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Layman’s summary 

Catalysis is a field of great importance in current society as it allows for the conversion of 

molecules to useful products such as transport fuels and fertilizing agents. Therefore, without 

catalysis, the world population could not have grown from two to seven billion people in the 

last century. These catalysts are often designed as three-dimensional intertwining pore 

structures, in which molecules diffuse to be converted. However, sometimes molecules get 

stuck or regions in the catalyst are inaccessible because of blocked pores, hampering the 

efficiency of the catalyst. Single-particle tracking is a powerful technique in which molecules 

can be recorded whilst diffusing inside the pores using microscopy. Thereafter, all positions of 

the particles in each frame of the recording are determined, and subsequently their paths are 

reconstructed by linking their positions. Eventually, these paths could be used to recreate the 

accessible pore structure of catalysts. However, when molecules move fast under the 

microscope, their signal is spread out in the recordings, making them difficult to detect because 

of the presence of noise. A solution would be to create an algorithm that can detect the 

molecules from the noise, but this remains a difficult problem because of the many dimensions 

attaining to it. Therefore, this algorithm could be approximated instead using convolution neural 

networks, which are known to be powerful in approximating functions. Convolutional neural 

networks are computational processing systems that somewhat mimic the human brain in image 

recognition by detecting features. However, they first need to be “trained” to know which 

features it needs to look for to e.g. classify molecules from noise. The training is performed by 

giving them images with a label containing a ground truth, e.g. there is a particle located in this 

image or there is not. Therefore, simulations are necessary as only then the ground truths are 

truly known. Additionally, the simulations should reflect real examples of motion-blurred 

emitters as otherwise the performance of the neural networks will not reflect the performance 

when they are used in practice. Therefore, in this thesis, we tuned simulation software to 

resemble a non-simulated dataset, and subsequently simulated a dataset to train the neural 

networks to be able to detect molecules and predict their average coordinates in the recordings. 

We can only estimate the average coordinates as during the acquisition of a single frame in the 

recording the molecules moved, and therefore single x and y-coordinates are not defined. 

Subsequently, the performance of the neural networks were compared to other methods 

published in literature. As a result, the detection performance turned out to work ~500% more 

optimal than the method published in literature. However, the precision in average coordinate 



 

 

estimation worked ~40% less optimal than software from the literature, i.e. phasor localization. 

Therefore, a combination of our detection convolutional neural network with the phasor method 

for estimating average coordinates would be a perfect combination to map pore structures of 

catalysts. 

  



 

 

  



 

 

Abstract 

Understanding diffusion of reactants in heterogeneous catalysts is vital for the optimization of 

their catalytic performance, as limited mass transfer can limit catalytic activity. A powerful 

method to investigate diffusion is single-particle tracking (SPT), in which often fluorescent 

nano-sized objects (emitters) e.g. quantum dots or reactant molecules are recorded whilst 

diffusing by means of widefield fluorescent microscopy. Subsequently, the paths (trajectories)  

of the emitters are reconstructed and can be used to reveal local heterogeneities in a catalyst, 

recreate pore structures and obtain diffusion constants for single emitters. However, when 

emitters move fast under the microscope, their recorded emission signal is spread out and more 

difficult to detect, referred to as motion-blur. Nevertheless, trajectories can be made by 

estimating the coordinates (localization) of the average positions of the motion-blurred emitters. 

However, creating an algorithm for a high dimensional problem like this could be difficult, and 

therefore easier to approximate using convolutional neural networks (CNNs). In this thesis, we 

investigated the use of CNNs to detect and localize the average positions of the motion-blurred 

emitters that diffuse in two dimensions using simulations. As a result, CNNs could potentially 

create trajectories of motion-blurred particles with higher precision than currently possible, and 

therefore the pore structure of a catalyst could be mapped with higher precision. Therefore, we 

used simulation software to create a dataset containing motion-blurred emitters of which the 

process consisted of four distinct steps: simulating diffusion paths, convolving point spread 

functions, adding background noise and lastly applying a camera noise model. We tuned the 

parameters in these four steps so that the resulting simulated dataset resembled a non-simulated 

SPT dataset, obtained from previous research. Consequently, the emitters’ diffusion constants 

in the simulated dataset ranged from 4e−12 to 8e−13 m2 s−1, and the emitters’ intensity ranged 

from 0 to 312 photons/emitter/frame. Moreover, we recorded dark images to obtain model 

parameters that allowed us to recreate the camera noise profile observed in the experiment. 

Subsequently, we validated the camera model to work optimally at intensities of >8 

photons/pixel/frame. Furthermore, we matched the background noise to the non-simulated 

dataset resulting in 10 photons/pixel/frame, which ensured the simulated dataset to be in a range 

where the camera model works optimally. Subsequently, we simulated frames containing 

motion-blurred emitters and frames containing only noise, of which we used 50.000 of both to 

train a classification CNN for detecting emitters. Thereafter, we used ~500.000 frames 

containing motion-blurred emitters to train a regression CNN for localization. Hereafter, we 



 

 

simulated four validation sets of 125.000 frames containing motion-blurred emitters, in which 

we used combinations of diffusion constants 8e−13 and 4e−12 m2 s−1, and emitter intensities of 

135 and 312 photons/emitter/frame to test the detection and localization CNN in different 

regimes. Subsequently, we compared the detection and localization CNN with published 

software, where the classification CNN performed increasingly better than benchmarking 

software when the validation sets got more complex, i.e. the validation sets with lower signal-

to-noise ratios. Consequently, the classification CNN managed to obtain ~500% more correct 

detections in the validation set with the lowest signal-to-noise ratio. However, the localization 

CNN did not outperform benchmarking localization software, as it performed with a 

localization precision of ~150 nm for the validation set with the lowest signal-to-noise ratio, 

whereas the benchmarking phasor localization method had a localization precision of ~105 nm. 

In conclusion, a combination of our detection CNN with phasor localization results in the most 

detected emitters with the highest localization precision. 
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1. Introduction 

Catalysis plays an important role in current society: it allowed for the rapid expansion of the 

world population during the last century by exploiting the catalysed Haber-Bosch reaction 

process, and we would not have access to transportation fuels as a catalyst is required to break 

down the larger petroleum molecules into smaller useful products[1–4]. These two examples 

utilize a heterogenous catalyst, where usually a liquid or gas phase reactant diffuses to the 

surface of the catalytic phase to undergo a chemical reaction process[5,6]. One key component 

of catalysis is the relation of increasing reaction rate with increasing surface area, as the number 

of active sites increases[5]. Consequently, catalysts are frequently prepared with large 

intertwining pore structures containing channels that can be as small as a few nanometres in 

diameter[7]. The investigation of reactant molecules diffusing in these pore networks is crucial, 

as the catalytic activity can be limited due to limited mass transfer[8]. A powerful method for 

investigating the pore network of catalysts is single-particle tracking (SPT), which can be used 

to reveal local heterogeneities in catalysts, recreate the accessible pore network and obtain the 

diffusion constant of individual molecules[8–12]. 

The workflow of SPT is summarized in Figure 1, in which first a sample is illuminated 

with a parallel beam of monochromatic light, and consequently nano-sized objects e.g. quantum 

dots or single molecules (emitters) emit light of a different colour, which is subsequently 

recorded utilizing a wide field fluorescent microscope[11]. The emission signal is diffracted in 

the optical microscope before it reaches the camera, and since the emitters can be considered 

point sources, the observed signal has a certain spatial intensity distribution known as the point 

spread function (PSF)[13,14]. Eventually, a movie is acquired consisting of sequential frames 

with the diffracted signal of various emitters visible at different locations in each frame. 

Thereafter, a detection step is necessary where the emitters are ‘’cut out’’ of the frames resulting 

in several smaller images solely containing the emission signal of the emitters, called region of 

interest images (ROIs). Subsequently, a set of ROIs of individual emitters are isolated by 

performing a nearest neighbour search over the subsequent frames (Figure 1a). Subsequently, 

the coordinates in the ROIs are estimated called localization, for which various methods have 

been developed. Thereafter, the positions are linked to reconstruct the emitters’ path, referred 

to as a trajectory (Figure 1b). Normally, emitters diffuse slowly, i.e. near stationary, during the 

frame acquisition of the movie, resulting in a near-perfect PSF and therefore optimal 

localizations (Figure 1b). However, when observing emitters that move fast during frame 
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acquisition of the movie, their emission signal is spread out, referred to as motion-blur (Figure 

1c)[10,15]. Since the emitters move during frame acquisition, single coordinates are not defined. 

Nevertheless, the average position of the emitters can be localized and a trajectory reconstructed 

by linking the average coordinates in each frame of the emitters (Figure 1d)[10,15]. Therefore, 

from now on, when referring to localization of motion-blurred emitters, we refer to localizing 

their average positions.[10,13–15] 

 Various localization methods have been developed for the localization of emitters, e.g. 

fitting with a two dimensional (2D) Gaussian, estimating the centroid position, and phasor 

fitting. The centre of the PSF can be well fitted with a 2D-Gaussian, and as a result the 

coordinates can be localized with nanometre precision, i.e. down to ~2 nm[9,11,16,17]. However, 

in the case of motion-blur, the 2D-Gaussian model fits the emission signal less optimally, 

Figure 1: a) Four isolated ROIs of a movie containing a single diffusing emitter. b) The emission spots 
can be well fitted with a 2D-Gaussian localize with nanometre precision[9,11,16,17]. By superimposing the 
frames a trajectory can be reconstructed by connecting the coordinates of the emitter. c) Four isolated 
ROIs containing an emitter that moved during frame acquisition. The red line is the diffusion path 
during frame acquisition which is overlaid with the motion-blurred signal observed in the movie. d) By 
superimposing the frames of a motion-blurred emitter the trajectory can be reconstructed by linking 
the average locations of the emitter in each emission spot (orange line)[10,15]. The yellow lines are parts 
of the diffusion path not imaged because there is dead time between frame acquisitions. 
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resulting in localization errors. Furthermore, the centroid estimator localizes emitters by 

calculating the weighted centroid position, which could be an interesting method for the 

localization of motion-blurred emitters as it is independent of motion-blur, but has the downside 

of a known bias towards the middle of the ROIs because of noise[18]. Moreover, phasor fitting 

calculates the Fourier coefficients of emission signals for localization, but has the downside of 

being dependent of ROI size[19]. 

There is limited information published in the literature about localizing motion-blurred 

emitters. Regardless, Deschout et al. reported the localization precision for moving emitters 

using a centroid and 2D-Gaussian fitting localization method[15]. They concluded that centroid 

localization and Gaussian fitting show a similar localization precision for emitters that move 

axially during frame acquisition, i.e., in the z-direction, but the Gaussian localization precision 

breaks down for lateral movement, i.e., in the xy-direction (which also includes three-

dimensional (3D) motion)[15]. They reason that the deterioration of the Gaussian localization 

precision is because of the deformation of the PSF during lateral movement, resulting in a less 

optimal fit[15]. Lastly, they tested localization with an ellipsoidal version of a 2D Gaussian, but 

this only resulted in a slight increase of localization precision[15]. Moreover, Vestergaard et al. 

reported the precision of centroid localization and 2D-Gaussian fitting as a function of emission 

intensity and diffusion constant solely for lateral movement. They report that high emission 

intensities result in higher localization precisions, but the localization precision of both methods 

deteriorates rapidly with increasing diffusion constants, regardless of emission intensity[12]. 

Additionally, a localization method named phasor fitting was published by Martens et al., but 

has not yet been tested on motion-blurred emitters[19]. For near-stationary emitters, a theoretical 

limit of localization precision is known according to the Fisher’s information limit called the 

Cramer-Rao lower bound (CRLB). However, stochastic motion is not easily implemented in 

this information limit and therefore a theoretical limit is not known for precisions of methods 

used for localizing motion-blurred emitters[15]. In conclusion, the localization precisions of the 

available methods are not optimal for localizing motion-blurred emitters, have not been tested 

yet, or are possibly already at their limit. 

To localize motion-blurred emitters with higher precision than published in the 

literature, an algorithm should be developped attaining for all dimensions of the problem: the 

random shape of the emission signal because of random diffusion, the distorted emission signal 

because of background and camera noise, the extremely low signal-to-noise ratio (SNR), the 

change of the PSF shape and intensity when imaging emitters out of focus etc. However, the 
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latter dimension of the problem is not relevant for this thesis as movement is kept in 2D. 

Developping a complicated algorithm like this can be difficult. Therefore, the algorithm could 

be approximated by using convolutional neurals networks (CNN). 

CNNs are widely known as function approximaters. They are computational processing 

systems used for image recognition that are heavily inspired on the neurons in a brain, and work 

by detecting features in the image, i.e edges, corners, squares etc.[20,21]. However, the CNNs 

first need to be trained to know which features correspond to which output classes, with output 

classes e.g. coordinates of emitters. Therefore, simulations need to be performed as only then 

ground truths are truly known. Subsequently, a trained CNN can be used as a function e.g. by 

inputting an image containing an emitter to retrieve its coordinates. As CNNs are able to 

approximate any function, they have potential to approximate the highly dimensional algorithm 

to localize motion-blurred emitters, and therefore potentially performing with higher 

localization precisions than currently possible. Consequently, pore networks of catalysts could 

be mapped with higher precision. Furthermore, CNNs could be developed to detect emitters 

from noise in an SPT movie before the localization step, as this can be difficult because of low 

SNRs, where random noise can resemble the emission signal of emitters. As a result, a function 

that is able to detect more emitters than regular algorithms result in longer trajectories, which 

can subsequently be used to estimate the diffusion constant of single emitters with higher 

precision[9].[20,21] 

The use of CNNs to detect and localize motion-blurred emitters has not yet been 

reported in literature. Nevertheless, CNNs have already proven useful in similar studies where 

emission signals of non-motion blurred emitters were used to retrieve certain information. The 

emission signals contain this information because the shape of the PSF depends on variables 

such as the emitters’ axial position[22–25], emission wavelength of the emitter (colour)[26,27], the 

orientation of an emitter[28] etc. Consequently, CNNs can be trained to derive this information 

from the emission signals. For example, Kim et al. published a CNN trained for axial 

localization of emitters located between 400 nm above and below the focus of the microscope, 

which performed with a localization precision of ~1.5x the CRLB for localizing the z-

coordinate of emitters located between -400 and +100 nm out of focus, while almost equal to 

the CRLB when localizing z for emitters located between +100 and +400 above focus[29]. 

Additionally, their CNN was trained for classifying between two emission wavelengths, which 

performed with >90% accuracy as long as the intensities of the emission signals were >~3000 

photons[29]. Moreover, Zhang et al. published a CNN (smNet) for axial localization which 
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showed similar performance as the axial localization precision Kim et al. published, while also 

predicting the orientation of emitters and wavefront distortion[30]. Furthermore, Boyd et al. 

published a CNN (DeepLoco) used for the detection and localization of multiple emitters 

present in a single frame attached to a larger cellular structure, with the ability to analyse a 

20.000-frame movie in a single second[31]. Moreover, Zelger et al. published a CNN for the 

localization of the 3D coordinates of emitters and compared it to 2D-Gaussian fitting, which 

showed similar localization precisions across each dimension retaining close to the CRLB[32]. 

However, their CNN localized 2 to 4.5x faster than 2D-Gaussian localization[32]. The results of 

the use of CNNs in these studies is a promising indication that CNNs can be effective to detect 

and localize motion-blurred emitters with a high precision. 

In this thesis, we investigated the application of CNNs for both the detection and localization 

of motion-blurred emitters that have limited movement in the xy-plane (2D diffusion). The 

research questions can therefore be described as follows: 

1. Can convolutional neural networks perform better in terms of localization precision 

compared to the current published localization methods? 

2. Can convolutional neural networks perform better in terms of detecting emitters under 

low signal-to-noise ratio circumstances compared to the current published methods? 

To answer the research questions, we simulated a dataset containing images of motion-blurred 

emitters that we subsequently used to train and validate CNNs. To ensure reliable results for 

the performance of the CNNs, we tuned the simulation software so that the resulting dataset 

resembled a non-simulated 2D SPT dataset obtained from previous research, frequently referred 

to in this thesis as the “non-simulated dataset”[33]. Subsequently, we tuned the SNR, diffusion 

constants and background noise to the non-simulated dataset. Additionally, we recorded dark 

images and noise with constant light intensities emitted on the camera to obtain parameters for 

a camera noise model. Thereafter, we validated the camera model. Eventually, we simulated a 

dataset containing motion-blurred emitters and a dataset containing images of only noise. 

Afterwards, we used the simulated datasets to train a classification (detection) CNN and a 

regression (localization) CNN, to be able to detect and localize motion-blurred emitters, 

respectively. Subsequently, we simulated four dataset each containing motion-blurred particles 

with a different combination of emission intensity and diffusion constant, to be able to test the 

performance of the CNNs in different situations. Thereafter, we compared the performance of 

the detection and localization CNN with published software. 
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The structure of this thesis is as follows. First, we introduce a theoretical background 

for SPT, simulations of motion-blurred emitters, and localization methods in Chapter 2. Second, 

Chapter 3 describes the methods used to obtain various parameters to tune our simulations with 

a non-simulated 2D diffusion experiment experiment[33]. This includes an experiment 

performed for the acquisition of dark and white light images, to be used to model camera noise. 

Third, in Chapter 4 we discuss the results about the validity of the simulations and the 

performance of the detection and localization CNNs compared to other methods published in 

the literature. Furthermore, a conclusion and outlook of this thesis is given in Chapters 5 and 6, 

respectively. 
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2. Theoretical Framework 

In the following Chapter we discuss necessary theory for understanding this thesis. First, we 

cover a more in-depth explanation of fluorescent microscopy in Section 2.1. Subsequently, we 

discuss multiple topics that are needed to understand the backbone of the simulations in 

Chapters 2.2-2.4. That is, an in depth discussion of the PSF in Section 2.2, the diffusion in 

question for our motion-blurred emitters, i.e. self-diffusion, in Section 2.3, and lastly the origin 

of background and camera noise disrupting the fluorescent microscopy movies in Section 2.4. 

Additionally, a stochastic model is discussed for simulating camera noise in Section 2.4. Lastly, 

localization methods are discussed, with CNNs covered in Section 2.5, and published 

benchmarking localization methods in Section 2.6. 

2.1 Fluorescence Microscopy 

Contrast is needed to perceive details of objects contained in images. A method to create 

contrast is the use of fluorescence. For this, the use of fluorescent emitters are required, which 

are molecules or quantum dots that absorb light in a specific wavelength range and subsequently 

release light lower in energy. A well described example that compares the use of emitters in 

fluorescent microscopy is given in the book by Ulrich Kubitscheck[34]: a firefly in daylight is 

difficult to observe, but in the evening when a firefly emits light with a darker background, it 

becomes easier to spot due to an increase of contrast. Similarly, contrast is made when an 

emitter is imaged and stands out against a black background in fluorescent microscopy. 

However, there is one major difference between the example of a firefly and emitters in the 

microscopy technique: an emitter has to be excited before it emits light (of a lower energy). 

Therefore, the microscope has to be built in a way that the emitted light can be efficiently 

separated from the excitation light, resulting in a remaining contrast when the emission signal 

hits the camera. Consequently, a fluorescent microscope comprises multiple different parts to 

allow for the high contrast to remain.[13,34] 
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Figure 2 describes the components of a fluorescent microscope, starting with an 

excitation source. The excitation source used in SPT is often a laser since it results in a 

fluorescence emission signal that can be detected with high sensitivity[9,11]. Subsequently, the 

laser is focused via a dichroic mirror on the back focal plane of the objective of the microscope, 

resulting in a parallel beam of monochromatic light hitting a wide region of the sample 

throughout its entire depth (widefield microscopy). Consequently, multiple emitters in the 

sample are excited towards higher states and release light in all directions of lower energies 

when relaxed back to lower states. The light collected by the objective, which consists of both 

emission and initial excitation light, is subsequently emitted back on the dichroic mirror. A 

dichroic mirror has the property of reflecting light of shorter wavelengths, i.e. in the range of 

excitation wavelengths, but transmitting light of longer wavelengths, i.e. in the range of 

emission wavelengths. Consequently, the emission light is transmitted through the mirror whilst 

the shorter wavelength excitation light is reflected. Thereafter, the emission light reaches the 

emission filter, where solely a desired band of wavelengths is transmitted as a filter, whilst light 

with wavelengths outside the lower and upper limit of the filter are reflected back to the source. 

Lastly, the light is focussed using a tube lens on the camera, i.e. for SPT often a highly sensitive 

camera such an electron multiplication charge-coupled device (EMCCD) camera, where the 

light is processed towards an image/movie.[13,34] 

A limitation of using fluorophores in fluorescence microscopy is photobleaching, where 

emitters are chemically altered and as a consequence losing their fluorescent property, which 

in SPT hinders tracking of emitters for longer periods of time[11]. Alternatively, quantum dots 

Figure 2: Schematic representation of a fluorescence microscopy setup. A laser is focused via a dichroic 
mirror on the back focal plane of the microscope, resulting in a parallel beam illuminating a wide range 
of the sample throughout its entire depth. Consequently, emitters in the sample emit light in all 
directions, of which the light captured by the objective lens reaches the dichroic mirror. Subsequently, 
the dichroic transmits the longer wavelength emission light, after which the light is filtered in the 

emission filter, and is lastly focussed on an camera using a tube lens to produce an image/movie.[13,34] 
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are commonly used in SPT[11], which have the fluorescent property and are more 

photostable[9,35]. 

2.2 Diffraction and the Point Spread Function 

Diffraction is often demonstrated with the single-slit experiment, where a coherent light wave, 

e.g. a laser, is emitted on a slit or pinhole (Figure 3a). Subsequently, the planar wavefront 

converts to a cylindrical wave front as it encounters the slit, as if the slit itself behaves like a 

point source. In fact, according to Huygens’ principle, every infinitesimal point located in the 

slit behaves as a new point source causing interference between the individual originating 

wavefronts. Consequently, a characteristic diffraction pattern can be observed, where the centre 

of the pattern results in the highest intensity as all wavelets arrive in phase, resulting solely in 

constructive interference. When wavelets travel different distances, it can result in destructive 

interference and a dimmer spot is observed.[34,36] 

Figure 3: A planar wavefront encounters a slit, where according to Huygens’ principle new cylindrical 
wave fronts originate at each position in the slit. When wavelets travel equal distances, they arrive in 
phase and constructive interference causes a observed intensity. In contrast, wavelets arriving out of 
phase result in destructive interference and dimmer spots are observed. (Image based Fig. 12 of 
Vangindertael et al. [ 36]) 
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The single slit experiment can be extended to 2D, where a wave front encounters a 

pinhole (Figure 4). Subsequently, destructive and constructive interference result in an airy 

pattern, with the highest intensity observed in the middle resulting solely from constructive 

interference referred to as the airy disk, which is surrounded by alternating dark and bright 

concentric rings. 

Let us now consider the case where a point source, e.g. an emitter, is imaged in focus of 

the objective lens utilizing a widefield fluorescence microscope (Figure 2). The point source 

emits a spherical wave of which a cone is captured by the objective lens, which transforms the 

light in a parallel wavefront. Thereafter, according to Huygens’ principle, each point in the back 

vocal plane is the origin of new spherical wavelets. Consequently, when the wavelets are 

projected on the camera using a tube lens, the wavelets interfere exactly at the image plane, 

resulting in the same airy pattern as depicted in Figure 4. The airy pattern originated when 

imaging with a microscope is called the PSF, as it describes the microscopes’ response to a 

point source emitter.[9,34,36] However, the observed emission signal when imaging a point source 

emitter depends on the axial position of the emitter, i.e. the PSF depends on axial position 

(Figure 5a). Therefore, the airy pattern only arises when a point source is imaged which lies 

exactly in the focus of the microscope (Figure 5c). In SPT, it is the centre of the airy disk which 

can be fitted optimally with a 2D Gaussian for localization[37]. However, emitters with axial 

positions above or below the focus result in different emission signals (Figure 5b), which can 

be fit with a 2D Gaussian less optimally.[34,36,37] 

Figure 4: A wavefront encounters a pinhole where according to Huygens’ principle new spherical 
wavelets originate at every position in the pinhole. Consequently, destructive and constructive 
interference results in the airy pattern, consisting of a bright spot referred to as the airy disk surrounded 
by alternating dark and bright concentric rings. 
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2.3 Self-Diffusion 

Emitters diffusing in a sample undergo rapid random movements because of the interaction 

with the surrounding media, usually being water or solvent molecules, referred to as Brownian 

motion[38]. In the case of this thesis, we assume no external forces acting on the emitters, i.e. 

there is no chemical potential gradient for the emitters to diffuse along. This type of diffusion 

is referred to as self-diffusion, which can be observed for reactants diffusing in porous 

catalysts[39]. Consequently, the mean distance travelled by emitters self-diffusing equals zero, 

as the probabilities of diffusing in any direction are equal. Nevertheless, the emitter still travels 

around its original position. This ‘’wandering’’ is called a random walk of which Kärger et al. 

describes a perfect example in 1D (one-dimensional): consider an emitter that is located at an 

axis at position x = 0 and time t = 0[40]. Subsequently, for every timestep Δt the emitter has a 

probability of ½ to move with Δx and an equal probability to move the same distance in the 

opposite direction, i.e. −Δx. Consequently, a histogram containing locations of the emitter at 

different positions results in a normal distribution, which widens when t is increased. 

Figure 5: a) When imaging a point source, the observed signal differs with axial position of the emitter. 

Therefore, the PSF can be described as a three-dimensional function, where each cross Section describes 

an imaged point source at different z-positions. b) An imaged emitter located 250 nm out of focus of 

the objective lens. c) An emitter located exactly in focus of the objective lens results in an airy pattern, 

which can be fit optimally with a 2D-Gaussian for localization in SPT. 
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Consequently, the amount of ‘wandering’ can be described with the standard deviation of the 

position histograms, or equally by calculating the root mean square displacement as 

〈𝑟2(𝑡)〉 = 2𝑘𝐷𝑡 (1) 

with D the diffusion constant and k the number of dimensions.[40,41]  

Figure 6.a and Figure 6.b depict a self-diffusing emitter in 2D for a relatively short and 

long diffusion time, respectively. Considering the x position, the emitter in Figure 6.b has 

wandered a larger region than the emitter in Figure 6.a, which is reflected by a wider histogram 

in .c. Notably, the mean distance travelled in x for both cases is ≈ 0, as the movements in x are 

random. 

2.4 Noise and Localization Error 

Additional photons landing on the camera which do not originate from the desired emitters that 

we try to image are considered background noise. There are two sources that contribute to 

background noise: scattered photons and auto-fluorescence, of which auto-fluorescence is the 

process of natural emission of light by e.g. biological compounds and glass[42,43]. Consequently, 

every pixel of the resulting image/movie turns out brighter as the additional photons land on 

the detector evenly across its surface.[44,45] 

Multiple processes contribute to camera noise, as an EMCCD camera consists of several 

components, with an overview of the components and the processes depicted in Figure 7. Frame 

acquisition starts with opening of the camera shutter, allowing photons originating from the  

Figure 6: a) The diffusion path of a self-diffusing emitter in 2D with a relatively short diffusion time. 
The squiggly line is the result of the instantaneous random movements because of Brownian motion. 
b) The diffusion path of a self-diffusing emitter in 2D with a relatively long diffusion time. c) Histograms 
of the positions with respect to x for the emitters in a) and b). The histograms are normally distributed 
and widen for longer diffusion times. 
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sample or from background noise to land on the camera grid (Figure 7a). Subsequently, 

collision of the photons with the camera grid might cause the creation of a photoelectron, of 

which the probability is determined by the quantum efficiency of the camera. The quantum 

efficiency is typically 90% in EMCCD cameras[44]. Thereafter, the photoelectrons are stored in 

the pixels of the camera grid utilizing storage capacitors. Eventually, when the frametime has 

elapsed the shutter of the camera closes, and subsequently the photoelectrons are shifted to the 

storage grid by applying an electric field (Figure 7b). During the shifting of photoelectrons 

collisions with the lattice can result in the creation of extra electrons (impact ionization), of 

which the extra created electrons are referred to as spurious charge. As the extra electrons are 

Figure 7: Sketch of an EMCCD camera. a) Photons originating either from emitters in the sample or 

background noise land on the camera grid. Thereafter, upon collision of photons with the camera grid 

photoelectrons might be created depending on the quantum efficiency, and are subsequently stored in 

each pixel of the grid via storage capacitors. b) After frame acquisition the photoelectrons are shifted 

towards the storage area, which allows for the subsequent frame to be acquired whilst the storage grid 

is read out. c) Subsequently, photoelectrons are shifted towards the electron multiplying register where 

the signal is enhanced by impact ionization. d) Lastly, the electrons are converted to a digital value in 

the readout amplifier, e) resulting in an image. Adapted from Harpsøe et al.[45]. 
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processed towards a signal in the final image not originating from the emitters, spurious charge 

is considered a source of camera noise. Thereafter, once the photoelectrons are fully shifted 

towards the storage grid, the subsequent frame acquisition can start whilst simultaneously the 

storage grid is read out. The noise created by spurious charge together with the quantum 

efficiency can stochastically be described as the Poisson distribution 

𝑃(𝑛𝑖𝑒; 𝑖𝑞 + 𝑐) (2) 

where i is the number of photons arriving at a pixel, q the quantum efficiency, c the spurious 

charge parameter, and nie number of input electrons for the next component of the camera: the 

electron multiplying register. Subsequently, row by row the photoelectrons are shifted from the 

storage grid to the electron multiplying register. In the electron multiplying register the 

electrons from each pixel are multiplied by deliberately carrying out impact ionization, which 

is performed by applying high voltages to the field causing acceleration of the electrons and 

therefore high velocity collisions with the lattice. Consequently, the multiplied photoelectrons 

enhance the SNR in the final image/movie, which is a crucial concept in SPT due to limited 

photon statistics, frametime and motion blur[12]. The electron multiplication process can 

stochastically be described as the gamma distribution 

𝛾(𝑛𝑜𝑒; 𝑛𝑖𝑒 , 𝑔) (3) 

with g the electron multiplication gain (EM gain) parameter which determines the magnitude 

of electron multiplication, and noe the output electrons from multiplying register. Thereafter, 

the electrons are converted to pixel values (image counts) in the readout amplifier. Parameter f 

determines the factor between the conversion of electrons to image counts as f = noe / nic, with 

nic the number of image counts. Additionally, a random error is introduced when the output 

electrons of the electron multiplying register are processed towards image counts, called the 

readout noise, which is the most dominating form of noise in an EMCCD camera[45]. 

Consequently, signal of emitters are only visible in the resulting images when the EM gain 

enhances the signal more than the readout noise can distort it, emphasizing the importance of 

using an EMCCD camera. The readout noise is normally distributed as  

𝑁(𝑓𝑛𝑖𝑐; 𝑛𝑜𝑒 , 𝑟) (4) 

with r the readout noise parameter. As the readout noise is normally distributed, the errors can 

be negative. Consequently, to avoid negative image counts, a camera bias cb is added.[44,45] 
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The stochastic equations (equations (2)-(4)) describing each part of the camera can be 

combined to one complete stochastic equation describing the probability distribution of the 

complete process in the EMCCD camera. For this, a matrix multiplication of equation (2) with 

(3) is performed of which the result is convoluted with equation (4), resulting in the probability 

distribution function 

𝑝(𝑛𝑖𝑐; 𝑖, 𝑞, 𝑐, 𝑔, 𝑟, 𝑓) = ((𝑃(𝑖𝑞 + 𝑐) ∘ 𝐺(𝑔)) ∗ 𝑁(𝑟))(𝑓𝑛𝑖𝑐) (5) 

Consequently, equation (5) can be used to model camera noise in our simulations.[44,45] 

Figure 8 visualizes the effects of background and camera noise in 1D when an emitter 

is imaged with an EMCCD camera located at position x = 5.25. In the unrealistic case of 

imaging without background or camera noise, a 1D version of the PSF is imaged (Figure 8)  

(because of diffraction, Section 2.2). However, in the unrealistic case of solely imaging with 

background noise, additional photons land on the camera distributed evenly and therefore 𝑛𝑖𝑐 

is higher in each pixel (Figure 8b). Realistically, both background and camera noise disrupt the 

image, which results in 𝑛𝑖𝑐 being randomly higher or lower in each pixel compared to imaging 

without noise (Figure 8c). Depending on the SNR, the signal could fade under the camera noise, 

resulting in an undetectable emitter. However, in case of Figure 8c, the SNR is high enough for 

the emitter to be localized by fitting with a 1D-Gaussian, but the 1D Gaussian will not fit 

optimally because of the camera noise resulting in a localization error.  

Figure 8: a) One-dimensional example of the resulting signal of a emitter that is located at x = 5.25. 
Each bin in the histogram corresponds to a pixel of the one-dimensional image. The emitter location 
can be obtained by fitting the histogram with a one-dimensional Gaussian distribution. b) Due to 
background noise, the counts of each bin is raised evenly due to additional photons hitting the camera 
grid. c) Camera noise disturbs the signal when the photoelectrons are processed into an image. Fitting 
the final signal with a one-dimensional Gaussian comes with a localization error. 
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 Figure 9 shows a histogram of localization errors for an arbitrary localization method  

which was used to localize many images of the same emitter. Consequently, the histogram will 

be normally distributed. The standard deviation of the distribution is used to define the 

localization precision of a method, usually expressed in pixels or nanometres. This can be 

defined mathematically for e.g. the localization precision in x as 

 𝜎𝑥 = √
1

𝑛 − 1
∑(𝑥𝑝,𝑖 − 𝑥 𝑝)

2

𝑛

𝑖=1

 

(6) 

with n the number of estimates, x̄p the mean true position, and 𝑥𝑝,𝑖 the localizations.  

Subsequently, the localization precision expresses the performance of a localization method 

and can be used to compare methods.[46,47] 

2.5 Convolutional Neural Networks 

CNNs somewhat mimic the human brain in image recognition by finding features or 

patterns within an image, with features being e.g., edges, corners, squares etc. Consequently, 

the observed features contribute to the probability of output classes, which in case of 

classification CNNs can be binary, e.g., an emitter is detected or there is not, or in case of 

regression could be scalars, e.g., the x and y coordinates of the location of an emitter. A CNN 

consist of several layers performing mathematical operations on the input images, and the 

images are subsequently shifted through all these layers one by one, called forward propagation. 

Figure 9: A histogram containing errors of a localization method used when imaging several emitters 
under the same conditions. Consequently, the localization precision of a method is defined as the 
standard deviation of the error distribution, expressed in pixels or nanometres. 
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The design in number of layers and order are referred to as the architecture of the CNN (Figure 

10). Convolutional layers are most important in CNNs, which are used to enhance 

features.[21,48,49]  

The mathematical operation of convolution in a CNN is depicted in Figure 11, where a 

filter is shifted over the original image performing multiplications of the superimposed values 

of the image and filter. When the values of the filter resembles those of the original image when 

superimposed, a high pixel value is produced in the convoluted image. For example, Figure 12 

Figure 11: A convolution is performed by shifting a filter over the original image. Each position where 
the kernel is overlapped results in a convolution that produces a new single value. The row and column 
position of the filter in the original image produces the new value in the feature map at the same row 
and column positions, as depicted with the green and purple squares. 

Figure 10: An example of a CNN architecture. Each block represents a convolutional layer of a CNN. 
Max pooling layers decrease the blocks in xy-dimesions, for down sampling. The depth of the blocks 
equal the number of filters used for convolution. Eventually, the highest pixel values originating from 
convolution operations of the original image contribute to the output classes (output classes are not 

shown in the image). (Adapted from Fränzl et al.[51]) 
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shows a convolution operation of a filter resembling a motion-blurred emitter with an image 

containing an emitter, and as a consequence a high pixel value is produced in the convoluted 

image (Figure 13b). The convoluted image is referred to as a feature map, as all high pixel 

values in the feature map contain information about filter resemblance with features. 

Subsequently, an activation function e.g. ReLu is applied to the feature maps to introduce non-

linearities in the CNN, crucial for the approximation of any function (Figure 13). Essentially, 

the ReLu activation function sets all negative values in the feature map to zero.[21,48,49]  

 In max-pooling a new smaller image is created by selecting only the highest pixel values 

in certain regions of the original image, consequently down sampling the images (Figure 14). 

Figure 13: The ReLu activation function. Each node containing a negative value is set to 0, while every 
node containing a positive value is kept the same. 

Figure 12:  a) An input image containing an emitter. b) The resulting feature map after convolution of 
the filter with the original image. High pixel values are produced where the filter resembled the image, 
i.e. the filter resembled a feature of a motion-blurred emitter and consequently the emitter itself  is 
enhanced after convolution. 
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As a result, the high pixels values remain in the newly created images, which are the pixels that 

contain the filter resemblance information. Furthermore, down sampling of the images can be 

accelerated by using a higher stride. Stride determines the amount of movement during shifting 

of the filter, e.g. a stride of one repeatedly shifts the filter by one column or row at a time, and 

a stride of two shifts the filter two columns or rows at a time. Therefore, a higher stride results 

in a lower amount of pixels selected for the new image. [21,48,49] 

The several layers in a CNN (Figure 10) consist mostly of consecutive convolution into 

max-pooling layers. The deeper layers in the CNN are necessary to be able to detect more 

complicated features, e.g. motion-blurred emitters. Let us consider the architecture of the CNN 

in Figure 10. The input of the CNN is 416x416x3, as the image containing emitters contained 

three different colour channels (RGB). Subsequently, 16 different filters are used for 

convolution. However, the convolution of a single filter is performed across the entire depth of 

the input block, and results in a single 2D feature map. Consequently, 16 filters result in 16 

feature maps. Subsequently, the 16 feature maps are down sampled in xy-dimensions from 

416x416 to 208x208. Thereafter, 32 filters are convolved across the entire depth of the previous 

block containing the 16 feature maps, resulting in a new block of feature maps of dimensions 

208x208x32. Subsequently, the block is max-pooled again etc. Essentially, since a filter 

convolved over the entire depth of a feature map block, the resulting feature maps enhances 

more sophisticated features that are combinations of the previous features found. [21,48,49] 

After a sequence of convolutional and max-pooling layers, the remaining block of 

abstract features maps is flattened into a one-dimensional vector. Subsequently, each value in 

Figure 14: Max pooling proceeds by sliding a filter over the original image outputting only the highest 
pixel values, i.e. the filter overlapped as the green square produces a value of five in the max-pooled 
image. A stride of one is used to down sample the image, ensuring the change in dimension from 4 x 3 
to 3 x 2. 
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the vector is connected to the different output classes. The full connectivity between these two 

layers is called a fully connected layer. [21,48,49] 

Neurons in a CNN refer to all connections that have a weighted input from a previous 

layer to an output for the next layer, e.g. a convolution operation with a certain filter or all the 

connections in a fully connected layer. In addition, these connections contain a bias. A bias is 

added to allow for more freedom in function approximation. For example, after convolution the 

outputs are transformed by the activation function (Figure 12), and by adding a bias afterwards 

essentially the activation function can be shifted to the left and right. Subsequently, during 

training images with labels are inputted, i.e. ground truths, and the weights and biases are 

iteratively changed until all neurons contributing to the correct output classes are activated, i.e. 

the weights are turned up. For example, the weights of filters resembling motion-blurred 

emitters are activated, as are the connections with the correct output class in the fully connected 

layers. Consequently, when inputting an image containing a motion-blurred emitter, the correct 

output class will be activated.[21,48,49] 

 The loss function calculates the total error of a CNN. Therefore, the derivative with the 

loss function with respect to the weights and biases can be used to change the values so that the 

total loss decreases, called gradient-descent (). For a regression CNN the root mean square error 

(RMSE) 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑁

𝑖=1

 

(7) 

can be used as the loss function. with �̂�𝑖 e.g. the predicted coordinates of all emitters in the 

batch (batch explained further in this Section), 𝑦𝑖 the ground truth coordinates of all emitters, n 

the number of emitters in the batch. ŷi − 𝑦𝑖 results in the error of the prediction of each 

coordinate, and the value is squared to prevent negative values. The weights and biases are 

changed in direction of the end to the beginning of the architecture of a CNN, called backwards 

propagation, as neurons further in the network depend on the neurons in the layers before them. 

[21,48,49]  

 During training of a CNN, thousands of images have to be inputted to make sure a 

function is approximated that subsequently predict correctly when new images are inputted. 

These set of images are called the training set. It is computationally expensive to input the 
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whole training set and subsequently perform backward propagation repeatedly. Instead, small 

batches of images are inputted after which backwards propagation takes place, of which the 

size is called the batch size. The process of forward propagation of the batch and subsequently 

performing backwards propagation is called an iteration. An epoch is elapsed when all training 

images are inputted to the CNN once, which happens multiple times during training.[21,48,49]  

 The loss function can be viewed as a mountain valley, containing peaks and valleys 

analogue of total error. It is important to end up at the bottom of the global minimum of this 

mountain valley when performing backwards propagation, as only then the function is 

approximated optimally resulting in the lowest errors. Therefore, the learning rate is an 

important parameter during the training of CNNs. The learning rate should be set high to end 

up in the global minimum, and subsequently low to descent to the bottom of it (blue arrows in 

Figure 15). Otherwise, one could end up in a local minimum with a non-optimal approximation 

of the function (red arrows in Figure 15). For that, the parameter ‘’learning rate drop factor’’ 

determines the amount of epochs needed to be elapsed until the learning rate is changed, where 

it subsequently is multiplied with the parameter ‘’learning rate drop factor’’ to be lowered. 

[21,48,49] 

Figure 15 When the steps in gradient descent are small and kept of the same magnitude, one can 
easily end up in a local minimum as depicted with the red arrows. Consequently, the CNN will not 
function optimally. The global minimum can be found when the learning rate starts off with high 
values and is slowly decreased overtime, as depicted with the blue arrows. 
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 CCNs are notorious for overfitting. This means that the weights in the CNN get tuned 

to the training data such that it does not perform well on new data. Feeding a trained CNN a set 

of new images to test how well it performs is called validation. The set of images used are 

subsequently called the validation set. Overfitting is the result of neurons becoming co-

dependent on each other, which causes their weights to affect the optimization process of the 

weights of other neurons. A solution to this is the use of a dropout layer, which randomly selects 

a set of neurons of which the output is set to zero. Consequently, in each iteration a different 

selection of neurons determines the output, and backward propagation is performed based on 

this performance. As a result, the CNN is trained on a random selection of neurons in each 

iteration, subsequently making it impossible neurons to become co-dependant on each other. 

[21,48,49] 

2.6 Benchmark Localization methods 

The weighted centroid is equal to calculating the centre of mass but for images. For 

example, the centroid location of a 1D imaged emitter is performed by a multiplication of each 

pixel value with its pixel position, and a subsequent division of the summation of all pixel 

values. Consequently, the resulting weighted centroid location will lean towards regions in the 

1D image containing the highest pixel values. The same can be performed for a 2D image, 

where the centroid position for x is defined as 

𝐶𝑥 = 
∑ ∑ 𝑥𝑖𝐼𝑖,𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝐼𝑖,𝑗 
𝑛
𝑗=1

𝑛
𝑖=1

 
(8) 

with i the column indices, j the row indices, xi the value of the column index of the ith  pixel, 

and Ii,j the pixel value of the i,jth pixel. Similarly, the centroid position for y, 𝐶𝑦, can be 

determined analogue to equation (8). 

 The emission signal can be fit with a 2D-Gaussian model to localize coordinates. Often, 

least square estimation (LSE) or maximum likelihood estimation (MLE) is used to iteratively 

fit the model to the emission signal by adapting the model parameters[47]. Additionally, the 2D-

Gaussian model can be adapted to an ellipsoidal 2D-Gaussian model, which has the freedom in 

extending the fit in x and y dimensions independently. Moreover, an adaption can be made to a 

rotational ellipsoidal 2D-Gaussian, which additionally can be rotated with respect to the x and 

y axes. Mathematical descriptions of all three models are given in Appendix A1.  
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3. Methods/Experimental 

In the following Chapter we describe the methods used to be able to answer our research 

questions. First, we discuss the simulation software in Section 3.1. Second, we describe 

experiments in Section 3.2 performed to obtain the camera model parameters. Third, Section 

3.3 describes the methods related to the use of CNNs. Lastly, we discuss benchmarking 

published localization software in Section 3.4. We prepared a table containing all parameters 

used in the methods, i.e. used in the simulation software and the benchmarking published 

detection and localization software (Appendix C). 

3.1 Simulation Software 

Grey scale motion-blurred emitters were simulated in MATLAB using software that consisted 

of four distinct steps: diffusion path calculation, PSF convolution, background noise addition, 

and camera noise addition (Figure 16). First, a 2D random walk was calculated by computing 

random steps in x and y directions using a probability distribution with standard deviation 

√2𝐷𝑡[50]. The diffusion constants used were the average diffusion constants observed in the 

non-simulated dataset[33]. The timestep used depended on the amount of oversampling of the 

diffusion path, which was chosen to be 30, and the total frametime, equalized to the non-

simulated dataset was 0.03 s[33]. Therefore, each 30 subsequent positions of the random walk 

were calculated with a timestep of 0.001 s. A camera grid was simulated for the emitters to 

diffuse in with dimensions of 60×60 pixels, with the pixel size equalized to the non-simulated 

dataset of 86.67 nm[33]. Afterwards, a PSF was calculated utilizing vectorial diffraction theory 

based on Backer et al. (parameters App.C), where subsequently the PSF of emitters in focus 

Figure 16: Sketch of how the simulation of a single frame containing a motion-blurred emitter was 
performed. a) Random walk of emitter is calculated. b) An equidistant set of points on the diffusion 
path were convolved with the PSF, by dividing the total amount of emitted photons per frame over the 
set of points. c) Background noise was added to the image by adding a value to every pixel in the image. 

d) Camera noise is added by a using a camera model from Hirsch et al.[44]. 
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was used as we simulated 2D diffusion (Figure 5c)[28]. Thereafter, to convolve the PSFs with 

sub-pixel precision and match the dimension of the pixel grid, the PSFs were shifted and resized 

to be subsequently convolved with a number of photons located on the coordinates of each 

position in the random walk to simulate motion-blur (App. D). For this, trajectories were 

reconstructed in the non-simulated dataset to isolate stationary emitters[33]. Subsequently, the 

maximum pixel of each ROI containing a stationary emitter was used to create an intensity 

histogram. Afterwards, ROIs containing stationary (D = 0 m2 s−1) emitters were simulated and 

their average maximum pixel values were tuned to the intensity histogram by varying the 

amount of photons for PSF convolution. Thereafter, background noise was simulated by adding 

a constant value to each pixel (the background noise parameter bn). For this, a region only 

containing noise in the non-simulated dataset was isolated. Subsequently, noise was simulated 

(with a working camera model, Section 3.2) and was tuned to the non-simulated dataset by 

optimizing the background value parameter using MLE. Lastly, a camera model was applied to 

the simulations of motion-blurred emitters tuned to the non-simulated dataset (Section 3.2).  

3.2 Camera Model Parameter Acquisition 

A stochastic camera model (Section 2.4) was used to model camera noise, of which the 

parameters were obtained by following the methods described in Hirsch et al.[44]. Three 

experiments are described in Hirsch et al.[44] utilizing the camera to be simulated. Therefore, 

the experiments were performed on the same camera as the non-simulated dataset, i.e. an iXon 

Ultra 888 camera. In each experiment 2000 frames of dimensions 512×512 were recorded with 

frametime 0.03 s, readout time 0.02675 s, CCD temperature of −70 °C and frame transfer turned 

on (faster frame acquisition rates). First, a recording was made with a closed shutter and EM 

gain of 300, resulting in dark images. Second, the setup in Figure 17 was used to record a movie 

with an EM gain of 300 where a set of reflective filters were employed between the camera grid 

and a lamp emitting a constant light intensity. Subsequently, this was repeated whilst 

interchanging the set of filters to have total numerical densities (ND) ranging from 4.5 to 7.5, 

with increments of 0.5 resulting in eight movies. For an ND filter with optical density d the 

optical power transmitted through the filter is determined by 𝐼𝑇 = 𝐼010
−𝑑 with 𝐼0 the incident 

intensity and 𝐼𝑇 the transmitted intensity. Third, the previous experiment was repeated with the 

EM gain turned off using a set of filters with a total ND ranging from 2.0 to 5.0, with increments 

of 0.5, resulting in seven movies. 
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3.3 Convolutional Neural Networks 

 A modified version of the CNN designed by Fränzl et al. was used as architecture for 

the detection and localization CNNs, i.e. the layer sequences remained the same but the xy-

dimensions of the input images and convolution/max-pooling blocks were adjusted to be in line 

with the xy-dimensions of our simulated training and validation sets[51]. Additionally, a dropout 

layer was added to prevent overfitting. Furthermore, the output layers of the detection and 

localization CNNs differed as a classification and regression layer are needed as outputs, 

respectively. Lastly, the detection CNN contained two output neurons, i.e. binary output, and 

the localization CNN contained a single output neuron to estimate the x coordinate. 

Subsequently, input images could be transposed to determine the y-coordinate. The architecture 

of both CNNs are summarized in Table 1. 

Table 1: Architecture of the detection and localization CNN based on Fränzl et al.[51]. 

Layer Type Num. Filters Size/Stride Output 

Input (60×60) - - - 

Dropout (50%) - - - 

Conv. 64 6 × 6/1 60 × 60 × 64 

Maxpool - 2 × 2/2 30 × 30 × 64 

Conv. 128 3 × 3/1 30 × 30 × 128 

Maxpool - 2 × 2/2 15 × 15 × 128 

Figure 17: Experimental setup for finding the f (ADU conversion) and g (EM gain) parameters for the 
camera model. A video is taken by shining light with a constant intensity on the EMCCD camera grid, 
which is performed multiple times for filters with a different numerical density blocking a different 
amount of light.  
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Conv. 256 2 × 2/1 15 × 15 × 256 

Maxpool - 2 × 2/2 8 × 8 × 256 

Conv. 512 2 × 2/1 8 × 8 × 512 

Maxpool - 2 × 2/1 8 × 8 × 512 

Conv. 1024 3 × 3/1 8 × 8 × 1024 

Conv. 1024 3 × 3/1 8 × 8 × 1024 

Conv. 1024 1 × 1/1 8 × 8 × 1024 

Fully connected - - 1 × 1 × 2 

Classification/regression - - - 

During training the Adam optimizer was used for both CNNs which is an optimized 

algorithm to perform efficient gradient descent[52]. Moreover, a learning rate test was performed 

to determine the learning rate, ending learning rate, learning rate drop period and the learning 

rate factor[53]. A standard batch size of 64 was used and the number of epochs was calculated 

such that the CNNs could be trained in a manner of days. The training settings of the CNNs are 

summarized in Table 2. 

Table 2: Training settings used for training the detection and localization CNN. 

Training Option Detection CNN Localization CNN 

Optimizer Adam Adam 

Initial learn Rate 0.23e −3 0.32e −2 

Learn rate drop factor 0.7 0.7 

Learn rate drop Period 1 1 

Number of Epochs 34 30 

Mini batch size 64 64 

3.4 Training and Validation Set Simulations 

For the detection CNN a training set of 200.000 frames of dimensions 60×60 were simulated 

with a 1:1 ratio of frames containing a motion-blurred emitter and frames containing pure noise. 

For the localization CNN a training set was simulated of 900.000 frames of equal dimensions. 



 

28 

 

The diffusion constant for each emitter in the training sets ranged from  8e−13 to 4e−12 m2 s−1 

and the intensity from 0 to 312 photons/pixel/frame, which were randomly determined. 

 Four validation sets were simulated to validate the performance of the CNNs in different 

regions. All validation sets contained 125.000 frames with dimensions 60×60 containing a 

motion-blurred emitter where various combinations of diffusion constant and emitter intensity 

were made. Additionally, each validation set contained 125.000 frames of simulated noise of 

the same dimensions. The validation sets are numbered from 1 to 4, summarized in Table 1. 

Table 1: The four simulated validation sets each containing motion-blurred emitters with a different 

combination of diffusion constant and intensity. 

 The average position of the motion-blurred emitters in the frames were determined by 

calculating the average x coordinate of the 30 positions of the random walk, analogue to this 

the average y coordinate was determined. Consequently, these average positions were used as 

ground truth labels for training the localization CNN. Additionally, the simulations in both the 

training and validation sets were performed such that the average positions of the emitter could 

only be positioned in a 30×30 box located in the centre of the 60×60 frames, ensuring the 

emission signal to be always fully visible in the frames. 

3.5 Detection of Motion-Blurred Emitters 

The performance of the detection CNN was tested by comparing it to published benchmark 

detection software, i.e. DoM v1.2.2 by Katrukha et al. (App. A.2)[54]. First, DoM was utilized 

to detect emitters in the four validation sets (parameters of DoM in App. C). The threshold in 

DoM was set such that few false positives (false detections, FP) arose. For fair comparison with 

the CNN, FPs were only counted when DoM returned the detection of an emitter in a noise 

image. Additionally, a maximum of one FP per noise image was counted. Furthermore, 

localizations within a 7×7 box around the ground truth were considered true positives (correct 

detections, TP). Second, the trained detection CNN was used to detect emitters in the four 

Validation set Diffusion constant (m2 s−1) Intensity (photons) 

1 8e−13 135 

2 4e−12 135 

3 8e−13 312 

4 4e−12 312 
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validation sets. Subsequently, the CNN returned probabilities for each frame, i.e. emitter and 

noise images, if there is an emitter located in the image or not. The probabilities were 

thresholded to obtain binary predictions for each frame. Thereafter, the threshold was tuned 

such that the number of FPs matched those of DoM, which subsequently allows for the 

comparison of TPs. Similarly, the threshold was tuned to match the TPs of both methods to 

compare the difference in FPs.   

3.6 Localization of Motion-Blurred Emitters 

Localization was performed on the frames where a TP detection was obtained. First, weighted 

centroid localization was already performed by DoM during the detection step (App. A.2). 

Subsequently, ROIs were made with sizes ranging from 5×5 to 17×17 for every TP detection, 

with incremental steps of two so that the width and length of the ROIs were always an uneven 

number. Thereafter, localization was performed on the ROIs by fitting the Gaussian models 

from eq. (12)–(14) with MLE and LSE utilizing Gputfit, published by Przybylski et al.[17]. 

Similarly, phasor fitting was performed for localization by using the script published in the 

supplementary information of Martens et al.[19] (App. A.3). Lastly, localization was performed 

using the original frames (60×60) of the TP detections utilizing the trained localization CNN. 

Subsequently, for every method the localization precision was calculated via eq. (6). 
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4. Results and Discussion 

First, we discuss the non-simulated (nano-slit) experiment in Section 4.1 which was used to 

tune the diffusion constant and the SNR of the simulations. Second, we discuss in Section 4.2 

the data processing of the dark and white light images to obtain the parameters needed to 

simulate our camera. Third, we report the performance of the detection CNN and compare it to 

published detection software. Lastly, we report the localization precisions of our localization 

CNN and various published localization software for when they were used to localize motion-

blurred emitters of the validation sets.   

4.1 Diffusion Constant and Emitter Intensity 

Figure 18 shows a description of the non-simulated dataset containing a frame of the 

recording[33]. The recording contains diffusing CdSe quantum dots covered in a layer of ZnS 

and a PEG 14 nm in diameter (Figure 18a). Their diffusion freedom is limited to 2D as they are 

confined in a nanoslit with a z-dimension of 150 nm. In the recording (Figure 18b) both stuck 

Figure 18: a) A single frame of the SPT movie where quantum dots are diffusing in two dimensions. b) 
Stationary emitters are visible in the experiment. c) Diffusing emitters are visible in the experiment 
showing their motion-blur. 
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and diffusing emitters can be obsered. The emission signal of the stuck emitters can be observed 

as non-deformed PSFs (Figure 18c), of which the position could be localized with nanometre 

precision[9,11,16,17]. However, the diffusing emitters are observed with motion-blur (Figure 18d). 

They observed in two different nanoslit experiments average diffusion constants of 4e−12 and 

8e−13 m2 s−1[33]. Therefore, these are the diffusion constants used for the simulations to test the 

performance of CNNs. 

 Figure 19 shows the intensity histogram by isolating the stationary emitters observed in 

the recording of Figure 19b. Subsequently, we tuned simulated stationary emitters to this 

histogram resulting in intensities of 5, 135 and 312 photons/emitter/frame to simulate equally 

bright emitters located at the lower limit, median and upper limit, respectively (Section 3.1). 

Therefore, we used these values in the training and validation set for the CNNs to test the 

performance of the CNN for detection and localization of the most common emitters (median), 

and to learn the performance in these extremes (lower to upper limit). We assume that the 

amount of photons emitted does change when emitter start moving, and therefore the amount 

Figure 19: A histogram of the brightness of the stationary emitters observed in the non-simulated 
dataset. In red the median and a self-defined lower and upper limit is indicated. The green arrow shows 
the new lower limit chosen to assure gradient descent during  training of the detection CNN. 
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of photons emitted for diffusing emitters in the non-simulated dataset would emit photons at 

the same rate as our simulated diffusing emitters. 

4.2 Camera Model 

4.2.1 Parameter Acquisition 

 To approximate the parameters f and g we followed the methods reported in Hirsch et 

al[44]. Therefore, we plotted the mean image counts ñic of each pixel against the variance σic 

(mean-variance test) for each of the recordings obtained from the experiments depicted in 

Figure 17 (Section 3.2). Consequently, Figure 20a shows the mean-variance test for the 

experiment where the EM gain was turned off, and Figure 20b for the experiment with the EM 

gain of 300. As different transmission occurred in each recording, the resulting image counts 

differed resulting in the isolated regions of blue dots. Since we minimized the gain (Figure 20a) 

we can approximate eq. (5) as p(nic;i,q,f) ≈ P(fnic;iq), because the Poisson component dominates 

as no electron multiplication takes place. Subsequently, using this approximation and the 

definition of f = noe / nic, we know that the probability for nic is Poisson distributed with mean 

ñic = ñoe / f and variance σ2
ic = noe / f, resulting in 

𝑓 =
ñ𝑖𝑐

σic
2  

(9) 

for the approximation of f (circumflex stands for approximation). Subsequently, we used eq. 

(9) to derive an approximation for f by fitting a linear regression to Figure 20a, where the slope 

of the fit was equal to f (Table 3). 

Figure 20: The mean-variance test of the experiment where the light intensity emitted on the camera 

Nic was varied with a) the EM gain turned off and b) the EM gain turned on. A linear regression was fit 

to the experimental data. 
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 With high values for EM gain (Figure 20b) the Gamma component dominates in eq. (5). 

Subsequently, Hirsch et al. reports the approximation for g as 

�̂� = 𝑓 
σic
2

2ñ𝑖𝑐
 

(10) 

Subsequently, we used equation (10) to approximate g by fitting a linear regression to Figure 

20b, of which the inverse slope was equal to g (Table 3). An assumption is made here that all 

spurious charge is created before the EM register to simplify the modelling, as a result c is not 

processed in the Gamma distribution of eq. (5). However, in reality spurious charge is created 

in the EM register and therefore affects to this approximation affects the models’ 

performance[44]. 

 To estimate parameters c and r we processed the recording of the dark images following 

the methods of Hirsch et al.[44]. First, we corrected the images following eq. (1)–(7) of Hirsch 

et al., to remove inhomogeneities from the images e.g. stripes of bright pixels[44]. This also 

included the removal (and determination) of cb (Table 3). As no photons land on the camera 

grid, no photoelectrons are created. Therefore, the only created electrons contributing to pixel 

values in the recorded images originate from spurious charge. Eq. (5) can be modified to obtain 

the probability distribution function for dark images as 

𝑝(𝑛𝑖𝑐; 𝑞, 𝑐, 𝑔, 𝑟, 𝑓) = ((𝑃(𝑐) ∘ 𝐺(𝑔)) ∗ 𝑁(𝑟))(𝑓𝑛𝑖𝑐) (11) 

by removing i. All parameters of eq. (11) are currently known, except for c and r. Therefore, 

we determined the remaining parameters by optimizing a fit of eq. (11) with a histogram of the 

dark images using log-likelihood fitting. Figure 21 shows the optimized fit of eq. (11) with the 

histogram of the dark images. First, as often zero electrons are created for certain pixels, the 

readout noise is the only component contributing to resulting pixel values of the dark images. 

Therefore, a normal distribution is expected with its peak located at zero. Consequently, the 

standard deviation of the peak can be used to describe the magnitude of the readout noise, and 

is therefore equal to parameter r (Table 3).  To be able to fit eq. (11) to the histogram we added 

a bias of 1000 to all pixels, as negative values should be avoided due to the matrix operation, 

explaining the location of the peak. Second, when spurious charge is created, their signal is 

subsequently amplified in the EM register and results in higher image counts. Therefore, a ‘’ 

tail’’ is usually visible in the histogram of dark images attributed to by c[44]. However, the dark 
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images that we recorded did not contain a tail, and consequently resulted in a poor fit with the 

model for intensity values above 1100. Therefore, the value described in the manual of the 

camera for the spurious charge parameter c was used (Table 3)[55]. 

Table 3: The resulting parameters obtained from data processing of the experiments, which can 

subsequently be used to model the camera noise of the camera used in the non-simulated dataset. 

Parameter Value 

f 1.1512 

g 71.0067 

r 37.3955 

c 0.00025 

b 488 

Figure 21: Fit of eq. (11) with the dark images by optimizing parameters c and r using log-likelihood. 
The normal component showed an optimal fit. However, poor agreement was found for intensity 
values above 1100. 
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4.2.2 Camera Model Validation 

We fitted the camera model (eq. (5)) using the obtained parameters with the histograms of the 

noise recordings by optimizing i using MLE for the validation of our camera model. For this, 

the recordings from the experiment described in Figure 17 (Section 3.2) were used where the 

EM gain was turned on. Figure 22a–c shows the optimized fits of our camera model with the 

noise recordings where a ND filter of 7.0, 5.5 and 4.0 were used. As i increases when lower ND 

filters are used, we observe a shift in the shape of the distributions. The shift is caused by the 

Poisson component of eq. (5) dominating at low intensities, and the Gamma distribution 

dominating at high intensities. As can be seen the camera model shows a more optimal fit with 

higher with the distributions of higher i (additional fits in App A.4). Furthermore, in Figure 22d 

we plotted the optimized i values on a logarithmic scale. As i increases logarithmically with 

decreasing ND (Section 3.2), the plotted values for i should fit a straight line. However, only 

the higher i values fit with a straight line, implying that the camera model works optimal from 

intensities ⪆8 photons. 

Figure 22: The camera model fitted with the histograms of the different movies of the experiment, 
using maximum likelihood estimation which optimized variable i for light intensity. The histogram fits 
are shown where the filters used had a numerical density of 7.0, 5.5 and 4.0 for a), b) and c) respectively. 
d) shows the optimized parameter i plotted on a logarithmic scale versus the numerical densities of the 
filters used in the experiment. 
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 An explanation for the deterioration of our the camera model for lower i could have 

been the use of a sequential set of filters to reach a desired ND. When a photon is reflected back 

on a filter located in the middle of the stack, it has a chance to be reflected a second time and 

still reach the camera. Consequently, i in the low light recordings are higher than expected. 

Therefore, when we fit the model to the histograms of these recordings, a higher i is required 

for a good fit than expected. Figure 22d shows an increasing error with lower NDs used. This 

can be explained by the amount of stacking increasing to reach higher NDs, consequently 

enhancing the effect of recording a higher i than expected. Therefore, if the stacking of filters 

is the reason for the poor fit in Figure 22d at lower intensities, our camera model performs better 

than expected as the expected values for i should lie at higher values in the graph. As a matter 

of fact, the dark images histogram fits with the camera model are only slightly less optimal than 

in the higher i regions (App. A.4). Furthermore, another potential explanation for the 

deterioration of our the camera model for lower i could be a wrong value used for parameter c. 

Figure 21 barely showed contributions of spurious charge to the histogram of the dark images. 

Instead of setting parameter c to a low value, we chose the value from the manual. As a 

consequence, the camera model has to fit a tail with the data that might not be there, potentially 

resulting in a slightly less optimal fit in Figure 22a. Lastly, the assumption was made that 

spurious charge is not created in the EM register, and that a more accurate camera model would 

process c in the Gamma distribution as well. However, this would mean that the camera model 

works less optimally for high i, as the Gamma distribution dominates at higher intensities. Since 

this is not the case, the assumption made in the camera model is not the cause of the less optimal 

fit in Figure 22a. 

4.2.3 Background Noise 

 We determined the background noise parameter similar to how the validation of the 

camera model was performed. First, we selected four pixels of the non-simulated dataset where 

no emitters diffused by. Subsequently, we fitted the experimental distribution of nie with the 

camera model using a maximum likelihood estimation, which yielded the intensity of the 

incident light on the camera i.  The fit is shown in  Figure 23. As we selected a region in the 

movie were no emitters diffuse by, the only photons contributing to the resulting value for i 

came from background noise. Resulting in the background value parameter of 9.775 

photons/pixel/frame. 
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 As discussed, the camera model works optimally for values of i that lie on the straight 

line in Figure 22d, which contains the value of 9.775 photons/pixel/frame. Therefore, when we 

perform simulations using this background value, we can expected the camera noise to be 

simulated optimally. However, background noise differs per experiment. Therefore, we fitted 

our camera model with the distribution of nie of other experiments (App A.5) using a maximum 

likelihood estimation, of which the resulting background values were lower (App C.2) and 

therefore in the region of i were the camera model works less optimal in Figure 22d. The 

difference in background noise could be explained by the amount of emitters located in the 

recordings, where more emitters equals more scattering and consequently more background 

noise. 

4.3 Detection Convolutional Neural Network 

4.3.1 Training the Detection Neural Network 

 We trained the detection CNN with the training set described in Section 3.4. For this, 

we removed the images of <100 photons/emitter/frame to ensure gradient descent while training 

the CNN. Therefore, we trained the CNNs with emitter intensities ranging from the green arrow 

Figure 23: The fit of the camera model with a histogram of four pixels of the non-simulated dataset by 
optimizing parameter i using a maximum likelihood estimation. 



 

38 

 

to the upper limit in the intensity histogram of the non-simulated dataset (Figure 19, Section 

4.1) 

The training process of the detection CNN is shown in  Figure 24 (Section 3.4). The observed 

curve owes it shape to the decrease in learning rate overtime, where the learning rate was set 

high at the training start causing fast gradient descent, and subsequently was lowered showing 

smaller improvements overtime to eventually end up in the absolute global minimum of the 

loss function. Furthermore, we obtained a final accuracy of ~82% during training. At first, this 

value does not seem optimized. However, various emitters in the training set had intensities 

towards 100 photons and diffusion constants towards 4e−12 m2 s−1, of which consequently the 

SNR ratio might simply be too low to distinct emitters from noise. In fact, by reviewing the 

poor detection performance of DoM in these regimes (validation set 2, Section 4.3.2), a final 

training accuracy of 82~% seems satisfactory. 

4.3.2 Validating the Detection Neural Network 

We performed detection on the validation sets using our detection CNN and DoM as 

comparison. We introduced a method to compare the two methods in a fair manor (Section 3.5), 

but we observed that our CNN had trained itself to only detect emitters in a 30×30 box in the 

centre of the images (Section 4.4.2). This was a consequence of us deliberately choosing to only 

allow the average position of the motion-blurred emitters to be located in this region, to prevent 

emission signals from falling outside of the simulated frames. Therefore, the FPs that were 

detected in the noise frames by DoM, were only counted if they were located in the 30×30 box 

for a fair comparison to remain. 

Figure 24: The training process of the detection CNN. 
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Figure 25 shows the detection results for validation set 1 where in Figure 25a the 

threshold of the CNN was tuned to equalize the TPs of both methods, whilst in Figure 25b the 

FPs were equalized. For each 125.000 frames containing an emitter, 125.000 TP detections are 

possible. Analogue to this, 125.000 FP detections are possible in the noise frames. Therefore, 

Figure 25 shows the absolute value of number of detections, whilst also showing the percentage 

of TP and FP detections compared to the maximum detections possible. As a result, Figure 25a 

can be used to compare the amount of FPs in a situation that both methods obtain as many TPs, 

whilst Figure 25b can be used to compare the TPs detections when both methods obtain as 

many FPs. 

 Figure 25 shows the detection results for validation set 2. Validation set 2 was the most 

complex set, as it contained emitters with the highest diffusion constant and lowest intensity, 

resulting in the lowest SNR visible in the frames. Interestingly, we observe an increase of 

Figure 25: Results of detections for validation set 1 using our detection CNN and DoM where in a) the 

TPs were equalized and b) the FPs were equalized. Our CNN resulted in ~250% increase of TPs compared 

to DoM. 

Figure 26: Results of detections for validation set 2 using our detection CNN and DoM where in a) the 

TPs equalized and b) the FPs equalized. Our CNN performed better than DoM with an increase of TPs 

of ~500% for the TPs. 



 

40 

 

detection performance compared to DoM with the increase of the complexity of the validation 

sets (where validation sets 3 and 4 were also taken into consideration, App. A.6). This trend 

could be clarified because CNNs are able to approximate complex functions[21,48,49]. Therefore, 

it could have learnt very complex features of which attain to motion-blurred emitters for 

detection. Contradictory, DoM utilizes ‘’strels’’ in its algorithm for detection of emitters 

(simplified explanation, see App. A.2). The strels consist of simple features e.g. square, sphere, 

disk etc. As a result, DoM potentially does not recognize more complex motion-blurred signals, 

while the CNN does. 

 Of all validation sets, the results of validation set 1 and 2 are the most important. These 

two validation sets were tuned to the median of the non-simulated dataset, and therefore 

detections performed on the non-simulated dataset will mostly have increased performance of 

~250% (8e−13 m2 s−1) and ~500% (4e−12 m2 s−1) compared to DoM. 

Another advantage of the CNN over DoM, is that the threshold of the CNN is set after 

all frames have been processed for detection. This allows for quickly changing the threshold 

until the desired true positive/false positive rate is reached, i.e. tune it to optimize the Jaccard 

index (Outlook). 

 A potential bias might be present in the detection CNN: the diffusion constant and 

intensity of the emitters were varied during training, but the background noise was not. 

Therefore, the CNN has been optimized in feature detection for limited cases. This means that 

if the CNN was trained with varying background noise, it could have learnt additional features. 

These additional features might have been visible in the noise images of our validation sets, and 

could have resulted in an increase of FPs. However, if training the CNN with varying 

background noise results in an increase of FPs, this problem could be omitted by first measuring 

the background noise in a non-simulated experiment, and subsequently using our CNN 

specifically trained on this background noise intensity (assuming constant background noise 

during the experiments). 

4.4 Localization Convolutional Neural Network 

4.4.1 Training the Localization Neural Network 

 We used our detection CNN to perform detection in the training set simulated for the 

localization CNN. Subsequently, we set a threshold of 0.5 to with as a result 511.085 TPs 
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detected. Subsequently, we used frames of the TPs to train the localization CNN, with the 

process depicted in Figure 27. 

 

Figure 27: The training process of the localization CNN. 

 As can be seen in Figure 27, the loss function was optimized relatively fast. The same 

reason as for the detection CNN contributes to this: a high learning rate is used at the start of 

the training session which is subsequently decreased to ensure gradient descent to the absolute 

global minimum of the loss function.  

4.4.2 Validating the Localization Neural Network 

 The trained localization CNN was subsequently validated. First, to validate the 

localization CNN, a detection step had to be performed on the validation sets. This was 

performed with DoM and the detection CNN, and the TPs were equalized (Figure 25a, Figure 

25a, App. A.6a and c). The frames detected as TPs the validation sets by using the detection 

CNN were subsequently used to validate the localization CNN with. Similarly, the frames 

resulting from DoM detection were used for testing the benchmark localization methods. As 

the amount of TPs were equalised, we assumed that the resulting validation sets contained the 

same ‘’difficulty’’ of frames to localize motion-blurred emitters in. Subsequently, localizations 

in the frames of the validation sets were performed. Figure 28 shows the resulting localization 

precisions of the methods used for validation set 1, and Figure 28b for validation set 2.  

 Even though the localization CNN performed worse in both cases than the benchmark, 

the same pattern can be observed as with the detection CNN: the localization CNN performs 

relatively better in the complex situation. However, due to time constraints optimization of the 

localization CNN was not fully explored (see Outlook). 
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The phasor benchmark method resulted in the best performing benchmark method. 

However, as described by Martens et al.[19], the localization precision of the phasor method 

depends on the region of interest size. Subsequently, we performed a ROI study, and the 

localization precision of every method for every validation set with respect to the region of 

interest size can be found in A.7. We observed the same ROI dependence of the phasor method 

as reported by Martens et al.[19] Subsequently, in Figure 28 the localization precisions were 

reported of all methods for were the optimal ROI size for the phasor method was used. The ROI 

dependence arises as localization errors are higher when either not all pixels containing signal 

of the emitters are located in the ROI, or when the ROI is too large and extra pixels only 

containing noise are used in the localization. The ROI dependence can be a drawback when 

unknown what the ROI size should be (determined by diffusion constant and SNR).  

The weighted centroid was the second best performing localization method. Even 

though the localization precision is worse than that of the phasor method, it is independent of 

ROI size. That means when analysing a sample with emitters that have different diffusion 

coefficients, and determining optimal region of interest sizes is difficult, the weighted centroid 

method could remain better choice than the phasor localization method. Additional research 

towards the weighted centroid was performed, and can be found in Appendix E, where we 

confirmed the known bias for the method towards the middle of the images[18]. The weighted 

centroid shows a bias towards the middle of the images. However, this bias can be reduced by 

erosion operations, as utilized in DoM 
[54].  

Figure 28: The localization precisions of all methods used for in a) validation set 1, and b) validation set 

2. All benchmark localization software outperformed the localization CNN, with phasor localization 

having the highest precision. 
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The Gaussian fitting methods performed most poorly of the benchmark methods. The 

rotational ellipsoidal Gaussian model was not included in Figure 28, as the fits did not converge. 

Convergence is drawback of Gaussian fitting, as localizations are lost due to the models often 

not converging on the motion-blurred signal (App. A8). As can be seen in Figure 28, the fitting 

with an ellipsoidal 2D Gaussian has slightly lower localization precisions than using a regular 

2D Gaussian, which was also shown by Deschout et al.[15]. 

To conclude, the benchmark localization methods outperformed the localization CNN 

with respect to localization precision. The phasor method showed the best localization 

precision, has the drawback of being dependent on ROI size. The second best performing 

method is the weighted centroid, which contradictory to phasor fitting method has the advantage 

of independence of ROI size. And lastly, the Gaussian fitting methods performed the worst of 

the benchmark localization methods, and have an additional disadvantage that localizations are 

lost because of models not converging with the motion-blur signal. The performance of 

localization methods could be summarized as: phasor fitting > weighted centroid estimator > 

Gaussian ellipsoid fitting > Gaussian 2D fitting > CNN > Rotational ellipsoidal Gaussian 

fitting. 
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5. Conclusion 

In this thesis, we investigated the use of convolutional neural networks for the detection and 

localization of the average position of motion-blurred emitters diffusing in two dimensions. 

Simulations were performed of 60×60 frames containing a motion-blurred emitter for training 

and validation of the CNNs. We tuned the parameters of the simulation software to a non-

simulated dataset to obtain reliable performances for if the CNNs are used on the non-simulated 

dataset (App. C). The parameters tuned to the non-simulated datasets contained the diffusion 

constant, emitter intensity and background noise/ 

  First, the parameter for the brightness of the emitters were obtained by analysing a non-

simulated dataset obtained from previous research[33]. We found a distribution of brightnesses 

in the experimental data set. We selected a lower, median and upper limit of 5, 135 and 312 

photons emitted by a emitter in a single frame, respectively. Second, parameters were obtained 

to simulate camera noise. This was performed by following a method described by Hirsch et 

al., which involved three different experiments using the EMCCD camera that was also used 

for the real SPT experiment[44]. The first two experiments involved taking a movie with the 

camera while the EM gain turned on and off, and by changing the light intensity by 

interchanging reflective filters. Parameter f and g for the camera model were successfully 

determined by performing a mean-variance test on the movies of the experiments. Parameter cb 

was found by a third experiment which included taking a movie with a closed shutter, resulting 

in a movie of dark images. A probability distribution function of the camera for dark images 

was fit with the histogram of the movie using log-likelihood estimation, which resulted in the 

last two parameters, c, r. However, the fit was not optimal and therefore the spurious charge 

parameter c was obtained from the manual of the camera[55].  

The camera model was subsequently validated, and it was shown that the model worked 

optimally for modelling high light intensity experiments, but deteriorated for low light 

experiments. A factor contributing to the lower performance on low light intensity experiments 

could be that for these movies several filters had to be stacked. This could have led to a higher 

transmission of photons than expected, explaining the intensity difference between the observed 

and expected intensity i, subsequently ensuring that the camera model work better than 

expected. 
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Simulations were performed to acquire a training set for the localization CNN (900.000 

frames of motion-blurred emitters)  and detection CNN (250.000 frames 1:1 motion-blurred 

emitters : noise images). Subsequently, validation sets (250.000 1:1 motion-blurred emitters : 

noise images) were simulated to test the performance of our CNNs. The diffusion constant for 

the emitters simulated in the training sets ranged from 8e−13 and 4e−12 m2 s−1, randomly 

assigned for each emitter. Similarly, the intensity ranged from 0 and 312 photons per emitter. 

The four validation sets contained combinations of the diffusion constants and intensity of 135 

and 312 photons. 135 photons used in the simulations equalized to the median intensity 

observed in the non-simulated dataset, and 312 photons was a self-defined upper limit. 

Gradient descent was first not observed during training of the detection CNN. Therefore, 

frames with emitters emitting <100 photons were removed, and subsequently gradient descent 

was observed. Validation of the detection CNN resulted an increase of performance with respect 

to published detection software as the validation sets got more complex, with ~500% more 

detections when compared to the most complex dataset, i.e. fast diffusion and low intensity. 

This result was expected as CNNs are powerful for approximating complex functions, and 

therefore it seems reasonable that its performance increases compared to a regular algorithm 

such as the benchmark detection software when the problem gets more complex. 

 The localization CNN was trained, validated and compared to published localization 

software. However, the benchmark localization methods outperformed the localization CNN in 

terms of localization precision. Interestingly, however, the same pattern for the detection CNN 

was observed, where the localization precision of the CNN relative to the benchmark methods 

increased as the validation sets get more complex. The phasor localization method resulted in 

the best localization precision. However, the method is dependent on region of interest. The 

second best method was the weighted centroid method, which in contrast with the phasor 

method has the advantage of being independent of the region of interest size. The Gaussian 

fitting methods resulted in relatively poor localization precisions, and have the additional 

disadvantage of losing localizations when the models do not fit with the data.. 
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6. Future Research 

 There are several options for extending this research. The training images used are 

60×60, which is relatively large for a localization step. The phasor method shows that optimal 

region of interest sizes, where all the pixels containing information about the emitter, are in a 

region of 13×13 (in the case of the most complex validation set). There is a large difference in 

surface area for the amount of noise in the training images and the amount of pixels containing 

information of the motion-blurred emitter. Therefore, a CNN could perhaps be trained more 

efficiently by only giving it the region of interest images. As discussed earlier, this method is 

prone to a bias towards the middle of images, as this is a local minimum in the loss function. It 

would be interesting to see how optimized the loss function can get when a localization CNN 

is trained on region of interest data when first a learning rate test is performed, and thus higher 

values of the learning rate are used at the start of the training session to find the global minimum 

of the loss function. Additionally, the CNNs could be trained with a larger training set where 

also the background noise is varied, since for every experiment the background noise differs. 

Consequently, the CNNs could be used for a wider range of experiments as long as the same 

camera is used. 

 Furthermore, to really extend the world of SPT, the detection CNN in combination with 

phasor localization could already be tested. The combination of these two methods would result 

in the most amount of true positive detections + the most optimal localization error. Moreover, 

as discussed briefly in the introduction, Lindén et al. showed that knowing the localization 

precision optimized the estimation of the diffusion coefficient precision[10]. It could be 

interesting to not only train the localization CNN to give coordinates for emitters, but also to 

return a localization precision. The localization precision could then be used to estimate the 

diffusion coefficient with higher precision. Instead of these consecutive steps, a CNN could 

also be investigated that immediately returns diffusion coefficients for emitters. 

 Another extension of this study is allowing the emitters to move in three dimensions, 

which causes more complex cases due to intensity and shape change of the PSF. A CNN could 

perhaps work better than the benchmark localization methods, as we have seen from this thesis 

that CNNs work increasingly better compared to regular algorithms when the problems gets 

more complex. Furthermore, the threshold for the benchmark detection software was set to a 

value where simply few false positives were detected, as this is undesirable in SPT. The 
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threshold of the CNN was subsequently tuned so that false positives or true positives were 

equalized. The threshold of the CNN was thus influenced by the threshold of the benchmark 

detection software. Another method to quantify how well both methods work without having 

to equalise true or false positives, is to calculate the maximum Jaccard index possible for both 

methods. The Jaccard index is a measure of how well a detection method works, and depends 

on the number of true positives, false positives and false negatives[56]. As a sidenote, the CNN 

also showed less false negatives than the benchmark detection software. The thresholds of both 

methods could subsequently be optimized separately, by tuning their threshold for which the 

Jaccard index is maximized. The Jaccard index lies between 0 and 1, where methods with a 

Jaccard index over 0.7 are considered good working methods[57]. 
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Appendix A. Supplementary Figures 

 

Figure A.1: a) Original experimental images containing the emission of fluorescent emitters. b) a ROI 

cut out of the experimental images. c) Phase vectors of the point spread function with their angles 

visible. d) The angles can be used to localize the emitters. (image from Martens et al.[19]) 

Figure A.2: Workflow of DoM detection software, where the image is convoluted with a Mexican hat 

filter, thresholded, diluted, thresholded, and finally the centroid positions of remaining spots are 

calculated. (DoM v1.2.2 by Katrukha et al.[54]) 
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Figure A.3: MATLAB script snippet used for phasor fitting. (provided in supplementary information of 

Martens et al.[19]) 
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Figure A.4: histogram fits of the other movies with the camera model where the numerical densities of 
the filters where a) 7.5, b) 7.0, c) 6.5, d) 6.0 e) 5.5 f) 5.0 g) 4.5. 
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Figure A.5: the resulting fits of the camera model with other SPT experiments using maximum 
likelihood estimation to optimized parameter i. a) The experiment which was used for parameter 
acquisition in this thesis, where quantum dots confined in 150 nm and 0.0075 NaOH M. b) confined in 
150 nm and 0.02 NaOH M. c) confined in 50 nm. d) confined in 100 nm. e) confined in 150 nm. 
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Figure A.6: Results of detections using our detection CNN and DoM where in a) validation set 3 with 
the TPs equalized, b) validation set 3 with the FPs equalized, c) validation set 4 with the TPs equalized, 
d) validation set 4 with the FPs equalized.  
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Figure A.7: The localization precision of all localization methods as function of ROI size when 
localization was performed on validation sets a) 1, b) 2, c) 3 and d) 4. As can be seen, only the phasor 
method depends on the region of interest size. 
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Figure A.8: Only converged with of Gaussian models with the ROIs are counted as localizations. Here 
the amount of converged fits are reported for the different Gaussian models using MLE and LSE. The 
blue line shows the total frames localized. a) shows the convergence for validation set 1, and b) the 
convergence of validation set 2. 
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Appendix B. Gaussian Models 

The 2D-Gaussian model is mathematically described as 

𝑔(𝑥, 𝑦, �⃗�) = 𝑝0𝑒𝑥𝑝(−((𝑥 − 𝑝1)
2 + (𝑦 − 𝑝2)

2)/(2𝑝3
2))) + 𝑝4 (12) 

with �⃗� a vector containing all parameters p, p0 the amplitude of the emission signal, p1 the centre 

coordinate x, p2 the centre coordinate y, p3 the standard deviation of the emission signal in x, p4 

the offset of the emission signal (originating from camera bias and background noise). 

 

The ellipsoidal version of the 2D-Gaussian model is mathematically described as 

𝑔(𝑥, 𝑦, �⃗�) = 𝑝0𝑒𝑥𝑝(−
1

2
(
(𝑥 − 𝑝1)

2

𝑝3
2 +

(𝑦 − 𝑝2)
2

𝑝5
2 )) + 𝑝4 

(13) 

with p5 the standard deviation of the emission signal in the y-dimension.  

 

The ellipsoidal version of the 2D-Gaussian model is mathematically described as 

 

𝑔(𝑥, 𝑦, 𝑝) = 𝑝0𝑒𝑥𝑝 (−
1

2
(
((𝑥 − 𝑝1)

2 𝑐𝑜𝑠 𝑝6 − (𝑦 − 𝑝2) 𝑠𝑖𝑛 𝑝6)
2

𝑝3
2 +

((𝑥 − 𝑝1)
2 𝑠𝑖𝑛 𝑝6 + (𝑦 − 𝑝2) 𝑐𝑜𝑠 𝑝6)

2

𝑝5
2 ))

+ 𝑝4 

(14) 

with p6 the rotation angle in radians with respect to the x and y coordinate axes. 
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Appendix C. Table of All Parameters 

Parameter Value 

Simulation (fixed parameters)  

Field of view 5.2×5.2 μm 

Camera grid 60×60 pixels 

Pixel size 86.67 nm 

Frametime 0.05 s 

Number of emitters/frame 1 

Background noise 9.775 photons pixel−1 frame−1 (195.5 photons s−1 pixel−1) 

PSF  

PSF sampling 𝑥, 𝑦 10 nm 

PSF sampling 𝑧 10 nm 

Convolution resolution 1 nm 

Cut-off in 𝑧 1 µm 

Wavelength 600 nm 

Refractive index 1.518 

Magnification microscope 91 

Numerical aperture 1.40 

Camera  

Quantum efficiency (q) 0.9 

Readout noise (r) 37.3955 

Spurious charge (c) 0.00025[55] 

Electron magnification gain (g) 71.0067 

Camera bias (cb) 488 
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Electrons per ADC (f) 1.1512 

Simulation training set  

Number of frames 1.000.000 

Diffusion constant Random between 4e−12 and 8e−13 m2 s−1 

Emitter intensity Random between 0 and 312 photons/emitter/frame 

Simulation validation set 1  

Diffusion constant 8e−13 m2 s−1 

Emitter intensity 135 photons/emitter/frame 

Simulation validation set 2  

Diffusion constant 4e−12 m2 s−1 

Emitter intensity 135 photons/emitter/frame 

Simulation validation set 3  

Diffusion constant 8e−13 m2 s−1 

Emitter intensity 312 photons/emitter/frame 

Simulation validation set 4  

Diffusion constant 4e−12 m2 s−1 

Emitter intensity 312 photons/emitter/frame 

Detection step[54]  

PSF sigma 2 pixels 

Pixel size 86.67 nm 

Threshold 3×SD (See A.X) 

Gaussian fitting  

p0 Max pixel value image – 1030 (avg. noise value) 

p1 x position obtained from detection step 

p2 y position obtained from detection step 
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p3 3 pixels 

p4 1030 (avg. noise value) 

p5 3 pixels 

p6 0 rad 

Table C.2: Parameter i determined for other non-simulated datasets. 

Experiment i in photons/pixel/frame 

0.0075 NaOH M and quantum dots confined in 150 nm 

(experiment used for parameter acquisition) 

9.7747 

0.02 NaOH M and quantum dots confined in 150 nm 2.8140 

Quantum dots confined in 50 nm 2.1910 

Quantum dots confined in 100 nm 3.3486 

Quantum dots confined in 150 nm 3.3351 
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Appendix D. Resizing the PSF 

For the PSF to be convolved with sub-pixel precision, the simulated PSFs are shifted and resized 

to fit with the dimensions of the pixel grid (Section 3.1). However, during resizing it is 

important that the amount of photons are kept the same, for the accuracy of the SNR. One of 

the methods interpolates pixel values of the PSF to end up at the correct dimensions, which is 

therefore inaccurate. Different methods for resizing were tested by convolving the resized PSFs 

with 10 photons. The absolute PSFs after resizing and convolution using both methods are 

depicted in Figure D.1a. The absolute and relative difference between the two resized PSFs are 

depicted in D.1b. 

 

Figure D.1: a) The PSF after resizing and subsequent convolution of 10 photons, using the two different 

methods. b) The absolute and relative difference between the PSFs in a). 

As can be seen in Figure D.1, the methods result in slightly different resized PSFs. The reason 

is that when the PSF size is reduced using interpolation, the photon intensity at a pixel can differ 

drastically. An enlargement of the PSF to a size so that the PSF can be subsequently binned 

into the desired smaller PSF solves this problem. Figure D.b shows that there is only a small 

difference in the middle region of the resized PSFs (the region between −4 and 4 pixels). 

However, the region in the middle only differs about 0 to 0.05 pixel counts, which is a negligible 

difference. As the more precise extrapolation + binning requires an extra step, the computation 

time of both methods differ. The interpolation method required 56.97 seconds to resize and 

convolve 5000 PSFs, whilst the more precise extrapolation + binning method required 206.40 

seconds. The minor difference in the intensity values for the two different resizing methods and 

the major difference in computation time made us choose to work with the faster interpolation 

method for the simulations. 
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Appendix E. Centroid Estimator 

 Additional research was performed towards localization using a centroid estimator. Two 

methods for centroid localization were developed: referred to as the ‘’background method’’ and 

the ‘’threshold method’’. Figure E.1 shows the working mechanism of both methods, were in 

Figure E.1a centroid localization is performed using eq. (8) on the unprocessed signal of a 1D 

emitter, resulting in a wrongly predicted centroid position estimation. Moreover, Figure E.2 

shows the working mechanism of the background method, where the average noise values are 

removed from the 1D image, resulting in a correctly predicted centroid location. Lastly, the 

threshold method is described in Figure E.2, where all values below a threshold are set to zero, 

resulting in a correct centroid positions if the threshold is set well enough above the average 

noise values. 

 The background method was tested by performing a simulation of a single motion-

blurred emitter located at position x = 10 in a pixel grid of 19×19. Subsequently, the background 

method was used to detect the emitter as a function of average background value. The correct 

average background value was contained in the range of values used. Figure E.2a shows the 

estimated centroid positions for the average background values used, with a line intercept drawn 
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for the correct centroid position for x, 10. As can be seen, not using the exact average 

background value results in a localization error. Furthermore, the horizontal asymptotes 

approach the centre coordinate of the image, introducing the known bias of the centroid 

method[18].  

 The centroid method was tested by performing a simulation of 95.000 motion-blurred 

emitters in a 19×19 pixel grid, where sets of 5.000 emitters each had their average coordinates 

located exactly in the full range of x-pixels in the camera grid, i.e. (1,10), (2,10),… (19,10). 

Subsequently, the threshold centroid method was performed for each set of emitters, while also 

varying the threshold value, summarized in Figure E.3. The threshold was defined as a value 

between the average noise and the amplitude of the signal, i.e. a threshold of 0 equals the avg. 

noise, threshold of 0.5 equals the value between avg. noise and amplitude, and threshold of 1 

equals the amplitude of the signal. Consequently, Figure E.3 shows that the threshold centroid 

method has a precision that is dependent on location of the emitter in the image. Further 

investigation showed that using a lower threshold results in an increase of noise pixels not being 

thresholded. As these pixels are evenly distributed through the image, their centroid position is 

located in the middle of the image. Therefore, by adding these pixels in the calculation of the 

centroid position of the emitter, the estimation will move towards the middle of the image. 

Therefore, as can be seen in Figure E.3, when approximating the centroid position of an emitter 

located on the side of an image, e.g. x = 5, the centroid method with a lower threshold will show 
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a higher bias towards the middle, resulting in a larger localization error, and therefore worse 

localization precisions. 

 DoM localization uses a complicated algorithm that utilizes the threshold method[54]. In 

addition, they perform dilation and erosion operations in order to remove the isolated noisy 

pixels, to try to emit the bias towards the middle of the images.  

 


