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Abstract

Cosmology asks questions about the large scale properties of the universe, e.g.: ”What is the universe
made of?”, and ”How are things distributed throughout the universe?”. To help answer these questions
we look at Intrinsic Alignment (IA), the correlation between galaxy shapes and nearby large-scale struc-
tures during galaxy formation, alongside gravitational lensing. IA is dependent on the method of shape
measurement, since different measurement methods are sensitive to different parts of galaxies, which align
differently. In this thesis we investigate the use of multiple shape measurements per galaxy to enhance
cosmological constraints.

In Part I, Intrinsic Alignment Amplitude (AIA) and difference in AIA between methods (∆AIA) are
measured using data from the Galaxy And Mass Assembly (GAMA) survey (for redshifts) and the Kilo-
Degree Survey (KiDS) (for shapes). Galaxy shapes are determined using the moments-based DEIMOS
method. This method includes a weight function, which is varied so that a set of measurements is taken
that is sensitive to the outer regions of galaxies, a set that is sensitive to the inner regions of galaxies, and
one in between. A random catalog is employed to mitigate large-scale structure effects. Two subsamples,
”Reddest” and ”Brightest,” are selected based on colour and brightness. Common estimators are used
to measure galaxy position-galaxy position and galaxy position-galaxy shape correlations, with a modi-
fication for galaxy position-difference in galaxy shape correlation. This difference is between the shape
measured at the outer regions and the inner regions of galaxies. ∆AIA values of 0.55±0.40 (Brightest) and
0.86±0.74 (Reddest) are obtained, providing upper bounds and indicating potential underlying effects.

In Part II, the impact of multiple shape measurements is forecasted for the Large Synoptic Survey
Telescope (LSST). Five tomographic redshift bins and two shape measurement methods per galaxy are
considered, resulting in 55 angular shape-shape power spectra. The covariance matrix, accounting for
correlated noise, is modeled. Fisher forecasting is employed to predict the covariance matrix of cosmolog-
ical parameters and assess uncertainties related to the parameter S8. Reductions in S8 uncertainty up to
35% (ideal scenario), 20% (’Brightest” like scenario), and 15% (”Reddest” like scenario) are forecasted.

In conclusion, this study demonstrates that utilizing multiple shape measurements per galaxy can
enhance cosmological constraints without requiring additional telescope time.
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1 INTRODUCTION 1

1 Introduction

Cosmology is ‘the scientific study of the large scale properties of the universe as a whole’[1]. It thus aims
to answer questions such as “What is the history of the universe?”, “What is the shape of the universe and
why?” and “What is the universe made out of?”. The standard model of cosmology that answers some of
these questions is the ΛCDM model. This model states that the universe is (mostly) flat, dominated by dark
matter of unknown origin and a cosmological constant, started with a big bang and initial perturbations (that
grew into current large structures) generated by a very early inflationary period[2]. This does not answer all
questions, since our current models for particle physics do not explain what dark matter or the cosmological
constant are, and does not provide us with an adequate source of energy that could have driven inflation.

1.1 Lensing

To learn more about the universe and its properties, many different types of probes have been investigated,
one of which is weak gravitational lensing. Gravitational lensing is a consequence of the larger General
Relativity theory of gravity, which, among other things, states that the presence of energy (so also matter)
bends space-time. When light travels through this bent space-time, it gets deflected from a straight path,
and thus gets ’lensed’. When there is a lot of matter, this can cause multiple images of the same source to
appear on the night sky, which is called strong lensing. However, lesser amounts of matter will still bend
the path of the photons of the source, without creating multiple images. This is called weak lensing and an
example can be seen in Figure 1. Weak lensing allows for measurements of the dark matter distribution and
is also influenced by the geometry and history of the geometry of space-time[2][3][4][5]. One of the ways weak
lensing is measured is by looking at the shape of galaxies. Because the light emitted from different parts of
galaxies travel through slightly different regions of space to reach us, they are lensed slightly differently and
the apparent shape is thus shifted from the actual shape. This effect is sometimes called gravitational shear
or weak lensing shear. This change in shape will be similar for galaxies that are close to each other since their
light passes through the same space. Since we do not know the actual shape of galaxies, however, one could
assume that galaxy shapes are random. This means the gravitational field in between us and source galaxies
can be probed by looking at correlations between galaxy shapes, which would be caused by lensing[2].

1.2 Intrinsic Alignment

However, galaxy shapes are not inherently random. Even without lensing, there is a correlation between the
shapes of some galaxies that are close to each other, because they aligned with larger-scale structures when
they were formed. This phenomenon, called Intrinsic Alignment (IA), is most prevalent in elliptical, red,
pressure-supported galaxies. Because IA may cause similar signals to weak lensing, assuming the wrong IA
model or no model at all might influence measured values for cosmological parameters[3]. Thus, furthering the
understanding of IA will allow for better compensation when analysing weak lensing statistics. Furthermore,
since IA itself depends on the distribution of matter, it can also be used to gain information[6], and not just
as an effect that needs to be compensated.
Previous research has shown that the magnitude of IA in a sample, quantified by the intrinsic alignment
parameter AIA, depends on the techniques used to measure galaxy shapes[7][8][6] (although this might not
always be the case[9]). This can be well understood conceptually using an example outlined in Kirk et al.[3]:
Consider a hypothetical scenario where galaxies consist of a central bulge and an outer disk. If the outer
disk were to be more strongly aligned than the central bulge, then a method sensitive to the central bulge
will have different alignment results than one sensitive to the outer disk.
This is not a realistic picture, as the interaction between different parts of the galaxy may cause their
alignments to be related. However, Figure 2 illustrates that the chosen algorithm for determining shapes
does influence results. Interestingly, these different results will not be unrelated to each other. Since different
parts of a given galaxy will influence each other and since the shapes of different parts of a galaxy are
influenced by similar outside forces, the different shapes will be correlated on a galaxy-by-galaxy basis. This
means that it is interesting to use multiple shape estimators per galaxy, since the shape noise inherent to
these measurements might be partially cancelled by comparing multiple shapes that have correlated noise
terms.
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Figure 1: Galaxy cluster SMACS 0723-73 as pictured by the James Webb telescope. It shows a clear example
of galaxy lensing as the light from the galaxies around the center is bent so that the galaxies seem to curve
around the galaxy cluster in the middle. Image credit: NASA, ESA, CSA, STScl[JWST˙lensing].
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Figure 2: A galaxy observed as part of the COSMOS survey. The dark blue, light blue and red contours are
isophotes at 5%, 20% and 50% of the brightest part observed respectively. The green outline is one way to
fit an ellipse to this galaxy. The different parts of the galaxy clearly have different shapes and the measured
shape will thus depend on how you define galaxy shapes. Image from Kirk et al. (2015)[3].
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To probe multiple regions of galaxies, the survey measuring them needs to have a high resolution. The Kilo-
Degree survey (KiDS) thus lends itself to multiple shapes analysis, but the upcoming Rubin Observatory’s
Legacy Survey of Space and Time (LSST) will as well, and covers a larger area of the sky (1500 square
degrees versus 20000)[10][11].
In this thesis we will first give a brief general overview of Cosmology and weak lensing, moving on to the
matter power spectrum, shape power spectra and why having multiple shapes might be useful in section 2.
In part I, we then focus on the question of whether we are able to measure a difference in alignment signal
between different shape measurements. Starting off with an explanation of the data that was used and how
it was narrowed down in section 3. Then moving onto how the proper information was extracted in section
4. Finally showing the results in section 5.
In part II, we explore how much the extra information gained from having multiple shape measurements might
help constrain cosmological parameters in the upcoming LSST survey. We explain how this forecasting works
and what data we used in section 6 and show our results in section 7.
We conclude and wrap up this thesis in section III, ending with an outlook at possible future work.

2 Theory

Since Einstein has described General Relativity (GR), advances in cosmology have provided a clear view of
the history of the universe. Starting with the Einstein field equations, which describe how energy influences
the curvature of space-time[12][2]:

Gµν + Λgµν = 8πGTµν . (2.1)

In this equation, the Einstein tensor (Gµν) describes the curvature of space-time, the metric (gµν) describes
space-time itself, G is Newton’s gravitational constant, the energy-momentum tensor (Tµν) describes the
energy in the universe and Λ is a constant source of energy of unknown origin. If one now assumes that
universe is spatially homogeneous and isotropic, so the same everywhere and the same in all directions, the
metric tensor gets heavily restricted. By looking at the 00-component of equation 2.1, modelling the energy-
momentum tensor after a perfect fluid and choosing this restricted metric, one discovers one of the Friedman
equations[13][2]:

H2

H2
0

= Ω0,ra
−4 +Ω0,ma−3 +Ω0,ka

−2 +ΩΛ. (2.2)

Here a is the expansion of the universe (normalised at a = 1 today), H2 = ȧ2/a2 characterises the ex-
pansion rate of the universe and Ωr,m,k,Λ are the average energy densities of respectively radiation (plus
other relativistic particles), matter, curvature of the universe and dark energy, with 0 denoting the value
today. The Hubble constant H0 is often written as H0 = 100hkms−1Mpc−1, where h is a dimensionless
parameter. This explains the general makeup of our universe, but only at very large scales, where the
universe is actually spatially homogeneous and isotropic. Furthermore, the observed values of many com-
ponents of this equation are in slight contention with values observed in other measurements (for example
H0 = 69.32±0.80km/sec/Mpc, Ωm = 0.2865±0.0097 and σ8 = 0.820±0.014 from the cosmic microwave back-
ground[14], versus H0 = 73.0± 1.4km/sec/Mpc from Cepheids[15] and Ωm = 0.352+0.032

−0.031, σ8 = 0.730± 0.054
from galaxy shapes[16]). Besides that, observations suggest the amount of matter in our universe can not be
described by known matter alone, but that about 84 percent of all matter is of unknown origin and about 68
percent of all energy is of unknown origin besides that[17] (we call this unknown energy dark energy). Lastly,
this equation only includes the averages of quantities and does not describe how, for example, the matter is
distributed on smaller scales.
For more details we look instead at the ΛCDM model. This standard model of cosmology aims to combine
observations such as the presence and structure of the cosmic microwave background, the accelerating expan-
sion of our universe and the presence of large scale structures. The resulting picture can be seen in Figure
3. In this model, the universe starts with a big bang, after which the small universe is filled with very hot
plasma with quantum fluctuations in its density. The universe then undergoes a brief period of inflation,
in which the quantum fluctuations get spread out over the now much larger space. The universe then cools
down enough for atoms to form and light to pass in between those atoms, which is how the cosmic microwave



2 THEORY 5

background gets emitted. These atoms then clump together to form stars, seeded by the quantum fluctua-
tions from before inflation. These stars evolve, clump together, die, et cetera. Meanwhile, the universe still
expands, being mainly driven by the energy density of matter, which mostly consists of Cold Dark Matter
(CDM) of unknown origin. We now enter our current era, where stars have formed galaxies and planets.
Now, the expansion of our universe is starting to be driven by dark energy; in our model this dark energy is
a Cosmological Constant (Λ).

Figure 3: By NASA/WMAP Science Team - Original version: NASA; modified by Cherkash, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=11885244

2.1 Matter power spectrum

The following section mostly follows Dodelson’s book[2]. To understand the matter distribution in our
universe, a useful tool is the matter-matter power spectrum. It describes the distribution of early quantum
fluctuations of the matter density in terms of wave numbers. The primordial matter power spectrum, the
power spectrum just after inflation, is given by looking at the correlation function of the Fourier transform
of the primordial gravitational potential (ϕ̃p(k)):

〈
ϕ̃p(k)ϕ̃

∗
p(k

′)
〉
≡ (2π)2PϕPϕP

(k)δ3D(k − k′). (2.3)

Where δ3D is the three dimensional delta function and PϕPϕP
(k) is the primordial density fluctuation power

spectrum, which can be predicted from theories of inflation. To get the current power spectrum of matter
density fluctuations instead, we relate ϕ̃p(k) to δ̃(k, a), the Fourier transform of matter density fluctuations.
The density fluctuations are defined through

ρ(k, a)− ρ̄(a)

ρ̄(a)
= δ(x, a) =

∫
eik·xδ̃(k, a)dk (2.4)

with ρ(k, a) the density at a certain scale and scale factor and ρ̄(a) the average density at that scale factor.
This is related to ϕ̃p(k) as
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δ̃(k, a) =
3

5

k2

ΩmH2
0

ϕ̃p(k
′)T (k)D1(a). (2.5)

Where T (k) is the transfer function, which tracks the mode-dependent part of the evolution of the potential
and D1(a) is the growth function, which describes scale-independent growth. Together these functions
parameterise the growth of the potential. We then look at the matter power spectrum Pδδ(k, a), defined
through[4]:

〈
δ̃(k)δ̃∗(k′)

〉
≡ (2π)2Pδδ(k)δ

3(k − k′). (2.6)

The expression for the matter power spectrum then becomes using equation 2.5:

Pδδ(k, a) = 2π2δH
kns

Hns+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)2

(2.7)

With ns the spectral density index, which is dependent on the inflationary theory and δH a normalisation
constant. To get to this equation, dark matter was assumed to be cold dark matter, neutrinos were ignored
and anisotropic stress was assumed to be absent. Furthermore, the perturbations of the matter field were
assumed to be of linear order and higher order perturbations, which are relevant at small scales/high k,
were dismissed. This means that the code that solves this equation numerically in practice uses a different
approximation at small scales.

2.2 Shape statistics

One of the ways to probe the matter power spectrum experimentally, is by looking at galaxy shapes. Because
GR dictates that energy bends the space-time it inhibits, the matter fluctuations described in the matter
power spectrum also bend space-time. This means that the light that is emitted by faraway galaxies gets
deflected by the bent space-time on its way to us. Since photons emitted from different parts of a galaxy
travel trough slightly different regions of space to get to us, they get deflected slightly differently. This results
in galaxy shapes, as observed by us, being changed, and allows us to measure the amount of matter causing
the bending. A great example of this phenomenon can be seen in figure ??. As mentioned before, when the
lensing effect is less strong, it can still be measured in a statistical fashion. By looking at the correlation of
galaxy shapes on a large area of the sky, the power spectrum of the shapes can be measured, which can then
be related to the matter power spectrum.
By shape of a galaxy, we mean the ellipse that best approximates the way it get projected on the night sky.
This is quantified using the ellipticity (or third flattening)[3]:(

ϵ1
ϵ2

)
=

1− q

1 + q

(
cos2θ
sin2θ

)
. (2.8)

Here q = b/a is the axis ratio (semi-minor axis over semi-major axis), θ is the angle of the semi-major axis
with some axis of the chosen coordinate system and ϵ1, ϵ2 are the ellipticities. If the lensing effect is weak,
the true ellipticity of the source ϵs = ϵs1 + iϵs2 is related to the observed ellipticity through[3]:

ϵ ≈ ϵs + γ, (2.9)

where γ is the complex weak lensing shear. Since weak lensing effects are on average very small, we turn to
statistical averages to detect signals instead. The correlation function between two ellipticity components ϵi
ϵj with i, j ∈ {1, 2} is thus[3]

⟨ϵiϵj⟩ = ⟨γiγj⟩+
〈
ϵsi ϵ

s
j

〉
+
〈
γiϵ

s
j

〉
+ ⟨ϵsiγj⟩ . (2.10)
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The first term on the right hand side is the cosmic shear self-correlation, often shortened as GG, the sec-
ond term is the correlation between intrinsic ellipticities, shortened as II, the last two terms are the cross
correlation between shear and intrinsic shape, respectively GI and IG, often grouped under GI.
Since the universe is isotropic at large scales, these correlations reduce to zero at large separation of galaxy
pairs, at smaller separation, they do not. If intrinsic galaxy shapes were not correlated with each other and
thus distributed randomly, the II and GI contributions would disappear and one could measure the cosmic
shear auto-correlation by just measuring galaxy shapes. However, when galaxies are formed, they tent to
align with the large scale matter distribution. This causes intrinsic galaxy shapes to be correlated and is
called Intrinsic Alignment (IA).
This means that the GG term is related to the matter field because of the light from both galaxies travelling
through similar space, thus through a similar part of the matter field and thus being lensed in a similar way.
The II term is related to the matter field because both galaxies align with the same local matter field. The
GI term is related to the matter field by a galaxy closer to us aligning with the same matter field that lenses a
galaxy further away from us. This also means that either the GI term of a galaxy pair (with small projected
separation, but larger line of sight separation) is expected to be zero, or its IG term is expected to be zero,
dependent on which of the two galaxies is closer to us. This can be seen in figure 4.
Thus far we have been talking about ellipticities ϵ1 and ϵ2, which depend on the choice of coordinate system,
since ϵ1 represents elongation with respect to a circular galaxy in the x or y direction, and ϵ2 represents
elongation in the directions at an 45◦ angle with x and y. We can rotate this system to align the x-axis of our
choice with the line on the sky connecting two galaxies we are correlating. This means the two components
ϵ+ (tangential) and ϵx (cross component) are, respectively, parallel or perpendicular to the line connecting
the two galaxies, or at 45◦ or 135◦ with respect to the separation line. More formally[3]:

ϵ+ = −(ϵ1cos2θ + ϵ2sin2θ) = −Re[ϵe−2iθ] (2.11)

and ϵ× = Im[ϵe2iθ], where θ is the angle between the initial x-axis and the vector from one galaxy to another.

2.3 Intrinsic shape power spectra

To see how this ellipticity relates to the matter power spectrum exactly, we need to look at the correlation
function of tangential ellipticity: ϵs+ = ϵI + ϵrnd

ξ++(rp,Π) ≡ ⟨ϵ+ϵ+⟩rp,Π (2.12)

where the brackets denote averaging over all galaxy pairs with line of sight seperation Π and projected
seperation rp. Since we will be measuring this on the night sky, it is useful to project this (and other
correlations) along the line of sight like[3]:

wab(rp) =

∫
W (z)

∫
ξab(rp,Π, z)dΠdz (2.13)

with

W (z) =
p2(z)

χ2(z)χ′(z)

[∫
dz

p2(z)

χ2(z)χ′(z)

]−1

(2.14)

being the redshift weighting, p(z) is the galaxy redshift distribution, χ is the comoving distance and a, b are
the quantities being correlated.
We can now relate this projected correlation function to the intrinsic-intrinsic power spectrum by using a
Hankel transform to express it in terms of Bessel functions[18]:

PII(k, z) = 2π

∫
w++(rp)J0(krp)rpdrp, (2.15)

where Jn is an nth order Bessel function of the first kind.
We now introduce a model to relate this power spectrum to the matter power spectrum. The linear alignment
model assumes linear relation between the ellipticities of galaxies and the gravitational potential quadrupole



2 THEORY 8

at the time of formation of the galaxies. It states that states that fluctuations in the large-scale potential
cause perturbations of the ellipticity of the dark matter surrounding galaxies, causing galaxy ellipticities to do
so as well. Higher order terms disappear because large-scale fluctuations are small and the intrinsic alignment
is thus assumed to be a linear function of the gravitational potential. This leads to the intrinsic-intrinsic
power spectrum being related to the matter power spectrum as follows[19][20]:

PII(k, z) =

(
AIAC1

a2ρ̄(z)

D(z)

)2

Pδδ(k, z). (2.16)

Here, ρ(z) is the mean density of the universe, D(z) is the growth factor, encoding the evolution of the matter
power spectrum as a function of redshift. C1 is a proportionality constant that indicates the ratio of the
two power spectra and is fixed using simulations to a value of 5× 10−14M−1

⊙ h−2Mpc3. AIA is the Intrinsic
Alignment Amplitude, which varies the alignment dependent on galaxy selection and indicates the amount
of alignment relative to the calibrated value of C1. Because AIA depends heavily on, among other things,
the redness and brightness of the sample selected, it needs to be restricted on a sample by sample basis.
This model can be improved (as we did) by using the nonlinear matter power spectrum, instead of the linear
matter power spectrum[18][21]. This model is called the nonlinear alignment model (NLA) and is a slight
improvement upon the linear alignment model. Although the NLA is improved, it can still not successfully
probe highly nonlinear scales. Furthermore, it has no physical basis, but fits the data phenomenologically.
When wanting to constrain AIA from this, one notices that there is a degeneracy in its sign, so it is useful to
also look at the position-shape and position-position correlation functions given by the NLA[20]:

wg+(rp) = −bg

∫
dzW (z)

∫ ∞

0

dk⊥k⊥
2π

J2(k⊥rp)PδI , (2.17)

wgg(rp) = b2g

∫
dzW (z)

∫ ∞

0

dk⊥k⊥
2π

J0(k⊥rp)Pδδ. (2.18)

Here bg is the linear galaxy bias, which signifies the ratio of the galaxies and the matter overdensities
(δg = bgδm) and the shape-position power spectrum is given by[22][20]:

PδI(k, z) = −AIAC1
a2ρ̄(z)

D(z)
Pδδ(k, z). (2.19)

So to constrain AIA it is useful to look at wg+, since w++ has a degeneracy in the sign of AIA and since the
w++ signal is generally much weaker.
In practice the alignment of individual galaxies depends on a lot of different factors, such as redness of the
galaxy, brightness, whether it is a satellite galaxy or central galaxy, etc. With the ellipticity of a given
galaxy given by equation 2.9, it might be useful to group ellipticity effects outside our model under a random
contribution[6]. For a given galaxy i:

ϵi = ϵIi + γi + ϵrndi (2.20)

With ϵIi being the ellipticity as expected by the theory, dependent on the matter field and the shape mea-
surement method, γi being the lensing effect and ϵrndi being the random shape noise.
We have so far only looked at < ϵ+ϵ+ > correlations, but what about ϵ×? We expect correlations involving
the cross component to disappear at linear order, because there are no forces in those directions at linear
order. These correlations can still be used tFsince o test for systematics though, as a significant deviation
from zero in these correlations might indicate a problem. We also expect < ϵ×ϵ+ > to disappear because of
parity between the two.

2.4 Multiple shapes

As explained before, the AIA of a galaxy sample is dependent on the shape measurement method used. As
can be seen in Figure 2, an ellipticity measurement with a weighting more sensitive to the outside of the
galaxy (like the green ellipse) can get a significantly different value from one that is more sensitive to the
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one a bit further in (the light blue region for example). If the ellipticity changed randomly when looking at
different scales of the galaxy, could be ignored, since we are looking at averages. However, since the outer
region of the galaxy is less gravitationally bound to the galaxy than the inner region, one would expect the
outer region to align stronger with the larger matter field. These two hypothetical shape measurements would
of course still be highly correlated, since they are measuring the same galaxy. It still might be very useful to
have multiple shapes per galaxy however, since it would not cost extra telescope time to measure multiple
shapes, but does add information.
To see how differences between different shape measurements would influence statistics, let’s start by looking
at equation 2.20: The lensing effect is independent of shape measurement method since it only depends on
the gravitational potential of the lens and is thus decided by the matter field. The random shape noise will
be influenced by similar influences for different measurements of the same galaxy and will thus be strongly
correlated.
This means that having multiple shape measurements per galaxy might help improve constraints on cosmo-
logical parameters, since one can essentially remeasure the lensing contribution, but with different intrinsic
alignment. The expected ellipticity would of course be measurement dependent and thus different, but it
would still be correlated amongst shape measurement methods.
To see whether this difference in alignment is actually there and measurable, we take a look at the projected
correlation function between the difference in ellipticity and galaxy position. The galaxy position, the lines
joining galaxy pairs, the galaxy bias and the redshift weight function should be the same amongst shape
measurements of the same galaxy sample. We can find the difference in alignment ∆AIA = AIA,m − AIA,n

between two measurement methods m and n via the difference in ellipticity:

∆ϵm,n = ϵIm − ϵIn + γ − γ + ϵrndm − ϵrndn = ∆ϵIm,n +∆ϵrndm,n. (2.21)

To find the difference in AIA between the two measurements, one would want to look at wg+, or actually
wg∆+.

∆ϵ+ = −((ϵ1,m − ϵ1,n)cos2θ + (ϵ2,m − ϵ2,n)sin2θ) (2.22)

ξg∆+(rp,Π, z) = ⟨g∆ϵ+⟩rp,Π (2.23)

wg∆+(rp) =

∫
W (z)

∫
ξg∆+(rp,Π, z)dΠdz (2.24)

wg∆+(rp) = ∆AIAbg

∫
dzW (z)

∫ ∞

0

dk⊥k⊥
2π

J2(k⊥rp)C1
a2ρ̄(z)

D(z)
Pδδ(k, z) (2.25)

So in our model wg∆+ only differs from wg+ with a constant factor.

2.5 Angular Power spectra

This section mostly follows Section 6.1 in Kirk et al. (2015)[3]. An easy way to combine lensing and intrinsic
alignment effects is by using projected angular power spectra in Fourier space. This is a distribution of shape
correlation as a function of angular scale on the sky, and given by[3]:

C
(ij)
++ (l) = C

(ij)
GG (l) + C

(ij)
II (l) + C

(ij)
GI (l) + C

(ij)
IG (l). (2.26)

Where i, j are now the different tomographic redshift bins that are being compared. The GI term will be
zero if the i bin is significantly further away than the j bin. The contributions of different terms can be seen
in figure 4. These power spectra are projected from the 3D power spectra as follows[3]:

C
(ij)
GG (l) =

∫ χH

0

dχ
qi(χ)qj(χ)

f2
K(χ)

Pδδ(
l

f2
K(χ)

, χ) (2.27)

C
(ij)
II (l) =

∫ χH

0

dχ
pi(χ)pj(χ)

f2
K(χ)

PII(
l

f2
K(χ)

, χ) (2.28)

C
(ij)
GI (l) =

∫ χH

0

dχ
qi(χ)pj(χ)

f2
K(χ)

PδI(
l

f2
K(χ)

, χ). (2.29)



2 THEORY 10

With χH being the comoving distance to the horizon, f2
K(χ) being the comoving angular diameter distance,

given by:

f2
K(χ) =


1/
√
Ksin(

√
Kχ), if K > 0 (open)

χ, if K = 0 (flat)

1/
√
Ksinh(

√
Kχ), if K < 0 (closed)

, (2.30)

where 1/
√
K is the curvature radius of the spatial components of spacetime.

pi(χ) = pi(z)dz/dχ, with pi(z) the redshift distribution of the galaxies in bin i and qi(χ) is the lensing weight
function of bin i[23]:

qi(χ) =
3H2

0Ωm

2c2
f2
K(χ)

a(χ

∫ χH

χ

dχ′pi(χ′)
f2
K(χ

′ − χ)

f2
K(χ

′)
. (2.31)

Although these tomographic bins ideally would be separated in redshift, this is always possible. Redshift
determination in surveys is not exact and movement of galaxies besides that caused by expansion of space
also influence redshifts. Thus, the bins partially overlap. This is further elaborated on in section 6.1.

Figure 4: Theoretical predictions for C
(ij)
++ (l) and its components as in equation 2.26. The left image shows

the power spectra between two non-overlapping redshift bins i (closer, the lowest redshift bin in figure 19 in

section 6.2) and j (further away, the fourth redshift bin in figure 19). he C
(ij)
GI (l) and C

(ij)
II (l) term overlap

as they are both zero. The right image shows the power spectra between galaxies in the lowest redshift bin

in figure 19 (in section 6.2) and themselves. The C
(ij)
GI (l) and the C

(ij)
IG (l) term overlap as they represent the

same correlation when i = j, as is the case here.

As is clear from equation 2.31, the projected angular power spectra depend explicitly on cosmological pa-
rameters. Thus, by measuring the angular power spectra, one could restrict these parameters. Assuming 5

redshift bins, there are 15 unique C
(ij)
++ (l)s, so 15 measurable power spectra. If one were to measure 2 shapes

per galaxy, this would effectively up the amount of measurable power spectra to 55 instead. Intuitively,
having more measurements would mean a very straighforward way to improve our constraining power of
cosmological parameters.
However, these C(l)s would not be unrelated, as the GG terms will for two C(l)s with different shape

measurements will be the same. Furthermore, the C
(ij)
GI (l) (C

(ij)
IG (l)) terms will only depend on the shape

measurement method of the galaxies in the j (i) bin. Also, when assuming the nonlinear alignment model,
the only difference between measurements will be the constant AIA factor, thus not adding any additional
information on parameters by itself. However, if one adds cosmic variance to the predictions for measurements,
there is value in extra measurements. Since this essentially means remeasuring the lensing measurements,
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but with different intrinsic alignment, thus better constraining the lensing effect. We explore this concept in
section 6, with the results in section 7.

Part I

Measurement of ∆AIA

The first question we ask is: Are we able to measure a difference in alignment signal between shape mea-
surement methods? To do so, we try to measure the amount of alignment, quantified in AIA, using different
shape measurements. Our different shape measurements are sensitive to different areas of the galaxies and
we thus expect them to measure different alignment signals. We try to find AIA for our methods and galaxy
sample by measuring both wg+ and wgg. To reduce the error in the difference between wg+ measurements,
we also look at wg∆+, which is the same quantity, just calculated with the difference in ellipticity of a galaxy
between two methods instead of the ellipticity of galaxy. To estimate the error in the measurement of these
correlations, we use Jackknife error estimation. We then fit the theoretical predictions to the measured pro-
jected correlation functions to find AIA, bg and ∆AIA. To measure this, we use a galaxy catalogue that is
a combination of redshift data from the Galaxy And Mass Assembly survey (GAMA) and shape data from
the Kilo Degree survey (KiDS). We then select two subsets from this catalogue, where we expect a strong
alignment signal.

3 Data

3.1 GAMA

GAMA is a spectroscopic survey, which means the light that enters the telescope gets dispersed and the
intensity of light per wavelength can be measured to great accuracy. This means that the redshift of the
source can be estimated very accurately by looking at how much the absorption lines of specific elements have
been moved. GAMA has a total sky coverage of approximately 286 deg2, divided into three equatorial regions
of 60 deg2 (G09, G12 and G15) and two southern regions, of 55.7 deg2 (G02) and 50.6 deg2 (G23)[24][25].
We only use the equatorial regions, as region G02 does not overlap with our KiDS data and G23 has different
target selection. This leaves us with approximately 180 deg2 and 180 000 galaxies. One important advantage
of GAMA is its high completeness, as in the regions used here, the redshift information is obtained for 98.5%
of the galaxies.

3.2 KiDS

KiDS is a survey designed for weak lensing, shape and photometric redshift measurements[26][10][27]. The
main goal of the survey is mapping the large scale matter distribution in the universe. It is a photometric
survey, which means that the light from sources is passed through a filter to only measure a specific part the
spectrum at a time. It can measure smaller scales more accurately than spectroscopic surveys however.
KiDS covers 1350 deg2 with four filters (u, g, r and i) with mean limiting magnitudes 24.23, 25.12, 25.02,
23.68 (5σ in a 2” aperture). Since we are restricted to the regions also covered by GAMA, we still have sky
coverage of 180 deg2 and 180 000 galaxies as before.
One important complication when trying to accurately determine the shapes of light sources is the Point
Spread Function (PSF) of a measurement. The PSF quantifies how and how much a point source gets spread
out by the atmosphere and the optics of the telescope when it is measured. This means that shapes of sources
smaller than the PSF cannot be measured accurately, as one will be measuring the PSF shape instead of the
source shape. As our shapes are determined using the r-band filter, we care about the r-band PSF which has
a mean size of 0.70” and an average shape (1− a/b) of about 0.05.
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3.2.1 Shape measurement method

The shapes of our galaxies were originally measured in Georgiou et al. (2019)[28] and Georgiou et al.
(2019)[29], where they were measured using DEIMOS[30] in the r-band of the KiDS survey. DEIMOS is a
moments-based method: it uses the surface brightness moments of a galaxy image to determine its shape.
This method allows us to use high-order moments to correct for the weight function (explained later on),
which is necessary when the imaging data had a lot of noise. This method also treats the PSF analytically
and is limited by how accurately one can model the PSF on the position of the galaxy, not by any assumptions
made about the PSF. Lastly, it allows us to vary the radial weight function, to probe different regions of
the galaxies, with a larger (smaller) weight function meaning the measurement is more sensitive to the outer
(inner) regions. This allows us to compare the intrinsic alignment of different parts of galaxies and ultimately
is what helps us constrain ∆AIA.
To explain how this method works, we first need to explain the unweighted moments of the surface brightness
distribution G(x) of a galaxy, which is expressed by[29]

Qij ≡
∫

G(x)xi
1x

j
2dx (3.1)

with x = x1, x2 the Cartesian coordinates with the galaxy’s center as origin.
We can now get the ellipticity of a galaxy from these second order moments:

ϵ = ϵ1 + iϵ2 =
Q20 −Q02 + i2Q11

Q20 +Q02 + 2
√
Q20Q02 −Q2

11

(3.2)

However, we don’t actually measure G(x), we measure G(x) combined with the distortion due to the PSF:

G∗(x) =

∫
G(x′)P (x− x′)dx′ (3.3)

where P (x) is the PSF kernel. To retrieve the actual shape we use the formula[30]:

{G∗}i,j =
i∑
k

j∑
l

(
i
k

)(
j
l

)
{G}k,l{P}i=k,j=k. (3.4)

This means that if want to know G up to a certain order, we would need to know G∗ and P up to that same
order.
Also, to calculate Qij we need to integrate over area of the image, which we choose to be large enough to
capture the whole galaxy, but which gets dominated by noise far away from galaxy. Thus we need to apply
a 2D weight function W (x), centered on the galaxy, to suppress noise at large distance from that center. If
we assume this (Gaussian) background noise is there and we weigh the flux, we get:

Iw(x) = W (x)I(x) = W (x)(G ∗ (x) +N(x)), (3.5)

where Iw(x) is the measured flux, I(x) is the flux of the image before weighting, which is equal to G∗(x)
plus the background noise N(x).
We want this weight function to be the same shape as the galaxy so that we exclude as little light from the
galaxy as possible and the signal-to-noise is maximised. Because galaxies are approximately elliptical, we
choose an elliptical weight function:

W (x) = exp

[
−(x− xc)

T

(
1− ϵ1 −ϵ2
−ϵ2 1 + ϵ1

)
x− xc

2r2wf

]
. (3.6)

Here, ϵi are the ellipticity components of the weight function, xc is where the center of the galaxy is and rwf

is the scale of the weight function. The ellipticity of the weight function is iteratively tweaked per galaxy,
starting from a circular weight, until the signal-to-noise ratio of the measurement converges. Throughout
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this tweaking, the area of the weight function is kept the same. Then Iw is deweighted by taking I = Iw/W
and Taylor expanding around xc, truncating at order 4, which is stable[29].
A larger rwf means the measurement is more sensitive to the outer regions of the galaxy, while a smaller rwf

means the galaxy is more sensitive to the inner regions. rwf is initially chosen to be equal to riso =
√
Aiso/π,

where Aiso is the area of a galaxy’s isophote, with the isophote measured at 3σ above the background noise
root mean square. Aiso is calculated using the ISOAREA IMAGE parameter from SExtractor[31]. This
radius is chosen so that we get good shape signals out of many galaxies.
We then repeat the shape measurements for a few different weight functions with rwf/riso = 0.5, 1, 1.5, to
give us an idea of the differences in alignment between methods sensitive to different galaxy regions. To get
an idea: rwf/riso = 0.5 is on average roughly equivalent to the half light radius. The distribution of the
measured ellipticities using these three weight function radii can be seen in 5. The graph seems to hint at
the outside of galaxies being rounder than the inside, but it is not clear-cut.

Figure 5: Normalised ellipticity (=
√
ϵ21 + ϵ22) distribution for measurements with three different choices of

rwf . The ellipticity averages for rwf/riso = 0.5, 1, 1.5 are 0.23, 0.18 and 0.19 respectively.

3.3 Masking

Some areas of our surveys are sadly unusable. The presence of readout spikes, saturation cores, diffrac-
tion spikes, primary halos of foreground objects and bad pixels makes it necessary to exclude galaxies in
certain regions. We thus apply a mask that removes galaxies near these anomalies, which might impact
two-point functions. To negate (part of) that effect, we later construct our measurement methods to include
a comparison with a random catalogue, that has a similar distribution as our galaxy catalogue.
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3.4 Random catalogue

[32] To accurately measure correlations, we compare them to a random catalogue. The goal of the random
catalogue is to remove properties in the survey that are not due to the physics we are interested in, but
do influence our measurements. One of the things the randoms need to emulate is structures larger than
the survey size, as they cannot be measured but still might influence the scales we do measure[32][20].
Furthermore, the limits of our surveys mean that we see less dim objects further away from us, even if
they are physically there, because the amount of their light that reaches us is too small. This means our
measurements are biased, which can be negated if our randoms have the same redshift distribution. A
comparison of the redshift distribution of the galaxy sample (and two subsamples) and the random sample
can be seen in figure 6. Lastly, our removal of certain patches of the sky by masking might also influence
two-point correlations, so we need to mask the randoms similarly. The distribution of the brightest 20% of
galaxies and their corresponding random clones on patch G09 can be seen in figure 7.

Figure 6: Redshift distributions of the galaxies and their associated randoms. From top to bottom they
are the full galaxy sample, the ”Brightest” subset and the ”Reddest” subset, as defined in section 3.5. The
distribution of the ”Brightest” subsample is shifted to the right because it excludes the dimmer galaxies only
measured at low redshift. The randoms seem to emulate the redshift distribution of the real galaxies well.

We use the random catalogue developed for the GAMA survey[32]1, which is generated based on the Cole
method[33]. To generate the randoms, the maximum volume of space over which it could be observed (Vmax)
was found for each galaxy in the survey. Vmax was calculated by finding the redshift values, zmin and zmax,
for which a galaxy meets the bright and faint magnitude limits of GAMA. The galaxy is then cloned a number
of times (on average about 80 randoms per galaxy) and these clones are distributed within a galaxy’s Vmax.
These clones have the same stellar mass, absolute magnitude and colour as the original. This forms the basis
of the catalogue, where we then mask out the same area as in our galaxy catalogue.

3.5 Data cuts and selection

To obtain good alignment measurements, we first filter out galaxies that are not much larger than the PSF
size. We then start selecting galaxies to create a subset where we expect the strongest alignment signal, so that
the difference between measurements would also be more prominent. Since many processes in the history of a

1http://www.gama-survey.org/dr4/schema/dmu.php?id=109
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Figure 7: Positions of galaxies (orange) and their associated randoms (blue, 10% the size of orange) in the
brightest 20% of galaxies of the G09 patch. The regions where there are no dots mainly indicate regions
where the galaxies and the randoms have been masked because accurate measurements for that region could
not be obtained.
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Brightest Reddest
g-i cutoff 0.8 0.95

Brightest % 20 100
Galaxy count (no flags) 20077 77662
Galaxy count (all flags) 18570 67432
Avg r-band luminosity 2.697 1.132
Avg ellipticity ( 12riso) 0.158 0.229
Ellipticity std ( 12riso) 0.118 0.183

Table 1: Table describing the two subsamples that were used. From top to bottom the rows describe: the
minimum magnitude in g-i, what percentage of brightest galaxies was selected; the amount of galaxies in the
subsample; the amount of galaxies in the subsample with valid shape measurements for all radii used; the
average luminosity in the r-band, the average ellipticity measured at a radius of 0.5riso; and the standard
deviation in ellipticity, measured at a radius of 1

2riso.

galaxy can enlarge or decrease its alignment, we can expect the IA signal to depend on a multitude of galaxy
properties. However, since we cannot model these effects accurately, we focus on 2 galaxy properties: colour
and luminosity. IA seems to be stronger in redder galaxies, which are older and have less star formation[34].
IA also seems to be stronger in more luminous galaxies, Singh et al. (2015)[35] have measured the AIA in
the brightest 20% of their galaxies to be 1.7 times as high as in the next 20th percentile.
We thus employ both a colour and a brightness cut. However, taking a strong cut in colour and then taking
the brightest 20% of galaxies would have left us with too little to work with, so we employ a more conservative
colour cut. This subsample is named ”Brightest” in the rest of this thesis.
To be less dependent on our choices here, we have also employed a stronger colour cut and no luminosity cut
to obtain a second subsample. This subsample is called ”Reddest”.
The colour cuts were taken after visual inspection of the distribution of galaxies in the g-i filter-absolute
magnitude plane, and estimating where border between the populations of red and blue galaxies was. This
distribution, along with the cuts, can be seen in figure 11. Even though we expect a stronger signal for the
”Brightest” galaxies, the ”Reddest” sample has more than 3 times the amount of galaxies, so it can better
help constrain the signal. These numbers and some other properties of the subcatalogues are listed in table
1.

4 Methods

4.1 Estimators

To constrain the difference in AIA between two methods, we look at both wg+ and wgg. We can constrain
AIAbg from wg+ by fitting measurements to theory and we can find bg from wgg in a similar matter. Thus,
by measuring these two projected correlations, we can find the dependence of the intrinsic alignment on the
measurement method. Both of these quantities are measurable in surveys, but the surveys do not cover the
full sky, only regions of it. Thus, the influence of structures of larger scale than the survey is there, but not
properly measured. Furthermore, not all galaxies in the covered sky region are detected, as some might be
not bright enough to detect, making further away dimmer galaxies undetectable. Lastly, even in the covered
regions, there exist bright objects that prohibit us from accurately measuring shapes in the full region, more
about this in section 3.3.
This means that just measuring the shapes and their correlation alone will give us a biased answer and we
must compensate for this. This is done by comparing the measured correlations to a catalogue of randomly
distributed similar galaxies[36], where the distribution in brightness, redshift and projected space matches
that of the survey. The goal here is to negate survey specific effects as they are not physical, just a consequence
of measuring method. This random catalogue is described in section 3.4.
The estimators we used for the true projected correlations as a function of the measured ones are adopted
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Figure 8: Redshift distribution of the full dataset and the subsets used for analysis.

Figure 9: r-band luminosity distribution, compared to an object with an absolute r-band magnitude of -22.
The blue bars are the full dataset, the orange bars are the dataset ’Reddest’.
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Figure 10: r-band luminosity distribution of the full dataset, compared to an object with an absolute r-band
magnitude of -22. The red line indicates the cut for the brightest 20%.

Figure 11: Colour versus absolute magnitude of galaxies in our catalogue. The colour is determined through
the difference in magnitude between the light from the source through the g filter and the i filter. The
absolute magnitude is taken in the r-band. The lines indicate the two different colour cuts employed to
obtain the subsamples we have used in our analysis.
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from Mandelbaum et al. (2006)[37]. For the galaxy-intrinsic shear correlation:

ξ̂g+(rp,Π) =
S+D(rp,Π)− S+R(rp,Π)

Nrs(rp,Π)
. (4.1)

Here rp denotes a projected separation bin with edges rp/10
∆log(rp)/2 and rp × 10∆log(rp)/2 and Π denotes

the maximum comoving separation considered. Nab(rp,Π) is the amount of pairs between sample a and b in
the bin considered. The r and s signify the random sample and the shape sample. S+D is

S+D =
∑

i ̸=j|rp,Π

ϵ+(j|i)
2R

. (4.2)

The sum is over galaxy pairs in the bin, ϵ+(j|i) is the ellipticity tangential to the line connecting galaxies
j and i, with j in the shape sample and i in the density sample. R ≈ 1 − σ2

ϵ is the shear responsivity
which quantifies how much galaxy ellipticities are affected by gravitational shearing for the galaxy sample
used. S+R is defined the same as S+D except with the random position sample instead of the galaxy density
sample.
We also look at wg×, which is measured through the same estimator as wg+, except with the cross component
of the shear instead of the tangential. We expect wg× to be zero, so we can use this as a test for systematics.
For the galaxy-galaxy correlation, we use the Landy and Szalay (1993)[38] estimator:

ξ̂gg(rp,Π) =
Ndd(rp,Π)− 2Ndr(rp,Π) +Nrr(rp,Π)

Nrr(rp,Π)
. (4.3)

Here d denotes the galaxy position sample.
We project these measurements along the line of sight to make the modelling easier:

ŵg+(rp) =

∫ Πmax

Πmin

ξ̂g+(rp,Π)dΠ, (4.4)

and similar for wgg.
So by measuring ŵgg(rp,Π) and fitting it to the theoretical prediction as in equation 2.18, we can find b2g.
Making the reasonable assumption that it can not be negative, we can then fit ŵg+(rp,Π) to equation 2.17
to find AIA × bg and thus AIA itself.

4.1.1 Shape difference

To measure the intrinsic alignment difference we use the following estimator:

ξ̂g∆+(rp,Π) =
S∆+D(rp,Π)− S∆+R(rp,Π)

Nrs(rp,Π)
, (4.5)

with the same binning scheme. S∆+D is defined using the difference in ellipticity between the two shape
methods considered:

S∆+D =
∑

i ̸=j|rp,Π

(
ϵ1+(j|i)
2R1

−
ϵ2+(j|i)
2R2

)
. (4.6)

Here ϵm+ (j|i) is the ellipticity tangential to the line connecting the galaxy pair, measured with shape method
m and Rm is the shear responsivity of the sample, with method m: Rm ≈ 1−σ2

ϵm . S∆+R is defined similarly.
This effectively means that S∆+D = S+1D − S+2D and thus:

ξ̂g∆+(rp,Π) =
(S+1D − S+1R)− (S+2D − S+2R)

Nrs
= ξ̂g1 − ξ̂g+2 . (4.7)

So when we project, we obtain:

ŵg∆+(rp) =

∫ Πmax

Πmin

ξ̂g∆+(rp,Π)dΠ =

∫ Πmax

Πmin

(ξ̂g+1(rp,Π)− ξ̂g+2(rp,Π))dΠ = ŵg+1(rp)− ŵg+2(rp). (4.8)
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This means that we can find the difference in projected intrinsic shape-galaxy position correlation between
two measurements by using the same pipeline we use for ŵg+, but using ϵ1+ − ϵ2+ as the tangential shape
measurement. We can then fit this result to the theory for wg+ to find ∆AIA = A1

IA −A2
IA, since in theory

wg∆+ should only differ with a factor from wg+, the shape should stay the same.

4.1.2 Measurement specifics

We have used 30 line of sight separation bins from −60h−1Mpc to 60h−1Mpc in steps of 4h−1Mpc and 11
log spaced bins for projected separation between 0.1 and 60h−1Mpc, following Johnston et al. (2019)[20].
Our estimators were measured using Johnston’s 2ptPipeline2, essentially a wrapper of TreeCorr[39]3.
We have used the same sample for the density and shape catalogue for no other reason than convenience. A
future study might want to use a larger density sample to get a decrease in errors.
For individual measurements of wg+, we have used those galaxies that had a clearly resolved shape measure-
ment for the method considered. When calculating wg∆+ we have only used those galaxies that had good
shape measurements for both methods.
Lastly, in practice we have not divided by R as in equations 4.6and 4.2. Because of the construction of
equation 4.6, this cannot be compensated for by a simple division of the end result wg∆+ with R. Our
results are thus 8-12% too big, dependent on the variance of the shape measurement used, but the R factors
approximately cancel when looking at ∆AIA/AIA.

4.2 Jackknife error estimation

Jackknifing is a way to determine the variance and covariance in a measurement when one cannot repeat the
experiment multiple times. It takes the full sample, then deletes one 3D patch from it and sees how much the
data vector has deviated from the mean. It repeats this for every patch in the data, deleting one at a time,
and averages over them. To do this, each patch must be larger than the largest scale under consideration,
as to not influence the actual measurement. On the other hand, the amount of patches must be much larger
than the data vector, otherwise the errors on the individual data points becomes too large. The jackknife
covariance matrix is then estimated by[20]:

Ĉjack =
N − 1

N

N∑
a=1

(wa − w̄)(wa − w̄)† (4.9)

Where N is the number of jackknife regions, wa is the data vector, measured after excluding region a, w̄ is
the average value of all was and the dagger denotes the transpose conjugate.
We have chosen to adopt similar jackknife regions to Johnston (2019)[20], as they look at the same data with
similar tracers. We have chosen for equal-number redhshift subsets with a minimum depth of 150Mpch−1,
since the largest line-of-sight separation we look at is ±60Mpch−1. We define 36 regions for our ”Brightest”
sample and 48 regions for our ”Reddest” sample. By comparison: our data vector consists of values in 11
different rp bins. For a more detailed description of different influences such as masking, we point the reader
to Appendix A in Johnston (2019)[20].

5 Results

We present our results using the methods described in the previous section. For both subsets ”Brightest”
and ”Reddest” we have done the following. We have measured the projected correlation function wg+ as a
function of separation with three different values of rwf . We then fitted theoretical predictions for wg+, as
described in equation 2.17, to the smallest radius case, to find AIAbg. To divide out the galaxy bias in these
measurements, we have also measured and fitted theoretical predictions (equation 2.18) to wgg. Finally, we
have measured wg∆+ and fitted the predictions for it to it to find ∆AIA. The summary of our results can be
seen in table 2. We have solely performed our fits in the range of r = [6, 30]Mpc/h. Any lower separations

2https://github.com/harrysjohnston/2ptPipeline/
3https://rmjarvis.github.io/TreeCorr/



5 RESULTS 21

(a) Brightest (b) Reddest

Figure 12: wg+ for the two data subsets, for shape measurements weighted at different ratios from the center
of the galaxy (different rwf ). Here r3σ = riso.

Brightest χ2
red Reddest χ2

red

bg 1.19± 0.06 1.3 1.03± 0.07 1.54
AIA ( 12riso) 1.19± 0.64 1.85 4.29± 1.38 0.057

∆AIA 0.55± 0.40 1.58 0.86± 0.74 0.013

Table 2: A table summarising our results in this section. These are the fitted values for the galaxy bias (bg),
the intrinsic alignment amplitude (AIA) measured with a weight function with rwf = 1

2riso, and the difference
in intrinsic alignment amplitude (∆AIA) between measurements with a weight function with rwf = 3

2riso
and with rwf = 1

2riso. Also given is the respective reduced χ2 of the fits.

would be too deep into the nonlinear regime for our approximations of PδI and Pδδ to be accurate. The
higher separation approaches the size of the survey regions and might thus not be properly measured.
As can be seen in figure 12, there is a difference in wg+ between weighing ratios. We cannot conclude,
however, that this difference is significant, as the errors on our measurements are too large to conclude
anything. There does seem to be a hint that the alignment is stronger further from the center, as the higher
radius tends to give a higher value than the lower radius.
To constrain the IA amplitude, we first need to constrain the galaxy bias. Measurements for the two samples
can be seen in figures 13 and 14, where qualitatively good fits found values of bg = 1.03 ± 0.07 and bg =
1.19± 0.06 for ”Reddest” and ”Brightest” respectively.
Our measurements for wg∆+ can be seen in figures 18 and 16. We again see a trend of the outside of galaxies
being stronger aligned, although this trend is not as clear for ”Reddest”. Our fits are of decent quality,
with reduced χ2 between 1 and 2. If we compare the fitted values for ∆AIA with the fitted values for AIA

from the small weight function (in figures 17 and15), we seen a difference of 20% for ”Reddest” and 46% for
”Brightest”. Although our error on all measurements is too big for our results to be called significant, these
are upper limits we can work with when considering how multiple shapes might improve analysis of future
surveys.
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Figure 13: wgg for ”Brightest”, plus fitted theory with 1 standard deviation interval around it. The fit
corresponds to a value of bg = 1.19± 0.06, fitted with χ2

red = 1.30.

Figure 14: wgg for ”Reddest”, plus fitted theory with 1 standard deviation interval around it. The fit
corresponds to a value of bg = 1.03± 0.07, fitted with χ2

red = 1.54.

Figure 15: wg+ for ”Brightest” at 1
2riso, plus fitted theory with 1 standard deviation interval around it. The

fit corresponds to a value of AIA ∗ bg = 1.42± 0.65, fitted with χ2
red = 1.85.
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Figure 16: wg∆+ for ”Brightest”, plus fitted theory with 1 standard deviation interval around it. The
difference is taken between the measurement at 1

2riso and
3
2riso. The fit corresponds to a value of ∆AIA∗bg =

0.66± 0.42, fitted with χ2
red = 1.58.

Figure 17: wg+ for ”Reddest” at 1
2riso, plus fitted theory with 1 standard deviation interval around it. The

fit corresponds to a value of AIA ∗ bg = 4.42± 1.020, fitted with χ2
red = 0.057.
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Figure 18: wg∆+ for ”Reddest”, plus fitted theory with 1 standard deviation interval around it. The difference
is taken between the measurement at 1

2riso and
3
2riso. The fit corresponds to a value of ∆AIA∗bg = 0.89±0.65,

fitted with χ2
red = 0.013.

Part II

Forecasting
Now that we have established that there might be a difference in intrinsic alignment between shape mea-
surement methods and that this difference might be measurable, we continue onto our second question: How
much would having multiple shape measurements help constrain cosmological parameters? To answer this
question we use software to calculate theoretical angular shape-shape power spectra. We generate these in
accordance with the expected results of the Legacy Survey of Space and Time[11], which will take place at the
Vera C. Rubin Observatory starting 2024. We then calculate the theoretical covariance matrix between these
measurements, with an added noise. This noise is correlated between measurements of the same galaxies.
We expect this noise to be compensated for with multiple measurements of the same sample. To see how well
this improves future results we introduce and employ a variety of measures: the Signal to Noise Ratio, the
confidence ellipse, the Figure of Merit and the uncertainty in S8. To quantify the improvement in the data,
we look at the increase in Signal-To-Noise ratio (SNR), increase in a Figure of Merit (FoM) of cosmological
parameters, and decrease in the uncertainty in S8. To obtain the last two, we employ a method called Fisher
forecasting. We compare the case where we have two shape measurements with the case where we only use
one, to see if having multiple shape measurements is worth it.

6 Methods

The possible extra information gain from multiple shape analysis is especially interesting when considering
future surveys such as the Rubin Observatory’s Legacy Survey of Space and Time (LSST). LSST aims to
cover about 20 000 deg2, so about half the sky, with a pixel size of 0.2 arcsec per pixel in six different colour
bands. It aims to “scan the sky deep, wide, and fast with a single observing strategy, giving rise to a data set
that simultaneously satisfies the majority of the science goals”[11]. It will however be a photometric survey,
and will thus have less exact redshift measurements than GAMA.

6.1 Data vector

To simulate the upcoming measurements by LSST, we assume measurements of angular tangential shape-
tangential shape power spectra Cij

++(l), as in equation 2.26, with i and j the galaxy samples being correlated.
We consider five different redshift bins, with two shape measurements per bin, effectively giving us 10 galaxy
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samples. Since Cij
++(l) = Cji

++(l), this effectively gives us a data vector of 55 angular power spectra. The
way we differentiate between shape measurements in our predictions is by including a different AIA per
measurement (A1

IA and A2
IA), where we consider it not to be redshift dependent. This is a realistic assumption

at our scales, as no clear redshift dependence before z=3 has been found[40] and we do not look much further.
We assumeA1

IA = 1, because this best matches observations when considering a general galaxy population[41],
and vary ∆AIA = A2

IA−A1
IA in the range 0.5-0.85 in steps of 0.05 to see what the influence of different types

of measurements would be. We consider values of 0.5 and 1.5 for A1
IA in Appendix A. To compare with, we

also separately consider the case where we have the same 5 redshift bins, but only 1 shape measurement per
bin. This gives us a data vector of 15 power spectra.
The redshift bins have been distributed following the expected redshift distributions of LSST, as given by
Chang et al. (2013)[42]:

P (z) = z1.24 exp

[
−
( z

0.51

)1.01]
. (6.1)

They were then divided up in 5 regions and convolved to resemble the redshifts that will be measured consid-
ering LSST will be a photometric survey. The probability that a galaxy with redshift z has a photometrically
measured redshift zp is given by[43]

pph(zp|z) =
1− fout√
2πσb(a+ z)

exp

[
−1

2

(
z − cbzp − zb
σb(1 + z)

)2
]
+

1− fout√
2πσb(a+ z)

exp

[
−1

2

(
z − cozp − zo
σo(1 + z)

)2
]
.

(6.2)

Where fout is fraction of catastrophic outliers and the other parameters can be tweaked to mimic different
cases. Our choices for parameters are the same as in Euclid Collaboration(2020)[43]: cb = 1.0, zb = 0.0,
σb = 0.05, co = 1.0, zo = 0.1, σo = 0.05, fout = 0.1.
The redshift distributions can be seen in figure 19. There is some overlap between redshift bins because we do
not expect the redshift measurements to be perfect. Photometric redshifts are not as precise as spectroscopic
ones and the movement of galaxies with respect to the expanding space will cause some redshift spread as
well.
The codes to generate the shape-shape power spectra used the Core Cosmology Library (CCL)4[6] which
essentially integrates equations 2.27 through 2.29 and adds them up. It uses matter power spectra generated
through CAMB [44].
These power spectra were generated using cosmology following WMAP9+eCMB+BAO+H0 as in Hinshaw
et al. (2013)[14]. We model the fractional sky coverage and number of galaxies per steradian after LSST
from the LSST science book[11] and Chang et al. (2013)[42] respectively. We expect our shape noise to be
in accordance with Bhandari et al. (2021)[45]. Note that the galaxy density per steradian is the expected
full density, which is optimistic since not all galaxies will have usable shape measurements. The values can
be seen in table 3. The power spectra were evaluated over values of l = 2 through l = 2000 in steps of 1.

6.2 Covariance matrix

To estimate the covariance matrix of the data vector, we use the following formula following[46]:

Σk,m
i,j (l) = Cov[Ci,j(l), Ck,m(l)] =

1

(2l + 1)fsky
(C̄i,k(l)C̄j,m(l) + C̄i,m(l)C̄j,k(l) (6.3)

Where C̄i,k(l) is the angular tangential shape-tangential shape power spectrum plus added noise:

C̄i,k(l) = Ci,k(l) + δzi,zjcorrsi,sj
σ2
ϵnz

2n̄g
. (6.4)

Here i, j are the shape samples being compared, δzi,zj is 1 if i and j are in the same redshift bin (zi = zj),
corrsi,sj is 1 if the same shape measurement method is used to generate i and j (si = sj , so A1

IA = A2
IA)

4https://github.com/LSSTDESC/CCL
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Quantity Symbol Value
Baryon density Ωb 0.04628
Matter density Ωc 0.2865

Reduced Hubble constant h 0.6932
Slope of primordial power spectrum ns 0.9608

Power spectrum amplitude at 8Mpch−1 σ8 0.820
Fractional sky coverage fsky 0.48

Galaxy density per steradian n̄g 3.1× 108

Standard deviation in ellipticity σ2
ϵ 0.23

Table 3: Table describing the parameters used in the forecasting. The cosmological parameters are taken
from Hinshaw et al. (2013)[14], in accordance with WMAP9 plus priors. The survey specific parameters are
taken in accordance with the expected values for LSST[11][42][45].

and equal to the correlation between the two shape measurements otherwise, nz is the number of z bins and
σϵ and n̄g are described in table 3. We have inserted corrsi,sj here because the shape noise between two
measurements of the same galaxies is physically correlated.
To see what the influence of different types of measurements would be, we consider a range of possible
correlations between measurements: 0.5-0.95 in steps of 0.05. We also calculate the correlation between the
shape measurements we took the difference between in part I, to see what correlation can be expected.

6.2.1 Signal to Noise Ratio

As a first indication for any improvement in our constraining power, we look at the Signal to Noise Ratio
(SNR). This is a measure for the amount of information in our measurements, compared to the uncertainty
in those measurements. It was calculated by taking[45]

SNR2 =

2000∑
l=2

CT (l) · Σ(l)−1 · C(l). (6.5)

Here C(T )(l) is the (transposed) data vector and Σ is the covariance matrix of that data vector as defined in
equation 6.3.

6.3 Fisher forecasting

To see the improvement in our knowledge of cosmological parameter we use Fisher forecasting. Fisher
forecasting is a way to construct the covariance matrix of parameters of interest from a data vector and
the covariance matrix of that data vector. The Fisher matrix (Fαβ) is defined as the expectation value
of the Hessian matrix of the negative log-likelihood of the data vector (L ≡ − lnL with L the probability
distributions of the elements of the data vector[47]), with respect to parameters of interest (p)[45][47]:

Fαβ ≡
〈

∂2L
∂pα∂pβ

〉
. (6.6)

Again, our data vector consists of theoretical predictions for angular power spectra, as functions of l, and
the covariance matrix is defined in equation 6.3.Our parameters of interest are Ωm (the matter density in
the universe), Ωb (the baryon density in the universe), h (the reduced Hubble constant, defined as H0/100),
ns (the scalar spectral index), σ8 (density fluctuations at 8h−1Mpc) and the two different values of AIA

we expect to measure per galaxy. If the covariance matrix (Σ(l)) is assumed to be independent of the
cosmological parameters and we assume the error in the parameters to be Gaussian (which is not a great
approximation), the Fisher matrix can be calculated using[45][23]:

Fαβ =
∑
l

∂C(l)T

∂pα
· Σ(l)−1 · ∂C(l)

∂pβ
. (6.7)
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Figure 19: The redshift distribution used to calculate the angular shape-shape power spectra for forecasting.
The distribution follows estimations for what LSST will measure[42]. The distribution was split into equal
number bins and then convolved to approximate realistic photometric redshift measurements[43].
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wν,n

ν 1 2 3 4 5 6 7
n = 3 − 1

2 0 1
2

n = 5 1
12 − 2

3 0 2
3 − 1

12
n = 7 − 1

60 − 3
20 − 3

4 0 3
4 − 3

20
1
60

Table 4: Table describing the weights wν,n to use in the finite differences methods as in equation 6.8 for some
values of n. They are calculated in accordance with Fornberg (1988)[48]. Only uneven values of n are valid
and values for wν,n with ν > n are irrelevant as they do not appear in the sum.

The resulting Fisher matrix is the inverse of the covariance matrix of the parameters of interest p and can be
used to calculate a variety of indicators of how well constrained the parameters are. The three indicators used
in this paper are the Figure of Merit (FoM) in Ωm and σ8, the confidence ellipse of these parameters and the
standard deviation in S8 (which is a function of Ωm and σ8). These parameters are of specific interest to us
because lensing is most sensitive to these parameters, as they describe (part of) the matter power spectrum.

6.3.1 Numerical derivatives

To obtain the Fisher matrices, we need to take derivatives of Ci,j(l) with respect to cosmological parameters.
Although the relation is relatively clear in some cases, in other cases the dependence is hidden away in the
matter power spectrum. We thus take numerical derivatives instead. These partial derivatives were computed
using the finite differences methods[48]. This method approximates a partial derivative with respect to a
variable x by slightly varying x around the value we are interested in, weighing the outcomes and adding
them. The generic formula (for first order derivatives) is

∂f

∂x

∣∣∣∣
x=x0

≈
n∑

ν=1

wν,nf

(
x0 × (1 + ∆s(ν +

1− n

2
))

)
. (6.8)

Here x0 is the value of x we want to know the derivative at, n is the amount of points around x0 we are
evaluating the derivative at (the amount of steps), ∆s is the step size as a percentage of x0 (normalised step
size) and wν,n is the weighting, which is a function of ν and n, the values of which can be seen in table 4.
To see whether the choice of these ∆s and n impact our results, we have found Cij to be stable for different
combinations of n = {3, 5, 7} and ∆s = {0.1, 0.01, 0.001}. Since results seem to be stable with respect to our
choices, we choose ∆s = 0.01 and n = 5 for the rest of our analysis.
As a test, we have also compared the derivative of the angular intrinsic shape-intrinsic shape power spectrum
(II) with respect to A1

IA, with the same angular power spectrum, but divided by A1
IA. Since CII should be

linear in A1
IA, these two should be the same. They are, as can be seen in figure 20, thus our method seems

to work

6.3.2 Confidence ellipses

Confidence ellipses are a good way to visualise the uncertainty in and the covariance between two parameters.
They show the contour of a certain confidence in the 2-parameter space and can be calculated using Fisher
matrices. We use these to visualise the improvement in our knowledge of Ωm and σ8 when considering
multiple shape measurements. The steps to get to these ellipses follows the Fisher matrices and confidence
ellipses quick start guide by Coe[49].
To get the contours, we need the reduced covariance matrix: the covariance matrix of just our two parameters.
We do this by first inverting the Fisher matrix to get the covariance matrix and then marginalising over all
parameters except Ωm and σ8. This is done by simply removing all rows and columns from the covariance
matrix besides the ones pertaining to our 2 parameters. This is akin to integrating over the other parameters,
so they are allowed to take any value[49]. We now have a covariance matrix of Ωm and σ8 C:

C =

(
σ2
x σxy

σxy σ2
y

)
=

(
σ2
Ωm

σΩmσ8

σΩmσ8
σ2
σ8

)
. (6.9)
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Figure 20: A graph testing the numerical derivative method. One line shows the derivative of the angular
intrinsic shape-intrinsic shape power spectrum (II) with respect to A1

IA. The other line shows the same
angular power spectrum, but divided by A1

IA. Both galaxy samples for both resided in the same redshift bin
(the first in figure 19) and had two different shape measurements with A1

IA = 0. and A2
IA = 1. Since CII(l)

in this case is expected to be linear in A1
IA, we expect the two lines to be the same, as is the case.
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Note that σ2
x and σ2

y are defined as squares while σxy is not. We can now calculate the parameters of the
ellipse:

a2 =
σx2 + σy2

2
+

√
(σx2 − σ2

y)
2

4
+ σ2

xy (6.10)

b2 =
σx2 + σy2

2
−
√

(σx2 − σ2
y)

2

4
+ σ2

xy (6.11)

tan 2θ =
2σxy

σ2
x − σ2

y

. (6.12)

Here a and b are the axis lengths and θ is the angle at which the ellipse should be rotated with respect to the
x-axis. We then multiply a and b with a coefficient that depends on what confidence level we are interested
in. If we want to show the 1, 2, or 3 standard deviation confidence ellipses, we have to multiply by 1.52, 5.48,
3.41 respectively. We only show the 1 standard deviation ellipses in our plots.

6.3.3 Figure of merit

One way to quantify some of the information of the confidence ellipse is by looking at the area of the ellipse.
The larger the uncertainty in the parameters, the larger the area is. Analogous to the Dark Energy Task
Force (DETF) Figure of Merit (FoM)[50], we define our own FoM. The DETF FoM is equal to π times the
inverse of the area of the 95% confidence ellipse in the w0−wa plane, where w0 and wa are parameters for the
equation of state of Dark Energy. The larger this FoM, the greater the projected accuracy of the experiment.
We define our FoM as the same quantity, but in the Ωm, σ8 plane. One way to calculate this is via:

FoM =
√
detFΩmσ8 , (6.13)

where FΩmσ8 is the reduced Fisher matrix, the inverse of the reduced covariance matrix we used for the
confidence ellipse.

6.3.4 Uncertainty in S8

A popular way to combine Ωm and σ8 is through the quantity S8, the weighted amplitude of matter fluctu-
ations in the late universe and thus a measure of the homogeneity of the universe. It is defined as

S8 = σ8

√
Ωm/0.3. (6.14)

There exists a tension in its value however, as Cosmic Microwave Background (CMB) surveys have measured it
to be 0.831±0.015[17] and 0.828±0.026[14], but cosmic shear surveys have measured it to be 0.776±0.017[16].
We are thus interested to see whether our methods could help alleviate or clarify that tension.
To see how well we can constrain S8, we look at the predicted uncertainty in S8. To do that, we need to
transform our Fisher matrix to be in terms of S8. Since S8 is only a direct function of Ωm and σ8, we first
marginalise the covariance matrix as before and invert to get the reduced Fisher matrix. We then transform
to get our new Fisher matrix FΩmS8 as follows:

FΩmS8 = MTFΩmσ8M, (6.15)

with FΩmσ8 the reduced Fisher matrix and M (T ) the (transposed) transformation matrix, given by:

M =

(
∂Ωm

∂Ωm

∂Ωm

∂S8
∂σ8

∂Ωm

∂σ8

∂S8

)
=

 1 0.6
σ8

√
Ωm

0.3

− 1
2

σ8

Ωm

√
0.3
Ωm

.

 (6.16)

By inverting the resulting FΩmS8 , we find the covariance matrix that includes σ2
S8

as its bottom right element.
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7 Results

We present our results showing the improvement in constraining power when using two shape measurements
versus when using one shape measurement per galaxy. We present our results for a range of possible cor-
relations between the measurements and for a range of possible differences in measurements. We start our
results off by showing the increase in SNR, when comparing two shape measurement methods with one shape
measurement method. This can be seen in figure 21. Although the SNR increases for every combination
of parameters, it is only a marginal increase for most combinations. SNR increases with lower correlation,
which makes sense, as lower correlation means a lower entry in the covariance matrix of the data vector and
thus a higher SNR. The influence of ∆AIA is less clear, but can be seen slightly better by looking at figure
22. This plot shows the increase in SNR, normalised per row. It shows that there is some influence of ∆AIA,
but it is not clear to us how SNR is influenced exactly.

Figure 21: Improvement in the Signal to Noise Ratio of the predicted data for 2 shape measurements, divided
by the same quantity for 1 shape measurement. The best improvement is in (∆AIA, corr) = (0.5, 0.1), where
there is a 14% increase. The realistic values measured in ”Brightest” and ”Reddest” at (∆AIA, corr) =
(0.45, 0.75) and (∆AIA, corr) = (0.2, 0.8) are 6% and 5% better compared to the 1 measurement case.

We now look at some confidence ellipses. We compare the confidence ellipse for 1 shape measurement with
that for 2 shape measurements for 3 pairs of variables. These pairs correspond to the two measured values
for ∆AIA in section 5 and one ideal case. They can be seen in figures 23a, 23b and 23c and combined in
figure 24. Although the difference is visually marginal for the ”Brightest” and the ”Reddest” case, there is
noticeable improvement in the contours. The 2 AIA ellipses also seem to have turned very slightly towards
the x-axis, compared to the 1 AIA ellipses, meaning that our knowledge Ωm is slightly more improved than
our knowledge of σ8. The two cases imitating our measurements seem to yield very similar results in every
regard. For the ideal case, there is a significant reduction in the area of the confidence ellipse.
To further quantify our improvements in constraining power, we turn to the FoM next. As can be seen
in figure 26, there is a decent amount of improvement when considering two shapes. There seems to be a
preference for higher correlation, as that means the shape noise can be cancelled more effectively, and higher
∆AIA, which means the two measurements are probing different power spectra. In the cases closest to our
measurements, the improvements of the FoM when compared to the one shape case are 22% and 29%. In
the best case scenario, there is a 75% increase. Even in the worst case, there is a 16% increase in the FoM.
To see whether having multiple shapes can help alleviate or narrow down the S8 tension, we finally look
at the decrease in uncertainty in σ8, which can be seen in figure 25. This figure follows the same trends
as the FoM, which makes sense since the quantities plotted are very much related. Here, the same logic
seems to apply that higher correlation allows for more effective noise cancelling and higher ∆AIA probes
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Figure 22: Improvement in the Signal to Noise Ratio of the predicted data for 2 shape measurements, divided
by the same quantity for 1 shape measurement. This graph is normalised per row, so it should be interpreted
as deviation from the norm, per row. This graph shows there is dependence on ∆AIA, it is just less strong.

different power spectra more effectively. The realistic cases are 20% and 15% better at constraining S8, and
the most optimistic scenario would see an improvement of 35% . The worst case scenario would still mean
an improvement of 13%.

Part III

Conclusion
Cosmology still has large open questions about the nature of the universe. Some of these can be answered using
galaxy shape correlations, which are a combination of gravitational lensing effects and intrinsic alignment.
The intrinsic alignment is dependent on the shape measurement method used, and the correlation functions
are thus as well. We looked at the influence of the shape measurement method on intrinsic alignment and
how having multiple shape measurements could help constrain cosmological parameters.
In part I of this thesis, we have measured the projected correlation functions between galaxy position and
galaxy position, galaxy shape and galaxy position, and difference in galaxy shape and galaxy position in the
GAMA+KiDS survey. We have done this using multiple different weighting functions, resulting in multiple
shape measurements of the same galaxies. We have done this to then fit theoretical predictions to the
correlation functions to find AIA and ∆AIA. We were not able to accurately quantify the difference in
intrinsic alignment between the shape measurements. We have, however, provided motivation and an upper
limit for our second part.
In part II of this thesis, we have used theoretical predictions for angular power spectra to obtain predictions
for how much future surveys could be improved by using multiple shape measurements. This was done by
emulating data from the upcoming LSST survey and calculating predictions for the shape-shape angular power
spectra. These power spectra were calculated between 5 different redshift bins, with 2 shape measurements
each and combined with a theoretical covariance matrix that included correlated noise. We then used Fisher
analysis to predict the future gain in uncertainty in S8. Our results were promising, as even in worst case
scenarios, we saw improvements of more than 13% and even higher in realistic scenarios, even up to 35%.
We thus conclude that using multiple shape measurements per galaxy can help improve cosmological con-
straints, without extra telescope observation time, and should be considered in future analyses.
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(a) ∆AIA = 0.45 and corr = 0.75 in accordance with
our ”Brightest” measurement.

(b) ∆AIA = 0.2 and corr = 0.8 in accordance with
our ”Reddest” measurement.

(c) ∆AIA = 0.5 and corr = 0.95, which is where we see the
most improvement in FoM.

Figure 23: Confidence ellipse of one standard deviation uncertainty in Ωm and σ8 with 1 shape measurement
compared to the same ellipse with 2 shape measurements.

Future research might be aimed at the scenario where we have an accurate model of A2
IA as a function of A1

IA.
As can be seen in figure 27, there might be significant improvement if this relation is accurately modeled,
although this plot is preliminary.
Further future research could actually apply these multiple shapes to the LSST survey when it releases,
although its first light will be in 2024, so this will have to wait.
Lastly, one might want to redo the measurements in part I of this thesis, but using a bigger density tracer
sample. We have used the same sample for the galaxy positions as the galaxy shapes, but one can improve
on the errors in the result by including more galaxy positions. Also, we have not divided by the responsivity
when calculating the correlation estimators, and ours are thus off by a few percent.
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Figure 24: Confidence ellipse of one standard deviation uncertainty in Ωm and σ8 with 1 shape measurement
compared to the same ellipse with 2 shape measurements, for three different combinations of ∆AIA and corr.
The chosen values are in accordance with our ”Brightest” and ”Reddest” measurements, and where we see
the most improvement in Fom (called Optimal here). They are the same ellipses as in figure 23, but in one
plot.
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Figure 25: Improvement in uncertainty in S8 for 2 shape measurements, divided by the same quantity
for 1 shape measurement. The best improvement is in (∆AIA, corr) = (0.7, 0.95), where there is a 35%
decrease. The realistic values measured in ”Brightest” and ”Reddest” at (∆AIA, corr) = (0.45, 0.75) and
(∆AIA, corr) = (0.2, 0.8) are 20% and 15% better compared to the 1 measurement case.

Figure 26: Improvement in the Figure of Merit of Ωm and σ8 for 2 shape measurements, divided by the same
quantity for 1 shape measurement. The best improvement is in (∆AIA, corr) = (0.5, 0.95), where there is
a 75% increase. The realistic values measured in ”Brightest” and ”Reddest” at (∆AIA, corr) = (0.45, 0.75)
and (∆AIA, corr) = (0.2, 0.8) are 29% and 22% better compared to the 1 measurement case.
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Figure 27: Confidence ellipse of one standard deviation uncertainty in Ωm and σ8 with 1 shape measurement
compared to the same ellipse with 2 shape measurements and the same ellipse for 2 shape measurements,
if we were to know the relation between the intrinsic alignment amplitudes. ∆AIA = 0.5 and corr = 0.95.
Preliminary result, the methods used were not understood well.
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A Appendix

Same graphs as in section 7, but with AIA=0.5 and 1.5. We see that the same trends generally apply for
AIA=1.5, with better results with higher ∆AIA and higher correlation, except for in SNR. We do note that
the preference for higher ∆AIA is not clear in the case that AIA=0.5, but the preference for higher correlation
is there. We do not pose any theories as to what the relation between the Fom, σ(S8) or SNR is with A1

IA.

Figure 28: Improvement in uncertainty in S8 for 2 shape measurements, divided by the same quantity for 1
shape measurement. Now AIA1=0.5.
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Figure 29: Improvement in the Figure of Merit of Ωm and σ8 for 2 shape measurements, divided by the same
quantity for 1 shape measurement. Now AIA1=0.5.

Figure 30: Improvement in the Signal to Noise Ratio of Ωm and σ8 for 2 shape measurements, divided by
the same quantity for 1 shape measurement. Now AIA1=0.5.
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Figure 31: Improvement in uncertainty in S8 for 2 shape measurements, divided by the same quantity for 1
shape measurement. Now AIA1=1.5.

Figure 32: Improvement in the Figure of Merit of Ωm and σ8 for 2 shape measurements, divided by the same
quantity for 1 shape measurement. Now AIA1=1.5.
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Figure 33: Improvement in the Signal to Noise Ratio of Ωm and σ8 for 2 shape measurements, divided by
the same quantity for 1 shape measurement. Now AIA1=1.5.
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