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Abstract 
A challenge is posed by the prediction of patient waiting times at an emergency call line operated by a 

GP office in the Netherlands. The office currently employs a prediction approach based on a Discrete 

Event Simulation model, which has not been compared to different approaches. Previous studies 

suggest that ARIMA-family models and LSTM might perform well in predicting patient waiting times. 

We select the most accurate model among ARIMA, SARIMA and SARIMAX models for this particular 

case and compare it to the current simulation-based model. We also compare the most accurate 

ARIMA-family model with LSTM in terms of their prediction accuracy of patient waiting time prediction 

for this particular case.  

The data used in this thesis were provided by an external company and they span from January 2022 

to April 2023. The time series is analyzed using an hourly frequency and the predicted outcome is the 

average patient waiting time per hour measured in minutes. Box-Jenkins method and external forecast 

validation are applied in modelling and selection of the most accurate model for forecasting. The most 

accurate among the ARIMA-family models is the SARIMAX model. This model uses exogenous variables: 

calendar variables and number of incoming calls per hour to model and predict the average patient 

waiting time per hour. The SARIMAX model with incoming calls is also more accurate than the current 

simulation model for short- and long-range predictions. However, LSTM has better prediction accuracy 

for this case than any ARIMA-family model. The implementation of LSTM is recommended for this case. 

We also provide tentative results regarding the effect of the number of staff available for patient waiting 

time predictions, and we suggest that it is investigated in greater detail and with more data available 

in future work.  

 

Keywords: patient waiting time, time series forecasting, emergency line, ARIMA, SARIMA, SARIMAX, 

LSTM, calendar variables  
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1. Introduction 
This paper focuses on models used to predict patient waiting times for the specific case of a single GP 

practice that operates an on-call out-of-office emergency line in the Netherlands. There are two 

commonly-used and well-performing methods in predicting patient waiting times and patient arrivals: 

the linear approaches of time series forecasting such as ARIMA (autoregressive integrated moving 

average)-based methods and non-linear methods such as LSTM (Zhao et al., 2022). However, there is 

not an academic consensus about which prediction approach is the most efficient for predicting patient 

waiting times for callers at the emergency lines at GP offices. In this paper, we suggest testing these 

two different approaches for the case of a single GP practice in the Netherlands that operates the 

telephonic out-of-office emergency line.  

Although the practice already uses a prediction system for patient waiting times provided by 

the client company, it may not be the most effective one. Currently, the predicted waiting times are 

determined by a simulation (Discrete Event Simulation) that draws on empirically-determined 

distributions of arrival rates and service times using calendar information. However, the current system 

has not been benchmarked against different models and therefore it is possible that the current system 

is not the most precise one. Academic literature suggests that there might be more accurate and 

simpler methods available (Sudarshan et al., 2021). 

There are several reasons why predicting patient waiting times is important. Recent research 

has shown that the Emergency departments (EDs) notoriously experience long patient waiting times 

and overcrowding (Kuo et al., 2020).  Overcrowding can happen when there is a failure to account for 

changing demand of patients, which in turn can lead to decreased quality of care (Bernstein, 2009; 

McCarthy, 2011). Moreover, patient overcrowding is one of the main causes of staff burnout in ED 

(Wargon et al., 2009), yet a good approximation of patient waiting time might help the provider with 

resource management (Kuo et al., 2020). Therefore, it is both in patients’ as well as ED providers’ 

interests to obtain a good approximation of how long patients need to wait. 

Accurately predicting patient waiting times for our Dutch GP case is crucial, as it is currently 

experiencing overcrowding and long patient waiting times. In the Dutch context, an equivalent to an 

ED for milder cases is the out-of-office emergency service on-call at a general practitioner (GP) office, 

called “huisartsenpost” (Hanneke, 2022). GP offices in the country run emergency lines on-call, which 

are mostly intended for mild to high urgencies, not for life-threatening conditions. However, many 

patients with low urgency problems also call (Hanneke, 2022). Therefore, the line is often busy and the 

staff on-call experiences patient overcrowding in the form of incoming calls. Henceforth, it is important 

to predict patient waiting times for this case in the Netherlands, as patients experience long waiting 

times, including those who have a very serious problem. 

We pose the main Research Question: Which one of the commonly-used methods – time series 

forecasting with ARIMA-family models or LSTM – predicts patient waiting times at the single GP on-call 

emergency line in the Netherlands with higher accuracy? In order to answer this research question, we 

also formulate two sub-research questions. The first sub research question is: Which time series 

approach among the ARIMA-family predicts hourly patient waiting times in our case of the single Dutch 

GP emergency on-call line with the highest accuracy? The second sub-research question is: Does the 

most accurate ARIMA-family model produce more accurate hourly predictions of patient waiting times 

than the current simulation-based model used in the client’s GP emergency on-call line in the 

Netherlands? 

The aims and scope of this thesis are closely linked to the research questions. Our goal is to 

compare the accuracy of commonly-used linear time series forecasting methods and LSTM in patient 
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waiting time prediction for a single GP practice operating an emergency line in the Netherlands. We 

aim to test and compare which ARIMA-family approach predicts hourly patient waiting times at the 

Dutch GP office with the highest accuracy. We also aim to test if ARIMA-family methods improve the 

accuracy of waiting times prediction as compared to the accuracy of the current simulation-based 

model. After diligent comparison, we plan to suggest the most suitable model for further deployment 

for the single GP practice in our case. In order to do this, we utilize historical operational data for a 

single GP office in the Netherlands. Thus, the scope of the thesis is limited to the given case that is used 

to model and fine-tune the methodological approach, but the generalizability is limited and 

performance might vary from a practitioner office to office. It is also not intended to establish a general 

comparison of the linear ARIMA-based and non-linear LSTM approaches for patient waiting time 

prediction. 

Focusing on the case data of a single GP office, this paper is divided into several parts. Firstly, 

we review the relevant literature to propose a suitable theoretical framework. Secondly, we describe a 

detailed method for ARIMA-based models that is applied to our case. Thirdly, we present the results of 

the ARIMA-based models and select the best performing one for further comparison. Fourthly, we 

compare the best linear model with the best non-linear model and suggest one for further deployment. 

Lastly, we discuss the limitations of this thesis and conclude the work. 

2. Background  

2.1 Case Description and the Current Model 
Our case consists of a Dutch GP office that operates an emergency call line during the out-of-office 

hours, on which patients experience high waiting times. The line is open between 17:00:00 until 

00:00:00 and 00:00:00 until 8:00:00 on the weekdays, and from 00:00:00 until 00:00:00 on the 

weekends and holidays. These times correspond to the hours when the physical GP office is closed. 

When the patients call the emergency line at the GP office, they hear a voice-recording through which 

they can select whether they experience a problem of high or lower urgency. The patients who 

experience health issues of high urgency enter a separate line to receive faster treatment. On the other 

hand, all the patients with lower urgencies undergo a triage that further determines the urgency of 

their issue. Depending on the number of callers in front of them, they are given advice right after their 

call is picked-up, or they automatically enter a waiting line if the operator is busy. As the number of 

incoming calls is oftentimes higher than the number of operators, the line oftentimes experiences 

overcrowding and long patient waiting times. The GP office tries to schedule more staff on the shifts 

for the times when the waiting times are longer. In order to do this, they need to have accurate 

predictions of when this happens. 

Currently, the GP office uses a simulation model to determine the length of patient waiting times 

during the times it specifies in the model. The current model was developed by the client company 

collaborating on this thesis work. This model is based on empirical distributions of arriving calls that 

are used in a Discrete Event Simulation. It consists of three types of data – the frequency of arriving 

calls, length of a call and the number of staff on shift available to operate the calls. The distributions of 

the number of arriving calls are created based on the historical data creating scenarios based on 

grouping similar observations together. Similar calls in terms of their predictor conditions such as 

weather, day of the week and time of the day, are grouped together into buckets by averaging their 

values. After obtaining thousands of scenarios (buckets) with similar distributions, the average Poisson 

distribution of the number of arriving calls per hour is drawn for the scenario the GP office selects in 

the system. For example, the GP office might be interested in a scenario for the upcoming Tuesday. The 

Discrete Event Simulation determines whether a call occurs or not for each minute of the day. If a call 
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occurs, the simulation consults the number of shifts available to operate the call. If the number of calls 

exceeds the number of operator shifts available, the calls are entered into a queue and all the 

proceeding calls enter the queue as well, until the distribution for the whole day is created. As the last 

step, the data on the length of the queue and information on patient waiting time is collected and 

provided to the GP office. This model is the simulation-based model that is employed for comparison 

of models proposed in this thesis.   

2.2 Related work  

2.2.1 Studies from call centers and ED setting 
Our case resembles both an ED and a call center, which are common settings that have been studied 

by past literature. On the one hand, the case is similar to an ED due to the healthcare setting, in which 

patients with a serious health problem arrive. On the other hand, unlike in a traditional ED, the patients 

tend to suffer from mostly non-life-threatening health conditions, and they arrive by phone rather than 

physically, which resembles the situation of a call center. Both of these case situations were modeled 

in previous literature focusing on the number of arriving patients or calls rather than direct waiting 

time prediction. Most of the previous studies from call centers focused on developing and testing 

prediction models of call arrivals (Ibrahim et al., 2016; Rausch et al., 2022) and call volume (Baldon, 

2019). Similarly to call centers, most previous studies from the healthcare setting predicted the number 

of emergency department presentations during a specific time period as emphasized in a literature 

review (Gul & Celik, 2018). Even though patient or call arrivals have been studied more widely, we still 

focus on waiting time prediction as this was requested by the client since they are developing a 

separate prediction tool for patient arrival predictions. We aim to provide the client with two model 

alternatives, one that uses the arrival number of calls and one that does not. Thus, in this sense, the 

task of this thesis is slightly different from most previous literature reviewed as it seeks not to predict 

the number of patient call arrivals, but to predict the patient waiting times, which can be closely related 

to patient call arrivals.  

Past studies vary greatly in the frequency of observations they use and the length of study and 

test period of their prediction models. To illustrate, Mai and colleagues (2015) who predicted the 

number of emergency department presentations, focused on a monthly frequency of observed data. 

Their model was developed over the period of 7 years and used 5 years of data for testing the model 

(Mai et al., 2015). Champion and colleagues (2007) also forecasted the average ED patient 

presentations for each month, yet they used an hourly frequency of observations. Their prediction 

model was trained on data that spanned 5 years and their model was tested on the observations for 

the first five months of the following year (Champion et al., 2007). Similarly, other studies also used 

hourly frequency data to forecast ED occupancy (Cheng et al., 2021) and patient arrivals (McCarthy, 

2011; Zhang et al., 2022). Other studies focused on daily frequencies of patient arrivals to ED (Abraham 

et al., 2009; Carvalho-Silva et al., 2018; Tuominen et al., 2022). These studies developed prediction 

models using training data of 2 years and more and tested their forecasts on new observations that 

spanned 1 year and more. The choice of the frequency of observations employed depends on the 

intended use of the model (Champion et al., 2007). Monthly frequencies are usually preferred for large 

hospitals, while hourly frequencies and forecasts are mostly aimed for shift planning and short-term 

predictions (Champion et al., 2007), which applies to our case. Also, the data available spans a much 

shorter period than in previous studies, where it was several years. In our case, the span of data 

available is a little over a year.  

Previous studies from the health setting as well as call centers commonly used meteorological 

and calendar information to obtain a better estimate of patient or call arrivals (Boyle et al., 2012; 

Channouf et al., 2007; Jones et al., 2008; McCarthy, 2011; Zhang et al., 2022). Several past studies 
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suggest that calendar and meteorological information improves the prediction of ED arrivals (Jones et 

al., 2008; McCarthy, 2011; Zhang et al., 2022). The influence of different variables on the prediction 

accuracy of patient arrivals was investigated by Tuominen and colleagues (2022) using high-

dimensional multivariate data. This study found that calendar variables were among the dominant 

predictive features of forecasted patient arrivals, while meteorological data were not. Similarly, 

Marcilio and colleagues (2013) found that while calendar variables alone were able to detect patterns 

of daily variability in the number of patient arrivals to ED, weather information did not improve 

forecasting accuracy at all. Several previous studies also included patient information next to weather 

and calendar information (McCarthy, 2011; Rosychuk et al., 2015). However, this is not our case since 

we do not have access to the patient information nor the content of the call due to its sensitivity. As 

calendar data seems to improve prediction in similar settings to our case, we focus on its inclusion in 

our prediction model.  

2.2.2 Time series  
Waiting time prediction belongs to the time series analysis as it concerns sequential data. Time series 

is a special type of sequential data that consists of observations made at subsequent points in time for 

a single or more attributes (Stagge, 2020). Our case requires this type of analysis since the observations 

of patient waiting times are sequential and might fluctuate over time. The prediction of time series is 

oftentimes labelled time series forecasting (Choudhury & Urena, 2020), which has been traditionally 

used in various other fields such as economics and finance (Choudhury & Urena, 2020). Time series 

forecasting has been widely used to forecast patient arrivals (Choudhury & Urena, 2020; Wargon et al., 

2009), but also can be used to forecast patient waiting times (Duarte et al., 2021; Stagge, 2020).  

A widely-used theoretical framework used to model waiting times in different time series 

scenarios such as call centers is Queuing Theory. For a detailed explanation of Queuing Theory, see 

Ross (2007). The emergency line at the GP office in our case resembles a so-called queuing system. 

Queuing systems are characterized by customers who are waiting for a limited resource as they cannot 

access it simultaneously and thus a queue (or line) of the waiting customers is formed (Ross, 2007; 

Stagge, 2020). In our case, the customers are patients calling and the limited resource is the advice 

from the healthcare provider. Using the framework proposed by Queuing Theory further for our case, 

patient waiting time can be modelled through the demand side (number of arriving calls) and the 

supply side (availability of personnel on a shift at the time to serve the arriving calls). Both of these 

influence the overall waiting time of a calling patient. Yet, previous studies that employed Queuing 

Theory use the Poisson arrival process to generate call arrival forecasts, and thus focus on modelling 

the demand side (Rausch et al., 2022). However, as pointed out by Rausch and colleagues (2022) a key 

feature of call center and ED arrivals might not align with the Poisson assumption of time independence 

as the arrivals oftentimes exhibit strong seasonal patterns that repeat themselves in cycles of different 

lengths. Thus, we investigate the influence of the demand and supply side on the overall waiting time 

prediction using prediction algorithms that find underlying patterns, rather than Poisson arrivals from 

Queuing Theory. However, since there was limited data available on the supply side in our case, we 

focus mostly on the demand side influencing the predicted waiting time while the prediction 

incorporating the supply side is analyzed using less data to provide only tentative results intended for 

future analysis. Overall, Queuing Theory is an important framework for our modelling approach and 

underpins the relevance of previous research that focused on patient arrivals and staff schedules for 

waiting time prediction. 

 Previous literature identifies two groups of models used to analyze time series through finding 

underlying patterns in them: linear and non-linear (de O. Santos Júnior et al., 2019; Gul & Celik, 2018). 

Linear approaches include time series forecasting methods such as ARIMA and ARIMA-derived models 
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(de O. Santos Júnior et al., 2019). On the other hand, non-linear approaches consist of machine learning 

approaches and deep-learning approaches such as neural networks (de O. Santos Júnior et al., 2019). 

These two approaches differ mostly in their assumptions of the underlying patterns that characterize 

the time series at hand. They are either assumed to be linear for linear approaches or non-linear for 

non-linear approaches (de O. Santos Júnior et al., 2019; Gul & Celik, 2018). While this thesis focuses on 

the linear approaches, the non-linear approach adopting LSTM neural network can be found in a 

parallel thesis work by Tian (2023)1. Both of these approaches have been extensively studied by 

previous literature and were found to be highly effective in predicting patient arrivals at ED (de O. 

Santos Júnior et al., 2019; Gul & Celik, 2018; Wargon et al., 2009).  

  Linear time series forecasting models from the ARIMA family have been widely used in previous 

studies in the health context. Several studies used non-seasonal ARIMA models to forecast emergency 

department presentations finding high accuracy of the models (Carvalho-Silva et al., 2018; Champion 

et al., 2007; Channouf et al., 2007). Similarly, Kim and colleagues (2019) developed an ARIMA-based 

forecasting model for predicting febrile ED visits the next day with high accuracy. Choudhury and Urena 

(2020) even found that an ARIMA model performed better than a neural network model for their case, 

exhibiting the highest forecasting accuracy in hourly forecasts for ED arrivals. 

However, several studies found that the seasonal ARIMA model (SARIMA) was better suited for 

the ED patient arrivals and potentially waiting time. These studies found that ED patient arrivals exhibit 

seasonal patterns and thus SARIMA models should be preferred (Abraham et al., 2009; Cheng et al., 

2021; Marcilio et al., 2013; Rosychuk et al., 2015). Kim and colleagues (2020) focused on comparing 

ARIMA and SARIMA models to predict outpatient visits. They found that SARIMA had superior 

prediction accuracy over all the time-spans forecasted. Similarly, Jones and colleagues (2008) and 

Becerra and colleagues (2020) also found that the ED demand patterns showed seasonality and that 

the SARIMA model exhibited good prediction performance. Moreover, Baldon (2019) found that 

SARIMA performed even better than neural networks at a daily frequency scale, yet neural networks 

outperformed SARIMA at an hourly frequency scale (Baldon, 2019). Thus, as suggested by previous 

literature, seasonality might be dependent on the frequency scale employed. Oftentimes, there are 

multiple levels of seasonality at play, such as daily and weekly seasonality for hourly data, while SARIMA 

models do not capture multiple seasonality well (Cheng et al., 2021). 

Past studies oftentimes accounted for multiple seasonality and other important characteristics 

in ARIMA-based approaches using external predictors in their models. A study found that for forecasted 

daily emergency department arrivals, regression with ARIMA errors (ARIMAX) was the most accurate 

model integrating external variables such as calendar variables (Tuominen et al., 2022). Similarly, Jones 

and colleagues (2009) used multivariate time series approach to modeling and forecasting demand in 

the emergency department finding superior prediction results. These finding are supported by 

Aboagye-Sarfo and colleagues (2015) who compared multivariate and univariate time series 

approaches of forecasting emergency department demand. Moreover, Cheng and colleagues (2021) 

found that the inclusion of higher-level seasonality through the use of external predictors for forecasted 

hourly ED occupancy improved the predictive performance of their seasonal model SARIMAX.   

2.3 Time Series Models: Theory and Motivation 
Time series can be studied through examining its underlying system. The system underlying the time 

series is unknown (Wargon et al., 2009) and our goal is to estimate it as closely as possible to be able 

to draw predictions for future situations from it. The system is commonly considered to be a sum of 

 
1 We refer to the parallel thesis work by Yaqin Tian throughout this thesis in the form (Tian, 2023) 
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shocks that affect the time series, and the variations that are observed correspond to the responses to 

these shocks (Wargon et al., 2009). A time series can be decomposed in four main patterns: a trend, 

which is the sloping of the time series; a repetitive pattern over the time called seasonality; cycles, 

which are fluctuations of the data which are not a real pattern; and a random component known as 

noise (Balgon, 2019). To approximate the underlying system, a minimum number of observations need 

to be present for a sound model development. The minimum number depends on the characteristics 

of the time series and the model, i.e. a seasonal model might require more observations than the non-

seasonal model. A commonly-used rule is that the time series should have at least 100 observations 

for a sound application of ARIMA-family models (Box & Tiao, 1975). 

Time series related to ED-data usually estimate patient arrivals as a combination of long-term 

trends and repeated variations that can be related to seasonality of the data, and the effects of random 

events (Wargon et al., 2009). An equivalent is expected to hold true for patient waiting times that 

consist of the number of patient visits and the number of available shifts. Previous literature 

emphasizes that seasonal variations in ED-data can be driven by multiple seasonal patterns on more 

levels depending on the frequency of the observations (Wargon et al., 2009). In time series with hourly 

frequency, the seasonal patterns can be mainly driven by the cycles repeating each day (Wargon et al., 

2009). The use of a seasonal model would thus be recommended. Even though several studies found 

that a seasonal variation of an ARIMA model (SARIMA) performed better than the non-seasonal 

alternative, we still need to investigate possible seasonality in our time-series as each time series can 

have different underlying patterns.  

2.3.1 ARIMA-family models  
The autoregressive integrated moving average time series model (ARIMA) was proposed by Box and  

Jenkins in 1970 (Daellenbach & Flood, 2002), thus this type of model and the models stemming from 

it are also known as Box-Jenkins methods (de O. Santos Júnior et al., 2019). This type of model is among 

the most widely used time series methods (Wargon et al., 2009).  

The ARIMA model is characterized by three processes, with three corresponding parameters 

that determine the order of each process: p, d and q.  The order of the autoregressive (AR) process is 

represented by p. This process treats each value in the time series as a linear function of p past values. 

This reflects the fact that the variable of interest is regressed on its own previous values (i.e. current 

values of waiting time depend on past values of waiting time). The integration process (I) relates to the 

long-term trend of the time series and assumes that the difference between two consecutive values is 

invariable. This assumption is tested with statistical tests for stationarity and unit root. The degree of 

differentiation used is represented by d. The usual differencing method consists of subtracting the past 

value from the current given value when developing the model. In such case, the parameter d of the 

process is equal to 1. The order of the moving average (MA) process is represented by q. This process 

assumes that each value depends not only on the error intrinsic to the value, but also on the sum of 

the errors affecting q past values, indicating that the regression error is a linear combination of past 

error terms (Vollmer et al., 2021; Wargon et al., 2009).  The order of these processes is usually reported 

with the model in the form ARIMA(p, d, q). For a more detailed explanation see Shumway and Stoffer 

(2000) and chapter 7 in Wheelwright and colleagues (1998).  

The ARIMA model holds several assumptions. The main assumptions are serial dependency of 

the observations, normality and stationarity (Box & Jenkins, 1976). Stationarity in a time series 

indicates that a series’ statistical attributes, such as mean and variance, are constant over time (i.e., it 

exhibits low heteroskedasticity). It is commonly assessed by statistical tests for stationarity and 

graphical methods. In addition, the model assumes that the future observations are a linear function 

of the past p values, thus it is considered a linear modelling technique (de O. Santos Júnior et al., 2019). 
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We believe that the previous observations of waiting time might indeed be linearly related to future 

observations as was suggested by previous research (Wargon et al., 2009). It is also assumed that the 

model residuals follow a normal distribution with constant variance over time. These assumptions are 

assessed using statistical tests such as the Ljung-Box test and Goldfeld-Quandt test, and graphical 

methods. Furthermore, ARIMA models assume that there are no missing variables present in the time 

series, and that there are regular intervals between observations (Shumway & Stoffer, 2000). The 

model also assumes that there are no significant outliers present in the time series (Shumway & Stoffer, 

2000). These assumptions are necessary to consider when developing our models.   

Another assumption of the simple ARIMA model is that the data that it models is non-seasonal 

(Box & Jenkins, 1976). However, empirical studies in the ED context have also found that there could 

be some seasonality in the patient arrivals and waiting time present. These studies suggest that the 

Seasonal ARIMA (SARIMA) models perform better than non-seasonal ARIMA models due to their 

capability to capture seasonal trends in the data (Jones et al., 2008; Kim et al., 2020).  

Seasonal autoregressive integrated moving average (SARIMA) models extend on ARIMA 

models. They build on ARIMA models by allowing for the incorporation of a repetitive periodic pattern, 

such as the weekly pattern observed in daily ED patient volumes (Jones et al., 2008). Seasonal ARIMA 

(SARIMA) models are usually described using the notation SARIMA (p,d,q)(P,D,Q)m. The parameters 

p,d and q have the same meaning as in the non-seasonal model version. P and Q indicate the order of 

the seasonal AR, and seasonal MA terms respectively, while D indicates the order of seasonal 

differencing. The last parameter of the model, m, indicates the order of seasonality. In other words, it 

indicates after how many observations the seasonal pattern repeats itself (Hyndman & Kostenko, 

2007). See Shumway and Stoffer (2000) and Wheelwright and colleagues (1998) for a detailed 

description of SARIMA models.  

Moreover, the ARIMA and SARIMA models are suitable only for univariate time-series 

modelling. However, in our case, there are several external variables available that could help in the 

prediction accuracy of the outcome variable of the time series, patient waiting time. This proposition 

stems from the findings of previous literature that found that the use of predictor variables such as 

calendar information helped in the prediction accuracy of the model (Tuominen et al., 2022; Whitt & 

Zhang, 2019). Therefore, we also propose to compare the results obtained from the ARIMA model to 

the (S)ARIMAX model that accounts for the external predictors.  

The ARIMAX model adds additional independent covariates to the ARIMA model in conjunction 

with the univariate historical signal. This model is also referred to as regression with ARIMA errors or 

ARIMAX (Tuominen et al., 2022). The model uses independent covariates as exogenous parameters 

when fitting the model. Therefore, as in regular regression, the covariates need to be normalized to be 

on a similar scale not to bias the predictions (Shumway & Stoffer, 2000). There is also a seasonal 

alternative of the ARIMAX model, SARIMAX, that was also found to have a superior predictive 

performance in the hospital context (Cheng et al., 2021). For a detailed explanation of ARIMAX and 

SARIMAX models see Shumway and Stoffer (2000) and Chapter 6.6 in Brockwell and Davis (2002). 

2.4 Translation of the Case into a Data Science Problem 

2.4.1 Forecasting and Validation 
In addition to traditional statistical modelling, this study also adopts a forecasting and a validation 

approach. Predicting future values by a time series model and validating its predictions has been widely 

used in previous literature. To illustrate, the systematic review by Wargon and collegues (2009) 

indicates that almost all of the studies reviewed used some form of forecast validation to test the 

accuracy of the time series model predictions. In our case, the predictions for the average patient 
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waiting time in minutes are generated and validated in an hourly interval. This time interval is the most 

suitable for the aim and practical application of this thesis (see Appendix II.I.II for more explanation). 

Thus, the predicted variable is also expressed per hour as the average patient waiting time per hour in 

minutes. We predict this variable for all patients regardless of which waiting line stream they entered 

as the waiting times from the two streams are interrelated. In order to compare the proposed models 

in terms of their accuracy, we need to investigate the forecasts of each model for three time intervals: 

short-range, mid-range and long-range. These ranges correspond to one day in the future, one week in 

the future and one month into the future. These time ranges are relevant for the client as they need to 

generate not only short-, but also long-range predictions for planning purposes. Obtaining predictions 

of patient waiting time for each model allows us to compare these models with each other. 

In our case, it is necessary to investigate two types of SARIMAX models based on the inclusion 

of the number of incoming calls as an exogenous predictor. The number of incoming calls per hour 

might be an important predictor of patient waiting times based on the suggestions of their dependence 

by Queuing Theory. However, this variable is different than other exogenous predictors such as the 

calendar variables, as it is not known at the time of forecasting. Thus, it needs to be predicted as well. 

It was indicated by the client that the prediction of the number of incoming calls would be available in 

the future and it is thus outside of the scope of this research. Yet, we aim to provide two models for 

the client to have a practical comparison: one with the number of incoming calls each hour and one 

without, to see if the number of calls improves the prediction quality. This way in case the predicted 

incoming calls deviate from the real values too greatly, the client company would still have an indication 

of how well the model without calls performs.  

Moreover, we provide a separate analysis for the inclusion of the number of shifts in the model. 

Since we do not have enough historical data available, this step acts as a preliminary exploration for 

future work. Although the number of shifts is available for a very short time period with few 

observations available, it includes important information for the client aiming to schedule the right 

number of shifts. The results are provided nevertheless, yet they are only tentative aiming to provide 

a base for future analysis of this variable.  

2.4.2 Validation Metrics 
There are several well-established validation metrics identified in the previous literature that are used 

to assess the accuracy of time series prediction models: RMSE, MAE, and MAPE (Wargon et al., 2009). 

RMSE represents the root mean square error. It is the root mean of the squared differences between 

the values predicted by the model and the actually observed values (Choudhury & Urena, 2020; 

Wargon et al., 2009). MAE represents the mean absolute error. The mean absolute error assigns equal 

weight to large and small errors, unlike RMSE that assigns more weight to large errors (Cerqueira et al., 

2017). Moreover, RMSE is almost always larger than MAE, and is equal only in those cases, when all of 

the errors have the same magnitude (Cerqueira et al., 2017). Low values of RMSE and MAE indicate a 

high accuracy of the model’s predictions as they represent a good match between the predicted and 

the actual values (Wargon et al., 2009). RMSE and MAE are directly related to the mean value of the 

outcome variable analyzed and the unit in which they are expressed is the unit of the predicted 

variable. These error metrics can be potentially less easy to interpret for models that predict variables 

that have different mean values (Wargon et al., 2009). However, in our case, we are using the same 

outcome variable in all of the models. Thus, MAE and RMSE are a fitting choice for our case.  

On the other hand, the MAPE metric is not suitable for our study. MAPE represents the mean 

absolute percentage error (Sudarshan et al., 2021). Although MAPE offers a better comparability across 

models with different outcome variables since it does not depend on the mean value of the predicted 
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variable (Wargon et al., 2009), it is not suitable for our case.  In our case, there are observations when 

the waiting time is zero in those cases when the call line is closed. However, MAPE produces undefined 

or infinite error estimations in such cases as it cannot operate with zero values or values close to zero 

(Sudarshan et al., 2021). It can also produce misleading error estimations for different scales of time 

series.  

To obtain these metrics, comparing the actual value with the predicted value is necessary. In 

order to do this, the dataset needs to be split into a training set and a test set as was done by most of 

the previous studies (McCarthy, 2011; Wargon et al., 2009). Several studies used the hold-out or 

sample-splitting method, in which a dataset is split into a train set and a test set (Boyle et al., 2012; 

Zhang et al., 2022). This means that part of the dataset (the test set) is not used to train the data. This 

allows for comparison of the predictions with actual data to obtain prediction accuracy (Boyle et al., 

2012; Zhang et al., 2022). Moreover, several studies validated their model’s predictions on an additional 

external (out-of-sample) dataset (Boyle et al., 2012). Using an external dataset of data that were not 

previously “seen” by the model allows us to approximate how the model would perform in the future 

on new observations.   

3. Method 

3.1 Time Series Implementation and Model Selection   
We adopt a well-established statistical modelling method for ARIMA-family models, the Box-Jenkins 

method. This method was originally developed by the inventors of ARIMA, George Box and Gwilym 

Jenkins in the 1970s for the ARIMA model (Daellenbach & Flood, 2002). Through this method, we aim 

to find the most fitting ARIMA model order (de O. Santos Júnior et al., 2019). The Box-Jenkins method 

follows a systematic and iterative process that consists of five main steps: data preparation and 

investigation, model identification, parameter estimation, statistical assumptions checking and 

forecasting (Daellenbach & Flood, 2002). The Box-Jenkins method emphasizes the iterative nature of 

time series analysis between the steps and their inter-relatedness, which we adopt in this study. This 

five-step approach is an expansion on the original approach that did not include the data preparatory 

and the application phases (thus the process can also be found in its shorter three-step form in some 

literature) (Wheelwright et al., 1998). We use a smaller portion of the dataset (training set) for model 

identification, parameter estimation, assumptions checking and forecasting. Over time, several case-

relevant ARIMA-extensions have been developed, namely the Seasonal ARIMA, ARIMAX and SARIMAX 

as mentioned in the Background segment. This method in full length can be used also for these 

extensions of the original ARIMA model for each model separately except for the preliminary data 

preparation phase (de O. Santos Júnior et al., 2019). The order of model development we employ is 

from the simplest to the most complex model, as recommended by Box and Jenkins (Wheelwright et 

al., 1998). Thus, the order of model development is as follows: ARIMA, SARIMA, SARIMAX without calls 

as an exogenous predictor and SARIMAX with calls as an exogenous predictor.  

In this study, we expand on the traditional statistical Box-Jenkins modelling approach by using 

an approach that is conventionally used more in machine-learning. After performing the Box-Jenkins 

approach for each model type we select the most accurate model. Accuracy is assessed by comparing 

well-established validation metrics MAE and RMSE using the same test dataset for all models 

developed. Once the most accurate model is selected, we compare this model’s accuracy of predictions 

with the simulation model the client currently uses on a new external validation dataset. The results 

obtained from the validation on the external dataset are also used for comparison with the LSTM 

approach (see parallel work by Tian (2023)). See Appendix II.II.I for a schematic illustration of the full 

method with all steps. 
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3.1.1 The Box-Jenkins Approach 

3.1.1.1 Data preparation and Investigation 

We first preprocess and transform the data into the applicable format for ARIMA models. This step 

involves transformations in order to stabilize the variance of the time series. Transformation of the data 

such as square roots or logarithms are performed in case there is a need to stabilize the variance in a 

series, for example if the variation changes with the level of the time series (Daellenbach & Flood, 

2002). Moreover, the data is preprocessed, variables are normalized, and outliers are identified and 

handled. For preprocessing description, please refer to section 3.2 Preprocessing. Moreover, the 

dataset available is split into a training and a test set for validation using the hold-out method 

(described in greater detail in section 3.1.1.5 Forecasting and Model Validation). The training set 

consists of the whole dataset except for the last month of observations. The observations from the last 

month of the dataset are used as a test set in a later step (see 3.1.1.5: Forecasting and Model 

Validation). 

Secondly, we investigate the need for data differencing and the order of differencing using graphical 

tools and statistical tests. Graphs such as autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots are used to identify the presence of autocorrelation and seasonal patterns 

(Daellenbach & Flood, 2002). The ACF plot shows the correlation between the series and its lagged 

values, while the PACF plot represents the correlation between the series and its lagged values after 

removing the effects of shorter lags. Statistical tests such as the Augmented Dickey-Fuller (ADF) test for 

unit root, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity and the Phillips-Perron (PP) test 

are used to check for stationarity and unit root (Daellenbach & Flood, 2002). We also use the Canova-

Hansen test to determine the stability of seasonal patterns and the possible need for seasonal 

differencing, if any are found (Busetti & Harvey, 2003). The results of these tests are applied later when 

differencing is performed in the model. Unlike the other steps in the Box-Jenkins approach, this step is 

performed only once.  

3.1.1.2 Model Identification  

We identify the model by determining the model’s order. We use Akaike’s Information Criterion (AIC) 

for this step. AIC is a device for estimating the predictive accuracy of models with lower AIC values 

indicating a better-fit model (Forster & Sober, 2011). We use AIC to help us decide between multiple 

model configurations of the same model type as AIC can only be used to compare models with the 

same outcome and predictor variables (Forster & Sober, 2011). To illustrate, AIC is used to identify 

parameters among ARIMA models, but cannot be used to compare the model fit with a SARIMA model 

because of different parameters used in this model. We use the automatic order search to find the 

most fitting configuration of the autoregressive, moving average and differencing order for the model 

based on the lowest AIC using the step-wise algorithm search. In case of seasonal models, the same 

process is used to also find the most fitting configurations of the seasonal autoregressive, seasonal 

moving average and seasonal differencing order of the model. This approach selects from among 

multiple differencing options to induce difference-stationarity. For determining the differencing orders 

that should be tested, we use the information obtained in the previous step. 

3.1.1.3 Parameter estimation 

After the appropriate model order is determined, the values of the model coefficients for each 

parameter are estimated. This step is performed algorithmically by fitting the model identified in the 

previous step to our time series. We estimate the coefficient values for each model order so that obtain 

the closest fit to our normalized data. In case of the SARIMAX model, coefficients are estimated also 

for each exogenous predictor. The estimation is performed using the maximum likelihood estimation 

(MLE). 
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3.1.1.4 Statistical Model Assumptions checking  

After the model parameters are estimated, we assess the adequacy of the chosen model. This step 

involves diagnostic checking of the residuals which should be normally distributed, with zero mean and 

constant variance to fulfill the underlying assumptions of the ARIMA model. Alternatively, we identify 

any areas where the model is inadequate using graphical tools and statistical tests. We employ the 

Ljung-Box test to check for the independence of residuals and the Goldfeld-Quandt heteroskedasticity 

test to test for constant variance of the residuals (Brockwell & Davis, 2002).  

3.1.1.5 Forecasting and Model Validation 

Once all the previous steps are performed, we use the model to forecast future values and the forecasts 

are checked against actual values. The dataset has been split into a training and test set in the first part 

of the process (3.1.1.1 Data preparation and Investigation). We generate forecasts based on the model 

obtained from the previous steps using the training data. We generate predictions for three time-

frames: one day in advance, one week in advance, and one month in advance. These three time-frames 

are selected to compare the short-, mid-, and long-term predictive power of the model. In our case, we 

predict the average waiting time on an hourly basis and we predict the average waiting time in minutes. 

The predictions are obtained in a normalized form, so we de-normalize them. For each time-frame, we 

compare the forecasted de-normalized values from the model with the actual values from the test set. 

The test set is the same for all ARIMA-family models. We evaluate the model in terms of the commonly 

used validation metrics MAE and RMSE (Wargon et al., 2009), which are explained in the Background 

section. These metrics can be interpreted in the unit of mean patient waiting time per hour in minutes. 

This is the most important step in our case and provides the results of model accuracy for the following 

step (see 3.1.2 Model Selection). 

3.1.2 Model Selection based on Forecast Accuracy 
Among all the models from ARIMA-family tested, we select the model with the highest accuracy. For 

accuracy assessment, the MAE and RMSE values obtained from the previous step are used. All of the 

models have been validated using the same test dataset making the MAE and RMSE values comparable 

among models of different types. We select the ARIMA-family model with the lowest MAE and RMSE 

values for the most time-horizons. We also select the most accurate model that predicts waiting time 

without the inclusion of the exogenous variable number of calls for practical purposes of the client. In 

this step, we attempt to answer the first sub-research question.  

3.1.3 External validation and Final Comparison with the Currently-Used Simulation Model and 

LSTM 
We generate and check predictions for a longer time horizon using the models we selected in the 

previous step. We re-train the models on all the data available to match the time-horizon of the 

external validation data. The selected models generate predictions for a further time horizon, which is 

equivalent to the range of the external validation dataset (one month: May 2023). These predictions 

are then validated on an external dataset that consists of actual values in this time-frame. We compare 

the values predicted by the most accurate model and the actual values from the external dataset using 

MAE and RMSE error metrics. The two models we compare our results to are the simulation model 

that is currently in use and LSTM. These models used the same external validation dataset to obtain 

their MAE and RMSE values. We compare the accuracy of all of the models using the two metrics. In 

this step, we answer the second sub-research question by comparing the selected model with the 

current model, and the main research question by comparing the selected model with LSTM. 
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3.2 Preprocessing  
In the preprocessing phase, we perform several steps to prepare the data for analysis and forecasting. 

For the final external validation dataset, all of the following steps are repeated with the exception of 

outlier removal and missing data imputation. Details on data preprocessing can be found in Appendix 

II.II.II. The most important preprocessing steps are outlined below. 

Firstly, we handle missing data for those variables that are used later and account for the 

opening times of the call line. To approximate the waiting time for missing observations, we calculate 

the difference between the recorded start time and answer time of the call. The difference between 

these two times is a good approximation of how long the person had to wait on the line stemming from 

the definition of these two variables (start time of the call and the time when the call was answered). 

However, the recorded waiting time does not include a delay caused by a tape played at the beginning 

of each call. To account for this delay in the imputed values, we subtract the mean delay (calculated as 

the difference between the differenced time and the recorded waiting time) from the differenced time. 

Moreover, due to the GP office's emergency call line schedule, there are periods when the line was 

closed, resulting in irregular intervals between observations, as some hours were not recorded due to 

the line being closed. Since ARIMA-based models cannot handle missing values and nor can they handle 

irregular time between observations (Helfenstein, 1996), we add all hours of the day to the dataset for 

the times the line was closed. We also assign 0 to the waiting time and number of calls incoming during 

these closed periods to indicate that no calls were recorded. This way, we obtain regular intervals 

between observations without any missing values. Additionally, we create a dummy predictor variable 

called "open" that takes on the value 1 when the line was open and 0 when the line was closed. 

Secondly, we handle outliers as ARIMA-based models can be sensitive to outliers (Hyndman & 

Athanasopoulos, 2018; Ledolter, 1989). We remove all observations whose call duration was 1 second 

or less, as these were likely to be mistakes by the callers or system errors. Moreover, we also identify 

the outliers in terms of waiting time using the standard interquartile range (IQR) method (Tukey, 1977). 

Observations whose waiting time is more than 1.5 times the IQR below the first quartile (Q1) or above 

the third quartile (Q3) are considered outliers and removed from the dataset. This procedure also 

removes any suspicious values that could have been introduced in the imputation as these are taken 

care of as outliers. 

Thirdly, we preprocess the data by transforming them into a more suitable format. In our case, 

we have time series data, thus, we transform them into a datetime format using the date and time 

when a call arrived as an index. Furthermore, we calculate the number of calls per hour by summing 

all calls whose recorded start time fell within a particular hour. Similarly, the average waiting time per 

hour is calculated as the mean of the waiting times (in minutes) for all calls within a particular hour. 

Also, we calculate the number of shifts available at the start of each hour to create the variable Number 

of shifts (Tian, 2023). Moreover, to ensure accurate modeling with ARIMA-based methods 

(Gamakumara et al., 2023), we normalize the average waiting time per hour, number of incoming calls 

per hour and number of shifts available using z-score normalization (Panigrahi & Behera, 2013).  

Fourthly, we enrich the data with calendar information and recode all the categorical variables 

into dummy variables. To incorporate valuable calendar information, we enrich the data by adding 

calendar variables such as the day of the week, season, and holiday information based on public 

holidays in the Netherlands. Holiday information is synthesized into the day of the week, indicating a 

special value for any day that was a public holiday, regardless of which weekday it was exactly. 

Moreover, as these are categorical variables, we recode them into dummy variables for further analysis. 
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3.3 Variables and Datasets Analyzed 
We use the average waiting time per hour as our outcome variable for all models tested using the same 

test dataset. This variable is recorded in minutes and is de-normalized after obtaining the predictions 

to get the actual values of average waiting time per hour. For the multivariate SARIMAX models, we 

use the following variables as exogenous predictors in a dummy form: open (indicating if the call line 

was open), day of the week (including the information on holiday), and season. We also investigate the 

effect of the number of incoming calls per hour, using it as an extra predictor to see if it leads to 

improvements in prediction accuracy in a separate SARIMAX model. However, since the number of calls 

might not always be available to the client at the time of forecasting, as this parameter requires being 

predicted as well, we also select the best model when this parameter is not included. The same dataset 

is used for training all models except for those using number of shifts. The test dataset for model 

selection is the same across all models. 

 Due to the short span of the historical data on number of shifts available, we provide only an 

exploratory analysis of the impact of the number of shifts on waiting time prediction. We train four 

different model combinations: one without the inclusion of the number of calls and number of shifts; 

one with the inclusion of number of shifts yet without the number of incoming calls; one with the 

inclusion of number of calls yet without the number of shifts; and one with the inclusion of the number 

of incoming calls and the number of shifts. We compare these models in terms of their prediction 

accuracy using MAE and RMSE as error metrics. For training of these models, we use the shorter 

dataset filtered from the point for when the number of shifts were available. The analysis of this dataset 

provides a tentative analysis of the impact of the number of shifts on the waiting time prediction 

accuracy.  

4. Data Description  

4.1 Data Provided 
The available data includes information on the incoming calls and scheduled shifts. The data concerning 

calls include historical data spanning from 20 January 2022 to 17 April 2023. However, the historical 

data concerning scheduled shifts span 1 March 2023 to 17 April 2023, only a month and a half. This 

dataset is also considerably shorter. The data on shift schedules has 1 427 observations in schedules 

with no missing observations, while the main dataset contains 10 873 observations on an hourly basis. 

See Appendix II.II for a detailed description of the raw data available. 

The main dataset used for our analysis includes only the data concerning calls and additional 

calendar information about the days when the calls occurred. The average waiting time per call is 12.73 

minutes (SD: 14.9). We imputed the missing values in the variable waiting time, which had 2 786 

missing values, using the method described in the previous section. Moreover, as stated in the Methods 

section, we removed 314 call observations that were equal to or shorter than 1 second. We also 

removed the outliers using the IQR method, which resulted in additional 2001 observations removed.  

The shorter, filtered, dataset used for the tentative analysis of models with number of shifts 

includes data on calls, calendar variables and number of shifts from their overlapping period. This 

dataset thus includes only the most recent data spanning from 1 March to 17 April 2023, when all of 

the variables were available. In this dataset, the shifts last 6.6 hours on average (SD: 1.28). Similarly to 

the main dataset, the time series in this dataset are reported in an hourly format. See Appendix II.III 

for a more detailed data description.  
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Figure 1: The average patient waiting time per hour in minutes 

There is considerable variation in the observed average waiting time per hour. Figure 1 depicts 

the average waiting time per hour in minutes over the time. The average of the mean waiting time per 

hour, which we use as our outcome variable, is 5.67 minutes (SD: 8.25), showing quite a big variation. 

The variation becomes even more apparent in Figure 2 (left part) that clearly shows how the average 

waiting time changes per weekday and Figure 2 (right part) that shows differences on an hourly level. 

The waiting times seem to be larger during the weekend and holidays. Also, they seem to be much 

lower in early morning (from 1 am to 6 am).  

 

Figure 2: Left part: Average waiting time per hour on each weekday (in minutes), Right part: Average waiting time per hour 
each hour (in minutes) 

4.2 Seasonality and Stationarity 
Informed by the first step of the Box-Jenkins method, possible seasonality in the data and stationarity 

of the data is assessed (see 3.1.1.1 Data preparation and Investigation). ADF and PP tests indicate that 

the data is stationary with stable mean and variance over time. This indicates that no differencing is 

necessary. However, KPSS indicates that the data is currently not fully stationary and would require 

differencing in the model by 1. The plotted time series appears to be relatively stationary with no visible 

trend in the data (Figure 1). Overall, the tests suggest that the differencing order in the ARIMA-family 

models should be either 0 or 1.  

Moreover, we suspect that there might be daily seasonality present in our data since it was 

recorded on an hourly basis. As visible from the Autocorrelation and Partial Autocorrelation plots 

(Figure 3), our data show seasonality on a daily level since a pattern repeats itself every 24 hours. 

Moreover, based on the Canova-Hensen test, the time series might require some seasonal differencing 

and that the seasonal pattern might not be fully stable in seasonal cycles of m=24. The test suggests 
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that the seasonal differencing term in the models might be either 0 or 1. For more stationarity and 

seasonality assessment, see Appendix II.III. 

 

Figure 3: Top part: Autocorrelation plot, Bottom part: Partial Autocorrelation plot 

5. Results 

5.1 ARIMA model  
This section reports the results of the non-seasonal ARIMA model. According to the suggested 

differencing order from the first step of the Box-Jenkins method (see 3.1.1.1 Data preparation and 

Investigation), the results of non-seasonal ARIMA with two options of differencing: 0 and 1 are reported 

for comparison. The comparison between the model with no differencing and differencing 1 is available 

in the Appendix III.I. The best model identified was ARIMA (1,0,1) with AIC of 23040.251 based on the 

second step of Box-Jenkins method (see 3.1.2 Model Identification). The estimated coefficients 

obtained in the third step (see 3.1.1.3 Parameter estimation) for each model parameter are available 

in Appendix III.I.I. However, based on statistical assumptions checking (see 3.1.1.4), the model with the 

lowest AIC met the statistical assumptions only partially. Although the residuals of the model were 

independent, they were not normally distributed with constant variance.  More details about the 

assumptions assessment can be found in Appendix III.I.I.  

The results from forecasting and model validation (see 3.1.1.5) are available in Table 1 and the 

forecasts are visualized in Figure 4. As demonstrated in Figure 4, the ARIMA model mostly predicted 

the average value over the month’s horizon. As indicated in Table 1, MAE and RMSE were the lowest 

for the short-range predictions and the highest for a weekly prediction. The long-range predictions had 

relatively low MAE and RMSE scores. 

 MAE RMSE 

1 day into 
future 

5.14843 5.31148 

1 week into 
future 

5.21820 6.34346 

1 month into 
future 

4.92958 5.90687 

Table 1: Forecast Accuracy of the ARIMA model 
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Figure 4: ARIMA model forecasts of the average patient waiting time per hour in minutes one month into the future  

5.2 SARIMA model  
The seasonal ARIMA model had the following results. According to the suggested differencing order 

from the first step of the Box-Jenkins method, the results of the two SARIMA model alternatives 

(normal differencing in the range 0-1, and two options of seasonal differencing: 0 and 1) are provided 

in Appendix III.II. The model identified in the second step based on the lowest AIC was 

SARIMA(0,1,2)(0,0,2) 24 with AIC of 23582.147. The estimated coefficients obtained in the third step 

for each model parameter are available in Appendix III.II. According to the fourth step, statistical 

assumptions checking, the model with the lowest AIC did not fully fulfill the statistical assumptions as 

its residuals were not independent with normal distribution. More details about the assumptions 

assessment can be found in Appendix III.II.I.  

 The results from forecasting and model validation (fifth step of Box-Jenkins method) are 

available in Table 2 and the forecasts are visualized in Figure 5. This model had the lowest MAE and 

RMSE one day into the future. It had the highest errors one week into future and relatively low error 

scores one month into the future. As depicted in Figure 5, this model was able to capture some 

variation in the data rather than predicting just an average value of mean waiting time per hour.  

 MAE RMSE 

1 day into 
future 

5.33618 5.56938 

1 week into 
future 

5.46588 6.49624 

1 month into 
future 

5.10722 5.99752 

Table 2: Forecast Accuracy of the SARIMA model 

 

Figure 5: SARIMA model forecasts of the average patient waiting time per hour in minutes one month into the future 
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5.3 SARIMAX models with and without the number of calls per hour 
This section reports the results of the two SARIMAX models used: a SARIMAX model without calls and 

a SARIMAX model with calls as a predictor. The results of the models modelled with automatically-

selected normal differencing in the range of 0-1 and with the automatically-selected seasonal 

differencing in range of 0-1 are provided based on the information obtained from the first step of the 

Box-Jenkins method. 

The results of the SARIMAX model without the number of calls as a predictor are presented. 

The SARIMAX model without calls with the lowest AIC that was identified was SARIMAX(0, 1, 5)(0, 0, 

2)24 with AIC 21973.375 during the second step of Box-Jenkins approach. The coefficients estimated 

for each parameter for the third step are reported in Appendix III.III. Out of these coefficients, the 

external parameter “open” had the highest coefficient indicating the highest influence of the 

prediction, while the parameters indicating day of the week also had considerable influence. Based on 

the fourth step of Box-Jenkins method, this model partially fulfilled the statistical assumptions tested. 

The residuals of the model were independent, yet they did not have a constant variance. For detailed 

assumptions assessment, see Appendix III.III.I. The SARIMAX model without calls had the lowest 

prediction error of its forecasts on the short-range prediction (as seen in Table 3) (fifth step of the Box-

Jenkins method). The predictions for mid-range horizons had the second lowest error scores. Yet, the 

long-range predictions had the highest error scores. The plotted predictions of this model can be found 

in Figure 6 (top part). 

The results of the SARIMAX model with the number of calls as a predictor are presented. The 

SARIMAX model with calls that was identified in the second methodical step as having the lowest AIC 

was SARIMAX (1,1,1)(2, 0, 0)24 with the AIC of 21373.795. The coefficients estimated for each 

parameter in the third step are reported in Appendix III.III.II. Out of these coefficients, the external 

parameters number of calls per hour and “open” had the highest coefficients indicating the highest 

influence of the prediction, while the calendar parameters were not significant. This model partially 

fulfilled the statistical assumptions tested as informed by the fourth step of Box-Jenkins method. The 

residuals of the model were independent, yet they did not have a constant variance. For detailed 

assumptions assessment, see Appendix III.III.II. This model had the lowest error scores on the short-

range prediction (as seen in Table 3) (fifth step of the Box-Jenkins method). The error scores were higher 

on mid-range predictions and they were the highest for long-range predictions. As seen in Table 3, this 

model had lower error scores for each forecast horizon than the SARIMAX model without calls. As 

visible in Figure 6 (bottom part), the plotted predictions of this model followed the actual values of the 

time series more closely than for the model without calls.  

 SARIMAX model without the number of calls  SARIMAX model with the number of calls 

 MAE RMSE  MAE RMSE 

1 day 
into 
future 

2.95589 3.46144  2.38199 2.99895 

1 
week 
into 
future 

3.85744 5.37179  3.25313 4.90553 

1 
month 
into 
future 

4.13237 5.37641  3.56596 4.98470 

Table 3: Forecast Accuracy of the SARIMAX model without the inclusion of the number of calls, and the SARIMAX model with 
the inclusion of the number of calls as an exogenous predictor 
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Figure 6: Top part: no calls used as predictor, Bottom part: calls included as a predictor, 30 day prediction 

5.4 Tentative Analysis of the SARIMAX Model on a Shorter Dataset 
The results of the tentative analysis using the shorter dataset filtered by the availability of the number 

of shifts are presented. The results of the individual models are available in Appendix III.IV. The model 

with the highest accuracy was the SARIMAX model without shifts and with the inclusion of the number 

of incoming calls. However, when the number of calls were not included as an exogenous predictor, the 

SARIMAX model with the number of shifts and without calls had higher accuracy than the SARIMAX 

model without both shifts and calls. The most accurate model, the SARIMAX model with the number 

of incoming calls, had the following form: SARIMAX(0,1,0)(0,0,0)24. It did not identify any seasonal 

autoregressive, differencing nor moving-average processes. The estimated parameters and statistical 

assumptions testing are available in Appendix III.IV.III. As can be seen in the Appendix, this model did 

not fulfill the statistical assumptions well. In fact, it was significantly worse than for all the other ARIMA-

family models. When validated, its prediction accuracy was generally lower than most of the other 

models tested on the same test dataset. This model had the highest accuracy of predictions for the 

short- and long-range predictions. For more information, see Appendix III.IV.III.  

 MAE RMSE 

1 day into 
future 

5.05879 5.49077 

1 week into 
future 

5.09789 6.41966 

1 month into 
future 

4.97602 5.97360 

Table 4: Results of the Most Accurate Model from Tentative Analysis: SARIMAX model with calls trained on a shorter dataset 

5.5 Selection of the Best Model  
The model with the lowest error scores and the highest accuracy was the SARIMAX model with calls. 

On the same test set, this model had the lowest error scores on each time horizon for both error metrics 

compared to the other models (see Tables 1-4). This model performed the best in the short-range 

predictions and its performance decreased over time. The errors however remained quite similar, 
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indicating a relatively stable quality of predictions over time. From the visual representation of the 

predictions and the actual values in the test set (Figure 6), it can be seen that this model had more 

nuanced predictions than the model without calls. Its forecasts also followed the actual time series 

more closely than those of any other model analyzed (see Figure 6 compared to Figure 4 and 5).   

The second best performing model was the SARIMAX model without calls. This model also had 

relatively low error scores for all time horizons. Overall, its error scores for both error metrics indicated 

better prediction accuracy than for any other ARIMA-family model except for the SARIMAX model that 

included the number of calls per hour (see Tables 1-4). When compared to the plotted forecast of other 

models, the SARIMAX model without calls had predictions that followed the actual values the second 

most closely after the best performing model (see Figure 6 compared to Figure 4 and 5). See Appendix 

III.V for a graphical comparison of model accuracies of all ARIMA-family models tested.  

5.6 External Validation and Comparison with the Current Model and LSTM 
The results of validation of the SARIMAX model with calls as the best model and the SARIMAX model 

with calls as the best model (in case number of calls are not available) on an external dataset are 

reported. The same error metrics were used for the three previously employed time-horizons. The 

results of these models are reported in Table 5. The predictions and the actual values of the external 

validation dataset are visualized in Figure 7. Table 5 shows that the performance for the selected model 

without calls on all time horizons was better than on training data.  

 SARIMAX model without the number of calls  SARIMAX model with the number of calls 

 MAE RMSE  MAE RMSE 

1 day into 
future 

2.95054 3.17029 1.59699 1.80255 

1 week 
into future 

3.65417 4.76957 3.22853 4.50148 

1 month 
into future 

3.95944 5.36151 3.44011 5.08273 

Table 5: Performance of the best-performing time series models 
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Figure 7: Top: SARIMAX without calls, Bottom: SARIMAX with calls, 30 day prediction on external validation data for best 
performing time series models 

Moreover, the results of the current simulation-based model are reported. The current 

simulation model had the accuracy as depicted in Table 6. This model had the lowest error scores on 

the short-term predictions. The error scores increased on longer ranges for both weekly and monthly 

predictions. The RMSE was especially high for long-range predictions.  

 MAE RMSE 

1 day into 
future 

2.42390 4.39920 

1 week 
into future 

2.60046 
 

4.60218 

1 month 
into future 

4.98939 
 

9.73468 

Table 6: Forecast Accuracy of the current model 

 The comparison between the two best SARIMAX models and the current simulation model 

showed mostly higher accuracy of the SARIMAX models. The SARIMAX model with calls, the best 

ARIMA-family model, had lower error scores on both RMSE and MAE metrics for short-range and long-

range predictions than the current model (see Table 5 and Table 6). For mid-range predictions, the MAE 

of the current simulation model was lower (see Table 5 and Table 6), while the RMSE of the SARIMAX 

model with calls was lower. The SARIMAX model without calls, the second best ARIMA-family model, 

had lower RMSE and higher MAE on short-range prediction than the current simulation model (see 

Table 5 and Table 6). On mid-range predictions, the current model had lower error scores. The SARIMAX 

model without calls also had lower error scores for both MAE and RMSE for long-range predictions 

than the current model.  

Lastly, the comparison between LSTM and the best SARIMAX model showed that LSTM had 

better accuracy. LSTM model with calls was the most accurate LSTM model in parallel work (see Tian, 

2023). The results of the LSTM model with the highest accuracy are reported in Table 7. The LSTM 

model had lower error scores for both error metrics than both SARIMAX models selected on all time 

horizons (see Table 7 and Table 5).  
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 MAE RMSE 

1 day into 
future 

1.17055 1.59194 

1 week into 
future 

2.28213 
 

3.730 

1 month into 
future 

2.15150 
 

3.68457 

Table 7: Forecast Accuracy of the most accurate LSTM model: LSTM with calls (adopted from parallel work by Tian, 2023) 

6. Discussion 

6.1 Comparison to previous research 
In our study, we developed the ARIMA-family models from the simplest non-seasonal univariate ARIMA 

model, through a seasonal univariate SARIMA model, to a complex seasonal ARIMA model with 

exogenous predictors. We discuss our results in light of previous literature, the current simulation 

model, and the LSTM model. 

6.1.1 Seasonality 
Consistent with some previous research, our data showed clear seasonality on a daily level. Seasonality 

in our time series was caused by the fact that the frequency of the observations was recorded in hourly 

intervals that were repeated each 24 hours. Although in our case, the seasonal ARIMA ended up having 

very comparable predictive performance to the non-seasonal model, the statistical tests as well as 

graphical inspection suggested a strong seasonal pattern. Moreover, the comparison of the graphs 

plotting the forecasts of the non-seasonal model and the seasonal model forecasts showed more 

nuance and closer fit to the actual values in the predictions of the seasonal model. Our findings are 

supported by some previous literature that also found the presence of seasonality in data (Channouf 

et al., 2007; Cheng et al., 2021; Kim et al., 2020). However, previous studies used different time 

frequencies and seasonality levels of time series such as hourly (Channouf et al., 2007; Cheng et al., 

2021), daily (Champion et al., 2007; Kim et al., 2020) and weekly frequencies (Channouf et al., 2007) 

to study ED time series data. Accordingly, not all of the studies found seasonality in the ED data they 

analyzed (Channouf et al., 2007). The most similar study to our case in terms of observations frequency 

was the study by Cheng and colleagues (2021). This study focused on hourly forecasts of ED occupancy 

and similarly to our study results, it found a 24-hour seasonality. This study also incorporated higher-

level seasonality cycles such as day of the week as external regressors just as we did in our SARIMAX 

models. However, in our case, the emergency call line was open only in certain times of the day during 

the weekdays, potentially adding an extra weekly seasonal pattern, which is not the case for a standard 

ED. Arguably, the variable “open” and day of the week could have captured some of the seasonal 

information on such weekly level, as they helped the SARIMAX model to distinguish between different 

days of the week. Thus, the weekly seasonal pattern was most likely captured in the external predictors 

to some extent.  

6.1.2 Forecast Accuracy and Its Development Over Time for ARIMA-family models 
For all ARIMA-family models, accuracy was assessed through the use of MAE and RMSE. MAE was lower 

than RMSE for all of the models developed. This was due to RMSE being more sensitive to extreme 

values (Chicco et al., 2021). Moreover, MAE was more important for assessing the magnitude of errors, 

while RMSE was good for assessing the direction of the errors (Chicco et al., 2021). In our case, MAE 

and RMSE tended to be quite similar which indicates that the errors made by the model were not too 

large in their magnitude and that the predictions were generally oriented in the right direction. The 

average of the mean waiting time per hour which we used as our outcome variable was 5.673 minutes 
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(SD: 8.248), while our MAE and RMSE for the two most accurate models were relatively low compared 

to the mean value. This indicates that overall, the selected SARIMAX models performed quite well. 

However, the best model SARIMAX with calls (as seen from the graph) underestimated significant 

fluctuations in waiting time and in other cases, it overestimated low waiting times. Overall, the model 

tended to underestimate more than overestimate, which was also pointed out by Aboagye-Sarfo and 

colleagues (2015) in the context of forecasting ED demand with ARIMA models.  

The accuracy of different ARIMA-family models varied depending on the time range of their 

predictions. While the prediction accuracy of our two best models (SARIMAX without calls and with 

calls) steadily decreased over time, this was not the case for the less accurate models, ARIMA and 

SARIMA. Both of these models had higher prediction accuracy for long-range predictions than mid-

range ones. The relatively low prediction errors for the long-range predictions in case of ARIMA and 

SARIMA were most likely due to the averaging effect. In other words, the increasing number of 

observations considered in the long-range horizon compared to the mid-range horizon caused the 

errors to become relatively lower although the predictions remained the same. This was visible in the 

plotted forecasts of these two models that deviated majorly from actual values without capturing any 

significant trend and only predicting the average value. On the other hand, a decrease in prediction 

accuracy over all time horizons would have been expected.  

This further demonstrates the reason why the SARIMAX models were superior to the other 

models. The decrease in prediction accuracy was to be expected as the model predicts patterns in the 

future about which it has less information and more uncertainty regarding the behavior of the time 

series over time. Generally, the uncertainty increases with time. Previous studies also found a steady 

decrease in prediction accuracy over time (Aboagye-Sarfo et al., 2015; Boyle et al., 2012; Tuominen et 

al., 2022). In line with these studies, the SARIMAX models also showed a gradual decline in forecast 

accuracy, although the performance was relatively stable with the MAE and RMSE that did not change 

more than two minutes from one time-range to another.  

In summary, as an answer to the first sub-research question, we found that the SARIMAX model 

that included the number of incoming calls per hour was the most accurate among the ARIMA-family 

models for our case of a single GP office that operates an emergency call line in the Netherlands. 

6.1.3 External predictors 
There was a stark improvement of prediction accuracy when the external predictors were introduced 

in the model. This demonstrates that the inclusion of external variables was indeed valuable for time-

series modelling in our case. Similarly to previous research (Jones et al., 2008; McCarthy, 2011; 

Tuominen et al., 2022; Zhang et al., 2022), we found that the inclusion of calendar variables, namely 

the weekday indication, improved waiting time prediction. However, the distinction is that previous 

research used calendar variables mostly to predict the number of patient arrivals, which would be 

equivalent to the number of calls per hour in our case. Moreover, with the exception of McCarthy and 

colleagues (2011) who predicted hourly arrivals and Cheng and colleagues (2021) who predicted hourly 

ED occupancy, the calendar variables have been used mostly to improve daily predictions. Tuominen 

and colleagues (2022) stress the inclusion of local holidays and calendar variables as they were 

identified as one of the most dominant predictive features. In our case, holidays were not a significant 

predictor which was likely due to the short span of data, which was just over one year. Yet, the variable 

“open” acted similarly to a calendar variable in our case. It indicated when the emergency line was 

open and when closed, a value dependent on time. It was one of the most significant predictors in our 

SARIMAX models.  
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Moreover, the inclusion of the number of incoming calls in our SARIMAX model majorly 

improved its forecast accuracy. The inclusion of the number of calls added nuance to the predicted 

waiting times as was visible in the plotted predictions. This is in line with previous literature (Jones et 

al., 2009) that suggested that hourly waiting time and demand is driven by the exogenous patient 

arrival process – the count of patient arrivals equivalent to our calls. Duarte and colleagues (2021) also 

examined the waiting time in ED and the number of attendances together, yet they did not determine 

their relationship. Most importantly, the strong relationship between the number of incoming calls per 

hour and the predicted waiting time was suggested by the Queuing Theory. However, once the number 

of calls was included, most of the calendar variables lost their significance in the model, with the 

exception of the variable “open”. This would suggest that the number of incoming calls could be 

collinear with the calendar variables to some extent, which needs to be investigated in future studies. 

However, the number of incoming calls is a predictor that is not usually known at the time of 

forecasting. It is necessary to be forecasted as well, and in case it is not available, calendar variables 

contribute to model’s predictions. 

6.2 Integration in the Current System and Comparison with the Current Simulation 

Model 
The two best SARIMAX models showed relatively better performance than the current model. 

Furthermore, it is possible that the actual prediction accuracy once the models are deployed could be 

even higher since the model would not be used to generate predictions for the time when the line is 

closed. In its original form, both SARIMAX models predict negative patient waiting times for the times 

the emergency call line was closed. Consequently, the negative predictions increase the error metrics 

RMSE and MAE, as the error was larger than it would have been if the models were employed in 

practice, and they would not predict waiting times for the periods when the call line was closed. Overall, 

the two SARIMAX models had a more stable performance over time than the current model. The 

SARIMAX models were especially more accurate for long-range predictions. When the current model 

had RMSE of over 9 minutes, both of the selected SARIMAX models had RMSE of around 5 minutes. 

Such high RMSE for the current model indicates that quite a few large prediction errors occurred, which 

was not the case for the SARIMAX models. This also indicates that the SARIMAX models were better at 

predicting the direction of the errors than the current model. This is likely due to the fact that the 

current model is derived only from a distribution of calls rather than from a learnt-pattern as our 

models.  

Moreover, even the second most accurate SARIMAX model without the number of calls 

performs relatively well compared to the current simulation model. Namely, it performed better than 

the current model on a short-range and long-range prediction. Its prediction and also the prediction of 

the model with calls, were worse in a mid-range than the current model. Moreover, as seen in the 

plotted predictions, the SARIMAX models were not fully able to capture large fluctuations in the 

average waiting time. As suggested by the literature (Aboagye-Sarfo et al., 2015), ARIMA-family models 

work well on general patterns, but sometimes might not be able to capture large variations from the 

normal pattern. On the other hand, this also makes them less prone to overfitting as some more 

complex techniques such as LSTM (Ko et al., 2021). 

In case the client decides to implement the ARIMA-family models, we suggest that ideally the 

SARIMAX model with the number of incoming calls is implemented and that the number of future 

incoming calls is predicted as well. If this is not possible, the equivalent SARIMAX model without the 

number of calls also performs relatively well. The suggested models could be used mostly to improve 

the predicted waiting time one day in advance and one month in advance. However, for predictions 

one week in advance, these models had worse performance than the current model, which could still 
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be considered, for example in a combined prediction. Caution should also be taken when considering 

large fluctuations as the SARIMAX models cannot capture them well. This is important also from an 

ethical perspective when the GP office might expect much lower waiting time during a time of a large 

fluctuation and the possibility of underestimation needs to be communicated. The forecasts with the 

SARIMAX models also require specifications for each hour. These specifications are also the adjustable 

parameters the client can input into the system, such as the calendar variables, number of shifts 

available and expected number of calls. 

Moreover, it is possible to simulate the predicted waiting times based on the selected SARIMAX 

model. These simulations provide the estimated average predicted waiting time per hour. They can be 

generated multiple times and the predictions can be averaged. In case they provide values lower than 

0, which occurs when the line is closed, these can be either not used or fixed to be 0.  

In order to incorporate new observations, the same SARIMAX model can be used. It can be re-

trained or a new model configuration can be obtained. The running time for model identification based 

on the lowest AIC takes a significant portion of time, thus it should only be done at night. We 

recommend the re-estimation of SARIMAX parameters each week or month depending on how much 

change occurs in the character of the time series. Re-training the model, which corresponds to 

parameter estimation can be performed more often, however the running time can also be 

approximated to take several minutes. However, both parameter re-identification and their re-

estimation would be necessary in the future to make sure that the model that describes the time series 

character is still fitting and relevant. This would be especially advisable if a clear trend starts to occur. 

However, these suggestions are yet to be explored and evaluated.  

Several precautions need to be taken when implementing the SARIMAX models. These models 

do not provide a prediction for each call, but rather an average prediction for all the calls that arrive in 

a specific hour. Moreover, the predictions are based on and are tested on only one source of data, thus 

there is limited generalizability of the best models to other GP practices. However, the provided 

method can be applied to each GP office individually when the data are provided to improve operations 

of the emergency line. More detailed suggestions for implementation are provided to the client in the 

documentation.  

Answering our second sub-research question, we found that the best ARIMA-family model, 

SARIMAX with calls, had higher accuracy than the current simulation model used for our case of a single 

GP office operating an emergency call line in the Netherlands for short- and long-range forecasts of the 

average patient waiting time in minutes.  

6.3 Comparison to LSTM 
We recommend LSTM for future implementation as the most accurate model. The linear time-series 

forecasting models selected for comparison with LSTM were the SARIMAX model without the inclusion 

of calls and with the inclusion of calls. LSTM with calls had better performance on all time horizons. 

Moreover, the LSTM model was trained on less data and was thus able to include the variable number 

of shifts. On the other hand, ARIMA-family models were not able to achieve such high prediction 

accuracy on a much larger training dataset. These results are in line with some previous studies that 

suggested that for some cases LSTM had better performance than ARIMA-family models (Siami-Namini 

& Tavakoli, 2018; Zhang et al., 2022). Siami-Namini and Tavakoli (2018) emphasized that LSTM has 

better capabilities to capture potential non-linear trends in time series, which might also be the case 

for our study. This would be supported by the findings from checking the model assumptions, in which 

none of the ARIMA-family models fully fulfilled the model assumptions. However, such high accuracy 
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as is the case for LSTM can oftentimes indicate that the model might overfit future data (Ko et al., 2021) 

while ARIMA-family models do so less often.  

Answering our main research question, for our case of a single GP office that operates an 

emergency call line in the Netherlands, LSTM had better performance of the average patient waiting 

time per hour than ARIMA-family models.  

6.4 Discussion of the Tentative Analysis  
Initially, we intended to test the inclusion of the number of shifts as an external predictor. The need to 

incorporate the number of the limited supply of available staff was also stressed by Kim and colleagues 

(2020) and Tuominen and colleagues (2022) and is represented by the supply side in the Queuing 

Theory. However, due to the lack of data containing this variable, we were able to perform only a 

tentative analysis of this variable’s effect. The effect of the number of shifts on the average patient 

waiting time prediction found in the tentative analysis might be scalable on larger datasets, however 

there was not enough data to establish this assumption. In fact, this model had poor prediction 

accuracy compared to the other ARIMA-family models. The poor accuracy results of the model trained 

on less data and its incapability to identify any seasonal components in the data indicate that a larger 

dataset is necessary for ARIMA-family models to learn a seasonal pattern on a higher level accurately. 

When the number of calls were included in the SARIMAX model, the inclusion of the number of shifts 

did not improve the prediction further. However, when the number of calls was not included, the 

number of shifts for each hour improved the prediction accuracy. Therefore, it is possible that the 

number of incoming calls could capture most of the trend otherwise captured by the number of shifts. 

On the other hand, when the number of calls would not be available in future scenarios, the number 

of shifts could help increase the forecast accuracy of the SARIMAX model. However, more data would 

be needed to draw valid conclusions.  

6.5 Limitations and Future Work 
Although diligent analysis was performed, there are a couple of limitations of this research. Firstly, the 

suggested models were validated using the external dataset spanning only one month into the future. 

It is necessary to test the model with future data also for different seasons and months to establish its 

performance across various conditions. Secondly, we modelled all patient waiting times together 

although there were two different streams of calls based on urgency. This choice was undertaken as 

the calls from these two streams might influence each other and are similar in principle. Yet, this 

assumption needs to be tested in the future. Moreover, we imputed the missing values of the waiting 

time for individual calls by using the mean calculated delay. Even though we handled outliers, which 

likely handled also imputed values that would be too different, future research should validate this. 

Two parallel analyses should be conducted to compare the results of a model trained on data using 

imputed values and a model discarding these values. 

Furthermore, although it was intended originally, we were not able to test the effect of the number 

of shifts on the predicted waiting time in a desired manner. The dataset containing the number of shifts 

consisted of only around a thousand observations, which was very few to find meaningful patterns. We 

provided suggestions for how the number of shifts could influence patient waiting time, yet these 

suggestions need to be tested further. Future research should investigate the inclusion of the predictor 

number of shifts on larger amount of data. 

Moreover, there is a practical limitation for future deployment regarding the running time of the 

best SARIMAX model. Even though three different libraries were tried in order to minimize the running 

time, the identification of the model parameters took several hours. Moreover, the training time of the 

proposed model on all of the data available was also significant, taking around 20 minutes. For this 
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reason, also an attempted rolling prediction had to be abandoned. Yet, we suggest that future research 

adopts rolling prediction with the potential of improving the forecast accuracy. Thus, the selection 

should be performed only once over a longer time period, when the character of the time series is 

expected to change. To test this assumption, future research should investigate the optimal time for 

parameter re-identification and re-estimation.  

We also suggest that future research investigates the effect of predicted values of incoming calls 

rather than true values with a sensitivity analysis. We suggest that different predictions obtained for 

the number of arriving calls should be performed to investigate the positive effect of the number of 

calls on the accuracy of the waiting time prediction. It is possible that if the predictions of the incoming 

number of calls per hour deviate from the actual values too much that the SARIMAX model without 

the number of incoming calls would have better performance.  

7. Conclusion 
In this thesis, we aimed to test and compare the prediction accuracy of ARIMA-family models with 

LSTM for patient waiting times at a single Dutch GP office and compare them to the current model of 

the client. This thesis focused on the case of a single GP office that operates an emergency call line in 

the Netherlands. Currently, the office predicts patient waiting times on their on-call line using a Discrete 

Simulation model that is based on variable distributions of past calls and staff schedule. Although 

plenty of studies focused on prediction of patient arrivals at the emergency departments in hospitals, 

there has been limited research that investigated patient waiting time at emergency departments. 

Moreover, to our knowledge, no previous research has aimed at predicting patient waiting times on an 

on-call emergency line in the Netherlands based on historical data. We adopted one of the most 

commonly-used time-series forecasting group of models: the ARIMA family. Using the Box-Jenkins 

approach and prediction validation, we iteratively performed tests of ARIMA, SARIMA and SARIMAX 

models and selected the most accurate model using the prediction errors metrics MAE and RMSE. Our 

models were trained and tested on an hourly frequency of data trying to predict the average waiting 

time in minutes for each hour on the horizons of one day, one week and one month in advance. 

 In our case, the SARIMAX model using the number of incoming calls per hour was selected as 

the best-performing ARIMA-family model with the lowest prediction errors for all time horizons.  When 

this model was validated on an external dataset and compared to the model that is in current use, it 

outperformed the old model on all time horizons except for one week in advance. Yet, we acknowledge 

that the number of incoming calls per hour is a predictor that needs to be forecasted as well. For this 

reason, we also tested the second best model – SARIMAX without calls on the external dataset. This 

model had a bit higher prediction errors, yet it performed better than the current model a month in 

advance, and comparably well one day in advance. We also attempted to test the effect of the number 

of shifts on the prediction of the waiting time. Yet, the dataset available for this variable was spanning 

a very short time and included only around one thousand observations which allowed us to perform 

only a tentative analysis that might serve as a basis for future research.  

Considering the analysis, we recommend the implementation of the LSTM model with calls 

over ARIMA-family models for patient waiting time prediction at this GP office. The LSTM model had 

higher prediction accuracy than the most accurate ARIMA-family model for all time horizons. Moreover, 

LSTM required less training data to achieve such high accuracy and was able to utilize the number of 

shifts available each hour, unlike the ARIMA-family models. Overall, LSTM had better performance than 

the ARIMA-family models for this particular case.  
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Appendix I: Authors contribution 
Data provider: Esculine (external company), Data preprocessing (training and test set, external 

dataset for comparison): Katarína Barteková, Feature Engineering: feature Number of shifts: Yaqin 

Tian, all other features (time index, average waiting time per hour, season, week day, holiday, hour, 

minute, open/not open, number of incoming calls): Katarína Barteková, LSTM model development: 

Yaqin Tian, ARIMA-family models: Katarína Barteková 

We refer to the work by Yaqin Tian throughout this thesis in the form (Tian, 2023) 

Appendix II: Method, Preprocessing and Data Description  

II.I Method 

II.I.I Schematic Illustration of the Method 

 

II.I.II Hourly Frequency Selection 
We selected the hourly frequency as the interval at which the time series is studied in this thesis. The 

two other possible time frequencies for our time series analysis were on a minute- and day-basis. We 

attempted also several predictions on both a minute- and day-basis. However, these turned out to be 

either too granular and time-intensive in the case of minute-frequencies or too broad to capture any 

significant trend in case of daily-frequencies. Moreover, the training time and convergence of the 

models posed a major problem for even the simplest minute-frequency models as the models were 

not able to converge. On the other hand, for daily frequency, the dataset consisted of only 453 days 

and the model would not have enough data to find meaningful patterns. We selected the hourly time 

interval as it gives us the most granularity while still being able to capture the trends in the data 

compared to the possible alternatives of predictions per minute or per day.  

II.I.III Packages used and their Scalability 
The python packages Pmdarima, Statsforecast and Statsmodel were used in the technical part of this 

thesis. Originally the Pmdarima package was employed for step 3.1.1.2 model identification and step 

3.1.1.3 parameter estimation to select the best model configuration. This package was originally 

chosen since it offers the capability to not only identify the most-fitting parameters of ARIMA-family 
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models using step-wise selection that minimizes AIC, but to also estimate the parameter coefficients 

and make forecasts using the best model selected. However, the library was not scalable on such large 

dataset on more complex models (SARIMA and SARIMAX models) and several memory errors occurred 

after hours of running. The documentation for this library is available at: http://alkaline-

ml.com/pmdarima/ 

Thus, the Statsforecast python library was used for step 3.1.1.2 model identification. We used 

the AutoARIMA function from the package to perform the parameter search and find the most fitting 

parameters and differencing order for the model based on AIC using the step-wise algorithm search. 

The stepwise algorithm finding the best model with the lowest AIC was essentially the same to 

Pmdarima library, yet it worked at a higher pace and used less memory. The library was used in its 

default setting using the AutoARIMA function in a manner corresponding to the type of model being 

fit (i.e. no exogenous predictors nor any seasonality were used for a plain ARIMA model). The 

documentation for this library is available at: 

https://nixtla.github.io/statsforecast/src/core/models.html 

The parameters were estimated using the Statsmodels package (see 3.1.1.3 parameter 

estimation). The best model configurations providing the closest fit (obtained from the AutoARIMA 

function of Statsforecast) were used for training a model using the SARIMAX function from Statsmodels 

package in Python. This package allowed also for an assessment of the fit of the model to the time 

series. The package applied the Maximum likelihood estimation to estimate the coefficients as closely 

as possible. The reason for selecting Stasmodels over Statsforecast for this step was the fact that 

Statsforecast library does not provide such a detailed description of the coefficient values of the model 

parameters as Statsmodels library. Statsmodels library also provided an easier way to determine the fit 

of the model using statistical tests and graphical tools to plot the residuals. Statsmodels setting was 

used in default with the hourly frequency and using the parameters determined by Statsforecast library. 

The documentation for this library is available at: https://www.statsmodels.org/stable/index.html 

II.II Raw Data Description and Preprocessing 

II.II.I Raw Data Description 
The raw data was provided in two datasets with the following features provided in a “str” form: 

• Shift dataset 
o Code of the shift  
o Start shift  
o End shift  
o Shift type  
o Function of the one taking the shift (coordinator or triagist)  

• Calls dataset 
o Line (emergency, normal)  
o Start call  
o End call  
o Answer time  
o Waiting time  
o Call time (length)  
o Urgency (highest 1-5 lowest) – determined by the triagist/operator  

The Shift dataset included information about shifts of both historic and future character. However, the 

details about future shifts could not be accurate since the shift schedules change on a regular basis. 

Yet, the data on shift schedules on historical dates are accurate since they depict a real, unchanged 

schedule of the shifts.  
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II.II.II Preprocessing 
We recoded the variables regarding time and date information into a datetime format. We set the 

datetime as an index. However, for ARIMA-family models to function properly we needed equal 

intervals between observations. In order to do this, we added the frequency of observations for each 

hour based on start of the call if the call started was whenever in that hour. For those hours, when no 

calls came, we added 0s as both the number of incoming calls and the average waiting time. The 

variable number of calls depicted the count of all calls that appeared in a specific hour and the variable 

mean waiting time depicted the mean waiting time for all calls that came in that hour in minutes. Yet, 

the equaling of time intervals also created missing variables on a daily level. These were imputed using 

the daily index since the daily variables applied to the whole day, not just specific hour. They were thus 

the same for all hours of the day. We also created the variable indicating the number of shifts by 

matching the number of shifts available for each call. 

Waiting time for each call was provided in the dataset. However, there was a parallel software 

system that recorded how long the patient had to wait on the line recorded in the variable waiting 

time. Nevertheless, the variable waiting time varies from the differenced time between when the 

patient started the call and when it was answered. The differenced time (mean 842 sec) was longer 

than the record waiting time (mean 754 sec), even though we would expect them to be the same. After 

consulting this observation with the provider of the data, they expressed that the waiting time recorded 

by the system stored in the waiting time variable was recorded after a tape was played at the beginning 

of each call, while the time of the start of the call is recorded before the tape is played. Thus, we 

accounted for this delay in imputation of waiting time. We also performed the Little’s MCAR test to 

make sure that we do not add any bias into the data.  

All of the categorical variables were recoded into a dummy form using one-hot-encoding. This 

meant that the variables: open, season, weekday (including holiday) were recoded into a dummy form. 

For weekday the coding was the following: Day-1 indicated a public holiday, Day0 indicated Monday, 

Day1 indicated Tuesday, Day2 indicated Wednesday, Day3 indicated Thursday, Day4 indicated Friday, 

Day5 indicated Saturday, Day6 indicated Sunday. For season the coding was the following: Season1 

indicated winter, Season2 indicated spring, Season3 indicated summer, Season4 indicated autumn.  

The numerical variables number of shifts, number of calls and mean waiting time per hour were 

normalized using z-score normalization for model training. Moreover, outliers in mean waiting time per 

hour were handled using the IQR method. 

The two originally provided dataframes were merged into one dataframe based on their index 

which was expressed in hours in a datetime form.  

The train-test splitting was thus done on the intervals 24 (for 24 hours, which is one day), 24*7 (for 

a week), and 24*30 (for a month).  

For the external validation dataset, all of the preprocessing steps were repeated with the exception 

of missing values imputation, outlier handling and dataset splitting.  

II.III Data description 
We provide a more detailed data description in this section. The data on shift schedules had 1 427 

observations in schedules with no missing observations. The variable number of shifts was created for 

each call by matching the time of the incoming call to which shifts are concurrent to the time when the 

call occurred and they are summed to obtain the overall number of shifts for each call arriving in a 

particular hour. The number of observations with the number of shifts was thus 10153, and they 

spanned from 1 March 2023 to 17 April 2023.  
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The second data set available consisted of call data. There were 9 2318 individual calls. The 

only variables with missing values were the waiting time variable (2786 missing values), which was also 

our outcome variable, the length of the call (52 missing values), and the urgency of the call determined 

by the triagist once the call was picked up (26998 missing values). Since neither the length of the call 

nor the urgency of the call were used as the predictors for our models, there was no need to impute 

or discard these observations. Overall, there were 314 calls equal to or shorter than 1 second and no 

calls longer than 2 hours (the longest call took 1,19 hours). We also removed the outliers using the IQR 

method, which resulted in additional 2001 observations removed.  

Overall, we merged the two datasets based on the hourly index. The final dataset contained 10 

873 observations on an hourly basis in the time period 20th January 2022 00:00:00 until (and not 

including) 18th April 2023 00:00:00 (last observation was 17th April 2023 23:00:00, this however 

captured the whole duration of the 23rd hour).  

As visible in Appendix II: Figure 1, the number of shifts available to serve a particular call is 

related to the waiting time of the call with a possible trend of few shifts being assigned to times with 

lower waiting times and more shifts being assigned to times with possibly higher waiting times. We see 

the highest waiting time for the middle values of shifts available. 

 

 

Appendix II, Figure 1: The relationship of the number of shifts and waiting time 

II.III.I Stationarity testing 
We tested the stationarity of our time series using the following statistical tests: ADF, KPSS, and the PP 

test. We also used the “ndiffs” function provided in the Pmdarima package with setting seasonality to 

24. Ndiffs indicated no need to difference the time series as it was showing no variation in its mean and 

variance over time. The differencing order determined by the ADF test was 0. The differencing order 

determined by the KPSS test was 1. The differencing order determined by the PP test was 0. Thus, the 

data might become difference-stationary after differencing by 1, but it is also possible that the models 

would have a better fit without applying differencing. The estimated seasonal differencing term, should 

be either 0 (based on nsdiffs) or 1 based on The Canova-Hansen test for seasonal differences.  

II.III.II Seasonality 
Seasonality is clearly visible in the Autocorrelation plot that was plotted with a high number of lags so 

that any trend would be visible (Appendix II: Figure 2). Moreover, seasonality on a daily basis is visible 

also in the seasonal subseries plot that indicates the average value of the average patient waiting time 

per hour for different hour of the day (Appendix II: Figure 3).  
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Appendix II, Figure 2: Autocorrelation plot for more lags 

 

 

Appendix II, Figure 3: Seasonal Subseries Plot of Waiting Time per Hour 

Appendix III: Additional Results to Models (Model Identification, 

Parameter estimation and Statistical Assumptions Checking) and Model 

Selection 

III.I ARIMA models 
We provide the detailed results of the non-seasonal ARIMA models using differencing 0 and 

differencing 1, as was suggested by the statistical tests conducted. The model with the lower AIC was 

used based on the second step of the Box-Jenkins method (see 3.1.1.2 Model Identification). It was the 

model with differencing 0. 

III.I.I Model with Differencing 0 
The estimated coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for each model 

parameter are available in Appendix III: Table 1. The results indicate how much each model parameter 

contributed to the model fit.  
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Appendix III: Table 1: Estimated Parameters 

The results from statistical assumptions checking (see part 3.1.1.4) are reported. As can be seen 

in the statistical tests results in Appendix III: Table 2 and graphs in Appendix III: Figure 1, the model 

does not have a perfect fit. According to the model summary in Appendix III: Table 2, the model meets 

the condition of independence in the residuals (no correlation) because the p-value of the Ljung-Box 

test (Prob(Q)) is greater than 0.05. This means that the residuals for this model are independent, as 

assumed in the model. Moreover, the two-sided heteroskedasticity test (Prob(H)) indicates a p-value 

smaller than 0.05. Thus, there is strong evidence of heteroskedasticity in the residuals of our model, 

meaning that they do not have constant variance, as we would assume. Furthermore, there is some 

skewness in the residuals, which suggests that the distribution of the errors is not fully symmetric as 

would be desired. Skewness is also visible in the histogram in Appendix III: Figure 1 and in the Q-Q plot 

in Appendix III: Figure 1, where the residuals do not align with the straight line. The AIC is 23040. 

 

 

Appendix III: Table 2: Statistical Assumptions Checking 

 

 

Appendix III: Figure 1: Statistical Assumptions Checking 
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III.I.II Model with Differencing 1 
The estimated coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for each model 

parameter are available in Appendix III: Table 3. The results indicate how much each model parameter 

contributed to the model fit.  

 

 

 

Appendix III: Table 3: Estimated Parameters 

The results from statistical assumptions checking (see part 3.1.1.4) are reported. As can be seen 

in the statistical tests results in Appendix III: Table 4 and graphs in Appendix III: Figure 2, the model 

does not have a perfect fit either. According to the model summary in Appendix III: Table 4, the model 

does not meet the condition of independence in the residuals because the p-value of the Ljung-Box 

test (Prob(Q)) is smaller than 0.05. This means that the residuals for this model are not independent, 

as assumed in the model. Moreover, the two-sided heteroskedasticity test (Prob(H)) indicates a p-value 

smaller than 0.05. Thus, there is strong evidence of heteroskedasticity in the residuals of our model, 

meaning that they do not have constant variance, as we would assume. Furthermore, there is some 

skewness in the model residuals, which suggests that the distribution of the errors is not fully 

symmetric as would be desired. The skewness is very similar to the model without any differencing 

(Appendix III: Figure 1). Skewness is also visible in the histogram in Appendix III: Figure 2and in the Q-

Q plot in Appendix III: Figure 2, where the residuals do not align with the straight line. The AIC is 23339, 

which is higher than the AIC from the model with no differencing showing worse fit to our time series. 

 

 

Appendix III: Table 4: Statistical Assumptions Checking 
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Appendix III: Figure 2: Statistical Assumptions Checking 

Overall, since the AIC is lower for the model without differencing and the model meets the 

condition of independence better than the model with differencing of 1, we selected the model with 

no differencing for our main analysis of ARIMA models.  

None of the model fits were perfect. Thus, we also tried the log-transformation of our time 

series data before fitting the models to account for the heteroskedasticity of the model residuals. 

However, the results were comparable without any major improvement. Another possible data 

transformation was Box-Cox transformation, which was however not possible with our data due to 

waiting time observations taking the value 0 during all the times the emergency line was closed. 

III.II SARIMA models different differencing versions comparison 
We set the differencing (d) to be maximally 1 in the following models. Thus, the differencing values 

tested when selecting the model with the lowest AIC were 0 and 1. In order to test whether seasonal 

differencing should be 0 or 1, we run one model with seasonal differencing (D) D = 0, and one with D = 

1. The model with the lower AIC was used based on the second step of the Box-Jenkins method (see 

3.1.1.2 Model Identification). It was the model with no seasonal differencing. 

III.II.I SARIMA with Regular differencing max 1, seasonal differencing 0  
The estimated coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for each model 

parameter are available in Appendix III: Table 5. The results indicate how much each model parameter 

contributed to the model fit.  

 

Appendix III: Table 5: Parameter Estimation 
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The results from statistical assumptions checking (see section 3.1.1.4) are reported. The best 

model with no seasonal differencing is the one where regular differencing is employed (D=0, but d was 

selected as 1 using stepwise algorithm). As can be seen in the statistical tests results in Appendix III: 

Table 6 and graphs in Appendix III: Figure 3, this model does not show a perfect fit. According to the 

model summary in Appendix III: Table 6, the model does not meet the condition of independence in 

the residuals because the p-value of the Ljung-Box test (Prob(Q)) is smaller than 0.05. Moreover, the 

two-sided heteroskedasticity test (Prob(H)) indicates a p-value smaller than 0.05. Thus, there is strong 

evidence of heteroskedasticity in the residuals of our model, meaning that they do not have constant 

variance, as we would assume. Furthermore, there is some skewness in the residuals, which suggests 

that the distribution of the errors is not fully symmetric as would be assumed. However, it should be 

noted that the skewness is much lower than in the previous (non-seasonal ARIMA) models. The 

skewness of this model is also visible in the histogram in Appendix III: Figure 3 and in the Q-Q plot in 

Appendix III: Figure 3, where the residuals do not align with the straight line. The AIC is 23582.  

 

Appendix III: Table 6: Statistical Assumptions Checking 

 

Appendix III: Figure 3: Statistical Assumptions Checking 

III.II.II SARIMA with Regular differencing max 1, seasonal differencing 1  
The estimated coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for each model 

parameter are available in Appendix III: Table 7. The results indicate how much each model parameter 

contributed to the model fit.  
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Appendix III: Table 7: Estimated Parameters 

The results from statistical assumptions checking (see section 3.1.1.4) are reported. The best 

model with seasonal differencing 1 is the one where no regular differencing is employed (D=1, d was 

selected as 0 using stepwise algorithm). As can be seen in the statistical tests results in Appendix III: 

Table 8 and graphs in Appendix III: Figure 4, this model does not have a perfect fit either. According to 

the model summary in Appendix III: Table 8, the model meets the condition of independence in the 

residuals (no correlation) because the p-value of the Ljung-Box test (Prob(Q)) is higher than 0.05, which 

is an improvement compared to the previous model. This means that the residuals for this model are 

independent, as assumed in the model. However, similarly to the previous model, the two-sided 

heteroskedasticity test (Prob(H)) indicates a p-value smaller than 0.05, indicating a non-constant 

variance of the residuals. Furthermore, there is some skewness in the residuals, which suggests that 

the distribution of the errors is not fully symmetric as would be desired. However, the skewness is lower 

than in the previous seasonal model. The skewness of this model is also visible in the histogram in 

Appendix III: Figure 4 and in the Q-Q plot in Appendix III: Figure 4, where the residuals do not align with 

the straight line. The AIC is 24551. Although this model has smaller skewness of the residuals and meets 

the condition of independence better, the AIC indicates a worse fit to the time series than in the 

previous seasonal model. Therefore, we select the seasonal model with no seasonal differencing for 

our main analysis of SARIMA models. 

 

Appendix III: Table 8: Statistical Assumptions Checking 

 

Appendix III: Figure 4: Statistical Assumptions Checking 
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III.III SARIMAX models comparison and coefficients 
In order to determine the most fitting SARIMAX model, we test the SARIMA model with added 

exogenous predictors. From previous steps, we adopt no seasonal differencing, yet regular differencing 

is set to be maximally 1, and to be determined by the stepwise algorithmic search for the model with 

lowest AIC.   

III.III.I SARIMAX without calls 
The coefficients of the SARIMAX model without calls were obtained in the third step (see 3.1.1.3 

Parameter estimation).  From the coefficient values in Appendix III: Table 9, we can assess the role of 

individual predictors. The variable open that indicates if the emergency line has the highest coefficient 

value and is a significant predictor. This suggests that this variable is the most important predictor for 

the length of waiting time. We also find that the variables for seasons and the variable indicating a 

holiday day (Day -1) are not significant. This indicates that they do not contribute to the prediction of 

the waiting time much. Yet, this is likely due to the short span of data of over just one year. Therefore, 

the model might not have been able to catch any seasonal patterns on a yearly level. It is possible, if 

the data spanned a longer time period, that these predictors would be significant as well.  

 

 

Appendix III: Table 9: Estimated Parameters 

According to statistical assumptions checking (see section 3.1.1.4), the model with the lowest 

AIC did not fully fulfill the statistical assumptions as its residuals were not independent with normal 

distribution. As can be seen in the statistical tests results in Appendix III: Table 10 and graphs in 

Appendix III: Figure 5 this model also does not show a perfect fit. According to the model summary 

Appendix III: Table 10, the model meets the condition of independence in the residuals because the p-

value of the Ljung-Box test (Prob(Q)) is higher than 0.05. However, similarly to the previous models, 

the two-sided heteroskedasticity test (Prob(H)) indicates a p-value smaller than 0.05, indicating a non-

constant variance of the residuals. Furthermore, there is some skewness in the residuals, which 

suggests that the distribution of the errors is not fully symmetric as would be desired. The skewness of 

this model is also visible in the histogram in Appendix III: Figure 5and in the Q-Q plot in Appendix III: 

Figure 5, where the residuals do not align with the straight line.  

However, as stated in the Results, this model has a much better performance on validation data 

than the previous models. Thus, the non-fulfillment of some assumptions for ARIMA-family models is 

secondary as in this applied problem, the good performance on a validation dataset is more important.  
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Appendix III: Table 10: Statistical Assumptions Checking 

 

Appendix III: Figure 5: Statistical Assumptions Checking 

III.III.II SARIMAX with calls 
The coefficients of the SARIMAX model without calls were obtained in the third step (see 3.1.1.3 

Parameter estimation). From the coefficient values in Appendix III: Table 11, we can assess the role of 

individual predictors. There is a crucial difference in significance of the predictors compared to the 

SARIMAX model without calls. When the number of incoming calls per hour is used as a predictor, all 

the other predictors become not significant except for the variable open. This is likely due to the 

variable number of calls capturing the trends that are otherwise indicated by the calendar variables.  

Thus, if the number of calls per hour is known or predicted with sufficient precision, the need to use 

calendar variables is expected to be low. 
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Appendix III: Table 11: Parameter estimation 

According to statistical assumptions checking (see section 3.1.1.4), the model using exogenous 

predictors including the number of incoming calls per hour to determine the average waiting time per 

hour does not show a perfect fit either. As can be seen in the statistical tests results in Appendix III: 

Table 12 and graphs in Appendix III: Figure 6, this model also does not have a perfect fit. According to 

the model summary in Appendix III: Table 12, the model meets the condition of independence in the 

residuals (no correlation) as the p-value of the Ljung-Box test (Prob(Q)) is higher than 0.05. This means 

that the residuals for this model are independent and meet the model’s assumption. However, similarly 

to the previous models, the two-sided heteroskedasticity test (Prob(H)) indicates a p-value smaller than 

0.05, showing a non-constant variance of the residuals. Furthermore, there is some skewness in the 

residuals, which suggests that the distribution of the errors is not fully symmetric. The skewness of this 

model is also visible in the histogram in Appendix III: Figure 6 and in the Q-Q plot in Appendix III: Figure 

6, where the residuals do not align with the straight line.  

However, as stated in the Results, this model has the best performance on validation data than 

all of the previous models. Thus, the non-fulfillment of some assumptions for ARIMA-family models is 

secondary as in this applied problem, the good performance on a validation dataset is more important. 

We also select this model as the best performing model out of all the models tested.  

 

Appendix III: Table 12: Statistical Assumptions Checking 
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Appendix III: Figure 6: Statistical Assumptions Checking 

III.IV Tentative Analysis on Filtered Data – Number of shifts  
This analysis was performed on filtered data spanning from 1 March 2023 until 17 April 2023. The 

dataset used is equivalent to the training dataset used for all the other models with the added variable 

number of shifts for each hour. The following SARIMAX models include the following variables as 

predictors in a dummy form: open (indicating if the call line was open), day of the week (including the 

information on holiday) and season. The inclusion of the predictors number of calls and number of 

shifts is specified per model. 

III.IV.I SARIMAX without calls and number of shifts 
The SARIMAX model that did not include the number of shifts and the number of calls as predictors 

had the following results reported in this section. According to the suggested differencing order from 

the first step of the Box-Jenkins method (see 3.1.1.1 Data preparation and Investigation), SARIMAX was 

modelled with automatically-selected normal differencing in the range 0-1, and two options of seasonal 

differencing: 0 and 1. The model identified based on the lowest AIC was SARIMAX(0,1,0)(0,0,0)24 with 

AIC of 1173.74 (see 3.1.1.2 Model Identification). The estimated coefficients obtained in the third step 

(see 3.1.1.3 Parameter estimation) for each model parameter are reported in Appendix III: Table 13. 

The coefficients for the variables indicating season and Day-1 (corresponding to public holiday) were 

estimated as 0. This is due to the data spanning a very short period of time, in which the data only for 

one season (spring) were available and likely there were very few public holidays, deeming these 

variables were not used to fit the model. Similarly, the other variables that indicated weekdays were 

all not significant. This is also likely due to the model having too few observations to be able to learn a 

pattern based on these variables.  
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Appendix III: Table 13: Parameter Estimation 

According to statistical assumptions checking (see part 3.1.1.4), the model with the lowest AIC 

did not fully fulfill the statistical assumptions as its residuals were not independent with normal 

distribution. As can be seen in the statistical tests results in Appendix III: Table 14 and graphs in 

Appendix III: Figure 7, this model does not indicate a perfect fit. According to the model summary in 

Appendix III: Table 14, the model does not meet the condition of independence in the residuals (no 

correlation) because the p-value of the Ljung-Box test (Prob(Q)) is smaller than 0.05. Moreover, the 

two-sided heteroskedasticity test (Prob(H)) indicates heteroskedasticity in the residuals of our model, 

meaning that they do not have constant variance, as we would assume. The skewness of the residuals 

of this model is mostly visible in the Q-Q plot in Appendix III: Figure 7, where the residuals do not align 

with the straight line.  

 

 

Appendix III: Table 14: Statistical Assumptions Checking 
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Appendix III: Figure 7: Statistical Assumptions Checking 

The results from forecasting and model validation (3.1.1.5) are available in Appendix III: Table 

15. This model had the lowest MAE and RMSE on the long-range predictions and the highest error rates 

one day into the future.  

 MAE RMSE 

1 day into 
future 

6.79699 7.39479 

1 week into 
future 

6.21272 7.35057 

1 month into 
future 

5.84263 6.76676 

Appendix III: Table 15: Forecast Accuracy of the SARIMAX model without callas and without the number of shifts 

III.IV.II SARIMAX without calls, with number of shifts 
The SARIMAX model that did not include the number of calls, but it included the number of shifts 

available as predictors had the following results reported in this section. According to the suggested 

differencing order from the first step of the Box-Jenkins method (see 3.1.1.1 Data preparation and 

Investigation), SARIMAX was modelled with automatically-selected normal differencing in the range 0-

1, and two options of seasonal differencing: 0 and 1. The model identified based on the lowest AIC was 

SARIMAX(0,1,0)(0,0,0)24 with AIC of 1175.57 (see 3.1.1.2 Model Identification). The estimated 

coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for each model parameter 

are reported in Appendix III: Table 16. The coefficients for the variables indicating season and Day-1 

(corresponding to public holiday) were not estimated (except for season 2, which corresponds to 

spring). This is due to the data spanning a very short period of time, in which the data only for one 

season (spring) were available and likely there were very few public holidays, deeming these variables 

were not used to fit the model. Similarly, the other variables that indicated weekdays were all not 



52 
 

significant. Moreover, also the variable number of shifts was not significant for estimating the model. 

This is likely due to the model having too few observations to be able to learn a pattern based on these 

variables.  

 

Appendix III: Table 16: Parameter Estimation 

According to statistical assumptions checking (see part 3.1.1.4), the model with the lowest AIC 

did not fully fulfill the statistical assumptions as its residuals were not independent with normal 

distribution. As can be seen in the statistical tests results in Appendix III: Table 17 and graphs in 

Appendix III: Figure 8, this model does not have a perfect fit. According to the model summary in 

Appendix III: Table 17, the model does not meet the condition of independence in the residuals (no 

correlation) since the p-value of the Ljung-Box test (Prob(Q)) is smaller than 0.05. Furthermore, the 

two-sided heteroskedasticity test (Prob(H)) indicates a p-value smaller than 0.05. Thus, there is strong 

evidence of heteroskedasticity in the residuals of our model, meaning that they do not have constant 

variance, as we would assume. The skewness of the residuals of this model is mostly visible in the Q-Q 

plot in Appendix III: Figure 8, where the residuals do not align with the straight line.  

 

Appendix III: Table 17: Statistical Assumptions Checking 
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Appendix III: Figure 8: Statistical Assumptions Checking 

The results from forecasting and model validation (see 3.1.1.5) are available in Appendix III: 

Table 18. This model had the lowest MAE and RMSE on the long-range predictions. The highest error 

rate of this model in terms of MAE was one day into the future while in terms of RMSE it was one week 

into the future.  However, the RMSE values were quite similar for the short- and mid-range predictions. 

 MAE RMSE 

1 day into 
future 

6.54315 7.11199 

1 week into 
future 

6.06342 7.20180 

1 month into 
future 

5.73979 6.64711 

Appendix III: Table 18: Forecast Accuracy for the SARIMAX model without calls, with the number of shifts 

III.IV.III SARIMAX with calls without number of shifts 
The SARIMAX model that did not include the number of shifts, but it did include the number of calls as 

predictors had the following results reported in this section. According to the suggested differencing 

order from the first step of the Box-Jenkins method (see 3.1.1.1 Data preparation and Investigation), 

SARIMAX was modelled with automatically-selected normal differencing in the range 0-1, and two 

options of seasonal differencing: 0 and 1. The model identified based on the lowest AIC was 

SARIMAX(0,1,0)(0,0,0)24 with AIC of 1165.42 (see 3.1.1.2 Model Identification). The estimated 

coefficients obtained in the third step (3.1.1.3 Parameter estimation) for each model parameter are 

reported in Appendix III: Table 19. The coefficients for the variables indicating season were not 

estimated (except for season 2, which corresponds to spring). This is due to the data spanning a very 

short period of time, in which the data only for one season (spring) were available and likely there were 

very few public holidays, deeming these variables were not used to fit the model. Even though Season2 

corresponding to spring and Day-1 corresponding to public holiday were estimated and were significant 

based on their p-value, their coefficients were estimated to be 0. The other variables that indicated 

weekdays were all not significant. However, the variable number of calls was significant for estimating 

the model and had a relatively large coefficient. This indicates that the number of calls and the variable 

open were significant in fitting the model and also for future forecasting.   
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Appendix III: Table 19: Parameter Estimation 

According to statistical assumptions checking (see part 3.1.1.4), the model with the lowest AIC 

did not fully fulfill the statistical assumptions as its residuals were not independent with normal 

distribution. As can be seen in the statistical tests results in Appendix III: Table 20 and graphs in 

Appendix III: Figure 9, this model does not have a perfect fit. According to the model summary in 

Appendix III: Table 20, the model does not meet the condition of independence in the residuals because 

the p-value of the Ljung-Box test (Prob(Q)) is smaller than 0.05. This means that the residuals for this 

model are not independent, as assumed in the model. Moreover, the two-sided heteroskedasticity test 

(Prob(H)) indicates a heteroskedasticity in the residuals of our model, meaning that they do not have 

constant variance, as we would assume. The skewness of the residuals of this model is mostly visible 

in the Q-Q plot and the histogram in Appendix III: Figure 9, where the residuals do not align with the 

straight line.  

 

 

Appendix III: Table 20: Statistical Assumptions Checking 
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Appendix III: Figure 9: Statistical Assumptions Checking 

The results from forecasting and model validation (see part 3.1.1.5) are available in Appendix 

III: Table 21. This model had the lowest MAE on the long-range predictions. However, the RMSE was 

the lowest for short-range predictions. It is important to note that all the MAE values are very similar. 

This indicates that the model had a very stable performance.  

 MAE RMSE 

1 day into future 5.0587 5.49077 

1 week into 
future 

5.0978 6.41966 

1 month into 
future 

4.97602 5.97360 

Appendix III: Table 21: Forecast Accuracy of the SARIMAX model with calls and without the number of shifts 

III.IV.IV SARIMAX with calls and with number of shifts 
The SARIMAX model that included both the number of shifts and the number of calls as predictors had 

the following results reported in this section. According to the suggested differencing order from the 

first step of the Box-Jenkins method (see 3.1.1.1 Data preparation and Investigation), SARIMAX was 

modelled with automatically-selected normal differencing in the range 0-1, and two options of seasonal 

differencing: 0 and 1. The model identified based on the lowest AIC was SARIMAX(0,1,0)(0,0,0)24 with 

AIC of 1167.10 (see 3.1.1.2 Model Identification).  

The estimated coefficients obtained in the third step (see 3.1.1.3 Parameter estimation) for 

each model parameter are reported in Appendix III: Table 22. The coefficients for the variables 

indicating season and Day-1 (indicating public holiday) were not estimated except for season 2, which 

corresponds to spring. However, the coefficient for this variable was very small indicating that it 

contributed very little to the model fit. This is due to the data spanning a very short period of time, in 

which the data only for one season (spring) were available and likely there were very few public 

holidays. This likely deemed these variables not useful to fit the model. The other variables that 

indicated weekdays were all not significant. Similarly, the variable number of shifts was not significant 
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either based on its p-value. However, the variable number of calls was significant for estimating the 

model and had a relatively large coefficient. This indicates that the number of calls and the variable 

open were significant in fitting the model and also for future forecasting.   

 

Appendix III: Table 22: Parameter Estimation 

According to statistical assumptions checking (see 3.1.1.4), the model with the lowest AIC did 

not fully fulfill the statistical assumptions as its residuals were not independent with normal 

distribution. As can be seen in the statistical tests results in Appendix III: Table 23 and graphs in 

Appendix III: Figure 10, this model does not have a perfect fit. According to the model summary in 

Appendix III: Table 23, the model does not meet the condition of independence in the residuals because 

the p-value of the Ljung-Box test (Prob(Q)) is smaller than 0.05. This means that the residuals for this 

model are not independent, as assumed in the model. Moreover, the two-sided heteroskedasticity test 

(Prob(H)) indicates a p-value smaller than 0.05. Thus, there is strong evidence of heteroskedasticity in 

the residuals of our model, meaning that they do not have constant variance, as we would assume. The 

skewness of the residuals of this model is mostly visible in the Q-Q plot in Appendix III: Figure 10, where 

the residuals do not align with the straight line.  

 

 

Appendix III: Table 23: Statistical Assumptions Checking 
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Appendix III: Figure 10: Statistical Assumptions Checking 

The results of the SARIMAX model predictions are reported in Appendix III: Table 24. These 

results were obtained performing the fifth step of the Box-Jenkins method (see section 3.1.1.5). The 

forecasts of this model are quite stable over time. It has the lowest MAE on the long-range prediction, 

while RMSE is the lowest for short-range prediction.  

 MAE RMSE 

1 day into 
future 

5.32085 5.78049 

1 week into 
future 

5.24611 6.55977 

1 month into 
future 

5.06494 6.07399 

Appendix III: Table 24: Forecast Accuracy of the SARIMAX model with calls and with the number of shifts 
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III.V Model Accuracy Comparison  

 

Appendix III: Figure 11: Forecast Accuracy Comparison Among the ARIMA-family Models (tested on the same test dataset) 
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