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ABSTRACT

Studying the impacts of pre-training using ChatGPT

generated text on downstream tasks

In recent times, significant advancements have been witnessed in the field of lan-

guage models, particularly with the emergence of Large Language Models (LLMs) that

are trained on vast amounts of data extracted from internet archives. These LLMs, such

as ChatGPT, have become widely accessible, allowing users to generate text for vari-

ous purposes including articles, essays, jokes, and poetry. Given that LLMs are trained

on a diverse range of text sources, encompassing platforms like Reddit and Twitter,

it is foreseeable that future training datasets will also incorporate text generated by

previous iterations of the models themselves. In light of this development, our research

aims to investigate the influence of artificial text in the pre-training phase of language

models. Specifically, we conducted a comparative analysis between a language model,

RoBERTa, pre-trained using CNN/DailyMail news articles, and ChatGPT, which em-

ployed the same articles for its training and evaluated their performance on three

downstream tasks as well as their potential gender bias, using sentiment analysis as

a metric. Through a series of experiments, we demonstrate that the utilization of

artificial text during pre-training does not have a significant impact on either the per-

formance of the models in downstream tasks or their gender bias. In conclusion, our

findings suggest that the inclusion of text generated by LLMs in their own pre-training

process does not yield substantial effects on the subsequent performance of the models

in downstream tasks or their potential gender bias.
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NEDERLANDSE ABSTRACT

Het bestuderen van de impact van pre-training met door

ChatGPT gegenereerde tekst op downstream-taken

De afgelopen tijd zijn er aanzienlijke vorderingen gemaakt op het gebied van

taalmodellen, met name met de opkomst van Large Language Models (LLM’s) die

zijn getraind op enorme hoeveelheden gegevens die uit internetarchieven zijn gehaald.

Deze LLM’s, zoals ChatGPT, zijn algemeen toegankelijk geworden, waardoor gebruik-

ers tekst kunnen genereren voor verschillende doeleinden, waaronder artikelen, essays,

grappen en poëzie. Aangezien LLM’s worden getraind op een breed scala aan tekst-

bronnen, waaronder platforms zoals Reddit en Twitter, is het te voorzien dat toekom-

stige trainingsdatasets ook tekst zullen bevatten die is gegenereerd door eerdere it-

eraties van de modellen zelf. In het licht van deze ontwikkeling heeft ons onderzoek

tot doel de invloed van kunstmatige tekst in de pre-trainingsfase van taalmodellen te

onderzoeken. We hebben met name een vergelijkende analyse uitgevoerd tussen een

taalmodel, RoBERTa, vooraf getraind met behulp van nieuwsartikelen van CNN/Daily-

Mail, en ChatGPT, dat dezelfde artikelen gebruikte voor zijn training en hun prestaties

op drie stroomafwaartse taken evalueerde, evenals hun mogelijke gendervooroordelen.

, met sentimentanalyse als maatstaf. Door middel van een reeks experimenten tonen

we aan dat het gebruik van kunstmatige tekst tijdens de pre-training geen significante

invloed heeft op de prestaties van de modellen in stroomafwaartse taken of hun gender-

vooroordelen. Concluderend suggereren onze bevindingen dat het opnemen van tekst

gegenereerd door LLM’s in hun eigen pre-trainingsproces geen substantiële effecten

heeft op de daaropvolgende prestaties van de modellen in stroomafwaartse taken of

hun mogelijke gendervooroordelen.
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1. INTRODUCTION

Language modelling is a well-known task in which the goal is to train a model to

learn the joint probability of a given sequence of words (Bengio, 2000) [1]. These

models are referred to as “Language Models” (LM) and are used to generate sequences

of words that form sentences or paragraphs. Various architectures have been applied

to this task, including Hidden Markov Models (HMM), Recurrent Neural Networks

(RNNs) [2], Long Short-Term Memory Networks (LSTMs) [3], Gated Recurrent Units

(GRU) (Cho et al., 2014) [4], ELMo [5], Universal Language Model Fine-tuning for

Text Classification (ULMFiT) [6], and more recently, transformer networks such as

Bidirectional Encoder Representations from Transformers (BERT) [7] and Generative

Pre-trained Transformer (GPT) [8].

Significant progress has been made in the development of language models, as

demonstrated by their performance on various benchmark datasets, such as the General

Language Understanding Evaluation (GLUE) [9] and the SuperGLUE [10]. The GLUE

benchmark evaluates language models performance on several natural language under-

standing (NLU) tasks, including sentiment analysis, textual entailment, and question-

answering. The highest-performing models on this benchmark have surpassed human-

level performance on several tasks, although not all tasks have been surpassed. Much

of this progress has been attributed to the idea of pre-training a general language

model and further fine-tuning it on different sets of tasks. This approach has shown

remarkable results, achieving state-of-the-art performance in various NLP and NLU

tasks ( [7] [6]). Over the years, different sizes of architectures have been developed,

and while the performance of the models has improved, the size of the architectures

has grown from a few hundred parameters to billions of parameters (see Figure 1.1).

These large language models (LLM) are exemplified by GPT-3, which consists of 175

billion parameters and was trained on 570GB of text data [8].

The ability of Large Language Models (LLMs) to generate articles, essays, jokes,
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Figure 1.1. Size comparison of Language Models.

and even poetry in response to user inputs has opened up unique opportunities for the

development of engaging applications. One recent advancement in this field is Chat-

GPT1 , a language model created by OpenAI [11]. ChatGPT is specifically trained

to interact with users in a conversational manner, answering follow-up questions, ac-

knowledging its mistakes, challenging incorrect assumptions, and refusing inappropriate

requests. The adoption and usage of ChatGPT have been substantial, making it the

fastest-growing consumer application in history. In just two months, it has attracted

over 100 million users2 . This rapid growth highlights the widespread interest and

acceptance of such conversational language models among users.

The deployment of large language models for public usage on such a scale does

indeed come with inherent risks and challenges. One major concern is the presence

of biases within these models. While LLMs are trained on vast amounts of filtered

text data from the internet, this data may not be representative of major minority

1Appication refer; https://openai.com/blog/chatgpt/
2Available online and accessed 2nd Feb 2023 refer; https://www.reuters.com/technology/chatgpt-

sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
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groups [12]. Studies have shown that internet access and data contributions are more

prevalent among younger individuals and those from developed countries (Pew Re-

search Center)3 . Additionally, platforms like Reddit have a higher representation of

male users compared to female users (Pew Research Center, 2016)4 . As a result, biases

present in the training data may be amplified or perpetuated through LLMs.

Another significant challenge is the potential for LLMs to generate coherent yet

factually incorrect text [13]. This can contribute to the dissemination of misinforma-

tion and fake news, as the models may produce fabricated reviews, comments, or news

articles. Privacy concerns are also raised by the use of LLMs. These models can ex-

tract sensitive information from their training data, including personal information,

passwords, and financial data ( [14] [15] ). This poses privacy risks if not adequately

addressed. Lastly, LLMs can be susceptible to various attacks, such as adversarial

attacks. These attacks aim to manipulate the output generated by the models, poten-

tially leading to undesirable consequences.

Addressing these risks and challenges is crucial for the responsible deployment

and usage of large language models in order to mitigate biases, combat misinformation,

ensure privacy protection, and enhance the security of these systems. It is also impor-

tant to note that the potential harm extends not only to human society, which absorbs

the text generated by these models but also to future language models if their training

data includes the artificial text which is currently unexplored. Thus, this thesis aims

to comprehend the impact of artificial text during the pre-training of language models.

1.1. Research Objectives

The ease of access to applications based on large language models (LLM) increases the

risk of the proliferation of artificial data (text from another language model) on the

3Available online and accessed on April 2021 refer; https://www.pewresearch.org/internet/fact-
sheet/internet-broadband/

4The report is available online and was accessed on 25th Feb 2016 refer;
https://www.pewresearch.org/journalism/2016/02/25/reddit-news-users-more-likely-to-be-male-
young-and-digital-in-their-news-preferences/
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internet, which is the primary source of training such language models. The inclusion of

artificial data in the training of language models, sourced primarily from the internet,

presents potential concerns. Two main issues arise in relation to this artificial data:

(i) Firstly, the quality of artificial data may be inferior to human-generated content,

which can impact the performance of the models if such data is included during

their training.

(ii) Secondly, language models have the capability to learn biases and adopt abusive

language patterns from the training data. Consequently, there is a risk that

harmful ideologies, such as racism, sexism, and ableism, may be reinforced if the

training data includes artificial content.

While these issues are acknowledged, they have not been explicitly proven. Moreover,

the increasing scale of data poses challenges in reliably detecting and excluding artifi-

cial text during future language model training. Without robust tools to confidently

differentiate artificial text from human-generated text, the presence of artificial data is

likely to persist.

In light of these concerns, this thesis aims to contribute by exploring the impact

of artificial data on the pre-training of language models. The objective is to gain a

deeper understanding of how artificial data influences these models during the pre-

training phase.

1.2. Research Questions

Research Problem : What is the effect of pre-training RoBERTa using the news

articles written by ChatGPT on the performance compared to the model pre-trained on

human written news articles?

In order to tackle this research problem, we pose the following research questions (RQ):
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(i) Research Questions 1: Does the RoBERTa model pre-trained using ChatGPT

generated text have statistically inferior performance in terms of:

(a) sub-question a: Accuracy on Sentiment Classification task?

(b) sub-question b: F1-score Named Entity Recognition task?

(c) sub-question c: F1-score on Question Answering task?

(ii) Research Question 2: Is the RoBERTa model pre-trained using ChatGPT gen-

erated text more biased towards certain demographics such as gender for sentiment

classification task in terms of mean polarity difference?

1.3. Relation to AI Program

The field of AI is currently witnessing significant research advancements in language

models, and large language models (LLMs) are at the forefront of this development.

In line with this trend, our research addresses a future-oriented problem within the

domain of LLMs, thereby contributing to the broader understanding of these systems

in the field of AI. Given the relevance and significance of our research to the AI program

at Utrecht University, it holds substantial relevance in the context of ongoing academic

endeavours in this field.

1.4. Research Outline

The remainder of the research proposal is structured as follows, Chapter 2 begins

by providing a theoretical background on different language models and the training

process involved. It also reviews existing research on the detection of artificial text

generated by language models and discusses the current state of research on identifying

bias in language models. Chapter 3 focuses on the methodology employed in the study.

It outlines the data generation process using ChatGPT and describes the methods used

to compare the language of CNN journalists with that of ChatGPT. Additionally, it

explains the process of pre-training the language model, along with the techniques

used for fine-tuning and evaluating the trained models in terms of performance and

bias metrics. Chapter 4 presents the results obtained from the experiments conducted
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in the study. Chapter 5 involves a comprehensive discussion of the results and explores

the limitations encountered during the research and suggests potential directions for

future research that can be pursued. The Chapter 6 addresses the ethical issues and

environmental impacts associated with training language models in the study. Finally,

we conclude our research questions and thesis in Chapter 7.
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2. BACKGROUND AND RELATED WORK

In this chapter, we aim to provide a comprehensive overview of the prior work relevant

to our research. We begin with Section 2.1, which presents the theoretical background

on language models and outlines the training process for popular language models.

Next, in Section 2.2, we delve into the existing research on detecting artificial text,

exploring the various techniques and approaches employed in this area. Finally, in Sec-

tion 2.3, we discuss the relevant studies and methodologies related to bias measurement

in language models.

2.1. Background on Language Models

Language models have traditionally been trained using next-word prediction tasks,

where the goal is to predict the next word given a sequence of words. This approach

has been applied to various models, including Hidden Markov Models, RNNs [2], and

LSTMs [3]. However, with the introduction of the transformer architecture [16], a new

training method called Masked Language Modelling (MLM) emerged [7]. In MLM

tasks, certain random words in a sentence are masked, and the model is trained to

predict the correct replacement words for these masks. This approach has been widely

adopted by transformer-based models such as BERT [7], RoBERTa [17], and ALBERT

[18]. These models have demonstrated strong performance in a variety of natural

language processing tasks. Additionally, there are transformer-based language models

trained using next-word prediction, which are commonly referred to as auto-regressive

models. Notable examples include XL-Net [19] and the GPT family [8]. These models

generate text by predicting the next word based on the previous context, allowing for

the generation of coherent and contextually relevant sequences of words.

Instruction fine-tuning: Traditionally, language models have been trained us-

ing the objective of predicting the next word in a sequence of words. However, there has

been a recent shift towards training language models to follow user instructions. This
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approach enables language models to perform a wide range of tasks, including summa-

rization, translation, and classification, based on the instructions provided [20–22].

The instruction-based training paradigm allows language models to exhibit more

controlled behavior and generate output that aligns with user expectations. Instead

of relying solely on context and statistical patterns, language models can now lever-

age explicit instructions to guide their generation process. This alignment of outputs

is primarily achieved through the process of fine-tuning the language model on user

instructions, incorporating reinforcement learning from human feedback [22,23].

One notable example of an instruction-based language model is InstructGPT,

which is a sibling model to ChatGPT. InstructGPT was trained to follow user instruc-

tions using a three-step process, as depicted in Figure 2.1. The first step involved

supervised fine-tuning using a collection of demonstration data annotated by human

labellers. This data consisted of examples where human labellers provided instructions

and the desired model response. In the second step, a reward model was trained based

on human preferences for model output. This involved collecting human rankings or

preferences for different outputs generated by the model, allowing the reward model

to learn the desired output patterns. The third and final step focused on training

the model to optimize its reward policy based on human preferences. Proximal Policy

Optimization (PPO) [24] is used to fine-tune the model and improve its performance

according to the reward policy learned in the previous step. While the complete details

of the ChatGPT training process are not publicly available, it is trained using a similar

methodology, as mentioned in the OpenAI blog5 .

2.1.1. Training Data for Language Models

There is significant variation in the size of training data required for different archi-

tecture types, as summarized in Table 2.1. For instance, BERT primarily used the

BookCorpus and Wikipedia datasets, which amounted to approximately 16GB of un-

5ChatGPT release refer; https://openai.com/blog/chatgpt
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Figure 2.1. Instruction fine-tuning for InstructGPT [22].

compressed text. RoBERTa, on the other hand, utilized five English-language corpora

spanning various sizes and domains, totalling over 160GB of uncompressed text. XL-

Net was trained on a compiled text dataset of 126GB, with further details provided in

their paper [19]. The GPT-2 model relied on around 40GB of text data from sources

such as Common Crawl and WebText, excluding Wikipedia articles specifically. Fi-

nally, the models in the GPT-3 family were trained using a vast dataset of 570GB of

text data sourced from diverse data sources.

To train the InstructGPT model, distinct datasets were utilized for each step of

the training process. The supervised fine-tuning dataset consisted of approximately 13

thousand training prompts, which were derived from a combination of prompts from

the API and prompts generated by labellers. This dataset was used to fine-tune the

model through a supervised learning approach. The reward model dataset, on the

other hand, comprised around 33 thousand training prompts. These prompts were

also sourced from a combination of prompts from the API and prompts generated by

labellers. This dataset was employed to train a reward model, which provided feedback

to the model based on human preferences for the generated outputs. Finally, for the
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Model Data Source Task

BERT [7] BooksCorpus, Wikipedia (Eng) MLM and next-sentence prediction (NSP)

RoBERTa [17] BooksCorpus, Wikipedia (Eng) MLM

CC-News, Stories, OpenWebText

XL-Net [19] BooksCorpus, Wikipedia (Eng), Auto-regressive

Giga5, ClueWeb 2012-B, Common Crawl

GPT-2 [25] Common Crawl, WebText Auto-regressive

GPT-3 [8] Common Crawl, WebText2 Auto-regressive

Books1, Books2, Wikipedia

Table 2.1. Training details for popular language models.

Figure 2.2. Training process of BERT [7].

Proximal Policy Optimization (PPO) step, a dataset consisting of approximately 31

thousand training prompts solely from the API was used. Further details about the

dataset can be found in the original paper [22].

2.1.2. Overview of architecture

In this section we provide a brief overview of the architecture design of some of the

popular language models relevant in our study.

BERT: BERT (Bidirectional Encoder Representations from Transformers) is a

pre-trained language model that has gained significant attention in the field of natural

language processing. It was developed based on the Transformer architecture, which

was first introduced in the influential paper “Attention Is All You Need” by Vaswani
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et al. [16]. The BERT model is characterized by its encoder-only architecture and is

available in two sizes: base and large. The base version of BERT consists of 12 layers,

768 hidden units, and 12 attention heads, resulting in a total of 110 million parameters.

On the other hand, the large version of BERT is more extensive, with 24 layers, 1024

hidden units, and 16 attention heads, amounting to a total of 340 million parameters.

During pre-training, BERT is trained with two main objectives: masked language

modelling (MLM) and next sentence prediction (NSP). The MLM objective involves

randomly masking a certain percentage of the input tokens and training the model to

predict the masked tokens. The NSP objective, on the other hand, involves predicting

whether two sentences appear consecutively in the training data as illustrated in Figure

2.2.

RoBERTa: Robustly Optimized BERT (RoBERTa) is a variant of BERT that

is solely based on the Transformer encoder architecture. Similar to the BERT model,

RoBERTa is available in two sizes: base and large. The base version of RoBERTa

consists of 12 layers, 768 hidden units, and 12 attention heads, resulting in a total of

110 million parameters. On the other hand, the large version of RoBERTa is more

extensive, with 24 layers, 1024 hidden units, and 16 attention heads, amounting to

a total of 340 million parameters. During training, RoBERTa focuses solely on the

masked language modelling (MLM) task. The training dataset used for RoBERTa

comprises English-language corpora from various sources and domains, totalling over

160GB of uncompressed text. This diverse and extensive dataset contributes to the

robustness and generalization capabilities of RoBERTa.

GPT-2: The GPT-2 (Generative Pre-trained Transformer 2) model, developed

by OpenAI [25], is a large-scale natural language processing (NLP) model. It is pre-

trained on an extensive corpus of text data, comprising 40 GB of text from various

sources. The primary objective of pre-training GPT-2 is to develop a language model

capable of predicting the next word in a sequence given the preceding context. The

model is available in four different sizes, each varying in the number of layers, hidden

dimensions, and total parameters. The smallest variant of GPT-2 consists of 12 layers
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and 768 hidden dimensions, resulting in a total of 117 million parameters. The medium

version comprises 24 layers with 1,024 hidden dimensions, amounting to 345 million

parameters. The large variant encompasses 36 layers with 1,280 hidden dimensions,

yielding 762 million parameters. Lastly, the extra-large version boasts 48 layers with

1,600 hidden dimensions, resulting in about 1.5 billion parameters.

GPT-3: The GPT-3 (Generative Pre-trained Transformer 3) developed by Ope-

nAI [8] encompasses a family of eight models, each with varying numbers of parame-

ters. These models range from the smallest model with 125 million parameters to the

largest model with a staggering 175 billion parameters. The training methodology for

the GPT-3 models is similar to that of GPT-2 but with some notable differences. The

GPT-3 models were trained on an extensive dataset consisting of approximately 300

billion tokens. The GPT-3 family of models exhibits differences in architecture depth

across its members. The smallest model in the family features 12 layers, while the

medium, large, and XL models comprise 24 layers. The 2.7B and 6.5B models have 32

layers, the 13B model has 40 layers, and the largest model, with 175 billion parameters,

has 96 layers. These models form the base of the InstructGPT model and therefore

have the same architecture.

2.1.3. How much data do you need for pre-training?

The size of the training data plays a crucial role in the performance and capabilities

of language models. Different architectures, such as BERT and GPT-2, have been

trained on datasets of varying sizes. For example, BERT was pre-trained on a dataset

of 16GB of text, while GPT-2 utilized a much larger dataset of 40GB of text. No-

tably, studies such as Perez-Mayos et al. [26] and Zhang et al. [27] have specifically

focused on understanding the impact of data size on model performance. Their findings

contribute to our understanding of the trade-offs and considerations associated with

training language models on different data sizes.

In a study conducted by Perez et al. [26], a cost-benefit trade-off was performed for
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a RoBERTa model trained on different-sized datasets, ranging from 1M to 1B tokens.

The analysis, depicted in Figure 2.3, showed that the performance gains were most

significant when increasing the dataset size from 1M to 10M tokens, while the cost of

pre-training increased substantially. Another study also found that the model was able

to learn the syntax of the language effectively with approximately 10M tokens [27].

Taking these findings into consideration, we aim to construct our dataset for pre-

training our models in an efficient manner.

Figure 2.3. Cost vs Performance tradeoff for RoBERTa model (data for the figure is

taken from the study done by Perez et al. [26] )

2.2. Detection of Artificial text

With the increasing prominence of Large Language Models (LLMs), there has been

a surge in research efforts aimed at detecting text generated by these models. In

this section, we present an overview of various techniques that have been explored for

the purpose of detecting artificial text. However, it is important to note that these

methods have inherent limitations and are not sufficient to fully address the challenge

of identifying artificial text. We will discuss the shortcomings of these approaches

and highlight the need for further advancements in this area to effectively tackle the

problem of distinguishing between human-generated and LLM-generated text.
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2.2.1. Post-hoc Detection

The post-hoc technique aims to develop models capable of detecting artificial text by

leveraging features extracted from the language model or by fine-tuning language mod-

els for text classification [28,29]. However, the generalizability of detectors trained for

one language model to other models has not yet been established. This limitation was

evident in a study conducted by Gambini et al. [30], where detectors trained for GPT-2

struggled to accurately detect text generated by the GPT-3 model. Furthermore, these

detectors are susceptible to adversarial attacks, as demonstrated by Wolff et al. [31].

OpenAI recently made an attempt to train a classifier specifically designed to

distinguish between text generated by humans and text generated by AI models from

various providers [32]. However, the reliability of this classifier was found to be limited.

During the evaluation, it only correctly identified 26% of AI-written text as “likely

AI-written” (true positives), while it incorrectly classified human-written text as AI-

written in 9% of cases (false positives). OpenAI also acknowledged certain limitations

of the classifier, such as lower reliability for shorter text and languages other than

English. Additionally, there is a possibility of evading detection by manipulating or

editing the text.

In theory, there is a possibility to train language models using adversarial sam-

ples, which could potentially allow them to evade detection methods. As a result,

relying solely on post-hoc detection techniques may not be a comprehensive solution

for effectively identifying and mitigating the potential harm that could arise from large

language models (LLMs).

2.2.2. Watermarking in Language Models

Watermarking in text generation is a technique that introduces hidden signals into

generated text, which can be used to detect whether the text is artificial. In this

approach, the language model generates a probability distribution for the next word
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based on a given sequence of words. The next word is then randomly selected from

this distribution. The watermarking technique operates by pseudo-randomly sampling

words from the distribution, thereby enabling the detection of text generated by the

language model.

In a recent study conducted by Kirchenbauer et al. [33], the effectiveness of the

watermarking technique was evaluated on a multi-billion parameter model from the

Open Pre-trained Transformer (OPT) family. The proposed method involved the se-

lection of randomized sets of green tokens (allowed tokens) and red tokens (restricted

tokens) during the generation process. The use of green tokens was promoted while

sampling, while red tokens were discouraged. This approach facilitated the detection

of artificial text by counting the occurrences of red tokens. In a similar direction, Ope-

nAI has also expressed intentions to incorporate watermarking into its language models.

As outlined in a blog post by Scott Aaronson 6 , OpenAI plans to use cryptographic

pseudo-random functions to sample words and generate detectors using cryptographic

keys. This approach aims to embed watermarks into the language model, allowing for

the identification of artificial text.

In practice, evading watermarking detection in language models can be achieved

through various techniques, such as inserting or deleting words randomly, rearranging

sentence order, or paraphrasing text. These methods pose challenges to the effective-

ness of watermarking as a detection mechanism. Additionally, the responsibility of

embedding watermarking lies with the developer of the language model, and only they

have the ability to build the corresponding detection models. This limitation means

that watermarking can only mitigate the potential harms of language models to a

certain extent, as it relies on the actions and choices of the developer.

6Blog refer; https://scottaaronson.blog/?p=6823
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2.3. Bias Measures

In the realm of decision-making AI, the term bias refers to the act of making judgments

or classifications based on preconceived notions or prejudices rather than impartially

evaluating the available facts [34]. Traditionally, the evaluation of bias in systems has

relied on well-established approaches such as equalized odds, equal opportunity, and

demographic parity [35,36]. However, these methods are primarily suited for assessing

bias in decision-making systems and may not directly apply to generative applications

of language models (LLMs), which encompass user interaction and open-ended text

generation. The evaluation of bias in generative text generation is an active area of

research, with efforts aimed at studying various types of biases, including but not

limited to gender, racial, cultural, and political or ideological biases. Researchers have

explored different approaches to uncover and measure these biases within the context

of LLMs. These approaches are tailored to address the unique challenges posed by

generative text generation and enable a deeper understanding of the biases that may

arise. In the following sections, we provide an overview of some of these approaches

that have been employed in the study of bias in LLMs. These approaches offer valuable

insights into the nature of biases that can emerge in generative text generation and

contribute to the ongoing efforts to develop fair and unbiased AI systems.

2.3.1. Measuring Bias in a Natural Language Generation Task

In the field of natural language generation, Sheng et al. [37] have provided a compre-

hensive review of the literature on examining societal biases in the output generated

by natural language models. Several notable works in this area include:

Regard Ratio: Sheng et al. (2019) [38] introduced the concept of regard as a

metric for evaluating bias in natural language generation. They conducted an analysis

of text generated from prompts containing mentions of diverse demographic groups.

The goal was to measure the sentiment towards these groups and identify potential

biases. To accomplish this, they proposed the development of a regard classifier.
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Gendered Word Co-occurrence Score: Bordia et al. [39] proposed a method-

ology to define bias in natural language generation, based on the absolute log ratio of

probabilities between P (word|female − terms) and P (word|male − terms) for all

words in the generated text. This approach allows for the systematic identification of

differences in the usage of female and male terms, which can indicate the presence of

gender bias. By utilizing statistical measures to quantify the extent of bias, Bordia and

Bowman were able to evaluate and compare the levels of bias across different language

models and datasets.

Sentiment Ratio: Groenwold et al. [40] also studied racial bias in natural lan-

guage generation by measuring the sentiment score ratios of text generated from African

American English (AAE) versus White-Aligned English (WAE) prompts. Their work

sought to identify differences in the sentiment scores of the generated text that may

be attributed to racial biases.

2.3.2. Measuring Bias in a Classification Task

In the domain of sentiment analysis, Kiritchenko et al. [41] developed the Equity Evalu-

ation Corpus (EEC), which comprises 8,640 English sentences aimed at assessing biases

related to specific races and genders. The EEC has been utilized by various studies

to investigate bias in different contexts. For instance, Bhardwaj et al. [42] examined

gender bias in BERT embeddings using the EEC, while Huang et al. [43] evaluated bias

through the application of fairness metrics, both at the group and individual levels,

by manipulating the context of the samples using counterfactuals. In the downstream

application within the clinical domain, Gizem et al. [44] demonstrated the existence of

societal bias in the contextualized embeddings.

In another study, Jentzsch et al. [45] conducted an analysis of gender bias in

sentiment classification using the IMDB dataset. They introduced male and female

versions of each sample for evaluation purposes and defined gender bias as the mean

difference in polarity scores across all samples. Additionally, they performed fine-
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tuning experiments with different training data to investigate the individual impacts

of pre-training and fine-tuning. This involved comparing models trained on the orig-

inal dataset to models trained after removing gender-specific words from the training

dataset or creating a balanced dataset with male and female versions of each sam-

ple. These investigations shed light on the influence of pre-training and fine-tuning on

gender bias in sentiment analysis models.
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3. METHODOLOGY

In this chapter, we will provide a comprehensive overview of the dataset utilized for the

pre-training phase as well as for the downstream tasks. We will detail the methodology

employed for training the models and outline the approach taken for evaluating their

performance.

3.1. Dataset

3.1.1. CNN/DailyMail Dataset

In order to pre-train the RoBERTa language model, a large text corpus, is neces-

sary. The original RoBERTa pre-training process incorporated a combination of diverse

sources such as BooksCorpus, English Wikipedia, CC-News, Stories, and OpenWeb-

Text ( for masked language modelling, MLM task ). For our research, we selected

the CNN/DailyMail Dataset as the primary source of text data for pretraining

RoBERTa. This choice enables us to compare the content style and size between

human-written articles from CNN and the Daily Mail, while also focusing on a practi-

cal task relevant to the application of ChatGPT or other large language models in the

future.

The CNN/DailyMail Dataset is an extensive collection of English-language news

articles, consisting of approximately 300,000 distinct articles authored by journalists

from CNN and the Daily Mail. To facilitate the pretraining of language models, a

subset of around 25,000 articles is sampled from the dataset and divided into separate

training and evaluation sets. To support accessibility and promote further research, we

have made this dataset openly available through a public repository hosted by Hugging

Face7 .

7Dataset available for download; https://huggingface.co/datasets/isarth/chatgpt-news-articles
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Figure 3.1. Process of generating news articles using ChatGPT.
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3.1.2. News Article Generation from ChatGPT

Each article within the CNN/DailyMail dataset is accompanied by a human-generated

abstractive summary. These summaries serve as prompts for ChatGPT to generate

news articles. By leveraging this information, ChatGPT is able to produce articles

in response to specific prompts or topics. To instruct ChatGPT, we used the prompt

You are an AI assistant that generates news articles from a summary. No prompt

engineering was performed, and we aimed to keep the prompt for generation as simple

as possible.

During the process, the word count of the original article is calculated, and Chat-

GPT is directed to generate an article with the same number of words. This ensures

consistency in the length of the generated articles. The pseudo-code below provides

the precise prompt used for the ChatGPT API, and Figure 3.1 illustrates an example

of a generated article.

Algorithm 1 ChatGPT Prompt

Model = gpt-3.5-turbo

Role[System]= You are an AI assistant that generates news articles from a summary.

Role[User] = Write a news article using the following summary:

. [Highlights of the original article]

. Write about [Num of words in the original article] words only.

All articles were compiled and generated in April 2023 using the 0301 version of the

ChatGPT-turbo API. The cost of generating 25,000 articles was approximately 31

dollars. However, information regarding the carbon compute and the specific server

used by OpenAI is currently unavailable, so we cannot provide details about the carbon

emissions associated with the generation process.

3.2. Qualitative Analysis of Dataset

Understanding the differences in style and content between human writing and the
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output of ChatGPT is a crucial aspect of our study. It allows us to examine the

variations in performance between the RoBERTa architecture during pre-training and

throughout different downstream tasks. To conduct a comparative analysis of the

article corpus generated by CNN/DailyMail journalists and ChatGPT, several key

statistical measures were computed. These measures encompass the total word count,

average word count per article, total vocabulary size, average number of sentences per

article, average word count per sentence, and average number of named entities per

article. Named entities were identified using the Spacy library [46], which provides a

comprehensive suite of natural language processing tools.

Furthermore, we analyze the sentiment intensity of each article using VADER

(Valence Aware Dictionary and sEntiment Reasoner) [47], a sentiment analysis tool

available in the Natural Language Toolkit (NLTK) library [48]. VADER assigns com-

pound sentiment scores between 0 and 1 for each sentiment category (positive, negative,

and neutral). For example, an article may have compound scores of 0.8 for positive

sentiment, 0.15 for negative sentiment, and 0.05 for neutral sentiment. This analysis

provides insights into the overall sentiment expressed in the generated articles.

3.2.1. Readability Metrics

We utilized two widely used readability metrics, namely the Flesch-Reading Ease and

Flesch-Kincaid Grade Level, to assess the readability of the generated articles.

The Flesch-Reading Ease score [49] is a measure commonly employed to in-

dicate the difficulty level of a passage. It is based on two key factors: sentence length

and word length, with some weighting. Lower Flesch-Reading Ease scores indicate

that the text or passage is more challenging to read and requires a higher level of ed-

ucation to understand. Conversely, higher scores indicate that the text or passage is

easier to read and comprehend, requiring a lower level of education. Table 3.1 provides

an interpretation of the Flesch-Reading Ease scores. The formula for calculating the
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Score School level Interpretation

100-90 5th Grade Very Easy

90-80 6th Grade Easy

80-70 7th Grade Fairly Easy

70-60 8th & 9th Grade Standard

60-50 10th to 12th Grade Fairly Difficult

50-30 College Difficult

30-10 College Graduate Very Difficult

10-0 Professional Extremely Difficult/Confusing

Table 3.1. Interpretation of the scores of Flesch-Reading Ease.

Flesch-Reading Ease score (FRES) is given in Equation 3.1.

FRES(text) = 206.835 − 1.015(
total words

total sentences
) − 84.6(

total syllables

total words
) (3.1)

The Flesch-Kincaid Grade Level [49] is another widely used readability met-

ric, particularly in the field of education. It provides a numerical score that corresponds

to a U.S. grade level. This metric can give an estimate of the number of years of ed-

ucation typically required to understand the text. The Flesch-Kincaid Grade Level

Formula (FKN) is used to calculate the grade level, as shown in Equation 3.2.

FKN(text) = 0.39(
total words

total sentences
) + 11.8(

total syllables

total words
) − 15.59 (3.2)

3.3. Language Modeling and Pre-training

The main objective of pre-training the RoBERTa model is Masked Language Modeling

(MLM). In our study, we conducted pre-training using two different versions of the

RoBERTa architecture, with each model trained on a distinct text corpus. One model

was pre-trained exclusively on a dataset composed of articles authored by CNN and



25

Daily Mail journalists, while the other model was pre-trained using a dataset consisting

of articles generated by the ChatGPT language model. By training one model on

articles from reputable news sources like CNN and Daily Mail, we aimed to capture

the stylistic and structural nuances characteristic of professional journalism. On the

other hand, pre-training the second model on articles generated by ChatGPT allowed

us to harness the conversational and generative abilities of the language model itself.

To ensure a fair comparison, we maintained identical parameters for pre-training

both models. This allowed us to directly compare the models’ performance and char-

acteristics in terms of their language generation capabilities. In the pre-processing

stage, we converted the entire text to lowercase for both corpora and pre-train uncased

language models.

To provide transparency and reproducibility, we included all the relevant param-

eters used in the pre-training process of the RoBERTa models in the appendix. These

parameters cover various aspects of the pre-training methodology, including hyper-

parameters, model architecture configurations, training data specifications, and any

additional settings considered significant for the experiments.

3.4. Evaluating Downstream Performances

To evaluate and compare the quality of the language models, we conducted a compre-

hensive analysis of their performance on a range of downstream tasks. We carefully

selected a diverse set of tasks to cover various domains and challenges. The pre-trained

language models were then fine-tuned on each specific downstream task using carefully

selected datasets.

During the fine-tuning process, we added task-specific layers and adjusted the

weights and parameters of the models to optimize their performance for each task.

We benchmark the results of the fine-tuned models against the original RoBERTa

model that was fine-tuned for each downstream task. This allowed for a thorough
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Figure 3.2. Fine-tuning RoBERTa on different downstream tasks.

evaluation of the effectiveness of the language models. To optimize the performance

of the models, we performed hyper-parameter search using a small set of samples

from the training dataset. Further details about hyper-parameters are mentioned in

the Appendix Section A and our code is also available on the Github8 . In order to

account for potential performance variance due to randomness [50], we employed 5x2

cross-validation to compare the trained models. Figure 3.2 provides an overview of the

fine-tuning process for the different downstream tasks.

In the subsequent subsections, detailed information regarding each downstream

task is provided. This includes task-specific datasets, evaluation metrics, and any

specific considerations or challenges associated with the task.

3.4.1. Sequence Classification

For the sequence classification task, we evaluated the models on the IMDB sentiment

challenge [51]. The goal of this task is to classify movie reviews into positive and

negative sentiments. The original dataset contains 25,000 training samples and 25,000

test samples.

8For the repository refer; https://github.com/sarthusarth/lang mod chatgpt
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Positive Sample Negative Sample

i m a male not given to women

s movies but this is really a well

done special story i have no per-

sonal love for jane fonda as a per-

son but she does one hell of a fine

job while deniro is his usual superb

self everything is so well done act-

ing directing visuals settings pho-

tography casting if you can enjoy

a story of real people and real love

this is a winner

this fanciful horror flick has vin-

cent price playing a mad magician

that realizes his vocational talents

have been sold to another he de-

vise ways of avenging all those

that have wronged him his master

scheme seems to back fire on him

price is a little below par compared

to his masterpieces but is still the

only reason to watch this thriller

supporting cast includes patrick o

neal mary murphy eva gabor and

jay novello

Table 3.2. Samples from the IMDB dataset.

During the pre-processing step, we lowercase the dataset since the models were

pre-trained on an uncased text corpus. Table 3.2 displays examples from the pre-

processed dataset.

To train the models, we use 20% of the samples from the original training dataset

for hyper-parameter search. Subsequently, we combine all the samples from the training

and test sets to create splits for 5x2 cross-validation. This allows us to perform a

comprehensive comparison of the models performance

3.4.2. Named Entity Recognition (NER)

For the Named Entity Recognition task, we evaluated the models on the WNUT 17:

Emerging and Rare entity recognition challenge [52]. This task focuses on identifying

unusual and previously unseen entities in the context of emerging discussions. The

original dataset consists of 3,394 sentences for training and 1,287 sentences for testing.



28

Number NER Tag Description of Entity Tag

0 O Outside

1 B-corporation Beginning of corporation

2 I-corporation Inside of corporation

3 B-creative-work Beginning of creative-work (song, movie, book and so on)

4 I-creative-work Inside of creative-work

5 B-group Beginning of a group (sports team or non-corporate teams)

6 I-group Inside of a group

7 B-location Beginning of location (including GPE, facility)

8 I-location Inside of location

9 B-person Beginning of a person

10 I-person Inside of a person

11 B-product Beginning of a product (tangible goods, or well-defined services)

12 I-product Inside of a product

Table 3.3. NER tags (provided in IOB format) in the WNUT 17: Emerging and Rare

entity recognition challenge.

The dataset provides 12 possible Named Entity Recognition (NER) tags in Inside-

Outside-Begin (IOB) format, as shown in Table 3.3.

During the training of the models, we use 20% of the samples from the original

training dataset for hyper-parameter search. Subsequently, we combine all the samples

from the training and test sets to create splits for 5x2 cross-validation. This allows us

to perform a comprehensive comparison of the models’ performance.

3.4.3. Question-Answering

For the Question Answering task, we evaluated the models using the Stanford Question

Answering Dataset (SQuAD) [53]. This dataset is designed for reading comprehension

and consists of questions posed by crowd-workers on a set of Wikipedia articles. Each

question has a corresponding reading passage, and the answer to each question is

a segment of text, or span, from the passage. The original dataset includes 87,000

training questions and 10,000 validation questions. Each data point in the dataset

contains a context, a question, and an answer, as shown in Table 3.4.
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During training, the models are provided with the context and question, separated

by a token, and the goal is to predict the correct answer. For hyperparameter search,

we use 20% of the samples from the original training dataset. To compare the models,

we combine all the samples from the training and test sets and create splits for 5x2

cross-validation. This enables a comprehensive evaluation of the models’ performance.

The original dataset can be accessed publicly from the Hugging Face repository.9

Context Question Answer

Architecturally, the school has a Catholic

character. Atop the Main Building’s gold

dome is a golden statue of the Virgin Mary.

Immediately in front of the Main Building

and facing it, is a copper statue of Christ

with arms upraised with the legend ”Venite

Ad Me Omnes”. Next to the Main Building

is the Basilica of the Sacred Heart. Imme-

diately behind the basilica is the Grotto, a

Marian place of prayer and reflection. It is

a replica of the grotto at Lourdes, France

where the Virgin Mary reputedly appeared

to Saint Bernadette Soubirous in 1858. At

the end of the main drive (and in a direct

line that connects through 3 statues and

the Gold Dome), is a simple, modern stone

statue of Mary

What sits on

top of the Main

Building at

Notre Dame?

a golden statue of

the Virgin Mary

Table 3.4. Sample data-point in the SQuAD dataset.

3.5. Paired T-Test for Model Comparisons

The 5x2 CV paired t-test is a statistical procedure introduced by Dietterich [54] to

address limitations in other methods when comparing the performance of two models.

9https://huggingface.co/datasets/squad
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The hypothesis in the test are:

• Null Hypothesis: The performance of the two algorithms is not significantly

different.

• Alternate Hypothesis: The performance of the two algorithms is significantly

different.

In this test, the training dataset is randomly split into two equal parts (50% training

and 50% testing) five times. In each of the five iterations, two models are trained

(model A and B) each using a 2-Fold CV and their performances are evaluated (p
(i)
A

and p
(i)
B , where i ∈ {1, 2}). The equations for an iteration j are as follows:

p
(1)
j = p

(1)
jA − p

(1)
jB (3.3)

p
(2)
j = p

(2)
jA − p

(2)
jB (3.4)

p̄j =
p
(1)
j + p

(2)
j

2
(3.5)

s2j = (p
(1)
j − p̄j)

2 + (p
(2)
j − p̄j)

2 (3.6)

Finally, once all five iterations are computed, we can estimate the t-statistics as follows:

t− statistic =
p
(1)
1√

(1/5)
∑5

j=1 s
2
j

(3.7)

In the above equation p
(1)
1 is p1 from the first iteration. The t-statistic is assumed to

approximately follow the t distribution with 5 degrees of freedom. Using the t statistic,

the p-value can be computed and compared with a significance level of (α =0.05). If

the p-value is lower than α, we reject the null hypothesis and accept that there is a

significant difference between the two models.
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3.6. Evaluating Biases

Numerous studies have been conducted to evaluate bias in language models, as

discussed in Section 2.3. In our research, we specifically focused on assessing gender

bias in the language models using a downstream task. This choice was primarily in-

fluenced by the type of language model we employed, which is an encoder-only model

commonly utilized in downstream tasks such as classification, named entity recognition

(NER), and question answering (QA). For our evaluation, we utilized the sentiment

analysis task. The subsequent section provides a detailed description of our method-

ology, outlining the steps involved.

3.6.1. Evaluating Gender Bias using Sentiment Analysis Task

In order to analyze and compare the bias in the predictions of our sentiment analysis

models, we adopt a methodology inspired by previous work on gender bias assessment

[45]. We create two versions of each movie review from the IMDB dataset, representing

the male and female genders, by substituting different keywords, names, and pronouns.

The choice of gender-specific terms follows the same set used in the referenced study

[45]. Figure 3.3 provides an example of a movie review with both male and female

versions.

To quantify the bias in a sample’s prediction, we calculate the difference in senti-

ment polarity between the male and female versions. This difference is computed based

on the model’s predicted sentiment scores for each version, as shown in Equation 3.8.

A higher bias value indicates that the model rated the sample as more positive for the

male version compared to the female version.
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Biasi = sent(imale) − sent(ifemale) (3.8)

BiasModel =
N∑
i=1

△sent

N
(3.9)

AbsoluteBiasModel =
N∑
i=1

|△sent|
N

(3.10)

To evaluate the overall bias of the models, we calculate the mean difference (as

defined in Equation 3.9) and the mean absolute difference (as defined in Equation 3.10)

across all the samples in the validation set for each cross-validation fold of the IMDB

data split. These measures provide an indication of the average bias present in the

model’s predictions.

To compare the bias between the two models, we perform a paired t-test. This

statistical test allows us to assess whether there is a significant difference in the bias

exhibited by the two models. It is important to note that our study’s main focus

is not to determine whether the models are biased or not, but rather to investigate

if one model demonstrates significantly more bias than the other. By employing this

methodology, we aim to provide a quantitative analysis of bias in the sentiment analysis

models and explore any significant differences between them in terms of bias.
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Figure 3.3. Sample of a movie review along with two gender versions.
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4. RESULTS

4.1. Qualitative Comparison of Text Corpora

We conducted a comprehensive analysis of the qualitative statistics for both the CN-

N/DailyMail and ChatGPT generated news articles, and the results are summarized

in Table 4.1. In terms of word distribution, we ensured that the generated articles

by ChatGPT had a similar number of words as the original CNN/DailyMail articles

through the prompts. As a result, the word counts for both corpora are close to each

other. However, we observed a significant difference in vocabulary size between the

two. The vocabulary of the CNN/DailyMail articles was approximately 76% larger

compared to the ChatGPT articles. This indicates that the CNN/DailyMail corpus

exhibited a wider range of unique words and phrases based on the statistics computed.

Additionally, we found notable differences in the structural characteristics of the

articles. The ChatGPT articles had a lower average number of sentences per article,

around 16, compared to the CNN/DailyMail articles, which had an average of 20

sentences. Consequently, the sentences in the ChatGPT articles tended to be longer.

Furthermore, we analyzed the presence of named entities in the articles. The mean

number of named entities per article was nearly double in the CNN/DailyMail articles,

with an average of around 41, compared to the ChatGPT articles, which had an average

of 22 named entities. This indicates that the CNN/DailyMail articles contained a

higher density of named entities.

Overall, these qualitative statistics provide insights into the differences between

the CNN/DailyMail and ChatGPT articles, including vocabulary size, sentence struc-

ture, and the presence of named entities.
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CNN/DailyMail ChatGPT

Number of Words 8,966,581 8,798,474

Mean words per article 358.66 351.93

Vocabulary 159,105 90,145

Mean Vocabulary per article 192.47 179.01

Mean Sentences per article 20.14 16.01

Mean Words per sentence 19.29 22.40

Mean Named Entities per article 40.86 22.40

Table 4.1. Comparison of the statistics of CNN/DailyMail and ChatGPT articles.

4.1.1. Sentiment Polarity

We conducted an analysis of the distribution of sentiment polarity in the articles from

each source. Figure 4.1 illustrates a comparison of the mean sentiment intensity be-

tween the CNN/DailyMail and ChatGPT articles.

In terms of sentiment intensity, we observe that the CNN/DailyMail articles have

a higher neutral intensity compared to the articles written by ChatGPT. This suggests

that the CNN/DailyMail articles exhibit a more balanced or neutral sentiment overall.

On the other hand, the ChatGPT articles show a higher positive intensity compared

to the CNN/DailyMail articles. This indicates that the ChatGPT-generated articles

tend to have a more positive sentiment. Interestingly, the negative intensity is similar

in both sets of articles, suggesting that the level of negativity is comparable between

the CNN/DailyMail and ChatGPT articles.

4.1.2. Distribution of Named Entities and POS tags

We conducted an analysis of the distribution of Named Entities and POS tags in

the articles from each source. Figure 4.2 displays the distribution of Named Entities

in CNN/DailyMail articles, while Figure 4.3 shows the distribution of POS tags in

ChatGPT articles.
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Figure 4.1. Mean sentiment polarity of the articles using VADER Sentiment Analyzer.

The analysis revealed interesting findings regarding the occurrence of Named

Entities in the articles. Specifically, we observed that the number of named entities in

ChatGPT articles was approximately half compared to the CNN/DailyMail articles.

On the other hand, the distribution of POS tags, which provide information about

the grammatical roles of words, showed a similar pattern between the two sources.

This indicates that both CNN/DailyMail and ChatGPT articles exhibit comparable

syntactic structures and grammatical usage.

4.1.3. Readability Metrics

We measured two standard readability scores, Flesch-Reading Ease and Flesch-Kincaid

Grade Level, on all the articles in the corpora. Table 4.2 provides the mean readability

scores for each corpus.

Flesch-Reading Ease scores are designed to indicate the difficulty level of a passage

in English. Higher scores indicate that the text is easier to read, while lower scores

indicate texts that are more challenging to comprehend. We observed that the articles
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Figure 4.2. Distribution of Named Entities in CNN/DailyMail and ChatGPT articles.

Figure 4.3. Distribution of POS tags in CNN/DailyMail and ChatGPT articles.



38

CNN/DailyMail ChatGPT

Mean Flesch-Reading Ease 55.52 46.49

Mean Flesch–Kincaid Grade Level 10.11 12.11

Table 4.2. Readability scores of CNN/DailyMail and ChatGPT articles.

Figure 4.4. Distribution of readability scores of CNN/DailyMail and ChatGPT

articles using the Flesch Reading Ease.

written by ChatGPT have a Flesch-Reading Ease score of 46.49, compared to 55.52

for CNN/DailyMail. This suggests that the ChatGPT articles are more difficult to

understand and require a higher level of education. To further illustrate the distribution

of readability, we plotted the articles on a scale ranging from very easy to very confusing

in Figure 4.4, based on the interpretation of Flesch-Reading Ease scores. We found

that the ChatGPT articles were more skewed towards the difficult end, with over 93%

falling into that category, compared to about 64% for CNN/DailyMail.

Similarly, for the Flesch-Kincaid Grade Level, we observed that the articles writ-

ten by ChatGPT were at a higher grade level by 2 points compared to CNN/DailyMail

articles.

These findings suggest that the articles generated by ChatGPT tend to be more

challenging in terms of readability, requiring a higher level of education to comprehend.
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Model Perplexity

RoBERTa (CNN/DailyMail) 11.41

RoBERTa (ChatGPT) 4.46

Table 4.3. Perplexity of pre-trained RoBERTa models on the evaluation dataset.

(Note: the datasets are different)

Figure 4.5. Loss curves during RoBERTa pre-training on CNN/DailyMail (red and

blue) and ChatGPT dataset (green and yellow).

4.2. Pre-training

The perplexity after pre-training the RoBERTa model on the CNN/DailyMail dataset

and ChatGPT dataset is reported in Table 4.3, and Figure 4.5 displays the loss curves

during pre-training. While it is important to note that the absolute values of loss/per-

plexity cannot be directly compared due to the use of different evaluation data (CNN/-

DailyMail text or ChatGPT text), certain observations can still be made. It is evident

that the overall loss after 75 epochs is significantly lower for the ChatGPT articles com-

pared to the CNN/DailyMail articles. Additionally, the loss curve for ChatGPT article

pre-training consistently remains lower than that of the CNN/DailyMail articles.
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4.3. Downstream Evaluation

4.3.1. Sequence Classification

The results for the five iterations of two-fold cross-validation for each of the fine-tuned

RoBERTa models, pre-trained on CNN/DailyMail and ChatGPT articles, are reported

in Table 4.4. The metric used for comparing the performance of the models on the

IMDB classification task is accuracy. When comparing the average performance across

all runs, we find that the RoBERTa model pre-trained on ChatGPT articles achieved

a higher average accuracy of 0.858, compared to 0.851 for the RoBERTa model pre-

trained on CNN/DailyMail articles. To establish a benchmark, we also fine-tuned

the original RoBERTa model and obtained an average accuracy of 0.908 for the first

iteration of splits.

Finally, to address our research sub-question 1(a), which is whether the RoBERTa

(ChatGPT) model is significantly inferior in terms of accuracy on the sentiment classi-

fication task, we conducted a paired t-test to compare the two models. The computed

t-statistics was -11.108, resulting in a p-value of 0.0001. Based on these statistics,

we reject the null hypothesis that both models perform equally well on this task, as

the p-value (p < 0.0001) is smaller than the significance level α (0.05). Surprisingly,

the RoBERTa (ChatGPT) model performed significantly better than the RoBERTa

(CNN/DailyMail) model on the sentiment classification task.

4.3.2. Named Entity Recognition

The results for the five iterations of cross-validation for each of the fine-tuned RoBERTa

models using pre-trained CNN/DailyMail and ChatGPT articles are presented in Table

4.5. The metric used to evaluate the model performances on the WNUT-17 NER

task is F1-score. When considering the average performance across all iterations, we

observe that the RoBERTa model pre-trained on ChatGPT achieves a similar F1-score

of 0.440, compared to 0.442 for the RoBERTa model pre-trained on CNN/DailyMail.
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Iteration Split RoBERTa (CNN/DailyMail) RoBERTa (ChatGPT)

#1
Split 1 0.849 0.857

Split 2 0.851 0.858

#2
Split 1 0.851 0.859

Split 2 0.848 0.855

#3
Split 1 0.852 0.858

Split 2 0.851 0.858

#4
Split 1 0.851 0.856

Split 2 0.855 0.860

#5
Split 1 0.854 0.861

Split 2 0.849 0.857

Table 4.4. Results of the five iterations of cross validation on the IMDB classification

challenge.

Iteration Split RoBERTa (CNN/DailyMail) RoBERTa (ChatGPT)

#1
Split 1 0.444 0.430

Split 2 0.448 0.457

#2
Split 1 0.444 0.439

Split 2 0.440 0.442

#3
Split 1 0.439 0.448

Split 2 0.431 0.424

#4
Split 1 0.426 0.429

Split 2 0.458 0.444

#5
Split 1 0.456 0.439

Split 2 0.439 0.444

Table 4.5. Results of the five iterations of cross validation on the WNUT-17 Named

Entity Recognition Task.
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Iteration Split RoBERTa (CNN/DailyMail) RoBERTa (ChatGPT)

#1
Split 1 63.906 64.880

Split 2 63.896 64.981

#2
Split 1 64.086 64.636

Split 2 63.506 65.078

#3
Split 1 64.425 64.921

Split 2 64.436 64.987

#4
Split 1 64.266 65.398

Split 2 64.349 64.972

#5
Split 1 64.971 65.050

Split 2 63.713 64.779

Table 4.6. Results of the five iterations of cross validation on the on SQuAD QA

Challenge.

To establish a benchmark, we also fine-tune the original RoBERTa model, obtaining

an average F1-score of 0.491 for the first iteration of splits.

Moving on to address our research sub-question 1(b), which examines whether the

RoBERTa (ChatGPT) model is significantly inferior in terms of F1-score on the Named

Entity Recognition task, we conducted a paired t-test to compare the two models. The

computed t-statistics yielded a value of 1.101, resulting in a corresponding p-value of

0.321.

Based on these statistical findings, we fail to reject the null hypothesis and con-

clude that there is no significant difference in performance between the two models

on the Named Entity Recognition task, as the p-value (p > 0.321) is greater than the

predefined significance level α (0.05). Thus, we find no evidence to suggest that the

RoBERTa (ChatGPT) model is significantly inferior in terms of F1-score on the Named

Entity Recognition task.
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4.3.3. Question Answering

The results for the five iterations of cross-validation for each of the fine-tuned RoBERTa

models using pre-trained CNN/DailyMail and ChatGPT articles are presented in Table

4.6. The metric used to evaluate the model performances on the SQuAD Question

Answering task is F1-score. When considering the average performance across all

iterations, we observe that the RoBERTa model pre-trained on ChatGPT achieves a

similar F1-score of 64.968, compared to 64.156 for the RoBERTa model pre-trained on

CNN/DailyMail. To establish a benchmark, we also fine-tune the original RoBERTa

model, obtaining an average F1-score of 83.80 for the first iteration of splits.

Moving on to address our research sub-question 1(c), which examines whether

the RoBERTa (ChatGPT) model is significantly inferior in terms of F1-score on the

QA task, we conducted a paired t-test to compare the two models. The computed

t-statistics yielded a value of -2.035, resulting in a corresponding p-value of 0.097.

Based on these statistical findings, we fail to reject the null hypothesis and con-

clude that there is no significant difference in performance between the two models on

the QA task, as the p-value (p > 0.097) is greater than the predefined significance level

α (0.05). Thus, we find no evidence to suggest that the RoBERTa (ChatGPT) model

is significantly inferior in terms of F1-score on the QA task.

4.4. Evaluation of Gender Biases

Based on our definitions of overall bias in a model, we computed the results for the

five iterations of cross-validation models, which are presented in Table 4.7. The bias

values range from -1 to +1, where a value of -1 indicates that the model assigns more

positive polarity to female versions of the samples, and a value of +1 indicates that

the model assigns more positive polarity to male versions of the samples. In all cases,

we observed that the bias values were positive, indicating a tendency to assign more

positive polarity to male versions.
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Iteration Split RoBERTa (CNN/DailyMail) RoBERTa (ChatGPT)

#1
Split 1 0.0060 0.0042

Split 2 0.0052 0.0059

#2
Split 1 0.0065 0.0047

Split 2 0.0048 0.0024

#3
Split 1 0.0044 0.0048

Split 2 0.0056 0.0059

#4
Split 1 0.0074 0.0067

Split 2 0.0041 0.0025

#5
Split 1 0.0085 0.0109

Split 2 0.0040 0.0045

Table 4.7. Mean difference between male and female polarity sentiments.

Overall, in half of the cases, the RoBERTa model pre-trained on ChatGPT exhib-

ited a lower bias value compared to the RoBERTa model pre-trained on CNN/Daily-

Mail. However, it is worth noting that the mean bias value for RoBERTa (CNN/Daily-

Mail) was 0.0056, slightly higher than the mean bias value for RoBERTa (ChatGPT),

which was 0.0053.

Finally, to address our research question 2, which examines whether the RoBERTa

(ChatGPT) model is significantly more biased towards gender demographic, we con-

ducted a paired t-test to compare the two models. The computed t-statistics yielded a

value of 1.712, resulting in a corresponding p-value of 0.147. Based on these statistical

findings, we fail to reject the null hypothesis and conclude that there is no significant

difference in bias performance between the two models, as the p-value (p > 0.147) is

greater than the predefined significance level α (0.05). Thus, we find no evidence to

suggest that the RoBERTa (ChatGPT) model is not significantly more biased for the

gender demographic.

In addition to above results, we also measured the absolute difference in polarities,

which is reported in Table 4.8. In terms of the absolute score, the RoBERTa model
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Iteration Split RoBERTa (CNN/DailyMail) RoBERTa (ChatGPT)

#1
Split 1 0.0124 0.0104

Split 2 0.0100 0.0117

#2
Split 1 0.0111 0.0109

Split 2 0.0113 0.0094

#3
Split 1 0.0126 0.0118

Split 2 0.0120 0.0112

#4
Split 1 0.0131 0.0125

Split 2 0.0100 0.0099

#5
Split 1 0.0132 0.0159

Split 2 0.0109 0.0106

Table 4.8. Mean absolute difference between male and female polarity sentiments.

pre-trained on ChatGPT had a lower score 80% of the time compared to the RoBERTa

model pre-trained on CNN/DailyMail.
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5. DISCUSSION AND LIMITATIONS

5.1. Discussion

In the comparison of writing styles between CNN/DailyMail journalists and ChatGPT,

significant differences were observed. The vocabulary diversity was notably higher for

journalists compared to ChatGPT (the temperature of ChatGPT was not explored).

This factor could potentially explain the lower perplexity and loss curves in the MLM

task for the text generated by ChatGPT. Additionally, the articles generated using

ChatGPT exhibited a more positive sentiment compared to the slightly higher neutral

sentiment observed in journalist-written articles. This could be attributed to the pos-

itive human feedback received during the alignment of ChatGPT using reinforcement

learning [55].

Regarding grammatical structure and complexity measured using readability met-

rics, the articles written by ChatGPT were found to be significantly more complex and

required a higher grade level for understanding compared to journalist-written arti-

cles. This may provide a rationale for why RoBERTa trained on ChatGPT articles

performed well in both pre-training and downstream tasks, as it effectively learned the

intricacies of the language. Further details regarding the performance of downstream

tasks and bias analysis will be discussed in the subsequent sections.

5.2. Downstream Performance

To compare the performance of the two RoBERTa models trained on ChatGPT and

CNN/DailyMail articles, we selected three tasks: sequence classification, named entity

recognition (NER), and question answering. Each task consisted of ten runs for each

model, and a summary of the wins across the different tasks is presented in Table 5.1.

Additionally, Figure 5.1 displays the mean F1 score of all the runs for each task.
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Figure 5.1. Mean performance of models across different tasks (accuracy for sequence

classification task and F1-score in others).

Task RoBERTa(CNN) Wins RoBERTa(ChatGPT) Wins T-Test

Sequence Classification 0 100% Significant

NER Task 50% 50% Insignificant

Question Answering 0% 100% Insignificant

Table 5.1. Summary of the performance of different models on different tasks.

Surprisingly, the RoBERTa (ChatGPT) model achieved more wins and demon-

strated better performance in two of the tasks: sequence classification and question

answering. However, the performance improvement was statistically significant only

for the sequence classification task, as confirmed by the t-test. In the NER task, both

RoBERTa models achieved an equal number of wins, but the RoBERTa (CNN/Daily-

Mail) model exhibited slightly better mean performance across all the runs, as depicted

in Figure 5.1.

5.3. Bias Performance

To examine the inherent bias in our trained models, we measured the sentiment polarity

difference between male and female versions of the instances. The overall bias of the

models was represented using the mean difference and mean absolute difference. The
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Bias Metric RoBERTa(CNN) Wins RoBERTa(ChatGPT) Wins T-Test

Mean Bias 50% 50% Insignificant

Absolute Mean Bias 20% 80% Insignificant

Table 5.2. Summary of the Bias performance of different models.

summary of the bias results for our models is presented in Table 5.1.

In terms of the mean difference, both models performed similarly across all ten

cases, indicating no significant bias favoring either male or female versions. However,

when considering the absolute mean difference, the RoBERTa (ChatGPT) model exhib-

ited lower bias in eight out of ten cases compared to the RoBERTa (CNN/DailyMail)

model. It is important to note that in both cases, the difference in bias was statistically

insignificant.

5.4. Limitations

While our research provides valuable insights, it is important to acknowledge the lim-

itations inherent in our study:

(i) Limited to a specific data source: Our research primarily centres around a

specific data source, namely the news articles from the CNN/DailyMail dataset.

It is important to note that language models are typically trained on much larger

corpora that encompass a wide range of data sources, including books, Wikipedia,

and various social media platforms such as Facebook, Twitter, and Reddit. The

use of a specific dataset in our study may not fully capture the diversity of

domains and topics present in the training and generation of language models.

Consequently, there is a potential risk that the limited scope of our study may

restrict the generalizability of our findings to other datasets or sources. This

limitation could potentially impact the broader applicability of our results and

the extent to which our conclusions can be applied to different contexts.

(ii) Text Decoding: The creativity and diversity exhibited by a language model

during the text generation process can be influenced by various factors, including
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the decoding temperature and strategies employed [56]. In our study, we uti-

lized the default temperature parameter and decoding strategy, which may have

resulted in lower diversity in terms of vocabulary and Named Entity Recogni-

tion (NER) in the generated articles. We recognize that the choice of decoding

strategy can significantly impact the output of the language model, and it is an

important area for further investigation. Future studies could explore the impact

of different decoding strategies and temperature settings and pre-train models

on more creative and diverse generated text, providing a more comprehensive

understanding of their capabilities and limitations.

(iii) Size of pre-training dataset: The size of the pre-training dataset plays a

crucial role in determining the performance of language models. In our study,

we utilized a relatively small pre-training dataset consisting of 10 million tokens,

whereas contemporary models are often trained on billions of tokens. While some

studies have demonstrated that smaller language models can learn effectively

from datasets in the order of millions of tokens, it would be valuable to examine

whether our findings hold true for larger language models as well. Conducting

experiments with a larger pre-training dataset would provide further insights into

the performance and generalizability of language models, allowing for a more

comprehensive understanding of their capabilities and limitations.

(iv) Sensitivity of prompting and steering: The process of text generation by

language models is known to be influenced by the prompts provided. The selection

of prompts plays a crucial role in shaping the output and has the potential to

introduce biases or limitations. In our study, we did not specifically investigate

the effects of steering the outputs of ChatGPT using different prompts. However,

the users of language models have the ability to steer the results by providing

specific prompts. This raises the possibility that individuals could intentionally

or unintentionally generate outputs that are unfair, biased, or unrepresentative.

Exploring the impact of different prompting strategies on bias metrics is an area

that could be further explored in future research.

(v) Language restriction to English: Our study is limited to the analysis of the

English language only. This restriction prevents us from investigating language-
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specific nuances, biases, and behaviors that may vary in other languages. By

expanding the scope of our analysis to include multiple languages, we would

gain a more comprehensive understanding of how language models perform and

exhibit biases in different linguistic contexts. Such a multilingual approach would

enhance the generalisability and applicability of our findings to a wider range of

languages and cultures.

(vi) Exclusive use of ChatGPT: Our research exclusively focuses on the ChatGPT-

03 language model, which incorporates protective measures to mitigate the gen-

eration of biased and harmful content. We do not investigate the impact of

uncensored language models that operate without relying on human feedback for

safety, such as the Wizard-Vicuna-30B-Uncensored-GGML model10 . This choice

restricts our ability to fully comprehend how different language models may in-

fluence our results and findings, and it may limit the broader analysis of language

generation models as a whole. Future research could explore the implications and

variations that arise from utilizing diverse language models with varying levels of

content moderation.

(vii) Bias Metrics: While our research focuses on gender bias through sentiment

analysis, it does not encompass the examination of other forms of bias, such as

racial or cultural biases. Additionally, there exist diverse methodologies and def-

initions for evaluating biases in language models. Exploring these various forms

of biases and employing different evaluation techniques could be a valuable av-

enue for future research, especially as language models continue to evolve and

advance. By expanding the scope of bias analysis, we can gain a more compre-

hensive understanding of the potential biases present in language models and

develop strategies for addressing them effectively.

Despite the inherent limitations of our research, we believe that our study provides

valuable insights to the research community. While we acknowledge the boundaries

and constraints within our research design, we maintain that our findings and conclu-

sions hold significance and contribute to the understanding of language models. The

10https://huggingface.co/TheBloke/Wizard-Vicuna-30B-Uncensored-GGML
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insights gained from our study have the potential to guide future research in the devel-

opment of language models, addressing potential biases, ensuring robust and reliable

performance, and addressing concerns related to privacy, security, and fairness. Our

research aims to contribute to the broader discussion surrounding language models and

foster advancements in the field to promote the responsible and beneficial use of these

models.
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6. ETHICAL AND ENVIRONMENTAL IMPACTS

6.1. Ethical Implications

The impact of AI on our society is widely recognized as significant, and therefore,

research and findings related to our understanding of these systems can have both

positive and negative implications. In conducting our study, we acknowledge the ethical

implications that arise from our research and findings. We recognize the importance

of considering the following aspects with care:

(i) Generalizability: Based on our findings, we report that pre-training the lan-

guage model on the dataset generated using ChatGPT did not significantly im-

pact its performance on downstream tasks or its bias towards the gender demo-

graphic. However, we acknowledge the limitations in the generalizability of our

findings, and further studies are necessary to thoroughly assess the extent of this

impact.

(ii) Potential for bias/discrimination: During the generation of articles in our

study, we did not manipulate or control the tone or emotion of the news arti-

cles. However, we recognize the potential negative consequences that can arise

if steering techniques are employed to manipulate the output of language mod-

els. It is important to acknowledge and address these ethical concerns to ensure

responsible use of such techniques.

6.2. Environmental Impacts

Deep learning models, particularly large transformer models like GPT, require

substantial computational resources for training. This high computational demand

leads to significant energy consumption, contributing to carbon emissions. The envi-

ronmental impact of training machine learning models has been highlighted in various



53

Task Dataset Carbon Emission (kgCO2)

Pre-training CNN-DailyMail 1.78

Pre-training ChatGPT 1.55

Fine-tuning IMDB 0.23

Fine-tuning WNUT-17 0.02

Fine-tuning SQuAD 0.57

Total 4.10

Table 6.1. Quantity of carbon emission associated with our experiments.

studies [12, 57, 58], emphasizing the importance of assessing and understanding these

impacts.

In line with these concerns, we acknowledge the significance of studying the car-

bon footprint associated with training language models. In our research, we have taken

into account the carbon emissions generated by our experiments. To quantify and re-

port the carbon footprints, we have utilized an open tool 11 developed by Lacoste et

al. [59]. The tool allows us to assess the environmental impact and estimate the car-

bon emissions associated with our experiments. By considering the carbon footprints

of our research, we aim to contribute to the ongoing dialogue on the environmental

sustainability of machine learning practices and encourage further investigation into

reducing the carbon footprint of training large language models.

In our study, we conducted our experiments using the Google Cloud Platform

(GCP) located in the Europe-West1 region, which has a carbon efficiency of 0.27

kgCO2eq/kWh [59]. The carbon emissions associated with our experiments are re-

ported in Table 6.1.

The pre-training step of our language models contributed the most significant

amount of carbon emissions. Pre-training on the CNN/DailyMail articles resulted

in approximately 1.78 kg of CO2 emissions, which is equivalent to 0.89 kg of coal

burned [60] or driving an average Internal Combustion Engine car for 7.19 km [61].

11https://mlco2.github.io/impact/
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Pre-training on the ChatGPT articles had the second-highest carbon emissions of about

1.55 kg of CO2, which is equivalent to 0.78 kg of coal burned or driving an average

Internal Combustion Engine car for 6.26 km.

Comparatively, fine-tuning had lower carbon emissions, even when we performed

testing 20 times for each of the tasks (sentiment analysis, named-entity recognition,

question-answering). The carbon emissions for the question-answering, sentiment anal-

ysis, and named-entity recognition tasks were 0.57 kg CO2, 0.23 kg CO2, and 0.02 kg

CO2, respectively.

Overall, the total carbon emissions from all of our experiments amounted to ap-

proximately 4.1 kg of CO2. It is important to note that since the data center was

located in Europe, our emissions were offset by the cloud provider, mitigating the en-

vironmental impact to some extent. These carbon emissions data provide insights into

the environmental footprint associated with training language models and highlight the

need for considering sustainability aspects in machine learning research and practices.
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7. CONCLUSION

In conclusion, our research aimed to investigate the impact of artificial text on the

performance of the RoBERTa language model. To address this research problem, we

formulated two research questions. The first question focused on determining whether

the RoBERTa model, pre-trained using artificial text, exhibited inferior performance

across three different tasks. Our experimental results revealed no evidence to suggest

that the RoBERTa (ChatGPT) model had inferior performance in any of the tasks. In

fact in the sentiment analysis task, the model pre-trained on the artificial text had a

better performance which is quite surprising. This opens a lot of new questions such

as studying why and where artificial text can be an advantage.

The second research question aimed to examine whether the RoBERTa (Chat-

GPT) model exhibited more bias towards different genders compared to the RoBERTa

(CNN/DailyMail) model. However, our findings showed no evidence to support the

notion that the RoBERTa (ChatGPT) model had greater bias than the RoBERTa

(CNN/DailyMail) model. But given the fact that we only evaluated the gender bias,

we believe that it is equally important to do further studies for evaluating other types

of biases such as race, occupation etc.

Overall, our research did not demonstrate the presence of a significant impact

of using artificial text for pre-training the language model. However, it is important

to note that further research is needed to explore this topic in greater depth and

across a broader range of experiments and datasets to test the generalizability. It is

also important to acknowledge that such large-scale experiments should be conducted

responsibly considering the impacts on humans and the environment.
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APPENDIX A: Training Details

This section presents a comprehensive overview of our model training process. The

complete codebase associated with our research can be accessed and retrieved from

the GitHub repository12 . By providing access to our codebase, we aim to facilitate

reproducibility and transparency in our research methodology. The GitHub repository

contains the necessary scripts, configurations, and dependencies required to reproduce

the model training process described in this study. In addition to providing access to

our codebase, we also open-source our trained models for testing purposes.

A.1. Pre-training Details

All the hyperparameters associated with the per-taining of the RoBERTa models on

both the datasets (CNN/DailyMail and ChatGPT articles) are reported in the table

A.1.

A.2. Fine-tuning Details on NER Task

All the hyperparameters associated with the fine-tuning both of the RoBERTa models

on WNUT-17 NER dataset are reported in the table A.2.

A.3. Fine-tuning Details on Classification Task

All the hyperparameters associated with the fine-tuning both of the RoBERTa models

on IMDB dataset are reported in the table A.3.

12Github repo; https://github.com/sarthusarth/lang mod chatgpt
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Hyperparameter Value

Learning Rate 5e-5

Batch Size 8

Eval Batch Size 8

Seed 42

Optimizer Adam with betas(0.9,0.999) and epsilon(1e-08)

LR Scheduler Type Linear

LR Scheduler Warmup Steps 6

Number of Epochs 75

Table A.1. Hyperparamters for Pre-Training Language Models.

Hyperparameter Value

Learning Rate 5e-5

Batch Size 128

Eval Batch Size 128

Optimizer Adam with betas(0.9,0.999) and epsilon(1e-08)

LR Scheduler Type Linear

Number of Epochs 3

Table A.2. Hyperparamters for WNUT-17 NER Task.

A.4. Fine-tuning Details on Question-Answering Task

All the hyperparameters associated with the fine-tuning both of the RoBERTa models

on SQuAD dataset are reported in the table A.4.
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Hyperparameter Value

Learning Rate 5e-5

Batch Size 128

Eval Batch Size 128

Optimizer Adam with betas(0.9,0.999) and epsilon(1e-08)

LR Scheduler Type Linear

Number of Epochs 2

Table A.3. Hyperparamters for IMDB Sentiment Classification Task.

Hyperparameter Value

Learning Rate 3e-5

Batch Size 48

Eval Batch Size 48

Optimizer Adam with betas(0.9,0.999) and epsilon(1e-08)

LR Scheduler Type Linear

Number of Epochs 2

Doc Stide Length 128

Max Sequence Length 384

Table A.4. Hyperparamters for SQuAD QA Task.


