concerning the dataset. Next, the algorithm

sorts the candidate patches based on realism. In other words, would a human developer
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choose this patch as the correct code? An example of this is Prophet[33].

The second approach finds patterns for code transformation templates from successful

patches in commit histories. The templates then generate the candidate patches to fix the

source code. At last, the third strategy aims to create an end-to-end repair model. Thus, the

model takes the buggy code as input and returns a correct bug fix. The advantage of this

method is that it does not depend on a test suite. Nevertheless, we need the buggy code and

its correct patch for model training.

The advantage of NMT is that it can learn complex relations between input and output

sequences that are challenging to discover manually. Another advantage is that the method

is not language specific. In the other APR techniques, algorithms must be redeveloped if

used for another programming language.

The critical challenges of the NMT systems are:

1. Programming Syntax: The misuse of words can be fatal in the programming domain.

Generally, with NLP tasks, a mistaken word is less costly. The reason for this is that

a human can interpret from the context what the wrong word should be. A simple

example is the generated sentence, ”The sky is yellow.”. A human can infer from the

context that it should be blue and continues reading. However, a compiler will raise

an error and stops if the source code contains the wrong syntax for that language.

2. Context Representation: Dependencies in a code are often not in the same line or

block. In natural language, the context is generally in the same sentence or within a

couple of sentences. On the contrary, a program can define a global variable at the be-

ginning and use it at the end. Deep learning models such as recurrent neural networks

(RNN) have trouble with long-term dependencies.

3. Noisy data: It is challenging to find commits that focus solely on a bug fix.
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4. Large vocabulary: The vocabulary of programs is larger than a natural language cor-

pus because developers are not limited by vocabulary to choose names for variables

and functions. For example, a function that returns the lowest number from a list can

have different names and spellings, such as Min(), Minimum, choose min from list(),

getMin(), and getLowestInt(). The large vocabulary leads to the curse of dimensional-

ity. There is not enough data for all combinations, which causes the model to general-

ize poorly.

5. Uncompilable patches: NMT models often generate patches that do not compile. This

phenomenon is a massive waste of resources.

6. Repeated patches: The model often optimizes to produce identical patches. This phe-

nomenon is the consequence of the cross-entropy loss function often in deep learning

models. However, the goal is to generate semantically equivalent patches.

Even though these multiple issues, there already have been solutions for parts of these

challenges. For example, Chen et al.[30] have a solution for the fourth issue. They utilize

a copy mechanism to deal with unknown tokens. The model copies unknown tokes from

the input to the output. So, in a translation task, the model does not know ”London” and

then copies the London token to the output, which is correct because it is not necessary

to translate location entities. Another solution for a problem is CURE’s approach[32]. The

researchers use pre-trained models to learn code that can compile, and so solving problem

number five.

The interest in learning-based approaches for software engineering problems keeps in-

creasing. Thus, we will see much more progress solving the challenges in this domain in the

coming years.
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3.3 ChatGPT

In this paper, we will evaluate the ChatGPT model developed by OpenAI. ChatGPT was

initially released on November 30, 2022, as a ”research preview” and is based on the GPT-

3.5 series. However, it is now possible to run it using the more advanced GPT-4 model.

ChatGPT is closely related to InstructGPT, which is specifically trained to follow instructions

and provide appropriate responses. In contrast, ChatGPT is designed to understand and

generate human-like answers in response to various prompts.

The remarkable ability of ChatGPT to produce human-like and often accurate responses

to a wide range of questions has catapulted it to fame as the fastest-growing app of all time.

Within just two months, it amassed an astounding 100 million users worldwide. Notably,

one key distinction between InstructGPT and ChatGPT lies in their manner of prompting.

ChatGPT’s conversational style allows it to challenge incorrect premises and even admit its

mistakes, fostering a more interactive and dynamic user experience.

The researchers of OpenAI trained ChatGPT using Reinforcement Learning from Human

Feedback (RLHF). The goal of RLHF is to make the model safer, more helpful, and aligned.

RLHF uses human feedback as a reward function, and therefore get the desired behaviour.

The advantage of this method is there is no need for a human researcher to develop a goal

function. Designing a goal function is often an sub-optimal approximation since humans

have trouble putting their intuitions of correct behaviour into formal rules. RLHF bypasses

this formal definition step. The AI gradually builds a model of the goal of the task by finding

the reward function that best explains the human’s judgement.

The training process consisted of three steps. In the first step, a model is trained using

supervised learning. The labeled data is created by retrieving a prompt from their database

and consequently an AI trainers demonstrates the desired output behaviour. This data fine-

tunes the GPT-3.5 model. The next step involves giving the new fine-tuned model prompts
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and generate multiple outputs. The output of the model is then ranked by an AI trainer

from best to worst and this data is used to train a reward model. The final step is to fine-

tune the GPT-3.5 model using this reward model. The model generates a prompt and then

the prompt is reward according to the reward model. The reward is used to update the

model. This process is repeated for multiple iterations. According to OpenAI, these are

some of the limitations of ChatGPT[38].

• ChatGPT writes sometimes plausible-sounding but incorrect answers.

• ChatGPT is sensitive the small differences between input phrasing or even attempting

the same prompt multiple times.

• The model has trouble to be concise. It often overuses long sentences.

• The model guesses the intention of the user instead of asking for clarification.
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4 Experiment Setup

4.1 Research Questions

Our evaluation aims to answer the following research questions:

• RQ1: How effectively does ChatGPT fix real world bugs? To answer this question,

we evaluated our approach on the widely used APR benchmark, Defects4j v2.0.

• RQ2: Can ChatGPT outperform other existing techniques? To answer this question,

we compare the results to other APR techniques.

4.2 Dataset

For the evaluation of ChatGPT, we have selected the Defects4j benchmark dataset as our

primary resource[39]. Defects4j stands out as an ideal choice due to its wide usage and its

ability to facilitate direct comparisons with other state-of-the-art APR techniques. It com-

prises a diverse collection of reproducible bugs written in Java, accompanied by a robust

infrastructure that supports advancements in software engineering research.

Defects4j offers several features, one of which is its user-friendly interface for compiling

and executing test suites. This ease of use streamlines the evaluation process and ensures a

smooth workflow. Moreover, Defects4j has evolved over time, and the current version 2.0

(as shown in Table 1) boasts an impressive expansion, encompassing a total of 835 bugs.

This significant increase from the original 1.2 version, which had 395 bugs. This expan-

sion broadens the scope of our evaluation and allows for a more comprehensive analysis of

ChatGPT’s performance.

While the augmented size of the benchmark dataset is notable, it is important to acknowl-

edge that not all bugs within Defects4j can be included in our experiments. Specifically, we
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Project Bug Count In v1.2?
Chart 26 Yes
Cli 39 No
Closure 174 Yes
Codec 18 No
Compress 47 No
Csv 16 No
Gson 18 No
JacksonCore 26 No
JacksonDataBjnd 112 No
JacksonXml 6 No
Jsoup 93 No
JxPath 22 No
Lang 64 Yes
Math 106 Yes
Mockito 38 Yes
Time 26 Yes
Total 835

Table 1: Defects4j v2.0 projects and their respective bug counts.

encounter limitations with bugs that consist of multiple hunks, which our current pipeline

is unable to handle. Our pipeline cannot handle these type of bugs, because of the token

limit on the API. Thus, for the purpose of this evaluation, we will focus on the evaluation of

single hunk bugs. This approach ensures a more accurate assessment because its a limitation

of the API and not the ChatGPT model itself.

To ensure a fair comparison between APR techniques, we will only consider the bugs

that were addressed during the experiment by both ChatGPT and the alternative techniques

under scrutiny. By doing so, we compare the effectiveness and performance of ChatGPT

within the context of Defects4j.

Furthermore, in our original plan, we intended to incorporate additional benchmarks

into our experiment. The inclusion of a wider variety of datasets offers the advantage of im-

proving the generalization of our results by reducing the potential for test suite overfitting.
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Figure 4: Example of a patch in Defects4j http://program-repair.org/

defects4j-dissection/#!/bug/Closure/118

Two datasets that we considered for inclusion are Quixbugs[40] and bugs.jar[41].

Quixbugs presents an advantage over Defects4j as it consists of problems written in

Python, a language in which ChatGPT is known to excel. The reason is that a significant

part of the code on GitHub (ChatGPT’s training data) is written in Python. However, one

drawback is that Quixbugs is relatively less popular compared to Defects4j. Consequently,

the availability of alternative techniques for comparison purposes would be limited.

On the other hand, bugs.jar shares the disadvantages of being both unpopular and writ-

ten in Java. However, we view this dataset primarily as an extension of the test dataset,

enabling enhanced generalization of results.

Unfortunately, we were unable to incorporate Quixbugs or bugs.jar into our evaluation,

limiting our analysis to the Defects4j benchmark.
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4.3 Fault Localization

In our experiment, we had to make a certain assumption to evaluate ChatGPT. Due to limita-

tions in the size of the prompt and response, we were unable to send the entire faulty repos-

itory as a prompt. Instead, we narrowed down the scope and provided ChatGPT with only

the faulty function. This approach, known as perfect localization, assumes that ChatGPT

will always receive the faulty function for determining its performance in patch generation,

rather than evaluating the complete bug fixing process.

4.4 Prompt Engineering & Hyperparameter tuning

Prompt engineering plays a vital role in our experiment, considering the inherent variability

of natural language as input. While this variability presents both advantages and challenges,

it emphasises the importance of constructing effective prompts. On one hand, the flexibility

of input allows us to generate responses for a wide range of queries. However, it also in-

troduces a degree of randomness, making it necessary to undergo a trial-and-error process

to filter out poor-quality results or incorrect intention alignments. Even when narrowing

down the prompt to a specific task, such as ”Fix my code,” the various possible phrasings

can yield different outcomes.

In our approach, we consider prompt engineering as part of the hyperparameter tuning

phase since the prompt serves as one of the parameters to fine-tune the model. To evaluate

the performance of prompts and the conventional hyperparameters, we created a small test

subset from the Defects4j dataset, comprising the first 10 bugs from projects like Chart, Clo-

sure, Compress, Csv, Gson, Lang, Math, and Time. These 80 bugs serve as a benchmark to

assess the impact of prompts and hyperparameters.

Among the key hyperparameters, we focused on the temperature, top p, and best of. The
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temperature parameter controls the level of randomness in the model’s output. As the tem-

perature approaches zero, the model becomes deterministic and repetitive, while higher

temperatures lead to more exploratory behavior. The top p parameter also influences diver-

sity, and OpenAI advises against using both parameters simultaneously. Consequently, in

our tuning phase, we utilized either the temperature or the top p parameter. Additionally, the

best of parameter determines the number of samples the model generates before returning

the best response. For instance, a best of 5 setting selects the best response from five gener-

ated samples. However, due to a long repair time per bug, we set this value to 1, resulting

in generating the best (highest log probability) response according to the model.

We have used grid sampling to test 5 prompts and 10 model values, which results in 50

different combinations. Out of the 10 model values there were five values for the temper-

ature and five values for the top p., since these were discouraged to be used at the same

time.

Our resulting prompt engineering approach followed a direct instruction style, utilizing

imperatives to convey the task to the model effectively. Figure 5 illustrates the final prompt,

with the yellow lines remaining consistent while the green lines change depending on the

specific problem. Including the ”Do not add anything” line was crucial to prevent the model

from generating code beyond the function scope. Through experimentation, we determined

that a temperature setting of 0.8 yielded the highest performance among the hyperparame-

ters examined.

4.5 Experiment

The experiment consists of three phases: generation, validation, and evaluation. In the gen-

eration phase, we utilize the Defects4j benchmark and the ChatGPT API to generate patches

for the benchmark problems. The prompt will be added to the content of the API request
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Figure 5: Example of a prompt for ChatGPT.

and the API will send a message back containing the generated response. To overcome the

token limit of ChatGPT, which has a maximum of 4096 tokens, we adopt a strategy where

only the function definition (comments above the function are included) is provided as the

prompt. The bug location is identified using code line numbers obtained from a program

developed by René Just, the founder of Defects4j. The Javalang Python library uses the bug

line number to parse the specific function and its documentation from the source code. Sub-

sequently, the prompt is constructed and sent to the ChatGPT API, and the edited function

in the response replaces the original function in the faulty source file. Finally, the frame-

work tests the plausibility of the generated code by checking if it passes all the tests in the

test suite.

At the end of this phase, we obtain a subset of patches that are both compilable and

plausible. Compilable patches refer to those that can be executed without any error mes-

sages appearing in the console. To validate the patches, we utilize the test suite provided

by the Defects4j framework. The validation process involves three steps. Firstly, we check

if the patch is compilable by running the code. Secondly, we verify if the code passes all
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previously failed test cases, focusing on the essential requirement of successful patching. Fi-

nally, we ensure that the patch does not cause software regression by examining if it passes

all previously passed tests. The subset of generated patches that successfully pass all three

steps are classified as plausible.

In the evaluation phase, the focus shifts to assessing the correctness of the plausible

patches. Due to the complexity of the task, manual inspection is employed as APCA (Auto-

mated Program Code Analysis) techniques currently lack the sophistication to solely deter-

mine correctness. However, the Defects4j framework has the patched versions as a previous

commit. These were the bug fixes provided by human developers. So, we can compare the

fixed version with the plausible version if it is correct. If a patch is deemed to be of sufficient

quality, it is labeled as correct. This evaluation phase also provides an opportunity to derive

qualitative insights, such as examining the different approaches taken by the model to fix

a bug and identifying any patterns of difficulty encountered by the model across different

types of bugs.
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5 Evaluation

Our experiment focuses on assessing the patch generation performance of ChatGPT. To eval-

uate this, we generate five patches per bug, considering both time and cost limitations. If

any of these five patches is correct, we consider it a success. Additionally, we document

metrics such as plausibility and compilability for each patch. The experimental results of

ChatGPT are summarized in Table 2.

Project Correct Plausible Compiled
#Attempted

Bug Fixes
Chart 4 5 16 19
Cli 0 1 16 22
Closure 1 4 61 88
Codec 1 2 6 11
Compress 1 6 28 30
Csv 0 2 9 10
Gson 0 2 7 12
JacksonCore 1 4 14 17
JacksonDatabind 1 8 40 62
Jsoup 2 4 27 47
JxPath 0 0 6 9
Lang 4 6 25 43
Math 3 8 40 71
Mockito 0 1 8 20
Time 0 1 1 15
Total 18 54 308 476

Table 2: Results of the experiment on Defects4j v2.0.

However, it is important to note that we had to exclude some bugs from the benchmark.

These excluded bugs were multi-hunk, and our pipeline does not currently support han-

dling such cases. There are two primary reasons for this exclusion: first, the API’s token

limit restricts us from including everything in a single prompt, and second, we believe it is

more important to prioritize less complex single-hunk bugs initially. We believe in taking
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incremental steps, starting with simpler tasks before tackling more complex ones.

Furthermore, certain bugs caused the pipeline to crash because the parser failed to re-

trieve the faulty function. This occurred when the parser encountered certain layouts of

source files and had difficulty correctly processing the functions within them. Consequently,

we had to exclude these problematic cases from consideration.

Out of a total of 476 bugs, ChatGPT was able to correctly fix only 18 of them, resulting in

a success rate of 3.8%. The number of plausible patches is higher but not necessarily better.

The average time for a single attempt is 39 seconds, which is the reason for the maximum

of 5 attempts.The precision, which measures the percentage of correct patches among the

plausible ones, stands at 33.3%. If we compare this with other techniques (see table 7 in Liu

et al.[13]), then the performs of ChatGPT is average.

Upon analyzing ChatGPT’s responses, we made several observations. Firstly, ChatGPT

tends to be reluctant to add new lines of code. Most of the correct fixes involve replacing

only a few lines. Particularly, when the problem requires adding a new block to catch an

exception or an edge case, ChatGPT struggles. This phenomenon is an advantage for bugs,

for which the solution is a single line replacement, because the limit on the variation causes

a higher compatibility rate. Secondly, we noticed that there were instances where ChatGPT

was close to the solution but fell short. For example, in Figure 6, you can observe a case

where the fix generated by ChatGPT is very similar to the human patch, with the exception

of line 858. While the model had a similar intent as the human patch, it made an incorrect

function call.

Given the proximity of this example to the correct solution, we reran the specific prob-

lem with an increased number of attempts, from 5 to 100. However, even with the increased

attempts, ChatGPT did not find the correct patch. It generated numerous variations of func-

tions on line 858 but failed to produce the correct syntax for Java. While increasing the
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number of attempts might eventually lead to a solution, it would significantly impact ef-

ficiency. Considering the already limited efficiency, we opted to keep the attempts at five

for now. Additionally, it’s important to note that the example problem mentioned earlier

was relatively simple, involving only two lines of code. In cases where problems are more

complex, such as involving multiple lines or locations, the number of possibilities increases

exponentially. In such scenarios, increasing the number of attempts becomes even more

wasteful.

Figure 6: Example of a response which has a correct intention, but the wrong syntax.
Left: Human Patch. Right: ChatGPT response

If we look at the compile numbers in the table then we could see that 35.3% of all bugs

does not have even one response that could be run. The observation that we could make

from the response is that the model returns lines with impossible function calls (see previous

example 6). Even though, developers with no knowledge of Java could assume it to be

compilable. However, it is difficult to compare to other techniques, because almost all of

them have more than 5 attempts per bug. For example, the CURE paper[32] contains a table

with compile rates for different APR techniques. The problem is that the table starts with

top 30 candidates, which were not able to mirror. Further,

We compare ChatGPT with six APR techniques that also performed a experiment with

Perfect Fault Localization [14]. Table 3 shows the comparison results. ChatGPT performed

the worst of them all. The probable cause of this result is the lack of attempts, which we

discussed earlier. Another possible cause we have already mentioned before is that we were

not able to test on all bugs in the respective projects. For example the Closure project has
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Project ChatGPT SequenceR Codit DLFix CoCoNuT Tbar Recorder
Chart 4 3 4 5 7 11 11
Closure 1 3 3 11 9 17 26
Lang 4 3 3 8 7 13 10
Math 3 4 6 13 16 22 19
Time 0 0 0 2 1 2 3
Mockito 0 0 0 1 4 3 2
Total 12 13 16 40 44 68 71

Table 3: A comparison of the number of correct patches with Perfect Fault Localization (Zhu
et al, 2021)

174 bugs. ChatGPT was tested on 88 of them, so almost half compared to others. However,

a consideration is that these bugs were often more complex since they were multi hunk. So,

it’s no guarantee that these would improve the score much, but it is still important to keep

it in mind. Nevertheless, ChatGPT under performed compared to the other techniques. It

lacks the sophistication in respect to knowing the syntax of the programming language.

It does show promise for a general-purpose model. Especially since OpenAI has recently

released the more sophisticated GPT-4 series, which could improve the results for ChatGPT

by tackling the syntax problem.
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6 Future Work

6.1 Limitations

The biggest limiting factor on the results is the meager number of runs per bug. Other APR

techniques are able to generate ten thousands of candidates in order to find the fix compared

to our five attempts. It was not possible to increase the number of attempts, because of the

both time and cost. The part that is the bottleneck per run is waiting for the OpenAI API

to return a response containing the generated patch. OpenAI does provide a way to get

priority and speeds this up. However, the experiments will then become too expensive.

Furthermore, another limitation is the sensitivity of the model. The model does not see

the code as strictly code, but as text. The importance of this distinction is that the generation

is more loosely considering the constraints. In other words, the model returns often uncom-

pilable code simply because of a syntax error. It could be for example wrong indentation,

missing bracket, or function call which are not possible. This problem is a waste of resources,

but there is no way to enforce these constraints from the outside. Those constraints have to

be build into the model, which causes the model to lose its ’general-purpose’ tag. Maybe, it

needs more training/sophistication for the model to be more cost effective.

Third, there was the problem of context size. It was not possible to enter the complete

file, let alone the entire repository. This means that the fault localization techniques has to

do a lot of the heavy lifting. In our experiment we provided the model with the function

containing the faulty lines. However, this is the ideal case and in reality it means that the

performance of our model has to subtracted with the cases that our model fixes the bug, but

the FL technique would not be able to find it. Another consequence of this issue is that the

ChatGPT model misses essential context. For example, the faulty call on another function,

ChatGPT has no possible way of knowing what this function. The only information it has is
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the function name and the names of the provided arguments.

Fourth, the prompt engineering is very subjective and finicky. The way you phrase the

question/demand has significant impact on the response. To illustrate, you ask the model

”Fix the code below” or ”Can you fix the code below”. Both sentence has the same intent,

but a different outcome. Furthermore, some prompts are not possible because the model

returns more than just the function. It continues generating until it hits the token limit.

There is a possible solution is to retrieve the function from the response, but this is another

step, which introduces more fragility into the pipeline. This solution also removes one of

the key advantages, which is that the model is not language specific. You have to tailor the

program to the given language.

6.2 Threats to validity

Our experiment is subject to several potential threats to its validity that need to be addressed.

Firstly, the popularity of the Defects4j benchmark poses both advantages and disadvantages.

While it allows for comparisons with other APR techniques, it also raises concerns regarding

data snooping. Given that GitHub, which was part of ChatGPT’s training data, may contain

numerous fixes for these benchmark problems, there is a risk that our evaluation results

may not generalize well to new problems because of overfitting. Although we originally

planned to test the model on other benchmarks, time constraints prevented us from doing

so. Furthermore, the proprietary nature of ChatGPT’s technology restricts our ability to

retrain the model without the benchmark repositories.

An additional internal threat involves the assumption that the fixes provided by De-

fects4j framework are correct. While the patches were written by humans, it is possible that

some of them may not adhere to established coding standards. However, the subjective

nature of coding standards and the absence of a consensus on the best practices make it
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challenging to objectively evaluate the correctness of these fixes.

Lastly, it is important to acknowledge that our experiment assumes that ChatGPT has

sufficient context with only a function definition and its comments. However, this approach

overlooks the dependencies and internal workings of the function. Even human developers

would struggle to repair all the bugs in the benchmark based solely on a function definition.

Therefore, this limitation is inherent to the approach rather than a flaw specific to the model

itself.

6.3 Follow-up studies

The experiment served as an interesting starting point to assess the capabilities of Chat-

GPT. Moving forward, there are several avenues for future research and experimentation.

One obvious area to focus on is optimizing the pipeline, which would allow for a signifi-

cant increase in the number of attempts. Currently, this is the experiment’s most prominent

limitation. By expanding the number of attempts, a more accurate comparison between

state-of-the-art APR techniques could be achieved.

Another potential approach is to explore the utilization of the best of hyperparameter.

This parameter enables the generation of multiple candidates and returns the one deemed

”best” based on the highest log probability per token. However, at present, this option is

constrained by the token limit, as generating additional candidates consumes tokens rapidly.

To fully leverage the best of parameter, an increase in the token limit by OpenAI would be

necessary.

Additionally, experimenting with the new GPT-4 series holds promise. With its enhanced

power and sophistication compared to its predecessor GPT-3.5, GPT-4 could potentially

yield higher performance on the benchmarks.

Further, there is the option to experiment on different languages. A major advantage of
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LLMs is their general-purpose approach. So, the model is not locked in a single domain.

The possible result could be that adding more datasets could keep ChatGPT’s result stable,

but other APR techniques might suffer.

A further suggestion for future research lies in delving deeper into prompt engineer-

ing. By providing more detailed information without overwhelming the model, it may be

possible to fine-tune its performance without overwhelming the model.

Lastly, while it may not be feasible in the immediate future, testing ChatGPT on Fault

Localization (FL) would be an intriguing direction to explore, particularly if the token limit

is ever increased. This would enable a comprehensive evaluation of ChatGPT as a complete

bug-fixing tool.

These potential avenues for future research offer exciting possibilities to enhance Chat-

GPT’s performance and expand its application in the field of automated program repair.
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7 Conclusion

ChatGPT has garnered significant attention as its capabilities continue to be a subject of

curiosity. Since its recent release, there are still numerous unexplored capabilities waiting

to be discovered. One particular area that could greatly benefit from ChatGPT’s potential

is bug-fixing, a time-consuming process for developers. In this experiment, we assess the

patch generation capabilities of ChatGPT using the Defects4j benchmark.

Assuming perfect fault localization, ChatGPT managed to fix 18/54 bugs correctly/plausibly.

While these results fell short when compared to other state-of-the-art techniques, it’s impor-

tant to consider certain factors that may have limited the performance evaluation.

Despite these limitations, there were glimpses of potential observed during the exper-

iment. Additionally, with the highly anticipated release of GPT-4, which promises to be

even more advanced, ChatGPT could potentially emerge as a front runner in the field of

automated program repair.
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semantic bugs with fix patterns of static analysis violations. In 2019 IEEE 26th Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER), pages 1–12.

IEEE, 2019.

[26] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. Elixir: Effective

object-oriented program repair. In 2017 32nd IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), pages 648–659. IEEE, 2017.

[27] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Sketchfix: A tool

for automated program repair approach using lazy candidate generation. In Proceed-

ings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 888–891, 2018.
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[39] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing faults

to enable controlled testing studies for java programs. In Proceedings of the 2014 interna-

tional symposium on software testing and analysis, pages 437–440, 2014.

[40] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A

multi-lingual program repair benchmark set based on the quixey challenge. In Proceed-

ings Companion of the 2017 ACM SIGPLAN international conference on systems, program-

ming, languages, and applications: software for humanity, pages 55–56, 2017.

[41] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad. Bugs.

jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings of the 15th

international conference on mining software repositories, pages 10–13, 2018.

44


	Introduction
	Related Work
	Background literature
	Automated Program Repair (APR)
	Fault Localization
	Patch Generation
	Patch Evaluation

	Patch Generation Techniques
	Search-based
	Constraint-based
	Learning-based

	ChatGPT

	Experiment Setup
	Research Questions
	Dataset
	Fault Localization
	Prompt Engineering & Hyperparameter tuning
	Experiment

	Evaluation
	Future Work
	Limitations
	Threats to validity
	Follow-up studies

	Conclusion
	References

