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Abstract

In the current digital society, network sizes continue to expand to meet
the demand for digitalisation. This expansion is not without security risks.
Network Anomaly detection (NAD) is concerned with the detection of ma-
licious traffic in a network. Within the field of NAD, applications that use
machine learning to protect the network are on the rise. This rise is accom-
panied by a request for explanations about the model’s decisions. Currently,
there are studies that apply Explainable Artificial Intelligence in NAD, but
they often lack proper evaluations of proposed explanations. This thesis con-
tributes to the gap by investigating objective properties for explanations in
the field of NAD.

Three models are trained on the UNSW-NB15 dataset: Random Forests
(RF), Explainable Boosting Machine (EBM) and Autoencoder (AE). Differ-
ent versions of the dataset are created, and hyperparameter tuning is per-
formed to find the optimal version of a binary and multiclass classifier. Sev-
eral models are selected and combined with explanations. LIME and SHAP
are chosen as model-agnostic explanation methods, while the EBM is inher-
ently explainable. Predictions of the AE are explained by a personalised
method, as there is no universal way of explaining the model yet. The ex-
planations are evaluated on two objective properties, namely sensitivity and
fidelity.

The results show that the RF outperforms the other two models in binary
classification, given model performances only. The binary EBM shows the
highest fidelity metrics. For the multiclass classification problem, the RFs
trained on a balanced dataset show the best performance, although the values
of the objective properties are not optimal.

The final combination of a model with an explanation depends on the
importance placed on model performance and each objective explanation
property. Aspects such as the format of the dataset or the model hyper-
parameters influence the model performance and can affect the explanation
quality. Explanation quality appears to depend on the dataset, confirming
earlier research.

Future research should incorporate different models, explanations and
objective properties to extend this research and generate more insights in
the objective properties for explanations in the field of NAD.
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Chapter 1

Introduction

In September 2022 two large cyberattacks made headlines: the attack on
Uber and the attack on Rockstar Games. Both attacks were carried out by
the hacking group Lapsus$. In the case of Uber, the company informed the
public that no serious harm was caused by the intrusion [15]. With the hack
of Rockstar Games, early development-stage footage of the new game Grand
Theft Auto 6 was leaked. Although the leakage was unfortunate, Rockstar
Games reported that the hack will not impact the development of the game
[54].

These two examples demonstrate attacks on larger private businesses with
high stakes, but other common targets include governments, universities and
critical infrastructures. Russia’s invasion in Ukraine reveals the influence of
cyberattacks as a support of warfare [55]. In recent years, there has been a
steep increase in the number of cyberattacks as well as the impact per attack.
Especially, the occurrence of ransomware and threats against availability,
such as Denial of Service (DoS), have increased. The amount of malware
attacks also continues to rise [17, 55].

This increase in attacks is a response to digitalisation and corresponding
network expansion [55]. The COVID19 pandemic requested a rapid digital
transition of the society. Facilitation of remote work and education resulted
in additional endpoints in networks. Expanded networks allow for a greater
surface attack, as attackers have more vulnerabilities to exploit [55]. Another
reason for network expansion is the Internet of Thing (IoT). With IoT, mul-
tiple technologies, such as sensors or cloud-based applications, are connected
within a network. This leads to a larger network size [16].

Networks are part of cyberspace. Cyberspace denotes the collection of
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networks, databases and other sources of information that interact with each
other [78]. Cyber security is the practice of making the cyberspace more
secure. It refers to all activities and measures that protect cyberspace and
its communications, both technical and non-technical [11].

As mentioned earlier, a larger network size leads to a larger surface at-
tack. A larger surface attack requires more protection and security. A subset
of cyber security is Network Anomaly Detection (NAD). NAD is the detec-
tion of malicious traffic by observing patterns that are abnormal [25]. The
prevention of attacks and detection of anomalies is the job of security ana-
lysts and security engineers. Analysts have to examine data and events from
network traffic to spot potential attacks, while engineers design security mea-
sures to decrease the risk of successful attacks. Detection is still a partially
manual task, having defense systems designed that combine human-crafted
rules with automated detection models. Currently, studies are investigating
automatic detection of anomalies [12, 25].

Automated detection models can incorporate Artificial Intelligence (AI).
In general, AI makes use of analytical models to generate predictions and
make detections [39]. AI models are often based on machine learning. Ma-
chine learning models are able to generate predictions based on prior experi-
ence or previously seen patterns, using labeled or unlabeled data. A subset
of machine learning is deep learning. Deep learning models are capable of
handling problems of increased complexity and have shown to exceed human
performance on several tasks [76]. They have shown to outperform shallow
machine learning models on most tasks that require high-dimensional data
[39, 43]. Deep learning models often require more training data than other
machine learning models.

Nowadays, detection models often include a form of AI, machine learning
or deep learning. They allow for automated detection of anomalies. The use
of these techniques removes the burden on humans to explicitly formulate
knowledge or perform manual classification [39]. Model performance is cru-
cial for detection systems, as missing intruders can have harmful outcomes.
In addition to model performance, users of AI models are challenged with
model interpretability.
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1.1 Problem Statement

Interpretability or explainability is the ability of a model to be understood by
a human [20]. In this thesis, the term ’explainability’ is used. Explainability
can influence the decision-making process of users or impact the trust they
have in a model’s prediction. It allows users to understand the underlying
reasoning behind a decision or find biases incorporated by the model [67,
70]. A problem with complex models is that they are often not inherently
explainable. This means that a human is not able to understand the model
without additional methods. Lack of explainability can influence the inter-
action between the human and the model, such as the trust users have in a
mode. Users must be able to follow the reasoning of the model to gain trust
[7]. Lack of trust influences the adoption of the model’s decisions [39]. Aside
from trust, if users do not understand a model, they have trouble creating
an accurate mental model of the system. This makes it difficult to improve
a system [45].

Explainable AI (XAI) is the field within AI that tries to facilitate the
understanding of models and their decisions for humans [72]. XAI can provide
explanations or insights about the decisions made by the model.

Explanations are ways to explain the decisions made by the model [44,
57]. The quality of explanations can be measured subjectively and objec-
tively. Subjective measures include a user to evaluate the explanation, while
objective explanations evaluate the explanation without a user [82]. Objec-
tive measures investigate the quality of an explanation [70], by examining
certain properties of the explanation method. Measuring a property that
reflects quality allows for quality assessment of that explanation prior to pre-
senting it to the user. Examples of such properties are accuracy, fidelity,
consistency and sensitivity [70]. Both subjective and objective measures of
explanations are important in XAI, as they share the final goal of providing
a good explanation.

As the use of deep learning models in any field has increased in recent
years, it has also increased in the field of NAD [26]. In general, machine
learning and deep learning models are still fallible. In the field of NAD,
it is important to have accurate models to decrease the number of false
negatives. Missclassification of intrusions can have harmful results. With
the goal of helping to improve the detection and understanding of the models
and attacks, explainability is a desiderata for models in the field of NAD.
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Although there have been applications of XAI in the field of cybersecu-
rity, the contribution of XAI in the field of NAD is not satisfied. Currently,
explanations for NAD are often not evaluated on objective properties. Al-
though several properties can contribute to improving explanation quality,
this thesis focuses on fidelity and sensitivity. Fidelity reflects the truthfulness
of the explanation [82]. An explanation is fidel if it accurately demonstrates
the decision process of the underlying model. For example, if an explana-
tion notes certain features as important for a prediction, perturbing them
would lead to a different prediction. In the field of NAD, explanations have
to reflect the truth about decisions; otherwise they are of no use to analysts
and engineers [30]. Although fidelity is an important property, it is often not
included in the evaluation of explanations for NAD.

Sensitivity, often called robustness, is a property of an explanation that
reflects the ability to handle small perturbations without large consequences
[82]. If small, non-significant perturbations lead to large differences in the
explanation, the explanation does not show stable behaviour. The lack of
stable behaviour makes it difficult to know which features are truly important
for the prediction. Previous work of XAI for NAD includes robustness, but
mostly as a tool to improve explanations with the aim of improving the model
[5, 29].

Given the current state of research on objective properties to examine
explanations in the field of NAD, there is still a gap to fill. Mentioned
before, the objective properties of explanations can contribute to the quality
of an explanation, before presenting it to the target user. Past studies on
NAD have shown that there are several ways to include XAI, but the next
step is evaluating their quality. The current research contributes to this
field by focusing on fidelity and sensitivity in evaluating explanations, to
ensure explanations adhere to these properties before being presented to
target users.

1.2 Research Question

The goal of this thesis is to evaluate the quality of explanations through ob-
jective properties in the field of NAD. In earlier studies, explanation methods
such as LIME and SHAP are applied to models that classify anomalies, but
their explanations lack objective measures [2, 12, 73].

Following the goal of this study, the research question is formulated:
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How can network anomaly detection be improved by including objective
properties of explanations as quality indicators?.

To answer the research question, different explanation methods are eval-
uated. Explanations need a trained model to explain predictions. Part of
this research is devoted to training models for NAD. Although model perfor-
mance is not the main focus of this study, a model that performs accurately
is preferred. To examine differences between models, three different models
will be compared: a Random Forest (RF), an Explainable Boosting Machine
(EBM) and an Autoencoder (AE).

After model evaluation, explanations will be evaluated using the two ob-
jective properties described earlier, fidelity and sensitivity.

In the final stage, model performances and explanation evaluations will be
combined. Aside from objective metrics, there are other concerns to consider
for a final decision, such as the choices of the data set and the computational
complexity of the models and explanations.

This approach leads to the following three subquestions:

1. R1: Which model shows the best performance with respect to the model
metrics?

2. R2: Which explanation shows the best performance regarding objective
explanation metrics fidelity and sensitivity?

3. R3: Which combination of model and explanation creates the best
compromise between explainability and model performance?
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Chapter 2

Background and Related Work

This chapter provides background knowledge on Explainable AI, Network
Anomaly detection, Machine Learning and a combination of the three. The
first section covers how the literature study was conducted.

2.1 Literature search

The search for papers was conducted through Google Scholar and IEEE
XPlore. Review or survey papers were used to find specific topics through
the papers cited in reviews and surveys.

Regarding the quality of the papers, arXiv preprints were excluded, ex-
cept the paper of Doshi-Velez and Kim [20] and InterpretML [65]. Another
paper used is under review, but accepted by the NeurIPS 2022 Benchmarks
and Datasets chair on September 16, 2022 [27]. If the journal in which the
paper was published was unknown, it was checked that the papers were peer-
reviewed before acceptance.

During the search, there was no selection criteria for the year of publica-
tion, but recent articles were preferred.

The news articles from the introduction had to come from a known objec-
tive newspaper. They do not state research facts, but rather events around
the world. The facts and numbers stated about cybersecurity risks in the
introduction come from reports that were written by larger tech companies
and objective institutions.

Below, an overview of the terms used in the search process is given. Terms
were combined to create queries for different topics or create similar queries
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with different words.

• ’explainability’, ’explainable AI’, ’XAI’, ’interpretability’

• ’properties’, ’desiderata’, ’characteristics’, ’factors’, ’requirements’, ’ob-
jectives’

• ’survey’, ’review’

• ’network anomaly detection’, ’anomaly detection’, ’NAD’, ’network in-
trusion detection’, ’NID’

• ’cybersecurity’, ’cyberattacks’, ’cyberspace’

• ’objective’, ’subjective’, ’human-centered’, ’human evaluation’, ’application-
grounded’, ’human-grounded’, ’functional-grounded’

• ’machine learning’, ’deep learning’, ’neural networks’

• ’comprehensibility’, ’robustness’, ’stability’, ’fidelity’, ’sensitivity’, ’truth-
fulness’

• ’Autoencoder’, ’Random forest’, ’CNN’, ’RNN’, ’LSTM’, ’EBM’, ’GAN’

2.2 Explainable AI

In recent years, machine learning and deep learning have been applied in
many domains. These methods have shown to be able to handle complex
problems. Despite their performance, it is difficult for humans to understand
how these models work exactly and they are often considered black boxes.
Black-box models are uninterpretable by humans [28, 44, 70], which can be
problematic in situations where understanding decisions is important. Ex-
amples of black boxes are Random Forest (RF) and Support Vector Machines
(SVM), as well as different neural networks, such as Convolutional Neural
Networks (CNN) and Auto-Encoders (AE). They are opposed to white-boxes,
which are inherently interpretable models [44, 60]. Logistic Regression (LR)
and Decision Trees (DTs) are white boxes. The field concerned with the ex-
plainability of models is called explainable AI (XAI). Explainability means
the model’s decision can be explained in a human-understandable way [20].
Explainers are algorithms or methods that provide insights about the model
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and these insights can be called explanations [14, 44]. As there are different
models, the dimensions of the explanation can differ.

Model agnostic vs. Model specific Explanation methods can be model-
agnostic or model-specific [28, 48]. Model-agnostic explanations do not de-
pend on the inner structure of the model, which means that they are ap-
plicable on different kinds of models. An example is LIME, short for Local
Interpretable Model-agnostic Explanations [69]. LIME generates feature im-
portances by understanding how the output is affected by perturbations of
the input. Opposed to model-agnostic methods are the model-specific meth-
ods. Model-specific explanation methods are usable on one type of model
because they access the interior of the model. An example is DeepLIFT
(Deep Learning Important FeaTures) [75], a method that compares the ac-
tivation of each neuron in a deep neural network to a reference score. It is a
specific explanation method for neural networks. The method redefines how
gradients are calculated, which means that implementation requires insight
into the architecture of a convolutional neural network.

Ante-hoc vs. Post-hoc Ante-hoc explanations are techniques that incor-
porate explainability into the structure of the model. The model is directly
explainable after training. These models can also be called self-interpretable
[67]. Examples of self-interpretable models are DTs and regression models.
Ante-hoc methods are opposed to post-hoc methods. Post-hoc explainabil-
ity techniques aim to interpret models already trained, without having any
knowledge of the inner workings of the model[48, 67]. Post-hoc methods
include counterfactuals. A counterfactual describes the smallest change nec-
essary in a feature value of the current input to change the output prediction
[48, 60]. Another example is SHAP (SHapely Additive Explanations) [52].
This explanation method shows the contribution of each feature to the pre-
diction made by a model.

Local vs. Global Post-hoc explanations can be local or global [28, 48]. A
local explanation helps the user understand how a model makes a decision for
a single data point. LIME, SHAP and counterfactuals are examples of local
explanations. On the other hand, a global explanation supports the user
in understanding how the model makes decisions in general. Accumulated
Local Effects (ALE) is a global explanation method that shows the average
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effect of features on the prediction of a model [6].

Scope and target Another important consideration for the choice of the
explanation method is the scope of the explanation and the purpose of the
explanation. The scope can be considered as the field of application of the
model. It can be general, explaining the model regardless of the field, or
specific, such as explaining a model created for medical applications. The
target is the intended user of the model. The level of expertise of the target
user influences the preferences and format of the explanations [28]. Using
a medical example, explainability can request the expertise of the target
user within a specific scope. Explanations can contribute to establishing
the importance of features for medical detections and classifications. False
predictions must be checked manually due to the high-risk consequences of
false negatives, highlighting the need for medical expertise of the target user
[4].

Summary Although there are different dimensions of explanations, this
thesis mainly focuses on model-agnostic post-hoc local explanations within
the scope of network anomaly detection. The investigation focuses on expla-
nations of a single prediction of an individual instance to be informed on the
contributing features that make a model classify an attack as such.

2.3 Evaluation of Explanations

As explanations have the goal of providing explainability, evaluations are
needed to show if they do and what the quality of an explanation is. An
evaluation can be done with or without humans. Doshi-Velez and Kim pro-
pose three ways to evaluate explanations, of which the first two include hu-
mans: application-grounded and human-grounded. The last is functionally
grounded, which can be done without humans [20].

The application-grounded evaluation focuses on how well an explanation
can support users. It tries to assess how an explanation can improve the
performance of a user on a task in comparison to a situation without the
explanation. The general approach for this evaluation is to let domain experts
perform specific tasks. The performance on a task can be measured and,
with an additional questionnaire, researchers can assess the impact of the
explanation on the task [40]. By approaching evaluations in this way, studies
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measure the influence of explanations on decision making, trust and task
performance [59].

The second way is human-ground evaluation. Like application-grounded,
human-grounded evaluations include a user in the evaluation, but the task
is simpler. It does not require the user to be a domain expert. The evalu-
ation assesses the quality of the explanations itself, rather than the impact
of the explanation on the decision-making process. An example of a human-
grounded evaluation is asking users through a questionnaire or survey which
explanation method is preferred for understanding model decisions [41]. In-
stead of asking which explanations the user prefers, cognitive load analysis
can assess the impact of an explanation on the performance and confidence
of the users by performing simple, nondomain specific tasks [37].

Application- and human-grounded evaluations can investigate properties
such as trust [47, 59], understandability [20, 47, 59, 67] and usability of the
explanation [59]. These properties require subjective experience of the user.

The last evaluation of Doshi-Velez and Kim does not include users but
tries to evaluate an explanation through a formal definition of interpretability.
This is called the functionality-grounded evaluation [20]. A formal definition
of interpretability depends on the quality properties of the explanation that
can be quantified. The specific quantification depends on the property itself.
Through objective metrics, the goodness of an explanation can be quantified
explanation [8].

An example of an objective property for the quality of an explanation is
fidelity [22, 28, 70, 80]. Fidelity represents how well the explanations reflect
the behaviour of the model. If an explanation deems a certain feature to be
important for a prediction, removing or altering the feature would alter the
prediction. There is a difference in local and global fidelity. Globally fidel
explanations reflect the behaviour of the whole model, while local fidelity
represents the behaviour for a certain datapoint. An explanation that is
locally fidel does not have to be globally fidel [69].

Sensitivity is another quality property. This property shows how the ex-
planations differ for similar instances [70]. Other words for this property
can be ’robustness’ or ’stability’. It measures how sensitive an explanation
is to small changes in the input. A way to assess sensitivity is through
a perturbation-based approach. Perturbing the input and observing the
changes in the output explanation give information about the sensitivity
of the original explanation [82].

Other examples of quality properties of explanations are consistency and
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certainty. The degree to which similar explanations are generated for dif-
ferent models trained on the same dataset by the same explanation method
is measured by consistency [70]. Different models produce a similar pre-
diction. Consistency measures the similarity of the explanations of each
prediction that are provided by the same explanation method. Inconsistency
can thereby show that the models might use different ways to arrive at the
same prediction. Consistency as a quality property can also be used to per-
form feature selection, by choosing a model trained a minimal subset that
shows consistency it is explanation with a model trained on a larger dataset.
To quantify consistency, the shared knowledge between smaller and larger
feature sets can be used [22].

Machine learning methods can show how certain they are of a prediction.
But this certainty can be incorporated by the explanation method. Certainty
is a quality property of the explanation. If a model is uncertain about a
prediction, the explanation method can reflect this uncertainty [70]. For
example, if a model predicts something abnormal for two different instances,
one instance being 100% certain and the other 60%, the difference can be
reflected in the explanation.

Each explanation method has advantages and disadvantages, and this is
reflected through the explanation properties. Based on objective desiderata
and the properties of the explanation, it can differ by classification problem,
model and data set to which explanation method is suitable [8, 23, 46]. An
explanation method can show differences in its objective properties if it has
to explain from different models trained on different datasets [8].

Summary The scope of this thesis focuses on objective properties of expla-
nations. The appearance of objective properties is dependent on the dataset
and the model. This paper uses fidelity and sensitivity as objective proper-
ties. Fidelity is an objective measure used often to assess quality of expla-
nations without a user. Sensitivity is a desired property because of the need
to be able to handle small differences in anomalous data.
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2.4 Explainable AI for Machine Learning and

Deep Learning models

There is a relationship between the complexity of the model and the explain-
ability of a model [28]. More complex models are more difficult to explain
and understand compared to less complex models.

Within machine learning, there are shallow and deep models. Shallow
models are models such as SVM, RF and Gradient Boosting Machines. Small
Multilayer Perceptrons (MLP) are considered shallow as well. These models
use predefined features for learning. Deep models, such as CNNs and AEs,
require large amounts of data to learn features directly from the data. How-
ever, shallow models are not, by definition, more inherently explainable than
deep models.

In recent years, several methods have been proposed to explain a variety
of machine and deep learning models. One of such methods is DiCE (Diverse
Counterfactual Explanations) [61]. DiCE shows counterfactuals as perturbed
versions of the instance to be explained. The authors stress the importance
of providing a set of counterfactuals with diversity. DiCE is not limited
to binary classification; it works for multiclass classifiers. The generation
of counterfactuals can be done through model-agnostic methods as well as
gradient-methods, allowing DiCE to be used on neural networks as well.

Similarly to counterfactuals, there is Contrastive Explanation Method
(CEM) [18]. The method has Pertinent Positives and Pertinent Negatives.
For Pertinent Positives, the method finds the minimal features that must
be present to predict the same class as the given instance. The Pertinent
Negatives are the opposites: the minimal features that have to be absent in
order to keep the same class of a given instance. The method is applicable
to neural networks and shallow machine learning models.

There are other explanation methods that use a feature attribution or
importance approach. Mentioned briefly already, LIME is a local model-
agnostic explanation method [69]. Given input data and a black-box model,
LIME generate a new dataset based on input perturbations and the corre-
sponding output of the model. Based on this dataset a new local surrogate
model is trained. The explanations contain the feature effects on a specific
prediction of interest. With this approach, LIME does not need any infor-
mation about the model internals, making the method widely applicable on
different models [7, 36]. On the other hand, LIME uses a surrogate model
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to explain instances. The quality of the instances relies on the quality of the
surrogate model.

Mentioned often together with LIME, another model-agnostic method is
SHAP [52]. SHAP is based on shapely values that are used to calculate
feature contributions to a prediction. SHAP has been used in a variety
of tasks, using tabular, textual and image data. There are variations of
SHAP, such as KernelSHAP and TreeSHAP. KernelSHAP is based on ideas
from LIME and Shapely values [52], which is the default implementation of
SHAP. As mentioned above, LIME trains a local model on perturbed inputs
and their outputs. If this model is a linear regression model together with
a weighting kernel, KernelSHAP uses the regression coefficients of this local
model to estimate the SHAP values. TreeSHAP is a variation of SHAP
intended for tree-based methods, such as Decision Trees, RF and Gradient
boosted Trees [53]. The improvement of TreeSHAP over normal SHAP is the
increased speed of calculating local explanations.

A difference from LIME and a drawback of SHAP is that the compu-
tational complexity lies higher due to Shapely values [36]. Although both
LIME and SHAP are model-agnostic methods, their explanations can differ
[52].

Previously mentioned, deep learning models are inherently unexplainable.
There have been attempts to create explanation methods for deep learning
models specifically. DeepLIFT [75] makes an attempt to explain deep learn-
ing models. DeepLIFT looks at changes in inputs through differences between
inputs and reference scores for neuron activations. The difference in output
is explained by the difference in inputs and reference scores.

Based on SHAP and DeepLIFT, DeepSHAP was developed[52]. Although
KernelSHAP can also be used on deep models, DeepSHAP was developed for
computational performance. The rules used in DeepLIFT can be chosen to
approximate Shapely values.

Not only the type of model, but the type of learning requires different
explanation methods. Within machine learning and deep learning, there are
supervised and unsupervised models. Supervised models require labelled in-
put during training, whereas unsupervised models do not. Some explanation
methods require labelled input as training data to learn, which indicates that
they are only suitable for supervised problems. Most methods mentioned be-
fore, DeepLIFT, DiCE and SHAP (and its variations), create explanations
for supervised models. They require labelled output data to form an expla-
nation.
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Unsupervised models such as AEs and Generative Adversarial Networks
(GANs) often require a different approach to provide an explanation. A key
limitation of unsupervised models, such as AE, is their lack of interpretability
and the difficulty of explainability. The latent space representation of an
AE acts as a bottleneck for explainability as feature representations become
uninterpretable.

Although explanations for AEs are difficult, there have been attempts to
explain them. Attempts range from inherently changing the structure of the
AE to model-agnostic models. One such method is GEE: a Gradient-based
Explainable variational auto-Encoder [64]. GEE uses gradients in the expla-
nation of a model. The rationale is that anomalies can be clustered based on
their gradients. Although GEE is trained in an unsupervised fashion, for the
explanation, it does need labelled data on the type of attacks. This method
is called semi-supervised.

Counterfactuals can be used to explain anomalies detected by AEs [31].
They mention the importance of reliability and add this as a constraint to
the generation of counterfactuals. Reliability is based on robustness. The
outcome of their explanation is a tuple with reliable counterfactuals.

Aside from explanation methods for models, supervised and unsuper-
vised, there has been research to create inherently explainable models that
show similar performances to their complex counterparts. One of such mod-
els is Explainable Boosting Machine (EBM) [65]. An EBM is a tree-based
Generalised Additive Model (GAM) that is considered to be a white-box
model. An explanation shows the contribution of each feature to the predic-
tion. Although the model is highly interpretable, the authors claim it is just
as accurate as black-box complex models.

Summary Methods such as LIME and SHAP are the model-agnostic post-
hoc local explanations for the predictions of network anomaly detection with
respect to this thesis. They are easy to implement and explain feature con-
tributions. As an exception to model-agnostic methods, the EBM is an in-
terpretable model that claims to have similar performances as more complex
models, but with inherent explainability. Models such as AE show good per-
formance without the need to use predefined features, but are still difficult
to explain.
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2.5 Network Anomaly Detection Machine Learn-

ing Techniques

Detection of network intrusions is often the second line of defence, after
a firewall, and are detected by an Intrusion Detection System (IDS) [25].
IDSs are automated defence systems. They do not automatically protect the
system, but can recognise the moment of an intrusion or after the intrusion
has already happened. An IDS can be classified as a Network Intrusion
Detection System (NIDS) [32], if it is an IDS for a network. A NIDS can
be anomaly-based; then it is called network anomaly detection (NAD). NAD
is the field of detecting anomalous traffic within a network that deviates
from baseline behaviour. In principle, it can be any network, varying from
industrial applications to private networks. Detection of anomalies is derived
from behaviour on the network that is not normal. As NAD systems are
often trained with normal behaviour only, anomaly-based systems have the
advantage of being able to detect novel attacks [32].

NAD systems can be based on several techniques, such as rule-based, sta-
tistical, clustering and machine learning. Statistical methods include wavelet
analysis and PCA [25]. KNN with clusters or K-means are clustering tech-
niques that are used to cluster anomalous behaviour [25]. In the past, most
NAD systems were rule-based or used statistical methods, but these options
are outperformed by machine learning anomaly detection, especially on larger
datasets. Using machine learning for anomaly detection is now state of the
art [34]. Supervised and unsupervised machine learning techniques have been
applied for NAD [32]. Shallow machine learning models, such as SVM and
RF, have been examined for their use in anomaly detection [34].

Using shallow models alone, such as an SVM, might be insufficient for
good performance in NAD [81]. An SVM is combined with a data trans-
formation method called logarithmic marginal density ratio transformation
(LMDRT). It shows improved performance over using the SVM alone, to-
gether with faster training speed.

Intrusion detection can happen as a two-stage approach [42]. In the first
stage, the most representative train and test samples for the dataset are se-
lected. In the second stage, selected samples are used to train a Least Square
SVM (LS-SVM), which is a modified version of the SVM. Its performance
shows an improvement over other two-stage approaches in the detection of
four types of attacks.
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Class imbalance can be a problem within network intrusion datasets.
Difficulty Set Sampling Techniques (DSST) is proposed to deal with class
imbalance [49]. This method is combined with a classifier. The performance
between different class imbalance algorithms and models is compared in two
datasets. RF in combination with multiple class imbalance methods shows
better performance over other methods in almost all settings on the CSE-
CCIC-IDS2018 dataset.

Although shallow methods perform well for the task of network anomaly
detection, these approaches alone show false alarms and low detection rates
[43]. Aside from shallow machine learning models, anomaly detection by
deep learning models has been investigated.

Seven deep learning models are analysed on different intrusion datasets,
together with RF, Naive Bayes (NB), SVM and Artificial Neural Network
(ANN) [26]. The deep learning models are recurrent neural networks (RNN),
deep neural networks (DNN), restricted Boltzmann machines (RBM), deep
belief networks (DBN), CNNs, deep Boltzmann machines (DBM) and deep
AE. The deep learning models outperform the shallow models, although the
SVM and RF show comparable performance.

There are two-stage approaches that include deep learning. An example
is a hybrid intrusion detection system consisting of two phases [43]. The first
phase is normal anomaly detection that separates normal and attack traffic.
The first phase was tested on various shallow classifiers such as RF and RF,
with RF showing the best performance. This classifier detects normal and
attack network packets. Attack traffic goes into the second phase, where a
CNN+LSTM network further categorises the data. The strength of CNNs
to find locally important features is combined with the ability of LSTM to
capture long-term dependencies.

A problem with supervised anomaly detection is often the lack of labelled
data. Labelling requires time-consuming manual labour. Another problem
of a supervised approach is the continuous development of new attacks. New
attacks create new anomalous patterns in the network, which the model has
not seen before. Reliance on labels of previously known attacks can result
in difficulties with real-time detection [77]. There have been attempts to
tackle the need for labels. DevNet [66] is a neural network that tries to
solve the lack of labelled data with weakly supervised learning. The model
is able to learn to generalise and learn the representation of both normality
and abnormality from a few labelled anomalies, with complete absence of
labelled or unlabelled.

20



LSTMs are commonly used in anomaly detection, and they can be su-
pervised, but also unsupervised. LSTMs can combined with One Class SVM
and Support Vector Data Descriptin (SVDD) [24]. The advantage of the
use of LSTMs is the ability of the method to process variable-length data
sequences. This means that the method is suited for time series data or net-
work packets collected from a longer period. The approach can be extended
to work with GRU or RNN.

AE have shown promising results over the past few years in terms of
anomaly detection. As labelling can be a labour-intensive task, the AE does
not require labels. AEs can be trained on normal samples only. The rationale
behind this is the low reconstruction loss for normal samples, but a high
reconstruction loss for anomalous samples because the AE has not seen this
kind of data before. An advantage of this approach is the ability to handle
unseen data. As attackers evolve, the features or characteristics of attacks
also evolve. AEs have been used in various ways, as the main model or as
the dimensionality reduction method for feature representation[77].

The AE can be used for feature representation in combination with a
SVM [68]. The idea behind this structure is to improve the classification of
shallow learners with the help of deep learners. Deep learners can learn effi-
cient representations of features that improve the classification of the SVM.
The AE can be combined with an RF as well. The AE is used for the fea-
ture representation that is used as input for the RF. Anomaly detection is
separated into two stages for multimodal anomaly detection. Two AE are
used in the first stage, followed by a RF in the second stage [9]. Another
approach contains two AEs and two detectors [83]. The loss of the first AE is
normalised, followed by a global detector. The first detector detects whether
there is an anomaly or not. If so, there is another AE with a global classifier
to classify the type of threat and its properties. The AEs have LSTM layers
for both the encoder and the decoder.

An early use of AE for anomaly detection is within a power transmission
network [85]. They use the Stacked Denoising Autoencoder (SDAE), which is
a deep neural network that consists of multiple DAEs. The input of one DAE
is the first layer of the previous DAE. In this way, the whole SDAE can learn
feature representations from different levels of abstraction. They evaluate
their approach against KNN, RF and LR. All methods are outperformed by
SDAE, although the RF is the closest in terms of accuracy.

An ensemble of AEs can be used to detect anomalous behaviour in net-
work traffic. An example is Kitsune [58]. One of the important aims was to
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create a NAD system which was unsupervised because the model had to be
able to be trained fast and perform online processing.

Summary Research on NAD models has evolved with the increasing pop-
ularity of deep learning. From statistical and rule-based to shallow and deep
learning models for NAD. Although shallow machine learning models are
an improvement over statistical and rule-based models, alone they are often
outperformed by complex deep learning models such as the AE. The AE has
been a good fit for network anomaly detection due to its ability to learn the
notion of anomalies without labelled data. For multiclass classification, the
AE can be combined with shallow models.

2.6 Explainable AI for Network Anomaly De-

tection

With the rise of machine learning methods in the field of cybersecurity, the
demand for explainable models has risen equally. The importance of XAI for
cybersecurity is for several reasons, such as transparency and trust [86], im-
proving the performance of classifiers and explaining errors [12]. By explain-
ing errors, understanding missclassifications can help experts understand the
model and implement necessary changes to overcome these errors, with the
goal of improving model performance. Relevance of features as an explana-
tion most commonly used in detection of network anomalies [12, 79]. There
are studies that propose new explanation methods [1, 30, 86] and studies
that incorporate already existing methods into their approach [2, 12].

TRUST XAI (Transparancy Relying Upon Statistical Theory XAI) is
proposed by distinguishing the primary AI model and the underlying XAI
model. The primary model is in charge of classification while the XAI model
is responsible for providing an explanation of the primary model’s behaviour.
They can be separate models and the same model (using an interpretable
model). TRUST modifies the feature values to remove redundancy and in-
terdependencies. Using mutual information, the key features per class label
are determined and called ’representatives’. The statistical behaviour of the
representatives is modelled with their density functions. The method is com-
pared to LIME and shows to be faster and more accurate. A limitation of
the approach are the representatives picked by mutual information, which
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might lead to overfitting on the train data. Another limitation is the lack of
users. They claim that their approach outperforms LIME, but they do not
validate the actual perceived difference in their target users, who are security
analysts.

LEMNA (Local Explanation Method using Nonlinear Approximations)
was designed specifically for security applications and is an explanation method
for black boxes [30]. The authors of LEMNA aimed to create a method with
high fidelity, as they note that existing methods suffer from low fidelity.The
method provides a set of key features for the classification result. To improve
fidelity and allow for flexibility, LEMNA can be used for linear and nonlinear
decision boundaries. The use case shows the intention of the authors to pro-
vide a method that helps security analysts to understand classification errors
and fix the errors. They measure fidelity with 3 self-made fidelity approaches.

Many approaches within XAI for NAD incorporate SHAP [12], with most
of these studies aiming to find feature importances. The end goal of finding
the important features differs. Information about features themselves can be
the goal, but insights in the features is used to improve model performance.
Another approach uses SHAP to investigate the features three different mod-
els (RF, XGBoost and Keras Sequential algorithms) use to classify five dif-
ferent attack types [2]. The main focus is to find out if all models are suited
for the task of NAD.

SHAP is used to evaluate the classification results of RF and a feedforward
neural network on multiple intrusion detection datasets [73]. The aim was to
find the key features that contribute to the prediction results. The authors
conclude that per dataset similar features have different contributions to the
same attack type, but there are similarities between the key features.

Mentioned in chapter 2.4, AEs are difficult to explain due to their inherent
reduction in dimensionality of the features, but are frequently used in the field
of NAD [77]. Current available methods try to explain an AE by alternating
the architecture of the model itself, which can be seen as the state of the
art for explaining AE. Previously discussed in chapter 2.4, the authors of
GEE try to create an inherently explainable AE [64]. Aguilar et al. [1]
created an AE based on a decision tree, making the model more explainable.
Although the model was originally designed to work for the detection of
visual anomalies of breast cancer, the model is able to handle categorical
and numerical data.

In [5], they propose an approach using SHAP in an AE that is based
on the robustness of the explanation methodology. They aim to reduce the
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reconstruction error through feature perturbations. The study shows that the
reconstruction error is reduced more when SHAP is incorporated, instead of
LIME.

Although the methods claim to provide explanation or improve trust,
explanations are rarely tested subjectively or objectively. Many studies claim
to support or increase user trust or explainability, but often no metrics are
provided to support the claim. Explanations and explanation methods are
often compared with others in terms of speed, visuals or ease of computation
[86]. Model performance can also be an indicator that studies use to validate
their explanations [2]. This lack of both subjective and objective evaluations
is not specific to the domain of NAD [50]

Although subjective evaluations do not occur often in this field, but they
do happen. In [51], the authors conduct a human-grounded evaluation with
experts to investigate the influence on trust of their designed visual explana-
tion. A more interactive approach of XAI for NAD is approached through
the creation of an agent that functions as a junior analyst, to support a se-
nior analyst [35] . Through interaction, the junior analyst agent can support
the senior analyst task. The evaluation was carried out through feedback
sessions with expert users.

Similarly to subjective evaluations, objective property evaluations do oc-
cur in XAI for NAD, but are rare. LEMNA uses fidelity to measure its expla-
nation performance [30]. Robustness is one of the most used quality proper-
ties in evaluating XAI for NAD [12]. Mentioned before, [5] use robustness as
a quality measure of an explanation method to decrease the reconstruction
error. Similarly, robustness is used to verify the proposed frameworks to ex-
tract the most dominant features to improve the performance of the model
in fingerprinting of the website [29].

Summary There are studies on explainability within the field of NAD, but
many of them lack metrics that support their claims. Model improvement or
feature investigation are two of the most common goals of XAI in the field of
NAD. Although there are methods that incorporate quality properties, this
is a rare stand-alone approach to explanation methods within the field of
NAD.
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Chapter 3

Methodology

The proposed method aims to investigate the right balance between model
performance and model explainability. To examine the performance differ-
ences between the interpretable and uninterpretable models, three different
models are compared. Two black boxes are implemented and one white
box: the Random Forest (RF), the Autoencoder (AE) and the Explainable
Boosting Machine (EBM). The models are trained on versions of the UNSW-
NB15 dataset. The different versions of the dataset are the result of feature
analysis or upsampling techniques. Model performance is examined through
selected metrics. For each model, there is a different explanation method.
For the Random Forest, LIME and SHAP are examined as model-agnostic
explanation methods. The Autoencoder is explained through a method us-
ing neighbourhood differences translated into feature importances. The Ex-
plainable Boosting Machine is inherently explainable and does not need an
additional explanation method. The explanations are examined through ob-
jective properties, namely sensitivity and fidelity. A final conclusion is drawn
by combining the information of both steps, as well as general information
about the dataset, models and methods. An overview of the process can be
seen in Figure 3.1.

3.1 Dataset

The dataset of interest is the UNSW-NB15 dataset, which contains data on
network traffic [63]. It was created as a response to other datasets (e.g.
KDD-99) that were often used as benchmarks for NAD, but were no longer
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Fig. 3.1. Visualisation of the process in separate steps. 1. The dataset phase,
with exploratory data analysis and subset creation. 2. The hyperparameter tun-
ing stage to choose the optimal model settings. 3. Final models performance
evaluation and comparison. 4. Given the models from phase 3, implementation
and evaluation of explanation methods. 5. Evaluation phase, where the results
from model and explanations separately are combined

representative of current network traffic. The dataset contains data that was
collected during 15 hours of network traffic of three networks. It is publicly
available in CSV format. The dataset contains 49 features of which 47 can be
used for classification. The other two are the label and the attack category.
The normal samples in the dataset have label 0, while the abnormal or mali-
cious samples have label 1. The column attack cat gives specific information
about the kind of attack. There are 9 attack types: Analysis, Backdoors,
DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode and Worms. Al-
though the dataset contains normal and abnormal samples, there are more
normal samples (2,218,761) than anomalous samples (321,283).

This dataset is used for this thesis because it contains a rich feature set for
network anomaly detection and consists of up-to-date network traffic infor-
mation. The full list of feature meanings can be found in the original article
of the dataset [63]. This dataset has been used to evaluate the performance
of NAD models [66, 84], as well as in comparisons to other datasets [74].

To work with the selected models, the dataset has to be prepared. Missing
values have to be filled in and categorical features have to be converted to
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numerical. To find the optimal dataset, different versions are examined, using
different numbers of features or upsampling techniques to balance normal and
abnormal samples.

3.1.1 Attack Types

There are 9 attack types in the dataset. They are briefly explained below.

• Analysis. An attacker tries to gain access to a network to listen to
and capture data on the network. Through analysis, the attacker can
find valuable information.

• Backdoor. With a backdoor attack, the attacker tries to bypass secu-
rity to gain unauthorised access to a system.

• DoS. DoS stands for ’denial-of-service’. The attacker tries to make the
network unavailable to its users by disrupting the server.

• Exploits. The attacker is aware of a vulnerability in the software of
the system and tries to exploit this in its attack.

• Fuzzers. The attacker injects semirandom data into a programme to
detect the output. With this, the attacker tries to find implementation
bugs to exploit.

• Generic Attack. Data storage and communication are often en-
crypted, which the attacker tries to decode.

• Recoinnaissance. With a recoinnaissance attack, the attacker tries
to collect as much information about the system as possible, to enlarge
the attack surface.

• Shellcode. Shellcode is a set of instructions in code format that ex-
ecutes a command in software to take over control of the software or
the machine.

• Worms A worm is a form of malware that can replicate itself from
one computer to another. A worm in a network tries to find computers
connected to the network to replicate itself. A worm attack can steal
sensitive information by installing a backdoor.
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3.2 Models

The models used during this study are a Random Forest, an Autoencoder and
an Explainable Boosting Machine. The RF and the EBM are shallow machine
learning models, while the AE is a deep learning model. Using the three
different models, the balance between model complexity and explainability
is evaluated.

3.2.1 Random Forest

A Random Forest Classifier is a supervised machine learning method con-
sisting of an ensemble of decision trees [10]. Individual trees in the ensemble
differ through the use of bagging. Bagging (Bootstrap Aggregating) means
that each tree samples N instances with replacement. This allows each tree
to have a different training set, forcing diversity among the trees in the forest.
In addition to bagging, each tree is allowed to select the optimal feature for a
split from a subset of features instead of the entire feature set, which equally
enforces diversity. The diversity of both methods contributes to a reduction
in the risk of overfitting the whole forest. Each individual tree makes a pre-
diction, and a majority vote is taken for the final prediction. The approach
of RF makes it a stable method that is not sensitive to outliers.

When comparing shallow machine learning models for NAD, the RF often
outperforms other methods [43, 49]. Additionally, compared to neural net-
works, the RF can outperform them in tabular data [27]. The RF is a shallow
machine learning model that needs model-agnostic explanation methods. It
is essentially more explainable than AE because it does not compress feature
representations. This is why RF is included in model selection.

3.2.2 Explainable Boosting Machine

The Explainable Boosting Machine [65] is not a black box but a transparent
model. It can provide local and global explanations. EBM is an improved
version of a Generalised Additive Model (GAM). A GAM learns feature
functions per feature and adds the results together.

The EBM uses gradient boosting and bagging. With gradient boosting,
multiple simple models are created to form a stronger ensemble. Each simple
model is trained using one feature at a time. For each K features, T simple
models are trained, resulting in K ∗ T simple models. Including bagging,
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each model is trained on a subset of the samples. Combining all T simple
models for one feature, the EBM learns the best feature function per feature
to show the contribution per feature to the output. Aside from separate
feature functions, the EBM can learn pairwise feature functions. The final
prediction consists of additive feature values, and the impact of features on
the prediction can be visualised as an explanation.

The EBM balances accuracy and model complexity. It is less complex
than gradient boosting or Random Forest, but the authors claim that EBM
performance is similar to more complex models and directly interpretable.

Because the explanation of an EBM relies on the internal structure of the
model, inference is fast. However, training an EBM can be computationally
expensive, due to the additive nature.

EBM shows a feature impact, which falls in a category similar to LIME
and SHAP. The difference between EBM and the two model-agnostic ex-
planation methods is that the feature impacts are not generated through a
surrogate model. To investigate the differences in model performance and
explainability between an inherently explainable model and a black box with
an additional explanation method, the EBM is one of the three models in
this research.

After the onset of this study, an article was published investigating the
EBM for network intrusion detection. The results show that the EBM out-
performs a Support Vector Machine [56].

3.2.3 Autoencoder

An Autoencoder is a neural network with the goal of reconstructing the out-
put from compressed representation of the input in an unsupervised manner
[71]. The network is composed of an encoder and a decoder. The layer be-
tween these parts is called the ’latent space’ or ’bottleneck’. The encoder
maps the input to a representation in the latent space. The decoder re-
constructs the input based on the representation in the latent space. The
reconstruction is evaluated with a reconstruction loss that measures the dif-
ference between the input and the reconstructed output. To ensure that
the encoder learns a compressed representation, the dimensions of the latent
space are often smaller than the input. If the number of dimensions in the
latent space is too large, there is a risk of directly copying the input to the
output without learning representations. The encoder is responsible for en-
coding the input features into representations with lower dimensions, which
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is why a trained encoder can be used separately for dimensionality reduction
[77].

For binary classification, the reconstruction error of the AE can serve
as a threshold. The threshold can be a set value or an adaptive value. In
this thesis, an adaptive value is chosen as a threshold. The threshold for
the reconstruction error is calculated by taking the 90th percentile value of
the reconstruction errors. If the reconstruction error exceeds this value, a
sample is marked as malicious. An adaptive value is preferred over a static
value, as a static value requires prior knowledge about the distribution of the
reconstruction error. The 90th percentile is specifically the result of adhering
to the default implementation of the AE used.

For the AE, hyperparameters have to be tuned to work optimally on the
dataset. However, tuning hyperparameters for a neural network is a difficult
task in general [19].

The AE is chosen as a model in this thesis as it has shown 1) to outperform
other machine learning and deep learning approaches for NAD and 2) the
ability to adapt to new cyberattacks [77].

3.2.4 Autoencoder + Random Forest

The fourth model framework is a proof of concept. Two models are combined:
the Autoencoder and the Random Forest. The combination of two models
in the field of NAD has been done before [43]. More specifically, the AE has
been combined previously with a simpler model such as the RF or SVM [9,
83].

Both the AE and the RF have their advantages. The AE is able to predict
unseen data through a heightened reconstruction error. This is beneficial in
the field of NAD, as it does not require a dataset to contain labelled malicious
samples. The RF performs well on tabular data [27] and can outperform other
shallow machine learning models [43, 49].

Combining AE with RF allows training the AE on a dataset with normal
samples only and the RF on a smaller dataset with malicious samples.

Figure 3.2 shows the approach. Both the AE and the RF are trained
individually. The AE is trained on normal samples only, while the RF is
trained on malicious samples from the same dataset. This dataset has to
contain enough samples for the RF to be able to correctly predict malicious
classes.
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Fig. 3.2. The AE-RF setup of the train and test phase. In the train phase, both
models are trained on separate datasets. In the testing phase, the AE makes the
first binary prediction. If the prediction is malicious, the RF predicts the specific
class.

In the testing phase, the AE receives a sample. It predicts if the sample
is normal or malicious. If the sample is predicted as normal, this is the final
prediction. If the sample is malicious, the RF uses the original features of
the sample for a second prediction. The original features could be used for
explanation purposes.

Although the complete model is implemented as a proof of concept, only
the RF trained on the malicious samples is used for explanation purposes.

3.2.5 Model evaluation

There are two model selection stages in this process: the hyperparameter
phase and the final model selection and evaluation phase. In both phases, the
same performance metrics are used. The metrics used for model performance
are accuracy (Eq. 3.1), recall (Eq. 3.2), precision (Eq. 3.3) and F2-score
(Eq. 3.4). Recall and F2-score are noted to be more important than accuracy
and precision. Recall is a score to determine how many of the true instances
are actually detected. It can be called the detection rate. Damage done
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by intruders can have disastrous effects and therefore the classifier has to
be sensitive for anomalies. This is why high recall is preferred over high
precision. However, high recall in combination with a too low precision is
not desired, therefore the F2-score is chosen. The F2-score accounts weighs
recall more heavily than precision, but a precision that is too low will affect
the score as well.

Fig. 3.3. Confusion matrix overview. ’Sensitivity’ is a different name for ’recall’

Accuracy : TP + TN/(TP + TN + FP + FN) (3.1)

Recall : TP/TP + FN (3.2)

Precision : TP/TP + FP (3.3)

F2− score : 5 ∗ (Precision ∗Recall)

(4 ∗ Precision+Recall)
(3.4)

The metrics are based on values that can be extracted from a confusion
matrix. The confusion matrix and three of the metrics are shown in Figure
3.3.
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3.3 Explanation Methods

There are two model-agnostic explanation methods in this study: LIME and
SHAP. The EBM is inherently explainable, which indicates that it does not
require an external explanation method. The three explanation approaches
show feature importances, which is the contribution or importance of each
feature for a prediction. To stay consistent, the explanation of AE tries to
show the importance of features. This explanation is not based on a surrogate
model as for the other two.

3.3.1 SHAP

SHAP is a model-agnostic explanation method based on the idea of a sur-
rogate model [52]. SHAP can be used locally or globally, but this study
focuses on local use. SHAP itself is based on the notion of Shapely values,
which originates from Game Theory. Shapely values consider every subsets
of combinations of features to determine the contribution of a single feature
to the outcome of the model. The difference between two subsets of features,
where one set has one additional feature over the other set, determines the
marginal contribution of one feature. Marginal contributions can be added
together, as SHAP is an additive feature attribution method to create a
weighted average, similar to a weighted linear regression. The final result
shows the impact of the feature on the prediction of the model compared
to the absence of the feature. The SHAP explanation must adhere to local
accuracy and consistency.

A disadvantage of SHAP is that it can be computationally intensive,
especially for large datasets or complex models. Another disadvantage is the
lack of precision, due to the restrictive properties [21].

To evaluate possible explanation methods for models in the field of NAD,
SHAP is one of the explanation methods used. This study uses TreeSHAP,
which is an optimised version of SHAP for tree-based methods. SHAP is a
method that is easy to implement, model-agnostic and well-known, which is
why it is used as one of the explanation methods.

3.3.2 LIME

LIME is a model-agnostic explanation method for local explainability [69].
Similar to SHAP, LIME uses a surrogate model to explain a black box. The
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idea behind LIME is based on perturbations of the input. The instance to
be explained is first converted to a binary vector, since the authors note that
this is an interpretable representation. Around this instance, samples are
drawn. Using small perturbations, they generate outputs from the original
black-box model. With small perturbations as input, they collect the out-
puts of the original model and use the weighted collected samples to train
a linear interpretable model to estimate the decision boundary locally. The
explanation has to adhere to local fidelity.

Similarly to SHAP, LIME can suffer from lack of precision due to restric-
tive criteria [21]. Another known downside of LIME is that the explanations
can be sensitive to small perturbations in the input data [21], although it
can depend on the model if it is more or less robust than SHAP [46].

Both SHAP and LIME are feature attribution explanations, which means
that the explanation provides information about the contribution of the fea-
tures [14]. Although both aim to provide feature attributions, the two can
give significantly different values [52]. Equal to SHAP, LIME is easy to im-
plement, model-agnostic and well-known. The two are often compared, and
this thesis follows that trend.

3.3.3 Explaining the Autoencoder

The AE cannot be explained in a similar way as the RF or the EBM. The AE
reduces the feature dimensions of the input feature as part of the encoder-
decoder structure. The latent dimension represents the reduced dimension-
ality of the features. Research is still ongoing to find a universal approach to
map each feature to a latent dimension and back. However, following the ap-
proach of feature importance as explanations, this study tries to approximate
feature importance of the AE predictions.

The feature importances are based on a perturbation-based method using
neighbourhood differences of output points. The idea is based on the thought
that altering an important feature leads to larger neighbourhood differences.
Figure 3.4 shows the approach.

A Kd-Tree is used to organise the original output points in space. These
are multiple points from a test set. The original instance is the instance to be
explained. The original neighbourhood is the neighbourhood of that point
in the output space. The number of neighbours is determined by combining
the elbow method and the silhouette score, shown in Figure 3.5. Using both
methods together, the number of neighbours is set at 50. Every feature
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Fig. 3.4. The process of generating feature importances for the Autoencoder.
Per feature, difference between the original output neighbourhood and perturbed
output neighbourhood is calculated. After this, the feature importances are based
on normalised and swapped Jaccard Similarity.

of the original instance is perturbed, and the new output neighbourhood
is calculated. The original neighbourhood is compared with the perturbed
neighbourhood through Jaccard Similarity and this gives a similarity score.
The Jaccard Similarity is a metric of overlap two lists of points, which returns
1 if the two are completely similar and 0 if they are completely dissimilar.
The Jaccard values are normalised and swapped, giving an important feature
a high value instead of a low value. This value is the importance of the feature
used for the AE.

3.3.4 Objective Explanation Evaluation

Explanations will be evaluated on fidelity and robustness properties. Both
properties are measured quantitatively, because they do not depend on the
subjective experience of the target user.
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Fig. 3.5. The Elbow-Silhouette combination to determine the value of K neigh-
bours

Sensitivity

Sensitivity, often referred to as robustness, is the property of an explanation
that reflects the output explanation behaviour resulting from variations in
the input [8, 12, 20].

Sensitivity can be evaluated by examining the similarity between an
original explanation and an explanation in which inputs are slightly per-
turbed. Sensitivity can be seen as the stability of the output after small,
non-significant perturbations [82]. The stability of the output can be exam-
ined by similarity, through a distance metric, for example.

In this study, the sensitivity is measured using the Euclidean distance in
the feature space. With feature space, the feature importances are meant.
Take Random Forest and SHAP as an example. There is an original sample
x with output y and explanation e. This sample has a top 5 of features.
For every feature f of sample x, the input is perturbed separately, creating
xperturbed. This provides a perturbed output yperturbed with a new explanation
eperturbed. Then the Euclidean distance is used to determine the distance
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between the top 5 features of x and the same features of xperturbed. The
distance is divided by the difference between x and xperturbed and this gives the
sensitivity for the explanation of one sample. The equation is shown in Eq.
3.3.4. This process is repeated for every of the top features of the explanation.
To calculate the average sensitivity value over multiple explanations, the
sensitivity values are averaged.

Sensitivity =
(d(x, x perturbed))

(|x− x perturbed|)
(3.5)

A low value means a low sensitivity as the distance between features in
the feature space is small. It shows that a change in the input did not lead
to a large change in the output. A high value means a high sensitivity.

Sensitivity is a property that can be measured quantitatively and supports
objective determination of the quality of the explanation [8]. Therefore,
the sensitivity is used for the evaluation of the explanation method. It is
specifically used in this study, as the assumption is that stable explanations
are valuable in NAD. If an explanation is not stable, it is difficult to follow a
model’s decision. This makes it difficult to use the results of the explanation
to understand or improve anomaly detection.

The expectation is that LIME is more sensitive than SHAP, due to results
from previous studies [8, 21]. The EBM is expected to be comparable to
SHAP. The sensitivity of the AE explanation is difficult to forecast because
it is not a method that has been studied before. It is expected to be more
sensitive than the other methods, as the method was not developed with low
sensitivity as desiderata.

Fidelity

Fidelity is a measure of the correctness of the explanation method in gener-
ating a true explanation for the model’s decision [59, 82]. In other words, can
be seen as the ability of the explanation to capture the underlying reasoning
of the model [14]. Fidelity is desirable, as good explanations give insights
in the true reasoning, otherwise users can be misleaded when they use the
model [14]. In this thesis the following notion of fidelity is adapted: fidelity
shows model trustworthiness [82].

Fidelity and accuracy are related under the notion correctness. If an
explanation is highly fidel and the model’s accuracy is high, then the expla-
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nation is highly accurate [60].
Fidelity can be measured through a perturbation-based approach. For

every feature f of the top 5 features of the original instance x, a significant
perturbation is made [82]. With xperturbed, the expectation is that if the
feature were truly significant, it would change the prediction. A perturbation
can be made based on sampling from the normal distribution of the feature.
The strength of the perturbation affects the sampling. A high perturbation
strength means sampling values from the outer sides of the distributions. A
low perturbation strength means sampling values from the distribution that
occur more often.

For the final fidelity score of the local explanation, the number of changed
predictions is divided by the number of perturbed features. The equation is
shown in Eq. 3.3.4. The fidelity represents a percentage of changed pre-
dictions of the total perturbed features. The average fidelity over multiple
explanations is calculated in a similar way to the sensitivity. Scores are added
and averaged.

Fidelity =
changed predictions

total perturbed instances
(3.6)

Similarly to sensitivity, fidelity is a property that can be measured quanti-
tatively [82]. For the selection of the best explanation method in combination
with the model, fidelity is used to objectively make this selection. Fidelity
is chosen as an important objective property for explanations for NAD for a
reason similar to sensitivity. If the explanations are not fidel, the explanation
is of no use to understand the model’s prediction. It cannot contribute to
any improvements in anomaly detection.

As both sensitivity and fidelity measure changes as a result of perturba-
tions, perturbation strengths are included for fidelity. Higher perturbation
strengths are expected to lead to higher fidelity scores for all explanation
methods. As the EBM is inherently explainable, the expectation is that this
method yields the highest fidelity scores. The fidelity of LIME and SHAP
are expected to be similar [80], although other research has shown that the
fidelity of LIME and SHAP can differ depending on the model or the dataset
[8]. As the AE shows feature attributions, the values could lie close to those
of LIME and SHAP. On the other hand, the AE explanation is not optimised
to adhere to certain properties.
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Number of samples

Evaluation of the whole test set is computationally too expensive. Therefore,
a sample size is determined for the evaluation of the explanations. A test was
done with RF-Basic SHAP and LIME to determine the number of samples
to choose between 10, 100 and 1000 samples. Sensitivity and fidelity with
perturbation strength 1 are indicated in Figure 3.1. These results show that
there are no large performance differences between 100 or 1000 samples. To
account for possible fluctuations, 100 samples over 10 are preferred.

Model and Explanation 10 100 1000
Sensitivity
RF-Basic SHAP 0.0781 0.0613 0.0634
RF-Basic LIME 0.0501 0.0447 0.0419
Fidelity
RF-Basic SHAP 6.06 7.77 6.26
RF-Basic LIME 4.71 5.87 4.44

Tab. 3.1. Sensitivity and fidelity scores of 10, 100 and 1000 samples on RF-Basic
with SHAP and LIME

3.4 Model and Explanation Implementation

The models and the explanation methods are implemented using existing
code with adjustments where necessary.

• Autoencoder: The Pyod library 1 is used, which has been used for
earlier implementations of AE for anomaly detection [33]. Small al-
ternations are made to make the latent space accessible and extract
values.

• Random Forest: the scikit-learn package2.

• EBM: the EBM is designed by InterpretML [65] and the original im-
plementation is used 3

1https://github.com/yzhao062/pyod
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
3https://github.com/interpretml/interpret
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• SHAP (TreeSHAP): the Alibi library 4. This library allows for easy
extraction of feature importances. It is based on the original paper
[52].

• LIME: the LIME package 5 based on the original paper [69].

The Snellius cluster is used for a limited amount of hours to train the
models. The rest of the model training is done on a MacBook Air 2020 with
the M1 chip.

4https://docs.seldon.io/projects/alibi/en/stable/examples/overview.html
5https://github.com/marcotcr/lime
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Chapter 4

Dataset and Hyperparameter
Analysis

To evaluate the model and explanation performances, the dataset has to be
pre-processed and the models need to have the optimal hyperparameters.
First, the dataset is explored and analysed. With information from the
analysis, the dataset is cleaned and different subsets are created. Second,
multiple versions of the models are trained on the subsets to find the optimal
hyperparameters for the type of model on the task. This results in one version
of RF, EBM and AE per dataset. Per dataset, the version of the optimal
model can differ.

4.1 Exploratory Data Analysis and Cleaning

The dataset consists of 2,540,043 records stored in 4 separate CSV files. To
explore the dataset, the four separate CSV files are concatenated. There
are 49 features in the original dataset, which gives the dataset the shape of
(2540043, 49). The last two features are label and attack type. The full list of
feature abbreviations and descriptions can be found in the original article of
the dataset [63], but in the text there are supporting notes about the features
to understand the exploratory data analysis.

Network traffic travels in packages from source to destination. These
packages have specific characteristics, and each packet consists of bytes of
data. Many features include information about packages that are transferred
between the source and destination. The ’s’ in front of a feature represents
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’source’, while ’d’ represents ’destination’. For example sbytes is the name of
the feature that represents the bytes that go from the source to destination,
while dbytes represents the opposite (destination to source). Additionally,
features with ’ct’ in their name count the occurrences of a specific character-
istic of a connection over 100 connections.

The dataset is unbalanced, which is visualised in Figure 4.1. In total,
there are 2,218,76 normal samples against 321,283 anomalous samples.

Fig. 4.1. Traffic counts normal (0) vs. abnormal (1) data

4.1.1 Attack types

Within the dataset, there are 9 different attack categories. A small descrip-
tion of each attack type is given in Section 3.1.1. The names and their ab-
solute occurrences are presented in Table 4.1. These numbers are visualised
in Figure 4.2.

Table 4.1 and Figure 4.2 show that within the anomalous class, the attack
types are not balanced. ’Generic’ is the largest anomalous group with 215,481
instances, while ’worms’ is rarely present in the whole dataset with its 174
instances.

4.1.2 Preprocessing

Before evaluating the features, pre-processing was performed on the dataset,
such as investigating the presence of missing values (Nan or null). There were
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Attack name Numbers
Generic 215,481
Exploits 44,525
Fuzzers 24,246
DoS 16,454
Recoinnaissance 13,987
Analysis 2,677
Backdoor 2,329
Shellcode 1,511
Worms 174
Total 321,283

Tab. 4.1. Overview of the number the different attack types present in the
UNSW-NB15 dataset

Fig. 4.2. Ordered counts per attack category. The last three categories are
difficult to visualise, because they have less occurrences compared to the largest
class ’Generic’

three columns where Nan or null values appeared: attack cat, ct flw http mthd,
is ftp login.
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For attack category, Nan appeared in the attack category for every normal
instance. This was replaced by the string ’normal’.

The ct flw http mthd had Nan values in the rows where a 0 originally
appeared. This is probably a result of conversion. The Nan values were
replaced with 0.

The other feature, is ftp login, is a binary column. However, Nan values
appeared in the rows where a 0 was supposed to be. The Nan values were
replaced with 0.

Regarding other categorical columns, service feature could have the value
‘-‘ when there was no service. This was replaced by the word ’nothing’.

The feature ctp ftp cmd had missing values where the original 0 appeared.
It is an integer column, so missing values were replaced with 0.

4.1.3 Feature exploration

To explore the features in the dataset a correlation heatmap was created,
displayed in Figure 4.3. The heatmap is not mirrored. The heatmap uses
the Pearson correlation as default. The values can range from 1 to -1. A
high positive value means a positive correlation, while a low negative value
means a negative correlation.

From the heatmap, there are several observations made. The first obser-
vation is that features that are highly correlated with other features are often
related to each other. An example is sbytes with sloss or sttl and ct state ttl,
which are shown in Figure 4.4 and 4.5.

Secondly, the features sttl and ct state ttl show a high correlation with the
label. Related to these features is dttl, which does not show a high correlation
with the label or with the other two TTL features. The TTL features will
be explored in detail later.

Lastly, most features with ’ct’ in their name appear to have a higher
correlation with the label compared to other features. These features capture
serial data over 100 connections, which could be more informative than one
record alone.

The following sections highlight some feature correlations. Not all fea-
tures that were explored are shown, as they show similar patterns as other
features or show no pattern at all. Other articles have done more extensive
research on the features of the dataset, which are used for the choices made
[62, 74, 73]

44



Fig. 4.3. Heatmap of feature correlations using Pearson. Positively correlated
features lean towards the orange colour, while negatively correlated features are
coloured blue.

Bytes and Loss feature correlations

Using a pairplot, correlation is explored between two features that are highly
orange in Figure 4.3 and are related to each other. ’bytes’ features include the
source to destination bytes of packets or vice versa, while ’loss’ represents the
loss of packets dropped from source to destination or vice versa. The number
of lost packages influences the number of bytes, as lost packages decrease the
number of bytes.

sbytes and sloss show a high correlation in Figure 4.3, similarly for dbytes
and dloss. The correlation for both combinations is represented in Figure 4.4.
The first graph in Figure 4.4 appears to show a linear relationship between
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the sloss and bytes, beside the additional points at the beginning of both
graphs. A similar pattern can be found for dbytes and dloss in the second
graph of the figure.

Given the correlations in Figure 4.3, other related features were explored
and show a similar pattern, such as sloss and spkts (packet count) or dmeansz
(mean of flow packet size) and dbytes.

Fig. 4.4. Pairplots for 1. sloss and sbytes and 2. dloss and dbytes

TTL Features

There are multiple TTL features. ’TTL’ stands for Time To Live, which is
the time that a package can live in a network. It is also called a ’hoplimit’,
because it prevents a package from circulating or ’hopping’ in a network
infinitely. The number works as a counter, where each time a package passes
a router, it loses a number until it is 0.

There are three TTL features in the UNSW-NB dataset: sttl, dttl and
ct state ttl. From Figure 4.3, it was visible that there was a high correlation
between sttl and ct state ttl. As shown in the first graph of Figure 4.5, this is
not a linear relationship, but it is possible that some values of both features
are correlated. For example, the high values of sttl seem to correspond to all
values (total of 6) of ct state ttl. Between sttl and dttl there was a negative
correlation value in Figure 4.3. Shown in the second graph of Figure 4.5, the
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specific values of both characteristics correspond to each other. For example,
instances with value 0 for both features.

To be complete, ct state ttl and dttl are shown in the third plot of Fig-
ure 4.5. In Figure 4.3, the colour of the block was light, indicating almost
no correlation. It is difficult to find a pattern in the figure, which can be
explained by the lack of correlation inferred from the heatmap.

Fig. 4.5. Pairplots for 1. sttl and ct state ttl, 2. sttl and dttl and 3. ct state ttl
and sttl

Correlation with the label

Besides the correlations between features, correlations between features and
the label are examined. From Figure 4.3, the ’ct’ features showed a correla-
tion with the label, similar to sttl.

There are features that display patterns when plotted against the normal
versus the abnormal label. An example is sttl. The data for the normal and
malicious labels are separated and plotted in different plots in Figure 4.6,
because the absolute values differ in magnitude. This difference is seen by
the difference in the values on the y-axis. From this plot, the values of sttl
for normal data lie below 75, while there is a clear peak at 250 for malicious
data.

As sttl and ct state ttl were correlated, the feature values of the latter
are plotted for normal and malicious data separately in Figure 4.7. In this
figure, there is a clear peak at the value 0 for normal data, while there is a
peak at 2 for malicious data. Again, the y-axes differ because the absolute
values of normal and malicious data differ.

Another feature that shows a larger variety of peaks when plotted against
the malicious label is ct dst sport ltm, shown in Figure 4.8. This feature
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Fig. 4.6. Feature values of sttl for normal and abnormal samples

Fig. 4.7. Feature values of ct state ttl for normal and abnormal samples

represents the number of connections from the same destination address to
the source port over 100 connections. Again, the values of the y-axes differ,
but the values of the feature for malicious data show a spread until the value
of 25. Both normal and malicious data show a peak at 0.

Both ltime and stime have a high correlation with the label in Figure 4.3.
These features represent the last time and the start time of the package, and
thus a time frame. Figure 4.9 shows the ltime for both normal and malicious
data, again with different y axes. There is a clear peak for normal data at
lower values. A similar pattern is found for stime, which is why its figure is
not included in the report.
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Fig. 4.8. Feature values of ct dst sport ltm for normal and abnormal samples

Fig. 4.9. Feature values of ltime for normal and abnormal samples

It is beyond the scope of this thesis to include all graphs with the values of
a feature for the different values of the label. The plots shown are the ones
that displayed the clearest differences when plotted separately for normal
and malicious data. Other features have either similar patterns as they are
related to the features shown, or they do not show interesting patterns with
the label.
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4.2 Different Datasets

After cleaning and exploring the data set, different subsets were created. All
subsets consist of a train, validation and test set, that are distributed by 80-
10-10 of the total records. The mentioned final size of the dataset includes
the attack category and the label column.

All numerical features in the sets are normalised and scaled using the
scikit-learn library. All categorical features are One Hot Encoded (OHE),
using the OneHotEncoder of the scikit-learn library. OHE is chosen over
Label Encoding because Label Encoding (or Categorical Labeling) imposes
a rank. Hash Encoding was not chosen because it might induce problems in
explainability, as not all hashed values can be traced back to their original
values. A downside of OHE is that it can increase the dimensionality of the
dataset.

The creation of every dataset is explained in the following sections.

4.2.1 Basic set

The Basic data set is formed through the findings of other papers in combi-
nation with the exploratory data analysis.

Highly correlated features that represent similar characteristics are com-
bined and the individual features are removed if they did not have a high
correlation with the label. This was the case for:

• sbytes and dbytes to total bytes

• spkts and dpkts to total pkts

• sloss and dloss to total loss

Both ltime and stime were not combined, as both showed a high correla-
tion with the label.

Earlier research has been done to find the optimal feature subset of the
dataset, but they do not agree on all features [38, 62, 74]. The results of
these papers are combined with the results of the current data analysis.

The three TTL features showed a correlation with the label and it has
been observed that they could represent the label [74]. Therefore, one of the
features is removed, namely sttl. This feature is removed as it had a positive
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correlation with ct state ttl and a negative correlation with dttl. The other
two were not correlated.

Other features were removed that did not show clear correlations with
the label during exploration. This is to reduce the number of dimensions of
the dataset: ct src dport ltm, ct dst src ltm, ct srv src and sload.

Others have removed other features related to ports and IP addresses [38,
74] and this approach is followed. These were: srcip and dstip and sport and
dsport.

The categorical featureproto has 135 different values in total, of which 9
occur in the normal category and 129 in the malicious category. To decrease
the number of columns as a result from OHE, a new proto category is created
that only contains 5 of the values instead of the 9 in the normal set or the 129
in the malicious set. These values are ’tcp’, ’udp’, ’unas’, ’arp’, ‘ospf’. All
other values are named ‘others’. In Figure 4.10, more different values of the
feature occur for the malicious category than for the normal category, with
some having almost 0 percentage presence. The original column of proto is
removed.

The final size of the Basic set after normalisation and One Hot Encoding
is (2,540,043, 63).

4.2.2 Whole set

TheWhole set includes all features of the dataset, except for sport and dsport.
sport has 100,343 total categorical values and dsport 128,310. These values
represent the ports, which means that they are categorical and have to be One
Hot Encoded. These features were removed, otherwise the dimensionality of
the dataset would have increased with at least 228,653 features. They were
also removed in other studies [38, 74] and do not show a high correlation
with the label in Figure 4.3.

The Whole set includes the normal values for proto, which means that
there are 135 different categorical values. All values are normalised and One
Hot Encoded.

The total size of the Whole set is (2,540,043, 296).

4.2.3 SMOTE set

As the distribution of the normal and malicious samples is imbalanced, a
method can be applied to reduce this imbalance. One of such methods is
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Fig. 4.10. The values for the newly created proto column

SMOTE [13]. SMOTE is a minority oversampling technique. It generates
synthetic training samples that are similar to the data samples from the
minority class.

Within the malicious part of the dataset, the distribution is also imbal-
anced. Category ‘worms’ occurs much less frequently than ’generic’. It is
possible to apply SMOTE on normal vs. malicious traffic or normal vs. all
separate categories of traffic. Both approaches are used. SMOTE is applied
on the basic set for both binary and multiclass classification, to limit the size
of both datasets. For binary classification, the labels for normal and mali-
cious data are balanced. For multiclass classification, all classes are balanced
(e.g. ’worms’ occur as much as ’normal’). The size of the set for binary clas-
sification is (4,437,520, 63) and for the multiclass classification is (22,187,600,
63). Notice how the latter is roughly 10 times as large as the basic dataset.

Oversampling was chosen over undersampling, as the latter would have
decreased the dataset size. With oversampling, samples from the major-
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ity classes are deleted. The smallest class has 174 instances, which is why
oversampling would have made the dataset too small.

4.2.4 Normal only set

The Normal set is based on the basic set and is of equal size. The major
difference is the absence of malicious samples in the train set. The train
set consists of only normal samples, while all malicious samples are equally
divided over the validation and test set. There are two reasons behind this
approach: 1) the absence of labelled data in real-life situations and 2) the
ability of the AE to be trained on normal data only and detect anomalies
through the reconstruction error. The AE is expected to be trained on only
normal data and classify abnormal data in the test set correctly, as it uses a
greater reconstruction error to detect anomalies. For the RF and the EBM,
the expectation is that they will not be able to classify incorrect samples if
they are not in the train set.

Similarly to the other datasets, the Normal set is scaled and One Hot
Encoded, which leads to a final size of (2,540,043, 63)

4.2.5 Latent set

The Latent set are extracted latent dimensions of the AE. The Basic set is
used as input for a trained AE and the values of the 8 Latent dimensions
are extracted. These eight latent dimensions each give a value for each input
sample, translating into a new dataset of eight features. Each feature is
a latent dimension. Figure 4.11 shows the aim of this approach. Both an
AE and a RF are trained on the Basic set or Normal set and a second RF
is trained on the latent dimensions extracted from the AE. As the AE can
function as a dimensionality reduction method, this approach is explored.

There are two possible latent sets: one in which the AE is trained on
normal data and the other in which the AE is trained on the basic set. For
convenience, the first set is called Latent-Normal and the second set is called
Latent-Basic.

As the input is already scaled and encoded, the latent dimension is not.
The sizes of both sets are (2,540,043, 10), because they include the original
label and attack category.
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Fig. 4.11. Idea of the usage of the Latent dataset with a RF

4.2.6 Minority set

The original dataset is unbalanced. The use of SMOTE to balance the
dataset increases the size of the dataset, which is not always a desired out-
come. To create a dataset that contains every class, but is smaller in size
than the SMOTE dataset, the minority set is created. It contains the total
available instances of the four attack categories with the lowest numbers:
analysis, backdoor, shellcode and worms. The other five attack categories
are also included by dividing the total of the four minority attack categories
by five to get a number. With this number, the remaining categories are
sampled and added. Overall performance of a model should not depend on
dataset size but on how well the train set represents the distribution of the
original dataset [3].

The size of the total minority set is (13381, 63), including ’label’ and
’attack cat’. For the train, validation and test split, there is still the 80-10-
10 ratio. The Minority set is used to train the AE-RF combination.

4.3 Model Hyperparameter tuning

In the following sections, the results of hyperparameter tuning are discussed.
Hyperparameter tuning is performed to obtain the optimal version per model
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per dataset. For every model, various hyperparameters are examined on
the validation set. Although for each model more hyperparameters can be
tuned or larger ranges of numbers can be included, a selection is made that
allows for a diversity of models using the available hardware. Additional to
model performance, the hyperparameter tuning allows for the examination
of performance differences due to the dataset. The aim of this thesis is not
to find the optimal model for NAD, but to find a model with a dataset that
performs accurately enough to support the explanation methods.

The choice of values is based on earlier observed applications of the mod-
els. The options for the RF are in Table 4.2, for the EBM in Table 4.3 and
for the AE in Table 4.4. The number of hyperparameters for the AE is lower
due to hardware limitations. Per model, different versions are selected with
the highest train and validation score to further analyse. Depending on the
model type, the number of versions to compare differs, because there are more
different versions of the RF than of the AE. In general, there are four versions
compared for the RF, three for the EBM and two for the AE. The chosen
version is the model used in the explanation evaluation and comparison.

Hyperparameter Values Description
n estimators 100, 200, 400, 600 Number of trees in the forest
max features ”sqrt”, ”log2” Number of features per split
max depth None, 10, 20 Maximum depth per tree
max samples None, 0.5 Maximum samples per split

Tab. 4.2. Hyperparameters and their values for the Random Forest. 48 combi-
nations in total

The hyperparameters chosen for the RF are shown in Table 4.2. The four
hyperparameters to tune are the number of estimators (trees), the maximum
number of features considered per split, the maximum depth per estimator
(tree) and the maximum samples to consider per split. The default number
of estimators is 400. The numbers above and below are included. The
default maximum number of features is ’sqrt’. According to the scikit-learn
documentation, ’log2’ and ’None’ are other options. To prevent overfitting,
”None” is excluded. For the maximum depth, ”None” is the default. This
means that the nodes are expanded until all leaves have fewer than two
samples. To see if a strain on the depth is beneficial, the numbers 10 and
20 are included. The maximum number of samples reflects the bootstrap
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process. The default version is ’None’, which means that all samples are
considered. To see how it affects the performance, 0.5 is included. This
value means that half of the samples are considered per split.

Hyperparameter Values Description
max bins 256, 128 Bins for the feature processing step
interactions 10, 5, 0 Interaction terms
max rounds 5000, 3000, 1000 Rounds for boosting

Tab. 4.3. Hyperparameters and their values for the Explainable Boosting Ma-
chine. 27 combinations in total

The hyperparameters evaluated for the EBM are shown in Table 4.3.
Similar to the RF, four hyperparameters are selected to tune. These are the
maximum number of bins for the discretisation of continuous features, the
interaction terms between features and the maximum rounds for boosting.
The default maximum number of bins is 256. This number controls the
smoothness of the function. As higher numbers make the feature processing
step more complex, 128 is added. It may result in the loss of information.
For the interaction terms, 10 is the default. The value 0 makes the model
truly additive. Number 5 is included as a bridge between 10 and 0. The
maximum rounds for boosting has 5000 as its default value. Higher numbers
are not included to prevent an increase in train time, while lower numbers
are explored to see if less complex models behave accurately.

Hyperparameter Values Description
hidden neurons [32, 16], [32, 16, 8], The layers and neurons of

[64, 32, 16] the encoder and the decoder
learning rate 1e-2, 1e-3, 1e-4 The learning rate of the algorithm
weight decay 1e-5, 1e-4 Weight decay for the

Adam optimiser

Tab. 4.4. Hyperparameters and their values for the Autoencoder. 18 combina-
tions in total

For the AE, three hyperparameters are tuned: hidden neurons and layers,
the learning rate and the weight decay. The Pyod package does not allow
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for a separation of hidden layers and neurons per layer, which is why these
two are in the same hyperparameter. The default version is [32, 16], which
is expanded with one larger hidden layer and one smaller hidden layer. The
default learning rate is 1e-3 and two learning rates around this value are
chosen. The default weight decay for the Adam optimiser is 1e-5. A value
higher than this one is added to see if a larger weight decay speeds up training
but keeping model performance accurate.

4.3.1 Binary Datasets

An overview of the models evaluated is shown in Table 4.12. Some evalu-
ations are excluded, as previous evaluations with other models show either
poor performance or no difference between the datasets. If train and vali-
dation recall and F2-scores are equal or close to equal for the models, other
metrics are considered. If these are equal, confusion matrices can support
the decision, or simpler models are preferred.

Fig. 4.12. The evaluated models per dataset for binary classification. Green
indicates versions on that dataset are evaluated and the results are discussed. A
line means that this is not the case.

In addition to Figure 4.12, the Latent set versions are evaluated for the
RF and the EBM.

The RF is evaluated on the Basic set, Whole set, SMOTE set and La-
tent set to investigate if the dataset size or the number of features improves
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performance. The results of the RF on the datasets are used to determine
on which sets the EBM and the AE are trained. The expectation is that the
AE is able to perform well on the Normal set, compared to the RF and the
EBM. The RF is trained and validated on the Normal set for exclusion of
this set.

All evaluations are done to find the optimal version of a model for binary
classification. Additionally, a dataset can be selected that balances perfor-
mance and dataset characteristics, such as the number of features or the
amount of samples.

Random Forest

Basic set The range of all metrics for different versions of the Basic valida-
tion set goes from 0.9904 to 0.9960. Of all versions of the RF trained in the
Basic validation set, several have a recall and F2-score greater than 0.995.
This is the highest possible value on these two metrics. The versions with
these scores vary in their hyperparameters. All of them (except one) have a
”None” maximum depth of a tree in common. Not placing a constraint on
the maximum depth could lead to overfitting. Another observation is that
models without a maximum depth and without a constraint on the maxi-
mum number of samples all score above 0.9950 on all metrics, regardless of
the number of trees.

Considering model complexity, two versions are selected with accuracy,
F2-score, precision and recall above 0.995 on the validation set. The F2-score
and recall are 0.9960. Two other versions are selected with scores below these,
but with a constraint on the maximum depth. The versions are shown in
Table 4.5.

The selected versions do not contain a version with log2 as setting. An
observation is that versions with similar settings that differ only in max feat,
perform slightly worse if they have log2 than with sqrt.

As the results are close, the confusion matrices of the four versions are
examined in Figure A.1. The confusion matrices of the first, second and
fourth versions show similar distributions, while the third version shows a
heightened number of false positives opposed to false negatives. The first
version has the lowest number of false positives and false negatives. Version
1 is chosen as the final version and is referred to as RF-Basic from now on.
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Version Estimators Max Features Max Depth Max Samples
1 200 Sqrt None None
2 100 Sqrt None None
3 100 Sqrt 20 0.5
4 200 Sqrt 10 0.5

Tab. 4.5. Four selected versions of the hyperparameter tuning process of the RF
on the Basic set

Whole set In comparison to the Basic dataset, the range of values for the
metrics on the Whole validation set is wider. It goes from 0.9906 to 0.9967,
which is both higher and lower than on the Basic set. A similar approach
for selecting models is used as for the RF-Basic. There are two models with
metrics above 0.9960 and two below. For the versions with a score below,
two versions with a smaller number of trees, a maximum number of depths,
and a constraint on the maximum number of samples are considered.

There are eight versions with all metrics 0.9967. Most versions have log2
as the maximum feature selector, which is interesting in comparison to the
basic set, where models with log2 generally scored slightly lower than those
with sqrt.

The second version has a constraint on the maximum number of samples
considered for a split, although it has performance metrics similar to those
in the first version. Hyperparameters for the versions are shown in 4.6.

For the next two versions, versions that score below 0.9960 are considered.
Using the complexity constraints, versions of interest are the ones with a
lower number of estimators (100, 200), a maximum depth of the tree of 10
or 20 and half of the features considered per split. The hyperparameter
combinations of the last two models are shown in Table 4.6.

As the highest scores on the train and validation set differ by 0.0007
between the basic and the whole versions, no version trained on the Whole
set is used in further examination. The Basic set has fewer features (61)
compared to the Whole set (294), while the performance is close.

Random Forest: SMOTE set The range of performance metrics on the
SMOTE set goes from 0.9931 to 0.9976. The score of 0.9976 is the highest
found for the recall and the F2-score on the validation set compared to the
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Version Estimators Max Features Max Depth Max Samples
1 600 Log2 None None
2 400 Log2 None 0.5
3 200 Sqrt 20 0.5
3 100 Sqrt 20 0.5

Tab. 4.6. Four selected versions of the hyperparameter tuning process of the RF
on the Whole set

Basic and Whole versions.
There are three versions that score equal on all metrics; therefore, the

simplest version is chosen, with 200 estimators. There are two models that
have 200 estimators and score 0.9976 on all metrics, and they only differ in
the selection for the maximum number of features. The version is selected
with the default parameters of the scikit-learn implementation. The chosen
versions are shown in Table 4.7.

Similarly to the Basic set best versions, the best performing versions have
a low number of estimators, a constrained depth of the tree, and using half
of the samples in a split. Furthermore, considering versions that only differ
between sqrt and log2 for the feature selection approach, the versions with
sqrt appear to perform better. This pattern was found at the Basic set as
well.

Version Estimators Max Features Max Depth Max Samples
1 200 Sqrt None None
2 100 Sqrt None None
3 100 Sqrt 20 None
3 200 Sqrt 10 0.5

Tab. 4.7. Four selected versions of the hyperparameter tuning process of the RF
on the SMOTE set

SMOTE is an upsampling technique to balance the samples in the dataset,
by increasing the minority class. In the binary case, SMOTE almost doubles
the original dataset size. Although the SMOTE set has an equal number of
samples for both the normal and malicious class, the performance difference
with the Basic set is 0.016 on recall and F2-score. It is possible that the Basic
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set is balanced enough for binary classification, which is why the performance
of versions trained on the SMOTE increases with 0.016 only. Therefore, no
SMOTE model for binary classification will be investigated further.

Normal set As the train set of the Normal set consists of only normal
samples, it is expected that the RF is not able to classify malicious samples
in the validation set. The performance on the train set is 1.0 for every metric
for every version. However, all other metrics are below 0.4 (accuracy = 0.5,
F2-score = 0.3685, precision = 0.2744 and recall = 0.3685). The versions
are able to correctly classify normal samples, of which there are more than
anomalous samples, but this is a random guess.

These versions are not evaluated further or included in further research.

Latent set There are two latent sets: Latent-Normal and Latent-Basic.
For both datasets, the RF versions are evaluated.

Version Estimators Max Features Max Depth Max Samples
1 100 log2 10 0.5
2 400 log2 10 0.5
3 400 Sqrt 10 0.5
3 200 Sqrt 10 None

Tab. 4.8. Four selected versions of the hyperparameter tuning process of the RF
on Latent-Normal

For the Latent-Normal set, the value of the F2-scores and recall ranges
from 0.9386 to 0.9486. The highest value for precision is 0.9587 and for
accuracy 0.9481. Compared to the Basic set, these values are lower.

For the Latent-Basic set, the F2-score and the recall range from 0.9821
to 0.9869. Accuracy follows this range. The precision has the same lower
limit, but an upper limit of 0.9873. These values are higher compared to the
versions of the Latent-Normal set. It is still lower than the Basic set, but the
Latent-Basic set has 8 features compared to the 61 of the Basic set.

For the final version of the Latent set, models of Latent-Normal are not
considered. Given the metrics and the simplicity of the first version of Latent-
Basic, this version is chosen as the final model. This is now called RF-Latent.
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Version Estimators Max Features Max Depth Max Samples
1 200 Sqrt 20 0.5
2 400 log2 20 None
3 100 Sqrt 10 0.5
3 200 log2 10 0.5

Tab. 4.9. Four selected versions of the hyperparameter tuning process of the RF
on Latent-Basic

Summary Of the five initial dataset, versions trained on four datasets
were evaluated. Versions of the Normal set were excluded. Although the
performance metrics of all versions on the different datasets is above 0.93,
there are other aspects of to take into account about the model and the
dataset. About the model, the complexity of the versions played a role in
selecting the final version. Aspects of the dataset, such as number of features
or size, impacted the decision to use a dataset further in this study.

The RF trained on the Basic dataset showed lower performance metrics
than the RF trained in the Whole set, but the difference was 0.0007. However,
the Whole set contains more features. This shows that more features do not
lead to improved performance. Therefore, no model selected trained on the
Whole set for further investigation.

Secondly, the RF trained on SMOTE showed a small increase in per-
formance over the RF trained on basic. However, the SMOTE dataset is
almost twice as big as the Basic dataset. Using dataset size as a factor in
the decision, the binary versions trained on the SMOTE dataset were not
investigated further.

Based on the performance and characteristics of the dataset, the final
model and dataset selected is the RF trained on the basic dataset. From
now on it is referred to as RF-Basic.

Aside from RF-Basic, RF-Latent was selected from different RF trained
on Latent-Basic or Latent-Normal. The Latent-Basic versions showed better
performance than the Latent-Normal versions. This model is selected for
further investigation, as it has a low feature number and represents the latent
space of the AE.
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Explainable Boosting Machine

The Whole set, SMOTE set and the Normal set are excluded for the eval-
uation of the hyperparameters of the EBM. The RF does not show large
performance differences between the Basic, the Whole set or the SMOTE
set, and it does not work on the Normal set. The expectation is that the
EBM performs similar to the RF on the datasets, which is why they are
excluded. As the EBM is also supervised, they are excluded from the EBM
evaluation.

Three versions are chosen and not four, as there are fewer EBM versions
available from hyperparameter tuning than for the RF.

Basic set The values for the metrics of the binary versions of the EBM are
similar for several combinations of hyperparameters. Values range between
0.9875 and 0.9933 on all metrics. The recall or F2-score is never lower than
0.9879.

There are versions that show 0.9933 on all metrics of the validation set.
All of these versions include interaction terms (5 or 10) and have a set value
of 256 for the maximum number of bins for the feature preprocessing stage.
The different number of rounds for boosting (1000, 3000 and 5000) are all
present with these best versions.

Similarly to the RF, two versions are selected with the highest perfor-
mance metrics. A third model is selected because it does not have the highest
performance metrics but is simpler in its hyperparameters.

Version Bins Interactions Rounds
1 256 10 5000
2 256 5 1000
3 128 5 5000

Tab. 4.10. Three selected versions of the hyperparameter tuning process of the
EBM on the Basic dataset

The first version is the default implementation of the EBM. The second
version has fewer interaction terms and fewer rounds for boosting, but scores
similar on the validation set. The third version has fewer bins than the first
two versions but is equal in the number of rounds as version 1 and interac-
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tion terms as version 2. This version has performance metrics of 0.9931, as
opposed to 0.9933 of all metrics of the first two versions.

Looking at the confusion matrices (Figure A.2), all versions have higher
false negatives than false positives. The first two versions have the same
number of false negatives and the third version has the highest number. The
first version has the lowest false positives of all three versions. The false
positives of the second and third version differ only 1.

The first version is selected based on its validation scores and confusion
matrix. From now on, this is referred to as EBM-Basic.

Latent set As the RF-Latent showed comparable performances as the RF-
Basic, the EBM was trained on this dataset as well. The RF-Latent-Basic
showed better performance than the RF-Latent-Normal. Therefore, EBM is
evaluated only on the Latent-Basic set. As RF-Latent for binary classifica-
tion did not show large performance differences from the RF-Basic, this is
expected for the EBM trained on the latent dimensions as well.

The values of the metrics of the EBM Latent versions are lower than
the binary EBM-Basic, similar to the difference between RF-Basic and RF-
Latent. The values range between 0.9735 and 0.9793 on all metrics.

Two versions are chosen with 0.9793 on all metrics and one version with
metrics below that. The first version has the same parameters as the default
implementation. As the second version already has constraints on the num-
ber of bins and rounds of boosting, the third version is chosen based on a
constraint on the interaction terms.

Version Bins Interactions Rounds
1 256 10 5000
2 128 10 1000
3 256 5 3000

Tab. 4.11. Three selected versions of the hyperparameter tuning process of the
EBM on the Latent dataset

Figure A.3 shows the confusion matrices of all three models. The first
version has the lowest number of false negatives and false positives, compared
to the other two version. Therefore, the first version is selected as the final
version for the Latent set and is referred to as EBM-Latent.
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Summary Inferred from the performance of RF trained onWhole, SMOTE
and Normal sets, the EBM was not evaluated on these sets. From the re-
sults on the performance metrics and the confusion matrices, a final version
was selected of the EBM trained on the basic set. This version is now called
EBM-Basic. The versions showed a comparable performance to the RF-Basic
versions.

Aside from the Basic set, the EBM was trained on the Latent dataset.
Similar to the RF-Basic and RF-Latent, the EBM-Latent showed a slight
decrease in performance compared to the EBM-Basic.

Autoencoder

The AE is evaluated on the Basic set and on the Normal set. The AE is
expected to perform well on the Basic set, but better on the Normal set.
The validation set of the Normal set contains malicious samples that are
absent in the train set and this increases the reconstruction error.

The AE trained on Whole and SMOTE sets are not included in further
evaluations, as the Basic set is evaluated to investigate if a train set with
both normal and malicious samples works for the AE.

Only two versions are selected for further comparison, as the hyperparam-
eter tuning process of the AE is limited due to hardware and time constraints.

Basic set For the Basic set, the recall on the validation set ranges from
0.7958 to 0.8478 for all versions of the AE with different hyperparameters.
The best recall is 0.8478. The F2-score ranges from 0.7917 to 0.8446. The
model that scores the highest recall also scores the highest F2-score. The
precision of this model is highest compared to other models.

However, examining the AE trained on the Normal set, the AE trained
on the Basic set does not show equally good performance. Therefore, the AE
trained on Basic is not used further.

Normal set With the Normal set, the AE is trained on the Normal data
only, but tested on both normal and malicious data. The expectation is that
the AE performs well on this set, and this is confirmed by results. All AE
versions trained on the Normal set only show higher values for all metrics
compared to the AE versions trained on the Basic data.

Recall scores range from 0.9624 to 0.7901 for all versions, while the F2-
score ranges from 0.9619 to 0.7879. The other two metris follow this last
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range. Compared to the other binary versions of the RF and EBM, the
range of metrics is wider.

Two of the best versions of the AE are selected, and their hyperparameters
are shown in Figure 4.12.

The best version has a recall of 0.9624 and an F2-score of 0.9619. The
second version has a recall of 0.9623 and an F2-score of 0.9618. As AE is a
neural network, the trainable parameters increase with the number of neurons
and number of layers. Version 1 has 5557 trainable parameters, while version
2 has 13613.

Version Hidden layers Learning Rate Weight Decay
1 [32,16,8] 1e-4 1e-5
2 [64,32,16] 1e-3 1e-5

Tab. 4.12. Two selected versions of the hyperparameter process of the AE

Given the performance as well as the complexity, version 1 is chosen as
the final model. This will be called AE-Normal.

Summary As expected, the AE performed well on the Normal validation
set. The AE showed a decrease in performance on the Basic dataset. The
difference between the highest values on the metrics of the validation set
of the Normal and Basic versions is 0.1146. Because of this difference, the
AE trained on the Basic set is not included in further investigation, and the
AE-Normal is the main AE used in this thesis.

4.3.2 Multiclass Datasets

Figure 4.13 shows the models and datasets evaluated for the multiclass hy-
perparameter tuning. Additionally, the RF is evaluated for the Latent-Basic
set.

For the multiclass evaluation, the Whole dataset is not evaluated for any
model, because of the minimal performance difference between the binary
versions of the RF. The SMOTE set for multiclass classification balances all
classes equally. It is a different set from the SMOTE for binary classifica-
tion and is investigated for the RF. An EBM is not trained on the SMOTE
dataset, due to hardware limitations.
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Fig. 4.13. The evaluated models per dataset for multiclass classification

The AE is excluded from the multiclass evaluation, as the implementation
was not suited for multiclass performances. Therefore, the Normal set is not
evaluated for any model in the multiclass case, as training the RF and EBM
on this set did not yield good performance.

Again, all evaluations are done to find the optimal version of a model for
a dataset. As the dataset can be unbalanced, the results can show if certain
datasets are not suited for the multiclass classification task.

Random Forest

Below, the results of the multiclass RF hyperparameter tuning on the Basic,
SMOTE, Latent and Minority set are shown.

Basic set Contrary to the binary versions of the Basic dataset, none of
these versions scored 1.0 on metrics during training. The highest training
accuracy, F2score, precision and recall are 0.9998.

The scores differ more between metrics than between the metrics of binary
versions. Validation metrics vary for accuracy and recall from 0.9773 to
0.9820. The F2-score values range from 0.9750 to 0.9820. The precision
ranges from 0.9750 to 0.9815.

Similarly to the previous approach, two versions with the highest metrics
are selected and two versions with lower scores on the metrics, but simpler
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if possible. The four versions are shown in Table 4.13. The first version has
the highest recall (0.9820) and F2-score (0.9820), which are combined with
an accuracy of 0.9820 and a precision of 0.9815. The second version has
a slightly lower F2-score of 0.9811 and a recall of 0.9817. The precision is
0.9810 and the accuracy 0.9817. The second version is simpler than version
1, as it has restrictions on depth and number of samples to consider per split.

Version Estimators Max Features Max Depth Max Samples
1 200 Sqrt None None
2 200 Sqrt 20 0.5
3 200 Sqrt 10 0.5
4 100 Sqrt 10 0.5

Tab. 4.13. Three selected versions of the hyperparameter tuning process of the
RF on Basic for multiclass

As the two previous models already have a low number of estimators,
the other two considered versions have constraints on the depth and the
maximum samples considered per split. The best performing version with
constraints has an accuracy of 0.9778, an F2-score of 0.9730, a precision of
0.9781 and a recall of 0.9778. It has a smaller depth than the second version.
The last and fourth version scores the lowest of all versions on all metrics,
but it is the most constrained tree. It has the lowest number of estimators,
lowest depth and constraint on samples per split.

Taking into account the classification reports for the four versions, not
all versions predict all classes (Figure A.1, A.2, A.3 and A.4). Version 1 and
version 2 predict the class ’worms’, while the other two models do not. The
classification reports of the third and fourth versions show clear absence of
values, having precision, recall and F1-scores of zero. This means that the
model has not predicted these classes.

The behaviour of the versions resembles that of the training data. The
training data is unbalanced with respect to certain classes, such as ‘worms’
or ‘shellcode’. The models predict poorly on minority classes, but are able to
predict majority classes correctly. The overall accuracy is high because it is
weighted. The validation set has a large number of normal samples, so these
predictions are weighed more heavily. However, the macro-average shows a
lower number.
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Comparing the scores between the binary and multiclass classifications,
the model appears to be able to predict correctly whether the data is normal
or anomalous, but not what kind of anomalous data it is. This can be a
result of an unbalanced data set.

Although all versions are not performing optimally for multiclass classi-
fication, the first version is chosen. It has the highest averaged metrics and
tries to predict all classes, not leaving any values in the classification report
empty. From now on its called RF-Basic MC.

SMOTE set Between the binary versions of the Basic set and the SMOTE
set there were no large performance differences, even though the SMOTE set
was almost twice as large. The SMOTE set for binary balanced normal and
malicious labels. The SMOTE set for multiclass classification balances the
differences in the classes instead of labels. For instance, the class ‘worms’
occurs as often as the ‘normal’ samples. The size of the SMOTE set multi-
class is almost ten times larger compared to the Basic set. This increase in
dataset size leads to an increased train time. The train time on the Basic set
for multiclass classification took between 2 and 7 minutes, depending on the
hyperparameters. A high number of estimators lead to a longer train time.
The train time on the SMOTE set for multiclass classification went up from
40 minutes to several hours, when the number of estimators was large. Orig-
inally, there are 48 combinations of hyperparameters to compare. To narrow
down the number and decrease the overall train time, only 100 and 200 trees
are used in the hyperparameter search. This leads to 24 combinations.

As there are 24 combinations instead of 48, two models are examined in
depth. The best performing version has a score on all metrics of 0.9970. The
second-best model scores above 0.9818 on all metrics. An overview of the
hyperparameters is shown in Table 4.14.

Version Estimators Max Features Max Depth Max Samples
1 100 Sqrt 10 0.5
2 200 Sqrt 20 None

Tab. 4.14. Two selected versions of the hyperparameter tuning process of the
RF on SMOTE for multiclass

The classification report shows high scores on precision, recall and accu-
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racy for all individual classes in the classification report of version 1 (Table
A.5 and of version 2 (Table A.6).

For version 1, all metrics for the individual classes are above 0.99. For
version 2, all metrics are above 0.92, except for the precision of ‘dos’. This
is 0.8863. The average scores of the metrics are all above 0.98 and this is the
same for the macro average.

In comparison to the results of the Basic multiclass versions, the two
SMOTE versions have high scores on the metrics of all individual classes.

The confusion matrices show a clear dominance in the diagonal of the
categories, which means that most classes are predicted correctly (Figures
A.4 and A.5). From the matrices it is clear that the class ’dos’ is predicted
often when it is actually another class. This is visible with high values in the
confusion matrix of version 2 (Figure A.5). The second version also shows
higher values outside the diagonal. It is possible that there are classes that
show overlap in their feature values, but the classification reports indicate
that most of the time these classes are predicted correctly.

Version 1 shows higher scores on the metrics than version 2, which is why
version 1 is chosen as the version to continue with for the rest of the thesis.
It is called RF-SMOTE MC.

Latent-Basic set Due to the results of the RF-Basic multiclass and the
minor performance differences between the RF-Basic and RF-Latent-Basic
for the binary case, the expectation is that the RF-Latent-Basic resembles the
performance of the RF-Basic multiclass. The multiclass Latent set servers
as a proof of concept, therefore two versions were created and trained.

One of the versions is the default version of the RF implementation of
scikit-learn. The second version is one with restrictions on the number of
estimators, depth and number of samples to consider. Their hyperparameters
are shown in Table 4.15.

Version Estimators Max Features Max Depth Max Samples
1 400 Sqrt 20 None
2 100 Sqrt 20 0.5

Tab. 4.15. Two selected versions of the hyperparameter tuning process of the
RF on Latent-Basic for multiclass
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Both versions have the same F2-score of 0.9628. The recall of the first
version is 0.0001 lower than that of the second version (0.9647 vs 0.9648).
The precision of the first model (0.9588) is lower than that of the second
model (0.9585), while the accuracy of the second model is higher (0.9648 as
opposed to 0.9647). However, the differences between the metrics are at most
0.0003. The versions perform almost equally. The scores are lower compared
to the RF-Basic MC versions, which shows a resemblance to the difference
in binary classification scores of both models on the dataset.

The classification report for the first version is shown in Figure A.7 and
the second version in Figure A.8. In comparison to the RF-Basic for mul-
ticlass, not all Basic versions predicted every class, but the Latent versions
did. Even with the lower number of features, the Latent versions are able to
make a prediction for each class.

Both versions show similar scores on all individual classes, with some mi-
nor differences. As the two versions show similar performance, the simplicity
factor is used to make the final decision. Version 2 is selected as the final
model, which is now called RF-Latent MC.

Minority set The Minority set serves as a proof of concept. The perfor-
mance of the dataset is tested on one RF with default implementation. The
AE is excluded from hyperparameter tuning. The hyperparameters can be
found in Table 4.16.

Version Estimators Max Features Max Depth Max Samples
1 400 Sqrt 20 None

Tab. 4.16. The default implementation of the RF of the minority set

Overall, the model scores 0.7638 on the recall and 0.7636 on F2-score.
The precision is 0.7633 and the accuracy of 0.7638. All metrics lie close to
each other.

Although most classes are predicted correctly, with scores of 1.0 or slightly
lower, the RF appears to have difficulties distinguishing ’backdoor’ and ’anal-
ysis’. This can be seen in the classification report (Table B.4) and in the
confusion matrix (Figure A.6). The scores of both ’backdoor’ and ’analysis’
are lower compared to all other classes. The scores for ’backdoor’ are lower
than for ’analysis’ in the confusion matrix.
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It is possible that the model is not able to distinguish these classes and
needs more samples to learn the decision boundary. The lack of samples
could be the reason for the model’s inability, although the class ’worms’ is
predicted correctly all the time.

There is only one version tested for the Minority set. From now on this
model is referred to as RF-Minority.

Summary A general observation for the multiclass classification versions
is that the metrics differ more between versions, compared to the binary
classification versions.

For the multiclass hyperparameter tuning, four datasets with different
versions of the RF were evaluated. The RF-Basic MC and RF-Latent MC
showed similar performances as their binary counterparts. The differences
between the multiclass models show similarity to the differences between the
binary models.

Although most versions on the datasets showed comparable average per-
formance, the performance on the minority classes was lower than on the
majority classes. The SMOTE versions showed the best performance on
all individual classes, followed by the Minority versions. The latter had
difficulty distinguishing between two individual classes, which lowered the
average scores for the metrics.

As a result, there are four RF for multiclass classification, trained on four
different datasets.

Explainable Boosting Machine

The following section contains the results of EBM hyperparameter tuning
for multiclass classification. For the multiclass EBM, only the Basic set is
evaluated as other sets served as proof of concept or were excluded for the
RF as well. The Minority sets serves as a proof of concept and are only
validated on the RF. As the Latent set did not show a good performance
on the individual classes for the RF, it is not included for examination with
the EBM. Due to the size of the SMOTE set, it was not possible to train an
EBM locally on this dataset.

Basic set The values of the multiclass EBM versions range between 0.9501
and 0.9659 for all metrics.
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There are several versions that show the same scores on the validation
set. All of these versions include interaction terms (5 or 10). Compared to
the versions for binary classification, the versions include 128 or 256 bins for
the feature preprocessing stage and all different numbers for boosting.

Using a similar approach as for the Random Forest, two versions are
selected from the highest scoring versions. They have a recall of 0.9659, an
F2-score of 0.9610, a precision of 0.9551 and an accuracy of 0.9659. As a
third version, a simpler version with high scores on performance metrics is
selected.

Version Learning Rate Bins Interactions
Rounds
1 128 10 5000
2 128 10 1000
3 128 0 3000

Tab. 4.17. Three selected versions of the hyperparameter tuning process of the
EBM

The first model resembles the default values for the EBM, in addition
to the bins for continuous features. The second model has fewer rounds for
boosting but shows equal scores.

Secondly, the third version does not include interaction terms, while the
two other versions do. The first two versions score higher on all performance
metrics, which could indicate that interaction terms are of importance for
the training models on this dataset. The third model scores a similar recall
of 0.9659, but a lower F2-score (0.9555), which is due to the lower precision
(0.9519).

The classification reports show similar patterns compared to each other.
They can be found for version 1, 2 and 3 in Figure A.9, A.10 and A.11. In
all versions, the classes ‘worms’, ‘shellcode’, ‘analysis’ and ‘backdoor’ are not
predicted once. The third version does not predict the class ’dos’ either.

Interestingly, the class ’recoinnaissance’ belongs to the five classes with
the lowest instances in the dataset, but its precision value is the highest
compared to all other individual classes.

Versions 1 and 2 show similar classification reports for the validation set.
Both models have similar hyperparameters, with the only difference in the
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number of rounds. Version 2 is chosen as the final model because of its
simplicity. This version is now referred to as EBM-Basic MC.

Summary For the EBM, only the Basic set is evaluated. These versions
show similar performance on average and weighted, compared to each other
and to the RF-Basic multiclass versions. They have high average scores on
metrics, but often low scores for individual classes. This can be a result of
the unbalanced dataset.

Although the performance of the EBM-Basic for the multiclass case is not
optimal, one version is chosen to investigate further. This version is called
EBM-Basic MC.
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Chapter 5

Results

5.1 Model Performance

Table 5.1 shows all models that are compared and their performance metrics
on the test set. The test set per model can differ, but is always based on the
UNSW-NB15 dataset.

Model Accuracy F2-score Precision Recall
Binary classification
RF-Basic 0.9960 0.9960 0.9960 0.9960
RF-Latent 0.9872 0.9872 0.9875 0.9872
EBM-Basic 0.9913 0.9913 0.9916 0.9913
EBM-Latent 0.9864 0.9865 0.9867 0.9864
AE-Normal 0.9617 0.9612 0.9635 0.9617
multiclass classification
RF-Basic 0.9819 0.9818 0.9814 0.9819
RF-Latent 0.9655 0.9637 0.9591 0.9655
RF-SMOTE 0.9819 0.9818 0.9832 0.9819
RF-Minority 0.7638 0.7578 0.7623 0.7638
EBM-Basic 0.9629 0.9574 0.9479 0.9629

Tab. 5.1. Scores of models on datasets for binary and multiclass classification

In general, the aim is to find optimal models for binary and multiclass
classification. This is done through five comparisons, of which two binary and
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three multiclass. Models differ in structure or train set used. The compar-
isons show model performances but allow for the inclusion of other aspects
that influence the performance, such as hyperparameters or dataset format.
This presents reasons for the exclusion or inclusion of models for the expla-
nation evaluation. Models can be excluded if their performances are too low
and possibly influence the objective properties for the explanations. On the
other hand, models can be included, although their performances are lower
compared to similar models for reasons beyond mere performance.

As a final result, the model performances of the AE+RF model are shown.
The results are not included in Table 5.1, because this model is explored as
a proof of concept. Comparison of the multiclass results of the other models
is made briefly, but not explored into depth.

5.1.1 Binary: RF-Basic vs. EBM-Basic vs. AE-Normal

The first binary comparison is between the RF-Basic, EBM-Basic and AE-
Normal. This comparison evaluates the balance between model complexity
and model performance for the UNSW-NB dataset. Although the train set
differs for the AE model, it contains the same features and is sampled from
the same original dataset. The RF and the EBM are less complex compared
to the AE and the evaluation is done to see if a complex model outperforms
less complex models on the same dataset.

Three models are compared for binary classification. Of these three mod-
els, two are trained on the same dataset. The AE-Normal is trained on a
different dataset. A consequence of this is the difference in the test sets. This
could affect the numbers in the confusion matrices.

Based on the metrics on the test set shown in Figure 5.1, the RF-Basic
outperforms the other models. The EBM-Basic outperforms the AE-Normal.

The RF-Basic and EBM-Basic both show a higher number of false nega-
tives than false positive, shown in the confusion matrices in Figure B.1 and
Figure B.2. These models predict normal behaviour more often when the
true class is malicious than when the class is normal. In the case of the
AE-Normal it is the opposite: the number of false positives is larger than
the number of false negatives (shown in Figure B.3). The number of false
negatives of the AE-Normal is the lowest of all three models.

The Normal set has only normal samples in the train set. It does not
contain any malicious samples, and all malicious samples are placed in the
test set. Therefore, the AE test set contains more malicious samples that the
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other dataset. This can be seen in the true positive class of the confusion
matrix of Figure B.3. The test set of the Normal set contains more than
160.000 correctly classified malicious samples compared to 30.000 samples
for the other two models.

Taking into account Table 5.1, the difference in F2-score and recall of
RF-Basic and AE-Normal is smaller than 0.035. This holds for the other
metrics as well. The difference in scores on the test set is even smaller for
RF-Basic and EBM-Basic, as it is below 0.005.

Based on the performance metrics, the RF-Basic outperforms the other
two models. A possible explanation for the performance of the RF-Basic is
the dataset. The dataset is of tabular format, which is a preferred format for
Random Forests in general.

However, for a classification model in the field of NAD a high detection
rate is preferred, which is why the F2-score and the recall are the two impor-
tant scores. This indicates that the model has to be sensitive to anomalies.

Given that the AE is trained on normal data only, the AE appears to be
more sensitive for anomalous data. This could be a possible explanation for
the number of the false positives in the confusion matrix in Figure B.3, aside
from the increased number of malicious samples in the test set.

The percentage represents the number of false positives out of the total
number of malicious samples in the test sets. There are 32,037 malicious
samples in the Basic set and 160,868 in the Normal set.

• RF: 1,451% false positives

• EBM: 2,400% false positives

• AE: 5,848% false positives

Although the Normal test set contains more malicious samples, the AE
predicts more samples to be malicious compared to the other two models.

All models are combined with explanations and evaluated in the next
section. Although the RF-Basic outperforms the other two models, there are
other reasons to include the EBM-Basic and the AE-Normal. The EBM-
Basic shows similar performance, but is inherently explainable. The AE-
Normal shows comparable performance but is more difficult to explain than
the other two models. Investigating the explanation differences together with
the model differences can provide insight into the differences in explanations.
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5.1.2 Binary: RF-Basic vs. RF-Latent vs. EBM-Basic
vs. EBM-Latent vs. AE-Normal

The second binary comparison is between two models trained on the Basic
set, two models trained on the Latent set and the AE-Normal. The whole
comparison of the three models investigates whether there are differences in
performance, as all models capture similar information of the dataset in a
different manner. The Latent dataset is extracted from the AE latent dimen-
sions. The Basic dataset has 61 features for classification while the Latent
has 8. The comparison investigates the differences between the RF and EBM
trained on a dataset with a higher dimensionality and on a compressed ver-
sion of the dataset. The RF-Latent and EBM-Latent are essentially trained
on the same latent dimensions as the AE-Normal can construct. The RF-
Latent, the EBM-Latent and the AE-Normal are compared to see if there
are differences between them in performance.

In this comparison, there are three different test sets. The Basic set, the
Latent set and the Normal set. All test sets are equal in size. The test set
of the Latent set has an equal number of malicious samples as the Basic set.
In the previous subsection 5.1.1 the difference between the test set of the
Normal and the Basic dataset was mentioned, as well as the differences in
false positives and false negatives on the test set of the RF-Basic, EBM-Basic
and the AE-Normal. The RF-Basic has higher scores on the performance
metrics and a lower number of false positives, while the AE-Normal has a
lower number of false negatives. The EBM shows a performance that is in
between the RF-Basic and the AE-Normal.

The values of the RF-Latent metrics are in between the RF-Basic and
AE-Normal (Table 5.1. The F2-score and recall are both 0.0088 lower than
that of the RF-Basic. Compared to the AE-Normal, the F2-score is 0.0260
higher and the recall is 0.0255 higher of the RF-Latent. All scores are above
0.98.

The confusion matrix of the RF-Latent (Figure B.4 shows higher values of
false negatives compared to the RF-Basic and the AE-Normal. The absolute
number of false positives is higher than those of the RF-Basic, as well as
the relative percentage (7,142%). The percentage is higher compared to the
percentage of AE-Normal.

Similarly to RF-Latent, the values of the metrics of the EBM-Latent are in
between the EBM-Basic and the AE-Normal, shown in Table 5.1. Comparing
the EBM-Latent with the EBM-Basic, the F2-score is 0.0048 lower and the
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recall is 0.0047 lower. Compared to the AE-Normal, the F2-score is 0.0253
higher and the recall is 0.0247 higher. Again, all scores are above 0.98.

The number of false negatives and false positives is higher compared to
the EBM-Basic, shown in Figure B.5. The number of false negatives is higher
compared to the AE-Normal, while the false positives are lower. The percent-
age of false positives is higher than the percentage of both the EBM-Basic
and AE-Normal (7,338%).

There are minor differences in the performances of the RF-Latent and
EBM-Latent. They show similar patterns: their performance metrics are in
between the same model trained on the Basic set and the AE-Normal and
the percentages of false positives are higher than the AE-Normal.

All models are evaluated with an explanation in the next section. The RF-
Basic, EBM-Basic and the AE-Normal were already included by the previous
comparison, but the RF-Latent and EBM-Latent show comparable perfor-
mances. As they differ in the dataset from the RF-Basic and the EBM-Basic,
this can show the influence of a dataset on the explanation performances.

5.1.3 Multiclass: RF-Basic vs. EBM-Basic

The third comparison is a multiclass comparison between the RF-Basic and
the EBM-Basic. Although hyperparameter tuning for both models showed
their inability to correctly classify minority samples (Section 4.3.2 and Sec-
tion 4.3.2), this comparison tries to find if one model outperforms the other
model to possibly include in the explanation evaluation.

Based on metrics only in Table 5.1, the RF-Basic performs better than
the EBM-Basic for multiclass classification. The recall of the EBM-Basic is
0.0190 lower compared to the RF-Basic. The F2-score of the EBM-Basic is
0.0244 lower compared to the RF-Basic. The accuracy difference is similar to
the recall difference, while the precision difference is the largest of all metrics.

From the confusion matrix in Figure B.7 it shows that the EBM-Basic
does not predict every class. Five of nine classes are not predicted by the
model once. This is confirmed by the classification report in Table B.3. Using
the confusion matrix in Figure B.8 Although not always correct, shown in
the confusion matrix (Figure B.6) and the classification report (Table B.2),
the RF-Basic predicts every class at least once. It appears to be able to
capture the diversity of the dataset better than the EBM-Basic.

The performance on individual classes and on average shows that the
RF-Basic outperforms the EBM-Basic for the multiclass classification, but
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the RF-Basic is not able to classify most of the minority classes correctly.
Both models are not combined with an explanation for further evalua-

tions. They do not show accurate model performance on minority classes,
which might affect the explanation performance.

5.1.4 Multiclass: RF-Minority vs. RF-SMOTE

The fourth comparison is made between RF-Minority and RF-SMOTE. This
is a multiclass comparison. Both datasets are balanced and have shown dur-
ing hyperparameter tuning that they are able to classify most individual
classes correctly. The datasets differ in other aspects, such as size. The com-
parison is made to see how differences between the datasets might influence
performance and what the specific differences in performance are.

RF-SMOTE appears to outperform RF-Minority, given the performance
metrics in Table 5.1.

Examining the confusion matrices (RF-Minority: Figure B.8, RF-SMOTE:
Figure B.9), the minority model shows difficulties in distinguishing between
the classes ’analysis’ and ’backdoor’. This was shown earlier in Section 4.3.2.
The classification report of the RF-Minority (Table B.4) confirms the obser-
vation of the confusion matrix and shows that the model has the lowest met-
rics for the class ’analysis’ and ’backdoor’. It does not include the ’normal’
class because the purpose of the model is to distinguish between malicious
classes.

Aside from the two classes mentioned above, most classes have a preci-
sion, recall, and F-score comparable to the SMOTE set. There is no direct
explanation for RF-Minority performance on these two classes. Knowing that
the model has difficulties predicting these classes, one can consider adding
more samples of these classes. But the prediction mistakes are not necessarily
due to having not a lot of samples, because ’worms’, as the lowest occurring
class, are predicted correctly almost every time. The performance on ’anal-
ysis’ and ’backdoor’ can indicate the model is not able to generalise between
these classes with the given number of samples, while other classes are differ-
ent enough that they only need a few samples to capture the diversity within
the class.

Although the RF-SMOTE shows high metrics for all classes, the confusion
matrix in Figure B.9 shows that the model makes mistakes in all classes. The
observation is that, with more data, the model appears to make mistakes for
all classes, in general.
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Performance-wise, the RF-SMOTE outperforms the minority model. How-
ever, the SMOTE set is approximately 150 times bigger than the minority
set.

A possible downside of SMOTE is that it can introduce noise and create
more overlap between classes. It does not take into consideration neighbour-
ing examples can be from other classes. In other words, both are close, and
the decision boundary is vague. This can increase the overall difference be-
tween classes and introduce additional noise, but this is not reflected by the
scores in the classification report nor the confusion matrix (Table B.5 and
Figure B.9)

Using SMOTE for multiclass, it appears that a RF works better in the
multiclass case if the dataset is balanced. The RF-Minority model confirms
this observation, in addition to predictions of ’analysis’ and ’backdoor’. To
capture the diversity of the classes for the multiclass classification, the dataset
needs a different number of occurrences of each class.

Both models are evaluated in combination with an explanation. The
RF-SMOTE outperforms the RF-Minority, but it is clear where the RF-
Minority falls short. Using explanations, these shortcomings can be high-
lighted and compared with similar model predictions and explanations of
the RF-SMOTE. Also, the RF-SMOTE shows accurate performance on mul-
ticlass classification, which is why this model is included to be evaluated
further with an explanation.

5.1.5 Multiclass: RF-Basic vs. RF-Latent

The final multiclass comparison is made between the RF-Basic and RF-
Latent. Mentioned above, the RF-Basic did not show the ability to clas-
sify minority classes correctly. The RF-Latent for multiclass showed similar
behaviour, during hyperparameter tuning (Section 4.3.2). Through the com-
parison, both models are evaluated in depth to see if there are performance
differences due to the dataset and if the performance is good enough to con-
tinue to the explanation evaluation stage.

Looking at Table 5.1, the performance of the RF-Basic multiclass is better
than the performance of RF-Latent multiclass.

Including confusion matrices (RF-Basic: Figure B.1 and RF-Latent: B.10,
both models show similar behaviour. They are able to predict the majority
classes, but not the minority classes. Although both models show this be-
haviour, the metrics of the RF-Basic appear to be higher for medium-sized
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classes, such as ’fuzzers’ and ’exploits’, compared to the RF-Latent. Addi-
tionally, RF-Latent does not predict the class ’worms’ once. This is clearly
shown in the confusion matrix in Figure B.10.

The difference in performance for individual classes between the two mod-
els may be due to a lower number of features for the Rf-Latent. A lower
number of features might provide less information to distinguish between
classes.

Both models are not included for further evaluation with an explanation.
Both models do not show accurate performance on most of the minority
classes, which might affect the explanation.

5.1.6 Additional Multiclass: AE+RF

As the AE+RF is a proof of concept, no hyperparameter tuning was per-
formed. The AE-Normal was chosen as the AE and an RF with default
parameters. Table 5.2 shows the performance metrics of the AE+RF frame-
work.

Model Accuracy F2-Score Precision Recall
AE-RF 0.9770 0.9789 0.9869 0.9770

Tab. 5.2. The model performance scores of the AE-RF model for multiclass
classification.

The AE model correctly predicts 214590 samples correctly and 418 sam-
ples incorrectly as ’normal’, which leaves 38997 samples for the RF to clas-
sify. Figure B.11 shows that the model still makes mistakes for the minority
classes. From the confusion matrix it appears that the model incorrectly
predicts many instances to be ’analysis’ or ’exploits’. Another mistakes is
made for ’fuzzers’, which is often predicted while the class is ’normal’. The
difficulty with the ’analysis’ class was seen previously for the RF-Minority,
so this could be expected. However, the difficulty for the other classes was
not expected.

The average performances of the model are displayed in Table 5.2. The
average performances are lower compared to the other multiclass models,
but higher than the RF-Minority. The values of the individual classes are
shown in Table B.7. Although performances on individual classes are higher
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compared to the RF-Basic, RF-Latent, EBM-Basic and the RF-Latent, the
performances are lower compared to the RF-SMOTE and the RF-Minority
model.

As the model serves as a proof of concept and the performance metrics
are lower compared to other multiclass models, the model is not included for
further investigation. The isolated RF-Minority model is used for explanation
purposes in the next phase.

5.1.7 Summary

Given model performance on the binary classification problem, the RF-Basic
outperformed the EBM-Basic ad the AE-Normal based on the performance
metrics. Given the confusion matrix, the AE-Normal seems to be more sen-
sitive to false positives than the other two models. The RF and EBM trained
on the Latent set show comparable performances to the RF and EBM trained
on the Basic set, even though this model has 8 features instead of 62.

For the multiclass case, the RF-SMOTE is the only model that is able to
classify all individual classes correctly. The RF-Minority performance comes
close for most individual classes, but not all. The other multiclass models
show good performance on the individual classes with high occurrences in
the dataset, but poor performance on the minority cases.

Given the results on the model performance, certain models are selected
to be combined with an explanation and examined in the next section.

The following models and explanations are compared:

• Binary: RF-Basic+LIME, RF-Basic+SHAP, EBM-Basic, AE-Normal

• Binary: RF-Basic+LIME, RF-Basic+SHAP, RF-Latent+LIME, RF-
Latent+SHAP,

• multiclass: RF-SMOTE+LIME, RF-SMOTE+SHAP, RF-Minority+LIME,
RF-Minority+SHAP.

5.2 Explanation Performance

After the model evaluation, the explanations were evaluated for sensitivity
and fidelity. The results are shown in Table 5.3. The sensitivity scores are 0
at best and can theoretically be infinite. The fidelity scores are percentages,
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where a high percentage is preferred. The fidelity scores are included for
three perturbation levels.

Explanation Sensitivity Fidelity 1 Fidelity 2 Fidelity 3
Binary classification
RF-Basic SHAP 0.0611 4.13 7.81 10.65
RF-Basic LIME 0.0339 2.03 5.90 9.78
RF-Latent SHAP 0.1139 23.48 28.97 31.13
RF-Latent LIME 0.0641 10.87 17.78 21.65
EBM-Basic 0.0743 9.42 12.42 15.09
EBM-Latent 0.0623 13.55 18.65 22.61
AE-Normal 0.3512 6.79 8.05 9.61
multiclass classification
RF-SMOTE SHAP 0.0692 9.94 12.0 13.0
RF-SMOTE LIME 0.0447 3.84 3.61 2.84
RF-Minority SHAP 0.0489 29.71 29.03 29.29
RF-Minority LIME 0.0683 3.87 4.23 5.16

Tab. 5.3. Scores of explanation methods of models on datasets for binary and
multiclass classification

In the following subsections, explanations are compared. There are three
comparisons, of which two are on binary classification and one is on mul-
ticlass classification. The goal of these comparisons is to find differences
between explanations of models of different complexity. Additionally, several
RF trained on different datasets are evaluated in combination with LIME
and SHAP. This provides insights into the difference a dataset might induce
in explanation methods.

Comparisons are based on the results of Table 5.3 and supporting figures.
For most comparisons, individual explanations are added to show the differ-
ence in the explanation methods. In order to exclude the visual differences,
a barplot with feature importance is used for every explanation. The feature
importances shown in the figures are normalised. A general note about the
feature importance of the AE is that it often shows clear feature importances
for a few features, while others are low. This affects visibility.

There are three general cases of explanations for individual points. For
the first two cases, all models correctly predict the label. The first case is the
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correct prediction of the normal label and the second case is the prediction
of the malicious label. The third case is an explanation of a point where
the model is incorrect. To make a fair comparison between explanations
by different methods, ideally the point occurs in all test sets of the trained
models. This is not always possible because the point has to adhere to the
case requirement and occur in all test sets. It is mentioned if the point does
not occur in all three test sets.

The RF-Minority is examined without the attachment of the AE for ex-
planation purposes.

5.2.1 Binary: RF + SHAP vs. RF + LIME vs. EBM
vs. AE

The first comparison is made between three different models that all have a
different explanation method. The RF uses two model-agnostic methods, the
AE uses a model-specific personalised method, and the EBM is inherently
explainable. All models differ in complexity, with the AE being the most
complex and the EBM the least. Their performances were comparable, and
this comparison investigates if their explanations are too.

Table 5.3 includes the sensitivity and fidelity scores of the explanations of
the RF-Basic, EBM-Basic and AE-Normal for binary classification. For the
RF, both LIME and SHAP are included. The EBM is inherently explainable
and the AE uses a personalised method.

First, the sensitivity score is compared. A low sensitivity score is pre-
ferred, as this indicates the explanation is not sensitive to small perturba-
tions that do not alter the prediction. The RF-Basic+LIME has the lowest
sensitivity for the binary classification. This is followed by RF-Basic+SHAP
and EBM-Basic. The sensitivity of the AE is the highest compared to the
other three.

Secondly, the fidelity scores are compared. The EBM-Basic shows the
highest fidelity scores for all perturbation levels, while the RF-Basic+LIME
shows the lowest fidelity scores for all levels. RF-Basic+SHAP and AE-
Normal show comparable fidelity scores. All models show an increase in
fidelity scores with increasing perturbation strength.

The sensitivity is plotted against the fidelity to show the spread of the
values through the dataset. Figures C.1, C.2 and C.3 show the spreads for
the explanations of RF-Basic, EBM-Basic and AE-Normal.
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All explanations show an increase in the spread of fidelity values when
the perturbation strength increases noted above about the results of Table
5.3.

RF-Basic+LIME shows less spread in sensitivity and fidelity values at
lower perturbation strengths than the RF-Basic+SHAP. The EBM-Basic
shows a wide spread of values at perturbation strength 1 already, but the
number of number of explanations per fidelity value appears to be more
divided at higher perturbation strengths. The EBM-Basic shows a similar
spread of sensitivity values as the RF-Basic+LIME, which is a smaller spread
of the sensitivity values than the RF-Basic+SHAP or the AE-Normal.

Similarly to the RF-Basic explanations and the EBM-Basic, the spread
of the AE increases as the perturbation strength increases, but the spread
appears to be more strictly separated. There are many explanations with a
fidelity of 0 or close to 0, followed by a jump to a fidelity around 35-40. This
can be a result of the method of calculation of the feature importances.

Figure 5.1 shows four explanations for point 1, where all models correctly
predict the label to be normal. Except for the AE, all other three explana-
tions have ct state ttl in their top 5 features. Both RF explanations have
that feature as the most important feature. The AE has dttl as its most
important feature, while this is the second most important feature for the
RF-Basic+LIME. This does not occur in the other explanations.

The RF-Basic+SHAP and the EBM-Basic explanations have the most
overlap in their top 5, as three features occur in both explanations.

For point 1, it looks as the feature importances of the EBM-Basic ex-
planation are gradually increasing. For the AE, there is one high peak, two
smaller peaks and two values too small to show in the figure. The RF-
Basic+LIME shows a similar high peak for its two most important features,
followed by lower importances. The RF-Basic+SHAP shows a high peak for
its most important feature, but the features after that shows similar feature
importances that are lower.
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(a) (b)

(c) (d)

Fig. 5.1. Feature importances of different explanations with all models correctly
predicting the label (’0’) of the same point. (a) RF-Basic + LIME with strength
1 (b) RF-Basic + SHAP with strength 1 (c) EBM-Basic with strength 1 (d) AE-
Normal with strength 1

For the second point, the explanations are shown in Figure 5.2. For this
point, the models correctly predict the malicious sample. The two explana-
tions of RF-Basic and the EBM share the most important feature, which is
again ct state ttl. That feature does not occur in the AE explanation. The
RF-Basic explanations share four out of five features, although the order dif-
fers. The EBM-Basic shares 3 features with RF-Basic+SHAP and 2 with
the RF-Basic+LIME. The AE does not share any features with the other
explanations. It also shows two high peaks, followed by values too small to
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be visual.

(a) (b)

(c) (d)

Fig. 5.2. Feature importances of different explanations with all models predicting
the label (’1’) correctly. The prediction is ’1’, but the label is ’0’ (a) RF-Basic +
LIME with strength 1 (b) RF-Basic + SHAP with strength 1 (c) EBM-Basic with
strength 1 (d) AE-Normal with strength 1
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(a) (b)

(c) (d)

Fig. 5.3. Feature importances of different explanations with all models predicting
the label incorrectly. The prediction is ’1’, but the label is ’0’ (a) RF-Basic +
LIME with strength 1 (b) RF-Basic + SHAP with strength 1 (c) EBM-Basic with
strength 1 (d) AE-Normal with strength 1

Figure 5.3 shows explanations for the third point. All models incorrectly
predict the label to be malicious, while it is normal. Again, EBM and both
RF explanations have ct state ttl in their top features. A difference now is
that all explanations have dttl in their top features. The EBM-Basic and
the RF-Basic+LIME share the top 3 features in the same order. The RF-
Basic+SHAP shares two features with the RF-Basic+LIME and the EBM-
Basic. Aside from one shared feature, the AE does not share more features
with the other explanations.
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5.2.2 Binary: RF and EBM Basic vs. RF and EBM
Latent

The second comparison is made between two models trained on the Basic
set and two models trained on the Latent set. Both the RF-Basic and RF-
Latent use LIME and SHAP as explanations. The Basic and Latent differ in
the train set. The comparison can provide information on differences in the
explanation properties as a result of different datasets. The focus lies on the
comparison between the Basic models and the Latent models, as the Basic
models were already compared in the previous section. Although the latent
dimensions are uninterpretable by humans, this comparison is made because
the Latent model showed comparable model performance and the interest
lies with the influence of the dataset on the explanation. A comparison is
made between the RF-Latent and EBM-Latent explanations are well, because
the explanations could provide information on which latent dimensions are
important for predictions.

Shown in Table 5.3, the RF-Latent explanations have a higher sensitivity
value and a higher fidelity value for every perturbation strength, compared
to the RF-Basic explanations. The sensitivity score of the RF-Latent+SHAP
is the highest of all four explanations. RF-Basic+LIME has the lowest sen-
sitivity score, followed by RF-Basic+SHAP. The RF-Latent+SHAP has the
highest fidelity scores of the explanations for the binary classification models
for all three perturbation strengths. The RF-Latent+LIME has lower fi-
delity scores compared to RF-Latent+SHAP, but these scores are still higher
than the fidelity scores of both explanation methods for RF-Basic. All ex-
planations show an increase in fidelity scores as the perturbation strength
increases.

Figures C.4 and C.1 show the spread of sensitivity and fidelity of the RF-
Latent and RF-Basic explanations. Similar to earlier findings, the fidelity
spread increases with the strength of the perturbation. The fidelity spread
of RF-Latent is wider than that of RF-Basic, which was also noted in Table
5.3. However, Figure C.4 shows that the spread of the sensitivity is larger
for both explanations of RF-Latent compared to the RF-Basic explanations
in Figure C.1.

From Table 5.3, the EBM-Latent explanations show a lower sensitivity
score and higher fidelity scores compared to the EBM-Basic. The EBM-
Latent explanations have a lower sensitivity compared to both LIME and
SHAP explanations of the RF-Latent, while the fidelity scores are in between.
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The fidelity scores do show the increment that goes with the increase in
perturbation strength, as other models have shown before.

Figures C.5 and C.2 show the spread of sensitivity and fidelity of the
EBM-Latent and EBM-Basic explanations. The fidelity spread for both mod-
els increases with the strength of the perturbation. From the Figures in C.5,
the spread of the sensitivity value is smaller. This opposite is visible in the
comparison between the RF-Latent and the RF-Basic.

As it is unclear what each latent dimension represents, explanations for
specific points cannot be compared to the models trained on the Basic set. To
see which latent dimensions are of importance for predictions, explanations of
individual points of the Latent set are included. The three points compared
are the same three points for the RF and the EBM explanations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.4. Explanations for RF-Latent points (a) RF-Latent + LIME for case 1
(b) RF-Latent + SHAP for case 1 (c) RF-Latent + LIME for case 2 (d) RF-Latent
+ SHAP for case 2 (e) RF-Latent + LIME for case 3 (f) RF-Latent + SHAP for
case 3
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(a) (b)

(c)

Fig. 5.5. Explanations for EBM-Latent points (a) EBM-Latent for case 1 (b)
EBM-Latent for case 2 (c) EBM-Latent for case 3

The three points of the RF-Latent are explored first. For point 1, where
the RF correctly predicts the normal sample, the latent dimension 3 is the
second most important for both LIME and SHAP. Latent dimension 3 is also
important for the LIME explanation of point 2, where the model correctly
predicts an anomaly, but less important for SHAP. For the SHAP explanation
of point 2, aside from latent dimension 2, other latent dimensions show similar
feature importances. For the LIME explanation, the feature importances
decrease gradually. For the third point, where the RF predicts anomaly but
the label is normal, latent dimension 0 is the second most important feature
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for LIME and SHAP. In the top 5 of both explanations, latent dimension 7
occurs, which has not occurred in the explanations for other points. For all
three points, every latent dimension occurs at least once in an explanation.

Compared to the RF-Basic explanations, the ct state ttl feature occurred
in every explanation as the most important feature, except for SHAP for
point 3. Not every feature occurred at least once in every explanation, but
the model has 62 features instead of 8.

For the three explanations of the EBM, latent dimensions 0, 2, 3 and 5
occur in every explanation. All explanations differ with one latent dimesion.
Interestingly, latent dimension 4 is the second most important for point 1
but occurs nowhere else. Similarly, latent dimension 1 is the most important
point for point 2, but occurs in no other explanation of the EBM.

For the EBM-Basic, the ct state ttl feature occurred in every explanation.
There is no other feature of the Basic set that occurs in every explanation.

Between the RF-Latent and the EBM-Latent explanations, it differs per
point if they show overlap in the latent dimensions. Latent dimension 2
the most or second-most important features for all explanations. In gen-
eral, the explanations of the EBM-Latent show more overlap in the expla-
nations of different points compared to the explanations of the RF-Latent.
For the first point, the EBM-Latent shows overlap with the explanation of
RF-Latent+SHAP. Although the order of the features differ, features oc-
cur in both explanations. The explanation of the EBM-Latent differs one
feature with RF-Latent+LIME. The second point differs more between the
explanations of the two models. Both explanations of the RF-Latent have
latent dimension 2 as the most important feature, while this is latent di-
mension 1 for the EBM-Latent. Also, latent dimension 4 is absent from the
EBM-Latent explanation, while present for the two other explanations. The
third point shows a clear feature importance for latent dimension 2 for the
explanations of LIME and SHAP, but this is absent for the explanation of
the EBM. It does have latent dimension 2 as the most important, but other
importances are close.

Compared to the Basic set, Latent set has fewer features than the Basic
set, which is a possible explanation for the increased sensitivity and fidelity
scores. Perturbing 1 of 8 total features might affect the explanation or predic-
tion faster than perturbing 1 of 62 features. Considering sensitivity, a small
perturbation might change the explanation more, as the explanation depends
more heavily on each feature. Looking at fidelity, perturbing a feature if the
total number of features is low might push a point over a decision bound-
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ary more easily. The explanations of RF-Latent and EBM-Latent showed
a clear presence of latent dimension 2 and overlap in the important latent
dimensions for the first point. However, other explanations lacked overlap.
There were similar differences between RF-Basic and EBM-Basic explana-
tions. They often shared the most important feature, but the other features
and the amount of importances were different.

A downside of the latent dimension is the lack of explainability. Although
the explanations can show the importance of each latent dimension for the
prediction, it is unclear which input features map to the latent dimensions.
Aside from this downside, the Latent explanations display the difference in
objective properties compared to Basic explanations. The difference between
the explanations is the dataset, which shows an influence of the dataset on
the explanation properties.

5.2.3 Multiclass: RF-SMOTE vs. RF-Minority, both
LIME and SHAP

The final comparison is made between the model-agnostic explanations of
RF-SMOTE and RF-Minority. Both models use the same explanation meth-
ods. This provides insights on the effect of different datasets on the explana-
tion methods for multiclass classification. The RF minority showed difficulty
in predicting two classes, although both classes were equally represented in
the train data. This comparison might provide insight into the inability to
correctly predict these classes.

Given the results in Table 5.3 for the RF-SMOTE and RF-Minority ex-
planations, the sensitivity values lie close, while the fidelity scores do not.
Both models adhere to earlier findings, where SHAP has a higher sensitivity
than LIME, as well as a higher fidelity.

Contrary to earlier findings, the fidelity of explanations of both models
do not or rarely increase with the perturbation strength. The fidelity val-
ues look stable compared to earlier explanations. From Figure C.6 for the
RF-Minority explanations, it appears that the width of the spread for fi-
delity for both explanations does not increase, but the samples appear to be
more spread over the whole range when the perturbation strength increases.
The spread of the explanations of RF-SMOTE in Figure C.7 shows similar
behaviour, but the samples appear to be packed more closely.

There are no overlapping points between the two test sets of SMOTE and
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Minority. Therefore, the points discussed are not the same points. However,
all points adhere to the same cases. The first case is predicting the normal
sample correctly, the second case is predicting a malicious sample correctly,
and the third case is wrongfully predicting a ’backdoor’ sample to be ’analy-
sis’. The latter is chosen, as earlier results from Section 5.1.4 have shown that
the Minority model has difficulty distinguishing between these two classes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.6. Explanations for RF-Minority points (a) RF-Minority + LIME for case
1 (b) RF-Minority + SHAP for case 1 (c) RF-Minority + LIME for case 2 (d) RF-
Minority + SHAP for case 2 (e) RF-Minority + LIME for case 3 (f) RF-Minority
+ SHAP for case 3

97



The thing to note about the explanation the points of RF-Minority,
ct state ttl is absent from the top 5 features, except in the SHAP expla-
nation of point 1. In general, it appears that the important features are dif-
ferent between points and between explanations. The features stime, ltime,
vice nothing, service dns and dttl appear 3 times in 6 explanations, but other
features occur less often. The ’time’ features do not occur in the explana-
tions of LIME. For all points and explanations, there appears to be diversity
among the feature importances.

In the first case, both explanations of the RF-Minority show the fea-
ture importances for the correct prediction of a normal sample. The only
overlapping feature is dttl, which is the fifth most important feature in both
explanations. For RF-SMOTE, there is no overlap between features of the
LIME and SHAP explanations. The LIME explanations of both models are
similar, as they have four overlapping features. The SHAP explanation of the
RF-Minority is similar to the SHAP explanation of the RF-SMOTE. There
are three overlapping features, the most important feature being ct state ttl.

In the second case, the label is normal data, but the prediction is anoma-
lous (’exploits’). Between the LIME and SHAP explanations of the RF-
Minority, there are 3 overlapping features: service dns, vice nothing and
ct srv dst. The RF-SMOTE correctly predicts ’exploits’ for the second case
as well. Aside from total bytes, there are no overlapping features between
LIME and SHAP of RF-SMOTE. There is one overlapping feature for RF-
Minority LIME and RF-SMOTE LIME, while there are three overlapping
features between RF-Minority SHAP and RF-SMOTE SHAP.

For the third and final case, the label is ’analysis’ but the prediction is
’backdoor’. Section 5.1.4 showed that the RF-Minority has difficulties with
distinguishing between these two classes. There are no overlapping features
between the LIME and SHAP explanations. It could indicate that because
the model has difficulties predicting the correct class, there are no clear fea-
tures that play an important role. Although the RF-SMOTE model did
not show poor performance on both classes, there is still a case where the
model predicts ’analysis’ while the label is ’backdoor’. There is one overlap-
ping feature between LIME and SHAP: total bytes. There is one overlapping
feature between RF-Minority and RF-SMOTE LIME, while there are three
overlapping features between RF-Minority and RF-SMOTE SHAP.

In general, the explanations made by the same explanation method for
points with similar requirements of two different models show overlap in
the features. The models are trained on different datasets, but appear to
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use similar features for predictions, although it depends on the explanation
method which features are chosen. There appears to be more overlap in the
features chosen by SHAP than by LIME.

5.2.4 Summary

In total, three comparisons were made to evaluate the explanations of the
selected models. Overall, the LIME for the RF showed the lowest sensitivity
values on the Basic set. The EBM-Basic had the highest fidelity values on
the Basic set. The RF-Latent+SHAP showed the highest fidelity values, but
the latent dimensions are uninterpretable. The fidelity values appeared to be
dataset dependent, as the RF-Basic explanations had different fidelity values
compared to the RF-Latent explanations.

For the multiclass classification, the RF-Minority+SHAP had the highest
values for fidelity and the second lowest sensitivity value. Again, from the
observations of the multiclass cases, the fidelity appeared dataset-dependent,
as the results differed between RF-Minority and RF-SMOTE explanations.

The binary explanations showed an increase in fidelity values with the
increase in perturbation strength, while this increase was often absent at
the multiclass explanations. The individual points showed some overlap in
feature importances between different explanations.

In the multiclass case, SHAP explanations showed more overlap between
different models compared to LIME explanations. However, this finding is
based on one comparison only.

5.3 Explanation and Model Evaluation Sum-

mary

For the binary case, the RF-Basic outperformed the EBM-Basic and the
AE-Normal, considering the performance metrics. The RF-Latent showed
performance lower compared to the RF-Basic. Considering the explanation
performances, the RF-Basic+LIME had the lowest sensitivity values. The
RF-Latent+SHAP had the highest fidelity values. Although the explanations
for the models trained on the Latent set showed the highest fidelity scores,
they are not considered as a final combination, as the Latent dimensions are
not explainable. If they are excluded, the EBM-Basic had the highest fidelity
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values. The fidelity values appeared to be dataset-dependent, as the fidelity
values of RF-Basic+SHAP and EBM-Basic are lower than RF-Latent+SHAP
and EBM-Latent.

For the multiclass classification problem, the RF-SMOTE and the RF-
Minority were the only two models that showed accurate performance on
individual classes. The RF-SMOTE outperformed the minority model. The
RF-Minority model showed similar performance to the RF-SMOTE in pre-
dicting individual classes but had difficulties distinguishing between two indi-
vidual classes, which lowered its average performance metrics. Other models
showed a high value for the average performance metrics, but low values for
individual class performance metrics. Although RF-SMOTE outperformed
RF-Minority, this was not the case for the explanations. Sensitivity values
appeared equal, while the fidelity values for the RF-Minority explanations
were higher compared to the RF-SMOTE explanations.

Combining the results from the binary Basic and Latent explanations of
RF and EBM with the multiclass RF SMOTE and Minority explanations,
the differences indicate that there might be a dataset-dependence of not
only model performance, but objective explanation properties as well. This
confirms previous research [23, 46].
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(e) (f)

Fig. 5.7. Explanations for RF-SMOTE points (a) RF-SMOTE+LIME for
case 1 (b) RF-SMOTE+SHAP for case 1 (c) RF-SMOTE+LIME for case 2
(d) RF-SMOTE+SHAP for case 2 (e) RF-SMOTE+LIME for case 3 (f) RF-
SMOTE+SHAP for case 3
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Chapter 6

Discussion

This study examined the objective properties of explanations with the aim to
fill the gap identified for the objective assessment of explanations in the field
of NAD. The contribution of this research is the evaluation of explanation
methods through quantification of the objective properties of explanations.

In the following sections, the research conducted and the results are dis-
cussed. Each section of the result tries to answer one of the subquestions:

1. R1: Which model shows the best performance with respect to model
metrics?

2. R2: Which explanation shows the best performance regarding objective
explanation metrics fidelity and sensitivity?

3. R3: Which combination of model and explanation creates the best
compromise between explainability and model performance?

First, the results are of the model and explanation evaluation are dis-
cussed. The results are followed by the limitations of this study. Finally,
suggestions for future work are presented.

6.1 Model Performance

Taking into account model performance metrics only, this thesis showed that
the RF outperforms the other two models on binary classification. The RF-
Basic scored highest on the performance metrics. Although the RF had
the highest absolute scores, all other binary models scored above 0.95 on
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all metrics. This indicates that their performances lie close and that other
factors could influence the final performance. Examples of factors are the
format of the dataset or the selection of hyperparameters.

Interestingly, the RF trained on 8 features showed a performance com-
parable to that of the RF trained on a dataset with 61 or 294 features. The
8 latent dimensions appear to capture enough information for the model
to decide correctly whether a sample is normal or malicious. Similar per-
formance patterns were shown by the EBM-Basic and EBM-Latent. This
strengthens the assumption that the format of the dataset influences model
performance [27], as well as confirms previous research that AE is suitable
as a dimensionality reduction method [77].

Both the RF and the EBM perform well on tabular data, indicating that
the difference between the RF and the EBM may be due to choices in feature
engineering with a small influence. As mentioned earlier, tree-based models
outperform deep learning models on tabular data [27]. This is a possible
explanation for the performance gap between the RF and the EBM with the
AE. As the AE is a neural network, it is not an optimal model for tabular
data. Although the dataset is not in the optimal format for the AE, the
model scored above 0.96 on all metrics.

Hyperparameter tuning was performed, but the number of values and
combinations was limited by hardware. Training the RF was computation-
ally inexpensive compared to the EBM and the AE, which resulted in the
opportunity to try more hyperparameters. The performances of the EBM on
the test set lie close to the RF, with a difference below 0.001. This may be
due to hyperparameter settings. Training the AE took longer than the other
two models on an equally sized dataset, which is why less hyperparameters
were tuned. It is possible that the settings are not optimal for the binary
classification problem, on top of the dataset format. Tuning hyperparam-
eters for a neural network is a difficult task by itself [19]. Although less
hyperparameters were tried, AE did show increased sensitivity for malicious
samples compared to the other two models. This is favoured in the field of
NAD, as a high detection rate lowers the possibility of network invasion.

The selection of a binary model purely based on metrics would be the
RF-Basic. It has the highest scores on the Basic dataset. The EBM-Basic
follows closely. Depending on preferences, such as a high detection rate, the
AE-Normal is a suitable option. Although the percentage of false positives
is higher compared to the RF and EBM, it shows sensitivity for malicious
samples, which could be a desirable property.
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For multiclass classification, different models showed equal performance
on the average performance metrics but lacked individual class performances.
RFs trained on a balanced dataset showed equal performances on the aver-
age metrics as on the individual classes. The RF-SMOTE had the highest
individual class scores. Much of the training was restricted due to hardware
limitations. Training a model on a larger dataset requires more computa-
tional expenses than training on a smaller dataset. This makes it difficult
to compare the RF-SMOTE to other models on the same dataset, as train-
ing them was not feasible. However, the RF-Minority showed performances
comparable to those of the RF-SMOTE on individual classes, despite the
Minority set having a smaller size than the SMOTE set.

The RF-Minority showed difficulty in the separation of two classes, de-
spite the fact that these classes had more samples compared to other classes.
The confusion matrix showed that these classes were mostly predicted as
each other, not as other classes. Although dataset size does not contribute
to model performance, the amount of variation captured by the train set does
[3]. It is possible that there are too few samples of the two classes to capture
the distribution of the two classes completely and that the model needs more
samples to learn the differences that determine the separation between these
classes. The RF-SMOTE did not show this behaviour. This strengthens
the idea that the model needs more samples to distinguish between some
individual classes.

Although there are no other comparisons of models to support this claim,
both the RF-Minority and RF-SMOTE show that a balanced dataset is
important for the multiclass classification. The RF-Basic and EBM-Basic
showed poor performances for multiclass classification. The size of the dataset
has to be tuned for the model to be able to generalise all individual classes.
This could indicate that not every class requires an equal number of samples
in the train set.

An unexpected result is the poor performance on individual classes of the
AE+RF combination. Although the RF was trained on a balanced dataset,
it was not able to correctly predict the minority classes. It was expected
that this combination of models showed improved performance over models
trained on unbalanced datasets, but this was not the case. The results on this
model could strengthen the idea that the Minority set does not capture the
distribution of all classes correctly and need more samples. This behaviour
was expected for two individual classes, but more classes were predicted
incorrectly. The setup did not work as expected, but as it was a proof of
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concept, no effort was made to optimise it. Optimisation of the setup could
improve the performance, but the distribution of the Minority set appears to
play a role in performance. Previous research has shown that a similar setup
can work for NAD [9], thus optimisation could improve performance.

Given model performances only, the RF-SMOTE would be selected as
the multiclass model. It has the highest performance scores on average and
on individual classes. A downside of RF-SMOTE, and a reason to choose the
RF-Minority, is the size of the SMOTE dataset. This increases train time.
The RF-Minority could be chosen, although the missclassifications for two
individual classes have to be fixed.

6.2 Explanation Performance

The explanations were evaluated on sensitivity and fidelity. A low sensitiv-
ity and a high fidelity are optimal. For the binary classification, RF-Basic
explanations had the lowest sensitivity scores, while the AE-normal explana-
tion showed the highest score. The highest fidelity scores were reached by the
RF-Latent+SHAP explanations and EBM-Latent explanations. This was fol-
lowed by the RF-Latent+LIME and the EBM-Basic. The RF-Basic+LIME
showed the lowest fidelity performance. Although RF-Latent+SHAP and
EBM-Latent showed high fidelity scores, the explanations do not provide
information about the direct importance of the original features. The ex-
planations show which latent dimension is important for the decision, but
they do not show which features are mapped to that latent dimension. This
requires an additional indirect method to explain the latent dimensions.

For the multiclass explanations, the RF-Minority+SHAP had the highest
fidelity values and the second lowest sensitivity values. While the fidelity
values of RF-SMOTE+LIME and RF-Minority+LIME are the lowest of the
multiclass explanations, their sensitivity values are comparable to the other
binary and multiclass explanations. The explanations of the RF-Minority
were the only ones that confirm that SHAP is less sensitive than LIME,
while others did not confirm earlier research [21]. The SHAP fidelity scores
were generally higher than those of LIME for both binary and multiclass,
contrary to earlier findings [8, 80].

Fidelity appears to be dependent on the dataset, confirming earlier re-
search that explanation properties can depend on datasets [8, 23]. While the
binary RF-Latent+LIME had the second highest fidelity scores, the binary

105

Sinie van der Ben



RF-Basic + LIME had the lowest fidelity scores. A similar pattern is found
between the EBM-Basic and the EBM-Latent. The differences between the
Latent and the Basic set are the number and meaning of features. The La-
tent set has 8 features obtained from the latent dimensions of the AE, while
the Basic set has 62 original features. Given the difference in the number of
features, it is possible that perturbing 1 feature out of 8 influences the final
prediction more than perturbing 1 out of 62 features. A reason for this could
be a prediction’s reliance on each feature. If a model has to infer a prediction
based on 8 features, perturbing one feature could have a larger impact on
the prediction compared to a prediction given 62 features. A feature with a
larger impact on the prediction can overturn the prediction faster compared
to a feature with a low impact on the prediction. The fidelity score mea-
sures changes in prediction based on the perturbation of the most important
features. The fidelity score appears to increase if the dataset contains more
features have an impact on the model’s prediction.

Given the influence of the meaning of features, the latent dimensions cap-
ture information about an unknown number of input features. It is possible
that they capture combined feature information from features that are not
individually important. If a latent dimension is perturbed, the prediction
could be overturned faster compared to the perturbation of one individual
feature. This a possible explanation for the increase in fidelity score of the
Latent models compared to the Basic models.

A similar difference in fidelity scores can be found for the multiclass SHAP
explanations of RF-SMOTE and RF-Minority. Both models were trained on
different datasets and showed differences in fidelity scores. However, a similar
explanation as for the Basic and Latent sets does not hold, as the SMOTE
and Minority have the same number of features. A possible explanation
could be the size of both sets. The Minority set has fewer samples compared
to the SMOTE set. It is able to classify most individual classes correctly,
but the low number of samples might affect the strength of the decision
boundaries. As fidelity is based on changed predictions after perturbing the
most important features, it is possible that a decision is overturned faster for
the Minority set. RF-Minority has seen fewer samples to be able to generalise
the classes and is not able to capture the complete distribution correctly [3].
However, there are no other multiclass models trained on the SMOTE and
Minority set to strengthen this explanation of fidelity differences for the same
explanation method.

The sensitivity scores showed less dependence on the dataset. This is
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in line with earlier findings, that certain properties of explanation methods
can differ less when applied on models with different datasets [8, 22]. The
heightened sensitivity score of the AE could be a result of the Normal set
or the implementation of the explanation. As there is no universal method
for explaining the AE, the current method was created to show that the
importance of features to be comparable to the other methods. This study
investigates the objective properties of the explanations and does not aim to
create the optimal explanation method for AE. The explanation method is
not optimised to adhere to certain properties, unlike LIME and SHAP.

As a final note on sensitivity and fidelity, it is possible that both proper-
ties request different behaviour from the explanation and underlying model.
Previous research has shown that scores on explanation properties can differ
when evaluated on different models trained on different datasets [8]. Sensi-
tivity requires the explanation to be robust against small changes in feature
values, while fidelity tests how the model prediction changes in response
to perturbation in the most important features. Sensitivity measures the
changes in the feature importances of the explanation, but if the model relies
heavily on a different feature after a small perturbation in another feature,
the explanation might change. For fidelity, the model has to respond to
changes in the important features, while sensitivity requires the explanation
(and model) to not respond to changes perturbations [8, 82]. In this study,
different perturbation levels for fidelity were included to investigate this. The
expectation was that perturbation levels would produce higher fidelity scores
as they are more significant [82]. All binary explanations showed an increase
in fidelity scores, with differences between model with explanation combi-
nations. However, for multiclass explanations, this was not the case. The
increase in fidelity score was lower or absent. Multiclass classifiers must pre-
dict 9 or 10 different classes. As more outcomes are possible compared to
the binary case, there could be a lower threshold for a change in a feature
value that overturns the prediction. It was expected that a higher perturba-
tion strength would change the prediction more often compared to smaller
perturbations. A possible explanation for the absence of increase in fidelity
scores for the multiclass explanations could be that a lower perturbation
strength already yields a high fidelity score. As a result, increasing the per-
turbation strength does not affect the fidelity as much as for the binary class
explanations. However, considering this explanation, the following expecta-
tion would be a higher value for fidelity with perturbation strength 1 if a
binary and multiclass model’s explanation are compared. This expectation
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cannot be answered, as there are no models that perform well on the same
dataset for binary and multiclass classification.

Both sensitivity and fidelity appear to request different behaviour from
the underlying model and to show data-dependency. This is in line with
earlier research, that shows properties of an explanation method are model
and dataset-dependent [8].

The explanation for binary models with the best performance with re-
spect to objective explanation metrics is the EBM-Latent. However, simi-
larly to RF-Latent, the explanations are not directly interpretable. Given the
performance metrics and explanability, EBM-Basic is the best explanation.
Although it does not have the lowest absolute sensitivity score, it does have
higher fidelity scores compared to the other explanation methods. The final
choice of an explanation method can depend on the preferences placed on
one of the two metrics, but the EBM-Basic is the option if both sensitivity
and fidelity are weighed equally.

For multiclass model explanations, the RF-Minority+SHAP has the best
performance. It has the second-lowest sensitivity scores but the highest fi-
delity scores. Taking into account the behaviour of the classifier, the RF-
SMOTE+SHAP might be a better option, as it is able to correctly predict
all classes.

6.3 Model and Explanation Combined

Following the results of model and explanation performances on the binary
classification task, there is not one model with one explanation method that
outperforms all others.

Of the binary models, the RF-Basic outperformed the other two models
on metrics, but the performance of the other models was close. Considering
aspects such as dataset format, hyperparameter tuning or detection prefer-
ences, one could opt for a different model. If a model is preferred that is close
in performance but inherently explainable, the EBM-Basic is an option. If a
high detection rate for malicious samples is important, the AE-Normal can
be suitable.

The chosen objective properties were sensitivity and fidelity. Depend-
ing on the purpose of the explanation, more weight can be placed on the
importance of one property. If sensitivity and fidelity are weighed equally,
concessions have to be made as there is not one explanation method that
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had the highest scores on both.
If sensitivity is weighed more heavily over fidelity, one could consider

the explanations of binary models with LIME. These showed the lowest sen-
sitivity scores compared to other explanations for all binary explanations,
contrary to the literature.

If fidelity is preferred, the EBM-Basic explanations can be chosen. These
explanations showed the highest fidelity scores on the binary task. Addition-
ally, if both sensitivity and fidelity are weighed equally, the EBM-Basic can
be chosen as well. Although the RF-Latent and EBM-Latent explanations
showed a balance between low sensitivity and high fidelity with good model
performance, the explanations are not useful without further investigating
the feature mapping to the latent dimensions. Contrary to the RF-Latent
and EBM-Latent explanations, EBM-Basic does show the feature importance
of the input features for binary classification. After all the Latent explana-
tions, the EBM-Basic has the highest scores on fidelity. The sensitivity values
are comparable to those of LIME and SHAP.

Considering model performance together with both objective properties,
a suggestion is the EBM-Basic. This model has the second highest score on
model performance. As discussed above, the EBM-Basic is a suitable option
if both sensitivity and fidelity scores are equally important. Although there is
no model with optimal scores on all metrics, the EBM-Basic balances model
and explanation performance for the binary classification task.

Taking into account the model performance for the multiclass classifica-
tion task, the RF-SMOTE outperforms the other models in terms of average
performance and individual class performance. The SMOTE dataset brings
considerations, such as a large dataset size that increases train time. The
performance of other models on the Basic set showed the inability to predict
minority classes correctly, indicating the need for a balanced dataset. The
RF-Minority was trained on fewer samples and showed performance compa-
rable to that of RF-SMOTE on most individual classes. The ideal model for
multiclass classification is trained on a dataset size smaller than SMOTE,
but larger than Minority.

Again, for multiclass explanations, sensitivity or fidelity can be preferred
for a final chosen explanation. For the sensitivity values, the RF-SMOTE
LIME or RF-Minority SHAP can be chosen as explanations. Both have
comparable low values for sensitivity. For the fidelity scores, the RF-Minority
SHAP showed the highest values. No other explanation for the multiclass
classifiers scores similar fidelity values.

109



If sensitivity and fidelity are weighed equally, the RF-Minority SHAP
explanations showed a balance between these scores. It had the second-
lowest sensitivity scores and the highest fidelity scores.

Considering model performance together with explanation metrics, there
is no optimal model for the multiclass case. Although the RF-Minority model
showed high performance on most individual classes and good performance
on the objective properties, it was unable to perform well on two individual
classes. This makes the performance of the model questionable. The RF-
SMOTE scored high on all model performance metrics for individual classes
as the only multiclass model. However, the objective explanation properties
were considerably lower than those of the RF-Minority. If model performance
and objective explanation metrics are weighed equally and hardware is not an
issue, the RF-SMOTE+SHAP can be the final decision. It has higher fidelity
metrics and a low sensitivity metric compared to the RF-SMOTE+LIME.

To summarise, the final combination of model and explanation depends
on the weights attached to model performance and the objective explanation
metrics. If model performance is preferred over high scores on objective
metrics, it would result in a different choice of model compared to preference
of objective metrics equal to or over high performance.

From the results of the binary and multiclass explanations, the quality
metrics of the explanation appear to depend on the dataset [22] and the pos-
sible reliance on underlying model behaviour. This implies that a different
model or a changed dataset format can be chosen to optimise the properties
of the explanation method. Given the suggestions for model and explanation
combinations, there is room for improvement through the decision of the
model structure or the dataset formats, aside from the explanation methods
themselves. As the quality metrics are measured for the explanations, but
they depend on the underlying model behaviour and dataset, improvement
of the quality metrics could require adjustments in the model or the dataset.
The objective properties of explanations could guide towards a different deci-
sion for a final model or a different dataset format. Thereby, it is important
that the objective properties of interest are chosen to match the purpose
of the explanation, as it could steer decisions for explanations, models, and
datasets in a different direction if other properties were chosen.
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6.4 Limitations

The following section contains the limitations of this study. Four limitations
are discussed.

The first limitation is the dataset. There are two smaller limitations re-
lated to this: the format of the dataset and the lack of temporal information.
First, although the dataset itself contains up-to-date and valuable informa-
tion about network traffic, the format of the dataset could have influenced
the model performance. The dataset is available online in tabular format and
this can affect model performance. Previous research often showed the effec-
tiveness of the AE, but neural networks are outperformed by other models on
tabular data [27]. Secondly, the dataset does contain temporal information
about network traffic, but is not available as a time series dataset. In this
way, it is difficult for models to incorporate information about subsequent
events, aside from the time-based features or the manual crafted features
that capture information over multiple connections. Temporal information
from the dataset could not be fully incorporated in the classification task.

A second limitation was the selection of models and explanation methods.
Three models and two model-agnostic explanation methods were selected for
this research. Although this study tried to optimise each model for the
classification task, it is possible that there is another model that is able to
outperform the selected models. This is similar for the explanation meth-
ods. Both LIME and SHAP are feature attribution methods, and the EBM
displays feature attributions as an explanation. However, other explanations
might be more suitable for the field of NAD.

A third limitation concerns the hardware restrictions. The process of
training the models or tuning the hyperparameters was limited by the avail-
able hardware. Temporary access was granted on a high performance cluster,
but this was limited to several hours. Training the AE and the EBM took
more time compared to the RF and most of this training was done on the
cluster. The remaining versions and all versions of the RF were trained
locally. Training times differed per model and per hyperparameter combi-
nation, but training one AE for binary classification took approximately 20
times longer than training one RF. Not only did the hyperparameters of the
models strain the training time, but the size of the dataset did as well. The
SMOTE dataset for multiclass classification contained more than 22,000,000
samples. The size of this dataset increased the training time for all models,
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which resulted in difficulties of tuning the hyperparameters of the RF and
training the EBM at all.

A fourth limitation is the fact that the AE did not work for the multiclass
implementation. Two attempts were taken. The first attempt took the
binary AE implementation and adjusted it for multiclass classification, but
it did not show promising results. The other attempt combined the AE+RF.
The results did not show performances comparable to RF-SMOTE. Due to
time restrictions, no other AE was implemented for multiclass classification.
The other models were compared on the multiclass case, but this was not
possible for the AE.

6.5 Future work

There are not many studies in the field of XAI for NAD that include objective
evaluations. This study contributes to incorporating objective properties in
evaluations of explanations for NAD, but there is room to expand on these
results.

As a beginning, future work could incorporate more models and explana-
tion methods to compare. There might be a model or an explanation method
that is a better fit than the current models and explanations. To support
optimal performance of the dataset, adjusting the dataset per model would
be beneficial. A larger pool of comparisons could provide more insight into
the best-suited explanations for the task of NAD.

Aside from incorporating more models or explanation methods, an idea
for future work is to expand the objective properties. This thesis focuses
sensitivity and fidelity, as these were deemed important for the general task
of NAD. In future work, one could evaluate more specifically which objective
properties or combinations of properties are valuable in the field of NAD.

Another direction could be to look at results from articles that claim
to provide explainability in the field of NAD but do not provide objective
or subjective measures. Articles provide new models or new explanation
methods for NAD that can be evaluated with the approach of this thesis.
This could provide new insights in the quality of the proposed approaches
and possible improvements.

Lastly, this study focused on the objective properties of explanations.
The idea behind this is that the quality of explanations can be measured
objectively before explanations are presented to potential targets. A step
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further could be the inclusion of a user study to test the results found.
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Chapter 7

Conclusion

The gap identified in this thesis was the minimum number of studies that
used the objective properties of explanations to examine explanations in the
field of NAD. Although research has been done to include XAI for NAD, it
lacks an objective evaluation of the proposed methods. The current research
attempted to contribute to the objective evaluation of explanations in the
field of NAD by evaluating several explanation methods through two objec-
tive properties. The main question was: How can network anomaly detection
be improved by including objective properties of explanations as quality in-
dicators?. To answer this question, explanations for trained models were
evaluated using selected objective properties.

As a starting point, three models were selected that all needed different
explanation methods. The three models had different performance on the
datasets. Evaluation of model performance showed that the performances
between different models were close. A selection for models could be made
purely based on performance metrics, but there are other aspects to consider
when selecting the optimal model, such as sensitivity to anomalies and the
size of the dataset. The explanation methods used to extract explanations
from the models all provided feature importances. Through sensitivity and
fidelity, the explanations were evaluated. Not one explanation had the low-
est sensitivity and highest fidelity scores, thus a decision on the explanation
method depends on preferences or requirements placed on the explanation.
Combining the performance of the model and the explanation method, there
is no model for the binary or multiclass classification task with an explana-
tion that has both the highest model performance and the optimal objective
metrics.
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One of the main findings of this study is that the final decision on the
usage of an explanation method depends on preferences for model perfor-
mance and objective properties. As not one explanation method showed
optimal scores on the quality metrics, compromises must be made given the
importance placed on the objective properties.

A second finding from this study is that the dataset appears to influence
the objective properties of the explanation. Additionally, objective properties
can request different behaviour of the underlying model. Both of these can
affect the results on the objective properties.

Combining these findings, objective properties can contribute to the qual-
ity of the explanation because they allow for the investigation of the optimal
model and explanation combination. The objective property can help pro-
vide insights into the differences between the explanations of different models
trained on different datasets. A combination of a model and an explanation
can be chosen based on the quality properties.
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Appendix A

Model Hyperparameter Tuning

A.1 Binary classification
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A.1.1 RF: Basic set

(a) (b)

(c) (d)

Fig. A.1. Confusion matrices of binary RF on the Basic set. (a) Version 1 (b)
Version 2 (c) Version 3 (d) Version 4

A.1.2 EBM: Basic set

Fig. A.2. Confusion matrices of binary EBM on the Basic set. Left: version 1.
Middle: version 2. Right: version 3.
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A.1.3 EBM: Latent set

Fig. A.3. Confusion matrices of binary EBM on the Latent set. Left: version 1.
Middle: version 2. Right: version 3.

A.2 Multiclass classification

A.2.1 RF: Basic set

Class Precision Recall F-score Support
analysis 0.1116 0.1148 0.1131 244
backdoor 0.1092 0.1029 0.1059 243

dos 0.3510 0.3057 0.3268 1665
exploits 0.7066 0.7547 0.7299 4477
fuzzers 0.7427 0.6844 0.7124 2468
generic 0.9926 0.9831 0.9878 21364
normal 0.9968 0.9985 0.9976 221977

recoinnaissance 0.7929 0.7758 0.7843 1387
shellcode 0.6500 0.5723 0.6087 159
worms 0.2000 0.0500 0.0800 20
accuracy 0.9820
macro avg 0.5653 0.5342 0.5447 254004

avg 0.9815 0.9820 0.9817 254004

Tab. A.1. Classification report RF Basic multiclass version 1
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Class Precision Recall F-score Support
analysis 0.6000 0.0615 0.1115 244
backdoor 0.5312 0.0700 0.1236 243

dos 0.3559 0.2276 0.2777 1665
exploits 0.6251 0.8381 0.7161 4477
fuzzers 0.7516 0.5859 0.6585 2468
generic 0.9980 0.9806 0.9893 21364
normal 0.9954 0.9985 0.9970 221977

recoinnaissance 0.9149 0.7678 0.8350 1387
shellcode 0.6565 0.5409 0.5931 159
worms 0.2500 0.0500 0.0833 20
accuracy 0.9817
macro avg 0.6679 0.5121 0.5385 254004

avg 0.9810 0.9817 0.9805 254004

Tab. A.2. Classification report RF Basic multiclass version 2

Class Precision Recall F-score Support
analysis 0.5000 0.0041 0.0081 244.0
backdoor 0.0 0.0 0.0 243.0

dos 0.7241 0.0126 0.0248 1665
exploits 0.5586 0.9232 0.6960 4477
fuzzers 0.7110 0.3339 0.4544 2468
generic 0.9998 0.9733 0.9863 21364
normal 0.9912 0.9987 0.9950 221977

recoinnaissance 0.9353 0.6467 0.7647 1387
shellcode 1.0 0.0189 0.0370 159
worms 0.0 0.0 0.0 20
accuracy 0.9778
macro avg 0.6420 0.3911 0.3966 254004

avg 0.9781 0.9778 0.9735 254004

Tab. A.3. Classification report RF Basic multiclass version 3
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Class Precision Recall F-score Support
analysis 0.0 0.0 0.0 244
backdoor 0.0 0.0 0.0 243

dos 0.6250 0.0120 0.0236 1665
exploits 0.5551 0.9249 0.6938 4477
fuzzers 0.7340 0.3355 0.4605 2468
generic 0.9999 0.9730 0.9863 21364
normal 0.9913 0.9986 0.9949 221977

recoinnaissance 0.9010 0.6431 0.7505 1387
shellcode 1.0 0.0126 0.0248 159
worms 0.0 0.0 0.0 20
accuracy 0.9776
macro avg 0.5806 0.3900 0.3934 254004

avg 0.9770 0.9776 0.9734 254004.0

Tab. A.4. Classification report RF Basic multiclass version 4

A.2.2 RF: SMOTE set
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Class Precision Recall F-score Support
analysis 0.9987 0.9990 0.9989 221854
backdoor 0.9989 0.9991 0.9990 221957

dos 0.9928 0.9956 0.9942 221993
exploits 0.9923 0.9953 0.9938 222765
fuzzers 0.9959 0.9950 0.9954 221906
generic 0.9995 0.9944 0.9969 221130
normal 0.9975 0.9978 0.9977 221134

recoinnaissance 0.9987 0.9983 0.9985 222345
shellcode 1.0 0.9999 0.9998 221871
worms 1.0 0.9999 1.0 221805
accuracy 0.9974
macro avg 0.9974 0.9974 0.9974 2218760

avg 0.9974 0.9974 0.9974 2218760

Tab. A.5. Classification report RF SMOTE multiclass version 1

Class Precision Recall F-score Support
analysis 0.9868 0.9997 0.9932 221854
backdoor 0.998 0.9987 0.9984 221957

dos 0.8860 0.9929 0.9364 221993
exploits 0.9770 0.9890 0.9830 222765
fuzzers 0.9883 0.9393 0.9632 221906
generic 0.9999 0.9877 0.9938 221130
normal 0.9994 0.9908 0.9951 221134

recoinnaissance 0.9955 0.9202 0.9564 222345
shellcode 1.0 0.9995 0.9998 221871
worms 1.0 0.9999 1.0 221805
accuracy 0.9818
macro avg 0.9831 0.9818 0.9819 2218760

avg 0.9831 0.9818 0.9819 2218760

Tab. A.6. Classification report RF SMOTE multiclass version 2
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Fig. A.4. Confusion matrix for version 1 of RF trained on SMOTE for multiclass

Fig. A.5. Confusion matrix for version 2 of RF trained on SMOTE for multiclass
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A.2.3 RF: Latent-Basic

Class Precision Recall F-score Support
analysis 0.7500 0.0369 0.0703 244
backdoor 0.1818 0.0082 0.0157 243

dos 0.2456 0.0252 0.0458 1665
exploits 0.5115 0.6918 0.5881 4477
fuzzers 0.3242 0.2164 0.2595 2468
generic 0.9649 0.9552 0.9600 21364
normal 0.9852 0.9938 0.9894 221977

recoinnaissance 0.3392 0.2516 0.2889 1387
shellcode 0.2500 0.0063 0.0123 159
worms 0.2500 0.0500 0.0833 20
accuracy 0.9647
macro avg 0.4802 0.3235 0.3313 254004

avg 0.9588 0.9647 0.9603 254004

Tab. A.7. Classification report RF Latent-Basic multiclass version 1

Class Precision Recall F-score Support
analysis 0.5500 0.0451 0.0833 244
backdoor 0.1667 0.0041 0.0080 243

dos 0.2393 0.0234 0.0427 1665
exploits 0.5120 0.6918 0.5884 4477
fuzzers 0.3342 0.2208 0.2659 2468
generic 0.9651 0.9562 0.9606 21364
normal 0.9848 0.9937 0.9893 221977

recoinnaissance 0.3531 0.2495 0.2924 1387
shellcode 0.3000 0.0189 0.0355 159
worms 0.2500 0.0500 0.0833 20
accuracy 0.9648
macro avg 0.4655 0.3253 0.3349 254004

avg 0.9585 0.9648 0.9603 254004

Tab. A.8. Classification report RF Latent-Basic multiclass version 2
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A.2.4 RF: Minority

Fig. A.6. Confusion matrix for RF-Minority multiclass

A.2.5 EBM: Basic
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Class Precision Recall F-score Support
analysis 0.0 0.0 0.0 244
backdoor 0.0 0.0 0.0 243

dos 0.4177 0.0823 0.1375 1665
exploits 0.6919 0.4764 0.5643 4477
fuzzers 0.5204 0.0567 0.1023 2468
generic 0.9435 0.9755 0.9592 21364
normal 0.9730 0.9991 0.9859 221977

recoinnaissance 0.9875 0.2286 0.3712 1387
shellcode 0.0 0.0 0.0 159
worms 0.0 0.0 0.0 20
accuracy 0.9659
macro avg 0.4534 0.2819 0.312 254004

avg 0.9551 0.9659 0.9561 254004

Tab. A.9. Classification report EBM Basic multiclass version 1

Class Precision Recall F-score Support
analysis 0.0 0.0 0.0 244
backdoor 0.0 0.0 0.0 243

dos 0.0 0.0 0.0 1665
exploits 0.6998 0.4956 0.5803 4477
fuzzers 0.5078 0.066 0.1169 2468
generic 0.9318 0.9761 0.9535 21364
normal 0.9736 0.999 0.9862 221977

recoinnaissance 0.9861 0.2559 0.4064 1387
shellcode 0.0 0.0 0.0 159
worms 0.0 0.0 0.0 20
accuracy 0.9659
macro avg 0.4099 0.2793 0.3043 254004

avg 0.9519 0.9659 0.9556 254004

Tab. A.10. Classification report EBM Basic multiclass version 2
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Class Precision Recall F-score Support
analysis 0.0 0.0 0.0 244
backdoor 0.0 0.0 0.0 243

dos 0.0 0.0 0.0 1665
exploits 0.6998 0.4956 0.5803 4477
fuzzers 0.5078 0.066 0.1169 2468
generic 0.9318 0.9761 0.9535 21364
normal 0.9736 0.9990 0.9862 221977

recoinnaissance 0.9861 0.2559 0.4064 1387
shellcode 0.0 0.0 0.0 159
worms 0.0 0.0 0.0 20
accuracy 0.9659
macro avg 0.4099 0.2793 0.3043 254004

avg 0.9519 0.9659 0.9556 254004

Tab. A.11. Classification report EBM Basic multiclass version 3
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Appendix B

Model performance results

B.1 Binary: RF-Basic

Fig. B.1. Confusion matrix for RF-Basic binary on the test set

127



B.2 Binary: EBM-Basic

Fig. B.2. Confusion matrix for EBM-Basic binary on the test set
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B.3 Binary: AE-Normal

Fig. B.3. Confusion matrix for AE-Normal binary on the test set
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B.4 Binary: RF-Latent

Fig. B.4. Confusion matrix for RF-Latent binary on the test set. Note: the title
in this graph is wrong. It should be ae generated or latent
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B.5 Binary: EBM-Latent

Fig. B.5. Confusion matrix for EBM-Latent binary on the test set
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B.6 Multiclass: RF-Basic

Fig. B.6. Confusion matrix for RF-Basic multiclass on the test set
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Class Precision Recall F-score Support
analysis 0.1535 0.1174 0.1331 281
backdoor 0.0844 0.0810 0.0826 247

dos 0.3539 0.3201 0.3362 1668
fuzzers 0.7055 0.7489 0.7265 4440
exploits 0.7381 0.6799 0.7078 2437
generic 0.9933 0.9844 0.9888 21690
normal 0.9968 0.9984 0.9976 221669

recoinnaissance 0.766 0.7742 0.7701 1395
shellcode 0.7021 0.6037 0.6492 164
worms 0.5000 0.0714 0.1250 14
accuracy 0.9819
macro avg 0.5993 0.5379 0.5517 254005

avg 0.9814 0.9819 0.9816 254005

Tab. B.2. Classification report RF-Basic multiclass on the test set

B.7 Multiclass: EBM-Basic

Class Precision Recall F-score Support
analysis 0.0 0.0 0.0 281
backdoor 0.0 0.0 0.0 247

dos 0.0 0.0 0.0 1668
exploits 0.6581 0.3712 0.4747 4440
fuzzers 0.5714 0.0082 0.0162 2437
generic 0.9594 0.9768 0.9680 21690
normal 0.9666 0.9996 0.9828 221669

recoinnaissance 1.0 0.1047 0.1895 1395
shellcode 0.0 0.0 0.0 164
worms 0.0 0.0 0.0 14
accuracy 0.9629
macro avg 0.4156 0.2460 0.2631 254005

avg 0.9479 0.9629 0.9499 254005

Tab. B.3. Classification report EBM-Basic multiclass on the test set
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Fig. B.7. Confusion matrix for EBM-Basic multiclass on the test set

B.8 Multiclass: RF-Minority

Class Precision Recall F-score Support
analysis 0.4380 0.4079 0.4224 277
backdoor 0.2545 0.2705 0.2623 207

dos 1.0 1.0 1.0 139
exploits 1.0 1.0 1.0 145
fuzzers 1.0 1.0 1.0 138
generic 1.0 1.0 1.0 128

recoinnaissance 1.0 1.0 1.0 147
shellcode 0.9521 0.9929 0.9720 140
worms 1.0 1.0 1.0 17
accuracy 0.7638
macro avg 0.8494 0.8524 0.8508 1338

avg 0.7633 0.7638 0.7634 1338

Tab. B.4. Classification report RF-Minority multiclass on test data
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Fig. B.8. Confusion matrix RF-Minority multiclass on the test set

B.9 Multiclass: RF-SMOTE

Class Precision Recall F-score Support
analysis 0.9872 0.9998 0.9935 220950
backdoor 0.9981 0.9988 0.9985 222052

dos 0.8863 0.9933 0.9368 221665
exploits 0.9770 0.9891 0.9830 220804
fuzzers 0.9884 0.9389 0.9630 222444
generic 0.9999 0.9882 0.9941 222093
normal 0.9995 0.9907 0.9951 222407

recoinnaissance 0.9955 0.9208 0.9567 221658
shellcode 1.0 0.9994 0.9997 221703
worms 1.0 0.9999 1.0 222984
accuracy 0.9819
macro avg 0.9832 0.9819 0.982 2218760

avg 0.9832 0.9819 0.982 2218760

Tab. B.5. Classification report of RF SMOTE MC on the test set
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Fig. B.9. Confusion matrix RF-SMOTE on the test set

B.10 Multiclass: RF-Latent
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Fig. B.10. Confusion matrix for RF-Latent multiclass on the test set

Class Precision Recall F-score Support
analysis 0.3684 0.0249 0.0467 281
backdoor 0.2500 0.0040 0.0080 247

dos 0.1833 0.0132 0.0246 1668
exploits 0.5055 0.7081 0.5899 4440
fuzzers 0.3577 0.1986 0.2554 2437
generic 0.9574 0.9606 0.9590 21690
normal 0.9871 0.9941 0.9906 221669

recoinnaissance 0.3065 0.2810 0.2932 1395
shellcode 0.2500 0.0122 0.0233 164
worms 0.0 0.0 0.0 14.0
accuracy 0.9655
macro avg 0.4166 0.3197 0.3191 254005

avg 0.9591 0.9655 0.961 254005

Tab. B.6. Classification report of RF-Latent multiclass on the test set

B.11 Multiclass: AE+RF
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Fig. B.11. Confusion matrix for AE+RF multiclass on the test set

Class Precision Recall F-score Support
analysis 0.0780 0.8363 0.1427 281
backdoor 0.2246 0.1700 0.1935 247

dos 0.5460 0.2848 0.3743 1668
exploits 0.7982 0.6941 0.7426 4440
fuzzers 0.5631 0.8494 0.6772 2437
generic 0.9999 0.9822 0.9909 21690
normal 0.9994 0.9918 0.9956 221669

recoinnaissance 0.9867 0.7419 0.847 1395
shellcode 1.0 0.3780 0.5487 164
worms 1.0 0.2143 0.3529 14
accuracy 0.9770
macro avg 0.7196 0.6143 0.5865 254005

avg 0.9869 0.9770 0.9808 254005

Tab. B.7. Classification report of AE+RF on the test set
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Appendix C

Explanation results
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C.1 Binary: RF-Basic

(a) (b)

(c) (d)

(e) (f)

Fig. C.1. Sensitivity and fidelity with different perturbation strengths. (a) RF-
Basic + LIME with strength 1 (b) RF-Basic + SHAP with strength 1 (c) RF-Basic
+ LIME with strength 2 (d) RF-Basic + SHAP with strength 2 (e) RF-Basic +
LIME with strength 3 (f) RF-Basic + SHAP with strength 3
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C.2 Binary: EBM-Basic

(a) (b)

(c)

Fig. C.2. Sensitivity and fidelity with different perturbation strengths. (a) EBM-
Basic with strength 1 (b) EBM-Basic with strength 2 (c) EBM-Basic with strength
3
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C.3 Binary: AE-Normal

(a) (b)

(c)

Fig. C.3. Sensitivity and fidelity with different perturbation strengths. (a)
AE-Normal with strength 1 (b) AE-Normal with strength 2 (c) AE-Normal with
strength 3
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C.4 Binary: RF-Latent

(a) (b)

(c) (d)

(e) (f)

Fig. C.4. Sensitivity and fidelity with different perturbation strengths. (a) RF-
Latent + LIME with strength 1 (b) RF-Latent + SHAP with strength 1 (c) RF-
Latent + LIME with strength 2 (d) RF-Latent + SHAP with strength 2 (e) RF-
Latent + LIME with strength 3 (f) RF-Latent + SHAP with strength 3
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C.5 Binary: EBM-Latent

(a) (b)

(c)

Fig. C.5. Sensitivity and fidelity with different perturbation strengths. (a) EBM-
Latent with strength 1 (b) EBM-Latent with strength 2 (c) EBM-Latent with
strength 3
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C.6 Multiclass: RF-Minority

(a) (b)

(c) (d)

(e) (f)

Fig. C.6. Sensitivity and fidelity with different perturbation strengths. (a) RF-
Minority + LIME with strength 1 (b) RF-Minority + SHAP with strength 1 (c)
RF-Minority + LIME with strength 2 (d) RF-Minority + SHAP with strength 2
(e) RF-Minority + LIME with strength 3 (f) RF-Minority + SHAP with strength
3
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C.7 Multiclass: RF-SMOTE

(a) (b)

(c) (d)

(e) (f)

Fig. C.7. Sensitivity and fidelity with different perturbation strengths. (a) RF-
SMOTE + LIME with strength 1 (b) RF-SMOTE + SHAP with strength 1 (c)
RF-SMOTE + LIME with strength 2 (d) RF-SMOTE + SHAP with strength 2
(e) RF-SMOTE + LIME with strength 3 (f) RF-SMOTE + SHAP with strength
3
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