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Abstract 
General movement assessment (GMA) is the most predictive tool for physical impairments like 
Cerebral palsy (CP). However, GMA has its limitations which might be diminished with the 
utilisation of modern deep-learning tools. The software packages DeepLabCut (DLC) and 
Anipose offer a markerless multi-camera approach to build an extensive and dependable 
open-source database. Fifteen congenital heart patients and prematures, infants-at-risk for 
CP, were performing a markerless GMA surrounded by three cameras. With a MATLAB 2D 
analysis, we show the achievement of DLC on markerless labelling of limbs on par with human 
labelling. Retraining the neural networks offer refinement of more challenging markers like 
smaller joints. The 3D reconstruction, obtained with Anipose, showed good tracking as 
indicated by a constant length of rigid bodies. Furthermore, our preliminary MATLAB results 
show the possibility to analyse positional data in 3D and kinematics of limbs and joints. We 
compared those aspects of one infant, with the neurological and MOS-score outcomes. Those 
findings established that a 3D reconstruction can reveal different precise kinematic 
parameters, but the database and the parameters should both be expanded. 
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Background 
Cerebral palsy (CP) is defined as a group of disorders of movement and posture development 
causing activity limitation that are attributed to non-progressive disturbances that occurred in 
the developing foetal or infant brain1. The prevalence of CP is 2 out of 1.000 live births 2. The 
most common increased risks to develop CP are being born at a low weight or before 28 weeks 
gestational age (GA), neonatal arterial ischemic stroke (NAIS), hypoxic-Ischemic 
encephalopathy (HIE) or perinatal asphyxia 3,4. CP diagnosis is quite a challenge because 
most of those infants-at-risk are developing a normal motor outcome 3. The probability to 
develop CP in infants born preterm ranges from 5 to 15% and up to 40% in infants born at 22 
to 25 weeks GA 4. Among infants born extremely premature, with major brain injury like 
asphyxia or NAIS, only a third will develop CP. In addition, 29% of infants born at term with CP 
were found to have a diagnosis of HIE at birth 3,4. Besides that, infants have activity limitations, 
because they could not perform functional tasks like writing or climbing stairs. The presentation 
of motor type and topography classifications between infants and older children differ and there 
is a lack of definitive biomarkers at this stage. Therefore, an early diagnosis of CP is quite a 
challenge and there is no clear definition of CP in an infant who is a few months old. For this 
reason, severe symptoms of CP can only be diagnosed after 11 months but mild cases can 
also be diagnosed up to 24 months of age 5. Even with those difficulties, it is crucial to find 
early intervention within the first year of the infant’s life. It has been proven that it has an impact 
on the neurodevelopment and functional attainment, which improves neuroplasticity of the 
developing brain and motor outcome in childhood later-on6.  

There are standardised tools to detect the risk of motor developmental diseases like 
CP within the first year6,7. Those tools include, for instance, cranial ultrasound, magnetic 
resonance imaging (MRI), and neurological examination. On neonatal MRI, predictors of CP 
may be identified as an asymmetrical development or injury of the posterior limb of the internal 
capsule (PLIC), middle cerebral peduncle or white matter lesions in the corticospinal tracts 
(CST)6,8. However, several studies have proven that abnormalities in general movements 
(GMs) are the most predictive for the development of CP later-on, with a sensitivity of 98% and 
a specificity of 91% 7. General movement assessment (GMA) looks at spontaneous 
movements in foetuses, preterm and term-born infants during their first few months of life, 
defined as gross movements of body parts like the neck, arm and trunk with no rhythmic pattern 
or regulatory sequence. GMs change in intensity, force, and speed  and can be classified in 
different definitions depending on the age of the infant 9. At term age and shortly after, the GMs 
called writhing movements (WMs), while the Fidgety movements (FMs) last between 6 till 8 
weeks. FMs become pronounced at 12-16 weeks and vanish around 20 weeks of post term 
age (PTA)9.  

The Prechtl GMA, based on the gestalt perception, is the most commonly used GMA. 
Einspieler adapted the Prechtl to a more detailed GMA with different score sheets for separate 
body parts like the upper and lower extremities, the neck and the  trunk7. Secondly, Einspieler 
came with another novelty, the motor optimality score (MOS) which also contributes to 
understanding later CP prognosis, but also includes early predictors which distinguish the 
diverse types and the CP severity 10. In general, the unobtrusive way of GMA screening in 
infants is a huge advantage. It lasts 3 to 5 minutes and interrupting the infant is not necessary, 
because it consists of an observational video screening. The method is therefore very 
applicable and inexpensive. Although those novelties are important, GMA still lacks in various 
aspects. It is a subjective tool because of the enormous variability of human judgements. 
Furthermore, GMAs are committed by certified assessors. Expertise training of those 
assessors limits this tool’s implementation as a daily clinical routine. There are still more 
techniques needed to scale up this valuable tool whereby the modern deep learning 
technology could be helpful 11–13. Automatic motion analysis has already been carried out on 
multiple animals and humans14. An automatic model for GMA would make outcomes more 
efficient and objective because it is a repetitive system and independent from the assessor’s 
tiredness or emotional state9. Additionally, generation of an automatic tool would help 
researchers to compare their studies and build an extensive and dependable open-source 
database. So far, studies already focus on an automatic GMA model 15–21. However, none of 
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them did a markerless 3D analysis which supplies more precise kinematic parameters than a 
2D analysis 22.  

In this paper, we implemented markerless 3D analysis on approximately 3 months old 
infants-at-risk performing a GMA during FMs. We have included fifteen infants who performed 
a GMA. Besides this, we also performed another assessment called hand assessment (HAI) 
on thirty-one infants-at-risk. The HAI contains a playful session to assess hand movements in 
6 to 9 months old infants-at-risk. We used the software package DeepLabCut (DLC) to label 
markers on the videos of the fifteen GMA performances. The software package Anipose is 
used to obtain a 3D reconstruction out of the DLC output. Before that, we critically analysed 
the 2D output of DLC in MATLAB, which shows that using a multi-camera approach combined 
with multiple deep neural networks, achievement of limbs labelling on par with human labelling 
is reached. Digits, smaller joints, are more challenging for the neural network, but become 
better whenever the neural networks are reputationally refined. The 3D reconstruction enables 
a 3D scatterplot, calculation of the length of rigid bodies and information about the limb and 
joint kinematics. Above this, we compared those aspects with the neurological outcome 
assessed by a fellow-neonatologist, and with the manual Einspieler MOS-score assessed by 
occupational therapists.  
 

The aim and hypothesis 
The aim of this study is to assess whether precise movement kinematics, during the FMs stage 
in approximately 3 months old infants-at-risk for cerebral palsy, could be detected from a 
markerless multi-camera approach combined with the software packages DLC and 
Anipose11,12,23. We hypothesised that these precise movement kinematics correlate with the 
manual MOS-score of the movements and with the integrity of the CST as assessed from the 
MRI scans. Such insights are crucial to set individual therapy goals and thus optimise the 
infant’s functional potential. 
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List of abbreviations 

AOV - Angle Of View 
BW - Birth Weight 
CA  -  Corrected Age 
CP - Cerebral Palsy 
DLC - DeepLabCut 
FM - Fidgety Movements  
GA - Gestational Age 
GMA - General Movement Assessment 
HAI - Hand Assessment for Infants 
HIE - Hypoxic-Ischemic Encephalopathy 
MOS - Motor Optimality Score 
MRI - Magnetic Resonance Imaging 
NAIS - Neonatal Arterial Ischemic Stroke 
PLIC -  Posterior Limb of Internal Capsule 
PTA - Post Term Age 
SMA -  Spinal Muscular Atrophy 
STD - Standard Deviation 
WM  - Writhing Movements 
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Material & Methods 
Participants 
This study holds an interdisciplinary collaboration of the DDOD laboratory, the Center for Child 
Development, Exercise and Physical Literacy and the neonatology department of the 
Wilhelmina’s Children hospital in Utrecht. One hundred participants were carefully selected 
from the neonatology- and the congenital heart outpatient clinic to perform a GMA or a HAI. 
For the GMA, fifteen participants were included and did perform the task. Inclusions, 
exclusions, and specific numbers are given in appendix 1. Besides, appendix 2 contains a 
Layman’s summary, describing the project specifically for parents. The group of fifteen 
participants consist of ten congenital heart patients (gestational age (GA) range 37 – 40  
weeks), three prematures (GA range 25 – 31 weeks) and two near-prematures defined as 
near-term (GA range 33 – 34 weeks). A detailed overview is given in table 1. 
  

Video measurements 
Data collection is performed with usage of the software package Bonsai, which enables 
synchronous multi-camera recording. Three high-quality IDS UI-3060CP-C-HQ_Rev_2 
cameras, with resolution of 1936 x 1216 pixels and acquisition speed of 100 Hz, have been 
utilised. The participants underwent a GMA with a duration of 4-10 minutes without 
interruptions and within a low-stimulus environment. Figure 1 illustrates the set-up of a 
markerless GMA performance. The Brazelton’s states of Arousal 24 are used to quantify the 
behavioural state of the infant during the measurements. The author refers to appendix 3 for a 
detailed description of each state of arousal. The video duration, their corrected age at the time 
of measurement (CA) and their state of arousal is also noted in table 1. As already mentioned 
in the background, it is important to measure the infants between 12-20 weeks PTA to detect 
the FMs during GMA measurement. All the infants have a PTA within this range, so have 
performed a GMA during their FMs period. The infants born preterm (5,8,9,10 and 14) must 
be corrected for their age (CA) and all do fall within the range as a result.   

 

Neurological outcome 
A fellow-neonatologist, from the neonatology department of the Wilhelmina’s Children hospital 
in Utrecht, critically analysed the brain MRI-scans of the fifteen included infants. The MRI scans 
were all performed any days after the infant’s GA. The fellow-neonatologist concluded for each 
infant if there were abnormalities, the location of this etiology and the associated risk for motor 
impairments like CP. A detailed overview of this is given in table 4. 
 

Manual MOS-score of GMA 
Two occupational therapists, from the Center for Child Development, Exercise and Physical 
Literacy at the Wilhelmina Children’s Hospital, manually scored the fifteen children on their 
movement quality and spontaneous motility by using the MOS-score 25. The scoring was based 
on the front camera video of each infant, which are the same used for the 3D-model. The 
assessors were blinded from the 3D video-analysis or neurological outcome when scoring. 
 

Figure 1. The setup of the markerless GMA 
performance. Three cameras are pointing to the box 
wherein an infant is performing a GMA. The red 
coloured area is the angle of view (AOV) of the right 
camera, the yellow AOV defines the front camera, 
while the blue one defines the left camera.  
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2D-video analysis 
For the quantitative GMAs, videos were annotated using the deep learning DLC tool 11,23. 
Markers were carefully selected and manually applied upon the digits and limbs at twenty 
frames of each infant’s video. Those manual placed markers provide DLC neural network 
training to track the positions of those markers at the remaining frames 26. To have a clear 
overview of the working mechanism, the DLC protocol published a working flow, illustrated in 
figure 2 of the paper26. To provide a specific protocol for this research project, a manual has 
been created which explains each of those steps, with a given time-indication, in more detail 
(appendix 4).  

To enable comparisons with the manual MOS-score of the GMAs, we applied markers 
such as the nose, eyes, bigger joints (e.g., shoulder, hip, elbow, knee) and smaller joints (e.g., 
toe, MCP- and top digits). Those markers were trained by DLC to reconstruct movement of the 
arms, trunk, head, legs, hands, and feet. First, a literature search in choice of markers in earlier 
GMA studies was performed15,16,18,27,28. Due to the complexity of human motion, the infant’s 
movement can only be obtained in different body segments. Those multiple rigid bodies could 
be defined as star elements which do not vibrate or deform. To obtain limb kinematics (e.g., 
thigh), at least three markers (e.g., hip, knee, and ankle) are necessary to track the rigid body 
over time. The joints could be seen as switching points between the rigid bodies of the infant’s 
body, which provide calculation of both rigid bodies and it minimises friction or marker detection 
errors. To calculate movement of all rigid bodies, we placed markers on the joints, but also on 
the end of body parts to still have three markers for the lower legs and digits (e.g., toe and top 
digits). The direction of the infant’s head can be determined by the position of the nose and/or 
eyes. In addition, upper-limb digit markers were also applied to get comparable parameters 
within the MOS-score 25 and to test whether those movements could also be a reliable 
predictive motor outcome in infants around 3 months of age 29. An overview of the selected 
markers, and the rigid bodies in between, are given in figure 2. Another requirement of human 
movement detection is that the markers should not be lined up in a row, but they should be 
spread out across the surface to provide 3D distributions. All earlier GMA 2D videos do lack 
this essential requirement, however our research project provides calculations of movement 

Infant Category Gender GA 
(Week + Day) 

BW 
(Gram) 

Video 
(min) 

PTA 
(weeks) 

CA 
(weeks) 

State of arousal 

1 Cardio Male 40 + 0 3350 10 14.0 14.0 Active awake 

2 Cardio Male 39 + 1 4000 6 16.1 15.3 Crying 

3 Cardio Female 39 + 3 2400 8 13.7 13.1 Quiet alert 

4 Cardio Female 40 + 0 3700 10 13.3 13.3 Active awake 

5 Preterm Male 31 + 0 1850 6 28.6 19.6 Crying 

6 Cardio Female 39 + 5 3020 10 14.6 14.3 Active awake 

7 Cardio Male 38 + 5 3000 8 13.6 12.3 Active awake 

8 Near-term Female 33 + 2 1965 10 23.0 16.3 Active awake 

9 Near-term Male 34 + 5 2844 10 24.1 18.9 Active awake 

10 Preterm Male 25 + 4 670 10 31.0 16.6 Active awake 

11 Cardio Male 38 + 2 3536 10 13.6 11.9 Active awake 

12 Cardio Male 38 + 6 3078 10 12.9 11.7 Active awake 

13 Cardio Male 37 + 1 2657 6 14.6 11.7 Active awake 

14 Preterm Male 31 + 6 1670 7 25.6 17.4 Active awake 

15 Cardio Male 38 + 6 3980 4 18.0 16.9 Quiet alert 

Table 1. Characteristics and video information of the fifteen included participants 

.  
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capabilities in 3D distribution. Finally, all markers need to have unique markers configuration 
to keep them separate, which can be easily achieved through the DLC tool by labelling them.  

To inspect the labelling errors, MATLAB has been used to critically analyse the 2D 
output of DLC. Eight infants performing a HAI were analysed in MATLAB to test whether it 
would be better to train the videos of each different camera together or separately in DLC. 
After this, three separate networks have been trained for thirteen infants performing the GMA 
(infant 1-13 of table 1). The output of those three neural networks were screened in MATLAB 
and retrained afterwards. In the network refinement stage, infant 14 and 15 were added. This 
means that those infants are only trained once.  

 
3D-video analysis 
The software package Anipose is using the satisfactory output of DLC to create a 3D 
reconstruction of the quantitative GMAs, and will enable 3D kinematic analysis based on our 
videography12. MATLAB has been used to critically analyse the 3D distribution in space, the 
length of the rigid bodies, the kinematics, and the joint kinematics. A median filter has been 
applied to the data before analysis, to remove noise.   
 
 

  

Figure 2. An overview of the selected markers used in DLC. On the left subfigure the markers are 
illustrated on the infant’s body. On the right subfigure the rigid bodies are also presented in between 
the selected markers.  
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Results 
A deep learning DLC approach has been utilised to place markers on video-frames. To 
evaluate the achievement of labelling by DLC (deep learning video analysis tool11,23), a 
MATLAB analysis is performed that allows visualisation of the 2D data and the associated 
certainty of the created neural network.  

To first receive information about neural network building approaches, the HAI 
database is used to test whether building separate neural networks for each camera’s angle 
of view (AOV) has a higher accuracy than one neural network for all three AOVs combined. 
The 3D combined neural network contains all twenty-four videos of eight infants performing 
the HAI (three videos per infant). The three separate networks for the left-, right- and front- 
camera hold each eight videos (one video per infant) and are additionally trained. DLC 
generates for each neural network a train- and test-error to quantify the certainty of marker 
detection. The train- and test-error are given by the average distances, in pixels, between the 
markers placed by the assessor and by DLC (detailed descriptions about the process are in 
the DLC protocol 26). The training error is a classification error which is based on the manual 
placed markers as well as the DLC placed markers. So, the model is applied to the data after 
the training phase. On the other hand, the test error uses the dataset twice to calculate the 
classification error besides the training of the model which means there is a calculation on the 
data before the training phase (on the assessor placed markers). The error sizes for each 
network are displayed in table 2 and shows the errors for all markers, and markers above a 
certain threshold (p cut-off of 0.6). Overall, the distance between the assessor placed markers 
and the DLC placed markers are more minimised in the separated networks than in the 
combined 3D neural network, which concludes that building separate networks for each 
camera would do better marker detection in DLC. So, for this reason we applied the separate 
neural networks approach to the GMA performances of fifteen infants (ten congenital heart 
patients (GA range 37 – 40 weeks), three prematures (GA range 25 – 31 weeks) and two near-
prematures defined as near-term (GA range 33 – 34 weeks)).  

 
  

Network Train error (pixels) Test error (pixels) 

3D combined HAI  2.67  9.13  

    - with a p cut-off of 0.6 2.67 6.45 

HAI Left camera 2.51 3.24 

    - with a p cut-off of 0.6 2.44 2.52 

HAI Right camera  2.33 7.22 

    - with a p cut-off of 0.6 2.33 6.15 

HAI Front camera  2.11 16.34 

    - with a p cut-off of 0.6 2.11 7.75 

Network Train error (pixels) Test error (pixels) 

GMA Left camera 2.53 5.25 

- with a p cut-off of 0.6 2.41 4.47 

GMA Right camera 2.42 6.12 

- with a p cut-off of 0.6 2.17 5.43 

GMA Front camera 1.85 5.5 

- with a p cut-off of 0.6 1.82 4.55 

Table 2. Train and test errors of the trained HAI neural networks 

.  

 

Table 3. Train and test errors of the trained GMA neural networks 
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We next assessed a 2D-analysis on the GMA database. The GMA train and test errors are 
illustrated in table 3, which shows similar outcomes as the HAI-database (an average of 2–3-
pixel distances). The output of the DLC contained CSV files includes information of each 
marker (x- and y- coordinates within all frames and the associated likelihoods). To make the 
movement kinematics more dependable, it is important to only include the frames which have 
a likelihood above a certain threshold. To make an informed decision about where to put the 
threshold, a determination of all likelihoods of all marker detections have been created 
separately for each GMA performance (figure 3). This revealed that most markers are placed, 
within frames, with a fraction of 0.8-1 (likelihood of 80-100%). Only a small fraction of markers 
was detected with a high uncertainty of 0-0.1 (0-10%). So, the certainty of labelling by the 
neural networks is dichotomous showing overall high certainty. We could therefore place a 
likelihood threshold at 0.8, which would still include around 90% of alle observations.  

We then compared the marker detection between all three neural networks. A mean 
fraction of frames, above the 0.8 threshold, have been created for thirteen infants (infant 1-13 
in table 1). Figure 4 illustrates seven markers with their mean fraction for each separate neural 
network (a distinct colour for each AOV) and their associated standard deviation (STD). Marker 
detection depends on multiple variables like the certainty of the neural network and the quality 
of the cameras. Figure 5 shows the high-quality of the cameras because the smaller joints are 
easy to distinguish (IDS UI-3060CP-C-HQ_Rev_2 cameras, with resolution of 1936 x 1216 
Pixels). However, smaller joints like the digits do overall have a lower fraction in figure 4 (e.g., 
Right middle finger MCP and top). This indicates that the lower fractions are at least not due 
to error sizes or because of camera resolution. Furthermore, easily observed markers were 
detected by all the cameras at high fractions (e.g., nose), and detection of bigger joints were 
also at high fractions but do differ between the cameras because of often-occluded locations 
in their AOV (e.g., left- and right wrists and ankles). The left camera shows the lowest fractions 
because this camera is not optimally located, attached lower on the wall, which creates more 
occluded locations.  
 

Figure 3. All frames and their likelihoods in marker detection by DLC. This figure illustrates the certainty 
of the neural network marker detection in one GMA measurement. A clear dichotomous result is 
shown, which means that the neural network has in 90% (0.8-1) of all frames a high certainty of marker 
detection and shows in 10% a completely uncertain outcome (0-0.1). A threshold of 0.8 (red line) is 
chosen for further analysis.  
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In addition, we visualised the marker distributions to compare those with the body part 
orientations from the video. We obtained the graphs illustrating markers over time in space, by 
implementing x- and y- coordinates within each frame for each marker in MATLAB. The nose 
and bigger joints markers, as within figure 4, have been used to illustrate the orientation of the 
markers in space compared to the body parts orientation on the video. Figure 6 contains three 
graphs (obtained with MATLAB) which represent all three camera AOVs. Underneath the 
graphs are snapshots of the video to illustrate the markers and the orientation of the body parts 
in the video. It clearly shows that the MATLAB graphs of the markers are perfectly in line with 
the orientation of those body parts on the videos.  

Figure 4. Mean fraction of marker detection of thirteen infants displayed for each DLC neural network.  
Markers that can be easily observed are detected by all the cameras at high fractions (e.g., nose). 
Bigger joints are also detected at high fractions but do differ between the AOV of the cameras because 
of often-occluded locations (e.g., left- and right wrists and ankles). However, smaller joints like the digits 
do overall have a lower fraction. Overall, the front (e.g., yellow) camera has a higher fraction of marker 
detection than the right- (e.g., red) or left (e.g., blue) camera.  
 

Figure 5. A frame of the infant’s hand during a GMA performance. The digits can easily be 
distinguished showing a high-quality of the cameras, which is needed to receive a correct marker 
detection in DLC.  
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Figure 7. The post-refinement fractions of all frames and their likelihood in marker detection by DLC. 
The figure illustrates the certainty of the neural network marker detection in one GMA measurement. 
Compared to the pre-refinement GMA neural networks, illustrated on the right side of this figure, or in 
figure 3, the dichotomous distribution is shifted more to the high certainty side. The redline is the 
chosen threshold for marker detection. 

Figure 8. The post-refinement mean fraction of fifteen infants displayed for each network. The figure 
illustrates the fraction values for each GMA neural network for certain markers like nose, left- and 
right wrist, left- and right ankle and the MCP- and Top of the right middle digit. Compared to the pre-
refinement GMA neural networks, illustrated on the right side of this figure, or in figure 4, the bigger 
joints do not show big fraction differences. However, the smaller joints, digits, show better marker 
detections.  
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In addition, we refined and retrained the neural networks to optimise the marker detection 
(detailed descriptions about the process are in DLC protocol 26). Post-refinement figures have 
been compared to the pre-refinement figures to show the efficiency of refinement. Before 
retraining, two infants were initially added to the neural networks (infant 14 and 15 of table 1). 
Figure 7 displays the certainty of marker detection after refinement. The uncertain fractions at 
the post-refinement stage (figure 7) are significant less than in the pre-refinement stage (figure 
3). For this outcome, a two-sample Kolmogorov Smirnov test has been performed (D= 0.163, 
p<0.01). Figure 8 displays the mean fraction of fifteen infants after refinement.  Unfortunately, 
markers detection did not significantly improve according the one-way ANOVA test (F(41)= 
2.83, p= 0.1). However, detection of smaller joints (e.g., digits) is significant improved (t(10)= 
-2.43, p<0.05) at the post-refinement stage (figure 8) in comparison to the pre-refinement stage 
(figure 4), according a paired t-test. To conclude, the figures perfectly show that refinement 
matter to improve marker detection in the neural networks, especially the smaller joints.  

We then tested the fraction of occlusion of the smaller joints or digits. The neural 
networks cannot perform high certainty marker detection if body parts are not appearing in the 
AOV during video measurement. Therefore, the fraction of marker detection is also dependent 
on the AOV of the cameras and their occluded locations. The digits are important to critically 
analyse because earlier studies did not place markers on those body parts during the GMAs. 
We did place those markers to receive similar parameters as within the MOS-score25 and to 
test whether those movements could also be a reliable predictive motor outcome in infants 
around 3 months of age. Additionally, the digits have the lowest fraction of marker detection 
that might be due to occlusion. Figure 9 displays the fraction of camera detection per finger 
(we combined the data of the MCP and top digit). The digits were detected around 80% of the 
time (Mean 0.82 ± SD 0.07) in two (yellow) or more cameras (purple), which concludes that 
partial (red) or entire occlusion (blue) of those digits did not appear often. This implies that low 
fraction in marker detection all depends on the neural network training. Fortunately, this can 
be improved by refining and retraining the neural networks.  
  

Figure 9. The fraction of the number of cameras detecting each finger (MCP and top digit combined). 
A small fraction around 5-8% represent the frames wherein none of the cameras could detect the digits 
(e.g., blue colour). Only one camera detecting each finger occurred in 10-20% of the frames (e.g., red). 
Two cameras detecting a finger occurred around 40% (e.g., yellow). All three cameras detecting the 
similar finger occurred in 15-50% of the frames (e.g., purple). Overall, each finger is detected most often 
by two cameras or more.  
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Before creating a 3D reconstruction, it is important to understand the motor onset and the 

involved trajectories within the brain. The CST is involved in the motor onset and is illustrated 

in figure 10. The areas within this CST are the motor cortex and the posterior limb of the internal 

capsule (PLIC). As already mentioned in the background, injury to the CST or basal ganglia 

could be seen as an early predictor of cerebral palsy. Neonatal MRI scans need to show 

asymmetrical development or injury of the PLIC, middle cerebral peduncle or white matter 

lesions of the CST. Abnormal myelination of the PLIC has a specificity and sensitivity of 29% 

and 98%. The negative predictive value of absent PLIC myelination and absent FMs is 90% 

for any and 98% for moderate or severe CP 6. A description of the found brain abnormalities 

in all fifteen infants, according to the fellow-neonatologist, are in table 4. The characteristics of 

those infants are described in table 1. Three infants have a higher risk to develop CP because 

of their brain abnormalities (infant 4, 6 and 14 of table 4). Other infants did have brain 

abnormalities but those are not located in the region of interest (CST; figure 10). Figure 11 

illustrates the abnormalities within the region of interest of the three infants-at-risk for CP. If we 

create a 3D reconstruction, we must focus on atypical movement patterns, especially on those 

three infants.  

  

 

 

 

 
 

R 
L 

L 

R 

Figure 10. A clear overview of the corticospinal tract 
(e.g., yellow line) which is involved in the motor 
onset of the human body34. The brain areas, 
associated with motor onset, are the motor cortex 
and the posterior limb of the internal capsule 
(course past the basal ganglia). 
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Infant Category Etiology Location of Etiology Risk of motor problems 

1 Cardio Small ischemic lesion Right None 

2 Cardio Ischemic lesion  Right> Left None 

3 Cardio Two small ischemic lesions Left and right None 

4 Cardio Multiple ischemic lesions Left and right Small chance 

5 Premature No MRI performed - None 

6 Cardio 
Haemorrhagic infarction, 
asymmetrical myelinisation 

Right Small chance 

7 Cardio 
Subdural bleeding and ischemic 
lesion 

Right None 

8 Near-term No particularities - None 

9 Near-term Temporal bleeding Right None 

10 Premature No particularities - None 

11 Cardio No particularities - None 

12 Cardio No particularities - None 

13 Cardio 
Subdural bleeding and white matter 
oedema  

Right None 

14 Premature Intraventricular bleeding Left and right Higher chance 

15 Cardio No particularities - None 

Infant 6. Haemorrhagic infarction, 

asymmetrical myelinisation 

Infant 3. Multiple ischemic lesions Infant 14. Intraventricular bleeding 

Figure 11. The MRI scans of the GMA performed infants-at-risk for CP. Infant number 3 shows multiple 

ischemic lesions within the CST. The ischemic white lesions appear hypo-intense within a FLAIR MRI 

scan (illustrated in the red box). Infant 6 has asymmetrical myelinisations in the PLIC, visible in a T1 

weighted MRI. A clear representation of the PLIC is visible on the left hemisphere (green box), whereas 

the right hemisphere (red box) shows an unclear hyperintense white line. Infant 14 has the highest 

chance to develop CP, because of the intraventricular bleeding within the region of interest (red box). 

The red box shows scarring tissue which appear as hyperintense on a T1 weighted MRI scan. Infant 6 

and 14 do have more multiple ischemic white lesions, however those are not mentioned because they 

are not located within the PLIC or CST.  

L R 

Table 4. Clinical outcomes based on MRI data of the GMA infants 
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After the satisfactory 2D-analysis output, we attempted to create 3D reconstructions of those 
fifteen infants performing GMA. The software package Anipose used the calibration videos 
(made on the similar dates as the GMA performances) combined with the DLC output of the 
GMA videos to create such a 3D model (a detailed description of the process is given in the 
Anipose article12). However, the errors of fourteen calibration videos were impressively high, 
so those 3D reconstructions did not show an infant orientation as we aimed for. At least, 
Anipose created a suitable 3D reconstruction of only one infant which had a calibration error 
of 0.52 (appendix 5). Therefore, the 3D-analysis has only been performed on the 3D 
reconstruction of infant 10. According to the fellow-neonatologist, the infant showed no 
particularities on the MRI scan (table 4). Infant 10 was born before 28 weeks and low-weighted, 
which are two risk factors for CP (table 1). The manual MOS-score of GMA was 26 out of 28, 
which is almost a healthy motor performance. He did not receive all 28 points because he 
showed atypical jerky movements instead of a normal smooth and fluent motor representation. 
The next analysis will test whether those outcomes are in line with our 3D reconstruction 
calculations. Before analysis, a median filter has been applied on all 3D data. 

We first assessed a scatter plot with MATLAB to check if the orientation of the markers 
is in line as expected from the orientation of the 2D output. The identical markers within figure 
6 have been used to illustrate the 2D- versus 3D orientation. Figure 12 gives the 3D- scatterplot 
of the nose, left- and right wrists and left- and right ankles. The marker distribution is illustrated 
during a 10 minute period for the x-, y- and z-direction in pixels. The outcome showed a similar 
range of movements between the left and right side of the body. If measuring an infant at risk 
for neurodevelopmental diseases like CP, for instant infant 14, an asymmetrical range can 
occur between the left and right side of the body. For now, we can conclude that the orientation 
in the 3D-scatterplot is similar to the 2D input, which proves a suitable merging of the 2D output 
videos. However, if you want to compute movement kinematics out of the 3D reconstructions, 
the rigid bodies need to have consistent length over time.  

 

  

Figure 12. A MATLAB 3D-scatterplot of infant 10 showing the marker distribution of the nose, left- and 
right wrist and ankle. The x-, y- and z-direction are displayed in pixels. The left- and right side of the 
body show overall the same movement range over time.  
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We next assessed a calculation of the upper-arm and thigh of the left and right side of the 
body, to test whether those rigid bodies were consistent in time. The lengths of the rigid bodies 
(definition of rigid bodies is explained in subsection 2D-analysis of the method section) are 
obtained by measuring the length between the markers on both ends of the rigid body. For 
instance, the left-hip and left-knee are used to calculate the left-thigh length. And the right-
shoulder and right-elbow are used to obtain the right upper-arm length. Figure 13 gives the 
length of the left and right upper-arm and both thighs (Left upper arm 78.7 ± 0.1 mm; right 
upper arm 74.0 ± 0.2 mm; left thigh 65.7 ± 0.0 mm; right thigh 67.3 ± 0.0 mm). Because infant 
10 is born being low weighted, those values could be realistic but we did not measure those 
values at the beginning so we cannot prove it is the same length as in reality. Besides this, 
there is noise (high amplitude peaks). The upper-arm has more noise than the thighs (ranges: 
74 – 81 mm left upper arm; 72 – 85 mm right upper arm; 65 – 66 mm left thigh; 67 – 68 mm 
right thigh) which can occur because of the chosen AOVs of the multi-camera approach. The 
front AOV was more located towards the legs than to the arms. However, overall, you can 
conclude that the length of the rigid bodies is consistent in time (maximal deviation of 0,3% 
total length). This outcome enables calculations of movement kinematics.  

To compare the neurological and MOS-score outcomes with the 3D kinematics, the 
movement kinematics, such as position, velocity, and acceleration, were calculated. Figure 14 
illustrates the kinematics of the left and right wrist of infant 10. The positions of the left and 
right wrist are illustrated in x-, y- and z-direction. The velocity is the first differentiation of the 
position, while the acceleration is obtained by calculating the second differentiation. The 
velocity has a maximum around 1.2 m/s while the acceleration has a maximum of 18 m/s2. The 
correlation occurrence has been calculated for the velocity as well for the acceleration between 
left- and right wrists, illustrated in figure 15. The acceleration shows more uncorrelated than 
correlated movements in comparison to the velocity of the left- and right wrist (figure 15: 
acceleration has a higher peak around 0 than the velocity, which is more spread out). This high 
amount of speed peaks at the acceleration can be due to the jerky movement performance 
infant 10 has been showing during GMA30. One would expect less speed peaks with a healthy 
smooth and fluent motor representation. This figure illustrates the kinematic possibilities of the 
3D reconstruction which enables detecting abnormalities in the infant’s movement 
representation. In addition, the output of Anipose also includes joint kinematics calculations to 
dissect the contributions of specific joints to complex motor behaviours.  
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Figure 13. Length of the left- and right upper arms and thighs of infant 10 during GMA performance. 
The upper arm shows more noise than the thigh lengths, but overall, the lengths are quite consistent 
over time. The noise is due to the DLC labelling errors of the shoulders, elbows, hips, or knees. The 
mean length of the upper arm are around 7,5 centimetres while the length of the thighs are around 6,5 
centimetres.  
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Figure 14. The kinematics of left- and right wrist of infant 10 during GMA performance. The position 
in x-, y- and z-direction. The velocity has in both wrists a maximum around 1.2 m/s, both at another 
timeframe. The acceleration differs more between left and right wrist but do both have a maximum 
of 18 m/s2. 
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Figure 15. The kinematic correlation occurrence between left and right wrist of infant 10. The 
velocity, upper figure, shows a more widen curve than the acceleration, lower figure, does. So, we 
can conclude that the velocity shows more negative or positive correlations (correlations around -
1 and 1) and the acceleration shows more uncorrelated values (correlations between -1 and 1).  
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Furthermore, we tested if the neurological and MOS-score outcome of infant 10 can be related 

to the joint kinematics of the 3D reconstruction of this infant. 3D tracking can be used to dissect 

the contributions of specific joints to complex motor behaviours12. For this matter, a comparison 

between left and right knee and between left and right elbow has been performed. Figure 16 

illustrates the left versus right knee angles over time. Above this, a time-based correlation has 

been calculated to show the correlated and uncorrelated movements. Infant 10 shows more 

negative and positive correlations (knee: 13% negative correlation; 14% positive correlation) 

between left and right knee, rather than uncorrelated movements (knee: uncorrelated 73% of 

the time). Around 300 seconds the left knee makes a rotation, while the right knee remains 

stable. This is an example of a negative correlation. Uncorrelated movements are interesting 

to observe, for instance leg kicking. Positive correlations are expected to be more present 

within knee rotations than elbow rotations, because we biologically learn to synchronously 

Figure 16. The rotation of the left (e.g. red line) versus right (e.g. blue) knee of infant 10 during a 
GMA performance. The middle figure displays a time-based correlation to show the positive or 
negative correlation of the left versus right knee over time. Those values are illustrated in a 
histogram, lower figure, showing the fraction of positive (1), negative (-1) or uncorrelated knee 
movements (between -1 and 1).  
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move the legs to walk, while the arms are taught to grasp things and use them separately from 

each other. For this reason, we also created similar figures for left and right elbow rotations 

illustrated in figure 17. As expected, infant 10 shows more uncorrelated movements with the 

arms than with the legs (elbow: 2% of the time negative correlation; 1,5% of the time positive 

correlation; uncorrelated 96,5% of the time). The general Pearson coefficient is also calculated 

for as well the knees as the elbows (knee correlation coefficient of 0.47; elbow correlation 

coefficient 0.54). Both have a positive moderate correlation, which is in line with the hypothesis 

that the left versus right body are overall showing symmetrical movement patterns.  

 

  

Figure 17. The rotation of the left (e.g. red line) versus right (e.g. blue) elbow of infant 10 during a 
GMA performance. The middle figure displays a time-based correlation to show the positive or 
negative correlation of the left versus right elbow over time. Those values are illustrated in a 
histogram, lower figure, showing the fraction of positive (1), negative (-1) or uncorrelated elbow 
movements (between -1 and 1). 
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Conclusion 
To evaluate the quality of a markerless multi-camera approach, we first assessed a 2D-

analysis in MATLAB. We achieved markerless labelling of limbs on par with human labelling 

by using multiple cameras in combination with the multiple deep neural networks of 

DeepLabCut. The certainty of labelling by the neural networks was dichotomous, showing high 

certainty and low error of labelling when body parts were in view. Markers on digits or smaller 

joints are more challenging, but become increasingly better whenever the neural networks are 

repeatedly refined. We next assessed a 3D-analysis in MATLAB upon the 3D reconstruction 

created with Anipose. The 3D-analysis was performed to test whether precise kinematic 

parameters could be detected during the fidgety movements stage in approximately 3 months 

old infants-at-risk for CP. Our 3D reconstruction shows good tracking as indicated by a 

constant length of rigid bodies. Furthermore, preliminary results show the possibility to analyse 

positional data in 3D and kinematics of limbs and joints.  We compared those aspects with 

neurological and MOS-score outcomes. Infant 10 shows a symmetric movement pattern as 

expected from the MRI scan. Interestingly, this patient shows frequent speed peaks in 

acceleration, which indicates a jerky instead of smooth movement pattern30. This atypical jerky 

motor presentation is also observed by manual GMA observation (26/28 MOS-score). Overall 

my results show that 3D reconstruction can reveal different precise kinematic parameters, but 

more 3D reconstructions of infants at high-risk are necessary. Furthermore, we need to 

determine precise kinematic parameters indicative of disrupted development to optimise each 

infant’s functional potential.   

Discussion 
Our 3D-analysis findings showed overall interesting opportunities for future studies to pose 
estimation of infants-at-risk for CP. However, it was disappointing that we were able to build a 
3D reconstruction of only one infant. The errors of most calibration videos were high, assuming 
something went wrong during the calibration step in Anipose. It could be that the Charuco 
board we used is not suitable for those measurements, or environmental factors like daylight 
were influencing the board detection. In future, it would be a better approach to test which 
aspects do have an influence on the calibration of the multi-camera approach. We recommend 
testing whether different Charuco boards or lighting conditions would make differences in error 
size of the calibration video, to enable more 3D reconstructions. Besides that, we could not 
verify if the values we calculated in the real world coordinates were realistic and true. The 3D-
analysis did show a constant length of the rigid bodies, but this can only be checked to be true 
if the real length of those rigid bodies are measured. In the future, a valuable tool like a 
measuring tape needs to be on the video during GMA, or the limbs need to be measured 
beforehand. 

The 2D-analysis of DLC output showed overall satisfactory outcomes and a low error 
of labelling. However, this only occurred when body parts were in view. For now, refinement 
and retraining the neural network would optimise the marker detection, but we recommend 
adding more cameras to the set-up to avoid those occluded locations. In this matter, there will 
still be complete data in case one of the body parts ever get blocked from one AOV. Besides 
the occluded locations, the human labelling pre-train step in DLC may also manipulate the DLC 
errors-sizes. In future studies, we could manipulate those marker locations by adding different 
jitters. It would be important to test whether those noisy factors would have an impact on the 
neural network and the final 3D reconstruction.  

Furthermore, human labelling can become more reliable if we define precise marker 
locations. For instance, the wrist defines a surface of multiple centimetres underneath the 
hand, but it would be better if we narrow this location to the pisiforme of the wrist as this bone 
is the easiest to detect.  In addition, we only used one similar marker for the internal or external 
side of the wrist. In future, it might therefore be helpful to test the usage of distinguished 
markers for the internal and external side of joints. This might also have a positive effect on 
the DLC error-sizes.  
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Focusing on time-consuming limitations, DLC training slows down the entire process. 
Our video durations are around 10 minutes, containing around 60.000 frames, which all need 
to be trained (acquisition speed of 100 Hz). Besides, the high quality of the IDS cameras 
(1936X1216 pixels) is time-consuming compared to the resolution used in earlier studies 
(640X480 pixels). Overall, we had to train eight times longer than the earlier studies. Only one 
neural network, containing all fifteen infant videos of one camera, lasted 96 hours while the 
entire DLC training of three neural networks lasted around 288 hours. The earlier 
recommendations to increase the number of cameras, and markers, would make this even a 
bigger issue. In future, we can prevent this limitation by making shorter videos and doing fewer 
refinements. In literature, a GMA performance lasts only 3 to 5 minutes while most of our 
infants had a performance of 10 minutes. This implies that our videos have a frame abundance 
which is time-consuming for DLC because each frame needs to be trained. Therefore, a 
decrease in video duration diminishes the time of DLC training. On top of that, adding data 
becomes less important because training makes the neural network stable, which is another 
time-saving factor.     

On the other hand, I did not have the time to determine precise kinematic parameters. 
My internship lasted 9 months where I had to perform all the assessments, had to train all the 
videos in DLC, had to perform a 2D analysis on the trained neural networks, had to create 3D 
reconstructions, and finally had to perform a 3D analysis. Because I was the first intern on this 
project, I had to deal with multiple hitches. Overall, I did not have enough time to determine 
precise kinematic parameters indicative of disrupted development. The challenge is to 
translate the human terms of the manual MOS-scoring to computer logical terms. In this study, 
only a few general parameters are illustrated, but those parameters should become more 
specific and detailed in future, to really draw any conclusion on optimising individual therapies.  

In addition to this, there were also limitations on the assessments. For instance, the 
HAI markers were only placed on the infant’s body. However, to make a clear distinction 
between toy-targeted and free movements, it would be more effective to also place markers 
upon the toys to assess movements with or without toys. Another clinical challenge, for both 
assessments, is that the state of arousal between individuals could be widely different. In our 
study, this was partly accounted for by the Brazelton model to detect the infant’s arousal state 
during measurement. However, the GMAs were performed after the outpatient clinic 
appointment, which already had an enormous impact on their arousal state. It would be more 
optimal when the assessment is performed beforehand or separately from an outpatient clinic 
appointment. The state of arousal would be better if the video is taken on the baby’s optimal 
state, from home. Researchers are focusing on home-video methodologies to optimise the 
infants state of arousal and to make it easier to participate for parents 31. However, parents 
could have an impact on the video. For instance, their smartphones could not be stable or they 
are not including the whole body within the video-frame throughout the measurement. Besides, 
the smartphone camera lacks high-quality and it only provides 2D analysis. For this reason, 
home assignment cannot  analyse kinematics of body parts moving in three directions, which 
is an important factor of human motion.   

Furthermore, an important challenge for novel tools is validation. All earlier studies with 
DLC do not provide a retrospective study because they perform 2D kinematic analysis instead 
of a 3D analysis. To resolve this, we compared the neurological outcome and the manual 
scoring of GMA with the Anipose output. The MOS-score lacks 2 points because of a jerky 
movement performance, which can be related back to the analysis of the 3D reconstruction. 
So far, those tools are in line with the 3D reconstruction output. However to validate even more, 
our 3D output should be compared with other golden standards detecting human motion. One 
study already tried to validate DLC by comparing it with Fastrak (high accurate electromagnetic 
3D motion tracking system), which showed similar outcomes32. At our department, 
accelerometers are attached at the wrists of infants during several HAI performances. In future 
studies, accelerometer data can be used to validate the kinematic parameters of Anipose.  

To make the DLC and Anipose more dependable, our dataset should be open-source 
so worldwide usage enables focus upon, for instance, infant-, gender- and disease-differences. 
If you widen the target audience you can compare different neurodevelopmental diseases with 
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each other, such as differences in motor outcome and development between CP, and for 
instance, spinal muscular atrophy (SMA) patients. SMA is caused by autosomal recessive 
mutations and results in the loss of motor neurons and progressive muscle weakness 33. There 
are multiple treatments available, but it also lacks early detection within childhood. In addition 
to this, enlarging the dataset would also give more opportunities to measure parameters such 
as movement fluency and smoothness. The more infants being measured, the more 
information on average acceleration while reaching toys during HAI performance. If an infant 
would not show acceleration values within the average range, you can conclude that this infant 
has an atypical performance (more jerky or absurd movements).  Therefore, our ultimate goal 
is to create a worldwide open-source database for paediatric movements.  
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