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Abstract

Preterm infants, commonly admitted to hospitals, require intensive and time con-

suming monitoring. Automated monitoring techniques using video data exist but

are not being applied in practice for monitoring infants. By allowing automated

monitoring through behavioral cue classification, which infants use to communi-

cate their needs, the burden of monitoring can be relieved allowing for improved

health outcomes in preterm infants. This study aims to apply machine learning

techniques for automated behavioral cue classification in preterm infants to infer

their care needs, specifically of hunger and feeding discomfort. A MoViNet model

was trained for this classification problem, selected for their extensive pretraining

and multi-class video classification capabilities. Due to the limited availability of

labeled data, the techniques of few-shot learning and active learning have been ap-

plied to investigate if they improve upon baseline performance. Few-shot learning

consists of an initial training phase on similar tasks to allow for quick adjustment

of weights. Active learning incorporates additional data labeling, with instances

gathered using stratified sampling included in the dataset. It was found that the

fully supervised baseline approach was able to successfully uncover patterns in in-

fant behavior. However, few-shot learning resulted in worse performance due to

challenges in generalizing from the source to the target domain. Active learning

performed comparably to the baseline approach and offered additional value as a

labeling tool in the data-scarce setting. The research also revealed the impact of

individual differences in behavior, affecting the generalizability of behaviors to other

infants and hindering performance. Despite these challenges, individual behavioral

differences did not entirely prevent successful classification. By incorporating more

training data from new infants, the generalizability of the results and performance

could be improved. In sum, this research forms a solid foundation for advancing

fully automatic infant monitoring, potentially enabling more individualized care

with beneficial health outcomes.

Keywords— Preterm infants, Hunger, Feeding discomfort, Behavioral cue clas-

sification, Computer vision, Few-shot learning, Active learning, MoViNet
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Automated Infant Cue Classification

1 Introduction

1.1 Problem Statement

Premature birth remains a worldwide health concern, with approximately 11% of all births
being premature [Vogel et al., 2018]. Despite the neonatal mortality rates steadily de-
clining, the incidence of preterm birth has not followed this trend [Cao et al., 2022].
Consequently, premature birth is an increasingly large contributor to neonatal mortality.
Other than increased mortality risk, short-term health challenges are increased risk of res-
piratory disease, necrotizing enterocolitis and sepsis [Lumley, 2003]. Beyond immediate
health risks, premature birth has also been associated with neurodevelopmental problems,
more frequent hospitalizations and social-developmental struggles [Vogel et al., 2018].

Premature infants require specialized care, and are therefore commonly admitted to the
Neonatal Intensive Care Unit (NICU). Other than monitoring their general health, infants
are also taken care of in their primary needs, like sleeping and feeding. The management
and timing of feeding affect further development. Evidence suggests that appropriate
nutrition stimulates healthy growth development [Su, 2014] and the development of nor-
mal oral feeding behavior [Kirk et al., 2007]. Feeding practices commonly fall into two
categories: scheduled or cue-based feeding. Scheduled feeding is based on a fixed schedule
provided by the practitioner or caregivers. This is the current standard practice, because
continuously monitoring all infants for hunger is not feasible with the current demands
already posed on nurses [Chrupcala et al., 2015]. However, this approach was shown to
cause more stress in infants, as feeding is not always timely and can therefore cause feed-
ing discomfort [Kurt Sezer and Küçükoğlu, 2020]. Cue-based feeding, on the other hand,
is guided by behavioral or physiological cues by the infant. Research has shown that
cue-based feeding leads to better digestion of food and earlier discharge from the NICU,
which has beneficial health outcomes [Wellington and Perlman, 2015; Zimmerman, 2013].
The challenge lies with balancing the demands on the nursing staff and the feeding needs
of the infants. Thus, strategies aimed at enabling cue-based feeding should be explored.

By specifically examining the cues of hunger and feeding discomfort, it is possible to
identify and address some underlying causes that are detrimental to the health and de-
velopment of preterm infants. Traditionally, infant hunger has been monitored through
physiological measurements or by healthcare professionals through behavioral assessments
of feeding behavior and clinical signs such as crying, sucking, and swallowing. However,
physiological measurements require invasive tools that can impede with care. Behavioral
assessments are prone to subjectivity, and do not provide continuous monitoring of infant
hunger and feeding discomfort. It would be beneficial to keep track of the infants’ states
through automated measures. Research has shown computer vision techniques can be im-
plemented to keep track of infants [Olsen et al., 2014; Huang et al., 2022; Li et al., 2021;
Nagy et al., 2021], and this may be exploited to the benefit of an infant by monitoring
when it signals it may be in a hunger state and requires feeding. Another key advantage
of computer vision techniques is they are non-invasive, which may reduce stress on the
already heavily tubed and touched infant.

Machine learning is very suited to visual analysis tasks and has been widely applied [Guo
et al., 2016]. Example applications are human pose estimation, tracking, object detection
and classification, and temporal action localization. In the medical field, machine learning
has been applied for the development of targeted treatments by analyzing large amounts

1 INTRODUCTION 6



Automated Infant Cue Classification

of patient data and identifying unique patterns and trends. This information can be used
to create personalized therapies or care routines that are specifically designed for the
individual needs of each patient [Haleem et al., 2019]. This is very similar to problem
at hand in this thesis, as such the Artificial Intelligence (AI) domain is suited for infant
monitoring.

In sum, to best improve the infant care on the NICU, a system should be implemented
for the continuous monitoring of hunger and feeding discomfort states in infants. This
system should be robust for individual differences in infants and their behaviors

1.2 Scope

This research aims to address the challenges in infant care by examining computer vi-
sion techniques suited to detecting hunger and feeding discomfort cues. By automating
monitoring of these processes, this research aims to improve the overall well-being and
development of infants on the NICU. To achieve this goal, an initial review of the existing
literature on infant hunger and automated monitoring systems to identify current knowl-
edge on the topic will be conducted. Then a system must be implemented to test and
experiment with the behavioral cue classification. Finally, a discussion of the feasibility
and benefit of the implementation must be held.

Due to the use of computer vision techniques to detect behavioral cues, video cameras
will be used to record preterm infants in NICU beds. As preterm infants typically start
showing behavioral cues for feeding after 32 week Gestational Age (GA) [Whetten, 2016],
the recorded population starts at 32 weeks GA. The recordings were made under normal
circumstances, and infants that were recorded, were not treated differently. Recordings
for this thesis were made available by the Sleep Assessment in Preterm Infants (SLAPI)
research project at UMC Utrecht. Only limited data exists, as videos are still being
recorded at the time of writing by UMC Utrecht, and additional datasets are not available.

The scarcity of the data limits the range of choices for computer vision architectures that
can be successfully trained. Two architectures were specifically designed for handling
scarce, and unlabeled data. A Few-Shot Learning (FSL) model is trained on only a
small number of examples for an outcome class in a different domain, and is expected to
generalize to new examples with only limited additional training data. Active Learning
(AL) iteratively trains on the available annotated data, and then selects samples from
a pool of unlabeled data for an oracle to label. These architectures will be compared
with a standard fully supervised approach. The use of these two techniques is justified
by the fact they both approach the issue of the data scarcity from a different angle. FSL
maximizes the use of the available labeled instances, possibly using transfer learning. AL
learns most from the unlabeled data pool, using the annotated data as reference point. In
Section 2.3, these methods and their application in related works are discussed in more
detail.

To summarize, this research aims to implement FSL and AL on preterm infant videos for
detecting hunger and discomfort cues. It must also be taken into account how differences
across infants are challenging to the implementation of a uniform system. The main
contributions of this thesis are threefold: (1) the use of machine learning techniques
for behavioral cue classification, (2) a the systematic investigation into these cues and
individual differences in infants, and finally (3) the compilation of a labeled dataset.
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1.3 Research Questions

Given the scope of this thesis framing, the following main research question arises:

Can we detect and classify infant hunger and feeding discomfort cues in preterm

infants using machine learning?

By implementing and testing different machine learning approaches, this research aims to
diversify literature on infant cue detection. It is hypothesized that promising outcomes are
possible in cue classification. This is supported by the work of Sun et al. [2019] and Sun
et al. [2021], who classified infant discomfort states based on video data. Since different
approaches will be tested, this means the question cannot be answered directly. For each
machine learning approach, the same question is asked, with the aim of finding out which
approach works best. The sub-questions are shown below:

SQ1: Can we detect and classify infant hunger and feeding discomfort cues in

preterm infants with a model trained using few-shot learning?

SQ2: Can we detect and classify infant hunger and feeding discomfort cues in

preterm infants with a model trained using active learning?

For SQ1 it is hypothesized that a meta-learning phase in the FSL pipeline could suc-
cessfully pretrain the model to leave a more optimized parameter search space for the
meta-testing phase, allowing to adequately distinguish the cues based on intricate details
in the movement of the infant. This was previously done to distinguish between human
motion [Gui et al., 2018] and infant or adults faces [Atallah et al., 2022]. For SQ2 it is
hypothesized that AL would solve the issue of limited labeled data by seeking out the
most informative instances and enhance performance, as was previously done by Yang
et al. [2015] in a similar multi-class classification problem.

Additionally, individual differences in behavioral cues, including their onset, intensity,
and frequency, may exist between infants. It is worthwhile to investigate further how
differences between infants affect automatic detection using machine learning. This results
in the final sub-question, listed below:

SQ3: Do individual differences in infants and cues affect automated detection

and classification of behavioral cues?

To answer this question, it must be determined how model performance is affected by the
variation in the data. It is hypothesized that individual differences do affect classification.
Research showed that behaviour in infants differs in onset, intensity and form [Thoman
and Whitney, 1990; Frischen et al., 2007; Claessens et al., 2011], and that differences in
feeding cues affect the success of feeding [Ventura and Mennella, 2017].

Performance will be assessed by using standard metrics: accuracy, precision, recall and
F1. Adequate detection and classification is then a function of how well the output of the
methods overlap with the assessment of the medical professionals currently responsible
for infants on the NICU and to what extent their responsibilities could be relieved by this
system.

1 INTRODUCTION 8



Automated Infant Cue Classification

1.4 Outline

The structure of this thesis is as follows: Section 2 reviews background literature and
related work focusing on preterm infants, behavioral cues, and relevant AI techniques.
Subsequently, Section 3 provides a detailed overview of the methodologies applied in this
study. The experimental design, explained in Section 4, sets the stage for the presentation
of results in Section 5. Section 6 provides a discussion and interpretation of these results,
highlighting limitations and potential directions for future research. The thesis is con-
cluded by summarizing the key contributions and offering a forward-looking perspective
in Section 7.
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2 Literature

In this section the relevant background literature and related works are discussed. First,
some background on preterm born infants is provided, focusing on the relevant aspects of
their stay on the NICU. This includes hunger and feeding discomfort. Next, automated
cue classification and challenges are discussed, including strategies for cue localization in
untrimmed videos. Finally, a machine learning approach to this cue classification problem
is discussed.

2.1 Preterm Infant

An birth is considered premature if the infant is born before 37 weeks GA [Platt, 2014].
GA measures the length of the pregnancy, starting from the last menstruation of the
mother to the birth of the child. Premature birth can be categorized as extreme (< 28
weeks GA), very preterm (28 to 32 weeks GA) and moderate (32 to 37 weeks GA).

Premature birth is associated with various adverse health conditions. Mortality rates
in preterm infants are higher than in term born infants [Cao et al., 2022]. Surviving
preterm infants face a higher risk for cognitive, social and emotional developmental de-
fects [Lumley, 2003]. For example, these infants have a higher incidence of respiratory
and intestinal disorders, and the likelihood of a favorable outcome declines with a lower
GA [Platt, 2014]. Children that were born preterm are more likely to require special
educational attention, with up to 7% suffering from severe cognitive impairment, with
the risk of an IQ below 70. To address developmental disorders due to poor support in
the vulnerable early stages of life, preterm infants are commonly admitted to the NICU.

One contributor to the developmental problems that preterm infants face is sleep depriva-
tion, given the important role of sleep in their development ex utero. Term born infants
sleep on average 22 hours per day in utero, while preterm infants on the NICU sleep only
about 15 hours per day [Orsi et al., 2015]. Since sleep is linked to neurological devel-
opment and development of the central nervous system, this is a troublesome difference
[Bertelle et al., 2007]. Disturbances such as bedside care, noise from the NICU and other
stimuli may interrupt the sleep cycle [Park, 2020].

Another cause of these developmental issues is sub-optimal nutrition. Conditions such as
early onset puberty, lower average height and blood pressure are some issues directly linked
to poor nutrition [Embleton, 2013]. It is important to prevent hunger by monitoring cues
signaling their need for feeding, as well as assessing infant comfort after feeding. If feeding
causes discomfort, that may be an indication that the infant was not properly supported,
not fed the right volume or the food was not prepared correctly. Such feeding discomfort
may disturb the infant’s already precarious sleep cycles, cause exhaustion, result in weight
issues and teach poor feeding habits [Fanaro, 2013]. While strategies to prevent feeding
discomfort exist, few are medically validated, highlighting the potential use of computer
vision-based improvements. Collectively, these issues currently pose problems on the
NICU and contribute to sub-optimal feeding practices [Hung et al., 2013].

Infant monitoring on the NICU is typically managed by a team of medical professionals,
including neonatologists, pediatricians and nurses. Their responsibilities encompass all
the care that preterm infants need, ranging from feeding and changing diapers to medical
procedures and monitoring vital signs. As discussed, feeding practices have a large impact
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on the infant’s development. Despite their extensive effort, experience and knowledge,
feeding on most NICUs is limited to scheduled feeding, which means that an infant is fed
on a fixed schedule, regardless of the actual hunger experienced [Newland et al., 2013].
Infants may be fed by tube or orally (formula or breast milk). Su [2014] notes that this
approach can lead to excessive energy intake, leading to further averse developmental
effects like obesity or feeding discomfort. Cue-based feeding is feeding based on hunger
and satiety cues given by the infant. Studies found that cue-based feeding improves
feeding outcomes, and leads to quicker discharge from the NICU [Puckett et al., 2008;
Kirk et al., 2007]. So, communication of the infants’ needs happens through behavioral
cues, and a cue-based feeding approach leads to improved health and quicker discharge
from the NICU. Therefore, behavioral cues of hunger and feeding discomfort are of great
importance to further advance infant care.

2.1.1 Hunger

Hunger in preterm infants refers to a state of need for nutrition. Since preterm infants
are typically less well-developed compared to full term infants, they may have trouble
self-regulating their hunger needs and cues [Nyqvist, 2008]. Despite this, their nutrition
is vital for their growth and development. When using cue-based feeding, infants are fed
more appropriately and are often discharged from NICU earlier [Wellington and Perlman,
2015; Zimmerman, 2013]. Hunger cues from infants indicate their readiness for feeding.
Beyond behavioral cues, hunger may be signified by physiological signs such as changes in
blood sugar levels, heart rate, and oxygen saturation [McFadden et al., 2021]. Deviations
from standard values can then indicate hunger.

Since behavioral cues from preterm infants are indicators of their hunger state and it is
relevant to examine how cues can guide feeding practices. After roughly 32 weeks GA,
infants show behavioral cues related to feeding [Whetten, 2016]. In literature researching
cue-based feeding, the conclusion is most often that the cue-based feeding approach leads
to the best developmental results, therefore validating the importance of these cues [Kam-
ran et al., 2020; Zimmerman, 2013; Settle and Francis, 2019]. A ground truth for hunger
in infants is currently determined by their response to feeding, and their vital signs. The
volume of food they are provided may then be a measure of hunger, and this information
is meticulously logged in the SLAPI dataset. However, this also depends on the GA and
development of an infant, as larger infants require more food [Liotto et al., 2020]. If an
infant shows disengagement or discomfort to being fed, then it may not be hungry after
all. Since hunger is a subjective state, it is difficult to determine a golden standard.

NICU nurses working at the UMC Utrecht indicated that hunger cues largely center
around the mouth. Any mouth or tongue movements, as well as sucking behaviors are
associated with hunger. However, the occurrence of a cue does not always explicitly
indicate hunger. Cues may originate from multiple states, like hunger, pain or sleepiness.
Some cues may signal urgent hunger, while others indicate only the starting phases of
hunger. In the literature, some attempt has been made to categorize these cues as early,
active or late. Early cues mean that the infant is transitioning to the state of hunger,
and do not require immediate feeding. Active cues indicate that feeding may be provided.
Late cues indicate that the ideal feeding moment has passed, and the infant needs feeding
as soon as possible. Watson and McGuire [2016] indicate that crying is a late cue. Hodges
et al. [2013] state overt cues with obvious negative affect such as crying and being unsettled
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Cue Type Urgency Duration

Quiet wakefulness State Active Long
Alertness State Active Long
Crying State Late Long
Mouthing Motor face Early Long
Tongue poking Motor face Early Short
Taut tongue Motor face Early Short
Smacking lips Motor face Early Short
Gazing Motor face Early Long
Head movements Motor face Early Long
Rooting Motor face Active Long
Stirring Motor body Active Long
Arm waving Motor body Active Short
Flexing Motor body Active Short
Hand-to-mouth Motor body Active Short
Reaching Motor body Active Short
Fussing Motor body Late Long
Unsettled Motor body Late Long
Kicking Motor body Late Short
Stable vitals Physiological Early Long

Table 2.1: Hunger cues preterm infants may display to indicate that feeding is appropriate
according to systematic reviews [Puckett et al., 2008; McFadden et al., 2021; Watson and
McGuire, 2016; Talej et al., 2022; Fry et al., 2018]. Urgency based on research by Hodges
et al. [2013] is only tentative as it is for older infants. Duration is only an indication
based on how long behaviors approximately take. Short behavior takes seconds while
long behavior can last up to minutes.

or irritable are late cues. Finally, subtle cues and cues that are oral in nature (called
“Motor mouth”) are often early cues [Hodges et al., 2013, 2016]. This categorization is
only tentative, as reviews and studies often do not report this.

Reviews on hunger have identified consist cues in infants [Puckett et al., 2008; McFadden
et al., 2021; Watson and McGuire, 2016; Talej et al., 2022; Fry et al., 2018]. They
summarise cues as shown in Table 2.1. Generally, hunger cues can be divided into four
categories: state cues, motor cues in the face, motor cues on the body and physiological
cues. State cues indicate whether an infant is alert, sleepy, drowsy or crying. Transitional
states, such as transitioning from alert to sleepy, are also considered cues. Cues about
infant states have been used successfully to determine whether they may want to be fed
[Griffith et al., 2017]. For example, states of “Quiet wakefulness” and “Alertness” signal
hunger, and transitions from states of rest like “Quiet sleep” to fuzzy states like “Crying”
do as well. Motor cues are physical movement, and they are categorized into facial and
bodily cues. Facial cues are restricted only to movements in the face, since they are very
diverse. They include eye gazes, but also chin, mouth, tongue and brow movements. Body
cues include full body movements, or any movement in the limbs. This include the tone of
the infant, which is the level of tension in the muscles. An infant has low tone if muscles
are limp, and high tone when it is more rigid. This also includes limb flexing [Blauer and
Gerstmann, 1998]. Physiological cues include the vital functions of the infant, like the
previously mentioned blood sugar levels, heart rate and oxygen saturation.
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As for automatic detection of these cues, some are not suited given the computer vision
approach. Physiological cues oftentimes cannot be recorded using cameras. Cues must
also be somewhat general, as individual differences between infants should not affect
performance such that a model cannot learn underlying features. Furthermore, some cues
might not exclusively signal hunger but also other states. For example, the state “Crying”
can signal hunger, feeding discomfort and pain. This makes it difficult to determine to
which one it belongs, and it is best that cues exclusively signal a hunger state. It is also
potentially informative to judge cues by their urgency. However, previous research on
hunger cues has not shown definitively how often cues should occur for an infant to be
hungry or in what patterns and combinations they do occur.

2.1.2 Feeding Discomfort and Pain

Feeding discomfort is the physical or emotional discomfort that infants can experience
during or after feeding [Newland et al., 2013; Shaker, 2013]. It can range from physical
to emotional distress, and it can occur during or after feeding. The discomfort can be
caused by factors ranging from wrong positioning or support during feeding, overfeeding,
digestive issues or discomfort with the type of food being fed. The ability to accurately
assess feeding discomfort can contribute to improved feeding practices by adapting feeding
approaches in terms of volume or method of feeding.

Pain is different from feeding discomfort as it is a more general physical or emotional state
[Fuller, 1996]. Pain may be caused by disease, medical procedures or injuries, whereas
feeding discomfort is only caused by factors related to the feeding. However, the more
extensive research into pain can offer understanding in behavioral cues that are applicable
to feeding discomfort. In their review, Zamzmi et al. [2019] describe how pain expressions
can be automatically analyzed using machine learning approaches, using support vector
machine and Convolutional Neural Network (CNN) classifiers. In their later study on
neonatal pain assessment, Zamzmi et al. [2022] developed a system for detecting behav-
ioral indications of pain. They successfully coded cues from the NFCS, a scientific scale
for analyzing facial expressions in newborns, such as “Eye squeeze” and “Bulging brow”
based on rules derived from landmarks detected with ZFace (see Section 2.2.1). Given
these more advanced use cases of computer vision techniques, there is potential to apply
these approaches to the detection of feeding discomfort and possibly hunger cues. Es-
pecially since methodologically the setups are suited to measuring behavioral cues, like
the cues seen in Table 2.3. The table include cues from pain scales like the NFCS, but
also PAIN and NIPS [Pereira et al., 1999; Grunau et al., 1998; Hudson-Barr et al., 2002]
Additionally, cues from different reviews and research papers were also included [Holsti
et al., 2005; Morison et al., 2003; Hatfield and Ely, 2015]. To ensure consistency, these
cues are categorized into state cues, facial motor cues, body motor cues and physiological
cues.

Feeding discomfort can manifest through behavioral cues following the same categorization
of hunger cues in state cues, motor cues of the face and body and physiological cues.
Thoyre et al. [2013] gives a descriptive account of a feeding case study, where the challenges
during and after feeding are taken into account. They observed that after overfeeding the
physiological state of the infant became unstable, including other behaviors that can be
associated with discomfort like side-to-side movements, coughing, choking and a change
in tone. Since these cues directly follow the feeding, it can be concluded they were caused
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by the feeding and signal feeding discomfort. Similarly, Hung et al. [2013] researched
how infants responded to thawed and fresh breast milk. The research showed that after
feeding thawed breast milk, preterm infants showed more stress and discomfort cues like
retching, choking, change in sleep state, continuous burping, crying, chin quiver and body
twisting. Newland et al. [2013] showed that after disengagement cues were not properly
picked up during feeding, infants showed discomfort cues of crying, brow lifting, change
in tone, splaying of fingers. So these cues clearly indicate that feeding must be improved
during the next feeding moment for better digestion and more stable states.

The studies from Newland et al. [2013], Hung et al. [2013], and Thoyre et al. [2013] each
highlight instances where disruptions or issues in the feeding process led to discomfort
in infants, confirming the importance of the feeding process. These findings were cor-
roborated by NICU nurses at the UMC Utrecht, who recognised feeding discomfort by
restlessness all over the body, and that creating a fist, frowning, arching and being un-
settled are signs of discomfort. The behavioral cues that were derived from these studies
are in shown in Table 2.2.

Cue Type Urgency Duration

Change in alertness State Low Long
Change to drowsy State Low Long
Fatigued State Low Long
Crying State High Long
Uncoupling face Motor face High Long
Incomplete swallow Motor face Low Short
Coughing Motor face High Short
Continuous burping Motor face High Long
Choking Motor face High Short
Brow lifting Motor face Low Short
Change in movement patterns Motor body Low Long
Finger splay Motor body Low Short
Side-to-side movements Motor body Low Long
Body twisting Motor body High Long
Chin quiver Motor body Low Short
Change in tone Motor body Low Long
Increased breathing Physiological High Long
Uncoupled breathing Physiological High Long
Increased heart rate Physiological Low Long
Oxygen desaturation Physiological High Long
Bradycardia Physiological High Long
Apneic Physiological High Long

Table 2.2: Feeding discomfort cues in infants, indicating that food did not settle well and
is causing the infant to be uncomfortable [Shaker, 2013, 2017; Thoyre et al., 2005; Hung
et al., 2013; Newland et al., 2013]. Urgency only an indication based on how painful
behavior must be to elicit cue. Duration only an indication based on how long behavior
approximately take. Short behavior takes second while long behavior takes up to minutes.
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Cue Type Urgency Duration

Crying State High Long
Irritability State Low Long
Mouth stretch Motor face Low Short
Open lips Motor face Low Short
Upper lip raised Motor face Low Short
Tongue protrusion Motor face Low Short
Tongue extension Motor face Low Short
Taut tongue Motor face Low Short
Coughs Motor face High Short
Chokes Motor face High Short
Gaze aversion Motor face Low Long
Eye squeeze Motor face High Long
Frantic movements Motor body High Long
Extension arms and legs Motor body Low Long
Finger splay Motor body Low Short
Twitches Motor body Low Short
Hand on face Motor body Low Short
Hand-to-mouth Motor body Low Short
Chin quiver Motor body Low Short
Saluting Motor body Low Long
Finger and toe flexion Motor body Low Long
Increased heart rate Physiological Low Long
Oxygen desaturation Physiological High Long
High blood pressure Physiological High Long

Table 2.3: Pain cues in preterm infants. They include cues from pain scales like the
NFCS, but also PAIN and NIPS [Pereira et al., 1999; Grunau et al., 1998; Hudson-
Barr et al., 2002] Additionally, cues from different reviews and research papers were also
included [Holsti et al., 2005; Morison et al., 2003; Hatfield and Ely, 2015].Urgency only
an indication based on how painful behavior must be to elicit cue. Duration only an
indication based on how long behavior approximately take. Short behavior takes second
while long behavior takes up to minutes.

2.2 Infants and Cues in Machine Learning

After providing an overview of the relevant hunger and feeding discomfort cues, it will be
examined how previous research has used AI to analyse cues or other behaviors by infants.
This includes a discussion of related works on infant tracking, and the measurement of
infant behavior. Then, some methods for action detection in videos is discussed, with the
aim of providing insight in how infant cues may be detected from live feeds or videos.

Before discussing the literature, the restrictions by the target domain must be noted.
Medical datasets are often small, with limited availability. This is challenging to the
application of AI techniques such as machine learning, which consume large volumes
of data. When the data requirements of such algorithms are not met, it results in a
poorly trained models with no application value. Furthermore, the impact of individual
differences in cues on classification remains uncertain. An infant could display many early
cues, while another may not. An early cue in one infant may be a late cue in another.
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The lack of medically validated research in individual differences is a challenge for the
interpretation behind the classification.

2.2.1 Infant Tracking

Infant tracking or motion analysis involves studying the movements and behaviors with
the purpose of studying development or identifying issues or needs. Within the scope of
this research, infant tracking can be achieved through computer vision. Hesse et al. [2019]
describe a pipeline as shown in Figure 2.1 for general classification. After acquiring the
video data of infants, motion is captured simply through video or additional techniques.
Then, motion features can be extracted which are used as inputs for a classifier.

Figure 2.1: Generic motion analysis pipeline. Initially videos are recorded of infants where
their motion is captured. Then features are extracted to use for classification or prediction
[Hesse et al., 2019].

Infant behaviors and needs can be deduced from cues, therefore implementing automated
monitoring relies on measuring these cues from video data. Measurement differs from clas-
sification. Cue measurement concerns their presence and quantification, which can then
be used for further analysis, such as classification. Cues are categorized into four types:
state, motor face, motor body, and physiological. Therefore, the review of related works
mirrors this categorization, dividing the tracking process into body and facial tracking.

In the literature, body measurements are often based on landmarking tools designed to
mark specific points of interest on the body. Examples of such tools are OpenPose [Cao
et al., 2017], EfficientPose [Bukschat and Vetter, 2020] and HigherHRNet [Cheng et al.,
2020]. These tools generate a set of two-dimensional points on the image corresponding
to detected points of interest. These points can then be processed to determine their
movements on a frame-to-frame basis. Points of interest may not be detected if the body
is occluded or not adequately shown on video due to poor positioning of the infant. Hesse
et al. [2018] and Hesse et al. [2017] successfully measured infant bodies using 3D pose
estimations using low-quality RGB and depth data. By capturing the shape of the infant’s
body, features can more easily be extracted. Olsen et al. [2014] built a 3D model of the
infant using depth images to locate the extremities of an infant’s anatomy. In practice
in the medical field, when attempting to find deficiencies in infants, implementations
rely on these full body measurement in order to determine their presence or absence.
Chambers et al. [2020] showed that developmental disorders in infants can be assessed
using OpenPose augmented for their own training set, after annotating infant videos
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from the clinical setting. Hashemi et al. [2012] assessed risk of autism spectrum disorder
through behavioral markers and their automatic detection for interpreting them on a
scale made for infants. From 2D body poses they measured arm asymmetry and other
scale specific markers like smoothness of visual tracking and attention disengagement on
other objects. Their tools significantly reduce the burden on human assessors as their non-
invasive methods match human scores to a clinically satisfactory degree. One recent study
did not use such landmarking features for their classifier of lung disease. Navaneeth et al.
[2020] used thermal imaging fed to a CNN. They left feature extraction to the network,
and as a result detected respiratory syndromes in infants with recall and precision of .92.
A final study performed general motion analysis in infants using representation learning
[Gong et al., 2022].

Similar to body measurements, facial measurements are often based on facial landmarking
techniques. Some packages suited for infant facial landmarking are OpenFace [Baltru-
saitis et al., 2018], ZFace [Ertugrul et al., 2019] and InsightFace [Guo and Deng, 2019].
These tools again output landmark coordinates as points on the 2D image, and occlusions
prevent accurate measurement. Similar to the aim of this thesis, Sun et al. [2019] did
video-based discomfort detection for infants by first doing facial landmark detection and
then, after feature transformation, feeding those features to a support vector machine
classifier. Their study successfully managed to distinguish between discomfort and com-
fort states in infants based only the facial information. Ritu et al. [2022] summarizes
that facial landmarks are a computationally cheap and non-invasive way to monitor in-
fant states, and can help reduce discomfort in neonates by detecting the source. However,
approaches without facial landmarking have also been successful in detecting facial ex-
pressions in infants. Li et al. [2021] studied how standard classifiers in combination with
image descriptors can be used to measure facial expressions like discomfort, neutral, sleep,
joy, open mouth, unhappy, pacifier. They trained on images in these classes, and varied
between image descriptors like histogram-oriented gradients and local binary patterns.
They also varied their classifiers between CNNs and hidden Markov models, where the
latter proved most successful in reducing the number of false positive predictions.

Since most body measurements of infants include landmarking, an issue may occur when
landmarks are not detected, and therefore vital information may be missing for classi-
fication. An opportunity lies beyond these methods, by possibly using CNNs to detect
the relevant features, as the recent papers by Li et al. [2021] and Navaneeth et al. [2020]
indicate.

2.2.2 Cue Localization

In order to detect cues and possibly generate more training data, video snippets must be
generated from untrimmed video data. In their survey on action detection in untrimmed
videos, Vahdani and Tian [2021] investigated the current body of research on action
localization. They recognise the difficulty in inputting an untrimmed video directly into a
visual encoder due to its size, and this is often solved by using a snippet based approach.
In this approach, the untrimmed video is divided into equal partitions. A classifier is
subsequently trained using this data. In the classification phase, untrimmed data is
provided the the model and is divided into snippets to fit the training phase. However,
this partitioning can be performed using fixed boundaries, or more informed boundaries
using the trained model to predict where actions start and end.
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However, only a small pool of annotated data exists for preterm infant cues. It is poten-
tially valuable to expand on the segments that are annotated. Considering the frames
preceding and following the known cues could provide value, as they’re likely to contain
similar hunger cues. This approach also helps account for cue diversification over time
and edge cases, enhancing the classifier’s learning process. Additionally, this method
eases the strenuous labeling process. AL may benefit most from this process, as it may
propose unlabeled segments that are more likely to contain cues due to their proximity to
labeled cues. Heilbron et al. [2018] proposed an AL framework for temporal action local-
ization. A model is pretrained on the available labeled data. This is then used to select
segments that are likely to improve the model the most. The selection function may take
into account the uncertainty of a possible prediction or the likelihood of belonging to cue
behavior. The research revealed the importance of sampling strategies in the effectiveness
of using AL for action localization.

2.3 Machine Learning Approaches

Now that preterm infant hunger and feeding discomfort, as well as their measurement
have been discussed, classification can be reviewed. Typically, supervised deep learning
methods are applied for motion analysis. However, in this domain data scarcity pre-
vents the use of traditional supervised methods. Approaches designed to circumvent this
limitation must be considered. Two such approaches are Few-Shot Learning (FSL) and
Active Learning (AL). FSL is an approach that exploits the existing labeled data to
quickly adapt to the target domain, whereas AL queries an oracle for labels and uses an
intelligent sampling strategy to minimize the labeling cost.

2.3.1 Few-Shot Learning

Few-Shot Learning (FSL) is a type of machine learning approach in which the amount of
available data is only limited [Wang et al., 2020]. The goal of FSL is to train models that
generalize well and generalize quickly to new targets with only a few examples available
in the target classes. This approach is well-suited to the domain of infant cue classifica-
tion, since only limited supervised data exists to train a model with. It eliminates the
requirement for a large labeled dataset by exploiting the few samples that are available.
An unspecified classification problem with N classes and K shots typically has K × N
total instances in the dataset. However, this may be unbalanced between classes if more
examples exist in only a specific class. Zieren and Kraiss [2005] and Kadir et al. [2004]
showed that increasing the number of shots steadily improved model performance, so it
is important to acquire as many shots as possible, until a fully supervised approach is
possible.

Meta-learning algorithms aim to train a model to adapt quickly to new unseen tasks,
classes, or domains with minimal examples by exposing it to a diverse range of classifica-
tion problems [Jamal and Qi, 2019]. By training across these tasks, the model explores the
weight space, optimizing its starting point for the target domain, which results in more ef-
ficient parameter training. This method is also referred to as task-agnostic meta-learning.
Figure 2.2 shows a visualisation of the training process, split into a meta-learning phase
and adaptation phase to the target domain.
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Similarly, transfer learning can be applied to FSL. In transfer learning, there is a source
domain and a target domain. In the source domain there exists sufficient training data to
train a supervised model. The acquired knowledge can then be transferred to the target
domain by retraining the final layers. This approach can be implemented to increase
performance over standard supervised methods, as was shown by Gupta et al. [2020]
on image classification. It is distinct from task-agnostic meta-learning, as this time the
model is pretrained on another single domain, rather than a variety of tasks. Both in
meta-learning and transfer learning, task relatedness should be considered when selecting
the source domain [Wang and Deng, 2018]. Task relatedness concerns similarity between
the two domains, where the relatedness determines if the knowledge gained in the source
domain is suited to target domain. When tasks are sufficiently related, similar features
may be derived, or features may be transformed some other meaningful way. Task relat-
edness can be defined as proximity in the feature space [Xue et al., 2007], or by similarity
in features [Wilson and Cook, 2020].

Another final methodology is based on Siamese CNNs which do not learn parameters
through a traditional training phase to assign an output class to an individual instance
[Vinyals et al., 2016; Jadon and Srinivasan, 2021; Koch et al., 2015; Bertinetto et al.,
2016]. This framework is depicted in Figure 2.3. Instead, the Siamese CNN is trained
to evaluate the similarity between features of a pair of input images. This is achieved
through the utilization of two identical models, each trained on the entirety of the training
set. A differentiating layer is then employed to assess whether the models have learned
equivalent features. To apply this model to FSL tasks, a verification and generalization
stage is implemented. The verification stage requires the use of APN triplets of data
instances, along with a triplet loss function. These labeled APN triplets consist of an
anchor image, a positive image, and a negative image. Ideally, these images should be
highly similar to train the model on hard-to-distinguish instances. The generalization
phase involves training the model to distinguish whether two images belong to the same
class, potentially using a different domain from the verification stage.

When an FSL problem only contains one example per class, it is called one-shot learning.
The challenge of this adaptation is to learn as much information as possible from a single
example in each class [O’ Mahony et al., 2019], rather than a few example per class.
Zero-shot learning, uses a different approach in this paradigm, with some variations in

Figure 2.2: Visualisation of meta-learning, in which the meta-learning phase optimizes
the weights θ given a loss function L to provide an improved starting point for quick
adaptation to the target domain [Finn et al., 2017].
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Figure 2.3: An example FSL architecture based on a Siamese CNN, during the training
phase. Inputs are fed to identical CNN models. The resulting loss function is based on
their output and a similarity score. In testing, a test instance is held against an anchor
image.

the training and testing stage. The main objective of zero-shot learning is to recognize
instances from unseen classes during testing. These classes have not been encountered
during training. This method does require information from source domains, to have
some kind of supervised data and allow learning [Wang et al., 2020]. To achieve this,
zero-shot learning requires two sets of data, one for classes during training, and another
for unseen classes during testing. The goal of zero-shot learning is then to learn a common
feature space that can be used to recognize instances in unseen classes [Xian et al., 2017].
Classes exist in this feature space, and the goal of the classifier is to determine where
an unseen class belongs in this space, and whether it is part of an existing or new class.
K-nearest-neighbour algorithms are suited to this goal [Romera-Paredes and Torr, 2017].

After this overview of the existing approaches, it is relevant to assess how FSL has been
applied in the medical field, and specifically for infant behavior analysis. Whilst there
is no existing literature on infant cue classification using FSL, studies with somewhat
similar target domains have been conducted. Romanov et al. [2021] did GA predictions
using FSL. GA predictions are relevant because they aid in treatment decision by clini-
cians. They used a task-agnostic meta-learning approach, using tasks like celebrity facial
recognition to train their models on a variety of tasks. Their data lends itself to a 5-way
and 5-shot approach, training a handcrafted CNN. They trained on images from the
GestATional Project dataset, which is a dataset consisting of images of body parts of
preterm infants, like feet, hands and faces with the aim of predicting their GA. Other
than this study, FSL has also been using for motion analysis, although not in preterm
infants. Yang et al. [2013] used one-shot learning to recognise human actions and facial
expressions using as few examples as possible. They compared supervised classification us-
ing support vector machines and unsupervised clustering. They let their model transform
input videos into a feature representation using optical and then used 1-nearest-neighbour
clustering to find group instances in their respective classes. Zhang et al. [2022] used FSL
for autism spectrum disorder trait classification based on facial dynamics in an interview
setting. They used multiple 1-hour long untrimmed videos of interviews which they had
to manually segment so that it was suited for training. They extracted spatio-temporal
features from the faces on participants and computed multiple different descriptors using
this information. After feeding the feature vectors to their model, they found they could
successfully distinguish between autism and non-autism traits. While this study was per-
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formed on adults, it does serve as evidence as to how computer vision can be used to
classify states based on behavioral information using FSL.

In general, the quality of FSL is that from only few available samples, unseen classes
can successfully be classified. These methods have been applied to infant data, for the
estimation of their age, and to motion analysis. In this thesis, the aim is to combine these
modalities, and perform motion analysis on infants. Pitfalls from the related works are
that they often require some kind of available labeled dataset as point of reference or for
pretraining, which is not readily available for behavioral cues.

2.3.2 Active Learning

Active Learning (AL) is a machine learning approach where the algorithm enhances its
performance by actively selecting the instances from which it learns [Settles, 2009]. With
this approach, acceptable model performance could be achieved with less training data.
Deep learning algorithms are often trained on large volumes of data in a supervised set-
ting. However, large labeled datasets are not available for every target domain. AL
overcomes the labeled data problem by querying an oracle for the labels of selected unla-
beled instances. Typically, this oracle is an expert human annotator. However, it could
be any type of label provider. Figure 2.4 shows a graphical representation of this AL
cycle.

So, the goal of AL is to reduce the cost of labelling, and achieve acceptable model perfor-
mance [Ren et al., 2021]. The components of the approach are a machine learning model,
a set of unlabeled samples, an oracle and a sampling strategy. The model can be any type
of classification model, however it is assumed that it is able to learn from small amounts of
labeled data. A sufficient pool of unlabeled data should already exist. If labeled samples
exist in this set, they may be exploited as a starting point for the model. If they do not,
then random instances may be fed to the oracle as model starting point.

When considering the sampling strategy, multiple approaches are available. It is assumed
that the data is non-uniformly distributed, meaning there are instances of high uncertainty
where it is more difficult to discriminate between labels and to find the correct label among

Figure 2.4: A prototype AL architecture by Ren et al. [2021]. Labeled instances are used
to pretrain the model, which improve the quality of the sampling strategy. Unlabeled
instances are sampled, and consequently labeled by the oracle. These now labeled in-
stances are fed to the model again and removed from the unlabeled pool, from which new
examples are selected in a new iteration.
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a set of at least two outcomes. The most popular approach is an uncertainty-based ap-
proach [Settles, 2009], in which the samples of the highest uncertainty are selected. The
idea is that the most uncertain instances border the class labels and therefore have dis-
criminative value. This approach may also be adapted to use entropy or feature diversity
rather than uncertainty [Holub et al., 2008]. Another approach is to use the lowest dif-
ference in probability between the most likely and second most likely class as uncertainty
score (best versus second-best), which is more greedy. Despite this, it was empirically
proven to compete with state-of-the-art sampling strategies [He et al., 2022].

With all components in place, related works are discussed. Due to the novelty of an
AL approach, very few published works implementing this approach for videos of infant
behaviors exist. However, AL has been successfully used in the medical field. Budd et al.
[2021] reviewed studies that work with medical image analysis, with a human annotator
as oracle. They concluded that the adaptions of AL, and other deep learning techniques
for that matter, may cause a paradigm shift for many clinical tasks, from assessment
to treatment. Another possible implementation of AL is to use the trained model as
annotator for future data, where medical experts may not have the time to do so. However,
Lowell et al. [2018] raised the concern that datasets may at some point outgrow the trained
model, and performance steadily decreases so that it serves no practical application.
Therefore the generality of the model must be kept in mind when assessing its quality, and
it must be robust for natural variation in the training data that possibly does not occur in
the training set. A final relevant take on AL uses transfer learning. In a situation where
the target domain does not hold sufficient data for successful training, one may seek out
data from a different but similar domain to improve training. When using labeled external
data, this has already proven to be successful [Pan and Yang, 2010; Zhu et al., 2011], as
well as in the medical setting where training data is typically scarce [Ravishankar et al.,
2016]. In the context of AL, an external domain may contain many unlabeled instances,
but may improve learning in the target domain. In their study, Zhu et al. [2011] propose
a method that starts with several labeled data in the target domain and to iteratively
label data from the external domain. During a training iteration, the informativeness or
weights of the external dataset are updated based on the prediction errors of the classifiers.
This method achieves better accuracy and convergence speed than traditional methods,
and may also add generality to the model. This addresses the previous concern raised by
Lowell et al. [2018] that datasets may outgrow models.

Settles [2009] in their literature survey confirmed that AL approaches with uncertainty
sampling can outperform standard supervised learning and other AL strategies like the
diversity-based approach or approaches that focus on the cost of labeling instances and
random batch sampling. As demonstrated by Lorbach et al. [2019] in their study, AL can
be particularly useful in annotating the more chaotic and less goal-oriented behavior of
rodents. This is similar to the behavior of infants, who also may not be able to effectively
communicate their needs and show large variation in their behaviors. However, Houlsby
et al. [2011] noted that the effectiveness of uncertainty sampling is context-dependent and
is further determined by the quality of the sampling metrics. This may be relevant to
the context of this study, as AL approaches are not well-researched in the NICU setting.
Since cue-based behavior may show individual differences impacting classification, it is
possible that the model may require a new learning phase for each new infant. Ideally,
this would not be necessary as the weights from previous iterations should generalize well
to new data. However, AL is well-suited for this process, as it allows for the model to
undergo additional learning iterations.
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3 Methodology

The upcoming section details the methods used in this thesis. It starts with an account
of the datasets, collection, annotation, preprocessing, feature generation and train-test
splits. Next, the cues that are suitable for automated detection are discussed. The section
continues by reviewing the MoViNet models and their architecture. Finally, evaluation
metrics, hyperparameter tuning and software used for model training are discussed.

3.1 Data

The SLAPI dataset was used in this study to analyze infant behavioral cues, including
sleep, hunger, and feeding discomfort cues. The SLAPI dataset contains videos of preterm
infants admitted to the NICU of the UMC Utrecht, and videos were recorded of preterm
infants of any GA. Only authorized individuals could access the data, which was securely
stored on the UMC Utrecht servers. While the primary goal of this dataset is to assess
sleep, the recorded data is also suited to the classification of behavioral cues. However,
due to the dataset’s developmental status, the data available for analysis in this study
was sparse. Due to this sparsity, the cues considered in the experiment must be carefully
selected for their fitness and availability.

The carefully chosen pool of cues, as expanded upon in Section 3.2, is necessary to
train the baseline, FSL and AL models. These first two require sufficient data for a
fully supervised approach, while the AL model can be used to expand upon the available
samples in the user study. The dataset was discovered to be imbalanced, as some behaviors
are more frequent in some infants across their states, than in others. Table 3.1 shows the
class distribution by frequency, duration and size. The classes “Still” and “Arm move”
have relatively many instances with 149 and 97 instances respectively, while classes like
“Rooting”, “Shiver”, “Tensing hand” and “Tugging” are underrepresented with less than
10 instances. As for duration, classes like “Still” and “Crying” stand out with 16 seconds
per snippet on average, while “Eye squeeze”, “Shiver” and “Tongue out” are at most 4
seconds.

For model pretraining and meta-learning, external datasets were used. It is essential that
external datasets contain as many outcome classes as possible, with the goal of training
the model to classify based on as many intricacies in the data as possible. These models
can then generate features that are sufficiently detailed for subtle movements in infants,
as well as robust enough for variations within classes. Kondratyuk et al. [2021] used the
Kinetics600 (Section 3.1.7) dataset for pretraining the MoViNet models, and the UCF101
(Section 3.1.8) dataset was selected for the meta-learning tasks.

3.1.1 Participants

Preterm infants with a GA of at least 32 weeks were included in this study. Preterm
infants with a GA of at least 32 weeks start to display behavioral indicators that indicate
their state, as Whetten [2016] noted in their research. So, infants with a GA of at least
32 weeks were chosen in order to ensure that they exhibit these behavioral cues.

Participant recruitment was carried out in coordination with the neonatology department
of the UMC Utrecht. When a preterm newborn met the inclusion requirements, the
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Category Class Duration (s) Samples

M SD Train Val. Test Total

Other Adult hand 12 8 31 15 17 63
Other Arm move 7 4 48 24 25 97
Hunger Bottle feeding 11 8 13 6 7 26
Hunger Bottle sucking 14 7 15 7 9 31
Discomfort Crying 16 47 27 13 15 55
Discomfort Eye squeeze 4 1 9 4 6 19
Discomfort Finger splay 11 7 5 2 4 11
Discomfort Flexing 8 4 5 2 3 10
Hunger Fussy 10 5 18 9 9 36
Other Grasping 7 4 5 2 4 11
Other Hand move 10 9 31 15 17 63
Hunger Hand sucking 8 3 11 5 6 22
Hunger Hand-to-face 8 6 26 13 13 52
Hunger Hand-to-mouth 8 5 24 12 12 48
Other Head move 11 13 8 4 5 17
Hunger Mouth open 5 3 20 10 11 41
Hunger Mouthing 8 4 6 3 3 12
Hunger Rooting 6 4 4 2 2 8
Other Shiver 3 1 4 2 2 8
Other Still 16 18 74 37 38 149
Discomfort Tensing hand 7 2 2 1 2 5
Hunger Tongue out 4 3 14 7 8 29
Other Tugging 5 2 4 2 2 8
Other Yawn 5 1 13 6 8 27
Mean 8.5 — — — — —
Total — — 417 203 228 848

Table 3.1: Overview of class distribution in the SLAPI dataset, including tentative division
of classes into infant state categories.

Infant ID GA Sex Video Length Total Frames Unique Cues

50 37.4 M 1:36:47 176004 18
70 35.1 F 0:30:38 55711 19
79 35.3 M 1:00:55 110777 21
95 35.7 F 0:58:52 107059 19
74 35.4 M 1:27:40 157814 9

Table 3.2: Demographic details and video-specific information for each infant included in
the SLAPI dataset. GA: Gestational Age (weeks). Video Length: Hours:Minutes:Seconds.
Total Frames: Number of frames in the video. Unique Cues: Number of distinct cues
observed.
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parents were contacted and informed about the study. Parents received comprehensive
information of the study’s purpose, the video recording process, and the advantages and
disadvantages of taking part. Parents who agreed to their child taking part in the research
gave written informed consent. Ethical approval was granted to the SLAPI study to create
recordings.

In the end, the recordings of 5 infants were included in the dataset used for cue classifica-
tion. These recordings were selected based on the display of cue behavior, the visibility of
the infants’ faces and upper bodies and the absence of occlusions. The untrimmed videos
of infants 50, 70, 79, 95 and 74 were annotated and included in the SLAPI dataset.
Table 3.2 shows infant-specific information pertaining their videos and demographics.

3.1.2 Collection

Infant safety was prioritized during the data collection. Data was collected under regular
NICU circumstances, without any disturbances to care interventions, parental visits or
feeding. The cameras were placed on the top and side of the NICU bed, allowing easy
access for nurses. The videos were recorded when parents were not present, and stopped
whenever necessary. Upon completion of a recording, the video pseudonymized and safely
stored on the servers of UMC Utrecht.

The data collection was conducted using the VDO360 webcam camera. It records video
at 1920x1080 resolution with 30 frames per second using a 2-megapixel sensor. The
camera’s field of view is 70 degrees, which enables sufficiently wide coverage of the NICU
bed. Its dimensions are 38x38x44.6mm making it compact enough for the NICU, without
obstructing medical care.

3.1.3 Annotation

Snippet annotation was carried out by research interns at the UMC Utrecht, including
the author of this thesis. They did not have a medical background other than their
internship. The annotators carefully watched the untrimmed videos and documented the
start time and duration of any behavior by the infant. These behaviors could include
all but the physiological cues from Table 2.1, Table 2.2 and Table 2.3. This process
resulted in approximately 150 snippets per untrimmed video, recorded in an excel sheet
from which a Python program could extract the snippets. The quality of the annotations
is crucial to the quality of any model trained on this dataset. Uniformity of the labeling
was ensured by discussion between the annotators, so that ambiguous or simultaneous
cues were labeled in similar fashion.

The AL study (see Section 4.3) served a dual purpose, by not only functioning as experi-
ment, but also as data annotation tool. Previously unlabeled snippets were evaluated and
labeled by an oracle. All those annotations were stored and incorporated in the larger
labeled dataset. These annotations were not included in the baseline and FSL studies
to maintain fair comparison between the experiments and their benefits or drawbacks.
Despite their exclusion from these experiments, they were included in the final dataset,
for use in potential future analyses. These snippets were also included in one ablation
condition, to determine the impact of larger datasets on performance.
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3.1.4 Preprocessing

The preprocessing of the SLAPI dataset, which consists of hour-long untrimmed videos,
was an important step to adjust it for the snippet-based models. First, videos were rotated
to ensure all the infant’s heads were pointed upwards. This was followed by cropping the
video frame, with the goal of decreasing the size of the video and hereby maximizing
the information retained when the resolution was reduced to fit the model’s preferred
resolution. Cropping was done manually by the annotator after determining the position
of the infant across the video. Resizing was done using bilinear interpolation, maintaining
the aspect ratio of the original frames. The result was padded with zeroes to fit the target
shape.

After these changes, the untrimmed videos were segmented into labeled snippets, applying
the earlier annotations. These snippets were then processed further to form the final
dataset. This includes extracting equidistant frames from each snippet. The number of
frames used in the representation is a hyperparameter of the MoViNet model. If the
video did not contain sufficient frames, empty frames were appended to the back of the
representation to conform to the required shape for the model inputs. Additionally, the
resolution of the videos was reduced to align with the preferred resolution of the MoViNet
model used. The outcome of this processing was a dataset with shape (batches × frames
× width × height × 3).

For the AL generated proposal snippets, the objective was to create snippets of 5 to 15
seconds, corresponding with the preferred number of FPS by the model. This algorithm
for proposal generation is explained in Algorithm 3. The main difference in preprocess-
ing lies with the selected frames. As consecutive clips with the same label are added
together to generate longer snippets, the number of frames is halved to maintain shape
consistency. An additional benefit of combining clips this way, is the actual FPS in the
processed snippets are somewhat similar to existing datasets, and deviate somewhat from
the preferred FPS which is inevitable due to varying snippet lengths. The snippets were
not subjected to further preprocessing. The motivation behind this approach is that the
model is exposed to the rawest form of the data, so that it can learn the natural variations
in the data. However, exploring other preprocessing techniques makes an interesting ab-
lation condition, to gain insight into how it may have affected performance. It has been
shown that more extensive preprocessing can improve model robustness by enhancing the
model’s understanding of temporal patterns [Rebuffi et al., 2021]. However, this decision
should be weighted against additional complexity and computational cost.

3.1.5 Feature Generation

To create a feature representation of the snippets, all model layers but the final classifica-
tion head were used as feature generator. Specifically, the penultimate layer of the CNN
is utilized to extract high-level features from the input videos. This layer has been shown
to capture semantically rich features that are useful for a wide range of tasks both in the
spatial and temporal domain. By using the penultimate layer for feature extraction, the
need for explicit feature generation was avoided. This approach relies on the CNN’s abil-
ity to learn discriminative features from the data, making it more robust and adaptable.
Snippets were represented in a one-dimensional array with 640 features, encoding both
spatial and temporal information.
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(a) t-SNE with frozen backbone

(b) t-SNE with trainable backbone

(c) t-SNE labeled by infant

Figure 3.1: t-SNE visualization of the SLAPI dataset using MoViNet A2 model. Each
marker denotes a video snippet, separated by marker style and color based on class.
Proximity indicates feature similarity in a reduced 2D space. (a) uses the model as-is, (b)
shows fine-tuned model results, and (c) is labeled by infant source video.
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The features generated by the MoViNet A2 model are shown in Figure 3.1. The dimen-
sionality of the data is reduced to visualise the distribution using the t-SNE technique
[Van der Maaten and Hinton, 2008]. While maintaining the local structure, it uncovers
global patterns like clusters, offering insights into the distribution of the dataset that help
interpret model performance. When the model backbone is fine-tuned on the dataset, as
shown in Figure 3.1(b), some cues are well-clustered. “Bottle sucking” and “Adult hand”,
for example hardly overlap with other classes. The t-SNE representation also managed
to somewhat single out “Hand-to-face” despite some overlap. “Still”, on the other hand,
overlaps with many classes. In Figure 3.1(a) the backbone is not fine-tuned. As a result,
the classes overlap more. However, there are still clusters of classes that are clearly distin-
guishable, like “Adult hand”, “Bottle sucking” and “Bottle feeding”. In terms of inter-class
variance, it can be appears that the variance is not sufficiently large to clearly distinguish
between classes by visual inspection. Intra-class variance, on the other hand, is substan-
tial, with smaller clusters of the same class appearing across the 2D plot. The dataset
includes five untrimmed videos, and it appears that the visualization reveals five individ-
ual clusters, each potentially belonging to a specific video. Figure 3.1(c) was created to
visually evaluate that the these clusters belong to each infant. Rather than coloring the
instances by class, the t-SNE plot is colored per source video. This confirms the idea that
the clusters belong to the source videos, meaning the feature representation does not only
represent the target classes, but also carries distinct signatures of the originating videos.
Ideally this would not occur.

3.1.6 Train, Validation & Test Split

The data was split using a train ratio of .50, validation ratio of .25 and test ratio of
.25. Snippets from each infant were distributed over all different sets, if there were
sufficient snippets to do so. The test set was allocated any remaining snippets. The split
configuration that was used in all experiment is documented in the GitHub repository
(https://github.com/joris-s/cues). It is recommended that any replication efforts use this
configuration. The t-SNE representations per set are shown in Figure 3.2, which may
help interpret discrepancies between train, validation and test accuracy. The consistency
between figures shows that the train, validation and test sets have comparable underlying
structures, leading to a consistent representation of the data throughout model evaluation.

Due to the class imbalance, the number of samples was limited to 20 samples per class
in the training set. This way, the maximum discrepancy between classes is 16 instances.
The split was kept consistent for all experiments throughout this thesis, except for the
component in the ablation study (see Section 4.4) where the model is tested on multiple
splits on the data. It uses entirely different splits which were randomly generated.

3.1.7 Kinetics600

Kay et al. [2017] developed the Kinetics human action video dataset, which contains 400,
600 or 700 classes of human action in roughly 10 second videos scraped from YouTube.
The dataset contains between 400 and 1150 clips for each action, from unique videos. It
was developed as successor to the UCF101 dataset. When the dataset was released, it
originally consisted of 400 classes, but has now been expanded with variations of 600
and 700 classes. The dataset has been widely used for (pre)training action recognition or
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(a) Training set t-SNE

(b) Validation set t-SNE

(c) Test set t-SNE

Figure 3.2: t-SNE visualisation of the SLAPI dataset with data points separated by their
respective train, validation, and test splits. The consistency between the figures shows
that the train, validation and test sets have comparable underlying structures, leading to
a consistent representation of the data throughout model evaluation.
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localization models [Clark et al., 2019; Du et al., 2021; He et al., 2019; Cherian and Gould,
2019], and has been shown to significantly improve models when used as pretraining
dataset.

The videos are realistic amateur videos with differing quality, camera stability and light-
ing. This makes classification challenging, due the the great intra-class variance. However,
this also makes the challenge representative of real-world scenarios, to the benefit of the
generalization qualities of models. The dataset contains different categories of classes, like
singular person actions, person-person actions and person-object actions.

The MoViNet architectures used in this thesis were all pretrained on the Kinetics600
dataset, allowing for a feature transformation that is sensitive to details due to its many
subtle differences between classes.

3.1.8 UCF101

Soomro et al. [2012] created the UCF101 dataset, which was widely used for action recogni-
tion. It consists of roughly 13.000 clips in 101 action classes. These classes are categorized
into five categories of actions: human-object interaction, body-motion only, human-human
interaction, playing musical instruments and sports. A unique feature of this dataset is
its high intra-class variability, due to the diversity in environment, lighting conditions
and camera quality and viewpoints. It was used state-of-the-art performance in large
scale action recognition tasks [Karpathy et al., 2014; Saha et al., 2016; Weinzaepfel et al.,
2015].

Due to its high degree of intra-class variability, it a suitable dataset for meta-learning
tasks. The goal of meta-learning is to train a model to adapt its weights to new, unseen
environments or classes. The diversity of data provides a rich source for the algorithm to
learn to generalize. It is therefore selected for the meta-learning tasks for the FSL model
described in Section 4.2.

3.2 Cues

The objective of this thesis is to classify hunger and discomfort behaviors in an effort to
detect hunger and feeding discomfort, using cues from the SLAPI dataset. The classes
were tentatively divided into three categories: “Hunger”, “Discomfort” and “Other”. Due
to the ambiguous nature of infant cues, as discussed in Section 2.1, they may belong
to multiple categories, and therefore the categorization proposed in this section is not
definitive. For instance, the behavior “Arm move” may be an indication of hunger when
the infant is rooting or this movement is towards the mouth. It could also function as
self-soothing or as a random movement during the active sleep phase.

However, this categorization is grounded in background literature (Table 2.1 and Ta-
ble 2.2), as well as the insights gained from discussions with three NICU nurses. They
indicated that hunger cues largely center around the mouth, in the form of licking lips,
mouthing, tongue tauting and sucking behaviors. When a pacifier or food is provided
to the infant and it calms down immediately, it is generally interpreted as a clear sign
that the behaviors were related to hunger. As for discomfort cues, those behaviors were
displayed on the entire body, like creating a fist, arching or flexing, and frowning.
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So, in the SLAPI dataset, hunger cues are “Bottle feeding”, “Bottle sucking”, “Fussy”,
“Hand sucking”, “Hand-to-face”, “Hand-to-mouth”, “Mouth open”, “Mouthing”, “Root-

ing” and “Tongue out”.

Discomfort cues are “Crying”, “Eye squeeze”, “Finger splay”, “Flexing” and “Tensing

hand”.

Other than the hunger and discomfort cues, there are multiple behavior that do not belong
to either of these main categories. They were all grouped together and are “Adult hand”,
“Arm move”, “Grasping”, “Hand move”, “Head move”, “Shiver”, “Still”, “Tugging” and
“Yawn”.

3.3 MoViNet Models

Kondratyuk et al. [2021] developed MoViNet (short for Mobile Video Network) neural
networks for efficient (online) classification of videos. Standard 3D CNNs are effective
at video recognition, however, they are computationally heavy and have high space and
time complexity. To address these limitations, they propose an approach with three steps
that includes a neural architecture search, a causal stream buffer technique to decouple
memory from video duration and an ensembling technique to further improve accuracy.
They constructed multiple networks, with different decisions made in the accuracy versus
complexity trade-off. Their networks range from MoViNet-A0 to MoViNet-A6 with base,
streaming and ensembling variants. These networks differ in their structure, and as a
result the number of parameters and GFLOPS for classification. These different models
were found by placing constraints on the architecture search. This search starts from
a MobileNetV3 which was previously used successfully for video classification [Koonce,
2021], and searches for all hyperparameters, ranging from input dimensions, frames per
second, kernel size, filters and number of blocks. Note that this is not an exhaustive list
due to the complexity of the search. The result is a family of MoViNet models which can
be used for video classification. These models are inherently suited to the cue classification
problem as it is a video snippet classification problem.

The MoViNet architecture consists of three key components. First, depthwise separable
convolutions convert a standard convolution into a depthwise and point-wise convolu-
tion. The depthwise convolution applies separate filters for each input channel, and the
point-wise convolution uses a 1x1 convolution. This significantly reduces memory and
computational complexity. In small networks, however, this reduction in parameters may
lead to the model being unable to properly construct features from its input. Second,
squeeze-excitation blocks transform the feature maps by (1) multiplying the map (ex-
citation) with a constant derived from the maps using average pooling, and (2) fully
connected layers summed to a single value after smoothing (squeeze). This way, a global
understanding of the feature maps is incorporated in the features. Third, causal convolu-
tions replace all temporal convolutions making them unidirectional, and unable to violate
the ordering of the frames.

The A0 model is the least complex and fastest model, with 3.1 million parameters. This
rises to 31.4 million parameters for the A6 variant. Only the A3 model breaks the trend,
as it has more parameters than both the A2 and A4 model, with 5.3 million parameters.
This parameter space is still significantly smaller compared to models like SlowFast-R152
and EfficientNet-L2 with 80 and 480 million parameters respectively [Kondratyuk et al.,
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Model Resolution FPS Parameters GFLOPS

A0 172x172x3 5 3.1M 2.71
A1 172x172x3 5 4.6M 6.02
A2 224x224x3 5 4.8M 10.3
A3 256x256x3 12 5.3M 56.9
A4 290x290x3 8 4.9M 105
A5 320x320x3 12 15.7M 281
A6 320x320x3 12 31.4M 386

Table 3.3: Comparison of Movinet Models. Resolution indicates the width and height of
the input, FPS the preferable frames per second of the video. Complexity can be inferred
from the model’s parameter count and GFLOPS [Kondratyuk et al., 2021].

2021]. The models require increasing computations as they become more complex. Top-1
accuracy on the Kinetics600 dataset increases with model complexity. For the A0, A1
and A2 model, the base variant without streaming buffers or ensembling enhancements
provided the best top-1 accuracy on the Kinetics600 dataset. The streaming-ensemble
variant performed best on the Kinetics600 for the A3, A4 and A5 models. The A6 model
was not tested on the Kinetics600 dataset. Table 3.3 gives an overview of the models
and their differences, including preferred hyperparameters and architectural differences.

In this study, only the A2 model was used due to its comparable number of parameters
with models A0-A4, as well as the low number of GFLOPS required for testing. Kon-
dratyuk et al. [2021] also found the A2 model offered an acceptable balance between
performance and computational cost. It scored the third best top-1 accuracy on the
Kinetics600 dataset, only surpassed by the A4 and A5 models.

3.4 Evaluation Metrics

To evaluate the model performance on cue detection and classification, the accuracy,
precision, recall and F1 score are recorded. Table 3.4 gives an overview of these metrics
and how they can be computed.

Accuracy measures the proportion of correctly classified examples among all examples.
It is computed by finding the ratio of true positives and true negatives to the sum of
true positives, true negatives, false positives, and false negatives. While accuracy is a
simple metric for overall performance, it does not provide information about performance
on specific classes, and is less informative when class imbalance occurs in the dataset.
However, it is still included as metric to give a general indication of model performance.
Often, balanced accuracy is computed as the average of recall scores across classes. This
way, more importance is given to the underrepresented classes.

Precision measures the proportion of true positives among all examples that are classified
as positive by the classifier. It is computed by finding the ratio of true positives to the
sum of true positives and false positives. Lower precision scores indicate that the model
classifies too many false examples as part of the target class.

Recall measures the proportion of true positives that are correctly identified by the clas-
sifier. It is calculated as the ratio of true positives to the sum of true positives and false
negatives. Lower recall scores indicate that positive examples are not identified correctly.

3 METHODOLOGY 32



Automated Infant Cue Classification

Metric Formula Explanation

Accuracy
∑C

i=1 T Pi∑C

i=1(T Pi+F Pi+T Ni+F Ni)
Proportion of correct predictions of total predictions.

Precision 1
C

∑C
i=1

T Pi

T Pi+F Pi
Average proportion of true positives of predicted positives.

Recall 1
C

∑C
i=1

T Pi

T Pi+F Ni
Average proportion of true positives of actual positives.

F1
1
C

∑C
i=1 2P recisioni×Recalli

P recisioni+Recalli
Average of the harmonic mean of P and R of each class

Table 3.4: Evaluation metrics used in this study to evaluate model performance for cue
classification. TP stands for True Positive, FP for False Positive, TN for True Negative,
and FN for False Negative. i is the class instance and C represents the total number of
classes. The metrics are macro-averaged, averaging every class equally.

Finally, the F1 score is commonly used when dealing with imbalanced classes. It represents
the harmonic mean of the precision and recall scores. Precision and recall may be a trade-
off between each other. When trying to identify the most positive instances, that means
that negative examples may be classified as positive in the process. Therefore, a higher
F1 score indicates a good balance between precision and recall, and in the unbalanced
setting it prevents favouring classes that are more numerous.

In the context of fairness, precision and recall can help identify whether a model is treating
classes differently. When precision and recall scores are equal among classes, that means
a model treats those classes fairly. It does not over- or under-predict positives and is not
disproportionally failing to find positive cases. F1 then provides a more comprehensive
score by combining precision and recall.

3.5 Hyperparameter Tuning

The MoViNet architecture is defined by a large set of predetermined hyperparameters.
As a result, typical CNN hyperparameters such as the number of layers, units, filters,
and kernel size, do not require further refinement. However, there are remaining hy-
perparameters related to the training of the model that require hyperparameter tuning.
These parameters are the dropout rate, the number of frames, batch size, epochs, learn-
ing rate, regularization method, enabling model backbone training and applying causal
convolutions. For FSL the number of meta-tasks and shots are included as well.

Grid search is a standard approach to hyperparameter tuning. This approach tests all pos-
sible combinations of parameters and their fitness is evaluated. However, due to the long
training times of MoViNet models, an exhaustive grid search was not feasible. As a result,
alternative methods such as Bayesian optimization and genetic algorithms, were explored.
Alibrahim and Ludwig [2021] found that genetic algorithms outperformed both grid search
and Bayesian optimization in terms of time consumption. All three approaches resulted
in similar metrics for search and model performance, although the model architectures
varied across each approach. Based on these findings, the genetic search algorithm was
selected as the most feasible method for this thesis. The implementation of the genetic
search algorithm is shown in Algorithm 1 (Appendix A), with selection of individuals
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done through tournament selection. During this hyperparameter optimization process,
the SLAPI dataset was divided into the same main training, validation, and test subsets.
Consequently, the hyperparameters identified through this genetic search algorithm may
only be suited to this dataset configuration. This creates a interesting ablation condition
where the dataset is repeatedly reinitialized to analyze the impact of different data shuffles
on performance.

The genetic search approach itself has three hyperparameters, being population size, num-
ber of generations, and tournament size. Vrajitoru [2000] concluded that using a larger
population size resulted in better performing models than increasing the number of gen-
erations did. Consequently, a population size of 10 with 5 generations was chosen for
this thesis. The tournament size was set to the default value of 3. Due to memory and
computational constraints, a more extensive genetic search could not be conducted.

3.6 Software

The experiments were built using Python as programming language. Crucial packages
for the development of the experiments were TensorFlow official models for the MoViNet
implementation, TensorFlow for the remaining neural network architecture requirements
and data management, and OpenCV for image processing and the user interface of the
user study. When using pip install package, the required dependencies are also installed.
The exhaustive list of the packages used for the experiments can be found in the GitHub
repository (https://github.com/joris-s/cues). The experiments were conducted on the
high performance computing facility of the UMC Utrecht, where the SLAPI dataset could
be safely loaded.
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4 Experiments

This section presents the setup for the three main experiments of this study. First, the
baseline experiment is introduced, and implementation details are discussed. Then, the
FSL experiment is discussed, including the meta-tasks and classes. Finally, the AL exper-
iment is introduced, covering the user study, sampling strategy and candidate generation.

The primary objective of these experiments is to gain insight in how cues can be detected
with machine learning, and what the pitfalls are. Expected outcomes of these exploratory
experiments concern which cues can be effectively classified, which approaches perform
best, as well as what can be expected from the models when more annotated data is
added. To this end, the MoViNet A2 [Kondratyuk et al., 2021] network that was originally
proposed for action classification has been adapted for cue classification in infants. The
baseline experiment aims to determine the minimum expected performance and gain a
deeper understanding of the advantages provided by FSL and AL. Where these methods
differ primarily is in the training phase, and the MoViNet models have been adapted
accordingly.

For the models to be successfully implemented, the model should be able to (1) classify
video segments to their cue classes, that have been preprocessed to snippets for training
and testing, (2) detect cue classes from a live video feed, frame-by-frame or in groups of
frames for actual use, and (3) find cues in a longer untrimmed recording of the infant for
the AL experiment.

Outside of the fixed MoViNet hyperparameter selections, the hyperparameters are sum-
marized in Table 4.1. These hyperparameters were derived from a genetic algorithm
search, as described in Section 3.5. Approach-specific parameters are discussed in their
respective subsections.

Lastly, due to the many different possible architectures of the models, an ablation study
was conducted to determine the importance of each component to the final models. In
the experimental approaches, regularization, model backbone training and causal convo-
lutions were not selected. Regularization helps prevent overfitting, a significant risk with
the large MoViNet models. Causal convolutions, on the other hand, are used due to their
their efficiency within the MoViNet architecture. It was expected that such techniques
would yield advantageous results for a computationally expensive task such as video clas-
sification. Similarly, it was thought that model backbone training would have fine-tuned
the feature representation to benefit classification. From the t-SNE representations of
the dataset it arose that instances are somewhat clustered by class, but also by their
untrimmed source video. Therefore, the absence of these elements in the experimental
approaches provides interesting ablation conditions.

Approach DO #Frames BS Epochs LR Reg. Backbone Causal conv.

Baseline 0.3 14 4 5 1e-3 None Frozen Disabled
FSL 0.5 24 8 5 1e-2 None Frozen Disabled
AL 0.3 14 8 12 1e-3 None Frozen Disabled

Table 4.1: Summary of hyperparameters used in the different experimental approaches:
baseline, FSL, and AL. The table displays variations in dropout rate (DO), number of
frames (#Frames), batch size (BS), epochs, learning rate (LR), regularization, backbone
training and use of causal convolutions.
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4.1 Supervised Baseline Experiment

Due to the innovative application of a machine learning approach to infant monitoring,
there is no comparable baseline performance available. Therefore, a baseline experiment
was included in this study. The results from this experiment will serve as a point of
comparison with the FSL and AL approaches, allowing for a clearer interpretation of
their performance improvements or limitations. This baseline is subject to the same data
limitations as the other approaches, without their architectural advantages. Therefore
similar or improved peformance is expected in the subsequent experiments.

4.1.1 Framework

A standard motion classification framework, like shown in Figure 2.1, was employed for
the baseline experiments. This included data acquisition by the SLAPI study, as well as
motion capture and feature extraction by the MoViNet A2 model. Up to and including the
penultimate layer of the network, it acts as a feature generator for the final classification
layer. These features are robust due to the pretraining of the model using the Kinetics600
dataset. After training, the model is then evaluated based on the metrics accuracy,
precision, recall and F1 score based on performance on the test set.

4.1.2 Hyperparameters

The genetic search algorithm was employed to determine the parameters for dropout,
number of frames, batch size, learning rate, regularization, the training of the backbone,
and causal convolutions. The following parameter settings were established: dropout at
0.3, 14 frames per snippet, batch size of 4, learning rate at 1e-3, no kernel regularization,
freezing the backbone, and disabling causal convolutions. Notably, the individuals in
the population exhibited consistently better performance with a batch size of 4, despite
research by Keskar et al. [2017] suggesting that smaller batch sizes lead to noisier weight
updates which may harm convergence and therefore performance.

The loss function that was used is sparse categorical cross-entropy, which is the standard
for multi-class classification problems. The optimizer used was Adam, which excels in its
efficiency and adaptability to noisy gradients [Kingma and Ba, 2017]. With just 5 epochs,
the training phase provided optimal results. Validation loss decreased after four or five
epochs during model construction and provisional testing, and further training resulted
in overfitting. Given the pretraining, this brief training period was sufficient.

To prevent overfitting during the training process, or simply learn the distribution of the
data, class weighting was applied to the loss function. This ensures that samples in the
underrepresented classes are weighted similarly to overrepresented classes, avoiding a bias
towards such classes.

4.2 Few-Shot Learning Experiment

Building upon the baseline experiment, this section introduces the FSL experiment. This
experiment was designed to evaluate the effectiveness of the enhancements that this ap-
proach brings to infant monitoring when only limited labeled data is available, benefiting
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from training on an external dataset. This experiment consists of two stages, being meta-
learning and meta-testing. The meta-learning phase will train the model to quickly adapt
its parameters to new unseen tasks. The meta-testing phase then aims to exploit this by
quickly adapting model weights to the limited SLAPI data that is available. The results
from these experimental runs will be compared with the baseline and AL experiments to
provide an understanding of the improvements and limitations of this method.

4.2.1 Framework

This approach expands upon the standard motion analysis framework laid out in Sec-
tion 4.1.1. Figure 4.1 shows a visualization of the approach. In the meta-learning phase,
there is a finite number of episodes consisting of a similar classification problem with
the same N classes and K instances per class in the training set. The validation loss is
computed using Q query images in the validation set. These may differ in dimensions
from meta-testing since the model was not trained on this set.

Then, in meta-testing, the model is trained for the target domain. This includes the
train, validation and test sets of the SLAPI dataset. To allow direct comparison with
the other two approaches, the model is again evaluated based on accuracy, precision,
recall and F1 score on the test set. The meta-learning phase prepared the model for swift
parameter changes to the target domain in meta-testing. As more samples are collected in
this approach, it progressively converges toward the standard baseline approach to video
classification.

Figure 4.1: FSL meta-learning, where white boxes indicate video data. In the meta-
learning phase, the model is trained by on a subset of the UCF101 dataset [Soomro et al.,
2012], where a similar N classes and K shots are used as in the meta-testing phase. In
meta-testing, the model is trained a final time on the support set before being tested on
the test set.

4.2.2 Hyperparameters

As the underlying models in all experiments is the same, it is expected that hyperparam-
eters are similar due to their shared foundation. To briefly reiterate, the loss function
used was sparse categorical cross-entropy, and class weighting is applied to prevent the
model from simply learning the distribution of the data.
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When choosing the optimal optimizer for this experiment, Zhou et al. [2021] noted that
Adam-type optimizers suffer from worse generalization performance than stochastic gra-
dient descent. They uncovered that SGD is more locally unstable at sharp minima, and
can better escape from them compared to flatter minima. Since meta-learning tasks re-
quire quick adaptations, an SGD optimizer is more suited in this experiment compared
to the Adam optimizer used in the baseline experiment. However, from testing during
the genetic search it arose that SGD did not perform as well as Adam during the meta-
learning. Therefore, in the end the Adam optimizer was used against the interpretation
of Zhou et al. [2021] due to its poor validation performance.

The parameters determined by the genetic search were: dropout at 0.5, 24 frames per
snippet, batch size of 8, learning rate at 1e-2, no kernel regularization, freezing the back-
bone, and disabling causal convolutions. This time, the relatively high learning rate in
the meta-testing phase stands out. However, the idea behind meta-learning was that the
meta-learning prepares the model for quick convergence, which fits a higher learning rate.
The meta-testing phase consists of 5 epochs.

The following hyperparameters, specifically related to the FSL approach, are the number
of meta-tasks and the number of training shots per class. These parameters were also
included in the genetic algorithm search. First, a high number of meta-tasks provides
the model with more diverse range of learning iterations and therefore more frequent
adaptations of its weights. This may benefit generalization to the target domain. The
choice of the number of meta-tasks depends on timely termination of training before
weights converge to a path that is not suitable for the target domain. In this experiment,
10 meta-tasks were selected by the genetic search from a possible 25. Each meta-task is
trained for one epoch only, with a lower learning rate of 1e-4 to prevent early convergence.

Next, the number of shots indicates the number of examples per class in the meta training
sets. This is important in preventing overfitting. The more shots are included, the more
information the model receives to distinguish between the classes. The genetic search
result in a 5-shot setting. However, during model construction, it was obvious that a
5-shot setting would lead to inferior results due to limited available samples. Therefore
it has been upgraded to 10 shots in this experiment, which allows the model to learn
efficiently without overfitting or training too rigorously on the meta-learning datasets.
The 10-shot setting is used in both the meta-learning and meta-testing phase to increase
relatedness between the two phases. A larger number of shots may not necessarily be
beneficial due to the impact of the meta-learning phase on the weights convergence, so a
balance must be struck between meta-tasks and shots.

4.2.3 Meta Training Tasks & Data

The meta-learning tasks are based on the UCF101 dataset (Section 3.1.8). This dataset
was chosen due to its diverse range of video classes, providing a diverse and varied range
of meta-tasks.

For each meta-task, N = 24 classes are randomly sampled from the UCF101 dataset.
N is consistent with the number of classes annotated in the SLAPI dataset. For each
of these classes, K = 10 random shots are selected. This process results in a diverse
training set for each meta-task. In addition to this training set, a validation set is created
for each task consisting of Q query images, using all available instances per class in the
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UCF101 dataset. While performance on the validation set is not the primary focus of
these experiments, they were monitored in hyperparameter selection to guarantee the
meta-tasks had a positive impact on the model training. The data in the training and
validation splits followed the guidelines by Soomro et al. [2012] to ensure a fair split that
does not inflate performance due to poor sampling.

4.3 Active Learning Experiment

This section presents the final experiment, where the baseline approach is expanded upon
using AL. The goal of these experiments is to investigate the improvements in cue classi-
fication that can be achieved when the model selects more informative snippets from the
unlabeled pool using an intelligent sampling strategy, thereby keeping the labeling costs
low. The outcomes from this experimental run will be compared to the results from the
baseline and FSL experiments to provide an understanding of the potential advantages
and limitations of this method.

4.3.1 Framework

This approach expands upon the standard motion analysis framework laid out in Sec-
tion 4.1.1. The framework is illustrated in Figure 4.2. In this approach, the MoViNet A2
model is trained on the available instances in the labeled pool, allowing it to make predic-
tions on the unlabeled instances using the feature representations built by its penultimate
layer. Following some sampling strategy (discussed in Section 4.3.3), the unlabeled in-
stances are selected for labeling by the oracle. The oracle then produces labeled samples,
which must be removed from the unlabeled pool and appended to the labeled pool. This
dataset is then shuffled and the MoViNet model is trained again. This process continues
until convergence or time constraints in the user study are reached.

The core concept is that the model can provide samples more intelligently to the oracle
after every iteration, enabling better training with use of only limited samples. After the
iterative process is completed, the model is trained a final time on the completed dataset,
resuming from where it left off in the previous iteration. It is then evaluated based on
the metrics accuracy, precision, recall and F1 score based on the test set.

4.3.2 Hyperparameters

Other than the hyperparameters specific to AL, the hyperparameters that are shared
with the baseline MoViNet A2 model are outlined briefly. The loss function used was
sparse categorical cross-entropy, the optimizer selected was Adam and class weighting
was applied. Every new iteration, the class weights were updated based on the current
labeled pool.

As for hyperparameters specific to this approach, the number of active learning iterations,
the number of samples to be annotated per iteration were considered. First, the number
of active learning loops regulates the iterations in which the unlabeled pool is sampled. It
also functions as an upper limit as to how much the model can learn from the unlabeled
pool. In this experiment, the number of iterations was limited to 3, and the number
of instances that were sampled from the unlabeled pool was set to 50. This way, a
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Figure 4.2: Illustration of the iterative process involved in AL, from initial training on the
labeled pool, through the sampling strategy and labeling of new instances by the oracle,
to retraining the model on the new labeled pool. White boxes indicate cue snippets.

batch of 50 samples were incorporated in the training dataset each iteration, allowing
the model to learn using these new samples and more effectively select the subsequent
batch of unlabeled samples. Selecting too few samples might slow the learning process,
as the limited new information can hinder the model’s ability to generalize. In contrast,
choosing too many samples can introduce noise, adding an overload of new variations
that might shift optimal parameters beyond the model’s current training state. In total,
150 additional samples were labeled using active learning striking a balance with the
preexisting labeled pool. These parameter settings were chosen as only sufficient data
was available for roughly 150 samples.

To simulate the user study in the genetic search algorithm, the test set was used as
unlabeled pool. The labels of the test set are known, and can be retrieved automatically
in the active learning iterations. This resulted in the following hyperparameters: dropout
at 0.3, 14 frames per snippet, batch size of 8, learning rate at 1e-3, no kernel regularization,
freezing the backbone, and disabling causal convolutions. Other than the batch size, these
parameters are identical to the baseline experiment. Given that the dataset was identical
to the one used in the baseline experiment, the results were as expected. However, due to
the training being distributed over four iterations of three epochs each, there was potential
for discrepancies.

Lastly, the number of epochs in this setup is important, as it must be controlled in relation
to the number of AL loops. Since the model is trained on the labeled dataset in each loop,
allowing training for 5 epochs each iteration in the setup could lead to early convergence,
neglecting potentially informative unlabeled samples. To prevent this, the number of
epochs is set to a conservative value of 3 each iteration. After the active learning process
is completed, the model is trained for another 3 epochs to consolidate the final samples.

4.3.3 Sampling Strategy

In this study, a pooling-based sampling strategy is used, as all the unlabeled data is
available and can be evaluated for uncertainty measures based on which a predetermined
number of instances is fed to the oracle for labeling. As was laid out in Section 2.3.2,
multiple sampling strategies for selecting instances to feed the oracle were identified as
reliable choices: uncertainty-based, entropy-based and best-versus-second-best. Infant
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behavior is often ambiguous, with multiple behaviors occurring simultaneously. As a
result, it is beneficial to include instances in the model training that share these ambiguous
properties.

However, the SLAPI dataset is largely unbalanced, which may lead to oversampling of
the majority classes when using these approaches. To counter this, a stratified class-based
approach is preferred. Instead of focusing on the predicted class of the unlabeled snippets,
this method iterates over the classes and selects samples with the highest probability of
belonging to that class. This allows for the localization of the underrepresented classes,
even if they are not the predicted class. Algorithm 2 (Appendix A) outlines this sampling
algorithm step-by-step. Duplicates may arise as samples could have the highest probability
for multiple classes, which is prevented by only returning unique samples. However, this
approach is not standard in related works, which commonly opt for standard uncertainty,
diversity or best-versus-second-best sampling [Joshi et al., 2009]. Therefore, it is an
interesting ablation condition to determine the impact of this problem-specific sampling
strategy, compared to standard uncertainty sampling.

4.3.4 Snippet Generation

The unlabeled pool in the SLAPI dataset consists of lengthy, untrimmed videos, with
a duration of up to hours. During manual annotation it was observed, as is detailed
in Table 3.1, that typically behaviors of interest last from 2 to 10 seconds. Irrelevant
behaviors and other camera intrusions can last from a few seconds to up to minutes,
as they are not as intricate as the hunger and discomfort behaviors. By dividing the
untrimmed videos into snippets of roughly 10 seconds, it is thought that the behaviors
will be fully captured without making a snippet excessively long such that it captures
multiple behaviors. Since preterm infants can show different cues simultaneously it is not
possible to prevent multiple cues from occurring within the same snippet.

During AL, the goal is to find temporal boundaries of action instances and predict their
labels based on such a snippet. To this end, Vahdani and Tian [2021] states that proposal
generation is required to find the intervals at which cues occur. The proposal generator
uses the MoViNet model of this experiment, and for each AL loop is initialized using the
model that was enhanced from training. It walks through the untrimmed video frames at
the FPS preferred by the model, which is 5 FPS in this case. After going through 3 seconds
of video, a label is predicted for the snippet. The next 3-second snippet is processed. If
the predicted label is the same as the previous snippet, it is assumed that they represent
the same behavior and are grouped. This also means that snippets cannot overlap. Cues
may not exactly fit the temporal boundaries this approach generates. However, this may
be adjusted by the oracle when they are presented with the snippet. This process is halted
after the combined snippet has a length of 15 seconds, since it was assumed that relevant
behaviors take up to 10 seconds. This means that either the behavior was repeated or
the classification was incorrect. In either case, a new snippet was created. The number of
frames of the created snippet was reduced so that it is consistent with the labeled pool,
retaining evenly spaced frames only. This algorithm returns the temporal coordinates
indicated by frame starting and stopping index, and the processed snippet. Algorithm 3
(Appendix A) shows this proposal generator algorithm step-by-step.
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4.3.5 User Study

This study used an oracle to provide labels for video snippets selected by the sampling
strategy, while also allowing to oracle to modify snippets if needed. This could be required
as the proposal generation algorithm uses a fixed 3-second interval, which may not fit
the cues. Through command line input, the oracle could label snippets, skip snippets,
modify snippets and replay snippets. The option to label snippets outside of the available
classes was also presented, with the videos being stored outside of the labeled pool. To
maximize the efficiency and minimize the redundancy in the annotation effort, the oracle’s
annotations were saved as snippets for future model training, effectively producing the
dataset as byproduct of the study.

The oracle for the user study was a research intern employed at the UMC Utrecht. They
were familiar with preterm infant hunger and discomfort cues, and agreed to participate
in the study. Their task only involved providing the labels for snippets, and modifying
snippet length whenever they deemed necessary to capture the entire cue.

Given the hyperparameters, the user study was divided into 3 iterations in which 50
samples were labeled. These samples were extracted from the pool of unlabeled and
untrimmed videos, using the proposal generation algorithm. The proposal generator was
reinitialized at the beginning of each iteration with the model that was retrained on the
updated labeled pool.

The user interface of the study was implemented using OpenCV. The command line
interface was native to the HPC environment the experiment was ran in. For each sample,
the oracle was first shown the video. This showed the progress in seconds. The class labels
and their indices were then printed, including instructions for how to skip a snippet,
modify a snippet’s duration, replay a snippet or give it a label outside the available
classes. If the oracle entered incorrect input, they would be shown an error and requested
to select a label within the available range. Figure A.1 in Appendix A shows the relevant
command line and video interfaces, including instructions.

4.4 Ablation Studies

In this section, the ablation studies conducted to understand the impact each model com-
ponent are set up. The modifications to the model can be divided into three categories:
dataset, core component and AL modifications. Dataset modifications are only tested on
the baseline main settings. The modifications to model components are also threefold. It
involves regularization, training the model backbone and the application of causal convo-
lutions. Although these techniques are either standard in machine learning, or MoViNet
specific, they were not selected by the genetic search. A final modification explored is the
importance of the sampling strategy in the AL user study. This aims to determine how
stratified sampling impacts the model quality, compared to more conventional uncertainty
sampling.

This means, in total, 12 model variations were included in the ablation study. Table 4.2
shows all possible combinations of component settings. Based on the evaluation metrics
used throughout this study (accuracy, precision, recall and F1) V0-V3 and V12 will be
interpreted individually. V4-V10 will be compared with each other, possibly revealing
synergistic effects.
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Version Backbone Causal Reg. Model Description

V0 — — — Baseline Increasingly larger dataset size.
V1 — — — Baseline 10 data initializations/splits.
V2 ✓ — — Baseline Optical flow preprocessing.
V3 — — — Baseline Leave-one-out cross validation.
V4 ✓ ✓ L2 Baseline, FSL —
V5 — ✓ L2 Baseline, FSL —
V6 ✓ — L2 Baseline, FSL —
V7 — — L2 Baseline, FSL —
V8 ✓ ✓ — Baseline, FSL —
V9 — ✓ — Baseline, FSL —

V10 ✓ — — Baseline, FSL —
V12 — — — AL Unstratified uncertainty sampling

Table 4.2: Ablation study versions. Different combinations of component settings. Data
modifications are applied to the baseline main settings, while model modifications are
compared against each other with all possible options. Models V0-V3 use the main
settings of the baseline approach. Models V4-V11 are tested on both the baseline and
FSL approaches, deviating from their main settings. Model V12 is tested on the AL main
settings. V11 is omitted as its settings are identical to the main settings.

4.4.1 Data Modifications

The first adjustment involves systematically increasing the number of training shots per
class (V0). Starting from 1, the shots are increased to 2, 3, 5, 10, 15 and 25. When the
number of shots is larger than the available instances in that class, all available instances
are used. This does make it more difficult interpret the performance based on more data,
as at some point only few classes may gain new training samples. In machine learning,
increasing the amount of data used and its performance can be described as a diminishing
returns curve. Initially when the model only has access to a small set of data, adding more
data yields larger performance increases than when the dataset is already sufficiently large.
While it is common for medical datasets to lack availability and quality annotations, it
is not yet determined what role this limitation has in this thesis. By increasing the size
of the dataset and plotting the performance, it can be determined what the state of the
current dataset is, and how increasing the number of instances may improve performance.

A further component is the data initialization (V1). Since the data is not sufficiently
uniform, the train, validation and test splits may impact performance. To get a clearer
understanding of the impact of the data initialization, the split is done 10 time completely
at random. Each time the model is trained using the main settings on this dataset. This
way, the effect of a new random initialization on performance can be mapped.

In the experiments, preprocessing consisted of cropping and rotating the videos to main-
tain consistency and relevant information in the center of the video. Then, the frames
were reduced to preferred resolution of the MoViNet A2 model and samples in steps of 5
FPS, also preferred by the model. In this ablation study (V2), optical flow in combination
with the 1-dimensional gray-scale frame, resulting in a 3-dimensional representation. Op-
tical flow may be beneficial to the model, since it captures motion information, which is
important to cue interpretation. Since MoViNet models are pretrained using RGB data,
the model backbone was set to trainable, allowing for fine-tuned feature representations.
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Multiple popular dense optical flow approaches exist, with Horn-Schunck [Horn and
Schunck, 1981] and Farnebac̈k [Farnebäck, 2003] being the most common. Both methods
compute the optical flow for each pixel in the input frame. However, due the polyno-
mial expansion approach in Farnebac̈k’s method, the optical flow is more robust to noise,
large displacements and illumination changes. This does mean the method is more com-
putationally expensive. Due to the noisy nature of the SLAPI dataset, Farnebac̈k was
selected as optical flow method. Farnebac̈k’s algorithm returns horizontal and vertical
displacement values for each pixel compared to the previous frame. These values were
not transformed into polar coordinates due to the natural discontinuity in angle repre-
sentation, where the range of angles extends up to 360 degrees. Although there is only
one degree difference between 0 and 360 degrees, this is not adequately represented in
the numerical value.

To determine the importance of the infant’s behavior in the classification of their behav-
iors, a leave-one-out ablation was tested (V3). One infant’s data was used as test set,
while the other infants’ data comprised the training and validation set. This approach
provides insight into the generalizability of the model, but also of the cues across infants.
Infant 65 was left out of this ablation, due to its limited exhibited behaviors.

4.4.2 Model Component Modifications

By training the model backbone, not only the final classification layer is trained, but
all layers of the model. This way, the weights of the backbone are fine-tuned, acting as
domain adaptation of sorts. However, this introduces increased risk of overfitting due to
the increased number of parameters that are now adapted based on the imperfect dataset.

The model’s performance was evaluated with and without L2 regularization to understand
the impact of regularization on performance. Regularization techniques help prevent
overfitting by adding a penalty to the loss function. It was thought due to the complexity
of the MoViNet model, this would be beneficial. However, it was not found to be best by
the genetic search.

Causal convolutions, one of the hallmarks of the MoViNet architecture (see Section 3.3),
were not enabled in the architecture found by the genetic search algorithm. Therefore,
their impact on the models is tested in the ablation study. They are especially useful for
applications with high time and memory complexity, such as motion analysis.

All these combinations were combined into 7 new model versions, and they were tested
in both the baseline and FSL approaches.

4.4.3 Active Learning Modifications

Considering the importance of sampling strategies in addressing the underrepresented
classes to arrive at a balanced model, stratified probability-based sampling was adopted.
However, it is important to validate the effectiveness of this approach by comparing it
to standard sampling strategies, like uncertainty-based sampling. This comparison will
provide insight into how different strategies can impact model performance. Due to the
requirement of a user study, only the uncertainty-based sampling strategy was tested for
3 iterations and 50 samples per iteration, similar to the main experiment.
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5 Results

This section presents the results of the experimental runs. The results of the main exper-
iments are summarised in Table 5.1, and described in the relevant subsections. The table
also includes the metrics for random and weighted guessing classifiers, where the weighted
classifier uses the distribution of the training set as prior probability. These metrics serve
as an indication of task difficulty, and a point of comparison. No metric computed on the
test set exceeds .10.

For each experiment, the metrics validation accuracy, accuracy, precision, recall and F1
are computed on the test set. The training history of these metrics on the training and
validation set is shown in Appendix B, as well as a confusion matrix of the predictions on
the test set. The results of the ablation studies are reported in the final subsection.

Experiment Val. Acc. Acc. P R F1 Trials

M SD M SD M SD M SD M SD

Baseline .40 .02 .36 .02 .30 .03 .31 .03 .27 .03 10
FSL .29 .03 .28 .03 .25 .03 .26 .03 .21 .02 10
AL .38 — .35 — .28 — .30 — .26 — 1
Random guess — — .04 .01 .04 .01 .04 .02 .04 .01 100
Weighted guess — — .08 .02 .04 .01 .04 .01 .04 .01 100

Table 5.1: Summary of experimental results for different models. Each model’s perfor-
mance is assessed in terms of Validation Accuracy (Val. Acc.), Accuracy (Acc.), Precision
(P), Recall (R), and F1 score. For each metric, the Mean (M) and Standard Deviation
(SD) across 10 trials are provided, where there was only one trial for AL.

5.1 Baseline Experiment

In the baseline experiment, the model underwent a training phase spanning 5 epochs.
Upon completion, it achieves a mean validation accuracy of .40(SD=.02) across ten 10
trials. The model’s training history, along with other validation metrics are outlined in
Appendix B, Figure B.1. When evaluated on the test set, a reduction in the model’s
mean accuracy is observed, dropping to .36(SD=.02). The mean precision is found to be
.30(SD=.03), demonstrating that an average of 30% all predicted positive instances were
accurately classified. The mean recall rate is measured at .31(SD=.03), indicating that
the model correctly detected 31% of all positive examples in the test set, averaged per
class. The mean F1 score is calculated to be .27(SD=.03). The relatively small standard
deviations for all metrics suggest that the 10 executed experimental trials yield consistent
results, summarised in Table 5.1.

A more nuanced understanding can be gathered by examining cue-level scores, as op-
posed to solely focusing on overall model performance. As illustrated by the confusion
matrix in Figure 5.1, performance varies with behavioral cues. While the results from this
confusion matrix are drawn from a single trial of the baseline model experiment, which
requires cautious interpretation, it offers an insightful visual representation that helps in
understanding the model’s performance. Among the various cues, “Adult hand”, “Bottle

feeding”, “Bottle sucking”, “Crying”, “Hand sucking”, “Shiver”, “Still” and “Tugging” are
all relatively accurately predicted with 50% recall or higher. The cues “Bottle feeding”,
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Figure 5.1: Confusion matrices for baseline experiment first run with MoViNet A2. On
top, a normalized confusion matrix displaying the proportion of correct and incorrect
predictions for each class. On the bottom, a frequency-based confusion matrix showing
the absolute number of predictions for each class.
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Class P R F1 Samples

M SD M SD M SD

Adult hand .89 .08 .77 .07 .82 .05 17
Arm move .24 .21 .08 .08 .11 .09 25
Bottle feeding .96 .07 .89 .09 .92 .04 7
Bottle sucking .74 .07 .99 .03 .84 .05 9
Crying .36 .05 .51 .10 .42 .05 15
Eye squeeze .10 .11 .17 .21 .11 .10 6
Finger splay .00 .01 .03 .08 .01 .02 4
Flexing .04 .05 .18 .23 .06 .07 3
Fussy .61 .26 .23 .15 .29 .12 9
Grasping .00 .00 .00 .00 .00 .00 4
Hand move .42 .18 .26 .18 .30 .17 17
Hand sucking .20 .05 .57 .14 .29 .05 6
Hand-to-face .39 .36 .21 .15 .23 .14 13
Hand-to-mouth .29 .13 .21 .12 .21 .08 12
Head move .00 .00 .00 .00 .00 .00 5
Mouth open .13 .10 .18 .19 .14 .13 11
Mouthing .28 .30 .26 .14 .24 .16 3
Rooting .00 .00 .00 .00 .00 .00 2
Shiver .52 .34 .67 .41 .55 .32 2
Still .77 .06 .55 .07 .64 .05 38
Tensing hand .01 .03 .11 .21 .03 .05 2
Tongue out .14 .12 .12 .10 .13 .10 8
Tugging .05 .05 .28 .34 .08 .09 2
Yawn .16 .14 .14 .11 .15 .12 8
Hunger .37 — .37 — .33 — 80
Discomfort .10 — .20 — .13 — 30
Other .34 — .31 — .32 — 118

Table 5.2: Performance metrics for individual classes in the baseline experiment, displayed
in terms of Precision (P), Recall (R), and F1 score. For each metric, Mean (M) and
Standard Deviation (SD) values are provided. The number of samples per class is also
included to illustrate data distribution. This class-based evaluation allows for a more
nuanced interpretation of the model’s performance.

“Bottle sucking” and “Shiver” achieve notably high recall scores of 100%. Interestingly,
classes that demonstrate high recall scores in the confusion matrix include both major-
ity and underrepresented classes. For instance, “Still” consists of 149 samples. “Bottle

sucking”, on the other hand, consists only 31 samples. Its 9 test samples are all correctly
identified. This suggests that the impact of class imbalance is mitigated to an extent.
Further evidence supporting this claim is provided by the absence of preferred classes for
prediction.

Table 5.2 provides a more comprehensive representation of the classification performance
across different classes. The metrics precision, recall and F1 are reported for each class.
Additionally, the test set sample size is reported for each class, to illustrate the distribution
of the data. The standard deviations are reported to shed light on how sensitive classes
were to different model runs.
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When considering the class “Adult hand” (P=.89, R=.77 and F1=.82), the model returns
high scores in all evaluation metrics. The high precision score suggests that only few false
positives were predicted, whereas the recall score indicates the model correctly identifies
77% of all snippets where an adult hand appears in the frames. Due to the nature of this
cue, in which a foreign object enters the frame, it is unsurprising that the model performs
well. The cue can be classified based not only on the intricacies of the infant’s behavior,
but also the presence of other objects. Similar cues, such as “Bottle feeding” (P=.96,
R=.89 and F1=.92) and “Bottle sucking” (P=.74, R=.99 and F1=.84) also demonstrate
good performance, which can likely be attributed to the presence of a foreign object.

Conversely, “Arm move” (P=.24, R=.08 and F1=.11) demonstrates markedly low preci-
sion, recall, and F1 scores, implying that the model struggles to identify this class correctly
and differentiate it from other cues. For instance, confusions occur where “Arm move”
instances are predicted as being “Flexing”, “Mouth open” or “Rooting”. An instance of
“Grasping” is incorrectly classified as “Arm move”. Next, “Finger splay” (P=.00, R=.03
and F1=.01) scores hardly any precision and very low recall and F1 scores, which suggests
the model is not able to identify these classes correctly. Its instances are incorrectly clas-
sified as being “Grasping”, “Rooting” or “Tensing hand” This also appears to be the case
for “Flexing” (P=.04, R=.18 and F1=.06), “Tensing hand” (P=.01, R=.11 and F1=.03)
and “Tugging” (P=.05, R=.28 and F1=.08). Poor performance across all metrics signifies
that the model frequently misclassifies or fails to detect these classes.

The classes “Grasping”, “Head move” and “Rooting” all stand out as the model appears
unable to correctly identify this class at all (P=.00, R=.00 and F1=.00), reflected in
its zero precision, recall, and F1 scores. The limited number of test samples (4, 5, and 2
respectively) for these classes means that there is only limited training data available. This
might have contributed to the poor performance, suggesting a need for a more balanced
dataset to properly interpret the results for these cues. An alternative explanation is the
ambiguous nature of the classes. For example, grasping involves the movement of the arm
and hand, for which separate classes exist. Similarly, rooting involves movement of the
head, moving the hands towards the mouth and displaying sucking-like behaviors. This
creates challenging circumstances for the model to distinguish between these classes. This
is particularly true for “Arm move” as it has a relatively high number of samples, and
could have usurped smaller classes explaining poor performance in the metrics of both
classes.

The model also struggles with more ambiguous or subtle classes such as “Eye squeeze”
(P=.10, R=.17 and F1=.11), “Fussy” (P=.61, R=.23 and F1=.29) and “Head move”
(P=.00, R=.00 and F1=.00). These relatively low scores can be explained by the inherent
ambiguity or complexity of these behaviors. Fussiness is defined as rapid movements of the
head, arms and changes in body tension. So the class consists of many different behaviors
grouped together, which somewhat overlap with other classes as well. “Eye squeeze” is a
subtle tensing of the eyelids, which is often accompanied by an open mouth and flexing
of the hands, just like “Head move” is often combined with movements of the eyes and
arms. These classes also have relatively few samples, suggesting that their complexities
cannot be learned from the available data.

Finally, the class with the most samples is “Still” (P=.77, R=.55 and F1=.64). Its high
precision and recall scores are useful to ensure that when an infant is genuinely still, and
requires no care, it is accurately recognised. The scores observed for this class do follow
that pattern, which is a promising outcome.
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When examining the standard deviations, some issues become apparent in the follow-
ing classes, with respect to precision: “Hand-to-face” (M=.39, SD=.36) and “Mouthing”
(M=.28, SD=.30). The considerable inconsistencies in precision suggests possible vari-
ability within the class samples. While the number of samples is sufficient, this variability
could have been learned in some experimental trials, but not in others. Since these are be-
havioral cues potentially indicative of hunger, their detection is important. However, par-
ticularly when taking the low recall scores into account (M=.21 and M=.26 respectively),
the classification of these classes is lacking in reliability. Similarly, substantial variability
in recall presents challenges for the following classes: “Shiver” (M=.67, SD=.41) and
“Tugging” (M=.28, SD=.34). The variable identification of these classes again indicates
unreliable detection. This may be due to dataset limitations or the complexity in the
behaviors. Nevertheless, since these behaviors are not indicative of hunger or discomfort,
their detection is less vital. Furthermore, the precision and recall scores are relatively
high, despite their large standard deviations.

To generate the previous results, a cue-based approach was used. Table 3.1 provides a
tentative categorization into the categories of interest: “Hunger”, “Feeding discomfort”
and “Other”. The scores for the metrics precision, recall and F1 can be averaged to
derive category-based scores. Using this categorization, “Hunger” scores P=.37, R=.37
and F1=.33. “Feeding discomfort” scores P=.10, R=.20 and F1=.13. Finally, “Other”
P=.34, R=.31 and F1=.32. This result is still problematic, as precision and recall are
lower than .50. So when using the tentative categories, less than half of the cue snippets
are successfully classified. Once again, this issue may be attributed to the lower availability
of samples in those classes. Upon examining the confusion matrices in Figure 5.2, it
is apparent that substantial confusions occur across the three categories. The model
distributes it predictions almost evenly across the categories, arriving at a total accuracy
of .55. This result is comparable to that of majority class voting for “Other”, which would
yield an accuracy of .52 (118/228), thereby suggesting that the baseline approach was
not effective in broadly classifying hunger or discomfort behaviors. Instead, it is more
productive focusing on individual cues, and using the per-class performance to guide the
interpretation.

Figure 5.2: Confusion matrix for the baseline reduced to three main categories of behavior,
being “Hunger”, “Feeding discomfort” and “Other”. This labeling results in .55 accuracy
for the first run of the baseline experiment.
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(a) Infant ID 79

(b) Infant ID 95

Figure 5.3: Predicted classes over time for infant 79 (a) and infant 95 (b). These plots
showcase the behavior classifications of each infant across the duration of their respective
videos. Despite low metric scores, they demonstrate the model’s capability in consistently
detecting significant behaviors such as "Bottle feed", "Bottle sucking", "Adult hand", and
periods of stillness. The plots also indicate periods of restlessness in both infants, visible
through the wide range of predicted behaviors.

To put these results into practice, the entire videos of infants 79 and 95 were fed to
the model, with consecutive snippets of 4.8 seconds being classified. The predictions
are shown in Figure 5.3(a) for infant 79 and Figure 5.3(b) for infant 95. Due to the
low metric scores, the exact classifications are not the primary points of interest in these
plots. Both infants 79 and 95 both exhibit a wide range of behaviors from the start of
the video, irrespective of whether the classifications are inaccurate. This suggests the
infant is restless, potentially due to hunger. After approximately the 37-minute mark,
infant 79 is bottle-fed. It also appears as though the model successfully recognised the
“Adult hand” and “Bottle feeding” in the video, as those classes are consistently predicted
over a 15 minute stretch. After the feeding stops around the 45-minute mark, the infant
continues to display signs of restlessness, as indicated by the wide range of predicted
behaviors. However, after a second feeding after minute 50, the infant’s actions are largely
predicted as “Still”. Any remaining deviations from “Still” could be due to movements
whilst sleeping, or inconsistencies in the data. In a similar manner, the model successfully
identifies the introduction of a pacifier to infant 95 at approximately the 28-minute mark
in the video. At this same time, the infant was tube-fed. From the 41-minute mark
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onward, the infant appears to have fallen asleep, which is common after feeding. As a
result, there is an apparent absence of predictions for any class other than “Still”. Thus,
the reliable performance in recognising “Bottle feed”, “Bottle sucking”, “Adult hand” and
“Still” results in an accurate description of infants’ untrimmed videos, despite the possible
misclassifications of other behaviors. All these observations, drawn from the plots, were
validated by manual inspection of the untrimmed videos.

5.2 Few-Shot Learning Experiment

In the FSL experiment, the model underwent training for 5 epochs after pretraining the
parameters on 10 meta-tasks. This results in a mean validation accuracy of .29(SD=.03)
after 10 trials. The model’s training history, along with other validation metrics are
outlined in Appendix B, Figure B.2. When evaluated on the test set, the model’s mean
accuracy remains consistent at .28(SD=.03), meaning the model was able to accurately
classify 28% of all instances. Mean precision is measured at .25(SD=.03), while recall is
measured at .26(SD=.03). This indicates that the predicted positive instances were 25%
are correct, while 26% of all positive samples are detected successfully, averaged across
the classes. Finally, the test F1 score is .21(SD=.02). Again, the relatively small standard
deviations demonstrate consistency across the model runs.

When comparing these results to the baseline experiment, it is observed that the FSL
model reveals lower metrics across the board. In the validation accuracy, there is a .11
decrease (M=.40 versus M=.29), while performance is decreased by .08 for accuracy
(M=.36 versus M=.28). For precision (M=.30 versus M=.25) and recall (M=.31 versus
M=.26) performance is reduced by .05 and F1 (M=.27 versus M=.21) shows a difference
of .06. This suggests that the meta-learning phase only hampers performance.

In terms of class-based performance (see Figure B.4 in Appendix B), there is a similar
pattern in the performance per class, where majority classes “Adult hand” and “Still” per-
form relatively well. Meanwhile, underrepresented classes such as “Finger Splay”, “Root-

ing” and “Mouthing” remain with low metric scores. This pattern suggests that despite
the inherent countermeasures to manage class imbalance and functioning with limited
data, theFSL framework does not significantly improve the detection of underrepresented
classes. This could be due to data limitations, or variations within classes, indicating
that simply changing the machine learning approach is not sufficient for overcoming this
limitation and further improving performance.

The core idea behind FSL is to find a path in the parameter space that allows for quick
fine-tuning of these parameters to an unspecified target domain. From the training history
(Figure B.2 in Appendix B), however, it is observed that the validation loss actually starts
out higher around 3.0 and does not recover from this deficit despite an early drop after
the first epoch. As a result, model performance on the test set disappoints. Furthermore,
there is no indication that underrepresented classes are more accurately detected. The
genetic search algorithm returned the best learning rate at 1e-2. This is a comparatively
high value, possibly resulting in undoing earlier learned weight updates, and overshooting
minima in the loss landscape.
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5.3 Active Learning Experiment

In this experiment, the model underwent training for 3 epochs before AL, and then
for 3 epochs after each of the iterations. This resulted in a validation accuracy score
of .38. The model’s training history, along with other validation metrics are outlined
in Appendix B, Figure B.3. When evaluated on the test set, the model’s accuracy is
measured at .35, meaning the model was able to accurately classify 35% of all instances.
Precision is measured at .28, while recall is measured at .30. This indicates that the
predicted positive instances were 28% were correct, while 30% of all positive samples
were detected successfully, averaged across the classes. Finally, the test F1 score is .26.

To see how the model is affected by the AL iterations, 24 samples from the test set
were set aside. One for each class. Figure 5.4 shows the evolution of the certainty over
these samples over the course of the learning phase. The probabilities of each sample
belonging to a class are shown after each iteration. It can be seen that initially before the
first AL iteration, the probabilities are more spread out across the grid. This indicates
that the model has a higher degree of uncertainty in evaluating these samples. After
the first iteration, the uncertainty is somewhat reduced, as showcased by the lighter
colors occurring. This effect becomes stronger in the second and third iteration, where
in many cases the model only considers a few classes per instance. It is noticeable in
the last heatmap that “Arm move” is considered likely for many instances, where “Mouth

open” also scores high probabilities. It appears that for these randomly selected samples,
the majority of predictions are be inaccurate, as the highest probabilities do not align
with the diagonal. This effect is not corrected for across training. Nevertheless, this
examination effectively shows the evolution of probabilities across the iterations, and how
the distribution of probabilities becomes more sparse.

When compared to the other experiments, the baseline model delivers slightly higher
performance across all metrics, with a validation accuracy of .40 (versus .38 of AL), an
accuracy of .36 (versus .35), a precision of .30 (versus .28), a recall of .31 (versus .30),
and an F1 score of .27 (versus .26). This indicates that while the AL model exhibits
slightly lower metrics, it remains competitive with the baseline. In contrast, the FSL
model posts lower metrics across the board, with a validation accuracy of .29 (versus .38
of AL), an accuracy of .28 (versus .35), a precision of .25 (versus .28), a recall of .26
(versus 0.30), and an F1 score of 0.21 (versus 0.26). This comparison emphasizes the AL
model’s superior performance relative to the FSL model. When looking at the confusion

Figure 5.4: A series of heatmaps shows the evolving class probabilities for 24 samples
across AL iterations using stratified maximum probability sampling. The y-axis orders
samples by class, while the x-axis represents class probabilities. The heatmaps chrono-
logically illustrate the progression of these probabilities.
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matrices (Figure B.5), there are no stark differences between the approaches. All models
have trouble with identifying classes like “Flexing”, “Eye squeeze” and “Grasping”. On
the other hand, “Adult hand” and “Still” perform well once again.

To interpret how well AL has solved the issue with limited data, performance on the
bottom 10 classes is examined. Table 5.3 compares the scores for the bottom 10 classes
by number of training samples for the baseline and AL approach. The results of ablation
version V12 are also included in this table. It can be seen that that performance on
these classes remains disappointing. Only “Mouthing” (P=.11, R=.33 and F1=.17) and
“Shiver” (P=.25, R=1.0 and F1=.40) are correctly predicted at least once. However,

Class Baseline AL Ablation V12 Samples

P R F1 P R F1 P R F1
Eye squeeze .10 .17 .11 .00 .00 .00 .00 .00 .00 19
Finger splay .00 .03 .01 .00 .00 .00 .00 .00 .00 11
Flexing .04 .18 .06 .00 .00 .00 .00 .00 .00 10
Grasping .00 .00 .00 .00 .00 .00 .00 .00 .00 11
Head move .00 .00 .00 .00 .00 .00 .00 .00 .00 17
Mouthing .28 .26 .24 .11 .33 .17 .09 .33 .14 12
Rooting .00 .00 .00 .00 .00 .00 .00 .00 .00 8
Shiver .52 .67 .55 .25 1.0 .40 .18 1.0 .31 8
Tensing hand .01 .11 .03 .00 .00 .00 .00 .00 .00 5
Tugging .05 .28 .08 .00 .00 .00 .17 1.0 .29 8

Table 5.3: Comparison precision, recall, and F1 scores for the least represented 10 classes,
using AL stratified sampling and ablation V12 uncertainty sampling. The data demon-
strates that the stratified sampling method does not provide any apparent benefit in
learning from underrepresented classes.

Class Iteration 1 Iteration 2 Iteration 3 Total

Arm move 6 3 11 20
Crying — — 3 3
Eye squeeze — 1 4 5
Finger splay 1 — — 1
Fussy 2 — 6 7
Grasping — 1 1 2
Hand move 5 1 4 10
Hand-to-face 1 — 3 4
Hand-to-mouth 2 — 2 4
Head move 1 — 5 6
Shiver — 2 1 3
Rooting — — 3 3
Still 32 42 8 82

Table 5.4: The distribution of classes identified during each iteration of the AL experi-
ment. The table highlights the frequency of each class per iteration and provides a total
sum of instances across all iterations. The class “Still” was the most frequently identified
across the iterations, with a total of 82 instances, while “Arm move” and “Hand move”
were the next most common, with 20 and 10 instances respectively.

5 RESULTS 53



Automated Infant Cue Classification

it was expected that the sampling strategy would shine more light on these classes to
improve performance. When examining what labels the sampling strategy managed to
retrieve, shown in Table 5.4, it turns out that some minority classes were retrieved from
the unlabeled pool. Classes like “Rooting” (3 samples), “Eye squeeze” (5) and “Head

move” (6) are labeled more than three times, but did not result in correct predictions.
It is most likely that unlabeled pool follows the distribution of the labeled data, where
classes like “Still” (82) and “Arm move” (20) are also more common. Therefore they also
end up being added to the dataset most, and training may not be affected by the minimal
influx for the underrepresented classes. When comparing these results against the baseline
approach, a similar pattern arises. It appears that across the 10 trials some cues do get
correctly identified. This is evidenced by the nonzero values in all classes but “Grasping”,
“Head move” and “Rooting”. The class “Shiver” also stands out due to its comparatively
high precision, indicating that the AL approach may have reduced performance in this
class by including the additional samples.

The fact that performance is reduced in some classes may be caused by the inclusion of new
samples from a different source video. It was previously established that the source video
has an impact on generalization. To test this idea, and to gain insight in the quality of the
samples, the samples gathered in the AL study are used as training set, while the original
training set is now used as test set. To facilitate this approach, classes which were not
sampled in the AL iterations are omitted. The baseline model is used for this experiment.
Table 5.5 shows the class-based performance. It can be observed that performance is
generally worse compared to the results class-based performance shown in Table 5.2. No
correct predictions are made for “Eye squeeze”, “Finger splay”, “Grasping” and “Hand-to-

face”. It appears “Still” is the only class that outperformed the baseline, with a precision
score of .93. All other classes achieve similar but significantly lower scores across all
metrics compared to the baseline approach. This suggests that the samples generated
from the AL iterations do not provide high quality training information from which the
model can improve, as they do not generalize well to the existing dataset. It must be kept
in mind that this classification task is less complex with only 13 classes, which may have
inflated performance compared to the more complex 24-class problem.

Class P R F1
Arm move .20 .04 .07
Crying .08 .22 .12
Eye squeeze .00 .00 .00
Finger splay .00 .00 .00
Fussy .10 .28 .15
Grasping .00 .00 .00
Hand move .20 .10 .13
Hand-to-face .00 .00 .00
Hand-to-mouth .18 .17 .17
Head move .06 .12 .08
Rooting .03 .25 .06
Shiver .00 .00 .00
Still .93 .36 .52

Table 5.5: Performance metrics for different classes using active learning samples as the
training set and the original training set as the test set, including precision (P), recall
(R), and F1 score (F1).
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5.4 Ablation Studies

In this section, the results of the ablation studies are reported. The aim was to shed
light on the model’s behavior under various conditions and identify the key drivers of its
performance. This rigorous evaluation helps understand the robustness of the model and
guide future developments and improvements. The details of every ablation condition can
be found in Table 4.2.

5.4.1 Results Data Modifications

Under ablation condition V0, the number of maximum training samples was gradually
increased to examine the curve of diminishing returns and gain insight into how more data
would have improved performance. This was tested using the baseline model. The plotted
results in Figure 5.5 clearly show a positive trend of improvement in the evaluations
metrics when increasing the maximum number of samples per class. After using all
available data, and the AL gathered data, performance decreases. Across all metrics,
performance is least favourable when only using a single training sample per class. There
are notable leaps in performance when allowing 2 and subsequently 3 training samples
per class. Interestingly, recall suffers a slight decrease, when using 5 samples. However,
it recovers when increasing the number of samples further. Other than a minor reduction
going from 10 to 15 samples, it is premature to conclude that this is due to diminishing
returns as performance increases again when using the maximum of 25 classes per samples.
When using the entire dataset (samples = 417, min. class = 4, max. class = 74), a drop
in performance is observed. This drop in performance does not meet the expectations of
diminishing returns, where positive returns are still the norm. It appears as though lifting
the limit of training samples allows the imbalance in training data to become too large,
and hindering training in the process. A mild recuperation in performance is observed
when the data from the AL study was integrated in the dataset. While there are signs
that the rate of improvement in some metrics is decreasing with additional data, it’s not
clear-cut across all metrics, and an improvement is still observed. As such, it would be
beneficial to continue exploring ways to increase the dataset size, diversify the data, or
improve the model architecture and training process to improve performance.

Ablation condition V1 was conducted to examine the impact of various data splits on the
performance of the baseline model. Due to the limited dataset size, it was expected that
the model performance could be affected by which samples end up in the training set. The
use of 10 different data initializations results in slight but consistent improvements across
all metrics, when compared to the baseline model. The mean validation accuracy is similar
for the random initialization (M=.39, SD=.03) and baseline approach (M=.40, SD=.02),
while V1 (M=.38, SD=.02) outperforms the baseline approach (M=.36, SD=.02) in mean
accuracy on the test set. For precision (M=.30, SD=.02 versus M=.30, SD=.03), re-
call (M=.32, SD=.02 versus M=.31, SD=.02) and F1 (M=.28, SD=.02 versus M=.27,
SD=.03) the ablation study outperformed the baseline experiment. While these differ-
ences are only minimal, they suggest that the main initialization is not the most optimal
split in the dataset.

For ablation condition V2, the preprocessing of the data was adapted. Rather than using
the three RGB channels of the snippets, optical flow was computed. This resulted in
3-channel representations. Two channels were used for the horizontal and vertical optical
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Figure 5.5: V0 — The plot illustrates the progression of metrics accuracy, precision,
recall, and F1 in response to the increasing maximum number of samples per class. The
figure clearly shows a general trend of improvement in these performance metrics with
the growth in the number of samples per class.

Figure 5.6: V2 — t-SNE visualisation of the SLAPI dataset using the MoViNet A2 model
backbone, after applying optical flow preprocessing. It visualizes the high-dimensional
data in a two-dimensional space, revealing patterns between data points. Each marker
represents a video snippet, while classes are separated by marker style and color. The
proximity of the points reflects the similarity of their feature representation when reduced
to a 2D space.
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flow per pixel, and the third channel for the gray-scale frame. This ablation condition
presented a stark contrast to the baseline experiment, and performance declined for all
metrics. Validation and test accuracy decreased to .13 and .14 respectively. Furthermore,
precision, recall, and F1 score were similarly reduced to .07, .16, and .08 respectively.
The t-SNE visualization in Figure 5.6 did not yield encouraging results either, showing
a similar effect of the source video on the representation. These results suggest that the
more complicated preprocessing step introduced some form of noise in the representation,
or the model could not adapt from the RGB pretraining to optical flow representations.
The number of training epochs was not limited, but validation loss did not improve after
the third epoch. Metrics were computed using the weights from this epoch.

The final data modification condition V3 employed leave-one-out cross validation using
the baseline approach. This condition was created to gain better insight in the significance
of each infant to the classification of their cues. Table 5.6 presents the results of this leave-
one-out cross validation tasks, where one infant is left out of the training data and used
as test set. To ensure fair comparison between the infants, classes that were not exhibited
by all infants are removed from the dataset. Consequently, the dataset is reduced to four
classes due to the limited behaviors exhibited by infant 74. After excluding this infant
from the dataset, 9 classes remain. For each class, the precision, recall, and F1 score are
reported. The last row presents the mean performance across all classes for an infant.

From the table, it can be gathered that performance varies significantly across the infants.
Generally, mean performance is worse for infant 50 across all metrics (P=.23, R=.19 and
F1=.18). This suggests that the way this infant displays its cues varies from the way
the other infants do. For instance, when looking at the cue “Still”, the precision score is
much lower than for the other infants. In similar vein, the classes “Finger splay”, “Fussy”
and “Yawn” are only correctly predicted for infant 79, which suggests that the yawning
does not generalize well to the other three infants. The reverse is true for “Hand-to-

Class Precision Recall F1
Infant ID 50 79 95 70 50 79 95 70 50 79 95 70

Adult hand .94 .76 .67 .15 .56 .87 .95 1.0 .70 .81 .78 .27
Finger splay .00 .12 .00 .00 .00 1.0 .00 .00 .00 .22 .00 .00
Fussy .00 .33 .00 .00 .00 .09 .00 .00 .00 .14 .00 .00
Hand-to-face .07 .00 .54 .38 .25 .00 .86 .70 .11 .00 .67 .49
Hand-to-mouth .00 .50 .00 1.0 .00 .08 .00 .19 .00 .14 .00 .32
Head move .02 .00 .00 .33 .25 .00 .00 .17 .04 .00 .00 .22
Still .67 .94 .85 .86 .55 .76 .53 .78 .60 .84 .64 .82
Tongue out .33 .00 .18 .00 .11 .00 1.0 .00 .16 .00 .31 .00
Yawn .00 .20 .00 .00 .00 .50 .00 .00 .00 .29 .00 .00
Mean .23 .32 .25 .30 .19 .37 .37 .31 .18 .27 .27 .23

Table 5.6: V3 — Leave-one-out cross-validation evaluation metrics displayed in terms of
Precision (P), Recall (R), and F1 score for each class across four different infants (ID: 50,
79, 95, 70). The respective infant’s data was held out as a test set for evaluation. This
table provides an insight into the model’s ability to generalize across different infants,
highlighting variability in performance metrics across different classes and infants. This
approach allows for assessing the extent to which the individual infant’s data influences
the model’s performance.
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face”, which is only correctly predicted in infant 79. When infant 95 is the test set, the
precision score (.25) is significantly lower than the recall (.37). This could mean that the
model tends to over-predict the classes “Adult hand”, “Hand-to-face”, “Still” and “Tongue

out”. This over-prediction could result in an increased number of correct detections but
also lead to a higher rate of misclassification for these classes. As for infant 70, it is
noticeable that for the classes “Hand-to-mouth” and “Still” the precision (1.0 and .86
respectively) is relatively high, but the recall is lower (.19 and .78 respectively). The
model is conservative in predicting these classes, but when it does, it is usually correct.
The reverse is true for “Adult hand” (P=.15 and R=1.0) and “Hand-to-face” (P=.38 and
R=.70), where it identifies most of the occurrences in the test set, but at the cost of more
misclassifications. This variability in performance patterns across infants may indicate the
different behavior profiles of infants. This highlights the influence of individual differences
among infants and the specific cues on the model’s predictive capability and capacity for
generalization. This underlines the inherent complexities in accounting for individual
differences. To visually inspect performance per infant, the confusion matrices for each
infant are shown in Figure C.1, reported in Appendix C.

5.4.2 Results Component Modifications

The results of the ablation study which evaluated the effect of different model components
on performance are depicted in Table 5.7. Despite proven effectiveness in the literature
and extensive use in implementations, certain components like regularization, causal con-
volutions, and backbone fine-tuning for feature representations were not included in the
final model for the baseline experiment by the genetic search for hyperparameters. It was
hypothesized that the model components may not have been selected due to memory and
time constraints on the genetic search process. The components are implemented in these
ablation studies and tested on both the baseline and FSL approaches to see if performance
can improve.

Exp. Version Val. Acc. Acc. P R F1
Baseline V4 .04 .02 .02 .05 .01

V5 .17 .12 .04 .11 .04
V6 .14 .14 .10 .13 .06
V7 .04 .05 .01 .06 .02
V8 .25 .21 .18 .21 .14
V9 .36 .31 .23 .27 .20

V10 .22 .23 .13 .24 .14
FSL V4 .02 .04 .00 .04 .00

V5 .14 .15 .04 .08 .04
V6 .05 .04 .02 .05 .03
V7 .11 .10 .11 .11 .05
V8 .07 .07 .00 .04 .01
V9 .16 .18 .14 .21 .14

V10 .03 .00 .00 .01 .00

Table 5.7: V4-V10 — Comparison of evaluation metrics displayed in terms of Precision
(P), Recall (R), and F1 score for different ablation conditions (V4 - V10) of the baseline
and FSL approach.
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In the baseline experiment, version V9 demonstrates the highest performance across all
metrics: validation accuracy (.36), accuracy (.31), precision (.23), recall (.27), and F1
(.20). This version uses a frozen backbone training strategy, enabled causal convolutions
and no regularization, suggesting that these configurations were the most effective for this
specific task within the baseline experiment. Though superior in this context, this high-
est performing version falls short of the baseline experiments (validation acc.=.35(.03),
acc.=.30(.02), P=.28(.02), R=.30(.02) and F1=.25(.02)). Conditions V8 and V10 also
perform relatively well in terms of accuracy (.21 and .23 respectively). However, precision,
recall and F1 did not score well. In both experiments the model backbone is trainable
and regularization is disabled, but in V8 the causal convolutions are enabled as well.

As for synergistic effects, no noteworthy patterns arise from the table. The observed ef-
fects of the three variations appear to be independent of other component settings. For
instance, the absence of regularization (as seen in V8, V9, and V10), seems to generally
result in better model performance. This indicates that the L2 regularization is too re-
strictive for this task and might be hindering the model’s ability to capture the complexity
of the data. A trainable model backbone (V4, V6, V8, V10) also results in worse per-
formance compared to its counterparts. Most likely, the model is unable to transfer the
properties of the limited data to the extremely large parameter space. When using causal
convolutions, however, it is notable that model performance severely deteriorates when
regularization is applied (V4, V5). Without regularization (V8 and V9), the models are
competitive with the baseline approach. This could suggest that the model is benefiting
from the consideration of only unidirectional temporal dependencies in the data, when it
is not restricted by regularization.

In the FSL, the best performing ablation version is again V9 across all metrics: valida-
tion accuracy (.16), accuracy (.18), precision (.14), recall (.21), and F1 (.14). However,
these results are significantly worse compared to the main FSL experiment (validation

acc.=.26(.03), acc.=.26(.03), P=.23(.03), R=.26(.03) and F1=.20(.03)). Especially the
use of a trainable backbone in V4, V6, V8 and V10 debilitated the model’s performance.
Ablation version V8 shows most promise in an otherwise disappointing set of models,
with validation accuracy, accuracy and recall being higher than .01 (.07, .07 and .04
respectively). No noteworthy synergistic effects arise from these experiments.

The main conclusion that can be drawn from this ablation study is that the model found
by the genetic search was indeed the best model for this dataset. Model performance
deteriorates slightly when enabling causal convolutions and significantly when using L2
regularization in the baseline approach. In the FSL approach training the model backbone
appears to prevent any meaningful learning from taking place.

5.4.3 Results Active Learning Modifications

Under ablation condition V12, it is tested whether stratified maximum probability sam-
pling could enhance the localization of underrepresented classes, by comparing the ap-
proach to a more standard uncertainty sampling approach. Other than that, the same
settings were used as in the AL experiment. Using uncertainty sampling, validation ac-
curacy (.36 versus .38), accuracy (.34 versus .35), precision (.26 versus .25), recall (.30
versus .30) and F1 (.26 versus .26) were similar to stratified sampling. This suggests that
uncertainty sampling does not affect model performance on the whole or in underrepre-
sented classes, when compared to stratified sampling.
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Figure 5.7: V12 — A series of heatmaps shows the evolving class probabilities for 24
samples across AL iterations using uncertainty sampling. The y-axis orders samples
by class, while the x-axis represents class probabilities. The heatmaps chronologically
illustrate the progression of these probabilities.

Table C.1 in Appendix C shows the labeling of snippets during the iterations. The class
“Still” emerges as the class that is most often selected identified by the oracle, with a total
of 75 samples. Other relatively common classes were “Arm move” and “Head move”, with
a total of 23 and 15 samples. In the third AL iteration, more varying classes are identified
by the oracle, being “Crying”, “Eye squeeze”, “Finger splay”, and “Yawn”.

Figure 5.7 presents heatmaps that represent the evolution of class probabilities for 24
samples through the AL iterations using uncertainty sampling. After the first iteration,
in which 50 samples are labeled and the model is trained for another 3 epochs, the
distribution of the probabilities becomes more sparse. This indicates that the model’s
predictions are becoming more certain, with the classification probability centering around
fewer classes. After the second iteration, the learned parameters are consolidated as the
remaining uncertainty is further reduced. Between the second and final iteration, there
are no notable changes in the probabilities. This implies that the model’s learning has
plateaued at this stage, without additional meaningful insights or understanding gained
from the final iteration, despite the inclusion of new instances. As in stratified sampling,
it appears the probabilities convergence mostly around classes that are incorrect.
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6 Discussion

This study investigated the use of computer vision for classifying infant hunger and feeding
discomfort cues. The aim was to determine the capabilities of different machine learning
approaches in classifying preterm infant behavioral cues on the NICU. The results from
this study build towards a system that could facilitate cue-based feeding approaches due to
reduced monitoring burden, to the benefit of the health of preterm infants admitted to the
NICU. For this investigation, 3D CNN MoViNets designed by Kondratyuk et al. [2021],
were tested in three distinct approaches to determine their capability in infant monitoring.
Other than the standard fully supervised approach, FSL and AL were chosen due to their
ability to operate effectively with limited data. This is a challenge inherent to machine
learning approaches, where larger datasets are typically preferred, but not available in
this setting.

6.1 Findings and Interpretation

The main research question, “Can we detect and classify infant hunger and feeding dis-

comfort cues in preterm infants using machine learning?”, was constructed in order to
evaluate the current capabilities and limitations of state-of-the-art methods for infant
monitoring. In order to comprehensively answer the main research question, several sub-
questions were postulated that addressed the impacts of FSL and AL approaches. These
strategies propose different solutions to the limited availability of training data, thereby
highlighting the constraints that currently exist in a standard machine learning approach
and how these may be overcome. The third sub-question was constructed to evaluate the
impact of individual differences on classification.

The first two sub-questions were addressed through the main experiments, training the
MoViNet model via the respective pipelines. The third sub-question was addressed using
leave-one-out cross validation on the baseline approach. In this section, the findings from
this study are reviewed, interpreted, and placed in the wider context of computer vision,
motion analysis and infant monitoring.

6.1.1 Sub-questions

The first sub-question, “SQ1: Can we detect and classify infant hunger and feeding dis-

comfort cues in preterm infants with a model trained using few-shot learning?” originated
from the hypothesis that the meta-learning phase could optimize search path through
the parameter space, thereby guiding it towards quicker, more effective convergence dur-
ing the final testing phase. This approach had proven successful in similar applications
such as infant facial recognition systems distinguishing infants from adults [Atallah et al.,
2022], and human motion prediction [Gui et al., 2018]. The application of meta-learning
to intricate facial details and other human actions using computer vision suggested that
FSL could result in improved performance over a standard machine learning approach.
However, contrary to these expectations and a volume of literature supporting the FSL
framework when working with small datasets [Finn et al., 2017; Romanov et al., 2021; Ja-
mal and Qi, 2019; Mohammadi et al., 2019], the evidence showed decreased performance
across all metrics.
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The unexpected finding may be explained by challenges in translating parameters learned
from the source to the target domain. Finn et al. [2018] found that a critical challenge for
meta-learning is task-ambiguity. This holds that even when weights can be successfully
tuned in the meta-learning phase, that the target domain is too ambiguous or unrelated
to make use of these weights. This problem is amplified in small datasets, a common
feature in contexts where meta-learning is employed. In an attempt to combat this issue,
the meta-tasks were sampled from the UCF101 dataset (Section 3.1.8), ensuring the same
number of outcome classes in each randomly sampled meta-task to mirror the target
domain’s ambiguity. This dataset is particularly suited for transfer learning or meta-tasks
due to its high degree of intra-class variance. This variance acts as a rich learning source
for the model, allowing it to learn how to generalize its parameters to another domain due
to the robustness required for the variations within the classes. However, it appears that
the SLAPI dataset’s inherent ambiguity and noise, a point that is frequently discussed in
this thesis, remained a significant challenge. Consequently, the FSL meta-learning failed
to acquire a model that improved performance in this setting.

The survey of Hospedales et al. [2022] further raised the concern that a single model ini-
tialization may not be sufficient to generate models that fit a wide range of tasks. They
suggested that multiple initializations and mixtures of these models could yield better
performance. Their survey indicates that task complexity is an important factor in deter-
mining the success of FSL. It highlights that previous studies generally achieved success
with simpler tasks, particularly those in which the source and target domains exhibited
a high degree of task relatedness. The classification problem in this thesis was relatively
complex. Although all classes concerned infant behaviour, the variance in behaviours
as well as variance introduced by the source videos could have contributed to the dis-
appointing results. Furthermore, performance in this set up may have suffered due to
the discrepancy between meta-learning and meta-testing tasks, making the model unable
to effectively prepare its parameters for the meta-testing phase. This is often inevitable
due to the nature of small datasets and setups. However, it often proves detrimental to
performance. For instance, Guo et al. [2020], found that ImageNet tasks do not gener-
alize well to specialist domains such as medical images, which has proven a struggle in
this thesis too. They further demonstrated that FSL approaches were outperformed by
simple fine-tuning approaches such as standard transfer learning, noting that accuracy is
correlated with similarity between source and target domains. These studies collectively
confirm the finding that a meta-learning FSL approach was not successful in performing
cue classification for preterm infants, despite the approach being successful under more
favourable conditions.

The second sub-question, “SQ2: Can we detect and classify infant hunger and feeding

discomfort cues in preterm infants with a model trained using active learning?” was con-
structed based on the presumption that underrepresented classes and informative samples
should be sought out for improved performance. It was previously shown to be effective
by Yang et al. [2015] in a multi-class setting, when applied to the large standardized
YouTube dataset. Though AL has not been previously applied to infant monitoring or
similar tasks, it seemed especially suited for this study’s conditions, where only limited
and unbalanced data was available. An additional benefit of the AL approach was the
potential for a paradigm shift identified by Budd et al. [2021]. When successful, AL could
feature easier labeling which would improve model performance over time. It was found
that this hypothesis was somewhat supported by the evidence, which showed comparable
performance to a standard machine learning approach.
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This outcome aligns with literature showing that AL was successful in multi-class classi-
fication tasks [Joshi et al., 2009; Lorbach et al., 2019] and a setting of action localization
when labeled data was scarce [Heilbron et al., 2018]. However, the results did not entirely
support the hypothesis. No improved performance was observed compared to a standard
machine learning approach, and it appears as though stratified sampling did not improve
the detection of underrepresented classes. The work by Stumpf et al. [2014] had previously
shown that most sampling strategies do not consider spacial constraints in the represen-
tation, leading to a distribution of training instances that may be unfavourably compact
or sparse. By applying a standard uncertainty-based sampling strategy it was expected
that majority classes would be over-sampled due to their prevalence in the dataset and
more varying representations. When using stratified sampling it was expected this would
yield beneficial results for underrepresented classes. This was corroborated by Rougier
et al. [2016] who showed that using stratified sampling over regular sampling leads to
lower labeling costs by requiring fewer samples to achieve similar performance. Contrast-
ingly, this study revealed no discernible advantage of stratified sampling over standard
uncertainty sampling. This can be explained by the possible absence of the underrep-
resented classes in the unlabeled pool. Additionally, the stratified sampling strategy
employed in this thesis attempted to find underrepresented classes by finding the sam-
ples with the highest probability of belonging to such a class, not necessarily the highest
probability overall. Combined, these factors explain the lacking performance of AL in
underrepresented classes. Another discouraging result from the experiment was the lack
of improved performance despite the 150 additional samples. This outcome suggests that
the samples added did not significantly enhance the learning process, contrary to what
was hypothesized. Since it was established that the source video greatly affects the fea-
ture representation, it is possible that the data from the unlabeled pool did not improve
performance as this source video was not included in the test set. When the samples from
the AL were used as the training set, and the original training set was used as the test set,
there was a significant reduction in performance. This implies that the AL samples do not
generalize to the dataset effectively. Introducing new instances in the training set may
only hinder performance as it obfuscates the relation between the train and test set. This
could also explain why the model does not seem to correct the incorrect predictions in
the 24 samples that were set aside. Despite this, AL still successfully learned parameters
and exhibit convergence, as demonstrated by the probability analysis.

Despite these sub-optimal results, a benefit of the pipeline is the labeling framework, ap-
praised by Lowell et al. [2018] and Budd et al. [2021]. They discussed the implementation
and argued that the human-in-the-loop could insert expert knowledge into models that
require it for medical image analysis, for instance. They assert that, by incorporating
confidence scores into the oracle, a more human interpretable metric is available through
the application of AL. This approach then aligns more with the conceptual frameworks
of doctors and other medical professionals, thereby making this approach more suitable
for those who might use it. So, AL served as a useful labeling tool and allowed for
model fine-tuning. Therefore, even considering the setbacks, the evidence still supports
the hypothesis that AL is suitable for cue classification and data acquisition.

The third sub-question was formulated as “SQ3: Do individual differences in infants and

cues affect automated detection and classification of behavioral cues?”. Based on prior
studies revealing variations between infants in terms of the onset, occurrence, intensity,
and form of their behaviors [Thoman and Whitney, 1990; Frischen et al., 2007; Claessens
et al., 2011], it was hypothesized that these individual differences could significantly influ-
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ence the classification results. For instance, research showed that bottle-feeding outcomes
are greatly affected by the individual differences in satiation cues by infants, highlight-
ing differences in urgency, impulsivity and negative temperament [Ventura and Mennella,
2017]. The findings of this study support the hypothesis, confirming that individual
differences in behavioral cues exist and impact classification.

Throughout the study, significant fluctuations in model performance were observed across
different classes and among different infants. These variations persisted when compared
with the baseline model, highlighting the importance of individual differences among
infants and the specific exhibited cues. However, this study found that under certain
conditions the impact of individual differences on classification could be mitigated. When
pooling the data of the infants, the effects of individual differences were somewhat ob-
scured, as evidenced by improved performance in the baseline approach compared to the
leave-one-out cross validation ablation. Creating a sufficiently large pool of infants the
dataset could diminish the impact of individual differences on performance. Further, when
new infants are admitted to the NICU, adding training data of that infant to the pool
may result in improved performance as it allows the model to learn the infant’s unique
characteristics. The snippet-based approach removes the effect of onset and frequency in
the classification process. As a result, these characteristics of the cues are of no impact
on the model performance but do still exist in the infant. Therefore, the implications of
cue onset and frequency must still be considered when using the system. For example,
in the untrimmed videos that were profiled, the frequency and onset of different cues
may be determined by inspecting the chart. Currently, such an approach is preferred as
the limited literature on infants cues means that it remains difficult to draw definitive
conclusions on the basis of onset and frequency using a machine learning approach.

The influence of visual differences arising from the source videos may obscure the direct
effects of behavioral differences, preventing strong conclusions. Nevertheless, the leave-
one-out cross validation ablation demonstrated that differences vary with cues, and were
not identical across infants (or source videos). This implies that the variations in infant
behavior, at least to a some degree, have contributed to these differences, impacting the
model’s performance. In this thesis, the effects of onset and frequency were removed
by the snippet-based approach, and should be studied further to document its meaning.
The current observed discrepancies emphasize the complexity of accounting for individual
differences, also underlining the need for further research to improve model performance.

6.1.2 Main Question

The main hypothesis concerned the broad feasibility of machine learning approaches for
monitoring infant behaviour. It was hypothesized that, under the constraints in data
availability and quality, promising outcomes were plausible. This was supported by the
work of Sun et al. [2019] and Sun et al. [2021], who explored classification of infant states
and specifically discomfort. After addressing the sub-questions to this main research ques-
tion, it can be concluded that the sub-questions support this hypothesis. Not only were
the obstacles of individual differences, limited data, and quality of labels overcome, the
approach yielded improved performance over majority class voting and weighted guessing,
showing that meaningful features were learned. After having reviewed the performance
of the baseline approach on a model- and cue-level it was evident that the results of this
thesis allow for a monitoring approach that can reduce the burden on current NICU mon-
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itoring. Individual and visual differences in cues are an important property of the data
but do not prohibit machine learning approaches to this problem. The use of AL further
enhances the monitoring, including a data generation framework and possibly enhancing
underrepresented classes.

In a comparative analysis, with the standard supervised approach as baseline, it turned
out that FSL method revealed a noticeable drop in performance. Evidence from the
genetic search suggests the FSL approach was not suited to the classification problem, as
can be concluded from the small number of shots and high learning rate. These factors
limit the impact of the meta-learning phase by limiting the samples available for learning
and enabling rapid adjustment of parameters via high learning rates. It is apparent that
the AL is more suited to the medical domain, solving the issue of small datasets more
effectively. It also aligns more closely with the conceptual framework medical professionals
operate in and it simply performs better. This discrepancy can largely be attributed to the
inability of FSL to generalize the learned features from the source domain. Conversely, the
AL approach maintained performance despite not finding informative samples for learning,
which indicates its robustness even when results are not as beneficial as expected.

All in all, the main research question is answered positively. This means that this study
confirms the assertion that infant behaviour can be studied using machine learning ap-
proaches, that were not previously applied in this specific setting for hunger and feed-
ing discomfort cue detection. This was achieved using a limited dataset, which yielded
promising results. Although classification metrics are not sufficiently high for definitive
conclusions, the models developed in this thesis can help in delineating such behaviours.
These systems are designed with the intention of aiding nurses by reducing the monitor-
ing burden. To this end, ground truths are not an essential requirement. The burden of
monitoring can be alleviated by interpreting the variations in behaviors, regardless of the
accuracy of their classification. Due to the high precision scores in outcome classes such
as “Still” and “Bottle feeding” and “Adult hand” conclusions may be drawn from their
predictions and its patterns. These conclusion can then serve to support nurses. With
facilitating cue-based feeding as the aim, extensive monitoring is required to make sure
infants do not grow excessively hungry, and are not left in pain. This study presents an
initial step towards developing a system that can determine feeding moments. In its early
stages, the system can alert nurses to attend based on the predicted actions, even if the
predictions are not perfect.

6.2 Limitations

The main limitations pertain to the SLAPI dataset. This is not unexpected as the quality
of the data is highly important to model performance. Although the limited quantity of
labeled data across classes was known from the start of this research, and modifications
were made to combat these issues, it was still a considerable drawback that impacted
performance

First off, there were issues with the consistency of the recorded videos. Despite attempts
to maintain uniform camera positions using the setup, not all videos adhered to this con-
figuration. Particularly in videos recorded in the early stages of the SLAPI study, which
displayed more discernible cues. Cameras were manually positioned on the NICU bed,
resulting in some variability. It has long been common knowledge that viewpoint consis-
tency is important in model-based computer vision system, as was illustrated by Lowe
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[1987]. As they formulated it, applying a fixed point of view simplifies the classification
problem, as the location of the cues of interest is no longer a variable to consider, and
features may be dedicated to the action recognition.

Another source of noise is the lack of consistency in surroundings further compromising
the dataset. Factors such as the bed, infant clothing, and medical equipment varied signif-
icantly across videos. Ideally, all subjects would be recorded under similar circumstances,
or in large enough numbers that this becomes natural variation. However, this was un-
achievable given the current phase of the recording setup. These combined imperfections
likely contributed to different source videos being recognized from the feature representa-
tion using t-SNE plot in Figure 3.1. Without these noisy circumstances, it is more likely
that cues are clustered by their correct class, rather than the untrimmed source video
they originate from.

Another limitation concerned the annotations. Although effort was put into the consis-
tency of the annotations, they were performed by research interns who previously had no
experience with interpreting infant behavior. Subjective labels are problematic when they
introduce bias into the dataset, as outlined Miceli et al. [2020]. They argued the anno-
tation process starts as soon as the annotator forms needs and expectations surrounding
the data. As was the case in this study, there were no other annotators available for this
dataset, so common annotation validation tools such as inter-rater reliability were not
available. This potentially allowed the introduction of bias.

Finally, the snippet-based approach presented its own challenge. This approach disrupted
the original sequence of the data, thereby omitting information about transitions, such
as the onset and stopping of actions. While this approach did capture some variation,
with snippets potentially capturing the beginning, middle, or end of a behavior, it did
complicate the process of drawing conclusions about the increasing intensity of hunger or
feeding discomfort. It was shown that cues are more frequent and more intense as the
infant gets more hungry [Whetten, 2016] or is in more discomfort [Morison et al., 2003].
They also showed that infants display a larger variation as the pain becomes more intense.
However, profiling an untrimmed video through predictions of consecutive snippets still
reveals pattern in frequency and variation, although not inherent in the knowledge of the
model. Only the transitions in cues are more difficult to capture and may be obscured by
more obvious cues.

6.3 Validity and Generalizability

The validity of this study may be impacted by the absence of medical validation in certain
aspects of the research, such as hunger and feeding discomfort cues. Whilst these terms
have clear common-sense definitions, they are not adequately validated in the literature
[Ludwig and Waitzman, 2007]. Therefore, it is challenging to interpret cues in terms of
these infant states. While there are validated scales to identify infant states such as pain
or readiness for oral feeding [Fujinaga et al., 2013], these scales fail to adequately capture
the nuances of infant hunger states and potential subsequent discomfort during feeding
[Paul et al., 2014]. Due to this complication, cues which are ambiguous, or cues which
span multiple states simultaneously, are challenging to interpret. To mitigate this issue in
this study, particular definitions were not ascribed to the observation of behavioral cues
wherever possible. Instead, only factual descriptions of the observed behaviors were used,
avoiding subjective interpretations.
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The generalizability of this research mainly concerns the leave-one-out cross validation
ablation study and the extent to which the findings are applicable to different infants.
From the ablation study, it was apparent that individual differences between infants cer-
tainly do affect classification. Nevertheless, similar patterns occurred in majority classes
across all infants despite these individual differences, leading to the conclusion that there
is definitely sufficient consistency between infants to apply the system to infants it was
not trained on. Another potential issue is that diversity of the infants may not have
been sufficient to translate to different settings. The subject pool was not sufficiently
varied, which raises concerns about the study’s susceptibility to a commonly occurring
bias known as whiteness in medical research and education [Zaidi et al., 2023]. This
bias, rooted in the overrepresentation of certain demographic groups, can compromise the
generalizability of the research outcomes to broader, more diverse infant populations. Fi-
nally, a more accurate assessment of model generalizability could be achieved by ensuring
that the same videos are not incorporated in both the training and testing datasets. As
suggested by the t-SNE visualizations, the model may struggle to generalize content from
videos that deviate significantly from the ones it was trained on, as the video’s currently
impact the feature representation of cues that are trimmed form it.

Overall, the validity of the results in this study relies on the cautious interpretation of
infant behaviour, contributing to the robustness of the findings. Generalizability, on the
other hand, is more suspect as it may be compromised twofold: by the potential whiteness

and compromised feature representations, leading to poor performance in the ablation
study. Thus, it is essential to consider these elements when evaluating the findings and
their broader applicability.

6.4 Future Directions

From the findings and limitations, interesting paths for future research were identified.
Firstly, this thesis attempted to address the limited data in the model domain by intro-
ducing AL and FSL. However, it would be interesting to see how this issue could be ad-
dressed in the data domain. Yun et al. [2020] reported that typically image augmentation
techniques are appplied to videos on a frame-to-frame basis, like flipping, cropping and
background subtraction. To apply augmentation to temporal information, sub-sampling
video frames is commonly used as augmented representation. However, there is a lack of
studies investigating how more robust features can be learned from video data for action
localization with acceptable generalizability.

A further research direction concerns domain adaptation. Due to the novelty this re-
search, only few papers have been published in which a machine learning approach has
been applied to the NICU. One such study is the research by Sun et al. [2021] who per-
formed camera-based discomfort detection on infants admitted to the NICU. As a result,
there are minimal suitable source domains available for the target domain of hospital-
ized infants. Due to the importance of suitable source tasks for transfer learning, this
suggests that domain adaptation causes a performance bottle neck in this study. Wang
and Deng [2018] found that deep domain adaptation can be used to address the lack
large volumes of labeled training data. However, they single out task relatedness as an
important consideration for domain adaptation. Wilson and Cook [2020] state that tasks
are sufficiently related if they use the similar features during classification, Xue et al.
[2007] found that domains should have feature vectors in near each other in the feature
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space, while Ben-David and Schuller [2003] suggest that tasks are related if they can be
drawn from a fixed probability distribution (given appropriate transformations). Due to
the significance of task relatedness, future research could focus on finding more suitable
pretraining tasks for target domain of preterm infants.

Another promising strategy for model improvement is the use of a multi-modal approach,
which has been proven successful in different domains [Bayoudh et al., 2022; Maragos
et al., 2008; Baltrušaitis et al., 2017]. Other than simply using video input, modalities
such as heart rate, oxygen saturation and audio could be integrated into the information
used for classification. These three modalities currently serve as an important measure of
infant health. For example, specific heart rate characteristics are frequently used indica-
tors of infant health [Hicks and Fairchild, 2013]. Clear thresholds have been established
for oxygen saturation levels, identifying when infants are at risk [Stenson et al., 2013]. It
has been shown how crying melodies differ for pain, hunger or normal cries [Rothgänger,
2003]. Therefore, the inclusion of these modalities warrants further investigation.

Furthermore, it is recommended that future studies look at the generalizability of such
results to wider infant populations by investigating individual differences further. This
could also involve the inclusion of infants of varying ages, different stages of development
or health conditions. Such studies would not only validate the conclusions drawn from
this research, but also provide a wider understanding of how classification is affected by
individual differences. Opportunities for enlarging the data pool could involve a more
systematic approach in data collection, such as coordinating with larger research groups
to collect data. Existing data could also be exploited to generate more training data. The
approach by Yang et al. [2022] serves as an example as example in combining synthetic
data with real data to achieve improved pose recognition.

The explainability of models is becoming increasingly important. As decision-making
processes need to be rationalized, the black box approach cannot be used to explain deci-
sions. This necessitates further investigation into how the decisions made by increasingly
complex models can be effectively explained to those working with automated monitoring
systems. In this respect, AL is a suitable option. It fits within the conceptual frame-
work familiar to medical professionals, presenting instances that meet a specific selection
criterion. This way, professionals gain a better understanding of the knowledge gaps in
the systems and how to interpret this information. This aligns with the findings of Ren
et al. [2021], who highlighted the importance of expert knowledge in the system applied
in a medical to prevent potential degradation of quality, a concern raised by Lowell et al.
[2018] and Budd et al. [2021].

Finally, although beyond the scope of this thesis, future research could validate hunger
and feeding discomfort cues. One way this could be achieved is by tracking feeding times
and noting how the feeding is performed, and if the food is accepted fully. Ethical consid-
erations prohibit experimenting with more excessive hunger states by delaying feeding, so
these studies must be meticulously planned. This validation must also consider that be-
havioral cues vary depending on the infant’s state. For example, an open mouth may have
different meanings when the infant is in quiet sleep versus when awake. Future studies
could potentially build upon the findings of this research by incorporating these differing
states in a more comprehensive manner. This could lead to more accurately attributing
behavioral cues to hunger or other states. As was laid out previously, a more profound
understanding of infant cues can contribute to increased usability of monitoring systems,
elevating the overall quality of care.
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7 Conclusion

This thesis presents a comprehensive examination of various machine learning approaches,
specifically applied to a novel context that holds significant potential benefits for the
health of preterm infants admitted to hospitals so early in their lives. The motivation for
this work was the development of a monitoring system that enables cue-based feeding in
NICUs, an advancement that can profoundly impact preterm infant health outcomes.

While the outcomes presented in this thesis may not yet possess the robustness required for
immediate application in such a monitoring system, the findings are nonetheless promis-
ing. A noteworthy result is the demonstrated ability of standard machine learning tech-
niques to construct meaningful profiles from untrimmed data through snippet classifica-
tion. This ability can be readily leveraged for several applications such as care quality
inspection and as an auxiliary monitor for infant restlessness, supplementing traditional
heart rate monitors.

The envisioned monitoring system does not require flawless performance due to the cyclical
nature of hunger cues and feeding discomfort. These cues are repeated over time and vary
in intensity and frequency, allowing for recognition patterns even without perfect system
performance. This aspect might also bridge individual differences among preterm infants
since no single cue is definitive.

Overcoming challenges encountered during this study, particularly those related to data
quality, would mark a significant step forward. When medical validation of preterm infant
behavioral cues is more comprehensively established, the envisioned system could become
a reality. Consequently, the goal of introducing cue-based feeding in the NICU will move
one step closer to fruition.
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A Experimental Design

(a) Entering label (b) Creating new label

(c) Modifying snippet (d) Snippet shown as video

Figure A.1: User interface for AL user study, showing the command line interface for (a)
entering a label, (b) entering a label that is not available in the SLAPI dataset and (c)
the instructions for modifying a snippet. (d) shows a blacked-out example a a snippet
being played. Only a subset of the classes are shown.
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Algorithm 1 Genetic Algorithm for Hyperparameter Tuning
Require: search space S, number of generations G, population size P , crossover proba-

bility pcx, mutation probability pmut, tournament size t
1: Initialize a population pop of size P with random individuals from search space S
2: Evaluate the fitness of each individual in pop
3: for g ← 1 to G do

4: parents← Select P individuals from pop using tournament selection with tourna-
ment size t

5: offspring ← Crossover parents with probability pcx using two-point crossover
6: Mutate offspring with probability pmut using uniform mutation within the search

space bounds
7: Evaluate the fitness of each individual in offspring
8: pop← offspring
9: end for

10: best← the individual with the best fitness in the final population pop
11: return best

Algorithm 2 Weighted Sample Selection for Each Class by Probability
Require: model, videos, classes, classWeights, numSamples

1: unlabeledProbs ← softmax(model(videos))
2: normalizedWeights ← normalize(classWeights)
3: selectedIndices ← {}
4: while length(selectedIndices) < numSamples do

5: topIndices ← {}
6: for classIdx in classes do

7: classProbs ← unlabeledProbs[classIdx]
8: samplesPerClass ← int(normalizedWeights[classIdx] * numSamples)
9: samplesPerClass ← max(1, samplesPerClass)

10: if length(classProbs) < samplesPerClass then

11: Break loop
12: end if

13: topKIndices ← topK(classProbs, k=samplesPerClass)
14: topIndices[classIdx] ← topKIndices
15: end for

16: Append unique(topIndices) to selectedIndices
17: Update unlabeledProbs to remove indices in selectedIndices
18: end while

19: return selectedIndices
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Algorithm 3 Proposal Generation from Untrimmed Video
Require: startidx, video

1: Set video frame index: startIdx
2: result ← processFrames(video[startIdx : startIdx+3s])
3: nextResult ← processFrames(video[startIdx+3s : startIdx+6s])
4: label, nextLabel ← getLabel(result), getLabel(nextResult)
5: while label = nextLabel and clipLength ≤ 15 seconds do

6: stopIdx ← video frame index
7: result ← combine(result, nextResult)
8: nextResult ← processFrames(video[stopIdx : stopIdx+3s])
9: label ← nextLabel

10: nextLabel ← getLabel(nextResult)
11: end while

12: return result, startIdx, stopIdx
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B Figures Main Experiments

Figure B.1: Training history of the baseline first experimental trial with MoViNet A2
across different metrics. The subplots display the evolution of (top left) loss, (top right)
accuracy, (middle left) precision, (middle right) recall, and (bottom) F1 score during
training.
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Figure B.2: Training history of the FSL first experimental trial with MoViNet A2 across
different metrics. The subplots display the evolution of (top left) loss, (top right) accuracy,
(middle left) precision, (middle right) recall, and (bottom) F1 score during training.
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Figure B.3: Training history of the AL experiment with MoViNet A2 across different
metrics. The subplots display the evolution of (top left) loss, (top right) accuracy, (middle
left) precision, (middle right) recall, and (bottom) F1 score during training. Each block
of three epochs shows consecutive AL iterations.
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Figure B.4: Confusion matrices for FSL first experimental trial with MoViNet A2. On
top, a normalized confusion matrix displaying the proportion of correct and incorrect
predictions for each class. On the bottom, a frequency-based confusion matrix showing
the absolute number of predictions for each class.
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Figure B.5: Confusion matrices for AL experiment with MoViNet A2. On top, a nor-
malized confusion matrix displaying the proportion of correct and incorrect predictions
for each class. On the bottom, a frequency-based confusion matrix showing the absolute
number of predictions for each class.

B FIGURES MAIN EXPERIMENTS 88



Automated Infant Cue Classification

C Figures Ablation Study

(a) Infant 41 (b) Infant 70

(c) Infant 86 (d) Infant 61

Figure C.1: Confusion matrices representing the prediction results for four different infants
in the test set under ablation condition V3. Each matrix illustrates the predicted versus
actual classes, providing insights into the model’s performance specific to each infant.
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Class Iteration 1 Iteration 2 Iteration 3 Total

Arm move 7 4 12 23
Crying — — 4 4
Eye squeeze — 1 3 4
Finger splay 1 1 2 4
Fussy 2 — 1 3
Grasping — — 2 2
Hand move 3 1 — 4
Hand-to-face 2 1 2 5
Hand-to-mouth — — 3 3
Head move 3 — 12 15
Shiver 2 1 1 4
Still 29 41 5 75
Tugging — — 2 2
Yawn — — 1 1
Other 1 — — 1

Table C.1: V12 — The distribution of classes identified during each iteration of the AL
experiment. The table highlights the frequency of each class per iteration and provides
a total sum of instances across all iterations. The class “Still” was the most frequently
identified across the iterations, with a total of 75 instances, while “Arm move” and “Head

move” were the next most common, with 23 and 15 instances respectively. Less frequent
classes such as “Crying’, “Eye squeeze”, “Finger splay”, and “Yawn” also emerged in the
latter stages of the experiment
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