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Abstract

Carbon fluxes play an important role in our climate model on Earth. These fluxes have also

been shown to be related to global warming. However, these fluxes are only measured at

specific locations. Therefore, to obtain a global prediction, these local observations need

to be upscaled to a global data product. This has previously been done by combining half-

hourly flux measurements with globally available meteorological data and using machine

learning to predict the flux based on the measurements alone. When doing so, an impor-

tant distinction between tropical and extra-tropical regions was not considered. This is

important as vegetation cycles are very different in the tropics which has a large impact on

the carbon fluxes. These differences are hard to detect for a model because there is a very

large imbalance in data availability for the tropics versus the extratropics. In this paper,

this distinction is examined and multiple methods are proposed to make the model spa-

tially aware. These methods include a tropic boolean variable, the latitude and longitude

coordinates of the measurement, and a separate model for tropics and extratropics. The

results showed that a non-spatially aware model does indeed struggle to predict correct

diurnal cycles. The predictions improved by introducing spatial variables to the model

with the best performing approach being the two separate models. But with more data, the

latitude longitude model might perform the best as the model can figure out the tropic to

extratropical transition itself. This showed that current approaches are indeed lacking due

to spatial bias, and this paper addresses multiple possible solutions.
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1 Introduction

Improving our understanding of the carbon cycle and exchanges between our ecosystems

and atmosphere is important to getting a better understanding of our climate model on

earth (Tramontana et al., 2016). Research has shown positive feedback between terrestrial

carbon cycles and global warming (Luo, 2007). These are some of the reasons why atten-

tion has been given to model the carbon exchange between the atmosphere and terrestrial

biosphere. In order to model this complex relationship, we need a way to collect data

on the actual amount of carbon that is exchanged with the atmosphere; from now on this

will be referred to as CO2 fluxes. These fluxes are measured by so called eddy-covariance

towers. These towers measure a very local exchange between terrestrial ecosystems and

the atmosphere (Billesbach, 2011). They provide half-hourly measurements of multiple

variables and, most importantly, of the net ecological exchange.

The local nature of this measurement is however a problem when a global sys-

tem or phenomenon, such as climate change, is the subject at hand. This is because we

would need a very large number of towers spread equally across the world to get a global

measurement. Because this is not feasible, Bodesheim et al. (2018) proposed an approach

using machine learning to upscale these local flux measurements to a global product using

globally available meteorological data. They trained a random forest model on a set of

eddy covariance towers coupled with global meteorological data that yielded promising

results.

Something of importance that was however overlooked in this research, is the

major role that the tropics play in determining the global atmospheric concentration of

CO2. Research has shown that the tropics play an important role through both deforesta-

tion and photosynthesis, since tropical forests account for almost 60% of global terrestrial

photosynthesis (Malhi & Grace, 2000). The reason why tropical forests should be exam-

ined in more detail in relation to eddy covariance towers is that the sites in tropical regions

are vastly underrepresented compared to the sites in North America and Europe. This may

4



lead to problems when looking at it from a machine learning perspective as the model

has more data to learn from the extratropical sites. This over-representation might lead

the model to only adapt to the relations present in the extratropical regions and ignore the

tropical relations. This might lead to poor performance if the relations are indeed different

in a tropical environment.

In this paper, multiple approaches will be examined to account for this bias and

the difference between tropical and extratropical relations in the carbon cycle, the ultimate

goal being to reduce the geographical bias in the global CO2 flux data product.

2 Data

In this section of the paper the used data sources for the analysis will be discussed. To

learn the relations between the fluxes (the target variable) and the available global mete-

orological data, we need both of these data sets for the same location. Target fluxes can

be gathered from site data from the FLUXNET network. This data is discussed in Section

2.1. This same network provides a data product where globally available meteorological

variables are already matched with the previously mentioned fluxes. This will be discussed

in 2.2. And lastly to check the validity of the use of this data product, it will be compared

against the locally measured variables at the site level in section 2.3.

2.1 Site-level data

At the site level, there are "eddy covariance" towers that provide half-hourly CO2 flux

measurements. These measurements only apply to a very small spatial extent, practically

only for the very specific location of the tower itself. This makes it difficult to use on a

large scale as a very large number of towers would be needed to measure these fluxes for

a large spatial extent. For this paper, data from 42 FLUXNET and Ameriflux eddy covari-
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ance towers are used, see Figure 1 and Table 7, which together give 406 years of observed

data. These sites were manually selected with a few criteria in mind. As mentioned above,

the goal is to balance the tropic performance and the extratropic performance of the model

with the tropics being defined as between -23.5 degrees latitude and 23.5 degrees latitude

as this is a common standard. We know that there is more extratropic data available. So as

a first attempt to limit the extratropical bias introduced by data availability, the extratropi-

cal sites were undersampled. Meaning that a lower percentage of the available sites were

selected compared to tropical sites. An attempt was made to get a good world representa-

tion from the extratropical sites available, selecting ones that have a long-running history

and are known to produce high-quality data.

Figure 1: A map of the 42 sites used from FluxNet and Ameriflux across the world with 8

tropical sites and 34 extratropical sites. The color and size are indicative of how much

valid years of data there are in the selected data set. The dashed lines indicate the selected

tropical boundaries.
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2.2 Global data product

For the global data product, the ERA-Interim data set (Dee, 2021) is used for two main

reasons. The first one is that it is available in a global gridded format. This is crucial

for this analysis as the end goal is to make global estimates for CO2 fluxes, therefore

it would not be logical to use data that is not available on a global scale. The second

reason why this data set is chosen is a more practical reason. The FLUXNET data portal

provides a so called "FULLSET Data Product" where the micrometeorological variables

from ERA-Interim are already matched to the half hourly flux measurements as well as the

locally measured meteorological variables. This allows for a more straightforward data-

processing process, as we do not have to work with global gridded data products, as the

matching was already done. The variables used are described in Table 1.

Table 1: ERA-Interim meteorological data used from the Fluxnet FULLSET data product.

Variable Unit Description

TA_F deg C Air temperature

SW_IN W/m^2 Shortwave radiation incoming

LW_IN W/m^2 Longwave radiation incoming

NETRAD W/m^2 Net radiation

VPD hPa Vapor Pressure Deficit (High means dry)

PA kPa Atmospheric pressure

P mm Precipitation

WS m/s^1 Wind speed

WD Decimal degrees Wind direction

RH % Relative humidity (High means wet)
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2.3 Global vs local measurements

Before we can simply use this global data set, the validity of this global data set must

be verified. We can do this by comparing the available locally measured variables to the

matched globally available data. This was done using a correlation calculation, the results

of which can be seen in Figure 2. This figure shows the locally measured variables with the

suffix "_F" and the global variables with the suffix "_ERA". From the figure it can be seen

that the local and global variables match very well with each other, indicated by the high

correlation scores. The only real exception that we can see is the precipitation variable.

This is most likely due to the fact that this is very local and is easily influenced by its

direct environment. For example, the rain collector could be shielded from the rain or

could be slightly tilted with the wind blowing the wrong direction all leading to incorrect

measurement. Furthermore, rainfall can simply be a very local event. The global variable

has an approximate resolution of 80 km (Dee, 2021), which is a large area to measure

something as local as rainfall. For these reasons, the decision was made not to include the

variable in the analysis.

Figure 2: A correlation plot between the ERA-Interim variables ("_ERA" suffix) and the

locally measured variables ("_F" suffix).
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2.4 Overview

Now that it is known where the data comes from, some figures and statistics can be ex-

amined to get a better feel for the data. Table 2 shows the summary statistics for the

extratropical regions and table 3 for the tropical regions. Some important points will be

presented. The first one being the difference in number of records available. For the ex-

tratropics we have a total of 5.7 million measurements while for the tropics there are only

700 thousand measurements, and this is after we have undersampled the extratropics. The

differences between various variable values will be made more clear with figures later.

Something else to note are the -9999 values. These indicate incorrect measurements for

that specific variable. The model that will be used in the analysis (Random Forest) can

deal with these values as this model uses decision nodes and not a numerical formula to

provide its estimations. Therefore it is able to essentially determine that these values are

not correct and choose to ignore this variable or treat it differently. Simply removing these

values would remove approximately 1.2 million rows of data, of which 0.2 million trop-

ical rows (27%) and 1 million extratropical rows (11%). For completeness, the overview

tables with these values removed can be seen in the Appendix in Table 8 and Table 9 to get

a better sense of the distribution of the affected variables. Keeping these values in the data

set is, of course, not the ideal scenario and will be discussed in Section 6, but it seemed

the best option in this case.

TA_ERA SW_IN_ERA LW_IN_ERA VPD_ERA PA_ERA P_ERA WS_ERA WD RH NETRAD NEE_VUT_REF

count 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0 5698176.0

mean 9.3 155.1 310.0 5.1 96.3 0.0 2.6 -1534.0 -1426.1 -1774.8 -0.5

std 11.4 236.6 54.8 6.1 6.2 0.2 1.6 3820.8 3584.3 3914.5 6.0

min -52.9 0.0 89.5 0.0 67.9 0.0 0.0 -9999.0 -9999.0 -9999.0 -79.3

25% 2.1 0.0 275.4 1.1 94.3 0.0 1.5 42.6 42.5 -76.9 -1.5

50% 10.2 0.9 312.6 2.8 98.4 0.0 2.3 171.0 71.0 -14.9 0.7

75% 17.3 254.4 346.9 6.6 100.4 0.0 3.4 251.6 89.0 81.8 2.2

max 45.4 1221.7 537.8 79.9 106.2 22.2 17.4 360.0 123.7 1015.9 50.0

Table 2: Summary statistics of selected variables from sites in extratropical regions.
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TA_ERA SW_IN_ERA LW_IN_ERA VPD_ERA PA_ERA P_ERA WS_ERA WD RH NETRAD NEE_VUT_REF

count 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0 701328.0

mean 25.7 167.8 393.2 12.5 98.2 0.1 2.3 -2035.0 -1748.4 -1616.9 -0.6

std 3.9 260.4 36.5 11.7 3.4 0.5 1.1 4168.6 3871.1 3813.6 8.8

min 8.3 0.0 255.3 0.0 88.5 0.0 0.0 -9999.0 -9999.0 -9999.0 -75.7

25% 24.1 0.0 378.9 5.0 98.1 0.0 1.5 27.2 18.0 -62.7 -2.6

50% 25.6 0.0 408.3 6.5 99.4 0.0 2.2 98.7 69.9 -23.8 0.7

75% 27.2 279.6 414.6 21.7 100.7 0.0 3.0 182.4 88.1 162.6 4.6

max 43.3 1133.9 486.4 75.0 101.5 29.0 9.2 360.0 100.0 975.4 49.9

Table 3: Summary statistics of selected variables from sites in tropical regions.

After looking at the summary tables, it is important to understand the differences

between tropical regions and extratropical regions. In Figure 3 the diurnal cycles of the

NEE measurements are shown by month for the tropical and extratropical regions. The

main thing that this figure demonstrates is the seasonal cycle that is evident in the extrat-

ropical regions but not in the tropical regions. This seasonal effect comes from vegetation

growth that is experienced in most extratropical regions in the warmer months (spring and

summer) and vegetation decay in the colder months (fall and winter). This confirms the

idea that the tropics and extratropics should be looked at as different systems.
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Figure 3: Diurnal cycles of Net Eco Exchange for tropic vs extratropical sites by month

with a 90% confidence interval.

To further examine the differences, Figures 4 and 5 show the differences in air

temperature and vapor pressure deficit, respectively, for a single diurnal cycle in different

months. Looking at Figure 4, the seasonal cycles can also be identified in the extratropical

regions through the temperature differences by month. This wide temperature range is not

there in the tropical regions; the temperatures are higher and more consistent throughout

the year. When we shift our attention to the comparison of the vapor pressure deficit in

Figure 5 (remember that higher values indicate a dryer environment), we see something

similar. Values tend to be higher in the tropics and are less spread throughout the year
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compared to the extratropics. However, there is more of a spread than there was with

temperature.

Figure 4: Air temperature per month for tropics and extratropics.

Figure 5: Vapor pressure deficit per month for tropics and extratropics.
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3 Methodology

After discussing the data that will be used in the analysis in the previous section, the

analysis itself will be discussed. This includes a few pre-processing steps, even though

most of it has already been done through clever data selection and making use of the

FULLSET data product. Then, the model used to predict the net ecological exchange will

be discussed together with the different ways of assessing the performance of this model.

3.1 Pre-processing

During the data collection, a step was already taken in order to reduce the bias of the

model towards extratropical regions by effectively undersampling these regions to limit

the "class" imbalance. During the pre-processing phase, more measures were taken to

possibly aid in reducing the bias during the modeling phase. The first was to retrieve

the latitude and longitude coordinates of each site to include them in the data. This data

can be used to make the model spatially aware, possibly aiding in determining the correct

relations between the meteorological data and the net ecological exchange. Based on the

coordinates, a new variable was created to indicate whether a site lies within the tropics or

not. The tropics were defined as the band between the Tropic of Cancer and the Tropic of

Capricorn between latitudes -23.5 and 23.5 as this is one of the most common definitions

(Benbow & McIntosh, 2009). Furthermore, the timestamp provided was split into the

separate features: "year", "month", "day", "minutes". Here, "minutes" simply refer to the

amount of minutes that have passed in that specific day. Besides these simple additions,

no other major modifications were done, other than removing all invalid measurements for

the target variable (Net Ecological Exchange) and rows with missing values for any of the

selected variables. This resulted in the removal of 718,896 (10.1%) measurement points

from the data, of which 596,160 (9.4%) were from extratropical sites and 122,736 (14.9%)

were from tropical sites.

13



3.2 Modelling choices

3.2.1 Random forest

In order to model this complex process, a model that allows for this complexity to be

captured must be used. Therefore, a random forest model was used which consists of

a set of randomized decision trees (Breiman, 2001). These groups of decision trees can

be used both for classification and regression purposes. Previous work on which this

thesis is largely based was also done with random forests (Bodesheim et al., 2018) and

other work using flux data, such as the work of Tramontana et al. (2016) and Jung et al.

(2020) demonstrating the viability of this model for cases like this. A major advantage

of using a random forest is the use of bagging (Breiman, 2001). This technique refers

to the process of aggregating predictions of multiple individual models (in this case the

individual decision trees of which the forest is made) which have all been learned based

on different subsets of data sampled out of the training set. Because each decision tree

"grows" separately from the other trees, the predictions will be different. Then to get the

final prediction, the individual trees are averaged in the case of regression.

3.2.2 Parameter settings

Random forest models allow multiple parameters to be adjusted for better performance

or different desired behavior of the model. These parameters include, but are not limited

to, the number of parallel trees that are used, the maximum depth of each individual tree,

the minimum number of samples that are required at each decision point (split), and the

number of features considered for each decision split. The most common way to determine

the optimal values for the task at hand is to use cross validation (Refaeilzadeh, Tang, &

Liu, 2016). With cross-validation, the available data is split into so-called folds (typically

5 or 10). The model is then trained on all folds except one, the fold kept out is used

to evaluate the performance. This is done for all folds, and the performance metrics are
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averaged across folds. This can give an indication of how well the model will perform on

unseen data, without having to keep a separate test set to do this. This ties in to parameter

tuning, as multiple combinations of parameters can be tested, and a cross-validation is

done for each unique combination of parameters.

Through this process, it was found that 250 parallel trees was optimal when bal-

ancing computing power and results. Furthermore, a maximum tree depth was determined

to be 10 to prevent overfitting to specific site characteristics. The model overfitting to site

characteristics is hard to avoid but it is important as global predictions will largely be for

places it has not seen before.

3.2.3 Approaches

In order to properly evaluate methods to reduce spatial bias in addition to the described

data selection process, multiple different models were considered, trained, and compared.

The selected models are the following:

• Model with no location data

• Model with the "tropic" variable

• Model with Latitude and Longitude as variable

• Two separate models, one for the tropics and one for extratropics

This list of models can essentially be read as the most "basic" model first and

then increasing in complexity as the list goes with complexity referring to the information

it is getting.
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3.3 Assessing performance

To assess and compare the performance of these models, two approaches were taken. The

first approach is to take the last year of available data for every selected site as a test set.

This allows us to have a test set that is at least temporally new to the model, but it has

seen data from this site before. It also should be kept in mind that this in relative terms

reduces the tropical data set more than it does for the extratropical data set, as there is more

data available for the extratropical sites. This difference is quite big as the relative test set

size for the tropics is 25% of available data and 0.0003% for the extratropics which is 91

thousand times more.

The second approach is called "group k fold cross validation". This is a form of

cross validation but the set is split up according to a "group" variable which in our case

is the site name. It takes a value n and splits the data into approximate equal n parts that

are non-overlapping. Therefore, the same group will not appear in two different folds.

This deals with the problem of having seen a location before which is essential to consider

with the use case (up-scaling to a global data product) where predictions will be made for

unseen locations. Furthermore, this method also allows for more efficient computing as

opposed to leaving out a single site per fold because the number of folds can be manually

determined and for leave one site out not be biased, the model would have to effectively

need to be run 42 times, one for each site and this is not feasible resource wise.

However, there are still issues with this method that must be considered when

looking at the results in the following section. First, leaving out one tropical site again

has a relative larger effect on the training set, as there are fewer tropical sites available.

The second issue is due to the fact that some sites have much longer histories of data that

the model relies on to learn relations from, for example, droughts that occurred in certain

years. This leads to a very large spread in performance between the different folds, as the

performance is largely dependent on what data it has seen and how closely it relates to the

sites it has not seen before but is trying to predict. This is unfortunately something that
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cannot be fixed with the limited availability of computational resources as you would need

to get more sites with more data to become less dependent on specific sites being in or out

of the training / test set. This will also be discussed in section 6.

4 Results

4.1 Last year prediction results

Measure [µmolCO2

m2s
] No location Tropical variable Latitude / Longitude 2 Seperate models

R2 [-] 0.56 0.57 0.62 0.66

MAE 2.59 2.57 2.27 2.12

RMSE 4.17 4.14 3.89 3.67

Tropic RMSE 4.16 4.08 4.13 3.78

Extratropic RMSE 4.18 4.16 3.83 3.65

Table 4: Model performance (250 trees with maximum depth = 10) comparison for

various metrics and split by tropic and extratropic for the last year of measurements test

set.

Table 4 shows the R-squared and RMSE measure for both predictions overall and for

the tropics and extratropics separately. Including a variable for the tropics seems to not

really improve the model by a lot, but this seems different when looking at the actual

values, which we will do later in Figure 6. The real improvements seem to come when

including the latitude and longitude of the site into the model. A possible explanation for

this is that there is a lot of variability in vegetation (main driver of carbon fluxes) in the

extratropical regions, and now that the model is able to access the location of the data, it

is able to distinguish between these different places with different vegetation levels. But

this improvement might also be due to the fact that the model is now able to overfit to a
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specific site which it has seen before which in turn might reduce the generalizability of the

model. It is difficult to access the exact reason.

Measure [µmolCO2

m2s
] No location Tropical variable Latitude / Longitude 2 Seperate models

R2 [-] 0.58 0.59 0.68 0.66

MAE 2.50 2.46 2.00 2.12

RMSE 4.10 4.06 3.55 3.67

Tropic RMSE 3.99 3.86 3.82 3.78

Extratropic RMSE 4.11 4.11 3.49 3.65

Table 5: Model performance (250 trees with maximum depth = 15 except for the two

separate models) comparison for various metrics and split by tropic and extratropic for

the last year of measurements test set.

For completeness, the same models were run with depth set at 15 to see how

much this might help improve the predictions. The results can be seen in 5. This shows

that the most difference can be found in the tropic RMSE for both the model without

location data and the tropical variable. This could be due to the fact that tropical sites have

a more complex relationship and need deeper trees to show this. We can better understand

this by looking at the specific prediction values versus the observed values.
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Figure 6: Observations and predictions of all 4 models (depth = 10) for the last year of

data available for site PE-QFR (Lat = -3.8344, Long = -73.3190)

Looking at the prediction results shown in Figure 6, we can get a better under-

standing of how the prediction models differ from each other after having learned from

the exact same measurements and predicting on the same test set. In this figure we see the

predicted and observed Net Eco Exchange values (NEE_VUT_REF) for the last year of

data available for the PE-QFR site (predictions for all sites can be seen in de Appendix).

The plot is split up for each month of the year and each subplot represents a single diurnal

(24 hour) cycle where values are averaged for each time step for that single month.
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One of the first things to stand out is the blue line, representing the predictions

of the model that received no location information as input. Comparing this line to the

observations (purple line) we can see that it tends to predict too high for the Net Ecological

Exchange values but it does get closer as we get later into the year. This is an indication

that this model is attempting to apply a seasonal cycle to a tropical site (even though there

practically is none) because it has seen this in most of the extratropical sites. The fact that

this is still evident even when the extratropical sites are effectively undersampled shows

that this is most likely an issue that occurred in the work of Bodesheim et al. (2018) as

they did not account for the differences in seasonality between extratropical and tropical

sites. The models that received some information regarding the location of the site do not

show this seasonal cycle in their predictions and are all quite similar to each other.

However, during the night (the left and right portion of each individual plot) the

models do show a difference. The model that has access to the latitude and longitude of

the measurements (green) and the two separate models (red) systematically predict higher

values during the night than the other two models. This seems to match better with the

observed values during certain months and worse in others. But overall, the observed

values do seem to be closer to the green and red lines (models that have access to location

data).
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Figure 7: Observations and predictions of all 4 models (depth = 10) for the last year of

data available for site GH-Ank (Lat = 5.26854, Long = -2.69421)

Figure 7 shows the same plot as in Figure 6, but now for the site: "GH-Ank".

In this figure there are less clear systematic differences between the different models;

however, we can still see predictions that are too low in the typical winter months for the

northern hemisphere and that are not evident in tropical regions, as shown in Section 2.4.

Furthermore, in January (month number 1) we can observe all models predicting too low

values with the most simple model being the lowest and the predictions getting closer the

more complex the model becomes.
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4.2 Cross validation results

Measure [µmolCO2

m2s
] No location

Tropical

variable

Latitude

Longitude
Tropic model Extratropic model

R2 [-] 0.66 0.66 0.62 0.39 0.6

R2 [-] - STD 0.05 0.05 0.11 0.58 0.15

RMSE 4.73 4.77 4.91 6.06 4.71

RMSE - STD 0.71 0.7 0.57 1.96 0.51

Table 6: Model performance comparison for k-fold cross-validation (5 folds)

In Table 6 the results for the previously explained kfold cross validation with 5 folds are

displayed. Due to the nature of kfold cross validation, looking at the individual predic-

tions that are made within each fold are not representative for the overall generalisability

of the model. This is because the predictions and the performance of a specific fold is

very dependent on what data it received to train on and what data it has to predict. This

variability from fold to fold is only amplified by the unequal distribution of tropic and

extratropic sites available. So for example, a fold could see no tropical sites but receive all

tropical sites to predict on. This would result in the tropical performance being terrible,

while the extratropic results will be good. But if the tropic sites were spread across folds,

one could observe much better results. These individual predictions would be needed to

split the performance in extratropic performance and tropic performance, hence why this

is not provided here. Providing those values might lead to improper conclusions. From

the provided metrics, we can see that the standard deviations are very large relative to the

mean performance values. Practically, the performance of all models fall within a single

standard deviation of each other. This is most likely due to the simple fact that we do not

have a lot of sites (only 42) and we only made 5 folds due to processing limitations.

This large fluctuation in performance does confirm the suspicion that it is dif-

ficult to predict the Net Eco Exchange for previously unseen locations. Most likely even
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more so for locations that show different patterns than the majority of the data (extratrop-

ical).

5 Conclusion

This thesis had the objective of improving and elaborating on previous work done by

Bodesheim et al. (2018) on the application of machine learning techniques to create a

global gridded data product of CO2 flux forecasts. The results shown and discussed in sec-

tion 4 confirm the suspicion introduced in the introduction that it is problematic to assume

the same relations between meteorological variables exist in tropical and extratropical re-

gions, an example of this problem was shown in Figure 6. In this figure, the model that

did not have access to location data, such as the model used by Bodesheim et al. (2018),

is shown to try to fit a seasonal cycle to a tropical site, but these cycles are typically not

present in tropical regions, as shown in Figure 3. Figure 6 showed that adding an indi-

cation of location to the model improved the ability to correctly predict the diurnal cycle.

The overall performance metrics also improved when adding some indication of location,

shown in Table 4. This table also showed that adding latitude and longitude coordinates

as predictive variables, mostly improved extratropical performance which is likely due

to the fact that the model can now discern between different extratropical locations that

have a wide spread of vegetation and therewith a wide variety of diurnal cycles. The best

performance can be seen when using two separate models, one for the tropics (between

-23.5 and 23.5 degrees latitude in this thesis) and one for the extratropics. The question

with two separate models like this then becomes where the exact cut-off should be to give

the best solution. A solution to this question could be to use the latitude and longitude

coordinates and give the model more data to learn from to then find the relation and the

transition between tropics and extratropics itself, removing the need to make 2 separate

models. Unfortunately not many conclusions can be drawn regarding the generalizabil-

ity of the created models due to the fact that there is a lot of variability in performance
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from site to site when they are not included in the training set, this is shown in Table 6.

This variability makes it impossible to draw conclusions based on the current data set and

methods regarding the generalizability of the model.

6 Discussion

Regarding the process of up-scaling flux forecasts to a global gridded data product, certain

points are still left to be investigated which could not be addressed in this thesis. Ulti-

mately, the findings in this thesis regarding tropic and extratropic performance should be

validated using more sites and applying more computational techniques, such as leave-

one-site-out cross-validation with all sites, to properly get an insight into the generaliz-

ability of the model. This is important because this is the main difficulty of the upscaling

approach in general; there is no real way to verify how well this model predicts the fluxes

for locations where there are no eddy covariance towers to measure the actual CO2 fluxes.

A problem that is not easily addressed is the data imbalance between the tropics

and the extratropics. Despite the fact that the available extratropical sites were heavily

undersampled, there is still much more extratropical data. It might be possible that when

the latitude and longitude coordinates are given to the model with access to all available

sites, the model can find enough relations to differentiate between the different diurnal

cycles (as suggested in the previous section). The lack of tropical sites also limited the

analysis when using group k-fold cross-validation techniques, as this adversely affects the

tropical data.

Furthermore, one has to be more conservative when removing dirty data that

would otherwise simply be thrown out as discussed in section 2.4 where the choice was

made to keep in -9999 values.

Another possible improvement for upscaling flux forecasts, is the inclusion of
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more sophisticated climate information in the prediction model. An example of this can

be the Köppen Climate Classification of a specific location. This could allow the model to

learn more about underlying meteorological relations applicable to larger regions which

should help with the generalisability of the model.
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7 Appendices

Site name From Until

AR-SLu 2009-01-01 2011-12-31

AR-Vir 2010-01-01 2012-12-31

AU-Emr 2011-01-01 2013-12-31

AU-Gin 2011-01-01 2014-12-31

AU-Stp 2008-01-01 2014-12-31

AU-Wom 2010-01-01 2014-12-31

CA-Cbo 1994-01-01 2020-12-31

CA-LP1 2007-01-01 2020-12-31

CG-Tch 2006-01-01 2009-12-31

CN-HaM 2002-01-01 2004-12-31

CZ-BK1 2004-01-01 2014-12-31

CZ-BK2 2006-01-01 2012-12-31

DE-Hai 2000-01-01 2012-12-31

DE-Lkb 2009-01-01 2013-12-31

ES-Amo 2007-01-01 2012-12-31

FI-Hyy 1996-01-01 2014-12-31

FI-Sod 2001-01-01 2014-12-31

FR-LBr 1996-01-01 2008-12-31

GF-Guy 2004-01-01 2014-12-31

GH-Ank 2011-01-01 2014-12-31

IT-Noe 2004-01-01 2014-12-31

IT-Ro2 2002-01-01 2012-12-31

NL-Loo 1996-01-01 2014-12-31

PE-QFR 2018-01-01 2019-12-31

RU-Che 2002-01-01 2005-12-31

RU-Fyo 1998-01-01 2014-12-31
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Table 7 continued from previous page

Site name From Until

RU-Ha1 2002-01-01 2004-12-31

SD-Dem 2005-01-01 2009-12-31

SN-Dhr 2010-01-01 2013-12-31

US-ARM 2003-01-01 2020-12-31

US-CF1 2017-01-01 2020-12-31

US-EDN 2018-01-01 2019-12-31

US-KLS 2012-01-01 2019-12-31

US-MOz 2004-01-01 2019-12-31

US-Me2 2002-01-01 2020-12-31

US-Mpj 2008-01-01 2020-12-31

US-NGB 2012-01-01 2019-12-31

US-ONA 2015-01-01 2020-12-31

US-Ro5 2017-01-01 2020-12-31

US-Snf 2018-01-01 2020-12-31

US-Tw1 2011-01-01 2020-12-31

ZM-Mon 2000-01-01 2009-12-31

Table 7: The used eddy-covariance sites in this thesis with starting and end dates of the

used data.

TA_ERA SW_IN_ERA LW_IN_ERA VPD_ERA PA_ERA P_ERA WS_ERA WD RH NETRAD NEE_VUT_REF

count 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0 4039096.0

mean 10.5 163.8 313.7 5.4 96.1 0.0 2.6 190.6 71.7 87.8 -0.6

std 10.2 242.9 52.1 6.2 6.5 0.2 1.5 96.5 22.1 201.8 6.2

min -41.0 0.0 103.0 0.0 67.9 0.0 0.0 0.0 0.0 -320.8 -79.3

25% 3.5 0.0 279.7 1.3 93.5 0.0 1.5 115.5 56.4 -45.3 -1.9

50% 11.1 4.9 315.3 3.1 98.4 0.0 2.3 202.6 75.9 -2.0 0.7

75% 17.8 276.9 348.8 7.1 100.4 0.0 3.4 263.2 90.6 154.2 2.4

max 43.7 1221.7 537.8 79.9 104.2 22.2 17.0 360.0 123.7 1015.9 50.0

Table 8: Summary statistics of selected variables from sites in extratropical regions

excluding all rows with the value -9999.
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TA_ERA SW_IN_ERA LW_IN_ERA VPD_ERA PA_ERA P_ERA WS_ERA WD RH NETRAD NEE_VUT_REF

count 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0 514878.0

mean 25.8 171.1 396.3 12.3 98.6 0.1 2.3 143.9 68.1 114.8 -0.6

std 3.8 263.2 34.7 11.7 2.9 0.6 1.1 85.5 27.6 225.4 9.2

min 8.3 0.0 261.8 0.0 88.5 0.0 0.0 0.0 3.2 -126.5 -75.7

25% 24.5 0.0 387.6 5.0 98.3 0.0 1.5 77.1 48.0 -43.0 -3.3

50% 25.6 0.2 409.4 6.2 99.4 0.0 2.2 125.9 78.2 -9.6 0.7

75% 26.8 285.2 414.9 19.3 100.7 0.0 3.0 201.0 90.1 245.9 5.1

max 43.3 1133.9 486.4 75.0 101.5 29.0 9.1 360.0 100.0 975.4 49.9

Table 9: Summary statistics of selected variables from sites in tropical regions excluding

all rows with the value -9999.

Figure 8: Part 1 of predictions for the last year of data available as test set for all models.
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Figure 9: Part 2 of predictions for the last year of data available as test set for all models.
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