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Prof. Dr. René van Roij Prof. Dr. Marjolein Dijkstra
Institute for Theoretical Physics Debye Institute for Nanomaterials Science

Utrecht University Utrecht University

Utrecht Utrecht

Utrecht, 10 July 2022



Dissolved Ionic Salts under Nanoconfinement

Sebastian Bielfeldt

January 2022

Abstract

Since the first isolation of graphene barely twenty years ago, quasi two-dimensional
structures have been investigated in great detail as their properties such as their
relative permittivity and heat conductivity vary greatly from the macroscopic three
dimensional (bulk) case. More recently, dilute electrolyte solutions confined in
nanoscale slits have been observed to form clusters at ambient conditions and a the-
oretical framework for describing this phenomenon based on a quasi two-dimensional
Coulombic interaction (Q2D) has been developed. Using classical molecular dynam-
ics simulations (MD), we found that sodium chloride (NaCl) as well as a generic,
divalent salt dissolved in water showed that the electric current per ion is not strongly
affected by the applied electric field but decreases with increasing ionic density, due
to increased cluster formation. For a range of salts, including LiCl, NaCl, CaSO4

and CaCl2, analysis of the potentials of mean forces (PMF) shows that dissolved
cations and anions in nanoslits attract each other more strongly than in the bulk
case. Comparing the PMFs with the Q2D calculations, we find that they match
well in the long range limit. However, at distances of a few angstroms, we show
that Q2D fully neglects excluded volume effects and that its predictions for highly
charged ions (valence Z=2) deviate from the effective interactions extracted by our
MD simulations.
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1 Introduction

Whether atomically thin materials such as two-dimensional (2D) crystals can exist
was a topic of debate almost a century ago. Many scientists, including Lev Landau,
such crystals were considered not to exist in a free state and their description solely
an academic exercise [1, 2]. For decades, their study was a purely theoretical and
computational undertaking. This changed when twenty years ago Andre Geim and
Kostya Novoselov isolated graphene for the first time [3], earning them the Nobel
prize a mere six years later. It was the first time a 2D crystal had been realized in an
experimental setting. In graphene, electrons turn into massless relativistic particles
which need to be described by the 2+1 Dirac Equation [4]. It is a material that is
flexible yet extraordinarily rigid with the highest elastic constants ever measured in
any material and, even at a single layer’s width, it is highly impermeable to gases
[5]. The isolation of graphene sparked a boom in research of not just graphene, but
two-dimensional materials in general. Soon, other 2D crystals were isolated such
as hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2). While they
share some of their properties with graphene, in other regards they differ. What
they have in common is that they gain a range of features in the single-layer –
two-dimensional – case compared to the case of several layers stacked on top of
each other.

This in turn generated interest in combining different 2D materials. In the last few
years, complicated heterostructures joining graphene, hBN, were made as well as
structures combining 2D and 3D elements. For example, two-dimensional channels
can be fabricated by fusing two atomically flat 3D crystals together with graphene
layers at the edges keeping them a few angstroms apart. The opening between
the two graphene layers represents the thinnest channel one can currently build
with atoms. By choosing different spacers, for example, another 2D crystal or
an aforementioned combination of several crystals, one can create slits of various
widths on an angstrom level scale, an example of a graphene double-layer separating
two blocks of graphite is shown in Fig. 1 [6]. With such nanoscale slits, the study
of gases and liquids under nanoscale confinement or nanoconfinement becomes
possible.

Figure 1: Illustration of a nanoslit. Example of an angstrom-scale cavity built
with a 3 dimensional, atomically flat wall and a 2-dimensional, double layer spacer,

both made of carbon. Image taken from Ref. [6]

Water, just like 2D crystals, arranges itself in layers and loses some properties char-
acteristic of 3D water, if inserted in slits thinner than 2 nm (nanoslits)[7]. These
slits were shown to allow gases and liquids to pass through very quickly – more so
than expected according to the current theoretical interpretation (Knudsen diffu-
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sion). This was explained by the atomically flat nature of the slits [8]. For example,
in the out-of-plane dimension, its dielectric constant is reduced. At a specific com-
bination of slit height and density, water was even observed to form a crystalline
sheet at room temperature [7]. At slit heights of 0.7 nm or two graphene layers,
one can build slits through which water molecules fit yet larger particles don’t. This
means nanoslits can perform reverse osmosis, filtering for example ions out of salt
water.

In the 3D bulk case, many ions such as sodium chloride (NaCl) dissolve in water.
When inserted a nanoslit, however, we observe that they form pairs or clusters. In
molecular dynamics (MD) simulations, it was shown that ions inserted in a single
water layer quickly formed large clusters. In long-running experiments, it was shown
that 50 ns after randomly distributing ions across a slit, NaCl had formed rectangular
crystals and lithium chloride (LiCl) rings and/or chains [9]. In both cases, all ions
were part of some cluster at the end of the simulation. Nonetheless, clustering was
observed on shorter time scales and wider slits, too.

More interesting properties of such slits were seen by adding an electric field to the
nanoconfined electrolytes. MD simulations showed that the ions can be captured
while water flows through the slit when an electric field was applied in the out-
of-plane directions [10]. This provides another way to achieve reverse osmosis.
Furthermore, an electric field acting on oppositely charged particles applies forces
pointing in opposite directions. Indeed, pairs are pulled apart, if an electric field
parallel to the plane of a nanoslit is sufficiently strong. However, the application of
an electric field increases rather than reduces cluster formation for various salts for
a wide range of electric fields [11]. For most materials, one observes Ohm’s law,
which states that the current is proportional to the electric field (the black line in
Fig. 2). But the formation of clusters affects the resulting electric current, as the
contribution of a pair of oppositely charged ions perfectly cancels (assuming a 1:1
salt). Therefore, the current depends on the share of free ions, that is ions that
are not part of a pair or cluster. The higher the share of free ions, the stronger the
current, all else being equal. However, as the electric fields influence the share of
free ions, the current displays a non-linear response to an in-plane electric field. As
a consequence, these nanoconfined electrolytes do not observe Ohm’s law.

The height of such slits is crucial for their conductive behavior. The conductivity
of NaCl in a slit approaches that of NaCl in the bulk at widths between just 2 and
3 nm, [12]. At slit heights of more than 1 nm, one sees alternating layers of anions
and cations, given sufficient space, also separated by water. These channels serve as
transport channels and can thus improve conductivity. For widths of 2 nm or more,
one sees that at most four layers (i.e. peaks in concentration) appear. In the middle
of the slit, a homogeneous structure forms rather than more peaks [12, 13].

Clusters do not form instantaneously but instead, take a finite amount of time to
form. Consequently, a change in the external electric field affects the conductivity
with a delay. Therefore, different currents can be measured for the same electric
field depending on which electric field was applied shortly before. In other words, a
nanoconfined electrolyte displays a form of memory, which makes this system part
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of a class of electronic devices called memristors (a portmanteau of memory and
resistor). When applying an oscillating electric field, we see that the current forms
a pinched hysteresis loop whereas for a system without memory we would observe a
single current for each electric field (this argument is also illustrated in Fig. 2). The
most pronounced memristive behavior, which is the biggest difference between the
upper and lower branch of the current, is the largest for nanoconfined electrolytes
at frequencies ranging from 103 to 106 Hz. Memristors have applications in a
wide range of systems such as memory storage and neuromorphic computing. In a
Brownian dynamics study, memristors built from several nanoconfined electrolytes
were used to simulate the spiking pattern of a neuron [11].

Figure 2: Resistor vs memristor. Illustration of an An oscillating electric field
is applied to an Ohmic resistor and a non-Ohmic memristor.

Considering the many interesting properties and applications of 2D materials in
general and nanoconfined electrolytes in particular, we set out to better understand
ions dissolved in nanoscale slits. In chapter 2, we establish a shared understanding
of the matter at hand by revising some concepts about ions, their interaction,
diffusion, and currents. We then present a recently developed analytical description
of confined ions. In chapter 3, we will define the system that we research and give
an introduction to the molecular dynamics techniques that we used to implement
time evolution, and heat baths as well as how we modeled the interactions between
ions. In chapter 4, we present our results. We find that high pressures are required
to insert water or an electrolyte into a single layer slit. Then, we show that the rate
of diffusion, as well as conductivity, decreases for both monovalent and divalent ions
with ion concentration under nanoconfinement. Furthermore, we calculate effective
interactions for a range of ion pairs and find the valence to dominate the strength
of the interaction in the long-range as well as exacerbating short-range effects due
to the finite size of water. In chapter 5, we present the main conclusions.
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2 Theory

2.1 Interatomic Potentials

If atoms come very close to each other, their electron orbitals overlap. This forces
some electrons into energetically less favorable states, as not more than two electrons
can exist in the same orbital due to the Pauli exclusion principle. This, in turn,
creates a strong, repelling force. At distances of a few angstroms, the electron
distributions do not overlap anymore, yet the fluctuations in electron positions in one
atom still affect the electron positions in other atoms. This results in a net attractive
force, which is described by the derivative of the London dispersion potential (also
the London-van der Waals potential). This potential scales with r−6 compared
with the inter-particle distance r [14]. Taken together, these two effects allow for a
fairly realistic description of atomic interaction. The Lennard-Jones (LJ) potential
is a computationally efficient implementation of this in the case of two identical
point-like particles which are surrounded by a repelling soft shell with an effective
diameter σ. Then, the LJ potential with the well depth of −ϵ is

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (2.1)

The interaction becomes attractive at a distance of 21/6σ yielding a potential of −ϵ
which corresponds to the total net attraction

∫∞
21/6σ

VLJ(r). Whereas the second
term is derived from the London dispersion potential, the first one is chosen for
computational convenience (while still being accurate) 1. Many similar potentials
are replacing the (σ/r)12 with different large polynomials, exponentials, and other
quickly decreasing functions.

As stated before, the LJ potential is defined as the interaction between two specific
particles. However, one can approximate the LJ parameters of different particles
using only the LJ parameters of their respective self-interactions. Lorenz and Berth-
elot showed that using only the parameters of the particle interacting with itself, one
determines the cross parameters by taking the arithmetic average of the diameters
[15] and the geometric average of the well depth [16]. In theory, all particle-particle
interactions need to be calculated. However, the largest term of the LJ potential is
of O(r−6). For distances of single-digit multiples of σ, the contributions of the LJ
potential are already insignificant fractions of ϵ, irrespective of the density distri-
bution of the system. Therefore, one can introduce a cutoff distance rcut to avoid
unnecessary calculations.

Simplicity and computational efficiency combined with fairly realistic results lead
to the LJ potential being one of the most popular potentials to model atom and
molecule interaction – from the early days of computer simulation physics to this
day.

1Computers are very quick at taking the square of a value (such as
(
(σ/r)6

)2
) – much faster

than taking something to the power of 11 or 13/6.
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Ions are electrically charged atoms, i.e. the number of electrons present doesn’t
match the atomic number of the atom. Not being charge neutral, their interaction
cannot be summarized by the Lennard-Jones potential alone. The ith and jth ion
are also affected by the electric interaction of their respective charges qi and qj as
described by the Coulomb potential

VC(r) =
1

4πε0εR

qiqj
r

. (2.2)

Here, ε0 and εR denote the permittivity of the vacuum and the relative permittivity
of the material, respectively. For the case that one considers charges in just two
dimensions, the corresponding potential can be obtained by integrating over the
third dimension, yielding

V2DC(rij) =
qiqj

4πε0εR
log

rij
L

, (2.3)

where the length scale L can be chosen to fix the potential.

2.2 Salts and Electrolytes

Salts consist of a combination of cations and anions, i.e. positively and negatively
charged ions, respectively. Macroscopically, a salt is charge neutral. They are
held together by ionic bonds where the anion effectively receives electrons from the
cation. The number of electrons an ion shares or receives is referred to as valence
Z. In water, electrons move from the hydrogen atoms towards the oxygen atoms
and are effectively shared between both through a covalent bond. This change in
charge distribution creates a dipole within the water molecule. If one inserts a salt
such as sodium chloride (NaCl) in water, the polar water molecules bind to the
ions. If the ions dissociate from each other to form bonds with water molecules
instead, this solution is referred to as an electrolyte. Salts are differentiated by the
valence of their anions and cations. Salts such as NaCl or lithium chloride LiCl
are monovalent/univalent (or more concisely 1:1) as both anion and cation have
a valence of one. With the same reasoning, calcium chloride CaCl2 is considered
unibivalent (2:1) and calcium sulfate CaSO4 divalent (2:2) salt.

A common measure of how many ions are inserted in an electrolyte is the ion
concentration c. It is defined as the number N of salt molecules which are inserted
in a certain volume V yielding

c =
N

NAV
(2.4)

with the Avogadro constant NA. A solvent cannot dissolve infinite quantities of
salt. The maximum level of ion concentration is referred to as solubility. At higher
concentrations, not all salt molecules will be dissolved. For example in the case of
NaCl dissolved in water, solubility is reached at an ion concentration of 6.2mol/l
at 298 K [17].

When one applies an electric field to an electrolyte, ions experience the electrostatic
force. Cations move in – and anions opposite to – the direction of the electric
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field. The rate at which they move can be determined via the electric current I.
It measures the flow of charges through a given cross-sectional area A and can
macroscopically be measured by summing over all ion species j traveling at an
average speed of vj along the electric field and volumetric particle density Nj/V

yielding I = A
∑

j∈{+,−}
Nj

V qjvj .

In our simulation, we measure the current microscopically and thus rearrange the
equation to fit our needs. Dividing V/A, we obtain the length L along which the
electric field E is applied with strength E and obtain

I =

〈
1

L

N∑
i=1

qi
ri(t)− ri(t−∆t)

∆t

〉
· E
E
. (2.5)

To determine whether an electrolyte behaves like an Ohmic conductor, it is useful
to look at another quantity, the conductivity. This measures the electric current
flowing through a given cross sectional area A at an electric field E, yielding

σ =
1

A

I

E
. (2.6)

2.3 Diffusion

As we saw with the current in the previous section, we can gain a lot of interesting
information from the average velocity of a particle. Yet in some systems, there is
simply no movement, while in others particles move quickly but without a preferred
direction. In both cases, the average velocity is zero even though the systems differ
a great deal. A way to differentiate between the two is by calculating the square
of the average change in position ri(t) between a starting time t0 and a final time
t for all N particles and i ∈ (1, N). This gives us the mean squared displacement
R2(t) of particles as

R2(t) =
1

N

N∑
i=1

(
|ri(t)− ri(t0)|

)2
(2.7)

As particles meander in the diffusive regime and move in all directions, they display a
linear relationship between the time and R2(t) [18]. On the contrary, if the average
particle were to move in a specific direction at a constant speed, we would see a
quadratic relationship between the particles’ R2(t) and the time. In the case of
a diffusive regime, we can use the slope of R2(t) to quantify how much particles
move. Therefore, we introduce the diffusion constant D which for a given dimension
d equals

D =
R2(t)

2d(t− t0)
. (2.8)

In the case of charged ions, we can use D to measure the conductivity σ. For a
dilute salt, this can be done by rewriting the Nernst-Einstein equation (NE) [12].
The Nernst-Einstein equation connects D and σ by combining the species j specific
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quantities for the number of ions Nj , their charge qj and their diffusion constant
Dj with the T the temperature, kB the Boltzmann constant and V the volume,
yielding

σNE =
1

V kBT

∑
j∈{+,−}

Njq
2
jDj . (2.9)

This will allow us to compare the currents measured at given electric fields with the
rate of diffusion that we measure without an electric field present.

2.4 The Effect of Nanoconfinement

As stated in the introduction, water arranges itself in layers under nanoconfinement.
The structure of water in the confined dimension differs greatly from the 3D bulk
case. This has direct consequences on the conductive properties of water. The
in-plane dielectric coefficient ε∥ of water is essentially the same as the isotropic
dielectric coefficient of the bulk case εbulk = 80. The dielectric coefficient in the
out-of-plane direction, ε⊥, was measured to be 2 for slit widths smaller than 1.5 nm
(and smaller than 20 for widths of 10 nm) [19]. Over short distances, the strength
of the interactions scales with the geometric mean of the in-plane and out-of-plane
dielectric coefficients (i.e.

√
ε⊥ε∥) [11].

The dielectric coefficient of graphene is around 2, varying slightly under different
conditions [20]. This is comparable to other atomically flat insulating walls and
very low compared to ε∥ in the slit. This changes the shape of the electric field of
a charge placed in the water. Consider a point charge at the center of the slit; it
will be surrounded by an electric field which can be split into a radial in-plane and
an out-of-plane component, E∥ and E⊥ respectively. For E∥ ≫ E⊥, the Coulomb
potential is effectively two-dimensional. To determine up to which distance this is
roughly the case, consider a cylinder around such a point charge, with some radius
ξ and a height h equal to the width of the slit. Flux conservation demands that

2πξhε∥E∥ ≈ 2πξ2εmE⊥ (2.10)

with εm the dielectric coefficient of the confining material. Rearranging of this

relationship yields ξ = h
ε∥
εm

E∥
E⊥

. The component E∥ corresponds to the interaction
of two particles in the slit, whereas E⊥ represents the potential reaching through
the walls of the slit. At the transition of the two regimes, the electric field becomes
almost isotropic i.e. E∥ ≈ E⊥. Thus, the transition between two- and three-
dimensional behavior occurs at

ξ = h
ε∥

εm
. (2.11)

For distances smaller than ξ, the field lines remain within the confined slit and thus
behave effectively as in the two-dimensional regime. One function which scales
with log r for small r and with 1

r for larger distances is log r
r+rtrans

where rtrans is the
point where the shift between the two regimes occurs. This can easily be checked
by looking at the first nonzero term of the Taylor approximation for r ≫ rtrans and
r ≪ rtrans.
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With this reasoning as well as a more in-depth analytical calculation, a recent paper
[11] proposed the following effective Coulomb potential experienced by two point
charges

βVQ2D(r) = −qiqj
T ∗ log

(
r

r + ξ

)
(2.12)

where

T ∗ =
2πε0ε∥h

1.1Z2e2
kBT

with 1.1 being a leftover of the approximations and ξ defined as in Eq. (2.11). If
we use εm = 2, we find that the effective Coulomb potential is in the logarithmic
regime up to a distances of ξ = 14nm. In chapter 4.4, we will look at how well
this theory predicts interaction within the logarithmic regime.

A measure of the relative strength of thermal fluctuations within a solvent compared
to the electrostatic potential is given by the Bjerrum length λB . It is defined as
βVC(λB) = 1 for a 1:1 electrolyte, yielding the following distance at which there is
an equilibrium between the electrostatic and thermodynamic potential,

λB =
βe2

4πε0εR
. (2.13)

An electrolyte has been shown to experience phase separation between ions and
solvent if the diameter of the ions is smaller than 1

16λB [21]. In such cases, ions form
structures instead of binding to the water. For mono- and divalent ions dissolved
in bulk water at room temperature, λB is around 0.7 and 2.8 nm, respectively.
Therefore, the distance at which pairs form is of order 0.1 nm and thus shorter than
the diameter of the repulsive core of any atom, effectively prohibiting the formation
of pairs. Therefore, this leads to the above-mentioned dissolution in water.

In nanoscale slits, as discussed in the previous section, ions are arranged into layers,
just like the smaller water molecules. As discussed above, the electric permittivity of
such a slit system is lower than in the bulk case. The change in permittivity increases
the λB by a factor of six. On top of that, the electric field doesn’t behave three-
dimensionally at such length scales. Instead, it has a quasi-two-dimensional shape,
further increasing the electrostatic forces in the in-plane surface. The resulting Bjer-
rum length (βVQ2D(λQ2D

B ) = 1) for monovalent ions equals λQ2D
B = 130 nm which

is 100 times larger than the three-dimensional bulk case. Hence, the Coulombic
forces between dissolved cations and anions are extremely attractive in nanocon-
finement [11].
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3 Model and Methods

For all simulations, we use the software package Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) [22]. We primarily perform molecular dynamics
(MD) simulations for which we will now detail our setup. We are interested in the
behavior of an electrolyte under nanoconfinement. We insert a range of ionic salts,
together with water, into two kinds of systems: the (nano-)slit as our system of
interest as well as a periodic bulk system as a control. To analyze the behavior
in the bulk, we use a cubic box of edge length L with periodic boundary condi-
tions in all directions. In the case of the slit, we still maintain periodicity in the x-
and y-direction and keep Lx = Ly (with Lx being 10 nm, unless otherwise speci-
fied). As explained in the previous section, the quasi 2D Coulomb (Q2D) potential
predicts that the Coulomb interactions scale logarithmically for a range of up to
ξ = 14nm.u This means this regime extends for more than one box length. Larger
box sizes were not feasible due to computational costs. In the z-dimension, there
are repulsive walls that are placed a distance h apart. They are either uniform or
resemble a graphene layer and repel all other particles in this simulation. This will
be further discussed in chapter 3.6. For the most part, we choose the slit height
h to be 1 nm. This corresponds to a single layer of ions and two layers of water.
While we also look at a slit (NaCl) in a single layer of water as have others [12, 9],
there are doubts whether any electrolyte will enter a single layer slit [6, 10]. Other
salts certainly do not fit in such thin slits [11]. To have more comparability we thus
focus on a system with two layers of water.

(a) Bulk (b) Slit

Figure 3: Illustrations of a bulk system and a slit system. (a) We show a
bulk system with side length L = 4nm. (b) The slit has an edge lengths

Lx = 10nm = Ly and slit height h = 1nm.

In this system, we want to insert a range of ionic salts such as sodium chloride
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(NaCl), calcium sulfate (CaSO4), calcium chloride (CaCl2) and lithium chloride
(LiCl). Furthermore, to analyze the effect that a change of charge has, we also
create a generic salt with the LJ parameters of sodium chloride but higher valence.
We sometimes refer to those generic (fictitious) versions of sodium chloride as
bivalent (Z = 2), and trivalent (Z = 3) salt – in direct comparison, actual sodium
chloride is then referred to as monovalent. We list all relevant properties to describe
the interactions between all atoms and molecules in our simulation, specifically their
charge, mass, and LJ parameters, in Tab. 1. The interaction between different ions
are governed by Lorentz-Berthelot mixing rules as explained in the chapter 2.

Atom Types Charge q [e] Mass m [g/mol] Diameter σ [Å] Well depth ϵ [ kcalmol ] Ref.

Na+ +1.000 22.990 2.350 0.123 [11]
Na+ (alt.) +1.000 22.990 3.328 0.002 77 [9]

Cl– −1.000 35.453 4.401 0.100 [11, 9]
Li– +1.000 6.941 2.026 0.0183 [9]

Ca (CaSO4) +2.000 40.078 2.895 0.100 [11]
S (CaSO4) −1.000 32.065 3.550 0.250 [11]
O (CaSO4) −1.000 15.999 3.150 0.200 [11]

H +0.424 1.0 0.0 0.0 [11]
O (H2O) −0.848 15.999 3.165 0.155 [11]

C 0.0 12.011 3.214 0.057 [11]

Table 1: Overview over interaction parameters of different atoms

In the following, we will detail the techniques underpinning our simulations. We first
describe how we can reduce the number of calculations by reducing the degrees of
freedom of atoms that are part of a molecule. Then, we present the different
algorithms necessary to simulate different ensembles. Additionally, we introduce a
method to properly calculate the Coulomb potential in a periodic system and how to
apply this to partially periodic systems. Lastly, we discuss two common techniques
to analyze the effective interaction potentials of materials in a solvent.

3.1 Molecules

Molecules are a combination of atoms that experience the same fundamental forces
as “free” atoms. However, the forces pulling them together are so much stronger
compared to other forces that their degrees of freedom are effectively reduced. In
simulations, one wants to minimize the number of calculations while maintaining
the underlying mechanics of the system. Interactions of the individual atoms within
a molecule are therefore simplified by leveraging the fact that the forces holding
molecules together are orders of magnitude stronger than other forces in the system.
At its extreme, such bonds essentially dictate the relative position. Then, we can
model them as a single unit with fixed angles and distances from their center of
mass. For example, in our description of SO4 ions where we fix the oxygen atoms
to lie at an angle (109.5°) to all other oxygen atoms and a fixed distance of 1.47 Å
to the sulfur atom.

In other cases, atoms are attached to each other yet they have still some freedom



3 MODEL AND METHODS 11

to move. An example of this is the model we used for the water molecules in this
work. We model water by using the extended simple point charge model (SPC/E)
[23] as the basis for their relative positions and charges. It assigns charges to all
three atoms yet only to oxygen nonzero LJ parameters, as well as placing them on
the vertices of? an isosceles2 triangle with a fixed angle. The distance at which
hydrogen atoms reside respective to the oxygen atoms is not fixed unlike in the case
of calcium sulfate. Instead, they can vibrate, which we implement by attaching
a harmonic potential between the oxygen and hydrogen atoms. There is a whole
class of algorithms, so-called constraint algorithms, to efficiently solve these extra
potentials. They achieve computational efficiency by neglecting less relevant degrees
of freedom. In this case, the hydrogen bonds in our simulation were maintained rigid
with the SHAKE algorithm [24]. We can use it to speed up our calculations as we
are not interested in the exact nature of the vibrations of the hydrogen atoms w.r.t
the oxygen atoms.

When making such approximations, we need to keep in mind that they only hold
under certain assumptions. Hydrolysis, the process in which water molecule bonds
break, sets in at voltages above 1.23V [25]. Furthermore, in the ionic bonds that
the molecules form, electrons move from one nucleus closer to others, effectively
changing the charges of individual atoms. This can even lead to changes in the LJ
parameters from the literature value of the free case, which is why there are two
different values given for oxygen in Tab. 1.

3.2 Time Integration

In statistical mechanics, the behavior of large microscopic entities is studied to
measure macroscopic quantities by discovering the properties of the average state
of the system. One core tenet of statistical mechanics is the ergodic hypothesis.
It states that the average over all possible states, the ensemble average, and the
average over time should be the same. The underlying assumption is that any state
can transition to any other state given enough time. This assumption doesn’t al-
ways hold and is virtually impossible to prove for larger systems, yet it is commonly
assumed for processes such as diffusion. The ergodic hypothesis is useful as time
evolutions are a lot easier to calculate than initializing many independent configu-
rations. Therefore, time evolutions are interesting not only for time-dependent but
also for time-independent processes. To do this, we split our time frame into many
small time steps and determine the next position for each of the N particles of the
system. For this, we add up all forces acting on the particle i and calculate the
acceleration of the particle as

miẍi = −∇VSystem

(
xi(t+∆t),xN (t+∆t),

)
. (3.1)

Those forces we express as the potentials VSystem, dependent on all particles k ∈
(1, N) positions xk at time t. The ith particle is thus not only affected by its own
position in the system but also by the position of all other particles xN = x1, . . . ,xN

2A triangle with two sides of equal length.
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Figure 4: LJ and Coulomb interaction of NaCl pair with respect to their
distance.

present in the system3. Its position in the system determines the forces that the
walls apply to it. We model the interaction with other particles through so-called
force fields also referred to as additive pair potentials, specifically the Coulomb and
LJ potential. The relative permittivity is equal to one since we simulate all particles
explicitly.

The position and velocity we can simply store and look up (at least after the first
time step). Thus, we have access to the zeroth, first and second derivative of
position and can use those to calculate the particle’s next position. This process
is called time integration. One implementation of this is the Verlet algorithm [26].
Consider the Taylor approximations of a particle’s position xi up to third order one
time step before and after the current time

xi(t+∆t) = xi(t) + ẋi∆t+
1

2
ẍi(t)∆t2 +

1

6

...
xi∆t3 +O(∆t4) (3.2)

xi(t−∆t) = xi(t)− ẋi∆t+
1

2
ẍi(t)∆t2 − 1

6

...
xi∆t3 +O(∆t4). (3.3)

By adding the two together, one obtains

xi(t+∆t) = 2xi(t)− xi(t−∆t) + ẍi(t)∆t2 +O(∆t4). (3.4)

This is a very elegant algorithm that reduces calculation errors to the 4th order of
the time step. At the same time, it requires only the previous two positions plus the
acceleration ai of (i.e., the forces applied to) a particle. A drawback of this algorithm
is that one does not obtain positions and velocities at the same time. Instead one
obtains velocities for every t + 1

2∆t. As a consequence, additional calculations

3i is included here, too, as the ith particle can interact with itself through periodic boundary
conditions
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are necessary to obtain speeds and positions at the same time. Furthermore, one
always needs the two previous positions. This means that for the first time step of
a simulation velocities need to be known or inferred, potentially leading to different
runs based on the same input data [27].

One way to remedy this issue is a variation of this algorithm called velocity Verlet
[28]. This is done by explicitly inserting the velocity vi(t) into Eq. (3.4). Now, one
also has to calculate the velocity, leading to a total of three steps (assuming that
the ai(t) does not depend on vi(t)). First, one calculates the next position xi(t)
for all particles by

xi(t+∆t) = xi(t) + vi(t)∆t+
1

2
ai(t)∆t2. (3.5)

Using the new position, one calculates the acceleration of all particles at time t+∆t.
Then one uses this to calculate the velocity at the next time step by

vi(t+∆t) = vi(t) +
ai(t) + ai(t+∆t)

2
∆t. (3.6)

To summarize this algorithm, for each particle we first calculate the next position
xi(t+∆t) via Eq. (3.5), then the acceleration ai(t+∆t) via Eq. (3.1) and lastly the
next velocity vi(t+∆t) via Eq. (3.6). This we then do for all particles at every time
step. Now, we calculate velocities and positions at the same time. This is useful,
for example, to check energy conservation, as it is crucial to calculate potential
and kinetic energy at the same time which depends on positions and velocities,
respectively [27]. With this information, we can fully implement the microcanonical
ensemble, i.e. a system where both the number of particles N and the amount of
energy E are conserved. Also, the size of the system is held fixed meaning that
we have a constant volume, too. A shorthand way to refer to a given statistical
ensemble is by naming the quantities held constant giving us the NV E ensemble.
Now we move on to see how other ensembles can be realized.

3.3 Nosé-Hoover Thermostat

While fairly straightforward to calculate in a simulation, a microcanonical ensemble
is harder to obtain in experiments. Energy is fairly hard to measure directly, whereas
constant heat is easier to realize. In a canonical system, heat is exchanged with
a heat bath to obtain a thermal equilibrium at constant temperature T instead
of constant E. Therefore, we now speak of an NV T ensemble. The Nosé-Hoover
thermostat is a molecular simulation tool to analytically emulate the effect of a heat
bath at constant T . It uses an extra variable s coupled to the velocities, leading to
a modified Hamiltonian

H =

N∑
i=1

p2
i

2mis2
+ V (rN ) +

p2s
2Q

+ LkBT ln s, (3.7)

where Q represents an effective mass associated with s and L a parameter that one
fixes later to a convenient value. In total, it depends on N positions xi and s as well
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as their respective momenta, leading to a total count of 6N + 2 degrees of freedom.
This Hamiltonian, the sum of potential and kinetic energy, is not conserved. We
want to fix the temperature, rather than the overall energy, so this is the desired
outcome in an NV T ensemble. From this Hamiltonian, we can derive the following
equations of motion

dxi

dt
= pi/mi (3.8)

dpi

dt
=

∂V (xN
i )

∂xi
− ϵpi (3.9)

ds

dt
= ϵ (3.10)

dϵ

dt
=

1

s

(
N∑
i=1

p2i /mi −
L

β

)
, (3.11)

with ϵ = sps/Q and ps the momentum of s. For these equations, instead of H,
there exists another conserved quantity H′ defined as

H′ =

N∑
i=1

p2
i

2mis2
+ V (rN ) +

p2s
2Q

+ LkBT ln s. (3.12)

It is however not a Hamiltonian since the equations of motion cannot be derived
from it. One can then use H′ to monitor that the heat bath is working as intended.
For their derivation from the above given H, consult Ref. [27, p. 152].

3.4 Grand Canonical Simulations

In a grand canonical system, we have not just a thermal but also a chemical equi-
librium. Instead of keeping the number of particles constant, we fix the chemical
potential µ which is the change in energy obtained through releasing a particle into
the system. In keeping with the naming scheme, the shorthand for this system is
µV T . One way to simulate such a system is to use a Monte Carlo algorithm, i.e.,
randomly “proposing” changes to the system and accepting/rejecting them based
on a rule. When performing grand canonical simulations with Monte Carlo (GCMC),
this would be the insertion, removal as well as translation of particles. One algo-
rithm that does this is the Metropolis algorithm which compares a function of the
energy of the system with a random number between zero and one. When applied
to grand canonical systems, one formulation of the Metropolis algorithm describes
the probabilities at which molecules are inserted as

pins = min

1, 1

1 + Λ3(N+1)
V exp(βµ) exp(β(Et+1 − Et))

 , (3.13)
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Figure 5: Example of Ewald approach. For every point charge, one adds two
normally distributed charge densities (one positive and one negative) with the

same overall charge. One then solves the upper part of the right-hand side in real
space and the lower part in Fourier space [27, p. 294]

and deleted as

pdel = min

[
1,

1

1 + V exp(βµ)
Λ3N exp(β(Et+1 − Et)

]
. (3.14)

Here Et is the energy at time step t, V the volume, N the number of particles in
the system before the insertion/deletion, Λ the thermal de Broglie wavelength, and
µ the chemical potential (see eqs. 4.39 to 4.43 in [29]) .

3.5 Ewald Summation

In a periodic box, there is an infinite number of more and more distant neighbors.
In theory, all of them are a part of the potential experienced by a given particle.
However, some particles (or mirror images of them) contribute more to the potential
than others. At a certain point where the distance is large enough and the sum over
all contributions to the potential converges, one can cut off all contributions smaller
than a given, acceptably small value. The Coulomb potential, unfortunately, con-
verges extremely slowly and not even in all cases [27]. Therefore, a cutoff presents
the choice between very heavy computational costs and/or inaccurate Coulomb po-
tentials, especially in a periodic system. One approach to use, instead of truncation,
is a technique called Ewald summation.

Considering only point charges in a cubic of box of volume L3, the electrostatic
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potential ϕ of the ith particle at point xi ∈ L3 can be written as

ϕpoint(xi) =
∑
j,n

qj
|xi − xj + nL|

(3.15)

where we sum over all particles j and all periodic images n of the cubic box with side
length L. The case of i = j is excluded for n = 0 as one does not want to include
self-interaction (while including the interaction with their mirror images).

In the case of Ewald summation, we now add a cleverly chosen zero for every charge
qi. We add both a screening charge distribution in the shape of normal distribution,
i.e.

ρ(xi) = −qi(α/π)
3/2e−αx2

i (3.16)

as well as a compensating charge distribution of opposite sign. The width of the
distribution

√
2/α is chosen based on grounds of computational efficiency. We thus

get

ϕpoint(xi) = ϕpoint(xi)− ϕGauss(xi)︸ ︷︷ ︸
Real part

+

Fourier part︷ ︸︸ ︷
ϕGauss(xi) . (3.17)

This allows us to split the Coulomb interaction into two parts, one quickly con-
verging in real space and the other in Fourier space. As illustrated in the top right
corner of Fig. 5, in the real part, we match a point charge qjδ(xi−xj) with a corre-
sponding oppositely charged Gaussian charge distribution ρ(xj). Their contribution
decreases quickly with increasing distances. At the same time, after converting the
other Gaussian to Fourier space, the second term becomes a sum of delta functions
which also can be efficiently calculated. We can combine the results of those two
calculations and define define the k-space charge distribution ρ(k) as

ρ(k) ≡
N∑
i=1

qi exp(ik · xi). (3.18)

with k as the Fourier space coordinate, Then the interaction potential reads as

VCoul(xi) =
1

2L3

∑
k̸=0

N∑
j=1

4πqiqj
k2

e−k2/4αe−ik·(xi−xj)

−
√

α

π
q2i +

1

2

∑
i ̸=j

qiqj
(
1− erf[

√
α|xi − xj |]

)
|xi − xj |

.

(3.19)

The first term is the result of the Fourier sum over all charges. It includes the self-
interaction of the particle which we do not want to include (not to be confused with
the desired interaction with its own mirror images). To remedy this, we include the
second term. This term is constant for systems of a fixed number of particles. The
real space contribution is given by the third term where erf is the error function. A
more detailed analysis can be found in Ref. [27].
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If the system is not periodic in one of those dimensions, one would intuitively like
to rewrite Eq. (3.15) with n only summing over two dimensions. After converting
to the three-dimensional Fourier space, however, this leads to a more complicated
(and a more computationally expensive) expression than the solution in 3D space.
A common workaround is to insert a large vacuum in the non-periodic dimension
and then use the original three-dimensional method4 [31].

3.6 Walls

The slit restricts the movement of the particles in the third dimension. In our
simulation, we need to do the same.

In the lab, the walls are usually made of 3D structures such as graphite. Implement-
ing a 3D structure of atoms at the bottom and top of our slab would mean that
over nine-tenths of the atoms in our simulation would be part of the walls. The first
layer represents the by far strongest contribution of the particle-wall interaction.
Thus, a somewhat more computationally efficient approach is to implement a wall
made up of a single layer wall on either side. In either case, to maintain the desired
distance h, one has to forbid the particles in the wall from moving. In some of our
simulations, we follow this approach. For this, we put carbon atoms on a hexagonal
grid, where each atom has three neighbors at a distance of 0.142 nm. Yet even with
a single layer at the top and bottom of the simulation, carbon atoms represent a
majority of atoms in the simulation.

For our slits, we use atomically flat structures yet they still have some structure.
Compared to the idealized flat wall, this can lead to slightly different distributions
in the out-of-plane dimension as particles can spread out further in “holes” and
less so “on top of” carbon atoms. Different walls were shown not to affect the
general properties of conductivity [11]. A way to introduce such an idealized wall
is the Lennard-Jones 93 potential (LJ93). One can easily integrate over the effect
a uniform wall has on a particle. In the case of walls without charge (such as
graphene), this can be fully described by the LJ potential [32] and one obtains

VLJ93(rz) =
2ϵ

15

[(
σ

xz

)9

−
(

σ

xz

)3
]
. (3.20)

Here, xz is our position variable in the out-of-plane dimension. It is 0 at the loca-
tion of the slit. The other parameters are the regular LJ parameters (of graphene).
Instead of calculating the Lennard-Jones interaction of every moving particle with
every wall particle, one has to calculate just one value. The effect is a drastic re-
duction in computation time, roughly scaling with the share of particles allocated to
build the wall. In our case, this reduction made simulations five times quicker.

Walls made from different materials have slightly different permittivity but they do
not change the conductive properties of the system qualitatively [11].

4This is also what the LAMMPS slab correction does [30].
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Figure 6: Wall repulsion experienced by different particles. We show the
Lennard-Jones 93 potential between a graphene-like wall and oxygen, sodium, and

chloride.

Both the continuous as well as the atomistic wall are soft rather than hard walls.
Even if our walls are situated at a distance of h, particles do not occupy the full
space as they are repelled by the wall before reaching its center. The effective
volume which can be occupied is thus reduced by the effective diameter of our wall
– in fact, even extending slightly beyond that as shown in Ref. [12]. Following the
approach of Ref. [12], we reduce the effective volume of our box by 0.34 nm in
calculations involving the volume of the slit.

3.7 Potential of Mean Force

In a molecular dynamics simulation, we employ the Coulomb and LJ force fields
to determine whether two particles attract or repel each other. However, particles
interact not just with one but with all surrounding particles. Particles can also affect
each other indirectly by for example blocking the interaction with other particles. To
measure a particle’s effect on another, we first need to choose a relevant parameter
for their interaction. In our case, that is the distance. Then we want to measure
the change in the overall free energy as a function of the distance between the two
particles. The free energy surface along the distance is then the potential of mean
force (PMF).

There are several ways to calculate PMFs. The easiest way is to run a simulation by
inserting a single ion pair into the system without any further modifications. Then,
one records both the distance between the two particles as well as the change in free
energy until we have sampled enough values for all relevant distances. The issue
with this approach is that locations are potentially sampled unevenly, in which case
it can take a very long time to sample all the interesting distances. In our case, for
example, we are interested in the change in free energy right next to the strongly
repelling core of the ions.
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However, we don’t have to rely on statistics and force particles to explore distances
more evenly. This can be done by either fixing particle positions in specific locations
or by adding an additional force to move the particles towards anchoring locations.
We will now look at both approaches in detail in the upcoming two sections.

Constrained Bias

In the case of constrained bias, we initialize a simulation box for a set of distances r
between the cation and anion. We record all the forces Fk(r) the ion k experiences
every few time steps ∆trecord and group them by the r. Then, we project the forces
in the direction of the other ion by introducing the unit vector ± rij

r connecting the
two ions. Finally, we take the average of the two forces as well as the time average,
so that we obtain the following interaction force

FPMF(r) =
1

2
⟨
(
Fcation(r)− Fanion(r)

)
· rij
r
⟩. (3.21)

The averaging removes forces acting the same way on both particles and intensifies
the forces which push the particles in opposite directions, i.e. either towards or
apart from each other. As the distance between the two ions is the only thing
that changes between different runs, FPMF is exactly the rate at which the free
energy changes, i.e. FPMF = − ∂

∂rU . Thus, we can now obtain the potential U(r)
by

U(r) = −
∫ r∞

r

FPMF(r
′)dr′. (3.22)

If the particles are not rotation invariant, one has to account for different orienta-
tions. This is tedious if one keeps positions fixed. Furthermore, one is limited by
the number of data points one collects.

Umbrella Sampling

In Umbrella sampling, the aforementioned issues are tackled. One still has several
simulation windows but the positions are not kept fixed anymore. Instead, to each
simulation window k, we add a biasing potential ωk(r), making states around the
reference point r0,i more energetically favorable. This allows us to explore many
different values for our reaction coordinate in a single simulation. From the biased
distribution psk(r) between the ions i and j, one can extract the unbiased potential
of each window Uk as shown in [33] yielding

Uk(r) = −kBT ln psk(r)− ωk(r) + Ck. (3.23)

From this expression, we have to calculate the overall potential U =
∑

k bk(r)Uk(r),
with

∫ r∞
0

bk(r)dr = 1. Each window has its own constant offset Ck, which first
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Figure 7: Biased distribution of NaCl. Range of biased distributions for a
various spring potential ωkK/2(r − r0,k. The spring constant K is shown in the
legend and r0,k ranges from 0.1 nm to 2 nm. Each individual bell curve was fitted

with a Gaussian distribution. The lowest R̄2 value is 0.98.

needs to be determined to solve this equation right away. There are different ap-
proaches to solve this. We will focus on a method called umbrella integration, where
we calculate the forces instead of the energy for each location and window. By cal-
culating the derivative of Uk, we avoid calculating the constant Ck for each window.
Then, the forces are stitched together and integrated to obtain U . To calculate the
forces, we need to first describe how our biased distributions are calculated.

At every measurement, we record the Euclidean distance between the ions. We split
the Euclidean distance into discrete intervals of constant width ∆r and calculate a
histogram for each window. To properly normalize this to a probability distribution,
we divide the number of measurements N s

k(r) in a bin with its center at distance
r by the volume of the bin Vk(r) and the total number of measurements of the
window NWindow such that

psk(r) =
N s

k(r)

Vk(r)NWindow
k

. (3.24)

For the bulk system, this means we get spherical rings and account for that by
dividing the measured frequencies by the difference in volume given by their inner
and outer shell. Thus the volume Vk(r) of the bin with center at r is given by

Vk(r) = 4π

∫ r+∆r/2

r−∆r/2

r′2dr′ =
4π

3
∆r

(
r2 +

(
∆r

2

)2
)
. (3.25)

In the case of our slit system, this is not possible. In the out-of-plane dimension, the
slit is a lot smaller than the largest distances considered. To account for that, we do
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the following. For distances smaller than h/2, we use the same method as for the
bulk. If the center of the bin is larger than h/2, however, this method would give
us more volume than there is in the slit. Therefore, in the out of plane dimension,
the volume does not increase any further, leading to

Vk(r) = 4π
h

2

∫ r+∆r/2

r−∆r/2

r′dr′ = 2πhr∆r. (3.26)

We show an example of a range of bias distributions in Fig. 7. Now that we have
calculated the biased distributions, we can almost calculate the the mean force with

∂Uk(r)

∂r
= −kBT

∂ ln psk(r)

∂r
− ∂ωk(r)

∂r
(3.27)

To be able to do this we still need to calculate a derivative of psk(r). To achieve
this, we approximate psk(r) up to its second term yielding

psk(r) =
1√
2πσs

k

exp

[
−1

2

(
r − ⟨r⟩sk

σs
i

)2
]
. (3.28)

This is nothing else than the normal distribution, with the mean ⟨r⟩sk and stan-
dard deviation σs

i of r in each window. The assumption of a normal distribution
holds as long as the free energy is smooth and each window only covers a small
area of the reaction coordinate. However, the quality of this fit should always be
checked by calculating a measure for the quality of the fit such as the coefficient of
determination R2.

To avoid further approximations, the biasing potential should have a derivative that
can be calculated analytically. Throughout this work, we choose the harmonic spring
potential

ωk(r) =
K

2
(r − r0,k)

2 (3.29)

as our biasing potential, with K being the spring constant. The choice of K de-
termines with which force the ions are pulled towards the r0,k. Thus, it effectively
determines the width of the bins and should therefore be chosen as low as possible
– without compromising the normal distribution of measurements.

After having specified all of the above, we can now insert this into the derivative of
Eq. 3.23. We then obtain

∂Uk(r)

∂r
= −kBT

r − ⟨r⟩sk
(σs

k)
2

−K(r − r0,k). (3.30)

To obtain the actual force measured at every point, we now need to stitch the results
from the different simulations together. For this, we add them together weighted
by the overall number of measurements NWindow

k taken per window k. This yields
the following effective force

∂U(r)

∂r
=
∑
k

bk
∂Uk

∂r
(r) with bk(r) =

NWindow
k psk(r)∑

l N
Window
l psl(r)

. (3.31)



3 MODEL AND METHODS 22

Now, just like in the case of the constrained bias, we need to integrate along our
reaction coordinate to obtain the actual relative free energy which yields

U(r) = −
∫ r∞

r

∂U(r)

∂r
dr. (3.32)

This is the desired potential of mean force.
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4 Results and Discussion

In the following, we will present our results and discuss their implications. For each
section, we also add a table with a brief summary of the quantitative parameters used
so that comparisons between sections are easy as well as their replication.

4.1 Attaching a Water Reservoir

GCMC Values
Lx = Ly 2 nm2

Slit (Bulk) height: h 0.7 nm (2 nm)
Time Step ∆t 1 fs

Time between GCMC Exchanges ∆tGCMC 0.1 ps
Insertion/Deletion Attempts per GCMC exchange 400

Ion pairs NIons 0 to 5

Chemical Potential µ of Water −16 kcal/mol−1 to −8 kcal/mol−1

Wall Monolayer graphene

Table 2: List of simulation parameters for the grand canonical simulations

To begin, we wanted to see whether water would flow in or out of our system if
connected to a reservoir of water. For this reason, we study how receptive the
nanoconfined slit is by attaching a grand canonical simulation. So, we create both
a square slit of length Lx = Ly = 2nm and height h = 0.7 nm as well as a bulk
system in a cubic box of length L = 2nm. We use periodic boundary conditions
for the bulk system as well as for the slit in the plane spanned by Lx and Ly. In
the out-of-plane dimension of the slit, we use two graphene sheets to construct
the walls. To initialize either system, we inserted between 0 and 5 NaCl ion pairs
as well as 8 water molecules5. To make our ions and water molecules move over
time, we use the Velocity Verlet algorithm and fix their temperature by applying
a Nosé-Hoover Thermostat. We treat the water grand canonically by fixing its
chemical potential µ in the reservoir and thus allow for the insertion/deletion of
water molecules at an arbitrary position in our box. Every 100 fs, we try 400 GCMC
insertions and deletions with µ between −16 kcal/mol and −8 kcal/mol. We ran
those for a total of 100 ps. All relevant quantitative information to replicate this
experiment, we summarized in Tab. 2.

In Fig. 8(a), we show as an example how the number of water molecules changes
over time for a given number of ions and several µ. Starting from the same number
of water molecules, they quickly equilibrate towards the energetically most favorable
configuration and begin to stabilize around a value. For the other plots in Fig. 8,
we take the average of the last 10 ps of the simulation.

5In the legends of Fig. 8, we convert the number of ions into ion concentrations using Eq.
(2.4).
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(a) (b)

(c) (d)

Figure 8: GCMC of slit and bulk. Using GCMC, water molecules are inserted
every 0.1 ps. More general details are in Tab. 2. (a) Water molecules plotted over
time for a singe ion pair (or molarity of 0.21mol/l) in the bulk system of size of
2× 2× 2 nm3. (b) Water molecule number densities are displayed for a range of
chemical potentials and ion concentrations in the same system. (c) Using the

same data, we show the mass density of the system. (d) Water molecule number
densities are shown for a range of chemical potentials and ion concentrations in a

slit of size 2× 2× 0.67 nm3. The error bars of all plots are based on single
simulations and have time correlations.



4 RESULTS AND DISCUSSION 25

The error bars are based on a single simulation and have thus a temporal correlation.
This means that a small error does not necessarily imply that it is close to the
ensemble average. If there is a larger error bar, however, this is an indication that
this value is less certain.

In Fig. 8(b), we plot the water molecule density as a function of the chemical
potential µ for the bulk. It displays a monotonous relationship between the number
of water molecules and the corresponding µ. Without the presence of other atoms,
there is just a single water molecule for chemical potentials below −11 kcal/mol.
Then, a difference in µ doesn’t lead to different behavior. If there are salt ions
present, water flows into the bulk at lower chemical potentials as well and the more
ions there are, the more water flows into the bulk system. For higher chemical
potentials, this is not the case. More accurately, this occurs once a certain number
of water molecules is surpassed. The space in the simulation box gets scarcer and
thus the insertion of another water molecule becomes harder. In Fig. 8(c), we show
the mass density of the same data as displayed in Fig. 8(b). Here we see that indeed
the density scales monotonously with the number of ions at all chemical potentials
in the bulk.

Comparing the curves for the bulk case with the slit Fig. 8(d), we notice two main
differences. The first to note is the higher density of water molecules. At any
chemical potential and number of ions, there are more water molecules in the slit
than in the bulk. The second is that in the slit, higher numbers of ions do not
attract more water at a low chemical potential. Yet at high chemical potentials, we
see a similar pattern as in the case of the bulk.

Of special interest is the behavior of water at ambient conditions. At room temper-
ature, we know that water has a density of around 1 g/cm3. This corresponds to
a µ of −11 kcal/mol for the bulk case. From the Maxwell relations, we know the
following holds for an incompressible fluid and constant temperature

∆p = −ρ∆µ. (4.1)

Here, ∆p is the change in pressure and ρ the number density of the particle species.
This in turn means that for a given µ the ratio of the number densities is equivalent
to the ratio of the change in pressure as in ∆pslit

∆pbulk
= ρslit

ρbulk
. This means the slit

experiences a higher change in pressure. This difference is consistent for all values
of µ from a vacuum onwards. To compare the levels of overall pressure in bulk and
slit, this implies that the pressure in a nanoslit is a lot higher than in the bulk. We
will have another look at the pressure in the next subsection.

We need to note that the molarity of the simulated solution is extremely high. In
the slit, the molarity of the single ion pair is higher than that of seawater (at around
0.6mol/l [34]). This means to show that any effect of this system is significantly
more intensive than one would expect in most real-world settings.

Unfortunately, GCMC is a very slow simulation technique and its implementation in
LAMMPS did not allow for speed-up techniques such as using multiple processing
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units for the same simulation. we chose to move ahead and study larger systems in
the NV T ensemble.

4.2 Diffusion

For the next part, we want to investigate whether ions observe Brownian motion
under nanoconfinement. For this, we focus on the most common – and most studied
– of the salts at hand, sodium chloride (NaCl). We study ion concentrations between
0.03mol/l and 2mol/l (corresponding to inserting between 1 and 80 ion pairs).
We insert the ions randomly and let the system equilibrate. The slit has the same
size and the same continuous LJ93 walls and also the attached thermostat, time
integration, duration, and time step remain the same as before. In this simulation,
we use water molecule density of 21.8 nm−2. All parameters relevant to recreating
the simulation are also summarized in Tab. 3.

(a) (b)

Figure 9: Mean squared distance and diffusion coefficient of NaCl. We
perform MD simulations on NaCl in system as described in Tab. 3 with no electric
field. (a) We show the mean squared distance for a range of ion concentrations.
The cutout in the top right corner represents a zoomed-in version with linear fits
in dashed lines. (b) The diffusion coefficient is calculated with Eq. (2.8) in 2

dimensions. The mean and standard error of the mean are calculated by discarding
the first 0.5 ns and splitting the rest in windows of 0.25 ns.

We show the mean squared displacement R2(t) of various ions in the plane in
Fig. 9(a). For this, we do not consider the out-of-plane dimension as particles
cannot travel far in that dimension. We use linear fits to confirm that we are
indeed in a system of diffusion which we show in the top right corner of Fig. 8(a).
For lower concentrations, we see some deviations from the linear trajectory. At a
concentration of 0.20mol/l (the lowest shown), there are only 8 ion pairs in the
system. So we can assume that this is simply a statistical fluctuation. We see
however that not all ion concentrations have the same slope.

To quantify the behavior at long distances, we calculate the two-dimensional dif-
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fusion coefficient D. We split our simulation into windows of 0.25 ns, calculate
the diffusion by Eq. (2.8) and show the average and standard error of the mean
in Fig. 9(b). What we find is that our error bars are rather small. Yet we obtain
very different outcomes for similar ion concentrations. From this, we conclude that
the ergodic hypothesis does not hold and the time averages do not give a good
picture of the ensemble average. This means that single runs are not a good guide
to study the general diffusion properties and that amount of pairs/clusters has a
strong influence on the diffusive properties of the system.

(a) (b)

Figure 10: Mean squared distance and diffusion coefficient of generic ion of
valence Z = 2. We perform MD simulations on a generic ion with valence

Z = 2 and the LJ parameters of NaCl in the system as described in Tab. 3 with no
electric field. (a) We show the mean squared distance for a range of ion

concentrations. (b) The diffusion coefficient is calculated with Eq. (2.8) in 2
dimensions. The mean and standard error of the mean are calculated by discarding

the first 0.5 ns and splitting the rest in windows of 0.25 ns.

To study the effect of charge on the diffusion, we also look at the R2(t) of a
divalent generic ion and show their R2(t) in Fig. 10(a). Here, we see the same
linear behavior as in the monovalent case. For short time scales, ions move faster in
systems of higher concentrations. This reverses at time scales of around 10-100 ps.
After around 100 ps, we see that ions move faster at lower concentrations.

The behavior at larger time scales dominates of course when calculating diffusion
coefficients D which we show for a range of concentrations in Fig. 10(b). Unlike
before, we observe a clear decreasing relation for D with respect to the ion concen-
tration. Also, the diffusion coefficient for the case of the divalent case is roughly
half that of the monovalent case. By design, the only difference lies in the valence
of the ions. Therefore, the ions’ increased attractiveness leads to lower mobility.
Combined with the fact that highly concentrated ions move more quickly at an
earlier stage, we assume the following occurs. Ions that are in close vicinity to an
oppositely charged ion move towards this ion at high speed. Once they find that
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ion, they move more slowly. At high concentrations, many ions are nearby leading
to a lot of movement early on – and subsequently to a slowdown.

4.3 Constant Electric Field

MD: E-field & Diffusion Values
Lx × Ly 10× 10 nm2

Slit height h 1 nm
Time step ∆t 1 fs
Run time 1 ns

Ion pairs NIons 5 to 100
Electric Field E 0 kBT/eÅ to 5 kBT/eÅ

Water Molecule Density ρ 21.8 nm−2

Wall LJ93 based on Carbon

Table 3: List of simulation parameters in current, conductivity and diffusion
experiments

Next, we turn our attention to the behavior of ions in electric fields. Besides adding
an electric field, we use the exact same system as in the previous section. The
dimensions of the slit, the synthetic LJ93 walls as well as the attached thermostat,
time integration, duration, and time step remain the same as before. Now, of course,
we add an electric field which we varied between 0 and 5 kBT/eÅ. As before, we
will first look at NaCl and then compare its behavior with the divalent case.

As we see in Fig. 11(a), for the case of sodium chloride, we observe a, within the
error bars, linear relationship between electric fields and electric currents. Only
for the strongest electric field, 5 kBT/eÅ, does the measured value lie above the
fit line, yet still at around the edge of our error bar. Both the linear correlation
overall as well as the outlier for the largest electric field, we find a wide range of
ion concentrations beyond the ones shown in Fig. 11(a). We make use of this to
calculate the conductivity σ = 1

A
I
E . This means the behavior of sodium chloride is

primarily described by the Ohmic relation.

We use the slope of the linear fit in Fig. 11(a) to calculate I
E and use Eq. (2.6)

so we only need to rescale our fits with the area through which the current passes.
We then obtain the conductivity and plot them as a function of concentration as
shown in Fig. 11(b). For low concentrations, we see a linear relationship between
conductivity and concentration. This is what we would expect as the electric field,
in the dilute limit, scales with the number of ions in the system. For concentra-
tions larger 0.5mol/l, the conductivity does not scale with ion concentration as
before. This means that the addition of further particles does not lead to a cor-
responding increase in conductivity. In turn, we can deduce from this that there
are density/concentration-dependent effects on the conductivity. We explain this
with an increase in clustering. The overall chance to find another particle in close
vicinity scales with the number of particles already in the system. If we compare
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(a) (b)

Figure 11: Applying constant electric fields to confined NaCl. (a) Electric
currents for different ion concentrations. Dashed lines are linear fits. The error
bars are calculated by grouping calculation in chunks of 0.25 ns. Simulation ran
for 2 ns. (b) Conductivity calculated using the slope of the linear fit as shown in
(a) together with Eq. (2.6). In grey, we present the conductivity as expected by
the upper and lower bound of diffusion coefficients shown in Fig. 9 together with

the Nernst-Einstein equation (Eq. (2.9)).

conductivities measured in this section with the ones that we would expect based
on the Nernst-Einstein equation (Eq. (2.9)), we see that even at the lowest concen-
trations, the conductivity is below the expectation. This underestimation could be
explained that even at these rather dilute concentrations some pairing occurs. Be-
cause ions that pair up still move, contributing to the mean squared displacement.
Yet, they do not contribute to the current anymore. However, one should also take
note that we are in a regime of very few actual ions (a concentration of 0.05mol/l
corresponds to just two ion pairs).

If we now double the charge of the ions, the picture changes drastically. For divalent
ions, we find that there is a nonlinear correlation between electric currents and
electric fields. For lower electric currents, we see a lower conductivity and for larger
electric fields, we observe a higher conductivity. This implies that our electric field
pulls ions towards each other in the weaker electric fields and apart in the stronger
electric fields.

Eq. (2.5) states that the electric current scales with the charge of ions moving at
unchanging speed. At the same time, the force ions experience in an electric field
also scales with their charge. In total, the expected current in the divalent case
ought to be four times as large compared with the monovalent case. Yet the overall
current is lower in the divalent case compared to the monovalent case. Instead,
we observe a lot more clustering occurring, reducing the desire of the ions to move
along the electric current. On top of this, considering the error bars, one can hardly
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differentiate the current for concentrations of 0.2mol/l and 2mol/l even though
the current ought to scale linearly with the concentration – without correlation of
the ions, that is. As previously discussed, when ions form pairs, their effective
contribution to the current becomes zero. Therefore, only free ions and at most
one free ion per cluster (group of three or more particles) contribute to the current.
From this, we conclude that the number of free ions is reduced at higher electric
fields.

(a) (b)

Figure 12: Applying constant electric fields to confined NaCl. (a) Electric
currents for different ion concentrations. The error bars are calculated by grouping
calculation in chunks of 0.25 ns. Simulation ran for 2 ns. (b) Electric Conductivity

is divided by the number of ions Nion and the electric field applied.

To study the effect on the conductivity, we cannot simply calculate a linear fit to
obtain something representative of a given ion concentration. For this reason, we
define and calculate a notion of normalized conductivity σ̂. We obtain σ̂, by dividing
over both the electric field applied and the number of ion pairs Npairs present in the
given run, yielding

σ̂ =
I

ENpairs
(4.2)

In Fig. 12(b), we plot this for several electric fields in relation to the ion concentra-
tion. In the case that our ions do not depend on the concentration, we thus expect
a straight line. If the strength of the electric field doesn’t influence behavior, we ex-
pect lines to overlap. What we see is that neither of those expectations fully holds.
For electric fields up to 2 kBT/eÅ, we see a very negative correlation with the ion
concentration while the electric field has little influence. For larger electric fields,
we see less of a correlation with concentration. This means, that for low concentra-
tions, we see a relatively low normalized conductivity and for higher concentrations,
we see a higher normalized conductivity. This implies at low concentrations, we
see a higher amount of clustering for stronger electric fields than for weaker ones.
Yet at low concentrations and strong electric fields, the normalized conductivity is
higher than for any electric field at higher concentrations. With stronger electric
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fields, ions travel further more quickly. This means the chance of encountering an
oppositely charged ion increases. At higher concentrations, we see higher normal-
ized conductivities for stronger electric fields. This would imply that at sufficient
concentrations, finding another ion is not constraining anymore. Instead, the force
of the electric field pushing oppositely charged ions in different directions leads pairs
that have formed to dissociate earlier than in lower electric fields. To compare this
chart with the one for sodium chloride, we refer to Fig. 25 in the appendix.

One caveat of this analysis is the question of how physical it is to apply electric
fields of this magnitude. Consistent with the literature, we chose to look at elec-
tric fields up to 5 kBT/eÅ. For a system with Ly = 10nm, this translates to a
voltage of 12.84V. This is roughly ten times the voltage required for hydrolysis in
a bulk system. For a constant electric field E, the voltage V scales as V = LxE
which means that in larger systems, such as that of [11], hydrolysis sets in at even
lower E. Future research should look at the hydrolysis properties of water under
nanoconfinement. If they were comparable to those in the bulk, the covalent bonds
of the water molecules would be broken. Consequently, the results of this study
could not be physical. If that were the case, future research should look at whether
non-Ohmic behavior can be found at lower electric fields as well.

Another caveat is that we found this non-Ohmic behavior for a generic salt rather
than a physical one. In the next section, we will, among other things, look at how
generalizable these results are.

4.4 Potential of Mean Force

Parameters MD: PMF
Lx = Ly: Slit (Bulk) 10 nm2 (5 nm2)
Slit (Bulk) height: h 1 nm (5 nm)

Time step ∆t 1 fs
Run time 1 ns6

Electric Field E 0
Water Molecules NWater 2320

Wall LJ93 based on Carbon

Table 4: List of simulation parameters in PMF simulations

After having observed static currents, we wanted to investigate such behaviors with
time-varying currents. This presented a problem. The molecular dynamics simu-
lations (MD) were simulating our system in the order of nanoseconds per day. As
discussed in the literature, the memristive effect was observed at frequencies rang-
ing from kHz to MHz, which require simulation times outside the scope of MD.
Previous works in the literature had used generic salts in Brownian dynamics sim-
ulations relying on the Q2D potential (as described in Eq. (2.12). This raised the
question of how well the Q2D potential describes the effective interaction between
ions under nanoconfinement. In this section, we want to determine effective ion-ion
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potentials in a nanoslit as well as in the 3D bulk.

For the most part, we use the same slit as before and insert water molecules at a
density of 23.2 nm−2. However, we also look at the case of one and three layers of
water as well as the 3D bulk system. The slits have the same area and slit heights
of 0.7 nm and 1.3 nm, respectively whereas the bulk is made of a cubic box with
sidelength L = 5nm. Then we insert one pair of ions and kept it at a fixed distance
or in a small range of distances. We achieve this by not allowing any movement
in the constrained bias (CB) case and by attaching a harmonic spring potential
between the two ions in the case of umbrella integration (UI), respectively. The
exact technique is detailed in the methods section. Except for CaCl2, the PMF
simulations are run for 1 ns with a Nosé-Hoover thermostat at 298K. Every 20 fs,
the forces and positions of the studied ions are recorded.

Lastly, our box is not infinitely large, requiring us to choose a finite r∞ for Eqs.
(3.22, 3.32). We should choose r∞ to be at a sufficiently large distance such that
FPMF(r∞) ≈ 0. In the case of the bulk, at a distance of 2 nm and unit charges,
the Coulomb potential differs by less than 1 kJ/mol to its value at infinity. In the
case of a two-layer water slit, the Q2D potential differs by around 10 kJ/mol at
a distance of 2 nm and needs a distance of more than 47 nm to fall below the
threshold of 1 kJ/mol. It was not feasible to build a system with a size of around
100 nm in box length. As a consequence, we can only construct a partial but not
a full PMF from our simulations, assuming that the Q2D is correct. Later, we will
then show our best estimate of the effective interaction potential of the ions. To
ensure the correctness of those PMFs, we first need to confirm whether the data
that we measure is correct.

Both for CB and UI, we take the integral from the distance r to r∞ to calculate the
PMF. Therefore, the PMF will always be 0 at r∞. Accordingly, the PMF that we
measure is shifted compared to the true effective interaction. To make a sensible
comparison between Q2D and the PMFs, we shift the analytic potential to be 0 at
r∞ as well. As the Q2D interacts at long distances, we also have to account for
the effect of periodic images. The first periodic image of the charge has a strong
influence, to compensate for this we define an adjusted Q2D potential as

ṼQ2D(r) = VQ2D(r)− VQ2D(Ly − r). (4.3)

Now we compute the PMF of NaCl in a slit with height h = 1nm and plot its CB,
UI and the correspoding adjusted Q2D for a distance of up to 2 nm in Fig. 13(a).
For both CB and UI, the PMF increases almost monotonously at distances beyond
1 nm. As discussed before, for large distances our distributions approach (since we
defined it to be an integral with a finite distance upper boundary, compare with
the integrals in Eqs. 3.22 and 3.32). For distances smaller than 0.25 nm, we see
that the potential is highly positive and decreasing rapidly. At a distance of 0.25 nm
(0.20 nm), the LJ potential of Na+and Cl– evaluates to 13.6 kJ/mol (226.7 kJ/mol),
showing that this rise is a consequence of LJ repulsion.

In between, however, both CB and UI show three discernible troughs and peaks
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(a) (b)

Figure 13: Validating PMFs. (a) Calculating the potential of mean forces
using the constrained bias (CB) and umbrella integration technique (UI) with a

cutoff at 2 nm and comparing with ṼQ2D(r). (b) Comparing CB to both ṼQ2D(r)
and VQ2D(r) for distances of up 5 nm.

which differ from the behavior the Q2D potential would let us expect. We see that
the global minimum lies at the closest trough and is followed by the largest peak.
The potential differences between subsequent peaks and troughs become smaller.
The difference between the subsequent peaks and troughs is constant and persistent
throughout different PMFs for different salts and systems. The only thing consistent
is the existence of water molecules in all these simulations which is why we identify
those as the effect of water. As discussed in the theory section, water molecules
attach to ions.

We calculated CB and UI from different data using different methods. Yet overall
we can state that they are in good alignment as all the characteristic features such
as peaks and dips are in the same locations and they have the same slope towards
large distances.

At the first trough, we spot the biggest difference which is a lot deeper in the UI
case than in the CB case. In both, however, it is significantly deeper than the
second trough. The constrained bias case was limited to a single data point per
simulation. With Umbrella Integration, one can sample more locations and thus also
come closer to the true minima and maxima of the distribution. This is especially
helpful in places where forces change quickly with respect to the distance. On the
other hand, CB samples a lot more values per location. So in areas with low rates
of change, such as for distances beyond 1 nm, it includes less noise.

The additional accuracy close to quickly changing parts of the function is helpful.
Also, it restricts the movement of the particles less and thus allows them to interact
with the system more “naturally”. The ions can move to their preferred position in
the slit (particularly in the out-of-plane dimension) and, in the case of anisotropic
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particles, also their preferred orientation. This is why we use Umbrella Integration
as our main method. As described in the methods section, one needs to make sure
that the underlying assumptions are fulfilled, specifically that the biased distribu-
tions follow a Gaussian distribution and that sufficient data was sampled for every
bin.

Seeing that our two fairly different methods show the same result gives us confidence
that we capture the physics of our system. We now compare the adjusted Q2D
potential with the UI and CB. For distances of more than 1 nm, we find that we are
in very good alignment. In the case of the Q2D potential, as in the 3D Coulomb
potential, the solvent is assumed to be continuous (as is the case for water at a
macroscopic scale) and only represented by its relative permittivity. Unsurprisingly,
the effects of the water molecules are not represented in the data. However, the
Q2D potential approximates the behavior of sodium chloride in the slit very well
besides the effect of water (and the LJ repulsion).

Next, we show the difference between ṼQ2D(r) and VQ2D(r) and how they match
our CB potential for distances up to 5 nm in Fig. 13(b). We see that the adjusted
Q2D matches the CB PMF very well at longer distances as well. The visible differ-
ence between the slopes of ṼQ2D(r) and VQ2D(r) shows that the effect of the first
mirror image is significant throughout the box. For a more accurate picture of the
PMF, the box should have been larger.

Furthermore, in all the experiments on diffusion and ionic currents, each ion ex-
perienced the forces of all ions in the box and even their mirror image. When an
electric field is applied, ions with an opposite charge move in opposite directions.
In a periodic box, ions moving in opposite directions have a higher chance to come
close to each other. As we saw above, the interaction between ions is a lot stronger
than in the bulk. Therefore, encountering oppositely charged ions could, even if no
pairs are formed, lead to a slow down and, thus, a lower current.

The Effect of Ion Size

To study the effect of size, we consider a different ion of the same valence, lithium
chloride (LiCl). The differences between lithium and sodium in an MD simulation
lie solely in their respective LJ parameters. Furthermore, we add a second force
field for NaCl as given by the Amber force field. All LJ parameters are listed in
Tab. 1. We show the measured PMFs in Fig. 14. There is a highly positive, rapidly
decreasing potential at very short distances. We observe that the peaks and troughs
have the same distance as before. As the LJ diameter for Li+ is smaller than for
Na+, ions can come closer and thus experience a higher Coulomb force.

If we now take a look at the other set of LJ parameters for NaCl, based on the
Amber force field, we find that the first two peaks and troughs are in the same
locations. The global minimum is deeper than for either the other NaCl force field
or LiCl. The depth of the well (i.e. comparing the minimum with the subsequent
local maximum) is the same for NaCl (Amber) and LiCl. Once an ion pair has been
found, both have the same potential barrier which needs to be surpassed. From
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Figure 14: PMFs of LiCl in the bulk and slit. The slit is of dimension
10× 10× 1 nm3 and has a water molecule number density of 23.2 nm−3 whereas
the bulk system is of size 5× 5× 5 nm3 and has a mass density of 997 kg/m3.

a distance of 0.4 nm onwards, the differences between the three become small.
Therefore, the specific parameters play a lesser role at larger distances and are not
essential for a phenomenological description of ions that reside in such regimes. For
close distances, however, we see that the choice of the force field can influence the
quantitative part of our result. From another angle, the difference between using a
lithium ion or a sodium ion seems to be fairly limited.

Comparison of Geometry

Next, we want to compare the behavior of NaCl for different geometries. So far,
we looked at a 1 nm slit, corresponding to two layers of water. Now, we will add a
one and three-layer slit as well which corresponds to slits of widths of 0.7 nm and
1.3 nm. Based on results in Ref. [7], we choose water molecule densities 11.5 nm−2

and 31 nm−2, respectively. On top of that, we implement a bulk system with a
box of L = 5nm filled with water at the room temperature density of 997 kg/m3,
representing the case of an infinitely wide slit. We can calculate the PMF only
at shorter distances, due to computational constraints. This box, with a total of
4167 water molecules already contains twice as many water molecules as our regular
two-layer slit. However, as we saw in the discussion above the effect of periodic
images on the ions is a lot stronger in the slit. To show the true differences between
the different slits and the bulk, we have to adjust the measured PMFs because
otherwise, the comparisons would be misleading. For long distances, the adjusted
Q2D potential matches the measured PMFs very well and we use the Q2D potential
to reduce the effects of our box’s finite size. To be more precise, we apply a constant
shift to account for the fact that the upper limit of our integration r∞ is very much
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Figure 15: Comparing the PMFs of NaCl for different geometries. Using
umbrella integration, we compare the PMFs of a single pair of Na+ and Cl– for

one, two and three water layers (corresponding to a slit height h = 0.7 nm, 1.0 nm
and 1.3 nm, respectively) as well as the regular volume/bulk case with the

corresponding Q2D potential (Eq. (2.12) (or the Coulomb potential Eq. (2.2)) in
the bulk case). The measured potentials are shifted as described in Eq. (4.4).

finite, and to reduce the effect of the periodic box we counter the contribution of
the first periodic image yielding an adjusted Ũ(r)

Ũ(r) = U(r) + VQ2D(r∞)− VQ2D(Ly − r). (4.4)

When looking at Fig. 15, we see that the overall behavior, i.e diverging for small
distances, followed by oscillations and eventually approaching 0, is observed for all
four systems. The extrema also lie at the same distances. This is not surprising
as neither the shape of the ions nor that of water has changed. Overall, we see
that the thinner the slit, the more negative the potential. For the single-layer case,
the first minimum is a lot deeper than the second. The wider the slit, the smaller
the difference between the two, and in the bulk, the first minimum is at about the
same energy level as the second minimum. Also, we see that in their structure
the three-layer case resembles the infinite layer case more than the single-layer case
and the global minimum lies halfway between the two. Just like in the case of
two-dimensional crystals, we see that most of the effect is restricted to the thinnest
cases.

Furthermore, there is an increase in the water-induced oscillation for thinner slits.
We presume that the extra force comes from the water molecules which cannot move
as they want to due to restrictions in their movement imposed by a combination
of the ions that we study and the geometry of the slit. In a single layer, water
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molecules lie in the same plane as the ion and thus cannot move “through” its x-y
location and instead have to move around it. In the bulk case, they can also change
their position in the z-component and thus move around it easily. For a slit of a
few layers of water the water molecule experiences restrictions, stronger restrictions
as some paths might be blocked by the geometry while others are not.

Unibivalent Electrolyte

Figure 16: Comparing the PMFs of bulk and slit for CaCl2. The slit is of
dimension 10× 10× 1 nm3 and has a water molecule number density of

23.2 nm−3 whereas the bulk system is of size 5× 5× 5 nm3 and water is inserted
corresponding to a mass density of 997 kg/m3. The PMFs were calculated with
Umbrella Integration and then transformed according to Eq. (4.3). The the Q2D
potential as described in Eq. (2.12) and the Coulomb potential as in Eq. (2.2).

So far, we have only considered a single anion and a single cation. In the previous
section, one ion was constituted by several differently charged atoms yet they were
still moving as one unit. Calcium chloride (CaCl2) is different as it is a salt consisting
of three ions. We are interested in the interaction between Ca2+ and one Cl– ion.
Yet, to have a charge-neutral system, we still inserted the second Cl– ion into the
system. It was placed in the vicinity of the two fixed/coupled ions but then left to
move freely within the box. To reduce the effect of fluctuations arising due to the
third, freely moving ion, we run the simulation for at least 5 ns. We kept track of
its position and found that it was never closer to either of the studied ions than
they were to each other.

In Fig. 16, we see that CaCl2 shares many things with the previously shown PMFs.
Again, the subsequent peaks and troughs differ by the same constant distance.
There is something different, however. The first minimum of the PMF has a first
minimum, followed by a highly positive peak. Only then does the function descend
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to the global minimum. This implies that the direct connection is less attractive
than the case with a water molecule in between them. From this, we can deduce
that CaCl2 will not crystalize. However, for dynamic processes such as that of a
memristor, it could be suitable.

Divalent Ions

Figure 17: Comparing PMFs of Z = 2 ions. Potential of mean force at
different distances for CaSO4 and NaCl(Z = 2) using UI in a slit of dimension
10× 10× 1 nm3. We compare the PMFs with the adjusted Q2D potential as

shown in Eq. (4.3).

As we saw in the previous section, there were some differences between the PMFs
of NaCl and LiCl. We also looked at divalent ions in the sections on diffusion and
constant electric fields. To see how applicable the results of our generic ion are, we
compare the PMFs of calcium sulfate CaSO4 and the generic divalent ion. We plot
their PMFs in Fig. 17 together with the Q2D adjusted with the first mirror image.
For distances wider than 0.8 nm, we see a very good agreement between the two
PMFs. The adjusted Q2D tracks them fairly well at those distances. The charge is
significantly stronger in this case. Therefore, we assume that an even better match
could be achieved if further periodic images were included in the adjustment. At
closer distances, we see oscillations due to the water molecules again. As stated
in the case of Z = 1, the Q2D does not capture this effect. Interestingly, the
oscillations for both Z = 2 ions are stronger than for Z = 1 ions.

When comparing the two Z = 2 ions with each other, the first thing to note is
the difference in the global maximum – both in distance and depth. The global
maximum of the generic ion is a lot deeper and at a shorter distance. Shifted by the
adjusted Q2D, it is in fact about twice as close and twice as deep. The difference in
distance is easily explained by the size of CaSO4 which is a lot larger than NaCl. This
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means that the LJ potential separates the two ions a lot earlier. The doubling of the
PMF over a halving of the distance would be in line r−1 with the vacuum Coulomb
potential. This would make sense since both minima represent points of closest
distance, which means there are no water molecules in the way and the dominant
force would come from the electrostatic potential. Given the uncertainty about the
shift and the extra correction terms required, this is merely a guess.

For the generic sodium chloride, the peaks and troughs are the same constant
distance apart that we saw for the ions with Z = 1. Compared to NaCl the peaks
are all at slightly closer distances. The stronger charge allows the particles to move
closer. For CaSO4 on the other hand, we observe something different. Here the
shape is more complex. This is due to the anisotropic nature of sulfate which
consists of one sulfur and 4 oxygen atoms. In the appendix, we show an illustration
of calcium together with sulfate rotated at several angles in Fig. 18. We show the
PMFs of several fixed orientations in Fig. 19 in the appendix. At different distances,
different orientations are more favorable. This can lead to extended troughs as one
favorable position replaces another. The recognizable peaks, on the other hand,
observe the constant distance as before.

If we apply what we learned about the generic sodium chloride here to the previous
chapters, a few things become clear. As the global minimum of the PMF is a lot
deeper than for any other ion pair, we can safely assume that the attraction between
either ion and the corresponding oppositely charged dipole of the water would be
most attractive as well. This means a lot of water would hydrate the ions, creating
empty spaces elsewhere in the box.

Lastly, the strong clustering can be explained by this. Ions “feel” each other across
the whole slit and the force is strong enough for them to move towards each other
on a scale of hundreds of picoseconds as we observed when looking at the diffu-
sion.
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5 Conclusion

In the present thesis, we have studied ionic salts by means of molecular simulations.
In particular, atomistic models have been employed to characterize the behavior
of nanoconfined electrolytes under the application of an electric field as well as to
study the potential of mean force (PMF) experienced by different ions and under
varying degrees of confinement.

Using grand canonical Monte Carlo simulations, we showed that water packs more
tightly in a one-layer slit. However, a lot more pressure is needed for water and
electrolytes to enter a nanoconfined slit than in a regular three-dimensional envi-
ronment.

In a slit with two layers of water, we find that sodium chloride (NaCl) forms clusters
at most densities. The currents are not dependent on the electric field and thus
are not applicable as a memristor. On the contrary, divalent salts form clusters
at different rates dependent on both, constant electric fields and density. As these
clusters form, the electric current transmissible through the system decreases. These
clusters neither form nor disappear instantaneously which implies memory effects
can be observed at non-constant electric fields. As a consequence, a nanoconfined
Z = 2 electrolyte can be used as a memristor. This result has to be taken with a
grain of salt, however, as the electric fields used are potentially too strong to be
realistic. Future research should look at whether water experiences hydrolysis under
the same conditions and if so whether the non-Ohmic effect also manifests at lower
electric fields.

According to our expectations, we find that both monovalent and divalent salts ob-
serve diffusive behavior in the nanoconfined slit. We find that the rate of diffusion
decreases for larger concentrations. However, the rate of diffusion fluctuates strongly
between individual simulations, particularly for monovalent ions. Furthermore, the
overall rate of diffusion is a lot lower for divalent ions. Therefore, we associate the
decrease in movement with an increase of ions which are part of clusters. Conse-
quently, we attribute the fluctuation to clusters forming with different frequencies
and different sizes. For low concentrations, we expected the Nernst-Einstein equa-
tion would predict the conductivity of our system. However, at all concentrations
and both valences, the conductivity is lower than the prediction based on the diffu-
sion would suggest due to clustering and ion-ion interaction.

We also performed the, to our knowledge, first analysis of effective ion-ion interac-
tion of nanoconfined electrolytes showing the long-range interactions of ions. By
calculating the PMF of various salts, we demonstrated that valence is a crucial
property of nanoconfined particles. For distances beyond 1 nm, different ion pairs’
interaction patterns are barely distinguishable as long as they have the same valence
and can be fully described by quasi 2D Coulombic (Q2D) interaction (see (2.12)
and Ref. [11]). A general description of ions based on the Q2D potential is pos-
sible in systems where interaction occurs mostly at distances of more than 1 nm.
Consequently, the specific shape of an ion is not important in such regimes.
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However, at equilibrium conditions such as constant (or zero) electric fields, ions
form clusters. At such length scales, the Q2D potential differs strongly from the
measured PMF as it does not account for the finite size effects of water. The
PMFs show steep potential wells at such distances which affects the formation and
dissolution of ion pairs. Therefore, Q2D does not apply to the study of processes
such as crystallization or even electric currents at a constant electric field. Small
differences in Lennard-Jones (LJ) parameters lead to small differences in where
potential wells lie and how deep they are. The differences between the depth of
the potential or its absolute depth are smaller between NaCl and LiCl than they are
for different force fields of NaCl. This could have a marginal effect on how many
ion pairs form. For larger size differences, we see big differences in the PMFs. A
generic divalent ion with the LJ parameters of NaCl had an effective interaction
potential twice as deep as the larger calcium sulfate of equal valence as well as a
more complex structure. Therefore, we expect the time it takes for clusters to break
apart to be longer for the divalent ion. Future research should investigate whether
these differences manifest and whether this has qualitative consequences.

In conclusion, this thesis highlights the importance of particle-based simulations in
providing relevant qualitative and quantitative information in the study of nanocon-
fined ionic salts. The PMFs this thesis provides can be used to model a range
of ion-ion interactions in nanoslits. Overall, nanoconfined electrolytes show very
different behavior than their behavior under regular bulk would suggest.
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A Measure of Accuracy: R-squared

To measure the accuracy of the normal distribution, we define the coefficient of
determination R̄2

R̄2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
(A.1)

with yi being the measured values, fi the ones predicted by the fit and ȳ the overall
mean of the function. With this measure, we assure that measured values close to
the mean do not differ greatly from our prediction. This is an appropriate measure
in our case for two reasons. On the one hand, we want to ensure that our data is
normally distributed around a single peak. On the other hand, at the center, often
only one distribution informs about the probability distribution. At the edges, two
distributions overlap meaning that variations here are less grave.

B Different Orientations of Calcium Sulfate

(a) S-1O-Ca (b) S-2O-Ca (c) S-3O-Ca

Figure 18: Illustration of Calcium Sulfate rotated to be separated by one, two or
three oxygen atoms. The diameters of the spheres are based on the Lennard-Jones

surfaces.

As mentioned in the main text, CaSO4 is not rotationally invariant. The structure
of the PMF is more complex than that of the rotationally invariant ion pairs.

We want to look at several special orientations and look at where they contribute to
potential. We consider three specific orientations to further explore the shape of the
PMF of CaSO4. Specifically, the cases where a given number of oxygen molecules
is both equidistant and as close as possible to calcium. We refer to these three
cases as S-1O-Ca, S-2O-Ca and S-3O-Ca, depending on how many oxygen atoms
lie between the centers of mass (illustrated in Fig. 18). We show the PMFs of the
three orientations (measured with CB) as well as the previously shown UI of a freely
rotating pair in Fig. 19.

Those three potentials look very different from what we observe for the spring poten-
tial case in which CaSO4 is allowed to move freely. In some cases, these handpicked
orientations have lower PMFs than the spring potential. This implies that at these
positions, those orientations may be energetically more favorable yet unstable. That
is if slightly perturbed it will move towards a different orientation.
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Figure 19: PMF for CaSO4 at fixed orientations. Orientations are illustrated
in Fig. 18. New addition: S-2O-Ca, still needs to be beautified. Maybe add new

data

In the case of S-1O-Ca, there the oxygen molecule sits on the line connecting the
two centers of mass. Therefore, the LJ repulsion makes this position energetically
unfavorable for a longer amount of time. Yet once this effect subsides, it has a
negative oxygen atom right next to the center of mass of calcium. The PMF has
its global minimum at the same position as measured for the case of Umbrella
Integration. For the other, the hard shell repulsion fades at shorter distances. S-
2O-Ca has two negatively charged oxygen atoms very close to the center of mass
of calcium. Together those peaks

C Comparing PMFs

Above, we showed how one can use umbrella integration to obtain PMFs from
simulations where one attaches a spring potential. There are also other methods
such as the weighted histogram analysis method (WHAM) [35]. We face the same
issue as in WHAM, we have biased distributions psk(r) and want to calculate the
PMF. We use a different intermediate step, however, and instead of calculating the
forces, we calculate the unbiased distributions puk . With the unbiased distributions,
we can then calculate the PMF U(r) as

U(r) = kBT ln puk(r) (C.1)
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The unbiased distributions can be obtained by iteratively solving these two equa-
tions

puk(r) =

∑
l hk(r)∑

k N
Window
k exp

([
Ck − ωk(r)

]
/kBT

) (C.2)

Ck = −kBT ln

∫
r

puk(r) exp
(
− ωk(r)/kBT

)
. (C.3)

Here, hk(r) stands for the counts at bin k and distance r, NWindow
k the total number

of counts in a window and Ck for the estimated offset between windows. Further-
more, ωk is the spring potential that we attach to each window. We use this method

(a) (b)

Figure 20: PMF of NaCl using WHAM. The plot in (a) is from Fig. 5a in Ref.
[9] whereas (b) is made with the same data as shown in Fig. 15.

to replicate the results of Ref. [9] and show both their and our results in Fig. 207.
We see that these two figures match fairly well both for the single-layer case as
well as the bulk case. We use different LJ parameters for sodium which ought to
explain the quantitative differences. If we compare this to what we see in Fig. 15,
the difference is striking, especially at longer distances.

We did not feed information into the system on how the volume of bins differed (see
discussion in chapter 3.7). Bins are first spherical and later cylindrical. This means
that the bins are first divided by a volume term scaling with r3 and later r2. After
inserting puk(r) into Eq. (C.1), this means the earlier potential and the later differ
by an extra term of O(log r). At this length scale, the Q2D potential also scales
with O(log r). We assume that those two contributions cancel each other, leading
to a representation that implies that there is no long-range interaction.

7Unlike in some of the PMFs shown above, there are no transformations applied after executing
the algorithm
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D Pressures

Now, doing away with the grand canonical simulations, we move to a larger system
slit system with an in-plane area of Lx × Ly = 10nm × 10 nm (All numerical
parameters are also listed in Tab. 5). We now look at the effect of the water from
the opposite perspective. We insert a fixed amount of water into the slit and measure
the resulting pressure. This pressure is highly anisotropic as the movement in the
out-of-plane dimension is constrained with a slit width of h = 1nm. From here
onwards, we use idealized walls by using an LJ93 potential. We inserted between
2100 and 2500 water molecules which corresponds to a density between 21 and
25 nm−2. For the time evolution, we used the velocity Verlet algorithm and added
a Nosé-Hoover Thermostat, just like in the previous simulations. We were also
curious about the influence different salts have on pressure. Thus, besides pure
water, we considered a range of different ions such asCaCl2 and LiCl as well as
mono-, di- and trivalent NaCl and the case without ions. Of each, we insert 25 ion
pairs (triplets in the case of CaCl2), which corresponds to an ion concentration of
0.63mol/l. The system is initialized by inserting the water molecules and salt ions
at random. As some particles may be physically close, the forces they experience
may be very large. We bring the system to equilibrium by alternating between two
methods. The so-called “fixed-NV E” method updates particles with the velocity
Verlet algorithm with a maximum velocity per time step. This means that the
strong forces on unreasonably close particles cannot shoot particles out of the box.
The other method is an NV T ensemble with a very small time step. Then the
system is brought to equilibrium by alternating between fixed-NV E at a time step
of 1 fs and NV T simulations with very low yet increasing time steps (which start
at 1× 10−6 fs).

We run each simulation for 1 ns and measure the pressure of the system every 0.1 ps.
We separate those measurements in chunks of 0.25 ns and calculate the averages.
Of those, we then again calculate the average and the standard error of the mean.
This value is slightly larger than the overall standard error of the mean yet still
very small compared to the slope. From this, we can deduce that the values we
report are fairly accurate even if the pressure fluctuates strongly on very short time
scales.

Parameters MD: Pressure
Lx × Ly 10× 10 nm2

h: Slit 1 nm
Time step ∆t 1 fs
Run time 1 ns

Ion pairs NIons 25
Electric Field E 0

Water Molecules ρ 21 nm−2 to 25 nm−2

Wall LJ93 based on Carbon

Table 5: List of simulation parameters in pressure analysis



D PRESSURES V

In Fig. 21(a), we show the average pressure for sodium chloride in all three dimen-
sions as a function of the water density per slit area ρ. For all three, we see a
monotonic and seemingly linear relationship between water density and pressure. In
the out-of-plane dimension, we observe a highly positive pressure at all times. If this
pressure were not there, this aquatic solution could exist in this shape even without
constraining walls. The in-plane pressure is negative for lower densities and rises to
positive values for larger densities. Due to the periodic boundary conditions, the
plane is effectively infinite. A negative pressure implies that there is space to be
filled. If this slit was attached to a water reservoir, it would stream into the slit.
For positive pressures, the opposite is the case. Experimentally, either a closed sys-
tem or a system with a fixed reservoir would be realizable. In both cases, negative
pressures would be hard to realize. In a closed box, one would have to enforce a
partial vacuum. If attached to a reservoir, water (with/or without additional ions)
would stream into the slit. However, after a finite amount of time, this slit would
be filled. A positive pressure is more easily realized by attaching a reservoir with a
pump or inserting a large amount of water (and/or ions) and then sealing the box.

(a) (b)

Figure 21: Pressure at different water molecule densities. (a)We measure the
Pressure in the in-plane (x,y) and normal (z) dimension of a slit of

10× 10× 1 nm3. This slit is filled with 25 NaCl ion pairs. (b) The in-plane
pressure of various salts (also 25 ion pairs), as well as generic Na-Cl with doubled
and tripled charge. The non-monotonous areas correspond to simulations in which

holes formed.

Since we look at a range of different salts, we want to see what impact they have
on the in-plane pressure. As we see in Fig. 21b, for the ‘real’ salts as well as water,
we see curves with very similar slopes. An electrolyte of water with sodium chloride
and lithium chloride can barely be distinguished. Water without any salts inserted
has a lower pressure than with the salts inserted. Calcium chloride has the highest
pressure. Qualitatively, this can be explained by the different numbers of particles
in the system. The number of water molecules is given by the x-axis, yet NaCl and
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LiCl represent an extra of 50 and CaCl2 an extra of 75 particles. They all take up
space and press against each other, leading to higher pressure.

What happens to the generic ions is more interesting, which we also show in Fig. 21
(b). Unlike in the other cases, pressure decreases/stays flat for lower densities.
Only at higher water molecule densities do they transition to the monotonic regime.
What we observe at lower pressures, are vast and easily visible holes in the water
(compare Fig. 22). Showing that the slit wasn’t saturated by the number of water
molecules. The constant pressure is an artifact of the way it is calculated. As
there effectively is a liquid-vapor interface, we ought to consider the pressure of the
vapor and the liquid separately. The pressure, however, is calculated over the whole
area.

Using the knowledge we will gain about the PMFs later on, we see that the com-
bination of a small LJ diameter and high charge attracts a lot of water. Thus, the
water condenses around the ions creating additional negative pressure in the areas
not occupied by the ions.

Furthermore, applying the above described Maxwell relation (see Eq. (4.1)), we can
calculate the differential in chemical potential µ. Given the area density multiplied
with the slit height h = 1nm, we can solve for µ and obtain roughly a difference of
6 kcal/mol for the conventional salts. For the generic salts, it is roughly a quarter
of that.

E Additional Figures
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Figure 22: Example of insufficient water molecule density. Generic ion with
valence Z = 3 at density ρ = 21nm−2.

Figure 23: PMFs of CaSO4 in bulk and slit. The slit is of dimension
10× 10× 1 nm3 and has a water molecule number density of 23.2 nm−3 whereas
the bulk system is of size 5× 5× 5 nm3 and has a mass density of 997 kg/m3.
The PMFs were calculated with Umbrella Integration and then transformed

according to Eq. (4.3). The the Q2D potential as described in Eq. (2.12) and the
Coulomb potential as in Eq. (2.2).
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Figure 24: PMFs of LiCl in the bulk and slit. The slit is of dimension
10× 10× 1 nm3 and has a water molecule number density of 23.2 nm−3 whereas
the bulk system is of size 5× 5× 5 nm3 and has a mass density of 997 kg/m3.
The PMFs were calculated with Umbrella Integration and then transformed

according to Eq. (4.3). The the Q2D potential as described in Eq. (2.12) and the
Coulomb potential as in Eq. (2.2).

Figure 25: Normalized conductivity for different electric fields and ion
concentrations. Electric Conductivity is divided by the number of ions Nion and

the electric field applied. Ions have valence Z = 1. Simulation ran for 2 ns.
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