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Abstract—Deep learning models have shown potential in auto-
mated diabetic retinopathy classification, but they lack certainty
in their predictions, which is crucial in clinical settings. Thus,
uncertainty estimation is receiving increased attention in this
field. This work compares uncertainty estimation methods for
the classification of diabetic retinopathy in a 5-class scheme,
including Evidential Deep Learning. To address the absence of
ground truth for uncertainty, a novel evaluation framework is
proposed. The framework utilizes a threshold-based system that
assumes higher uncertainty for images from distributions other
than the training distribution. It aims to distinguish between
training distribution images and those from other distributions
based on uncertainty estimates. Experiments evaluate the per-
formance of the models in scenarios representing aleatoric and
epistemic uncertainties. The results reveal the varying behavior
of the methods based on the severity of the shift and the
type of uncertainty. While ethnicity and disease shifts, as well
as low-quality images, pose challenges as models confidently
classify them, artificial noisy images and out-of-distribution
samples are correctly identified as uncertain. Notably, Evidential
Deep Learning demonstrates effective uncertainty modeling even
in challenging scenarios. Overall, this work emphasizes the
importance of uncertainty estimation for diabetic retinopathy
classification, addresses limitations for its clinical applicability,
and provides insights for future research in this domain.

Index Terms—uncertainty estimation, diabetic retinopathy,
deep learning, bayesian neural networks, evidential deep learning

1. Introduction

The introduction of artificial intelligence has revolutionized
many different fields including image classification [1], med-
ical image segmentation [2], and natural language processing
[3]. However, standard methods have shown a tendency to-
wards overconfidence in their predictions [4], making their
application in high-risk fields dangerous. This concern is
particularly significant in the medical field, where ensuring
the reliability of confident model predictions is crucial for
automated screening processes. Consequently, there has been
a surge in research aimed at exploring uncertainty estimation
methods, which enable models to provide not only predic-
tions but also certainty estimates that accurately reflect the
confidence in their predictions.

In recent years, there has been increasing interest in the
automatic classification of diabetic retinopathy (DR), an eye
condition that can lead to vision loss and blindness, using
deep neural networks [5]-[8]. More recently, researchers have

turned their attention to studying uncertainty estimation tech-
niques [9]-[11]. These studies have primarily centered around
Bayesian Neural Networks (BNNs) and have been focused on
classifying DR using binary classification schemes: “referable
vs non-referable” (RDR) or “healthy vs any DR”. How-
ever, clinically-oriented approaches have transitioned towards
adopting the internationally proposed 5-class DR classification
system [12]. The first attempt to estimate uncertainty in a
multi-class classification scheme was reported in [11].

The evaluation process plays a critical role in assessing the
effectiveness of uncertainty estimation techniques, primarily
due to the absence of a definitive ground truth for uncertainty.
There exists 3 typical evaluation techniques employed in
the study of uncertainty estimation: ranking, calibration, and
thresholding. The ranking approach evaluates uncertainty by
observing the variation in error when removing predictions
with the highest levels of uncertainty [13]. The calibration
method assesses the reliability of the uncertainty estimates by
examining how well they correspond to ground truth correct-
ness likelihood [14]. On the other hand, the threshold-based
method focuses on determining an appropriate threshold for
uncertainty, beyond which predictions are referred to clinical
specialists (refer to Figure 1). This evaluation method stands
out as more clinically reliable in this context. By setting
a threshold for uncertainty, the evaluation process ensures
that predictions deemed highly uncertain are not solely relied
upon and are instead subject to further scrutiny by experts.
This approach enhances patient safety by reducing the risk of
misdiagnosis or missed diagnoses.

In the aforementioned recent studies on uncertainty estima-
tion for DR, the threshold-based method is commonly used.
However, the primary concern with this evaluation process lies
in its focus on whether accuracy improves by removing the
most uncertain predictions, rather than determining whether
the methods effectively model uncertainty. Additionally, these
studies often establish the threshold for uncertainty using test
set-specific thresholds, rather than employing a previously
established threshold that can be generalized to other datasets.

This study aims to address the existing challenges in recent
uncertainty estimation studies on DR while proposing a novel
evaluation model. The key objectives and contributions of this
research are outlined as follows:

« Adoption of a 5-class classification scheme: In this work,
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Fig. 1: Overview of the evaluation process simulating real-
world clinical setting in which a sample is flagged as uncertain
and referred to a clinical expert if the uncertainty value exceeds
a predetermined threshold.

we utilize the internationally proposed PIRC scheme for
the classification of DR. This approach allows for a more
comprehensive and clinically relevant assessment of the
disease.

o Comparison of uncertainty estimation methods: We com-
pare various uncertainty estimation techniques, includ-
ing some that have not been previously applied in the
field of DR, such as Evidential Deep Learning. These
selected methods effectively model different sources of
uncertainty.

e Proposal of a new evaluation framework: We assess
the performance of the uncertainty estimation methods
by how well they can distinguish normal predictions
(representing the training distribution) and corrupted pre-
dictions (representing a different distribution), assuming
that high uncertainty would correspond to the latter. A
threshold-based system is employed where predictions
are flagged as uncertain if their uncertainty surpasses a
threshold determined using the validation set.

o Generation of evaluation datasets with different uncer-
tainty sources: To address different scenarios, evaluation
datasets that exhibit diverse uncertainty types are gener-
ated. This ensures a robust evaluation of the uncertainty
estimation methods and their applicability in real-world
scenarios.

2. Theoretical Background
2.1. DR Classification

DR is a progressive eye disease that occurs as a com-
plication of diabetes. It is characterized by damage to the
blood vessels in the retina, leading to vision impairment if
left untreated. The severity and progression of DR are typically
classified using the PIRC (Proliferative, Ischemic, Retinopathy
Classification) scheme, which classifies DR according to the
severity into 5 classes (see Fig. 5): no DR (class 0), mild DR
(class 1), moderate DR (class 2), severe DR (class 3), and
proliferative DR (class 4). This classification system provides
a standardized approach to assessing the condition based on
specific features observed in fundus images.

Detecting DR poses a significant challenge due to the time,
cost, and effort involved in manual diagnosis [15]. However,
advancements in machine learning-based medical image anal-
ysis have demonstrated promising capabilities in evaluating
retinal fundus images [16]. Specifically, the integration of
deep learning algorithms has significantly contributed to the
early detection of DR [17]. In [18], authors compare and
analyze the recent state-of-the-art methods for the detection
and classification of DR color fundus images using deep
learning techniques, mainly already existing convolutional
neural network (CNN) structures such as VGG, ResNet, or
AlexNet. They also highlight the importance of using big
datasets and the use of data augmentation to reduce overfitting
in model training.

2.2. Uncertainty estimation in DR

The concept of uncertainty estimation has gained signifi-
cant attention in the field of DR research, as it allows for
the development of models that provide confidence values
alongside their predictions. Recent studies have focused on
comparing various methods based on BNNs, such as Mean
Field Variational Inference (MFVI), Monte Carlo Dropout
(MC Dropout), Radial BNN, Deep Ensembles, and ensembles
of these techniques, in order to identify the most effective
approach. Furthermore, a recently published study [10] sought
to benchmark BNNs and ensembles of BNNSs in task-specific
situations. They also provided a user-friendly codebase' in-
cluding several implementations.

The findings from these studies highlight the potential of
Radial BNN and ensembling BNNS in modeling uncertainty
[9]-[11]. These results are reported using a threshold-based
evaluation process employed to assess uncertainty estimation
in these works. The system acts as a referral process in
which the most uncertain predictions are flagged for further
examination. The idea is that the removal of the most uncertain
samples increases the overall accuracy.

2.3. Types of uncertainty

There are two types of uncertainty described in the lit-
erature: epistemic and aleatoric [19]. Epistemic or model
uncertainty is caused by the ignorance of the model on certain

Uhttps://github.com/google/uncertainty-baselines



Fig. 2: Standard photographs from the patients with diabetic (A) No DR, (B) mild NPDR, (C) moderate NPDR, (D) severe

NPDR, (E) PDR.

data regimes. Therefore, it can be explained away by adding
more data covering unseen regimes to its training. For instance,
in the context of DR, different ethnicity, or images containing
another disease. On the other hand, aleatoric uncertainty is
caused by variability and randomness in the data generation.
This uncertainty is inherent to the data itself and thus, cannot
be reduced. An example of aleatoric uncertainty can be a noisy
or low-quality retina image. A representation of both types can
be seen in Fig. 3.

Low aleatoric
uncertainty

e High aleatoric
-t uncertainty

Fig. 3: The graph depicts the relationship between epistemic
and aleatoric uncertainty. The dashed line represents an es-
timated function by a model, and the blue dots, the training
data samples. Source: [20]

Aleatoric uncertainty can be further divided into two
types: homoscedastic and heteroscedastic uncertainty [21].
Homoscedastic uncertainty is characterized by a constant level
of variability in the errors of a model across the entire range
of input data, whereas heteroscedastic uncertainty occurs when
levels of variability in the errors differ across the input data
range.

2.4. Uncertainty estimation

2.4.1. Bayesian Neural Network (BNN)

The objective of conventional neural networks is to classify
a given data point into its corresponding class. This is achieved
through a process of weight adjustment, where the network
adapts its weights w to maximize the likelihood p(D|w) of

observing the data D. This optimization approach is known
as Maximum Likelihood Estimation (MLE), as it aims to
maximize the probability of the observed data D given the
weights w. However, MLE does not provide a direct means
to calculate the probability of the prediction being correct. To
address this, it becomes necessary to determine the posterior
distribution of the weights p(w|D). This is where BNNs
prove advantageous, as they enable the approximation of this
distribution.

BNNSs represent the weights and biases of neural networks
as probability distributions [22]. The posterior probability of
the model parameters given the observed data can be computed
using Bayes’ theorem, which is expressed as:

_ P(DJw)P(w)

puip) = HEIPw) _ POwP)

~ [, P(Dlw)dw

ey

In practice, calculating the posterior distribution of the
model parameters is intractable. Therefore, approximation
techniques are used to estimate the posterior probability such
as Markov chain Monte Carlo (MCMC) sampling or Vari-
nal Inference (VI). As MCMC is computationally expensive,
VI techniques are often employed which include Gaussian,
or Radial-Gaussian. The goal is to make the approximate
posterior distribution ¢(w|f) as close as possible to the true
Bayesian posterior p(w|D). The parameters  are optimized to
minimize the Kullback-Leibler (KL) divergence [23] between
the two distributions. In Gaussian VI or MFVI, the prior and
posterior distributions are assumed to be multivariate standard
normal distributions.

These methods can inexpensively estimate the posterior
predictive distribution using Monte Carlo sampling and the
uncertainty associated with the predictions can be quantified
by computing its variance.

The training of BNNs is computationally more expensive
as the models occupy more space than regular models.

2.4.2. Radial BNN

W = Uk + ok X € 2)



The multivariate normal distribution exhibits a phenomenon
known as ‘soap bubble’ pathology in high-dimensional spaces,
meaning that most of the probability mass is concentrated on
a thin shell far from the mean. Consequently, samples drawn
from this distribution show high norms. In [24], it is suggested
that these high norms pose a challenge when training deep
neural networks using the MFVI approach with Gaussian pos-
teriors. To tackle this issue, a novel posterior distribution called
the Radial BNN is proposed. This distribution is designed to
ensure that the expected norm of the samples matches that
of a univariate standard normal distribution, irrespective of
the dimensionality. The sampling process for a single weight
vector is defined as follows:

€
wkzuk+okxmxr (3)

The resulting random variable w avoids the soap bubble
pathology. However, it has no closed-form probability density
function or KL-divergence. The authors noted that an estima-
tion of the KL-divergence can be computed stochastically, as
shown in [25]. This enables the optimization of the ELBO
up to a constant. The prior chosen for this purpose is a
multivariate standard normal distribution as for MFVI.

2.4.3. MC Dropout

MC Dropout, introduced in [26], is a technique utilized to
estimate uncertainty in deep learning models that have been
trained using dropout regularization. The method consists of
activating dropout during inference mode. During dropout, a
binary mask is created from a Bernoulli distribution with prob-
ability p which is then applied to the activations. Activating
dropout during test time allows the model to function as a
simplified form of BNN where the dropout distribution is
the approximate posterior distribution. The posterior predic-
tive distribution can be then computed using MC sampling.
MC Dropout presents a simple and computationally efficient
approach for uncertainty estimation, which can be easily
integrated into existing deep learning pipelines.

2.4.4. Deep Ensemble

Deep Ensembles consist of collections of multiple neural
networks [27]. These models are individually trained using
data shuffling and random initialization techniques to ensure
variability among the models. This way the models converge
toward a distinct local optimum. This is due to the highly
non-convex nature of the neural network loss surface. After
training, the uncertainty can be calculated by combining the
predictions of these models for a given input data point. As
suggested in several works [28], using an ensemble of N = 5
is sufficiently large to achieve favorable results.

This technique is simple to implement, but it requires
parallel training of the models which is computationally and
timely expensive.

2.4.5. Evidential Deep Learning (EDL)

Evidential deep learning (EDL) [29] seeks to model uncer-
tainty using the framework of the Theory of Evidence. In this

framework, uncertainty is expressed as the degree of belief or
evidence associated with different outcomes. Subjective Logic
(SL) provides a formalization of the belief assignments by
representing them as a Dirichlet Distribution. This utilization
of the Dirichlet Distribution enables the application of evi-
dential theory principles to accurately quantify belief masses
and uncertainty within a clearly defined theoretical framework.
Unlike point estimates provided by traditional deep learning
models, these probability distributions capture the range of
possible outcomes and their associated likelihoods.

SL considers a frame of K class labels by assigning a belief
mass by, to each class and an uncertainty mass of u. This extra
mass value is the belief that the truth can be any class label,
the ”I do not know class”. These K + 1 belief masses are
non-negative and sum to 1: u + Z,i{ br = 1. Evidence (eg) is
the amount of support collected from data for a sample to be
classified into a certain class and i is related to the Dirichlet
parameter oy, by ap = er + 1. The belief masses can then
be derived from these parameters using by = (o — ex)/S
where S = ZkK ay, is the Dirichlet strength. Therefore, we can
calculate the corresponding uncertainty estimate of a sample.

The method described in this work has not been considered
in previous studies on uncertainty estimation in DR classifi-
cation and will be incorporated into our research. Implemen-
tation of this method is straightforward, involving a simple
modification of the loss function.

2.4.6. Auxiliary Output

Aleatoric uncertainty can be predicted through a method
described in [21]. This method consists of adjusting an obser-
vation noise parameter, which can be perceived as corrupting
the model with a Gaussian distribution. In the case of ho-
moscedastic uncertainty, this noise parameter is a scalar num-
ber. On the contrary, for modeling heteroscedastic uncertainty,
the noise parameter is tuned, as it depends on the data.

The network is trained to output the parameters of the
Gaussian distribution: the mean p and standard deviation o.
Subsequently, the logits are approximated by sampling from
this distribution. The aleatoric uncertainty can be attributed to
the noise parameter (o) associated with the input sample.

The implementation of this method is straightforward and
does not require any additional time, as the sampling process
is performed after a single pass for obtaining the distribution
parameters.

3. Methods

3.1. Baseline

The base model architecture used was the EfficientNet [1].
It consists of a scaled-up neural network, where the scale is
implemented in all dimensions (width, depth, and resolution)
with a fixed ratio, a method known as compound scaling [30].
The EfficientNet architecture includes 7 MBConv or inverted
residual blocks before outputting the feature map, see Fig. 4.
The 8 models of EfficientNet (BO - B7) share common blocks
with subtle complexities in their architectures.



Block 2
Block 3
Block 4

} Block 1
} Block 5
:| Block 6
} Block 7

—

Input Image
v
Conv 3 X3
MBConvi,3X3
MBConvB, 3 X 3
MBConvé, 3 X 3
MBConvB, 5 X 5
MBConvé, 5 X 5
MBConv6, 3 X 3
MBConv6, 3 X 3
MBConvé, 3 X 3
MBConvs, 5 X 5
MBConvé, 5 X 5
MEBConve, 5 X 5
MBConv6, 5 X 5
MBConvé, 5 X 5
MBConvB, 5X 5
MBConvé, 5 X 6
MBGConv6, 3 X 3
v
Feature Map

Fig. 4: Architecture of the EfficientNet with MBConv as the
basic building block. Source: [31]

The chosen model was the EfficientNetB4 and it was trained
using the categorical cross-entropy loss for the multi-label
classification task addressed in this work.

The baseline method does not include an uncertainty esti-
mation method, but the uncertainty (u) is calculated using the
Softmax output by obtaining the missing probability of the
predicted class:

u; = 1 — argmaz(f(x;)) €]

3.2. Deep Ensemble

The Deep Ensemble method is applied by training N sep-
arate baseline models with the same architecture described in
the previous section. The prediction () is the mean of the
outputs of the N models and the uncertainty (u) is calculated
as the variance of these outputs.

1 N
b= Enjfn(xi) 5)

1 N
i = D (fali) = 9)° 6)

where each f,, corresponds to a different model. In this
work, N = 5 models are used.

3.3. MC Dropout

MC Dropout is implemented in an already trained model
by activating the dropout during inference that can be easily
manipulated by changing the fraining argument in the dropout
layers. The prediction is obtained by sampling through the
posterior distribution. In practice, this is done by averaging
the outputs of T passes through the model, similar to the Deep
Ensemble method. However, in this case, we use one single
model as each pass will result in a different output. In this
work, T' = 25 passes were used.

1 T
b= ) (7)

(f(zi) = :)? (8)

U; =

~M=
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T

3.4. Auxiliary Output

In order to apply the Auxiliary Output method, the single
output layer of the neural network is changed into two output
layers, each corresponding to the parameters p and o of the
distribution. Then, S logit samples are obtained to generate
a final output which is then passed through the Softmax
activation function.

Tis = b+ epss xo 9
eps ~ N(0,1)

1 S
Ui = 3 Zf(xiﬁs)

In this case, the uncertainty calculation is straightforward as
o corresponds to the aleatoric uncertainty of the input sample.

3.5. Evidential Deep Learning (EDL)

The implementation of the EDL method requires a small
change in the model. In this method, the model outputs a
distribution of categorical probabilities (Dirichlet distribution).
In practice, the Softmax layer is replaced by an exponential
function which ensures that the class parameters are non-
negative. The expected class probabilities (pj) are obtained
using the calculated Dirichlet strength (S) pp = <&. The
prediction is calculated by obtaining the highest expected
probability:

(10)

g = argmaz(pr) Y
The loss function is chosen to be the modified mean squared

error that the authors determined was best suitable (see Eq. 5
in [29]):

K a a(S —a)
toms =30~ 5 05
k

The Dirichlet parameters can be seen as the beliefs of each
class and are calculated using S by b = a"T_l The belief
not assigned to any of the K classes can be interpreted as the
epistemic uncertainty:

13)

3.6. Radial BNN

In radial BNN, the parameters are no longer point estimates
but distributions having parameters p and o. In practice, the
main modification needed for the model is to change the
dense and convolutional layers to accept weight distributions,
specifically, the implemented radial distribution as posterior
and multivariate normal as prior.

During inference, the prediction is obtained by sampling
from the predictive distribution using T forward passes of the
input sample, like the MC Dropout method (Eq. 7 and 8).

Unfortunately, due to limited computational resources, this
implementation was not utilized in the final analysis of this

paper.



4. Experiments

4.1. Datasets and processing

In this section, a summary of each of the datasets employed
in the training and evaluation of the models is described.
More details regarding the class distribution, total images, and
uncertainty type related to each dataset are depicted in Table
I in the Appendix.

EyePACS. The EyePACS dataset, previously utilized for
the Kaggle Diabetic Retinopathy Detection Challenge [32],
was selected as the training dataset for this study. This dataset
comprises 88,702 high-resolution RGB retina images, which
exhibit varying degrees of DR according to the PIRC scale.
Each patient is represented by two images (right and left
eyes). The images were then divided into three subsets: 66,562
images for training, 8,285 images for validation, and 8,285
images for testing. Particular attention was given to ensuring
that both images from the same patient were placed in the
same subset.

Low-quality EyePACS. A set of 5,400 low-quality images,
following the annotations presented in [33], was excluded from
the total training and validation sets, forming the Low-quality
EyePACS dataset.

Noisy EyePACS. To test the model against noisy images,
another was created by manipulating the 8,285 images from
the EyePACS test set, adding Gaussian noise.

Blurry EyePACS. Similarly, this dataset was formed by
manipulating the EyePACS tes set, adding Gaussian blur, to
test the model against blurred images.

One channel EyePACS. This other dataset was created by
setting the green and blue channels to 0 of the EyePACS testset
images, to test the model against missing information.

IDRID. In order to create a task that effectively measures
model performance in the presence of ethnicity shift, the
Indian Diabetic Retinopathy Image Dataset (IDRID) dataset
was used. The IDRID dataset [34] contains 516 fundus images
with information regarding the disease severity level of DR
graded by medical experts according to the PIRC convention.

Glaucoma (ODIR). The Ocular Disease Intelligent Recog-
nition (ODIR) dataset was used to evaluate the model in
the presence of another eye disease. The ODIR dataset [35]
contains color fundus photographs from 5,000 patients from
different hospitals in China. Each image includes diagnostic
keywords from doctors which were labeled by trained human
readers into eight labels: Normal (N), Diabetes (D), Glau-
coma (G), Cataract (C), Age-related Macular Degeneration
(AMD) (A), Hypertension (H), Pathological Myopia (M),
Other diseases/abnormalities (O). A dataset containing images
of glaucoma disease was derived from the ODIR dataset. The
classification of images within this dataset was based on the
PIRC scheme. Specifically, images that exhibited glaucoma but
lacked DR were assigned to class O while images depicting
both glaucoma and varying degrees of DR severity were
categorized into classes 1 to 4, in accordance with the severity
level described in the provided diagnostic keywords.

AMD (ODIR). Another dataset containing images of AMD
was derived from the ODIR dataset to check the model against
a different eye disease. The creation of this dataset followed
the same procedure as the glaucoma dataset.

Tsukazaki. The Tsukazaki Optos Public (TOP) dataset [36]
was another dataset employed to study the effect of images
captured with a different camera. This dataset encompasses
13,047 ultra-widefield (UWF) retina images obtained from
8,588 eyes of 5,389 patients in Japan. Each image has binary
labels for eight retinal diseases. However, only the DR binary
labels were used. To ensure consistency in image size, the
UWEF retina images from the TOP dataset were subjected to
centered cropping, resulting in a standardized resolution of
512x512 pixels.

ImageNet. The final evaluation dataset utilized in this study
was a subset of the ImageNet dataset to test the model against
out-of-distribution (OOD) samples. The complete ImageNet
dataset comprises more than 1 million images covering a wide
range of 1,000 object classes [37]. However, only a smaller
subset of images was selected where all images were labeled as
class 0. To ensure uniformity in image resolution, the images
were rescaled to a standardized size of 512x512 pixels.

4.2. Evaluation

4.2.1. Model performance

The performance of the DR classification models is assessed
using the accuracy metric which measures the fraction of
correctly classified samples.

4.2.2. Proposed threshold-base evaluation system

The proposed evaluation system is based on a referral pro-
cess (see Fig. 1) that emulates a real clinical scenario, similar
to the evaluation techniques implemented in other uncertainty
estimation studies. In this work, a new approach is utilized in
order to address the lack of ground truth for uncertainty. The
methods are evaluated on mixed datasets containing normal
samples (representing the training distribution) and corrupted
samples (representing other distributions). The objective is
to distinguish between normal and corrupted samples based
on their uncertainty, assuming that corrupted samples present
high uncertainty in their predictions, using a predetermined
uncertainty threshold where certain predictions are retained
and uncertain predictions are flagged. In other words, it is
a binary classifier where true positives (17'P) refer to certain
normal predictions, while true negatives (I'N) correspond to
correctly flagged corrupted predictions as uncertain.

The mixed datasets are generated as follows: 50% of the
dataset comprises normal samples from the training distribu-
tion (EyePACS test set) and the remaining 50% corresponds
to corrupted samples from other distributions, corresponding
to the testing datasets described in the previous section.

When determining the uncertainty threshold, it is important
to note that the uncertainty threshold values are derived
from the validation dataset. This approach differs from other
studies where the thresholds were implemented directly in the



Fig. 5: Examples of images from each dataset. (A) EyePACS, (B) noisy EyePACS, (C) blurred EyePACS, (D) one-channel
EyePACS, (E) low-quality EyePACS, (F) IDRID, (G) Glaucoma (ODIR), (H) AMD (ODIR), (I) Tsukazaki, (J) ImageNet.

evaluation dataset. This allows for greater flexibility and gen-
eralizability in assessing uncertainty across different scenarios
and datasets. The process unfolds in the following manner:
uncertainty estimates of the validation set are sorted, and
thresholds are established for varying percentages of certain
and uncertain samples. These percentages range from 5%
to 95% at 5% intervals. For instance, by considering 5%
of the uncertainty estimates from the validation predictions
as certain, we can identify the specific uncertainty value
that distinguishes them from the uncertain samples. These
thresholds are saved and applied to every evaluation dataset.

In real-life situations, the main objective is to prioritize
the identification of normal data predictions as trustworthy
outcomes, while ideally flagging all corrupted data points.
Hence, it is crucial to determine the number of normal samples
correctly identified as certain, i.e., the precision of the system:

TP

precision = W

(14)

5. Results

In this section, the results of the proposed evaluation in each
dataset are shown. The results are summarized into 2 plots:

o Plot 1: the percentage of certain predictions of the com-
bined dataset for each of the thresholds obtained using
the validation set and their corresponding accuracy. This
plot represents the performance of the DR classification
in the retained predictions.

o Plot 2: the number of certain predictions and the percent-
age of these predictions being non-corrupted. This plot
represents the precision of the evaluation system with
respect to the ideal scenario which is denoted with a
dashed line. In the ideal scenario, only normal samples
are retained as certain predictions, i.e. the precision is 1
for all thresholds, and the limit in the number of certain
predictions is the number of normal samples in the testset.
It should be noted that the ideal scenario assumes that

corrupted predictions present high uncertainty and thus,
would ideally be flagged.

EyePACS testset. The testset comprising data from the
training distribution reveals a correspondence between the
percentage of specific predictions and the uncertainty estimate
threshold obtained from the validation set (see Fig. 6. The
accuracy of the models for the predictions flagged as certain
at a threshold of 95% show the overall performance of the
models. The Baseline (0.883), Deep Ensemble (0.879), Aux-
iliary Output (0.867) and EDL (0.874) models achieve similar
classification performance while the MC dropout predictive
performance is lower (0.746).
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Fig. 6: Accuracy of certain predictions for each threshold of
the EyePACS test dataset.

Low-quality EyePACS.The results for the dataset contain-
ing low-quality images from the EyePACS dataset are shown
in Fig 7. Plot 1 shows a similar behavior as for the original
testset (see Fig. 6). Plot 2 shows that the precision of the
methods ranges from 0.6 to 0.7 in all cases, being EDL, MC
Dropout, and Auxiliary Output the ones with better results.

Noisy EyePACS. In Fig. 8, the results obtained for the
dataset containing noisy images are shown. An almost-perfect
performance can be observed in Plot 2 for EDL and Auxiliary
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Fig. 7: Results for the low-quality EyePACS dataset.
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Fig. 8: Results for the noisy EyePACS dataset.

Output methods, which are able to flag most corrupted pre-
dictions as uncertain, achieving high accuracy in the retained
ones (see Plot 1).

Blurred EyePACS. Fig. 9 depicts the results obtained for
the dataset containing blurred images. The first plot shows a
similar behavior as the original test set. In terms of distin-
guishing the normal from the corrupted samples, EDL and
Auxiliary Output achieve the best results reaching a precision
of 0.9.

One-channel EyePACS. The results for the dataset with
images containing only red channel information show that
for MC Dropout, EDL and Auxiliary Output, the number of
predictions flagged as uncertain is above 40% (see Plot 1 in
Fig. 10). The precision of the system for these 3 methods is
almost perfect (see Plot 2 in Fig. 10).

IDRID. The IDRID combined dataset shows a similar
behavior as the EyePACS testset (left plot in Fig. 11). The
right plot represents the precision of the system where the

EDL method obtains better results.

Glaucoma and AMD (ODIR). The summary plots for the
results of the dataset containing glaucoma and AMD images
can be observed in Figs. 12 and 13, respectively. In both cases,
the performance of the models is similar to the EyePACS
testset except for a visible drop in the accuracy of Auxiliary
Output for the first thresholds. Regarding the performance of
the evaluation system, EDL shows a higher precision in both
scenarios.

Tsukazaki. The Tsukazaki-containing dataset has an overall
lower classification accuracy (see Plot 1 in Fig. 14). Regarding
the precision of the system, despite MC Dropout showing
higher precision, EDL is the method that flags most of the
cases as uncertain for smaller thresholds (see Plots 1 and 2 in
Fig. 14)

ImageNet. The results for the dataset with ImageNet images
are summarized in 15. The plots show an overall good accu-
racy when classifying images with all methods. According to
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Fig. 12: Results for Glaucoma dataset.
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Fig. 13: Results for AMD dataset.
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Fig. 15: Results for ImageNet dataset.

Plot 2, EDL is the method that flags more images as uncertain
with higher precision.

6. Discussion
6.1. Model performance

In this work, five uncertainty estimation methods are im-
plemented for comparison: Baseline, Deep Ensemble, MC
Dropout, EDL, and Auxiliary Output. These models achieve
similar accuracies on the EyePACS testset except for the MC
Dropout model, which presents a noteworthy lower accuracy.
This is an important finding and suggests that enabling dropout
during inference has a negative impact on the model’s pre-
dictive performance. The reason behind this effect lies in
the disruption of batch normalization behavior when dropout
is activated during inference [38]. Activating dropout during
inference leads to the deactivation of certain units, resulting
in a different distribution of activations. Consequently, batch
normalization, which assumes all units to be active, normal-
izes the activations differently. The inconsistency between
the statistics calculated during training and the activations
during inference contributes to the decrease in accuracy. Using
batch normalization in inference mode increased the prediction
performance (refer to Fig. 16 in the Appendix for comparison)
as the inputs are normalized in the current batch with dropped
activations. However, the uncertainty estimation performance
decreased when using batch normalization. Given our focus
on uncertainty modeling and the real-world scenario of single
input inference, batch normalization was set as the default
approach.

Additionally, it is worth noting the peculiar behavior of the
Auxiliary Output model in terms of predictive performance.
Unlike the other models, the accuracy of the Auxiliary Output
increases when increasing the uncertainty threshold.

Another observation to emphasize is that the Deep Ensemble
method does not serve as an effective uncertainty estimation
approach in this context. One potential explanation could be a
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low diversity among the models employed in the Deep Ensem-
ble. However, further investigation is warranted to ascertain the
underlying issue.

6.2. Aleatoric vs epistemic uncertainty

The evaluated uncertainty estimation methods were assessed
on datasets containing images reflecting uncertainties from
different sources. The datasets containing images exhibiting
aleatoric uncertainty are the following: low-quality, noisy,
blurred, and one-channel datasets. In these scenarios, the
EDL and Auxiliary Output methods outperformed the other
techniques when modeling uncertainty. The remaining datasets
represent epistemic uncertainty: IDRiD (ethnicity shift), glau-
coma and AMD (another disease), Tsukazaki (another cam-
era), and ImageNet (random images). EDL tends to have better
precision when retaining the normal predictions as certain.

The strong performance of the Auxiliary Output method is
in line with its intended purpose of modeling aleatoric uncer-
tainty. On the other hand, EDL has demonstrated efficiency in
modeling both aleatoric and epistemic uncertainties.

6.3. Realistic vs fake scenarios

An interesting finding was the different behavior of the
models when tested against realistic or fake scenarios. In
the aleatoric uncertainty datasets, distinguishing the corrupted
samples in manually manipulated datasets (noisy, blurry, and
one-channel datasets) tended to be relatively easier compared
to identifying specifically determined low-quality images, es-
pecially for noisy and one-channel images, as they exhibit
more noticeable differences. It is worth noting that the clas-
sification performance in low-quality images was similar to
that achieved by the original EyePACS testset, indicating
that the models can confidently classify DR in this scenario.
Consequently, distinguishing the corrupted samples from the
normal ones becomes challenging.



6.4. Dataset shift vs OOD

IDRID, glaucoma, and AMD show dataset shifts while
Tsukazaki and ImageNet contain OOD samples. In the case
of dataset shifts, the models achieved great predictive perfor-
mance, similar to the situation observed in the low-quality
dataset. This means that classifying these images correctly
with high confidence is relatively easy. Therefore, it is chal-
lenging to use uncertainty estimates to distinguish between
normal and corrupted samples. This discovery challenges
the prevailing belief that classifying DR in samples from a
different ethnic distribution, such as IDRID, is a difficult task
[39]. It is worth noting that EDL was efficient in modeling
uncertainty even in these challenging scenarios.

On the contrary, when dealing with OOD images, the
uncertainty estimates seemed useful in flagging the corrupted
predictions, especially for the Tsukazaki dataset, where the
EDL method considers more than half of the predictions
uncertain.

6.5. Proposed evaluation system

The evaluation of uncertainty estimation methods plays a
critical role in this study due to the absence of ground truth
for uncertainty. The evaluation proposed in this study adopts a
referral process similar to previous works but with a unique ap-
proach. We use combined datasets that encompass both normal
data (representing the training distribution) and corrupted data
(representing other distributions). The underlying assumption
is that normal samples should exhibit high certainty, while
corrupted samples should exhibit higher levels of uncertainty.
However, a corrupted sample can still be correctly classified
with high certainty. This has been observed in the low-quality,
IDRID, glaucoma, and AMD cases, where using uncertainty
estimates to flag uncertain predictions fails as the models are
certain about their predictions.

An advantageous aspect of this effect is the ability to
discern the types of images or distribution shifts that carry
less significance in the predictive performance, as the models
can accurately classify them. Therefore, we can understand
how the models handle different distribution shifts.

Lastly, another important limitation is that using a distinct
evaluation process prevents direct comparisons with other
studies.

6.6. Clinical implications and future work

The next steps in the uncertainty estimation research applied
to DR would involve including more uncertainty estimation
methods in the comparison such as radial BNNs, which could
not be implemented in this study. Furthermore, combinations
of the existing methods could be explored to model both
aleatoric and epistemic uncertainty, such as combining MC
Dropout and Auxiliary Output.

One important clinical implication is the correct identifica-
tion of OOD samples or fundus images with missing infor-
mation, as uncertain. This indicates that the models perform
well in extreme scenarios, allowing for the effective removal
of these images.
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The utilization of the PIRC classification scheme is clini-
cally relevant as it offers the ability to analyze the uncertainty
based on the predicted class. This option could be further
leveraged by analyzing the rest of the classes which would
give an additional insight regarding the input image and its
class prediction. One potential direction to explore would be to
use the belief theory employed in EDL to identify the amount
of belief assigned to the other classes representing different
degrees of DR.

For the system to be clinically applicable, predictive accu-
racy must be considered. While this study primarily empha-
sizes the performance of uncertainty estimation rather than
achieving the highest classification accuracy, it is essential
to ensure that the predictive accuracy of the uncertainty
estimation model closely aligns with the base model that is
already being used.

Furthermore, the suggested evaluation framework allows
users to meticulously select an optimal threshold aligned with
their desired model performance. This decision also influences
the proportion of flagged predictions, a crucial factor to
consider given the availability of medical experts responsible
for assessing these uncertain predictions.

7. Conclusion

This study addressed the challenges in uncertainty esti-
mation works on DR by adopting a 5-class classification
scheme, comparing various uncertainty estimation methods,
and proposing a threshold-based evaluation model using com-
bined datasets with different uncertainties.

The adoption of the 5-class PIRC scheme allowed for
a comprehensive assessment of DR, enhancing the clinical
relevance of the classification process. The comparison of
uncertainty estimation methods in the varied test datasets
provided insights into their performance in modeling differ-
ent scenarios. The proposed evaluation process has proven
to be a more clinically relevant approach to assessing the
effectiveness of uncertainty estimation methods in accurately
capturing uncertainty. The study has shown that particular
consideration should be given to situations where images from
distribution shifts are classified correctly with a high level of
certainty, such as the case of IDRID or low-quality datasets,
invalidating the assumption that these images should have
uncertain predictions.

Important findings include the outstanding performance of
auxiliary output when modeling aleatoric uncertainty, and EDL
in epistemic uncertainty scenarios, especially in challenging
ones. Additionally, predictions for OOD samples and fake
images are correctly flagged as uncertain which has important
clinical implications.

In conclusion, this study contributes to the advancement
of uncertainty estimation studies in DR by addressing the
existing challenges and providing a new enhanced evaluation
framework. Future research directions include exploring ad-
ditional uncertainty estimation methods, combining existing
techniques, and further analysis for its clinical applicability.
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APPENDIX

A. Additional information on the datasets

TABLE I: Summary of the datasets including the type of uncertainty present and the class distribution.

Mode Dataset Uncertainty Class distribution Total
name type 0 1 2 3 4 images

Training EyePACS - 739% | 72% | 14.7% | 2.3% | 1.9% | 66,562
Validation EyePACS - 751% | 6.6% | 13.7% | 2.5% | 2.1% 8,285
EyePACS test - 73.7% | 6.9% 16% 1.8% | 1.6% 8,285

EyePACS test (noisy) Aleatoric 73.7% | 6.9% 16% 1.8% 1.6% 8,285

EyePACS test (blurred) Aleatoric 73.7% | 6.9% 16% 1.8% 1.6% 8,285

EyePACS test (one channel) Aleatoric 73.7% | 6.9% 16% 1.8% 1.6% 8,285

Testing EyePACS low quality Aleatoric 66.6% | 53% | 18.6% | 3.4% | 6.1% 5,400
IDRID Epistemic 32.6% | 48% | 32.6% | 18% 12% 516

AMD (ODIR) Epistemic 98.5% | 1.1% | 0.4% 0% 0% 267

Glaucoma (ODIR) Epistemic 93.6% 1% 5.4% 0% 0% 312

ImageNet Epistemic 100% 0% 0% 0% 0% 900

Tsukazaki Epistemic 74.9% 25.1% 235

B. Comparison of MC Dropout accuracy with and without batch normalization in inference mode
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Fig. 16: Plot 1 comparing the accuracy results of the original MC Dropout model (mcdropout) and including batch normalization

in inference mode (mcdropout2).
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