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1 Introduction

Face detection is an important computer vision task entailing the
correct identification of human faces in images and returning their
bounding box coordinates. Over the years, face detection has seen
extensive research improvements, ranging from traditional non-
deep learning approaches using handcrafted features to modern
Convolutional Neural Networks (CNNs), which have achieved state-
of-the-art performance. Despite significant advancements, detect-
ing faces accurately still has some challenges, particularly when
faced with occlusions. Occlusions can be objects obstructing the
face such as hats, scarves, hands and combined with variations in
poses and image quality, pose significant obstacles for face detec-
tion. While face detection is often seen as a solved problem and
some algorithms may achieve high performance on specific face
datasets, this does not necessarily imply that they are applicable
for all tasks and work well under all conditions. Modern implemen-
tations come with positive and negative aspects and are applicable
to certain scenarios but cannot cover all the use cases. Figure 1
illustrates predictions of a face detector with confidence scores.

Figure 1: Example of face detection from [1]

Face detection is the first step for many applications such as face
recognition, alignment, tracking and landmark prediction. Land-
marks are anatomical points that correspond to a specific body part,
for example a face can have landmarks around the eye regions, the
mouth, the nose, and these help accomplish a specific task, like
gaze detection or speaker detection.

Occlusions pose significant challenges, as they often lead to
failures in detecting the face [3]. The type of occlusions can vary;
they can be known (e.g., fixed occlusions around specific facial parts)
and unknown, influencing the approach to solving the occlusion
problem. Having previous information about their existence and
location is beneficial, as it enables the use of visible face regions
and potentially allows for occlusion-specific methods to improve
detection.

One interesting case of face detection under occlusions is preterm
infants. This is a specialized area of research where detection algo-
rithms are developed and applied to preterm infants in neonatal
intensive care units (NICUs). Preterm infants are defined as in-
fants with a gestational age of less than 37 weeks. Some occlusion
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Figure 2: Example of landmark annotations from [2]

information in this case is already known such as the relative lo-
cation of hats and feeding tubes. However, there is a number of
inherent challenges on this task. First, gathering data in NICUs
involves technical difficulties, such as maintaining a consistent
camera setup, obtaining parental consent for data collection, and
handling low-resolution videos with varying occlusions and poses.
Infants in NICUs look different, their face does not resemble an
adult face. They can wear hats, have medical devices attached to
their hands, and experience occlusions due to their own movements
or nurses’ interventions. Additionally there can be variations in
natural lighting throughout the recording, glares around the crib
and other objects. Consistent publicly available datasets are almost
impossible to obtain, so we will use part of the SLAPI dataset cre-
ated at UMC Utrecht, a dataset containing videos of preterm infants
of various gestational ages. The incubator has two low-cost RGB
cameras set up, one on the side and one on the top so at least one
of the views is of better quality.

In this thesis, we consider face detection for preterms as an occlu-
sion aware task and make a generalized approach for this problem.
We create a two-step pipeline: the first part of our approach is to
train a face detector on public datasets with various occlusion levels
and evaluate it. Then, we make use of explainability methods for
CNNs, which generate heatmaps that highlight the most important
regions for the prediction. The idea is that if certain facial parts are
occluded, we can still make use of the location information of other
parts to localize the face. Thus, we train models using the extracted
heatmaps from the original datasets only for the whole face, and
evaluate these models on the SLAPI dataset. We aim to determine
if, despite the first trained face detector missing a face, we can still
detect it using a trained heatmap model.

1.1 Research Goal & Research Questions

Our pipeline consists of two models, the first being the facial parts
detector for RGB face images, and the second being the face detector
for the heatmaps. Our approach can be broken down into several
research aspects:

o Choosing public face datasets that contain some occlusions
and variability, from which we can extract bounding boxes
for the different facial parts. We decide to use the face and
other facial parts, so even if the whole face is missed, there
is still some information about its location by localizing



another detected facial part. The question formed here is
which facial parts can we split the face in and what is the
models’ performance?

o If the first model misses some faces, we aim to see if they
can still be localized by extracting heatmaps using an ex-
plainability method and training a model on these heatmaps.
Thus we initially need to evaluate which methods produce
the most useful heatmaps and what is their performance on
the same datasets as above?

e Finally, the initial goal in mind was to perform face detec-
tion on preterm infants. Thus, the question here is how does
the first face detector perform on frames of infants with vari-
ous occlusion levels?. Then, for the frames where the face
detection failed, we run the explainability based models
and evaluate whether the use of explainability based models
has a positive effect on detecting more faces.

1.2 Structure

The outline of the thesis is as follows. The 2nd chapter will give
a summary of the relevant academic literature on face detection,
occluded face detection and touch on explainability methods for
deep learning. Chapter 3 will motivate and describe the proposed
method to identify occluded faces taking into account specific chal-
lenges around preterm infants. The quantitative model results and
comparisons of this work will be presented in Chapter 4 including
plots and a description of their interpretation. Lastly in Chapter 5
we will discuss conclusions and gained insights as well as future
improvements.

2 Related Work

This sections can be categorized into two main parts: In this first
part we discuss some of the most prominent object detection al-
gorithms. Then, we address face detection as it can be seen as a
subtask of object detection and analyze the research there. Land-
mark prediction frameworks also employ face detection as a first
step thus we give an overview of state of the art work. Later on,
emphasis is given on the main topic of this thesis, which is occluded
face detection. The focus is mainly on deep learning methods, and
more precisely CNNs, as they are the current state of the art and
have achieved significant improvement on the task [4]. It should
be noted that since facial landmark prediction goes hand in hand
with face detection, several works may address both tasks simulta-
neously. The second part of our pipeline focuses on gradient based
explainability algorithms for CNNs, so some will also be described
in this section.

2.1 Object Detection

Face detection is a specialized area within the broader field of object
detection. Object detection refers to the family of algorithms that
take an image and output the class and bounding box coordinates
of the objects present. Before analyzing face detection algorithms
it is best to see some concepts about general object detection and
popular algorithms which can be organized into two main cate-
gories: One-Shot and Multi-stage algorithms. One-shot algorithms
detect objects in a single step, making them ideal for real-time
detection tasks. In contrast, multi-stage algorithms require more
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steps in the detection process, depending on the specific imple-
mentation and have slower performance. While they might take
more time to produce results, Multi-stage algorithms often offer
increased accuracy, making them suitable for different use cases.
The choice between One-Shot and Multi-stage algorithms depends
on the specific requirements of the task at hand.

2.1.1 One-Shot Algorithms

Here we present a review of the popular YOLO algorithms for
object detection, as well as RetinaNet [5].

YOLO or “You Only Look Once” is a popular group of algo-
rithms often used in real time applications. The first paper was
released in 2015 [6] and since then there have been quite a few
versions developed, like the established v5 and the latest ones being
v7 and v3, still under development [7]. YOLO takes an image as
input and predicts bounding boxes and class probabilities using
a single end-to-end trained neural network. This method is less
accurate compared two multi-shot approaches but quite faster [8],
making it a good candidate for real time applications. YOLO models
are composed of three basic blocks: the Backbone, the Neck, and
the Heads, which perform predictions.

The Backbone is a pretrained network used to extract features
from the images. The Neck extracts feature pyramids, meaning
features on different sizes and scales, which makes the model very
robust. Finally the detection Heads apply predefined anchor boxes
to feature maps to get the final predictions which are the bounding
box coordinates, the confidence scores and the class names.

Below is a small overview of the way YOLO handles input.

Bounding boxes + confidence

5 5 5 grid on input Final detections

Class probabidlity map

Figure 3: Simple explanation of YOLO detection process [6]

e The input image is divided into NxN grid cells depending
on the image size and anchor boxes size, a typical number
for YOLOVS5 is 32x32. If the center of an object lies withing
the grid cell, then that grid cell is responsible for detect-
ing that object. Each cell predicts B boxes and confidence
scores, namely in YOLOvS5 each grid cell predicts threean-
chor boxes. For each box, the model predicts the (x, y) center
coordinates relative to the grid cell, the (width, height) of
the box relative to the input image, a confidence score and
class probabilities.



e During training, the aim is to predict one box per object
(class). Based on the predictions, the Intersection over Union
(IoU) score is calculated between the ground-truth boxes
and the predicted boxes and only the prediction with the
highest IoU is kept. This process helps each bounding box
become more adept at predicting specific objects of a certain
size and aspect ratio, thus improving the recall score.

o Non-Maximum Suppression (NMS) is employed as a post-
processing step to reject overlapping boxes if their IoU is
greater than a given threshold, resulting in a single bound-
ing box per object.

To give more insight on the design choices we will look some
more into YOLOv5 components, since this is the algorithm used in
this work.

Backbone: Yolov5 employs a CSP-Darknet53 [9] as its backbone.
This is an altered version of YOLOv3’s DarkNet53 [10] CNN that
employs Cross Stage Partial (CSP) network strategy. The problem
it solves is the use of duplicate gradients around some layers of the
previous backbone, which reduces the computations and improves
inference speed.

Neck: The Neck leverages an improved version of Spatial Pyra-
mid Pooling Block, which aggregates the features from the input
and returns a fixed length output. It’s role is to separate the most
important features of the context while maintaining speed.

Head: Three Detection heads are used, namely CNNs, which
are the same as v3 and v4 of YOLO. Essentially these make the
predictions, one is for small, one is for medium and one is for large
objects. The outputs are the coordinates of the bounding boxes, the
class names and confidence. NMS is performed afterwards.

Some other changes introduced in YOLOVS5 include the use of
Swish activation function for the convolutions in the hidden layers,
and the Sigmoid for the output layers. This version additionally em-
ploys “dynamic anchor boxes” or "Autoanchor" to generate boxes.
Anchor boxes are predefined boxes with various sizes and aspect
ratios, useful for detecting objects of different sizes e.g. to detect
a standing person, we would define a vertical box. Anchor boxes
are useful in the Head of the model where the final predictions are
generated. This new method uses clustering to group the ground
truth boxes and then uses the centroids as anchors. This makes it
possible for the anchor boxes to be more aligned with the detec-
tions’ size and shape. Finally, a variant of the original loss function
is used, named “CIoU” loss that improves the models performance
on imbalanced datasets. The latest version of YOLO has a difference
with the previous ones in terms of using anchor boxes. The v7 uses
9 anchor boxes, which allows it to detect a wider range of object
shapes and sizes compared to previous versions, thus helping to
reduce the number of false positives.

Another prominent one-shot object detection model is RetinaNet.
It’s a single network composed of a backbone and two sub-networks,
one for bounding box regression and one for classification. It utilizes
a focal loss function to tackle class imbalance, which essentially is
the crossentropy loss with a modulating term applied to it, in order
to focus learning on hard negative examples. We can analyze the
different components.

o A feature Pyramid Network or FPN [11] is built on top of
a ResNet [12] architecture and constitutes the backbone
of this network. FPN is a feature extractor that takes a
single-scale image and outputs proportionally sized feature
maps at multiple levels, in a fully convolutional fashion. It
uses a top-down architecture with lateral connections to
fuse high-level semantic information from deeper layers
with low-level features from earlier layers, enabling precise
localization and strong recognition.

e Two sub-networks follow the backbone: the Classification
and the Box Regression subnetworks. The first is for classi-
fying anchor boxes and the second one performs regression
from anchor to ground truth boxes containing the object.
The regression subnet has a similar structure with the classi-
fication counterpart, but they both use separate parameters.
Similarly to YOLO, RetinaNet also employs anchor boxes.
These anchor boxes act as references for predicting the
bounding boxes of objects in the image.

o Lastly, the focal loss conceptually assigns less weight to the
positive examples and emphasizes the misclassified ones.
In practice, the authors use an « -balanced loss:

FL(pt) = —ar » (1 - pt)¥ * log(pt)
where y denotes the focusing parameter.

Overall RetinaNet can handle objects of various sizes, and re-
duces the impact of imbalanced classes. It is a powerful tool for
object detection tasks as it is suitable for real-time applications
without reducing computational efficiency.

2.1.2  Multi-stage algorithms

When it comes to multi-stage methods, R-CNNs are a very
popular group of designed for object localization and recognition.
The first paper introduced R-CNN [11] in 2014, and it is the first
successful effort to use CNNs to detect, localize and segment objects.

The concept of Region Proposal Networks (RPN) is introduced,
and is made out of three stages:

In the first stage, candidate bounding boxes of different scales
are generated by using the selective search algorithm [13]. Selective
search initially employs a segmentation algorithm to detect blobs in
an image and ranks them based on a similarity metric such as color
or texture. Similar blobs are merged together and the first step is
repeated iteratively hence larger region proposals are generated in
a bottom up manner. Then, a feature vector of size 4096 is extracted
from each region proposal and lastly a pretrained SVM classifies
the region as either background or one of the classes.

This approach came with some limitations such as slow and
multi-level training because of the three separate stages, and each
image had too many region proposals that had to be trained (around
2000 per image at test time). This made the training time quite
high and computationally expensive, as well as dependent on the
selective search. Additionally, making predictions on a high number
of region proposals is very slow and not possible to use the approach
for real time tasks. These were the limitations the 2015 method
named Fast-RCNN [14] aimed to tackle.

In this case training is single stage using a multi-task loss, de-
tections are more accurate and training updates all network layers.
The model takes an image and multiple region proposals and feeds



them through a deep CNN. Each region is then passed through a
new layer called Region of Interest(Rol) pooling layer that extracts
features which are then passed through a fully-connected layer.
After that, the network “splits”, giving two outputs per region;
class probabilities and bounding box regression offsets per class.
Per region, this process is repeated more than once. This version
of R-CNN is faster during training and inference, however it still
requires many region proposals.

The next year, Faster R-CNN [15] was proposed by different
authors and made a breakthrough in the object detection field. This
time the RPN is created to both propose and refine region proposals
as part of the training process. Then, in a single model architecture,
these regions work in tandem with a Fast R-CNN model. Both RPN
and Fast-RCNN utilize the same deep CNN output.

classifier

proposals j ;
Region Proposal Network
feature maps

conv layers

y |
P e

4

Figure 4: Faster R-CNN [15]

The RPN works by taking the output of a pre-trained deep CNN,
such as VGG-16 [16], and passing a small network over the feature
map and outputting multiple region proposals and a class per re-
gion. Region proposals are bounding boxes, based on anchor boxes
designed to accelerate the process. The class prediction indicates
the presence of an object (objectness) of the proposed region. The
Faster R-CNN uses the RPN as an attention mechanism, which
shares full-image convolutional features with the detection net-
work thus making the proposal computation much cheaper and
generating less regions. Since then quite a few approaches try to
fine-tune Faster R-CNN on faces [17], [18].

Multi-stage detectors also come with limitations as they can
suffer from bad lightning conditions or extreme poses [19]. Addi-
tionally, unlike one-shot approaches, the computation time depends
on the number of faces, which in turn define the amount of region
proposals so their performance can vary. One-shot detectors on the
other hand are faster but compromise the accuracy [20]. Thus, the
choice of an object detector depends on the task and the trade-off
between speed and accuracy.
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2.1.3 Face Detectors

Early approaches for face detection include feature based classi-
fiers such as Viola-Jones and have remained in use for years [21].
However, the current state-of-the-art techniques for face detection
are predominantly built on deep learning, particularly Convolu-
tional Neural Networks (CNNs) [12]. CNNs take an image and
perform a series of convolution and pooling operations to capture
the most important features in it. They can process a big number
of images with at a high speed making them quite effective. The
development of large organized face datasets and the vast improve-
ment of object detection methods has yielded many trained models
that can be used for face detection. Face detectors can also be sepa-
rated into the same categories according to how they perform the
detection, namely one-shot such as RetinaFace[22] or multi-stage
face detectors, like MTCNN [23], which also performs landmark
prediction.

One-shot face detectors are used in real-time applications and
their processing time remains stable no matter the amount of faces
in an image [24]. They perform the feature extraction, generation
of proposed regions that contain the object and face detection in a
single step.

A popular one-shot face detector is the RetinaFace[22] frame-
work. It’s a multilevel face localization method, based on RetinaNet
[25], that achieved outstanding performance on the WIDER Face
dataset [26]. It is designed in such a way that it accomplishes three
goals; face box prediction, 2D facial landmark localization and 3D
vertices regression with the common target that all points should
lie on the image plane. It has the ability to detect multiple faces and
keypoints while being a lightweight approach.
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Figure 5: The RetinaFace method [22]

It incorporates the cascade-structure idea from MTCNN and the
idea of 3D mask reconstruction from [27] and [28] to better localize
the face. It uses a Feature Pyramid Network (FPN) and anchor boxes
designed to detect faces at various scales and sizes. This ensures the
accurate detection of both large and small faces within the same
image.

RetinaFace consists of a backbone network for feature extraction,
namely a ResNet-50 pretrained on ImageNet [29] and fine-tuned on
WIDER Face. Afterwards, one more pyramid layer is added on top
of the FPN, whose role is to generate pyramid features at different
scales by taking the feature maps from the backbone. Then, context



Context Module (x5)

Figure 6: Overview RetinaFace [22]

modules are applied to the pyramid levels to capture more infor-
mation about the surroundings. These are consequently passed
through the last detection stage, which is composed of two sub-
networks: the classification and the regression sub-network. The
first is in charge of predicting the object class while the later gen-
erates the bounding box coordinates. Additionally, convolutional
layers within the context module and FPNs lateral connections
are replaced with the Deformable Convolutional Network (DCN).
DCNss introduce a flexible convolution operation that enhances the
ability of the network to handle complex and variable shapes in the
input data. Finally, a multitask loss is used to achieve better local-
ization, consisting of a face classification loss, a face box regression
loss, a facial landmark regression loss and a dense regression loss.
The latter is a function of the width and height of the anchor, the
camera, texture and illumination parameters. It’s used to compare
the pixel-wise difference of the rendered and the original 2D face.
As seen on Figure 22 showing the worlds largest selfie consisting of
1151 people, RetinaFace can find around 900 faces with a threshold
of 0.5.

Figure 7: RetinaFace Detections on Worlds’ Largest Selfie [22]

2.2 Facial Landmark Detection

Facial landmark detection is the task of finding coordinates of points
in the face that relate to certain areas such as eyes, nose. One use
of landmarks is in audiovisual speaker detection, where we are
interested to detect the speaker and it’s possible to achieve this
by looking how the specific landmarks around the mouth move
by measuring their distance from an absolute reference such as
the nose [30]. Another use of landmarks is for facial expression
recognition [31]. In such approaches the first step includes face

detection, application of a landmark detector on the face, extract-
ing features form these landmarks and feeding them to a neural
network to classify facial expressions. Other popular uses include
face filters on Instagram, face animation creation, monitoring of
driver’s tiredness to avoid an accident by sounding an alarm.

To give a formal definition of the facial landmark detection prob-
lem, let I be an input image of size W x H x C, where W denotes
width, H denotes height and C denotes the number of color chan-
nels. The aim of facial landmark detection is to find a function
that predicts a landmark matrix from the input image I, with the
X and Y coordinates of the landmarks on the image. The number
of predicted landmarks depends on how many landmarks have
been annotated on the dataset used to train the landmark detection
algorithm. To predict facial landmarks, the initial step is to perform
face detection and then perform regression to find the x and y coor-
dinates of the landmarks. According to the categorization found in
survey [32], modern facial landmark prediction methods that rely
on neural networks fall under these categories:

e Direct Regression
Direct regression is a simple method to predict the coor-
dinates of facial landmarks given an input face image by
using a trained CNN. Modern approaches utilize pretrained
networks as backbone like MobileNetV2 [33] or Resnet
[12]. Direct regression has the benefit of being simpler and
more direct than other, more sophisticated techniques like
heatmap regression. Due to the fact that it does not take into
account the spatial correlations between various landmarks
like heatmap regression does, it might be less resistant to
occlusions

e Heatmap Regression
This method’s key idea is to train a model that creates a
heatmap for each landmark, where each pixel denotes the
probability that the associated location in the image is that
landmark. A heatmap is generated for each landmark by
plotting the Gaussian distribution. A common approach
to generating heatmaps is to use a neural network, such
as a CNN, to predict the heatmaps from the input image.
The network is trained using a dataset of images labeled
with the coordinates of the landmarks. During training, the
network learns to generate heatmaps that have high values
at the locations of the landmarks and low values elsewhere.
During inference, the model accepts a face image, outputs
heatmaps and to converts them into direct coordinates, the
argmax of all pixels is calculated and translated back to the
original pixel in the input image.
Heatmaps are effective because they consider the structural
relation between facial parts. Thus a model can be trained
on heatmaps instead of direct coordinates. During inference,
the model accepts a face image and outputs heatmaps. To
convert them into direct coordinates, the argmax of all
pixels in the heatmap is calculated and translated back to
the original pixel in the input image.

The benefit of heatmap based models is that they are more robust
to different poses and occlusions. For example if part of the mouth
is covered, the heatmap values for the mouth will still be high for
the visible region. They can also be easily integrated into a wider
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range of applications such as facial expression recognition and face
alignment. Some disadvantages can be that the model is sensitive in
choice of hyperparameters and its efficiency can suffer is they are
not choose carefully. When the spatial relationships between the
landmarks are not clearly specified, heatmap regression may occa-
sionally be less accurate. For instance, it could be challenging for
the model to successfully predict one facial landmark without also
accurately predicting the others if the locations of the landmarks
are highly correlated.

2.2.1 Frameworks

This subsection presents an established method for predicting
facial landmarks.

The Multi-Task Cascaded Convolutional Neural Network
(MTCNN) [23] is a multistage face detector that detects five facial
landmarks if there is a face. It’s often encountered in literature under
multi-stage face detectors and not as a landmarking algorithm but
since it also detects landmarks, it will be discussed in this section.
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Figure 9: MTCNN Structure [24]
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It relies on the inherent relationship between face location and
the landmark locations. It is built with three stages of CNNs con-
nected in a cascade fashion, and also produces facial landmarks. As
a preprocessing step, the input image is rescaled into different sizes
to form an image pyramid, which is fed to the initial stage. During
the first stage, the Proposal Network (P-Net) is a fully convolutional
network that obtains candidate windows and their bounding box
regression vectors after refinement. The candidates are fed into
the second stage which is the Refinement Network (R-Net). The
R-Net is a CNN that further reduces the number of candidates by
performing Non-Maximum suppression (NMS) to merge overlap-
ping ones. The output is whether there is a face and coordinates for
facial landmarks. The third and final stage is the Output Network
(O-Net), also a CNN which describes the face in more detail and
outputs five landmark positions for eyes, nose and mouth.

2.3 TFace Detection Under Occlusions

Occlusions are an issue that cause face detection models to fail
because of the lack of information about the occluded part. This
is because if the face is occluded then it can’t be detected. Occlu-
sions are hard to model because of their variance in size, shape and
along with other factors such as luminance can make the task quite
challenging. Moreover, collecting a dataset with realistic occlusions
and the corresponding non-occluded image, and training a deep
learning algorithm is rather difficult to do. Consequently the per-
formance of facial detection algorithms greatly relies on the type
and location of the obstacles. Examples of occlusions found on a
face are glasses, masks, hands, scarfs. Thus, for solving a specific
task, knowing if and where there are occlusions can help adjust the
model by providing it with useful information about the location
and occlusion type. The question now becomes what to do with
the occlusions? One approach in face detection is to first detect
the occluded part and then perform recognition based on the unoc-
cluded part. Another approach is to address this problem as a face
recovery problem. These methods try to recover the whole face
from the occluded region either by reconstruction or by inpainting.
The latter inpainting methods don’t really perform face recogni-
tion but rather try to repair the image. Understanding the type
and location of occlusions in a particular task can lead to effective
model adjustments. This understanding helps to provide critical
information about the occlusion, thus allowing for more precise
modeling.

2.3.1 Frameworks In this part we analyze some popular face
detectors that deal with occlusions.

The Face Attention Network [34] is able to deal with detecting
multiple, multi-scale faces under occlusions without slowing down
speed and simultaneously reducing the number of false positive
detections. It follows a similar single-shot architecture as RetinaNet
discussed previously, but is optimized for face detection. It consists
of two stages, the first is the RPN to generate region proposals for
faces and the second is the actual Face Attention Network (FAN).
FAN consists of a backbone network, in this case a ResNet50 to
extract features and a novel anchor-level attention module to handle
occlusions. The latter gives emphasis on the unoccluded parts of
the faces such as eyes, which are more useful for the detection.
The attention module receives the feature maps from the backbone



network and creates attention maps with the most important parts.
The difference from the traditional usage of attention is that it
is first given to an exponential operation and then dot with the
feature maps from the backbone. FAN comes with five detection
stages, each associated with an anchor of a specific scale similarly to
YOLO, meaning that one stage can detect larger faces, another one
smaller faces and so on. The attention highlights for each stage the
important parts of the face which are associated with the ground
truth bounding boxes.
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Figure 10: Overview FAN architecture [34]

Then, the attention and feature maps are concatenated and
passed through multiple CNN layers to produce the final output.
From Figure 10 and 11 we see that different layers represent dif-
ferent face sizes. The network is trained end-to-end to minimize
the classification and localization loss by using anchor based multi-
task loss. From experiments on the MAFA [35] and WiderFace
[26] datasets the network has a higher Average Precision score
compared to other approaches.

Figure 11: Top left is the original image, the rest are attention
maps proposed by the network at different scales[34]

Another advanced CNN approach to handle challenges such as
illumination and occlusions is Contextual Multi-Scale Region-
based CNN (CMS-RCNN) [36]. The network, similarly to the hu-
man intuition, looks at features from multiple scales and at potential
body regions to decide if there’s a face present. It’s an advancement
of Faster R-CNN that was previously discussed with the addition
of body context information and the ability to deal with tiny faces.
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Figure 12: CMS-RCNN architecture [36]

Like FAN, it consists of a Multi-Scale Region Proposal Network
(MS-RPN) to generate candidate regions and of a Contextual Multi-
Scale CNN (CMS-CNN) to perform inference for the face candidate
regions. Looking at Figure 12, the upper part corresponds to the MS-
RPN, the lower part is the CMS-CNN. Within it, the blue blocks are
the face features, red are the body features and they are processed
simultaneously. The assumption is that if there’s a face, then there
must also be a body with a fixed spatial relationship to the face.
However this may not be true in all cases, but can be interesting
for specific datasets such as preterm babies that are shown lying
down. To capture the body features, extra Rol-pooling operations
are done for each region proposal. The first five convolutional
layers are from VGG-16 and their parameters have been initialized
by the pretrained version. For every candidate, a bounding box and
a confidence score are calculated, and finally a threshold is applied
to keep the specific face regions.

When it comes to the task of facial landmark detection, the paper
[37] presents a robust method using Occlusion-adaptive deep
networks. The proposed method is able to handle different types
of occlusions (e.g. hair, hats, glasses) more effectively than previous
approaches by making the CNN less sensitive to occlusions. It
utilizes a multi-task learning approach that includes estimating the
occlusions in addition to the traditional facial landmark detection



task. The occlusion estimation task allows the model to better
understand the context of the occlusions, which leads to more
accurate facial landmark detection.

In more detail the framework consists of three modules:

o A distillation module: obtains clean representation by fil-
tering occlusion features adaptively via self-attention. It
infers the occlusion probability map based on the high level
features it captures.

e A low rank learning module: recovers missing features by
labelling the inter correlation features of faces and utilizes
geometric features as well.

o A geometry-aware module: captures geometrical informa-
tion about the face such as proximity, position to assist the
low rank learning module.

The geometry module mitigates the problem that CNN’s don’t
capture long term dependencies efficiently. This means that they
capture information inside their receptive field, however they don’t
take into account the geometrical similarities that are found in
human faces e.g. the eye-eye distance. Facial components do share
some structural relations and such relations can be useful in de-
tecting landmarks, thus implementing a method to model them
would be smart. The module uses the outer product of two feature
maps to catch such facial dependencies. The role of the distillation
module is to filter out occluded regions, even background, in order
to make the CNN more robust. Then, the geometric features from
the first module and the clean face from the second module are
merged into one high-dimensional feature map and fed to the low-
rank learning module. This high dimensional feature map, although
more inclusive, may not be a completely accurate representation
of the face because some features have been removed. These fea-
tures might have been useful to have, as they can be correlated
to other existing ones, but currently this relationship is lost. The
low-rank module aims to recover such features by learning a shared
structural matrix that encodes such correlations, simultaneously
eliminating redundant ones. The method is evaluated on several
benchmarks and demonstrates improved performance compared to
previous methods.

2.4 Explainability Methods for CNNs

Explainable AI methods help visualize and understand why black
box deep learning models make their predictions. This is achieved
by highlighting the most important parts on an input image that
play a role in the prediction, making the model interpretable. The
methods discussed here fall under the category of Class Activation
Mapping (CAM). They use the activations of the convolutional lay-
ers to generate heatmaps that highlight the important regions for
detecting an object, and can do this per class or by averaging over
all classes and producing a single heatmap. Their common element
is performing a weighted operation between the feature maps and
the learned weights. The produced heatmap is then overlayed on
the original image to give insight and meaning to the result. Most
methods are gradient based meaning they utilize the flow of gra-
dients, but when this information is not available, gradient free
alternatives are also available.

The most prominent gradient based method is GradCAM (Gradient-

weighted Class Activation Mapping) [38], and many other works
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have been inspired from it. It requires a CNN model with a Global
Average Pooling layer and softmax activation. The last convolu-
tional layers of a model contains high-level semantic and detailed
spatial information. The method obtains this layers’ feature maps
and gradients by forward passing the image. The gradients are
averaged across height and width dimensions in the global average
pooling layer, and the output is one weight per feature map that
shows its importance in the final prediction. Then, these weights
are elementwise multiplied with their feature maps and summed
across the channel dimension to output a single heatmap. Finally, a
ReLU activation is applied to eliminate negative values and enhance
the visibility.
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= < . —_— ]
Grad-CAM Heatmap = Z,: a; - ReLU Z oA, Ajj
Where:
Grad-CAM : The final heatmap highlighting important regions
c : Target class index

a; : Weight associated with the activation map

Ajj : Activation value at position (i, j)

The method works very well and most of the other methods
stem from it.

One extension, GradCAM++ [39] aims to improve the local-
ization accuracy by using second order gradients. It’s very useful
especially in the presence of multiple objects withing an image.
The intuition behind it is than the existence of similar objects with
small variations in an image can excite different feature maps in
GradCAM, resulting in a misrepresentation of some of them. The
heatmap is calculated by taking the RELU of the first order gradi-
ents and multiplying it by the second order gradients. This results
in a more detailed heatmap that highlights better the finer details.

Another method, HiResCAM [40] is proposed to solve the prob-
lem of the averaging step of GradCAM. The authors find that the
averaging of the feature importance weights limits the final visual-
ization and can result in inaccuracies due to the low dimensionality
of the averaging step. They propose element wise multiplication of
the gradients and the feature map before the summing step. Then
they prove that this method is more accurate than GradCAM and
show how the latter can highlight irrelevant regions that do not
increase the class score for a class.

Axiom-based Grad-CAM (XGradCAM) [41] is yet again an-
other extension of GradCAM, meant to scientifically set two ax-
ioms to make the method reliable; sensitivity and conservation.
Sensitivity means that each response in the explanation should be
equivalent to the change in output resulting from the removal of the
corresponding feature from the input. Conservation indicates that
the sum of the explanation responses should match in magnitude
of the model output. The authors come up with a new formula
that implements spatial attention coming from intermediate layers.

: Gradient of the target class score wrt the activation map



The weight of the feature map is calculated by taking the weighted
average of the gradient by solving an optimization problem. Com-
pared to GradCAM this implementation better highlights individual
instances per class.

Gradient free methods offer an interesting alternative when
gradient information is not available. We will look at two models,
ScoreCAM [42] and EigenCAM [43].

ScoreCAM discards the use of gradients, and calculates the
weights from the forward pass of the network. Then they are lin-
early combined with the activation maps to produce the output. In
more detail, there are two phases in this approach. The first one is
the forward pass where the activation maps per class are extracted.
Then these are masked on the original image and this temporary
input is passed through the CNN and through fully connected lay-
ers to obtain the weights. Finally, the activation maps from phase
one and the weights of phase two are linearly combined and passed
through ReLU activation, similarly to the previous approaches.

EigenCAM is another gradient free method. Similar to Grad-
CAM, the feature maps from the forward pass are passed through
Global Average pooling and multiplied with the weights to generate
the heatmaps. Then, the covariance matrix per class is calculated.
It represents the relationship between different activations in the
activation maps. Furthermore, eigen decomposition is performed
and returns the eigenvalues and eigenvectors. The former signify
the importance of each eigenvector and only the highest scoring
are kept. The next step is to reconstruct the activation maps from
the remaining eigenvectors so that they represent the most discrim-
inative features withing the activation maps. The eigen activation
maps are reweighted with the eigenvalues so their importance is
emphasized and them summed to form the final heatmap. Eigen-
CAMSs’ visualizations provide more crisp and targeted regions and
only highlights relevant parts on the heatmap.

3 Methods

This chapter contains more information about the problem, the
proposed solution and details about the form of the datasets re-
quired for this task. We start by motivating why it’s necessary to
implement a custom face detector and then go into more detail
about the separate aspects of the pipeline. Figure 13 presents the
overview method.

3.1 Problem Analysis

There are several well-known facial landmark detector implemen-
tations based on RetinaNet[22], and MTCNN [23]. We want to see
how they can perform on images of preterm infants. Specifically,
we tested:

o FaceNet [44], a pretrained MTCNN for face detection which
outputs the face bounding box and 5 landmarks (2 for eyes,
2 for mouth corners, 1 for nose).

e RetinaFace [45], the face detection module of the Insight-
Face project [46]. This model uses pretrained MobileNet
weights and outputs the face bounding box and the same 5
landmarks as above.

To choose one for this thesis, these models were evaluated on
their ability to accurately detect facial landmarks around areas such
as the eyes, nose, and mouth, in a variety of settings. Given that
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the end goal is to perform face detection on preterm infants, we
gathered 12 random images of preterm infants from the Internet,
most of which contain occlusions such as tubes and medical de-
vices around the face. Each images contains only one infant so we
would expect to have 12 faces detected. Through experimentation
it is concluded that both face detectors perform badly, especially
FaceNet fails to detect faces while on the other hand RetinaNet
identifies irrelevant parts of the frame as "face”, and the landmarks
are very out of place. Some example images with detections can be
found in Figures 23 and 22 in the Appendix.

3.2 Proposed Solution

This small experiment emphasizes the need to create a customized
face detector for the task as existing implementations provide inac-
curate detections. Note that the photos collected online generally
had good lighting conditions and image quality, something that
doesn’t always apply for the UMC preterm infant dataset. In the
UMC dataset the videos have variable lighting conditions, the view
may change, the infants move, the nurses interact with them and
their head and face may be covered with a hat or medical equipment.
We choose to train a YOLOv5 model for our specific task, since it is
rather straightforward to train it, it’s highly customizable and the
current implementation provides a handful of useful insights on
the training procedure, the parameters and makes it easier to debug
it. We begin by building a custom dataset with annotated bounding
boxes for different facial parts and some degree of occlusions. We
then extract and save the coordinates form the provided landmark
annotations.

In the first part of the implementation, the dataset is fed to
YOLOVS5 for training. Then in the second part, we extract and save
heatmaps by running explainability algorithms from the model
based on the weights of the first trained model. These are then refed
to another YOLOv5 model which we train from scratch, with the aim
of detecting only the whole face for the cases where the previous
model failed. This method intrinsically tackles the occlusion issue as
it "guides” the model into better localizing the whole face from the
previous information about the location of the facial parts. Figure
13 is a schematic of the solution, where the top part corresponds
to the first part of the implementation and the bottom part to the
second part.

The final step and one of the aims of this thesis is to test the
first part of this implementation on videos with various occlusion
degrees and evaluate the whole face detection. Then for the cases
where the face detection failed, we extract explainability heatmaps
and test different methods to see whether this allows more faces to
be detected.

3.2.1 Choices for the first part of the implementation (RGB
Model)

The first part of the implementation heavily relies on the dataset
creation, the choice of classes, the bounding box extraction, and
certain design choices for YOLO. These choices are based on ex-
perimentation so they will be presented in the Results section. The
choices that were made from the beginning is to use pretrained
weights and specifically YOLOV5-medium weights as they pro-
vide a good trade-off between speed and accuracy and are good for
medium sized datasets. Data augmentation techniques are also used
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Figure 13: Proposed Method

during training as they provide more variability and increase ro-
bustness, but their precise values are set by running an evolutionary
algorithm.

3.2.2 Choices for the second part of the implementation
(CAM Models)

In order to generate Class Activation Maps, the best weights of
the previous 10 class trained RGB network are used. These pro-
duce maps showing highlighted regions that have an effect on the
prediction. There is a variety of methods (both gradient-based and
gradient-free) modified for the YOLOV5 architecture that utilize the
feature maps of any specified layer before the non-differentiable
NMS module. We choose to work with GradCAM++ and HiresCAM,
extracting features from layer -2 of YOLO, as they produce more
accurate and crisp activation maps. The -2 is the default layer and
corresponds to the last C3 Dense block, which is a modified Bottle-
neck CSP consisting of Convolutional layers and two Bottleneck
layers. The last convolutional layers capture high-level abstract
information so the generated heatmaps are representative. An illus-
tration of the GradCAM++ and HiresCAM heatmaps for an image
can be found in Figure 26 in the Appendix.

For extracting heatmaps there are two options:

(1) Get one heatmap per input image which is the average over
all the classes or (2) Per input image get as many heatmaps as the
number of classes, and each heatmap corresponds to each classes’
activation. These can the be stacked together into a 10-channel TIF
file. In our approach we experiment with both ways. We train all
the models from scratch without pretrained weights and with the
YOLOv5-medium model configuration, which is the medium sized
YOLO version. The reason behind this choice is that larger models
have higher mAP but more parameters, thus are slower to train
and run. Smaller models on the other hand compromise the mAP
thus the safe option is the medium model, which is suitable for
mobile applications. We change the channel number to 1 for the
averaged grayscale heatmaps and 10 for the 10 stacked heatmaps
per class. No data augmentation is used and the model is trained
only on the "whole face" class which we are interested in. One of
YOLO’s constraints is the use of letterboxing, a technique to make
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the input images square while maintaining the aspect ratio and
preventing distortion. The function adds a border around the image
and works only for 3-dimensional images so we adjusted it to work
for 10-channel and grayscale images.

3.2.3 Choices for testing the pipeline

We put our implementation to test by following the process
depicted in Figure 14. We start by validating the RGB model on our
labelled data. This will output metrics and plots which are used
to make comparisons between the models. We find the optimal
confidence value which gives the best combination of precision and
recall from the F1-confidence curve. We then run inference on our
data using this optimal value and separate the images where the
face was not detected. We proceed to the second part and extract
heatmaps for the images without a face detection using the four
different methods described above. Occasionally, the model might
not detect classes in an image, resulting in blank heatmaps that must
be removed. Lastly, we repeat the validation process for the four
different CAM-based models, determine their optimal confidence
values, and perform inference. Through this procedure, we can
observe the total number of missed detections for each model, and
thereby evaluate and draw conclusions about their efficiency.
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Figure 14: Testing Method

3.3 Data

To train a YOLO model, we need a dataset with images and bounding
box coordinates. Each image corresponds to one label file which
contains all the annotated box coordinates per class. YOLO’s authors
suggest having more than 1500 images per class, more than 10.000
instances per class, variety and a fully labelled dataset. Thus we aim
to follow these rules to establish a proper baseline performance.



There are datasets that contain the bounding box around the
whole face, but since we train on different facial parts as well, find-
ing such data is not possible so we need to build it. The provided
UMC dataset at the time of writing does not contain landmark
annotations, thus can’t be used for training. There are multiple
datasets in literature that contain faces, with or without occlusions,
either natural or made up ones. The images can have different light-
ning, contrast, rotation, zoom etc. A lot of datasets have unrealistic
synthetic occlusions, too big or misplaced, and can hinder learning.
In many cases they contain too few types of occlusions such as
hats or sunglasses that are limited compared to what is found in
the wild. In other cases there are wrong ground truth annotations
in the data that can confuse the algorithm. A lot of these datasets
also tend to be small. Thus it is challenging to pick one to evaluate
the performance of an algorithm.

We aim for datasets with facial landmark annotations for at least
one face, so that we can extract bounding boxes for the facial parts
we need easily. The images need to have some variance, different
scales, resemblance to realistic faces and some degree of occlusion
to fit the problem statement. Therefore we don’t look into synthetic
faces but go for datasets that contain various images found online,
which naturally contain occlusions. Most of them follow the iBUG
68 landmark annotation protocol (seen on the right side of Figure
2) and can contain some extra annotated landmarks. Landmarks
can convey occlusion information, for example by having negative
values for external occlusions and -1 for self occlusions (mean-
ing the facial part is not visible). We account for these landmarks
by skipping the self occluded parts and converting the externally
occluded values into positive ones. This automatically adds occlu-
sion information in our dataset to make the model more robust.
To extract the bounding boxes we consider which facial parts are
useful to be detected and create rectangles around them while also
mapping the parts into classes. We get the rectangle coordinates,
normalize and center them so that they are in the correct format
for YOLO and generate labels files. There is the case that in the
original dataset, one image contains multiple copies and landmarks,
one for every annotated face. In this case we keep one copy of the
image and merge the bounding box coordinates into one label file.
Additionally, it can be that one image has multiple faces but only
one annotated. We try to keep these images in the training set but
not in the validation set as this will result in an increase in False
Positives. The model may correctly detect more than one face but
if it’s not annotated, it is considered a mistake.

4 Results

This section contains the results and visualization of the proposed
method.

4.1 Dataset Creation

This part presents exact statistics behind the custom dataset created,
named "WFLW-MERL" as it’s a mix of WFLW and MERL-RAV.
Table 1 presents a description of the original datasets used and
below there are more details about them.
The WFLW [47] (Wider Facial Landmarks in the Wild) dataset
contains images with one or multiple people and has 98 annotations
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Original Datasets Type of Images Total Amount
WFLW One or multiple faces 10000
MERL RAV Mainly one face > 19000
Hand Over Face One face 4384

Table 1: Descriptions of the original datasets used for training
and evaluation

in the form of (x,y) coordinates per face, as well as coordinates of
the upper left corner and lower right corner of detection rectangle.
It also includes rich feature annotations such as make-up, occlu-
sion, pose, illumination, blur, expression for analysis purposes. For
the WFLW dataset, 6000 images are used as training data, 125 for
validation and 794 for testing. One notable consideration is that
the dataset contains only one annotated face per image, although
multiple faces may be present. To ensure dataset consistency, a
review was conducted, resulting in the removal of certain images
with many faces from the validation and testing sets, ensuring the
presence of only annotated faces.

The MERL-RAV [48] dataset contains over 19000 faces with
a full range of poses. It is split based on the head poses, namely
frontal, left, right, left half, right half. Each of these parts is split
into training and testing set. The data follows the 68 landmarks
annotation protocol from iBUG [49] and additionally each land-
mark belongs to 1 of the 3 occlusion classes: unoccluded, externally
occluded, self-occluded (not estimated). Externally occluded land-
marks correspond to visible face areas in the image that have an
obstruction (e.g. hats, glasses) and have negative values (-x, -y) .
Self-occluded landmarks are caused by extreme head poses and
are not visible in the image, and are in the form (-1, -1). From the
MERL-RAV dataset we keep only the images with frontal, left half
and right half head poses to have a degree of variation. This gives
8601 images for training, 1656 for validation and 804 for testing.
Both test sets consist of data that has not been used during the
model training phase, and they are annotated with ground truth
landmarks.

The Hand Over Face[50] dataset is used for testing the ap-
proach. It consists of 4384 frames randomly selected form videos
of a sitting person moving their hands around the face inside a lab.
The videos were recorded twice with a Kinect camera and have two
backgrounds: lab and wall background. Kinect can record depth
stream and color stream video. In this case we kept the RGB images
coming from that video. The video resolution is 1920x1080 and
mainly the upper body part is visible.

We create the WFLW-MERL dataset by merging WFLW and
MERL-RAV to create a larger dataset and to ensure diversity in
the training data. This is possible because both individual datasets
have landmark annotations and we can apply the same process
to extract the same bounding boxes from the landmarks. While
they do not have the same amount of landmarks annotated, it’s
possible to find the index of the landmarks of interest based on
the used annotation protocol. To do so, we create lists with the
coordinates of the landmarks we are interested in that correspond
to a facial part. We can then create a bounding rectangle around
the landmarks (namely with OpenCV boundingRect() function),
and get the top-left (x,y) coordinates, the width and height of the



bounding box. We proceed to calculate the center coordinates from
the top-left coordinates and normalize all the values, so they are in
a suitable format to train YOLO. In Figure 15, the left image shows
the ground truth landmark annotations and the right image the
extracted bounding boxes per class.

Figure 15: Example image from WFLW. Left: landmark an-
notations Right: Generated bounding boxes

Table 2 presents the training and validation split. Again, note
that the validation and test sets contain only annotated faces so we
can report on the performance.

Original Datasets | Train | Val | Test
WFLW 6000 125 794
MERL RAV 8601 | 1656 | 804

Table 2: Custom dataset train and test splits

We choose to make bounding boxes for the following facial parts:

o eyes: the left and right eye are concatenated in one class as
they are very similar and it would be very difficult to find
their differences

® nose

o whole face: box ranging from above the brows to below the
chin, and from leftmost to rightmost visible cheek

o right face: box ranging from mid-ear until below chin, and
from rightmost cheek landmark to right tip of mouth

o left face: box ranging from mid-ear until below chin, and
from leftmost cheek landmark to left tip of mouth

e brows: box around both the brow area

o left eye face: concatenation of the left eye and the left face
landmark coordinates

o right eye face: concatenation of the right eye and the right
face landmark coordinates

e eyes nose: concatenation of landmark coordinates of nose
and both eyes

e mouth: box around the mouth area

The eyes, nose, whole face, brows, mouth are the 5 most promi-
nent facial parts, and the rest of the classes are a combination.
The whole face class box fully contains the boxes of the other
classes. The reasoning behind them came by looking at the pro-
vided preterm infant videos and considering which facial parts
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could possibly be well detected. For example, if the infant is on its
side, instead of detecting the whole face we could get right face, left
face, and left face with the eye, right face with the eye. If the infant
has occlusion around the mouth, the model could detect the upper
facial part so that would be the eyes and nose class. We expect that
one missed class should not affect greatly the performance of the
other classes, especially for the classes that do not have a natural
overlap such as the nose and mouth.

4.2 Losses & Metrics

YOLOVS5 uses a sum of three different loss functions: classification
loss, bounding box regression loss, and objectness (confidence) loss.
The first is a crossentropy loss, the second is a mean squared error
based loss and the last is confidence of an object being present in
an anchor box.

To evaluate and understand an object detection models’ perfor-
mance, there are some common metrics used in literature.

The Intersection over Union (IoU) is the amount of overlap be-
tween the predicted bounding box and the ground truth bounding
box. During NMS an IoU threshold is set to remove overlapping
predictions that exceed it. First the detections are sorted based on
the highest confidence scores, the IoU between the highest scoring
detection and the rest is calculated and if it exceeds the threshold,
the lowest scoring detections are made redundant. The process
repeats until all sorted detections have been processed, and results
in non-overlapping high confidence predictions.

The precision is the ratio of true positives divided by the total
number of positive predictions:

TP
> 1
TP + FP

It gives information about how well the model can classify the
actual face or facial part without classifying irrelevant objects. Re-
call is the ratio of true positives divided by the total number of
actual objects:

Precision =

TP
RN @
TP + FN
It shows the models’ ability to classify and localize positive sam-
ples, without missing them, which is relevant in our case as we
don’t want to miss any existing faces. The F1-score is the weighted
average of the precision and recall,

Recall =

2  precision * recall
F1=

precision + recall ®)

The Average Precision (AP) determines the algorithms’ preci-
sion at different levels of recall by measuring the area under the
Precision-Recall curve, over all classes. Thus, AP@0.5 means the AP
is calculated at an IoU threshold of 50%, so the predicted and ground
truth bounding box have overlap (IoU) of at least 50%. The mean
AP is the AP calculated over different IoU thresholds. For example,
mAP 0.5_0.95 is the average precision over multiple thresholds with
a step of 0.05.

For YOLOV5, the mAP is calculated based on the PR curve for
a confidence of 0.001. During the calculation of recall an epsilon
value of 1le-16 is added to the denominator. This is the same for
the calculation of the F1-confidence curve, which is used later to



determine the optimal confidence threshold for detection. In our ap-
proach we use these results from the validation to get an overview
of the models performance and make comparisons. We also per-
form inference (detection) with the calculated optimal confidence
thresholds to determine which images have no face detections and
continue with the second part of the pipeline.

4.3 Training - First RGB model

YOLOVS5 can perform hyperparameter evolution for a number of
generations to find the optimal values for around 30 hyperparame-
ters for our data. It employs a genetic algorithm for a default of 300
generations. There are two key probabilities in genetic algorithms:
mutation and crossover. The crossover signifies the likelihood of
generating a new solution from two existing solutions. This means
picking the best features to create a better performing offspring,
however it can lead to staying within a range of suboptimal so-
lutions. On the other hand the mutation probability signifies the
chance of adding diversity in the population, which increases the
search space. In this work mutation is used with an 80% probability
and a 0.04 variance to create new offspring based on a combination
of the best parents from all previous generations. This prevents
the genetic algorithm from getting stuck in a local minimum or
converging to a suboptimal solution, however it vastly increases
computation time for our case. The value to be maximized is fitness,
a weighted combination of mAP, mAP@0.5 contributes 10% of the
weight and mAP@0.5:0.95 contributes the remaining 90%. Because
the process takes too long to converge and due to limited resources
and technical issues that arise with the GPUs when training for
a long time, we trained for 42 generations, with the best results
coming from generation 12. Table 3 presents the values for several
parameters.

Hyperparameter | Value
Starting Ir 0.0072
Optimizer SGD

IoU threshold 0.2
Hue 0.0107
Value 0.42373
Saturation 0.52782
Translation 0.07382
Scale 0.48072

Table 3: Hyperparameter evolution values (gen. 42) used in
the first YOLO model for training

We train the first model on the facial parts for 300 epochs with
Early Stopping enabled. The metric used in Early Stopping is fitness,
the previously mentioned weighted combination of mAP. We used
the hyperparameters and data augmentations from the evolutionary
algorithm as parameters to the model and the pretrained "yolov5m"
weights for starting weights.

Furthermore, YOLOv5 automatically checks the label values for
negative or non-normalized values (between 0-1) discards them and
their corresponding images. In our case this only happens for the
training set, from the initial 14601 images we have 14580 remaining.
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Figure 16 shows the amount and distribution of the total labels.
The top left bar plot presents the label frequency, the top right
is a schematic of the bounding boxes, the bottom left shows the
frequency of values for the (x,y) top left box coordinates, the bottom
right does the same for the width and height of the boxes. It can
be observed that the "eyes" class is double in amount as we extract
the two eyes from the landmark annotations and merge them into
one class. Furthermore the majority of x-coordinates range from
0.2-0.4 and the y-coordinates from 0.2-0.6, so the bounding boxes
are located around the lower and center part of the image. The
width and height values tend to be small, located on the origin of
the plot, as most of the face parts such as eyes (which are double),
nose, mouth cover a relatively small area.
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Figure 16: Label information first model.

4.4 Part 1: RGB Model Results

Figure 18 shows the confusion matrix for the classes and Figure
24 in the Appendix shows the loss plots and validation metrics.
The default threshold values are kept for the validation, so the
confidence threshold is 0.001 and the NMS IoU threshold is 0.5. It
is important to keep the confidence value at 0.001 as changing it
affects the computation of the PR curve leading to incorrect mAP
values. The reported precision and recall scores are presented at
the maximum F1 confidence threshold, which should produce their
best balance. For this case it’s 0.373 for all the classes as illustrated
in Figure 17.

The validation loss stops improving so the model finishes train-
ing at epoch 85. From the plots, the box loss and classification
loss drop quite quickly around epoch 10 and continue dropping,
the first one starting around 0.1 and reaching 0.05 and the second
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Figure 17: F1-confidence curve on the validation set for the
10class RGB model

one starting at 0.03 and ending at 0.017 for the final epoch. The
objectness loss starts from 0.034 and drops more slowly to 0.022.
In the meantime the respective losses for the validation set seem
to converge around epoch 40 while the precision, recall and mAP
scores all reach high values. More specifically, precision and recall
reach over 0.9, mAP@0.5 reaches 0.93 and naturally mAP@0.5-0.95
is lower at 0.7.
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Figure 18: Confusion matrix on the validation set for first
model

From the confusion matrix on the validation set the highest
accuracy (94%) is for the mouth, while the lowest for the eyes (71%).
The whole face class has an accuracy of 90%. The rest of the classes
have a bit lower of a lower score perhaps because they might have
occlusions around these areas for the specific images. We notice
a number of instances classified as either eyes, nose or eyes nose
are actually part of the background. One reason could be that the
parts cover a small area of the face so the model has difficulty
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depicting their individual features. It could also be that the model
detects an object that resembles a face in the background. Overall,
the performance is very good, the validation images contain faces
of various scales so that means that the model is quite capable of
detecting most of them. The overall accuracy is 83.1%.
Furthermore, there are two test sets with unseen images and
labels, from the MERL-RAV and the WFLW dataset. The first one
is considered easier as it contains clear faces without much back-
ground noise while the second one is more diverse and challenging,
containing random images depicting one face in various settings.
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Figure 19: Confusion matrix on the MERL-RAV test set for
first model
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Figure 20: Confusion matrix on the WFLW test set for first
model

Observing Figure 19, the classes mouth, brows and left face have
higher accuracy while eyes-nose, eyes and right-eye-face have the



lower scores. Overall, the accuracy is high for all classes at 85.4%.
For the eyes class we have a similar amount of false positives (22%)
and false negatives (23%), so the eyes are either completely missed
or being detected where there is background. Additionally for 21%
of the predictions of nose, the ground truth is eyes-nose due to the
overlap of these classes. From the WFLW dataset, the mouth, brows
and the whole face have higher accuracy while the right-eye-face
and eye-nose classes have the lowest. Furthermore by observing
the bottom row, there are quite a few instances where face parts
are predicted as background while in reality they belong to a class,
meaning the model misses some faces or face parts. However this
is expected given the quality and noise found in these images. The
overall accuracy is 74.7%, naturally lower than the previous case.
These results are in line with the expectations given the structure
and difficulty of the datasets.

Table 4 illustrates the models’ performance on different metrics
for the 10 class RGB model. For the validation set the values are
high with a noticeable drop in the mAP 0.5-0.95 which is expected
as the IoU threshold increases. The performance is similar in the
MERL-RAV dataset where all the values are consistently higher
than for the WFLW. For both datasets, the precision is higher than
the recall meaning there are less false positives than false negatives.
The model misclassifies objects that are not faces in fewer cases

but it may miss more faces that are present.

Set P R F1 | mAP50 | mAP50_95
Val 0.919 | 0.906 | 0.912 0.939 0.633
MERL RAV | 0.910 | 0.902 | 0.906 0.935 0.618
WFLW 0.808 | 0.762 | 0.784 0.802 0.506

Table 4: Precision, recall, mAP (over all classes) on the val-
idation and two test sets for the RGB model trained on 10

classes

We also evaluate the 10 class model only on the whole face class,
making it a binary classification task and the results are shown on

Table 5.
Set P R F1 | mAP50 | mAP50_95
Val 0.958 | 0.939 | 0.948 0.981 0.872
MERL RAV | 0.940 | 0.947 | 0.943 0.981 0.867
WFLW 0.842 | 0.881 | 0.861 0.892 0.765

Table 5: Precision, recall, mAP on the validation and two test
sets for the RGB model trained on 10 classes and evaluated
with the whole face class

Observing Table 5 we see a consistency on the models’ per-
formance on the datasets, meaning it still performs better on the
validation set and the MERL-RAV test set. Comparing the two tables
above we notice that the performance is improved for the whole
face class across all metrics. This means the model is better at de-
tecting only the face compared to the other classes. This can be
explained as the model can pick up various features to identify a
face, which can be easier to distinguish. Moreover the face naturally
covers a larger part of the image and contains all the other classes,
without having a big overlap with one of them.
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44.1 One Class Model

We train the same model on a single class, the whole face, to
compare the results between the 10 class model and the single class
model, and to later evaluate the CAM based models. Out of the
1620 validation samples, 1617 faces are detected correctly, 35 are
false positives (predicted faces but are actually background) and 3
are false negatives (predicted background but is face). Note again
that an image on the validation set can contain more than one
face. Comparing to the 10 class validation set, we have 1618 correct
detections, 32 false positives and 2 false negatives. Both the models
detect objects in the background that are not faces and this can be
because of the features the model captures and the similarity of a
background object to a face. The complexity of the 10 class model
slightly increases the number of missed detections as the model
picks up different features to separate the classes but can miss an
actual face.

Table 6 presents the results for the validation and the test sets.

Set P R F1 mAP50 | mAP50_95
Val 0.993 | 0.994 | 0.994 0.995 0.946
MERL RAV | 0.991 | 0.990 | 0.990 0.995 0.939
WFLW 0.925 | 0.860 | 0.891 0.956 0.870

Table 6: Precision, recall, mAP on the validation and two test
sets for the RGB model trained on one class

Using the whole face as the only class during training yields
higher performance than training on 10 classes, when comparing
Table 5 and 6. Comparing between the datasets, we see that for
the model trained on one class, the precision and recall for MERL-
RAV are nearly equal (99.1%), and are comparable to the previous
model. Since the images on this dataset have better quality, then
it is logical that the model can detect both the whole face and
distinguish among the rest of the face parts as well. For the WFLW
on one class, the recall value (86%) is lower than the precision
(92.5%), following a similar pattern to the previous case. Comparing
to the multiclass model we notice a similar trend, since WFLW
is more complicated and contains variable poses, the multiclass
model struggles to perform accurate classification. Some face parts
naturally overlap so it is no surprise that all the metrics’ values are
higher for the single class model. The only value that is higher on
the 10 class model is the recall of the whole face class in the WFLW
dataset (88.1%) than (86%) for the single class one. This means there
are a few more false negatives in the latter so the model can miss
some faces. These faces can be more challenging so since there are
no more classes to detect then this increases the false negatives.
An additional explanation for the higher values of the first model
is that the 10 class model can capture common features within
classes and give less importance to class specific features. Thus, it’s
easier to miss some faces. The F1-score in Table 6 for the validation
set is at 99.4%, for the MERL-RAV it drops slightly to 99.0% and
lastly for the WFLW as expected it drops to 89.1%. The training
and validations loss and metrics plots are found in Figure 25 in the
Appendix.

Additionally, the models are tested on the unannotated Hand
Over Face dataset for whole face detection. For testing, we set the



confidence threshold to 0.4 and the IoU threshold to 0.6 to filter out
low confidence detections which could be irrelevant. We choose
a confidence of 0.4 because from Figure 17, the green curve that
corresponds to the whole face class peaks at that point. Out of the
4384 faces in the dataset, the 10 class model detects 3985, so 90.9%
of the faces. The model trained on the whole face class detects 3701
faces, so 84.4%. This can be an indication that adding more classes
related to the face can help the model localize it that is why the 10
class model shows better performance than the model trained on
the whole face class only.

By visually inspecting the remaining frames without a detected
whole face, the participants had almost fully covered their face so
it makes sense why the model couldn’t locate it.

4.5 Part 2: CAM based model Training Results

In the second part of the implementation, GradCAM++ and HiresCAM
heatmaps are extracted using the weights of the trained model on
the 10 facial parts. The heatmaps are extracted (1) by getting the
average heatmap over all class activations and (2) by getting one
heatmap per class and stacking them together. This means there
can also be blank heatmaps if there are no detections for a class.
Thus, we have four models. Table 7 presents the results for the
validation and the test sets for both CAM methods. The loss plots
are found in the Appendix (Figures 27, 28, 29, 30).

A‘,ij;‘:l Set P R F1 | mAP50 ;‘(}A;;
Grad++ Val | 0.983 | 0.974 | 0.978 | 0993 | 0.733
(avg) MERL | 0.977 | 0.979 | 0.978 | 0.993 | 0.732

WEFLW | 0.855 | 0.786 | 0.819 | 0.828 | 0.530
Hires Val | 0.943 | 0.936 | 0939 | 0960 | 0.573
(avg) MERL | 0.939 | 0.963 | 0.949 | 0971 | 0.562
WFLW | 0.765 | 0.778 | 0771 | 0781 | 0.379
Grad++ Val | 0.975 | 0.979 | 0.977 | 0992 | 0.740
(10 class) | MERL | 0.969 | 0.98 | 0.974 | 0.993 | 0.730
WFLW | 0.868 | 0.789 | 0.827 | 0.832 | 0.514
Hires Val | 0.948 | 0.963 | 0.955 | 0969 | 0.568
(10 class) | MERL | 0.938 | 0.961 | 0.949 | 0.971 | 0.562
WEFLW | 0.808 | 0.848 | 0.828 | 0.827 | 0.406

Table 7: Precision, recall, mAP on the validation and two
test sets for the GradCAM++ model and the HiresCAM based
models. Heatmaps are produced by averaging over all pre-
dicted classes or only on the whole face class

The results indicate that the performance of the four models is
comparable. For all cases, the MERL-RAV dataset displays a higher
F1 score with values over 94.9%. The highest F1 score (97.8%) is in
the GradCAM++ model trained on the average heatmap and the
two lowest F1 scores (both 94.9%) come from the HiresCAM models.
It’s expected that this test set performs better as it contains frontal
and slightly rotated faces with good lighting conditions and is not
as random as the WFLW. The latter has F1 scores ranging from
77.1% to 82.8%, the lowest score (77.1%) coming from the HiresCAM
model trained on the average heatmap and the best one (82.8%) from
the HiresCAM model trained on the 10 class heatmaps. Analysing
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the mean average precision at an IoU threshold from 0.5 to 0.95, we
can observe that both the GradCAM++ based methods have higher
scores than the HiresCAM methods. For the MERL-RAV set these
are at the scale of 70%, and at 50% for the WFLW. Meanwhile for
the HiresCAM models the respective values are at 50% and at 38-
40%. This indicates that GradCAM++ based models show increased
performance while the complexity of the data increases while the
HiresCAM based equivalents suffer a larger drop in average preci-
sion. This trend is also found when looking at the mean average
precision score at 0.5 threshold. The GradCAM++ based models’
score is decreased by around 20-30% as the threshold increases,
whereas for the HiresCAM this is around 30-40%.

These findings can be explained by the nature of the heatmaps
produced by the methods. The GradCAM++ heatmaps highlight
various regions that play a role in the prediction, and they can
also indicate contextual regions that are not so relevant. On the
other hand, the HiresCAM heatmaps are sparse and only highlight
the important part without the surroundings. As the IoU threshold
increases, the HiresCAM predictions, being less detailed, can have
a negative impact on the mAP. The next part of the thesis tests the
models on various degrees of occlusion and then it can be easier to
make conclusions as to which one works better for the task.

4.5.1 Testing on missed detections from MERL & WFLW
The four models are tested on the images of MERL-RAV and
WFLW test sets where the face was not detected. First, the images
are selected which gives 25/804 missed face detections for MERL-
RAV and 39/792 for WLFW. Then the heatmaps are extracted and
the empty ones are removed. Empty heatmaps mean that the model
failed to detect any class for the particular image. This process
returns 25 heatmaps for the first test set meaning none were re-
moved, and 34 for the second. The optimal confidence threshold is
determined from running validation on the sets, and the NMS IoU is
set to 0.6. Table 8 presents the detection results. Precision measures
the percentage of correct predictions and coverage the proportion
of total heatmaps that the model is able to make predictions for.

Model | Set | Conf | F1 | pul (Se) | (rest ey
Grad++ MERL | 0.713 1 25 100% 100%
(avg) WFLW | 0.165 | 0.41 17 88.24% 50%
HiresCAM | MERL 0.697 | 0.96 23 100% 92%
(avg) WFLW | 0.391 | 0.62 23 86.96% 67.6%
Grad++ MERL | 0.663 1 0 0 0%
(1()(;1355) WFLW 0.645 0.57 0 0 0%
HiresCAM | MERL | 0.377 | 0.94 10 40% 40%
(10class) WFLW | 0.344 | 0.65 10 60% 29.4%

Table 8: Optimal confidence, max F1 score, total detections,
correct detections and coverage when testing the models for
the optimal confidence value coming from the respective
F1-confidence curve obtained during validation for the 4
different CAM models on MERL-RAV & WFLW

o GradCAM++ (avg):
MERL-RAV: 100% correct detections out of 25 heatmaps.
WEFLW: 15 correct detections out of 34, with 17 total detec-
tions, and 2 incorrect ones.



e HiresCAM (avg):
MERL-RAV: 23 correct detections out of 25, with no incor-
rect ones.
WEFLW: 20 correct detections out of 34, with 23 total detec-
tions, and 3 incorrect ones.

e GradCAM++ (10class):
MERL-RAV: 0 correct detections out of 25, with 25 incorrect
ones.
WFLW: 0 correct detections out of 34, with 25 incorrect
ones.

e HiresCAM (10class):
MERL-RAV: 4 correct detections out of 25, with 10 total
detections, and 6 incorrect ones.
WFLW: 6 correct detections out of 34, with 10 total detec-
tions, and 4 incorrect ones.

From these insights we can see that the avg models perform
better especially for the MERL-RAV dataset. The GradCAM++(avg)
does not miss any detections on MERL-RAV and performs decently
on the more complex WFLW. Its 10class counterpart however does
not detect any faces, which might indicate a flaw in the model.
The HiresCAM (avg) model also shows strong performance, hav-
ing detected more faces correctly for the WFLW dataset, and it’s
total correct detections equal to 86.96% which is close to the Grad-
CAM++(avg) model at 88.24%. The HiresCAM(avg) model though
has more coverage meaning it detected more heatmaps to begin
with. The HiresCAM (10class) models shows room for improve-
ment but performs better on the WFLW dataset (60%) than on the
MERL-RAV (40%), and has some more coverage for the WFLW
dataset.

4.5.2 Testing on Hand Over Face

We tested the four CAM models on images of the Hand Over
Face that had no detections for the first 10-class model, so that gave
a starting point of 400 images. Again, we extracted heatmaps and
then filtered out the empty ones, which left us with 215 of them
to examine. To establish a baseline we ran the detection with the
same settings as before, so that’s a confidence threshold of 0.4 and
an IoU threshold of 0.6.

CAM Initial Totz.d Remaining
Model Heatmaps | Detections
GradCAM++ (avg) 215 28 187
HiresCAM (avg) 215 112 103
GradCAM++ (10 class) 215 0 215
HiresCAM (10 class) 215 35 180

Table 9: Total initial count of non-empty heatmaps, total
detections and number of remaining heatmaps without de-
tections for the 4 different CAM models on Hand Over Face

We inspected the detection results for the average models and lo-
cated 2 errors in GradCAM++ model where the model had detected
a face on the bottom right part of the image. Given the dataset, we
expect the face to cover a small area around the center to top of the
image and looking at the original image the model had indeed failed
to detect a face there. In both average and 10 class based models,
HiresCAM has a superior detection rate. Specifically for the average
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models, it has four times more detections than GradCAM++. The
10 class GradCAM++ model fails to make any detections, while the
10 class HiresCAM detects 35 objects as faces. After inspecting the
coordinates, they seem to be correctly localizing the image around
the center of the frame.

Figure 21 shows the original image, the GradCAM++ and the
HiresCAM average models’ prediction.

whole_face 0.45

whole_face 0.42
1 ]

Figure 21: Original image, GradCAM++ and HiresCAM
heatmaps and face detections on an image from HandOver-
Face

4.6 Application on SLAPI data

In order to address the previous research question, the proposed
implementation was evaluated using frames extracted from videos
of preterm infants. The selection of frames was based on four cat-
egories of occlusions. Each video was thoroughly examined, and
a frame was chosen when there was noticeable variability among
the frames, such as when the infant started moving. It should be
noted that the infants were mainly asleep during the majority of
the recording.

To assess the performance of the models, the selected frames
were manually annotated with a reliable estimation of the bounding
box encompassing the infant’s face. The annotations took into
consideration four types of occlusions.

By conducting this evaluation and annotation process, we aimed
to provide a comprehensive evaluation of the proposed implemen-
tation’s performance in detecting and handling different occlusions
in the context of preterm infants.

e No Occlusions: the infant has no tubes around the face
(rare)

e Easy: There are occlusions such as hat or a slim tube on one
side of the face, but the face shape is clear, good lighting
conditions, small amount of rotation.

e Medium: There are possibly heavier occlusions around the
face, movement from the infant, a change in lighting condi-
tions, blurry frame.

e Hard: the infant is heavily occluded from its blanket and
hat, can have a bigger device attached to it that blocks the
view, fully covers its head with its hand, or the room is
darker and the frame is blurry.

Table 10 presents different metrics on the various occlusions.
The RGB model is tested only on the whole face class, for an IoU
of 0.6 and default confidence of 0.001 as according to the authors a
higher value affects the mAP. The precision, recall and F1 scores
are calculated based on the best confidence value that gives their
best combination.

Table 11 illustrates the total number of correct detections for the
whole face class and the lowest confidence score for the correct
detections for the images.
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Set Count P R mAP50 mAP50_95
No Occl 10 0.989 1 0.995 0.454

Easy 64 0.970  0.750 0.775 0.446
Medium 203 0.862 0.485 0.543 0.228

Hard 210 0.667 0.220 0.270 0.107

Table 10: Precision, Recall, mAP on the SLAPI dataset cate-
gories for the RGB model on the face class

Set Total | Correct L:(‘::fs t Remaining I\iﬁe‘:t::\ll’:sy
No Occl 10 10 0.570 0 0

Easy 64 49 0.400 15 3
Medium 203 130 0.400 72 25

Hard 210 68 0.400 142 32

Table 11: Total count, total correct detections and lowest
confidence of correct detections for the 4 different occlusion
sets of SLAPI

There are very few frames where the infant doesn’t have devices
or a hat, and the face is fully visible. For these frames, the model has
arecall equal to 1, meaning zero false negatives. As the difficulty
level of the occlusions rises, the precision, recall, F1, and mAP scores
naturally drop. For the hardest occlusions it can be observed that the
precision is at 66.7% while the recall is at 22.0%. This is interpreted
as the model having a high level of accuracy when detecting true
positives, while having lower sensitivity. This means a significant
number of faces remains undetected. Given the selection of frames,
this makes sense as the faces can be quite challenging to find and
the image quality is lower in some cases. It’s a positive fact that
when a face is detected, in most cases it is truly a face. For the frames
where the face failed to be detected, we can apply the second part
of the pipeline to examine whether it helps predict faces that were
previously missed. Thus, we will examine the four CAM models
with the easy, medium and hard occlusion test sets. However, not
all frames have detections and thus have empty heatmaps so we
apply the CAM object detection only on non-empty heatmaps.

4.6.1 Validation results on SLAPI

Examining Table 12 there are various conclusions we can draw.
First of all the Easy dataset contains only four images so it is not a
significant value from which to draw definite conclusions but we
will try to make comparisons.

The GradCAM++ (avg) model overall exhibits a mediocre per-
formance and the mAP@50-95 is significantly low for the three
cases as the IoU threshold increases. What’s interesting is that
for the Hard occlusions the model displays a very high precision
(91.7%) meaning its positive predictions are mostly correct however
it misses a large number of faces as the recall value is at 6.2 %.

The HiresCAM (avg) model has a more balanced expected perfor-
mance. For the Easy occlusions the precision is very high and the
recall is good so that leads to a robust F1 score. Going to Medium
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1&3;\:1 Set P R | F1 | mAP50 mmi‘;;
Grad++ Easy | 0.477 | 0330 | 0418 | 0372 | 0.074
(avg) Medium 0.185 0.115 0.142 0.101 0.031

Hard | 0917 | 0.062 | 0.117 | 0097 | 0.029
Hires Easy 0.954 | 0.667 0.785 0.697 0.166
(avg) Medium | 0.491 | 0462 | 0476 | 0364 | 0.090
Hard 0.341 0.312 0.326 0.211 0.048
Grad ++ Easy 0.987 1 0.993 0.995 0.233
(10 class) | Medium | 0.585 | 0.192 | 0.289 | 0201 | 0.052
Hard 0.344 | 0.125 0.183 0.093 0.031
Hires Easy 0.939 | 0.667 0.780 0.675 0.372
(10 class) | Medium | 0.565 | 0.500 | 0531 | 0444 | 0.182
Hard 0.601 0.500 0.546 0.456 0.126

Table 12: Precision, Recall, mean Average Precision on differ-
ent levels of occlusions for the SLAPI dataset for the Grad-
CAM++ model and the HiresCAM based models. Heatmaps
are produced by averaging over all predicted classes (avg) or
by stacking the heatmap for each of the classes into a tif

occlusions there’s an expected drop in performance and the preci-
sion and recall have similar values. Moving to the Hard occlusions,
the performance declines but the overall F1 score is still higher than
the average GradCAM++ method.

The GradCAM++ (10 class) model has almost perfect scores for
the metrics in the Easy case (recall = 1), but displays significant
drops in the Medium and Hard cases, with the recall in the Hard
case being notably low. This indicates that the model does not
perform as expected and is unreliable.

The HiresCAM ++ (10 class) model has overall good performance.
The Easy occlusions have very high scores on the precision and
recall. The Medium occlusions display moderate performance but
the recall value is higher than for the GradCAM++ 10 class model.
This is also the case for the Hard occlusions, the precision is higher
than the Medium occlusions, the recall score is the same 50% for the
Medium and Hard occlusions but still higher than the GradCAM++
model.

Overall, the HiresCAM models show a more balanced perfor-
mance, doing well in the Easy case and dropping as the occlusion
level is higher. Comparing the average heatmap model and the 10
class based model, the latter shows a higher performance for the
more difficult cases which contain more samples, so it can be a
promising choice for improving face detection. The GradCAM++
based methods have more highlighted regions in their heatmaps,
making them cover more areas that could play a role in the detec-
tion. This does not mean they are precise, and the more defined
heatmaps of HiresCAM make the detection easier.

4.6.2 Detection results on SLAPI

When running the validation on labelled data, a very low confi-
dence threshold is used for the computation of metrics. In practise,
our data will not be labelled so we examine the performance with
a higher confidence threshold. The F1-confidence curve from the
validation can point to the optimal confidence value that maxi-
mizes precision and recall. Table 13 presents the number of correct
detections for every model, within the different occlusion levels



when setting the optimal confidence value. We use the same IoU
threshold as before which is 0.6.

s | se Jcont | b | foat [ et | cones
Grad++ Easy 0.099 | 0.450 0 0% 0%
(avg) Medium | 0.021 | 0.150 | 6/25 33.33% 24%
Hard 0.181 0.120 3/32 66.67% 9.37%
Hires Easy 0.592 | 0.790 1/3 100% 33.33%
(avg) Medium | 0.364 | 0.490 | 21/25 100% 84%
Hard 0.188 | 0.330 | 31/32 87.1% 96.87%
Grad++ Easy 0.377 | 0.990 0/3 0% 0%
(10class) Medium | 0.325 | 0.300 0/25 0% 0%
Hard 0.339 | 0.190 | 0/32 0% 0%
Hires Easy 0.545 | 0.760 1/3 100% 33.33%
(10class) Medium | 0.294 | 0.560 | 10/25 90% 40%
Hard 0.204 | 0.550 | 9/32 77.78% 28.12%

Table 13: Number of correct detections when testing the mod-
els for the optimal confidence value coming from the respec-
tive F1-confidence curve obtained during validation

From 13 we see that GradCAM++ (avg) struggled with cover-
age but showed decent precision for the predictions made in the
Medium (33.33% ) and Hard (66.67%) occlusion sets. Meanwhile it
failed to make any detections for the Easy occlusion set.

The HiresCAM (avg) model has the most heatmaps for the Medium
and Hard occlusions and also detects more correct faces. For the
Easy occlusions it only makes one detection which is correct. For
the Medium occluded faces, 21/25 images have a detection present
and all of them are correct so the model indeed detects the faces
for these images. For the Hard occlusions the model makes 31
detections for the 32 images, and 27 of them are correct (87.1%).

It’s counterpart 10 class model has a lower performance, but also
manages to detect 1 face correctly for 1 out of the 3 heatmaps that
represent a face with easy occlusions. For the Medium occlusions
it makes 10 detections and 90% of them is correct, while for the
Hard occlusions it makes 9 detections and 77.78% are correct. The
GradCAM++ model for the 10 classes fails to make any detections
while the average model still makes fewer detections compared to
HiresCAM.

Interestingly, we lowered the detection confidence threshold
back to 0.001 and the model was able to make some correct de-
tections. For the GradCAM++(avg) Easy set there are 2 correct
detections. For the GradCAM++ (10class) model there were again
0 correct detections for the Easy set, 1 correct detection for the
Medium set and 4 correct for the Hard set. These detections are
low confidence so not very reliable, but the confidence threshold
issue should be further examined to see if there is an internal flaw
in the calculations in YOLOVS5. In any case these numbers do not
show any significant increase in performance and cannot be used
to make any comparisons.

In summary, HiresCAM models seem to perform much better and
are a promising method to guide face detection under occlusions
as they provide clear heatmaps highlighting pixels around the face.
HiresCAM(avg) performed admirably across all occlusion levels,
with very high precision and coverage, especially for Medium and
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Hard occlusions. Even if the trained model fails to make a detection,
it can still be possible to localize the face by drawing a bounding
box around the highlighted regions and comparing the boxes coor-
dinated with the coordinates of other boxes to estimate whether
the highlighted region makes sense. Training under different model
configurations could improve the results of the HiresCAM models
and further enhance their outcome.

5 Conclusions & Future Work

This section addresses the research questions and conclusions we
reached, and discusses potential future improvements.

5.1 Conclusions

We will address the research questions one by one in this section.

Which facial parts can we split the face in and what is the
models’ performance?

The answer to the first part of this question relies on the available
annotated datasets we could find and access. They followed the 68
landmark iBUG annotation protocol meaning they had landmarks
for the face contour, eyes, nose, mouth and most of the images
had faces in various poses. Thus, the most meaningful classes cor-
responded to each distinct facial part e.g. eyes, nose, and a com-
bination of these such as right face, left face, eyes nose etc. We
trained a YOLOV5 object detector model on a mixed dataset con-
sisting mainly of frontal and partially rotated faces with various
occlusions, face sizes and backgrounds. Our model overall has a
very high performance, with balanced precision and recall values
for the two test sets that vary in difficulty. For the MERL-RAV test
set compromised of mostly clear frontal faces, the F1-score is at
93% and for the WFLW dataset containing more random images
and variations, the F1-score is at 77.6%. Overall we can conclude
the model has promising performance.

Which methods produce the most useful heatmaps and
what is their performance on the same datasets as above?

For the next part we explored various available explainability
methods, and decided to wok with GradCAM++, an improvement
of GradCAM and HiresCAM, a method that produces very precise
heatmaps. There are two ways to extract heatmaps, one is by av-
eraging the heatmaps produced for every class into one grayscale
image, and the second is by stacking the separate heatmaps into
a 10 channel grayscale image. The aim of the second method is to
overcome the occlusion problem so even if one class has no detec-
tion, a heatmap can still be produces and give an estimate of the
location of the face. We trained four YOLOv5 based models on these
heatmaps with only the whole face as ground truth in this case.
We evaluate the performance on the same data as the above model.
The performance is very good for all the cases, and naturally the
WEFLW dataset is the most complex one so we observe a slight drop
in the performance. Since SLAPI data is also complex, we think that
the 10 class variants seem to handle this data better as the F1 scores
for WFLW are higher than their counterparts.

How does the first face detector perform on frames of infants
with various occlusion levels?

We test the first model on a subset of SLAPI frames we manually
annotated with the whole face. Most of the frames contain medium
and hard occlusions as expected such has hands, tubes, hats. The



confidence is set to 0.4 and the IoU threshold to 0.6 for the detection
as we aim to avoid low confidence predictions. We see that for
the non-occluded faces the model performs flawlessly with a recall
value equal to 1 meaning zero false negatives. As the occlusion level
increases, the model struggles more and more, having a relatively
low F1-score of 33.1% for the 210 highly occluded frames.
Whether the use of explainability based models has a positive
effect on detecting more faces.

Next, for the frames where the model failed to detect a face,
we extract heatmaps using the four explainability techniques. Still,
not all of the frames have detections so this leaves us with fewer
valuable heatmaps where we can test the four trained models. To
get the optimal confidence threshold per case, we run validation
with a very low confidence and observe the F1-confidence plot.
We then run detection with that threshold and a stable IoU of 0.6.
The results show that the GradCAM based models struggle with
lightly-occluded frames probably because of the nature of their
heatmaps. The HiresCAM avg model manages to detect more faces
for all occlusion levels, most of them correctly compared to the
methods. Its 10 class counterpart also displays a good performance,
while it manages to detect less faces it also correctly detects some
of them.

We can conclude that HiresCAM based models are a promising
alternative to detecting faces that the 1st model missed. It is worth
it to have more data to draw stronger conclusions, but using ex-
plainability methods as a second step in face detection looks like a
good option to ensure more faces are detected correctly.

5.2 Future Work

There are many different aspects of future work to do.

When considering the first model, it is always possible to a
add more data with more face poses to ensure a larger degree of
variability. Also adding another face class such as ears which might
be visible in infant videos but not annotated in our training datasets
could be a good idea. One aspect to consider is that our training
data had one annotated face per image but some images contained
more faces. This can affect YOLO’s performance as it looks at the
entire image and learns contextual information about the classes.
We made sure to not include such images in the validation set
but finding and creating a whole dataset with only one face per
image proved to be quite challenging. One model limitation was
the hyperparameter evolution which had to be terminated early
due to technical difficulties and limited time. Perhaps running the
algorithm for more time could have yielded optimal parameters for
our model.

When considering the second model, we extracted the heatmaps
from the second to last layer of YOLO, as the last one outputs the de-
tections before NMS. The assumption is that this layer will contain
all the relevant detailed features so the heatmaps will correspond
more closely to important regions for the prediction. Experimenting
with the target layer would be an interesting idea to see how the
heatmaps change and ensure they are a meaningful input to the
second model. Furthermore, due to limited time and resources we
did not run hyperparameter evolution to evaluate different opti-
mizers and learning rate values but instead used default ones from
YOLO. In future work, performing hyperparameter evolution could
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yield valuable insights into optimizing model performance and en-
hancing the quality of the results. By experimenting with different
optimizer and learning rate configurations, we could fine-tune the
model for better overall performance, potentially leading to more
accurate and reliable face predictions. Apart from that, as new ex-
plainability methods are being established in literature, it would be
an intriguing prospect to see if a new future method could work
better for our case.

Another aspect to consider is the practical application of this
setup. To ensure its usability in real-world scenarios, we need to
evaluate the efficiency and practicality of this pipeline, considering
both its speed and accuracy. Testing with a larger amount of data
will also give more valuable insights to the models performance
and help choose a suitable model. Knowing that each frame con-
tains a single face, ensuring a good balance of true positives while
minimizing false negatives is important. Leveraging the temporal
nature of the videos can be used as an advantage in this case. Even
if the face is missed in some cases, information from the previous
frames can be used to give an estimate of its location. The temporal
continuity can improve the overall robustness and confidence of
the model even when encountering highly occluded faces. Another
idea would be to perform transfer learning or fine-tuning the mod-
els to a small labeled SLAPI dataset and evaluate the performance
there. By doing so we can enhance the models’ accuracy and make
it more robust to the specific challenges of our application.
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6 Appendix
6.1 Results of Face Detectors

Below are presented the results from running several face detectors on images of preterm infants obtained online. These contain various
occlusions and have a large degree of variability.

RetinaFace

Figure 22 illustrates the results of RetinaFace on several images. In cases of heavier occlusion and rotation it can detect part of the face but
fails to provide an accurate landmark estimation. The results also depend on the image resolution the pretrained network it uses was trained
on. On the top right image where there are are multiple false detections the resolution is 1200 x 675 whereas the one below the resolution is
4032 x 1024.

Figure 22: RetinaFace detections on stock photos of infants

MTCNN
Figure 23 is the only one where MTCNN could detect a face and landmarks. Looking closely one can observe 5 landmarks that have been
predicted however they do not resemble the correct face parts. The face however is detected rather accurately.
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Figure 23: MTCNN detection
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6.2 First YOLO Model: Train, Loss, Metrics Plots
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Figure 24: Loss plots and metrics for the 10 class RGB model
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Figure 25: Loss plots and metrics for the 1 class RGB model trained only on the whole face class
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6.3 Second YOLO model: Heatmaps example & Loss and Metrics plots for the four different models

.

Figure 26: Example image 000023 from the training set. On the left is the original image, in the center the GradCAM++ heatmap

and on the right the HiresCAM heatmap.
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Figure 27: Loss and metrics plots for the GradCAM++ model trained with averaged heatmaps as input
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Figure 28: Loss and metrics plots for the HiresCAM model trained with averaged heatmaps as input
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Figure 29: Loss and metrics plots for the GradCAM++ model trained with heatmaps per class
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Figure 30: Loss and metrics plots for the HiresCAM model trained with heatmaps per class
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Figure 31: F1-confidence curves for Easy, Medium and Hard occlusion sets of SLAPIL. From top to bottom we have Grad-
CAM++(avg), HiresCAM(avg), GradCAM++ (10class), HiresCAM(10class)
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