
Universiteit Utrecht
Graduate School of Natural Sciences,

Department of Information and Computing Sciences

Zehao Lu
Student no. 2736888

Unsupervised Paper2Slides
Generation

Master’s thesis
in ARTIFICIAL INTELLIGENCE

Supervisor:
Dr. Guanyi Chen

Second Reader:
Prof. dr. Albert Gatt

Utrecht, August 2023

Abstract

Although presentations are an excellent medium for sharing academic opinions and ideas,
there has been a scarcity of research into automating the "paper to slides" generation
task, and a lack of publicly available datasets. In response, we propose an inventive op-
timization framework based on reconstruction loss, harnessing cutting-edge Large Lan-
guage Models (LLMs) and unsupervised learning. This approach facilitates the creation
of high-quality slide decks from scientific papers, offering heightened adaptability and
flexibility. Our evaluation results provide empirical evidence of our model’s superior
performance in comparison to baseline models.

Contents

1. Introduction . 5

2. Related Works . 9
2.1. Autoencoder Networks . 9
2.2. Seq2seq Models . 10

2.2.1. Recurrent Neural Networks . 10
2.2.2. Attention Mechanism . 11
2.2.3. Transformers & Large Language Model 13

2.3. Seq2seq Decoding Methods . 16
2.3.1. Greedy Search . 16
2.3.2. Beam Search . 17
2.3.3. Top-K Sampling & Top-P Sampling 17

2.4. Unsupervised Machine Translation (UMT) 18
2.4.1. Unsupervised Machine Translation 18

2.5. Paper-to-slide Generation . 19
2.5.1. DOC2PPT . 20
2.5.2. D2S . 22
2.5.3. Supervised Approach Limitations 23

3. Method . 25
3.1. Data Processing . 26

3.1.1. Pre- & Post-Processing . 26
3.2. Paper-to-Slide Problem . 27

3.2.1. Task Re-Introduction . 27
3.2.2. Summarizer-Expander Structure 28
3.2.3. Reconstruction Loss . 30

3.3. Paper2Slides Model . 31
3.3.1. Pre-training S-E Stack . 32
3.3.2. Fine-tuning S & E . 33
3.3.3. Greedy Optimizer . 35

4. Experiments . 39
4.1. Pre-trained Expander Assessment . 39

4.1.1. Experimental Results . 39
4.1.2. Examples . 41

4.2. Fine-tuned Models Assessment . 42

3

4.2.1. Experimental Results . 42
4.2.2. Examples . 43

4.3. Property of Reconstruction Loss . 47
4.3.1. Hypothesis Testing . 47

4.4. System Assessment . 48
4.4.1. Experimental Results . 49

5. Conclusion . 51

A. Example Slides Outputs . 59

4

Chapter 1

Introduction

‘Researchers spend a great deal of time reading research papers. However, this skill is
rarely taught, leading to much wasted effort.’ as S. Keshav wrote in ‘How to Read a
Paper’ [Kes07]. Scientific papers can be challenging to read and present, especially for
non-experts who may not have a prior understanding of the topic. The widely adopted
structure of research articles emphasizes conciseness and precision, yet simultaneously
raises the level of complexity in understanding.

How can a paper-to-slides AI model help? A research paper is hard to read
because the knowledge embedded in an essay must be comprehensive, objective, and
detailed to reach the academic standard. However, this form limits readability. A
‘paper-to-slides’ model may summarize and reorganize knowledge in a clearer manner
(meanwhile probably losing some details) and generate a slide for presentation so that
unprofessional readers could have a much easier reading. In contrast to models created
for other tasks such as summarization, a model specialized in generating slides from a
paper has been fine-tuned to enhance its performance in comprehending the document
as a whole, resulting in superior results. Furthermore, utilizing the ‘paper-to-slides’
model allows for the examination of how language models can be employed to extract
information and knowledge.

Although many researchers have proposed various techniques to address the task
of transforming the content of research papers into presentation slides, the ‘paper-to-
slides’ problem has not been thoroughly investigated. Earlier attempts at this problem
include rule-based approaches by using template matching or keyword queries on the
source paper [SII05]. In contrast, more recent research has introduced an innovative
approach to this problem by leveraging statistical learning-based methodologies. This
involves employing techniques for extractive summarization, which aids in the gener-
ation of slide content by extracting the most essential and informative portions from
the original paper [HW15]. It is noteworthy, however, that the landscape of addressing
the ‘paper-to-slides’ predicament has undergone a significant transformation with the
emergence of modern state-of-the-art language models. These cutting-edge models have
substantially improved their ability to solve problems by utilizing the computational
strength of large neural networks. Some recent notable contributions in this field in-
clude Fu et al. [FWMS22], Li et al. [LHML21], Sun et al. [SHW+21]. The majority of
these approaches address this task by splitting it into two separate sub-tasks: document

5

segmentation and text summarization (or bullet point generation). In those systems,
each sub-task is solved by one or more sub-models.

Although modern neural network-based models have achieved significant progress on
the ‘paper-to-slides’ task, they are facing a few limits. First, those models are supervisely
trained on paper-slides dataset, yet the open and paired data source on this task is very
limited, as a result, deploying the model for papers originating from domains beyond
its specific training becomes impractical. Besides, the paper-slides datasets currently
accessible, lack detailed annotations and labels at the level of individual paragraphs
within papers and slide pages. This dearth of granularity leads to an intricate and
redundant design of model structure. Additionally, the inherent properties of these
datasets introduce substantial noise, ultimately causing the sub-models to be trained
using on excessively noisy data.

To address the above issues, we propose a novel model, the Paper2Slides model, which
is designed under an optimization framework of reconstruction loss for the ‘paper-to-
slides’ generation task. Under such framework, the proposed model has three important
characteristics: First, it performs unsupervised learning, which is a type of machine
learning method where the model is trained on large amounts of unlabeled data without
any explicit supervision. This approach is especially useful in natural language process-
ing, where obtaining labeled data can be a difficult and costly process. By training the
model in an unsupervised manner, it is able to identify patterns and relationships within
the data without being reliant on predefined labels. This results in a more flexible and
robust model that can adapt to different tasks and domains. By leveraging the power
of unsupervised learning, the model is able to learn from the vast amounts of available
data, making it highly effective in paper-to-slide generation tasks and also avoiding the
influence of noisy labeled data on model training.

Moreover, the optimization framework unifies the document segmentation and
slide content generation tasks. This integration not only leads to a more streamlined and
efficient model architecture but also offers significant advantages in terms of simplifying
the developpment and deployment. As these tasks are unified, the complex layers and
components that would have otherwise been necessary to manage them individually
are minimized, resulting in a much more streamlined and easily understandable model
design. This significant contribution greatly improves the efficiency of our model and
also sets the stage for future researchers to build and release more impactful models
based on our foundational architecture.

An additional notable characteristic of the model is its use of modern Large Lan-
guage Models (LLMs). These models are state-of-the-art in natural language process-
ing and have demonstrated remarkable performance on a variety of language tasks. By
using an LLM, the model can take advantage of its ability to understand and generate
natural language, which can be incredibly useful in many applications [GK18].

In practice, the proposed model would be integrated into a software system capable
of:

• Analyze a research paper in (editable) .pdf form and extract meaningful content
as much as possible;

• Abstarctively summarizes the extracted contents (text and figures) and construct
slides content;

6

• Generate a slide explaining the paper accordingly. The slide can be used in a
presentation or to help understand the original paper;

To accomplish the outlined objectives, the software is composed of three core ele-
ments: a pre-processing unit that reads and loads data from .pdf files, the Paper2Slides
model responsible for generating slide content, and a post-processing unit in charge of
arranging the layout and producing the slides. Each sub-model within the Paper2Slides
model has undergone a comprehensive training process, which includes both pre-training
and fine-tuning phases. Each step of these procedures is rigorously evaluated. Follow-
ing this, the entire software undergoes an automated assessment, where it is compared
against a state-of-art model in the field, the D2S model [SHW+21]. The proposed solu-
tion has demonstrated superior performance compared to this benchmark.

To summarize, we defined a new framework to tackle the paper-to-slides generation
task, designed a model under the framework, and evaluated our approach. Besides the
practical value of this study, this research will also investigate a new approach to scientific
document understanding. The primary technique used in this project will be NLP/NLG
theory including text summarization and text generation. No multi-model techniques
will be used in this study, as we don’t plan to make any use of image information in the
document.

In the rest of this paper, we will proceed by first conducting a review of related
research. This will involve introducing various neural network structures, ranging from
the Autoencoder network to Transformer-based language models. Following this, we will
detail a few widely used decoding methods employed for language generation. Further-
more, we will explore the realm of unsupervised machine translation and the pertinent
training methods we adopt. Our attention will then shift to the state-of-the-art works
in the domain of paper-to-slides conversion, where we will also address the limitations
inherent in these approaches. Further information regarding the model will be presented
in section 3. We will firstly dissect the intricacies of pre- and post-processing, followed
by a formal articulation of the optimization framework of the reconstruction loss. Subse-
quently, we will present the implementation and architecture of the Paper2Slides model,
coupled with an exposition of the training algorithms for its sub-models. The detailed
experimental details can be found in section 4, wherein we showcase the evaluation out-
comes of both pre-trained and fine-tuned sub-models within the Paper2Slides model.
Additionally, we present an assessment of our system’s performance in comparison to a
state-of-the-art model.

7

Chapter 2

Related Works

We will give a series of literature reviews on several related topics in this section. The
topics discussed in this section are either related to one of the sub-tasks mentioned
previously or used techniques in this project.

Firstly, we briefly introduce the autoencoder neural network which inspired the recon-
struction loss framework. Then, we’ll provide an overview of the seq2seq model utilized
in the language domain. Next, we will introduce several commonly used algorithms
for inference and generation within the framework of the seq2seq model, followed by a
subsection on unsupervised machine translation techniques that influenced the model
architecture implemented in this project. Finally, we’ll provide a concise assessment of
the present state-of-the-art results of the paper2slide generation task.

2.1. Autoencoder Networks

An autoencoder network, a type of artificial neural network, excels in unsupervised learn-
ing by reconstructing its input, yielding efficient data representations via an encoding-
decoding process through a reduced-dimensional vector space [Kra91, Ben09, JHG00].
The autoencoder model maps input data onto a lower-dimensional vector space through
an encoding process, the lower-dimensional intermediate representation is then subse-
quently reconstructed back into the original input space through a decoding process.
The network is composed of two main components: an encoder network E, responsible
for transforming the input data into a compressed representation, and a decoder network
D, tasked with reconstructing the original data from the encoded representation. Given
the input vector x⃗, the model is trained to minimize the reconstruction loss between the
input x⃗ and decoded data y⃗.

r⃗ = E(x⃗),where dim(r⃗) < dim(x⃗)

y⃗ = D(r⃗)
(2.1)

Autoencoders have found applications in diverse fields such as feature learning, data
compression, denoising, and anomaly detection. The following section will demonstrate
how the integration of autoencoder principles into RNN-based Encoder-Decoder models
strengthens sequence-to-sequence modeling by capitalizing on their collective advan-
tages.

9

Figure 2.1: Autoencoder neural network.

2.2. Seq2seq Models

A sequence-to-sequence (seq2seq) model is a type of model in machine learning that
is used for many tasks in natural language processing and time series processing areas
[SVL14]. A seq2seq Model takes sequential data as inputs and maps it to the sequential
outputs. The seq2seq model has been widely used in natural language generation areas,
some of the most common applications of the seq2seq model include text summarization
[KKM+19], machine translation, and chatbot. The seq2seq models are usually trained
on input-output pairs, wherein both the input and outputs are sequences of tokens that
may have differing lengths. The typical architecture of a seq2seq model includes an
Encoder and a Decoder, with the Encoder being used for processing the input sequence
and the Decoder for generating the target sequence. The seq2seq model learns to predict
the target output token sequenced by minimizing the loss function. The Encoders and
Decoders of a seq2seq model are commonly implemented using either Recurrent Neural
Networks (RNNs) or Transformers [SVL14].

2.2.1. Recurrent Neural Networks

A recurrent neural network is a neural network that can handle variable lengths of inputs.
A typical vanilla RNN model has an input layer I, a hidden layer H, and an output
layer O. At each step t, the output of ht′.−1 from the previous step is recurrently fed
back into the hidden layer to generate the model’s output. Given the input sequence
{xt} and {yt}, the RNN processing function can be expressed in this form

it = I(xt; ·)
ht = H(it, ht−1; ·)
yt = O(ht; ·)

(2.2)

Where the middle dot symbol · represents the linear weight, bias, and activations that
might be used in those layers. By doing so, RNN gains the ability to use global infor-
mation of the sequential data by memorizing the entire input sequence.

While the vanilla RNN unit is rarely used in real-world tasks, its variation like
GRU [CGCB14, CvMG+14] and LSTM [HS97] units are rather popular. The gated
and gap-connected units in GRU/LSTM allow RNN to separately learn short-term and
long-term memories, which enables the model to figure out what should be forgotten

10

and what remembered and looped back into the network. Despite its prowess in seq2seq
tasks, the RNN model has been found to encounter several issues such as vanishing
gradient and exploding gradient, low computational efficiency, and its weak ability to
memorize longer-term dependency.

RNN Encoder-Decoder. A famous seq2seq model based on RNN structure is the
RNN Encoder-Decoder model, The Encoder and Decoder of the model are both RNNs,
the Encoder of the model is composed of the input layer and hidden layer togetherly,
the output of the hidden layer generates the weight value c,

ht = f(xt, ht−1; ·)
c = q(h1, · · · , hT , x; ·)

(2.3)

where f and q are both non-linear functions.
The Decoder is formed by the hidden layer and the output layer, where the Decoder’s

hidden layer takes both the output for the last step and the Encoder’s hidden layer’s
output as input. The Decoder is designed to maximize the overall probability of the
target output sequence,

p(y) =
∑

t

p(yt|y1, · · · , yt−1, c) =
∑

t

g(yt−1, st, c) (2.4)

where function g is similar to f , and st is the hidden state of the Decoder RNN.

2.2.2. Attention Mechanism

To address the above issue, some researchers proposed the alignment model with bidi-
rectional RNN [BCB16]. The alignment model is later called the attention mechanism
to indicate that it executes the mechanism of determining which token should receive
focus.

The structure of the new RNN Encoder-Decoder model with alignment can be de-
scribed as follows:

p(yt|y1, · · · , yt−1, c) =
∑

t

g(yt−1, st, c)

si = f ′(si−1, yi−1, ci)

(2.5)

where st is the hidden state of the decoder model, same as equation 2.4. The context
vector, denoted as c, is now solely dependent on the hidden state h of the Encoder model,
and it encapsulates information pertaining to the complete input sequence. Specifically,
the context vector is obtained as a weighted sum of h,

ci =
∑

j

αijhj

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)

(2.6)

with the cross attention weight αij is calculated through the alignment model, as a
normalized correlation measure of the hidden state from the Encoder model and the De-
coder model. In summary, the attention unit generates attention values for the decoder

11

at each time step, incorporating input from the preceding decoder step. This allows the
attention unit to capture the overall dependencies necessary to predict yt at step t.

After experiencing the power of the Attention unit, researchers soonly found that the
attention unit does not have to be a component of the RNN Encoder-Decoder model.
The Scaled Dot-Product Attention, a simplified attention mechanism, has demonstrated
impressive efficacy in language generation and gained widespread popularity [VSP+17].

The scaled dot-product Attention unit is designed to compute the attention weight by
computing the dot product between the query and the key vector, and the self-attention
weight is used to determine which part of the input sequence is essential for making a
more likely prediction. The computing process of the scaled dot-product Attention can
be described as follows: firstly, the input vectors are added to the positional embedding
vectors in order to remember the order of the input tokens. After that, the scaled dot-
product Attention block takes the entire input sequence and multiplies them with three
distinct matrices WQ, WK , and WV . The results are denoted by Q, K, and V .

Q = WQ · xT

K = WK · xT

V = WV · xT
(2.7)

Then, the attention values are computed by applying the dot-product on Q and K.
The results are divided by the square root of the dimension of the key vector dK , and
multiplied by the value matrix V , as shown below,

Attention(Q,K, V) = softmax(
Q ·KT

√
dK

)V (2.8)

A variation of the vanilla Attention is the multi-head Attention mechanism. With the
multi-head Attention unit, the model conducts a multiple set of Q, K, and V s in order
to explore extensive "representation subspaces" within the semantic space. This enables
the model to have multiple choices of the attention value when making predictions of
the output sequence. Denote the Attention value of a single head as Zi, it is computed
by the same mechanism as a single head Attention,

Qi = W i
Q · xT

Ki = W i
K · xT

Vi = W i
V · xT

Zi = softmax(
Qi ·KT

i√
dK

)Vi

(2.9)

Once all Attention value {Zi} are computed, the Zis will be concatenated and multiplied
by an additional weight matrix WO,

Z = WO · concatei(Zi) (2.10)

where concatei denotes concatenation of all Zi.

12

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

Figure 2.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists
of several attention layers running in parallel [VSP+17].

One of the main benefits of the Attention mechanism is its computational efficiency,
compared to its original RNN Encoder-Decoder version. Meanwhile, it hinders the oc-
currence of the vanishing gradient problem in the model. The utilization of the attention
mechanism has significantly enhanced the effectiveness and precision of language gener-
ation and understanding. This technique has been incorporated into various language
models such as BERT, GPT, and other Transformer-base models.

2.2.3. Transformers & Large Language Model

The Transformer model/block is a neural network structure that is purely based on
the Attention unit and residual connection. The Transformer block is first proposed
in the paper Attention is all you need [VSP+17]. As it is shown in Figure 2.3, the
Transformer model has two components: the Encoder and Decoder. The Transformer
Encoder consists of a stack of identical Transformer blocks, with each Transformer block
having two components including the Multi-head self Attention unit and a feed-forward
unit. Both of the layers are paralleled with a residual connection and are followed by a
normalization layer. Before the input representation (usually the embedding vectors) is
fed into the Encoder, the representation is added to the positional embedding in order
to give the model some knowledge about the position of the input vectors.

The Decoder is composed of several Decoder Transformer blocks, the number of
blocks is usually equal to the number of Encoder Transformers. Each Decoder trans-
former block has two Attention units and a feed-forward unit, both of the Attention
units are connected paralleled with a residual connection. The output of the Encoder is
transformed into a set of Attention vectors K and V and iteratively used by the second
Attention unit of these Transformer blocks. The procedure can be described by the
following formulas. Given the input sequence X = {xi}, output sequence Y = {yi}, and
positional encoding tensor p⃗os, a Encoder model with N Transformer blocks performs

13

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Figure 2.3: The Transformer Model structure [VSP+17].

14

the following algorithm,

X = X + p⃗os

X̂0 = norm(Att(X) +X) Attention Unit

X0 = norm(FF(X̂0) + X̂0) Feed Forward Unit

N − 2

{
... Repeat

X̂N = norm(Att(XN−1) +XN−1)

XN = norm(FF(X̂N) + X̂N)

(2.11)

where Att(·) and FF(·) denote the Attention Unit and the Feed Forward Unit re-
spectively. Similarly, a Transformer Decoder step can be represented as follows.

Q,K = transform(X)

Y = mask(Y) + p⃗os

Ŷ0 = norm(Att(Y) + Y) Self Attention Unit

Ŷ0 = norm(Att(Q,K, Ŷ0) + Ŷ0) Encoder-Decoder Attention Unit

Y0 = norm(FF(Ŷ0) + Ŷ0) Feed Forward Unit

N − 2

{
... Repeat

ŶN = norm(Att(YN−1) + YN−1)

X̂N = norm(Att(Q,K, ŶN) + ŶN)

XN = norm(FF(X̂N) + X̂N)

(2.12)

Transformer-based models have gained immense popularity and have quickly become
the dominant force in the field of NLP. Many cutting-edge models have been developed
to address specific tasks such as sentiment classification and text summarization, using
supervised learning techniques. However, supervised models usually require a large
amount of annotated datasets and have limited generalized ability. Therefore, large pre-
trained language models (LLM) are proposed to solve these two issues. One of the most
well-known and popular LLMs is the Generative Pre-trained Transformer (GPT) family
model [BMR+20]. As a Decoder-only model, the GPT model is composed of a stack of
Decoder Transformers.

The GPT models are pre-trained on vast amounts of text data and can generate co-
herent responses based on the prompts. To mitigate the potential of the model replicat-
ing input sequences, data masking techniques are employed during the training process.

In addition to the GPT models (GPT1 - GPT4) [BMR+20], the BERT model de-
veloped by Google has gained significant attention [DCLT19]. Due to its Encoder-only
architecture, the BERT model is limited to natural language understanding tasks such as
sentiment analysis and named entity recognition, and cannot be applied to NLG tasks.
BERT excels at extracting information and insights from text, whereas GPT’s strength

15

lies in generating new and creative text. Other notable recent language models include
T5 (Encoder-Decoder) [RSR+20] by Google, LLaMa (Decoder-only) by Meta [TLI+23],
and LaMDA (Decoder-only) [TFH+22] also developed by Google.

In this study, we will use the Bidirectional and Auto-Regressive Transformer [LLG+19],
short for BART, as the pre-trained model for summarization. One of the key features of
BART is its ability to generate text in both forward and backward directions, which is
achieved by training the model on both auto-regressive and denoising tasks. This means
that BART is capable of both predicting the next word in a sequence and reconstructing
the original sequence from a corrupted version. Similar to GPT, BART is pre-trained on
a large corpus of text using a combination of masked language modeling and denoising
auto-encoding tasks.

2.3. Seq2seq Decoding Methods

With the popularity of the seq2seq model, various decoding strategies have also received
more attention. In this section, we will give a brief discussion of the most widely used
generation methods of the seq2seq models. We start by refreshing the notation and
definitions of the auto-regressive language generation. The auto-regressive language
generation is a language model that works by predicting the probability of the next
token based on the previous tokens in the input sequence. At each step, the predicted
tokens (probabilities) will be iteratively used to predict the next token.

P (w1:T |W0) =
∏

T

P (wt|w1:t−1,W0),with w1:0 = ∅ (2.13)

where W0 is the entire input sequence.
We will introduce the most popular decoding methods at present, mainly Greedy

search, Beam search, Top-K sampling, and Top-p sampling [HBFC19].

2.3.1. Greedy Search

The Greedy search is the simplest method among the decoding methods. Similar to
the Maximum Likelihood Method (MLE), the greedy search algorithm selects the most
likely token as the next word at each step.

wT = argmaxw(P (w|w1:T−1) (2.14)

Some of the drawbacks of this method are:

• It may not be able to find the global optima, since it does not consider other
options that could result in better outcomes;

• It can be prone to errors because one wrong choice can influence the rest of the
generation and lower the output quality;

16

Figure 2.4: The probability assigned to the next token by beam search versus by humans.
The human-selected tokens have much higher variance in predicted probability and are
thus more surprising [HBD+20].

2.3.2. Beam Search

Beam search addresses the above issue by involving the memory mechanism in the
generation procedure. Given the beam number nbeam, The Beam search would save the
most likely nbeam next tokens in memory, and append them onto the current sequence
candidates. The beam search will use the stored memory to build a search tree and then
produce the best possible sequence as the output. A common issue with the beam search
result is that it might repeat itself and run into an endless loop. And using the n-gram
penalty in beam search is a way to avoid that issue [KKD+17] [PXS17]. An n-gram is a
sequence of n words or symbols, like “apple tree” (2-gram) or “wake up early” (3-gram).
An n-gram penalty is a parameter that penalizes the score of a candidate sequence if it
contains repeated n-grams. The purpose of using the n-gram penalty in beam search is
to reduce the likelihood of generating redundant or unnatural sequences. A drawback
of the Beam search technique is that the Beam search output is too regular and does
not resemble natural language [HBD+20]. A clear evidence is shown in Figure 2.4 from
[HBD+20].

2.3.3. Top-K Sampling & Top-P Sampling

The Top-K or Top-P Sampling means introduces more randomness into the generation
procedure. Unlike the search strategies, the sampling methods would arbitrarily select
from a set of most likely next tokens. The Top-K Sampling sort the possible next
tokens by their probability and performs random selection. By doing this, the words
with low probabilities in the distribution’s tail are discarded and have no possibility of
being picked. On the other hand, unlike Top-K sampling, Top-p sampling (or nucleus
sampling) does not constrain the number of tokens to consider but picks from the smallest

17

Figure 2.5: Unsupervised machine translation.

set with a cumulative probability higher than p.

2.4. Unsupervised Machine Translation (UMT)

We briefly introduce some recent progress in the field of unsupervised machine trans-
lation, in order to provide a thorough explanation of our inspirations. As an old and
classic research topic in the NLG area, machine translation has drawn much attention
and has been put under thorough investigation. Many models require a substantial quan-
tity of parallel data, particularly in the form of parallel sentences, to achieve their best
performance. As a result, several researchers concentrate on unsupervised techniques,
due to the lack of paralleled data. The two papers published by the Meta (formerly
Facebook) AI team [LCDR18, LOC+18] are among the most impressive unsupervised
learning works, and their model structure and ideas have profoundly inspired me in this
project.

2.4.1. Unsupervised Machine Translation

In their first work [LCDR18] on this topic, they proposed the Neural Unsupervised Ma-
chine Translation Model. The model leverages the seq2seq language models and the
back translation mechanism. As shown in Figure 2.5, the translation model consists of
two components, the Encoder and the Decoder, the Encoder maps the input sequence
(from the source language) to the latent space and the Decoder maps from the latent
space to the target language, the back translation model works vice versa. The trans-
lation models are trained to translate by reconstructing both languages while matching
the latent space.

In their second paper [LOC+18], the authors improved the model by proposing an
unsupervised strategy and also highlighting the three essential elements that a successful
unsupervised translation model should have:

• Initial bilingual dictionary or phrase-based translator;

• Leveraging strong language models;

• Turning the unsupervised problem into a supervised problem by automatically
performing the back-translation procedure;

18

Figure 2.6: The three principles of the UMT.

The authors followed the above three principles and proposed their second research.
Their model consists of a < source − target > translator and a < target − source >
back-translator, as shown in Figure 2.6.

The MT system first aligns the unparalleled monolingual datasets by applying the
word level or phrase-based translation. The dictionary or phrase-based translation is
considered the initial translation model. Then a language model for each language is
learned independently on its corpus, the language model is used later for reformatting
and denoise the translated data. The third step is to iteratively perform the translation
and back translation based on the generated < source− target > pairs, and use the lan-
guage model on monolingual data to improve the quality of generation. The translation
model is a seq2seq model that has an entire encoder-decoder structure. In order to match
the semantic space of both languages, the encoder/decoder representation is shared
across the source and target languages. The loss function for each translation model is
defined as the reconstruction of the whole procedure: source → target → source and
target → source → target. Specifically, the loss function is defined as the expectation of
the probability of successfully reconstructing the natural sentences from their translated
result conducted by the translation models.

2.5. Paper-to-slide Generation

The challenge of producing slides to accompany academic papers has not been thor-
oughly investigated and poses a significant difficulty. Earlier researcher mainly focuses
on rule-based methods, their works focus on selecting the most important sentences and
re-organize them. However, this approach highly relies on a set of predefined rules or
heuristics that are based on human expertise or domain knowledge. To address that
issue, some statistical learning-based methods are proposed. The majority of those sta-
tistical learning algorithms first compute the importance of sentences and create a set of
heuristics that can be used to group these sentences together as the output slides. The
drawbacks of statistical learning approaches are that they could only produce extractive
summarization instead of abstractive summarization [HW15]. More recent approaches
such as the D2S model [SHW+21] and the DOC2PPT model [FWMS22] are using neural
networks on both sentence selection and summarization tasks. The DOC2PPT model
used a gated recurrent neural network (GRU) to group the sentence and a sentence-level

19

Figure 2: An overview of our architecture. It consists of
modules (DR, PT, OP, PAR) that read a document and gen-
erate a slide deck in a hierarchically structured manner.

slide. It also predicts the location and the size of each
object to be placed on the slide;

• A Paraphraser (PAR) takes the selected sentence and
rewrites it in a concise form before putting it on a slide.

Notation. A document D is organized into sections S =
{Si}i∈Nin

S
and figures F = {F inq }q∈Min

F
. Each section

Si contains sentences T ini = {T ini,k}k∈Nin
i

, and each fig-
ure Fq = {Iq, Cq} contains an image Iq and a caption
Cq . We do not assign figures to any particular section be-
cause multiple sections can reference the same figure. A
slide deck O = {Oj}j∈Nout

O
contains a number of slides,

each containing sentences T outj = {T outj,k }k∈Nout
j

and fig-
ures Foutj = {F outj,k }k∈Mout

j
. We encode the position and

the size of each object on a slide in a bounding box format
using an auxiliary layout variable Lj,k, which includes four
real-valued numbers {lx, ly, lw, lh} encoding the x-y offsets
(top-left corner), the width and height of a bounding box.

Model
Document Reader (DR). We extract sentence and fig-
ure embeddings from an input document and project them
to a shared embedding space so that the OP treats both
textual and visual elements as an object coming from a
joint multimodal distribution. For each section Si, we use
RoBERTa (Liu et al. 2019) to encode each of the sentences
T ini,k, and then use a bidirectional GRU (Chung et al. 2014)
to extract contextualized sentence embeddings Xin

i,k:

Bini,k = RoBERTa(T ini,k),

Xin
i,k = Bi-GRU(Bini,0, ..., B

in
i,Nin

i −1
)
k
,

(1)

Similarly, for each figure F inq = {Iinq , Cinq }, we apply
ResNet-152 (He et al. 2016) to extract the image embedding

of Iinq and RoBERTa for the caption embedding of Cinq . We
then concatenate them as the figure embedding V inq :

V inq = [ResNet(F inq),RoBERTa(Cinq)]. (2)

Next, we project Xin
i,k and V inq to a shared embedding us-

ing a two-layer multilayer perceptron (MLP) and combine
Etxti and Efig as the section embedding Eseci of Si:

Etxti,k = MLPtxt(Xin
i,k), Efigq = MLPfig(V inq),

Eseci = {Etxti,k , E
fig
q }k∈Nin

i ,q∈Min
F

(3)

We include all figures F in each section embedding Eseci
because each section can reference any of the figures.

Progress Tracker (PT). We define the PT as a state ma-
chine operating in a hierarchically-structured space with sec-
tions ([SEC]), slides ([SLIDE]), and objects ([OBJ]). This is
to reflect the structure of documents and slides, i.e., each
section of a document can have multiple corresponding
slides, and each slide can contain multiple objects.

The PT maintains pointers to the current section i and the
current slide j, and learns a policy to proceed to the next sec-
tion/slide as it generates slides. For simplicity, we initialize
i = j = 0, i.e., the output slides will follow the natural or-
der of sections in an input document. We construct PT as a
three-layer hierarchical RNN with (PTsec,PTslide,PTobj),
where each RNN encodes the latent space for each level in
a section-slide-object hierarchy. This is a natural choice to
encode our prior knowledge about the hierarchical structure.

First, PTsec takes as input the head-tail contextualized
sentence embeddings from the DR, which encodes the over-
all information of the current section Si. We use GRU for
PTsec and initialize hsec0 to the contextualized sentence em-
beddings of the first section, i.e., hsec0 = [Xin

0,1, X
in
0,Nin

0 −1
]:

hseci = PTsec(hseci−1, [X
in
i,1, X

in
i,Nin

i
]), (4)

Based on the section state hseci , PTslide models the
section-to-slide relationships:

asecj , hslidej = PTslide(asecj−1, h
slide
j−1 , E

sec
i), (5)

where hslide0 = hseci , Eseci is the section embedding (Eq. 3),
and asecj is a binary action variable that tracks the section
pointer, i.e, it decides if the model should generate a new
slide for the current section Si or proceed to the next section
Si+1. We implement PTslide as a GRU and a two-layer MLP
with a binary decision head that learns a policy φ to predict
asecj = {[NEW SLIDE],[END SEC]}:

asecj = MLPslideφ ([hslidej ,
∑

r
αslidej,r Eseci,r]),

αslidej = softmax(hslidej W (Eseci)ᵀ).
(6)

αslidej ∈ RNin
i +Min

is an attention map overEseci that com-
putes the bilinear compatibility between hslidej and Eseci .

Finally, the object PTobj tracks which objects to put on
the current slide Oj based on the slide state hslidej :

aslidek , hobjk = PTobj(aslidek−1 , h
obj
k−1, E

sec
i),

aslidek = MLPobjψ ([hobjk ,
∑

r
αobjk,rE

sec
i,r]),

αobjk = softmax(hobjk W (Eseci)ᵀ).

(7)

Figure 2.7: An overview of the DOC2PPT architecture.

summarizer to generate the bullet points. On the other hand, D2S uses a keywords mod-
ule to select information and a Question Answer module to generate the slide contents.
[SHW+21] [FWMS22]

2.5.1. DOC2PPT

We have drawn inspiration from the DOC2PPT model in our research, and as such, I
will provide a brief overview of its model structure. The DOC2PPT model is composed
of multiple blocks, including the document reader, progress tracker, object placer, and
paraphraser. The progress tracker and paraphraser blocks are particularly essential
in facilitating document comprehension. The document reader block utilizes a GRU
seq2seq model to accommodate any input length, each input sentence is passed to the
GRU model to encode the tokens into vectors. The progress tracker block track and
evaluates each sentence in the input document to determine its suitability for inclusion
on a new slide. The object placer block assigns labels to each sentence to determine its
appropriate position on a slide. Finally, the paraphraser block takes the selected sentence
and condenses it into a more concise form before placing it on the slide. The author
of the DOC2PPT model evaluates the model’s performance in two aspects: structural
loss and content loss. The structure loss is computed using cross-entropy loss of content
assignment actions (page turning and bullet point assignment). The content loss is

20

the sum of selection loss (whether the keywords or important sentences are selected for
slide generation), Paraphrasing loss (cross-entropy loss of the word-word comparison of
the generated language and the ground truth), Text-Figure matching loss, and Layout
loss. The latter two terms are evaluating multi-model performance across the vision and
language. The final loss is the sum of the content loss and the structural loss.

LDOC2PPT = Lcontent + Lstructure (2.15)

One of the major drawbacks of the DOC2PPT model is that the paragrapher block
can only rephrase sentences but not paragraph-level summarization, consequently, it
fails to capture the hidden global dependencies necessary for bullet point generation.
Besides, DOC2PPT employed a complex system that designed the loss function to con-
sider both structural and content-wise differences between predictions and labels. This
involved combining the two aspects into a single training loss, but the challenge arose in
determining the appropriate weights for each part. This resulted in significantly unequal
contributions to the gradient during training, leading to the model’s failure to fulfill the
author’s promise of excelling in both segmentation and summarization tasks.

Day 0:
F.X. visited Meng Chang Jun due to his reputation for hospitality and was kindly offered ten
days of lodging.

Day 10:
Meng Chang Jun heard from a servant that F.X. sings “With sword on my knees, I eat no
fish.”, Meng Chang Jun upgraded his accommodations and provided fish for meals.

Day 15:
Meng Chang Jun heard from a servant that F.X. sings “With sword on my knees, I ride no
carriage.”, Meng Chang Jun upgraded his accommodations and provided F.X. with a
carriage.

Day 20:
Meng Chang Jun heard from a servant that F.X. sings “With sword on my knees, I call no
place home.”, Upon hearing this, Meng Chang Jun became displeased.

—————— selected from 史记:孟尝君列传 (Records of the Grand Historian: Story of Meng Chang Jun)

Day 00

Day 10

Day 15

Day 20

Figure 2.8: Example of paragraphs in monthly report and in history text.

The DOC2PPT framework has another notable drawback related to its use of the
RNN-based network structure as a Document Reader module for segmentation. Unfor-
tunately, the RNN-based structure has shown limitations in handling long-range depen-
dencies and, as a result, struggles to capture the necessary context information. Con-
sidering that global context plays a crucial role in proper segmentation, this becomes
a significant drawback. In different contexts, the appropriate segmentation of a given
piece of text can vary significantly. For instance, a text describing a man’s activities on
Day 0, Day 10, Day 15, and Day 20 may need to be divided into four segments in a
monthly report. However, the same text should be considered as a cohesive whole in a
biography. Figure 2.8 illustrates an instance where a selected text recounts the tale of

21

an ancient nobleman named Meng Chang Jun, forming friendships with his followers.
This excerpt is taken from the biography of Meng Chang Jun within "Shiji", a collection
of historical records encompassing a vast 2,500-year period. Notably, it is trivial that
any segmentation of Meng Chang Jun’s story should refrain from dividing the provided
text into four separate parts.

2.5.2. D2S

For the purpose of our comparative experiment with the D2S model, it is essential to
provide an overview of the D2S model’s structural components. Diverging from the
DOC2PPT model, the D2S model operates within a framework centered on closed-
domain question answering. The D2S system is composed of three key modules: a
keyword module responsible for capturing the hierarchy of article sections through their
titles and contents, an information retrieval (IR) module designed to detect relevant
information, and a question-answer module focused on generating slide content. In
the slide generation process, users input their desired slide titles, prompting the IR
module to identify relevant keywords by comparing word embeddings based similarity
and Levenshtein distance. These keywords are then matched with section titles using
the keyword module, which subsequently extracts content from corresponding sections.
Finally, the QA module is applied to generate the actual slide content.

Scientific Paper
Dense Vector IR Module

Experiments

Slide Title

Keywords Module
Hierarchy Structure of Section Headers

Introduction

Related Work

……

Experiments
……

h1
h2

h3

h4

h5

h6

Segment 1

Segment 2

Segment 3
……

QA Module
Query Context

Experiments Segment 1

Segment 3
……

h3
h4

h5
h6

Output

Experiments

Extracted
Figure

Figure
Extraction
Module

Table1

Figure 2: System architecture of our D2S framework.

that slide titles contain a higher proportion of novel
n-grams compared to slide contents. Some exam-
ples of novel n-grams in slide titles are: recap,
motivation, future directions, key question, main
idea, and final remarks. Additionally, we found
that only 11% of slide titles can match to the sec-
tion and subsection headings in the corresponding
papers.

4 D2S Framework

We consider document-to-slide generation as a
closed-domain long-form question answering prob-
lem. Closed domain means the supporting context
is limited to the paired paper. While traditional
open-domain QA has specific questions, nearly
40% of our slide titles are generic (e.g., take home
message, results). To generate meaningful slide
contents (answers) for these titles (generic ques-
tions), we use title-like keywords to guide the sys-
tem to retrieve and generate key bullet points for
both generic titles and the specific keywords.

The system framework is illustrated in Figure 2.
Below, we describe each module in detail.

4.1 Keyword Module

The inspiration for our Keyword Module is that
paper often has a hierarchy structure and unspeci-
fied weak titles (e.g., Experiments or Results). We
define weak titles as undescriptive generic titles
nearly identical to section headers. The problem
with these generic section headers is the length of
their sections. Human presenters know to write
content that spans the entire section. E.g., one may
make brief comments on each subsection for a long

Experiments section. For that, we use the keyword
module to construct a parent-child tree of section
titles and subsection headings. We use this hierar-
chical discourse structure to aid our D2S system
to improve information retrieval (Section 4.2) and
slide content generation (Section 4.3).

4.2 Dense IR Module

Recent research has proposed various embedding-
based retrieval approaches (Guu et al., 2020; Lee
et al., 2019; Karpukhin et al., 2020) which out-
perform traditional IR methods like BM25. In our
work, we integrate the leaf nodes of the parent-child
trees from the keyword module into the reranking
function of a dense vector IR system based on a
distilled BERT miniature (Turc et al., 2019).

Without gold passage annotations, we train a
dense vector IR model to minimize the cross-
entropy loss of titles to their original content (taken
from the original slides) because of their similarity
to paper snippets. For a given title t, we randomly
choose slide contents from other slides with differ-
ent titles as the negative samples.

We precompute vector representations for all
paper snippets (4 sentence passages) with the pre-
trained IR model. We then apply this model to
compute a same-dimension dense vector represen-
tation for slide titles. Pairwise inner products are
computed between the vectors of all snippets from
a paper and the vector of a slide title. We use these
inner products to measure the similarity between
all title-snippet pairs, and we rank the paper pas-
sage candidates in terms of relevance to a given title
with the help of Maximum Inner Product Search

Figure 2.9: System architecture of D2S.

The IR module and the QA module undergo distinct training procedures, both re-
quiring substantial data preparation and relying on tricky assumptions. For instance,
during training, the IR module aims to minimize cross-entropy loss between slide titles
and their corresponding contents on the same page. The underlying assumption here is
that slide contents should closely resemble the article’s contents, therefore aligning with
the intended purpose of the IR module. However, the validity of this assumption remains
unverified and introduces a potential for misguiding the model’s training process.

Another major drawback of the D2S model is that users had to input slide titles to
enable the system to extract the most relevant information from the paper and further
generate the slides. This interactive design sacrificed efficiency in production and also

22

posed a limitation as users who were not well-acquainted with the paper might not
obtain the desired output.

In conclusion, both the D2S and DOC2PPT frameworks from previous studies exhibit
redundant system designs, which substantially elevate the complexity of their respective
frameworks. Consequently, this results in considerable difficulties during the training
and deployment phases. However, the optimization framework of reconstruction loss
proposed in our study offers a notable solution to this issue and, remarkably, achieves
superior performance compared to the aforementioned approaches. In section 3 and
section 4, we will introduce the implementation details and report the comprehensive
test results, drawing insightful comparisons with existing approaches.

2.5.3. Supervised Approach Limitations

An important decision we made during our model’s implementation process was to utilize
unsupervised learning, even though there are a few accessible datasets for the paper-
to-slide generation task. Within this section, we perform a comparative analysis of
various training frameworks used in prior research and contrast them with our approach,
highlighting the advantages inherent in our chosen methodology.

The first issue stems from the limited size of the publicly available dataset, which
poses a challenge for training modern large language model (LLM) powered software
from scratch. Notably, modern LLMs commonly encompass more than 300 million
parameters, while all existing paper-to-slide datasets consist of merely 1000 to 10000
training data pairs. This quantity is insufficient to initiate comprehensive pre-training
of a model or even to adequately support fine-tuning efforts.

Furthermore, there is an additional challenge due to the limitations on input length
for affordable language models. For instance, the GPT-3 model has a maximum input
length of 2048 tokens, while the utilized Bart model’s limit is 1024 tokens, equivalent
to about 700-800 words. Given that typical research papers span between 4000 to
6000 words, the previous approach in the field involves breaking down the article into
segments before applying the language model for generating slides. Building on this
notion, the language model necessitates training on a dataset where each data point
comprises matched slide content and its corresponding article content. In this con-
text, the DOC2PPT model establishes this dataset by leveraging a fine-tuned BERT
model, RoBERTa [LOG+19], to extract word embeddings from sentences within slides
and documents. Subsequently, these sentences are matched based on cosine similarity.
Conversely, the D2S model formulates a ranking function for mapping slide titles to
corresponding paper content. This function, known as the Information Retrieval (IR)
module, is trained on slide titles and their associated contents from the same page. How-
ever, these approaches are intricate and rely on a simplistic word embedding similarity
approach. This similarily based approach is based on the idea that the content of the
slides should closely resemble the content of the article, which is in line with the main
goal of the IR module. Consequently, they can lead to the generation of a dataset with
substantial noisy labels and exert significant influence on the performance of models
trained on such data.

In our proposed framework, we employ unsupervised learning techniques as a means
to address these challenge. This approach circumvents the requirement of meticulously

23

aligning parallel data to construct the dataset, streamlining the data preparation process
and significantly simplifying the software architecture. As a result, we are able to achieve
enhanced performance without the burden of explicitly paired but also noisy training
examples.

24

Chapter 3

Method

Within this section, we present the implementation of our proposed software. We will
commence by providing an introduction to the key data processing components within
the software, encompassing both the pre-processing and post-processing units. Follow-
ing this, we will present an innovative and actionable redefinition of the paper-to-slides
problem. This new perspective enables us to address the challenge through a systematic
optimization framework. Lastly, we will give an overview of the Paper2Slides model,
which serves as a core component of the proposed software. This involves a detailed
presentation of the implementation and training details for each of the sub-models inte-
grated into the software.

 Paragraphs

“...” “...” “...”X….......................
...........................
X..........................
.............................
.............................
.............X.............
.............................
....................

 Preprocessing Unit

Greedy Optimizer

 Optimal Segmented Article Content

“...” “... ...” “...”

“...”

S-E Stack

...
 Article

Summarizer Model Postprocessing Unit

...

* ……..
* ……

* ……..
* ………….

* ……..
* ……

* ……..
* ………….
* ……

* …
* ………….

...

 Figures

 Figures

 Slides

Figure 3.1: We present Paper2Slides, a model designed to create a slide deck from a
scientific paper document.

The structure of the proposed software is shown in Figure 3.1. Begin by providing
a scientific paper in PDF format, which then undergoes a sequence of three stages:
preprocessing, model generation, and postprocessing. Ultimately, this series of steps

25

results in the generation of a corresponding presentation.

3.1. Data Processing

When conducting research in the field of natural language, it is customary to work
with an input dataset comprising text that is often encoded in a user-friendly format
like .txt or .json. As a result, for the implementation of our proposed software, it
becomes imperative to develop a data reader program. This program serves the purpose
of transforming raw data into a format that can seamlessly integrate into our research
workflow. Simultaneously, to generate the desired slide-format output, an additional
post-processing component is required. This post-processing unit plays a crucial role in
converting the content generated by our system into a finalized PDF format.

3.1.1. Pre- & Post-Processing

The PDF reader utilized in this project consisted of two primary phases: text processing
and detection of figure-like objects. The first phase was accomplished using the GROBID
software, while the second part involved the application of the PdfFigures2 software.
To prepare the data for processing, the initial step required input files in .pdf format.
After the first processing step, the output was a text string containing all the text from
the document’s body. In the subsequent step, the software created a separate directory
containing the identified image-like objects.

GROBID. GROBID is software that focuses on scientific document processing and in-
formation retrieval. The link to this project is https://github.com/kermitt2/GROBID.
The GROBID function is actively under maintenance and it has shown solid results.
The GROBID model may remove from body texts a variety of unnecessary texts, includ-
ing footers, headers, and table contents[GRO23].

PdfFigures2. The D2S research employs an AI model called the Pdffigures 2.0
model. This tool is utilized to detect ‘Figure-like’ objects, such as figures and ta-
bles (excluding formulas), within a .pdf document. Furthermore, it can accurately
identify embedded images along with their corresponding captions (as mentioned ear-
lier). Further information is available in their paper [CD16]. We explored the capa-
bilities of the Pdffigures 2.0 tool by conducting tests on various .pdf documents.
Our testing revealed that Pdffigures 2.0 effectively provides accurate and complete
pairwise results for detecting pictures and tables. The software has its own output
datatype. The program can take multiple document inputs and returns a list of values
[page_number, bounding_box_figure, texts_in_figure, ...] for each detected im-
age.

The processed results are utilized by the Paper2Slide model to generate content, and
this content is then integrated by the post-processing unit to create slides. To achieve
this, we employ a LaTeX compiler, using a predefined template. Once the paper-to-slide
model produces textual slide content, it is inserted into the template along with figure-
like objects. Subsequently, the LaTeX file is compiled, resulting in the final outputted
slides.

26

https://github.com/kermitt2/GROBID

Figure 3.2: The Pdffigures 2.0 result.

3.2. Paper-to-Slide Problem

To tackle the limitation of the existing works, we approach the task of paper-to-slide
generation as an optimization problem focused on minimizing information reconstruction
loss. This approach is detailed in the upcoming sections. We start by formulating a
redefined research question and subsequently progress through a sequence of structured
steps to arrive at our proposed solution.

3.2.1. Task Re-Introduction

In the Introduction section, we presented our objective of developing software capable
of generating presentation slides from scientific papers in PDF format. To provide a
clearer understanding of the task, we intend to define it within the context of informa-
tion extraction. Previous research has suggested that this task comprises two distinct
components: structural decomposition (segmentation) and slides’ content generation
(summarization). However, this design leads to an overflowing and redundant ML sys-
tem structure, significantly increasing the complexity of the task. Upon reconsideration,
we propose a different perspective. We claim that the essence of the paper-to-slides gen-
eration task lies in extracting the most valuable information and presenting it
in the form of slides, and we will illustrate later how redefining the research question
enables a unified framework to address both segmentation and summarization.

To identify the most valuable information within a given paper, we recognized the
necessity for a robust method to measure information quantity, leading us to introduce
the reconstruction loss as a key metric. Through the adoption of the reconstruction
loss as an information measure, we effectively reformulate the problem of extracting the
most valuable information into an optimization problem. This optimization task entails
simultaneously determining an optimal text segmentation and generating the most infor-

27

mative summaries for each segmented section. By unifying the structural decomposition
(segmentation) and content generation (summarization) tasks under the framework of
reconstruction loss, we present a cohesive and scientifically rigorous approach to address
this complex challenge.

3.2.2. Summarizer-Expander Structure

When considering the information contained within the text, the first question arises:
How can we effectively describe or measure the quantity of information embedded in
textual language? To answer this question, we turn to summarization models as valuable
tools, which serve as useful indicators of the most essential information within a given
text.

 Text Summary

“Symbolic or Formal Logic—I shall use these terms as synonyms—is the
study of the various general types of deduction. The word symbolic
designates the subject by an accidental characteristic, for the employment
of mathematical symbols, here as elsewhere, is merely a theoretically
irrelevant convenience. The syllogism in all its figures belongs to Symbolic
Logic, and would be the whole subject if all deduction were syllogistic, as

the scholastic tradition supposed. ”

“With an unwavering commitment to excellence, our team of trailblazers
fuels the engine of innovation. We paint the canvas of success with bold
strokes of brilliance, creating a symphony of achievement that reverberates
across industries. Embrace the enigmatic fusion of creativity and
cutting-edge technology, and witness the transformation of your aspirations
into reality. This is not just a journey; it's a breathtaking expedition to the
pinnacle of greatness.”

{
 "summary": The paragraph emphasizes a
 team's commitment to excellence
 and innovation.
}

{
 "summary": Symbolic Logic studies general
 types of deduction, including
 the syllogism in all its
 figures.
}

Figure 3.3: Examples of text containing different quantities of information and their
corresponding generated summaries. The text in the blue textbox is extracted from
Bertrand Russell’s book, The Principles of Mathematics [Rus20]; the text in the red
textbox is dummy text generated by GPT-3 using the prompt: Can you behave like
a bullshit generator and give some long texts like paragraphs that have very low in-
formation content and are often found in marketing materials, corporate slogans, or
motivational speeches, designed to sound impressive without conveying substantial con-
tent.

Summarization tasks can be viewed as an effort to capture the main ideas and con-
cisely articulate them in human language. For example, texts with high information
density present a greater challenge for summarization compared to texts with lower
information density, even when both texts share the same length. Observing the ex-
ample shown in Figure 3.3, we can discover the contrast between a highly informative
paragraph and one lacking substance. A less meaningful paragraph tends to employ
buzzwords, cliches, and vague phrases that may sound impressive but lack specificity
and meaningful content. Consequently, the generated summary for such paragraphs can
easily capture the main idea due to the relative simplicity of the text. On the other

28

“Self-attention is an attention mechanism relating
different positions of a single sequence in order to
compute a representation of the sequence.”

{
 "expand": Self-attention is an attention mechanism relating
 different positions of a single sequence in order
 to compute a representation of the sequence.
 Self-attention is used to compute the
 representation of a sequence of sequences. Self
 attention can be used in a number of ways to
 compute different positions in a sequence.
}

 Text Expanded

Figure 3.4: Examples of an expander models input and output.

hand, paragraphs with a higher information density pose challenges in summarization,
inevitably leading to some loss in the summarization process. In conclusion, the varying
quantities of information present in the texts affect human understanding, thus influenc-
ing the lengths and quality of summaries generated by both the AI model and humans.
The results obtained from summarization might lead humans to easily assess whether
the original text contains substantial information or not. However, this method does not
provide a quantified approach for measuring the actual quantity of information present
in the text.

Taking a further stride in our investigation, we extend our focus beyond solely the
summarization model to include an expander model. The expander model is a func-
tional construct capable of generating longer text based on the information contained in
a shorter text. Notably, in numerous instances, the expander model incorporates infor-
mation that is inferred from or logically related to the original text, thereby augmenting
the quality of the output. Figure 3.4 shows an example of how the expander model
works.

 Summarizer Model

“...”

Expander Model
tensor(
 [[...], [...], ...]
)

“... … …”

“... … …”

tensor(
 [[...], [...], ...]
)

Decode Decode

Text

 Text Text

 Probability Probability

Figure 3.5: Visualized stacked S-E structure.

With the expander model at hand, we can now delve into the concept of reconstruc-
tion loss. The idea behind reconstruction loss is straightforward: consider a pair of
models, a summarizer model, and an expander model (referred to as the S-E pair), in an
ideal scenario, these models would be perfect, surpassing all others in their respective

29

summarization and expansion tasks, providing optimized outputs for any given task.
By stacking this perfect S-E pair, we define a function where, for any textual input,
the summarizer model generates a concise summary as an intermediate representation,
compressing the information into a shorter length of text, and then the expander model
works to expand this summary back to the original text, striving to preserve its essence
faithfully. While a perfect S-E pair would effortlessly summarize any text and faith-
fully expand it back to the exact input, ensuring the existence of such a perfect pair
remains uncertain. Thus, in practice, we typically utilize a pair of non-perfect summa-
rizer and expander models, which often results in a difference between the input and
generated texts. We define the difference as the reconstruction loss. It is important
to note that, as discussed in the previous paragraphs, reconstruction loss exhibits the
following properties:

• When using a stronger S-E pair for a particular paragraph of text, the reconstruc-
tion loss will be smaller;

• In the case of a specific S-E pair, a less informative input is likely to result in a
smaller reconstruction loss;

• With a fixed length limit of the intermediate representation and considering a
specific S-E pair, longer inputs tend to have a larger reconstruction loss.

• Without proof, we hypothesize that for a particular S-E pair, a sequence of logically
coherent paragraphs would exhibit a smaller reconstruction loss compared to a text
with greater logical incoherence. This hypothesis is very important and will be
verified in the 4.3 section

3.2.3. Reconstruction Loss

Drawing on the thought experiment presented in the previous paragraph, we provide
a mathematical definition of the reconstruction loss and subsequently demonstrate the
unified optimization framework for the slide generation task.

For a piece of text t, and the S-E pair S(·), E(·), the reconstruction loss is defined
as follows:

reconstractionLoss(t) = CrossEntropy(E(S(t)), t) (3.1)

Note that both the summarizer and the expander are language models, therefore,
their outputs are probabilities, hence we could use the cross entropy loss to measure the
difference. Figure 3.5 shows how the reconstruction loss is computed through a stacked
S-E structure.

It is important to note that the position of E(·) and S(·) in the term E(S(t)) can
not be switched, because the S-E structure’s purpose is to compress information into
a narrower channel, retaining only the essential details while filtering out irrelevant in-
formation. A similar structure of the S-E stack in the machine learning area is the
auto8 ;encoder model, which is a type of neural network architecture that is designed
for a compressed representation or encoding of the input data in a lower-dimensional
space, known as the bottleneck layer. because the S-E structure’s purpose is to compress
information into a narrower channel, retaining only the essential details while filtering

30

out irrelevant information. a key difference between the S-E stack and the autoencoder
model is that the S-E stack cannot be trained end-to-end. In the autoencoder model,
there are no restrictions on the intermediate representations, whereas, in the S-E stack,
the intermediate representations must be language model probabilities that can be de-
coded into human language. Given the potential negative impact on the model’s ability
to generate human language, it is not recommended to pursue end-to-end training of
the S-E model.

Recalled that we defined the task of paper-to-slide generation as ‘extracting the most
valuable information and presenting it in the form of a slide’, and with the reconstruction
loss serving as a measurement of the information quantity, we can now reformulate the
paper-to-slide generation task as the following optimization problem:

seg∗ = argminseg∈S

ti∑
reconstructionLoss(ti) (3.2)

where the symbol seg represents a segmentation method applied to the textual con-
tent of the paper. This method divides the content T into separate ‘blocks’ denoted as
ti, such that their union forms the whole content of the paper. The set S includes all
the valid ways we can divide the content, following certain rules. For example, the rules
ensure that no paragraph is split into multiple blocks, each block covers only one section
at most, and that there is a maximum length limit for any block.

The solution to the optimization problem, denoted as seg∗, is referred to as the
optimal segment. Utilizing this, we can generate slides that capture the most valuable
information as follows: For each page in the slides, the content is produced by decoding
the output from the summarizer models, using the blocks ti as input. The block ti acts
as the receptive field for the generated content.

tsi = decode(S(ti)) (3.3)

In the software, we decided to use the BART (Bidirectional and Auto-Regressive
Transformers) model as both the summarizer and expander model, as the sponsoring
company possessed experience in fine-tuning and deploying the BART model. For the
summarizer, we take the Bart-large-CNN model as the pre-trained model, which is
pre-trained on the CNN Dailymail Dataset [SLM17, HKG+15], expecting to take some
advantage of its proven summarization ability [LLG+19]. We have found no existing
expander model, therefore we decide to train it from scratch. The details of the Pa-
per2Slides model design will be given in the next section.

3.3. Paper2Slides Model

In this section, we delve into the specifics of implementing and training the sub-models
within the Paper2Slides framework. We initiate with a concise overview of how the
stacked S-E structure is implemented, along with the pre-training of the S-E stack
performed on the expander model. Subsequently, we break down the S-E stack and
proceed to fine-tune its components in parallel, employing the training methodology put
forth in the Unsupervised Machine Translation literature. Following this, we provide

31

a comprehensive account of the greedy algorithm utilized to address the optimization
challenge of the reconstruction loss.

3.3.1. Pre-training S-E Stack

As mentioned earlier, the S-E stack plays a crucial role in computing the reconstruction
loss and achieving a more convincing measurement of information quantity. To ensure
maximum effectiveness, both the summarizer model and the expander model need to be
highly powerful. Therefore, we selected the most potent pre-trained model as our sum-
marizer and fine-tuned it. However, since there were no pre-trained expanders available,
we took on the task of pre-training one from scratch. For both summarization and ex-
panding tasks, we utilized the BART model [LLG+19] as the underlying neural network
structure. The decision was primarily driven by practical reasons, as the sponsoring
company possessed experience in fine-tuning and deploying the BART model. To train
the stacked S-E models, we used the CNN Daily Mail dataset[SLM17, HKG+15], which
contains a large collection of English news articles and their corresponding highlights.
While originally designed for machine reading and abstractive question answering, this
dataset has found extensive application in training abstractive summarization models.

Figure 3.6: Pre-training the stacked S-E structure

We implement the S-E function in the following way: During the inference phase,
for any text input, we first employ the Bart tokenizer to break down the text into
tokens. These tokens are then fed into the summarizer model. Instead of decoding
probabilities generated by the summarizer model, we directly input these probabilities
into the expander model. However, we used an unusual way in our training phase. When
provided with a pair of ⟨article, highlight⟩, we first fed the articles into the summarizer
model, and then we utilized the outputs from the summarizer model as inputs for the

32

encoder in the expander model, while the highlights serve as input for the decoder in
the expander model. Subsequently, we calculate the loss by comparing the output of the
expander model with the ground truth labels.

In practice, we employ the Bart-Large-CNN checkpoint as the initial weight for
our summarizer model. This choice is rooted in its popularity and extensive use as
a pre-trained model for summarization tasks. The Bart-large-cnn model is also fine-
tuned on the CNN DailyMail Dataset, regarding the expander model, we simply load
the Bart-large model’s weight for the transformer components and introduce a randomly
initialized linear layer as the language model head. This language model head is typically
added atop a pre-trained foundational language model, aiming to fine-tune it for a
specific task. As it is shown in Figure 3.6, training is only performed on the expander
model. We maintain the other parameters in a frozen state, excluding those within the
language model head. This effectively results in training solely the final layer. We tried
multiple training settings when fine-tuning our model on the CNN Daily Mail dataset
and selecting the best model based on its results on the validation dataset.

The assessment of the pre-trained S-E stack can be found in section 4.1. In conclu-
sion, we have pre-trained the expander model part in an S-E stack structure and got the
desired result. In the next section, we will give the details of finetuning the S-E stack
model on a scientific corpus, in order to get a stronger and more specialized model.

3.3.2. Fine-tuning S & E

Although we already have a pair of the summarizer and the expander models, we still
would like to finetune them on the scientific corpus to adapt our models to the domain
of scientific language. To achieve our objective, we utilize an unsupervised training
algorithm discussed in the literature review section. We do this for two main reasons:
Firstly, we couldn’t find an appropriate summarization dataset that specifically caters
to scientific language, which would have allowed us to separately train both models.
Second, as we stated in the reconstruction loss section, end-to-end training of the S-E
stack is not possible. If we were to fine-tune the S-E stack in an end-to-end manner, the
gradient of the loss function would propagate through the entire neural network, covering
both the summarizer and the expander models. Consequently, the summarizer model is
fully updated thereby potentially losing its capacity to generate fluent language, which
is to say, the model’s decoded output might become unintelligible. The core problem
here is the absence of a restriction that enforces the models to maintain the qualities of
a language model. As a result, the trained model could essentially turn into an encoding
model, producing compressed and vectorized representations for each input, without
retaining meaningful language characteristics.

Figure 3.7 below illustrates different training approaches leading to distinct training
paths. A significant portion of these paths only results in an encoding model, failing to
ensure that the output maintains its role as a language model.

To address the issue of training, we employed the Unsupervised Machine Translation
(UMT) algorithm. This algorithm is specially designed to train a pair of translation
models without the need for explicit supervision. Among the two translation models,
one model translates text from a source language to a target language, and the other
model performs the opposite translation. We utilized this algorithm to parallelly train

33

End-to-End Training
Encoder Model

Back Generation Training

Initial Summarizer Model

Fine-tuned Summarizer Model

Domain of Encoder Models
 Domain of Language Models

Figure 3.7: Different training methods could lead to different training results.

both the summarizer and the expander models. In this process, we broke down the S-E
stack into its individual components: the summarizer and the expander models. During
each iteration of training, both models were utilized to summarize or expand some given
piece of text, then the generated text and its source text are used as training input and
the label to train the other model. The process undertaken in a single training step is
shown in Figure 3.8. Drawing inspiration from the concept of back-translation, we refer
to this procedure as the back-generation step.

In practice, we perform the finetuning on the ‘Automatic Slide Generation from
Scientific Papers’ dataset, a corpus of 5000 paper-slide pairs and it is specifically designed
for presentation slide generation [SMWG21]. Although the articles and slides are paired
in the dataset, the paragraph and the bullet points are not, therefore, we select all
paragraphs in the articles that have more than 200 tokens and less than 1024 tokens
(which is the maximum input length of BART), these will be fed into the summarizer
models to generate the training data for the expander model, similarly, we select all
bullet points that have between 30 to 200 tokens and use the expander model to prepare
the training data for the summarizer model. During the whole finetuning procedure, we
performed 7 times the back-generation training, and the same training hyperparameters
are used across all 7 times: the number of epochs is 3, the batch size is 4, the learning
rate is 2e-6, and the optimizer is AdamW. After each back-generation training phase,
we update the models and prepare the training dataset for the next iteration.

Note although our training method is not exactly the same as the UMT algorithm
in terms of the model usage and training details, our training method actually matches
the three essential and necessary principles mentioned in the UMT work. First, we
have a pair of pre-trained models as initial ‘translater’ models. Second, both summarize
and expander models serve as strong language models. Third, at each training step,
we use one of the models to generate a training dataset for the other model and train
the other model under the back-generation step. This alignment with the fundamental
principles in our training methodology enables us to achieve the desired model enhance-
ment through unsupervised learning, even if our approach differs in certain aspects from
the UMT algorithm. Both models are presently accessible on the huggingface hub. As
of now, the summarizer model has downloaded more than 1400 downloads, and the

34

https://huggingface.co/com3dian/Bart-large-paper2slides-summarizer

 Paragraphs

 Summarizer Model “...” Expander Model“... … …”

 Paragraphs

“... … …”

“...” Expander Model “... … …” Summarizer Model

Cross Entropy Loss

tensor(
 [[...], [...], ...]
)

tensor(
 [[...], [...], ...]
)

 Bullet Points

“...”

Cross Entropy Loss

 Bullet Points

Back Generation &
Training
Expander Model

Back Generation &
Training
Summarizer Model

Figure 3.8: Back-generation step.

expander model has been downloaded over 300 times.

3.3.3. Greedy Optimizer

After pertaining and fine-tuning the S-E stack, we could finally focus on solving the
optimization problem we defined in section 3.2.3. Recall that the problem is

seg∗ = argminseg∈S

ti∑
reconstructionLoss(ti) (3.4)

where the symbol seg represents a segmentation method and ti are segmented blocks
from the input article. As the reconstruction loss has no closed-form representation, it
is trivial that the proposed problem is non-analytic. Similarly, we are unable to derive
a precise mathematical formula for the optimal segmentation, denoted as seg∗. In light
of this, we need to turn to iterative optimization methods that can dynamically adjust
and adapt, rather than relying on fixed procedures. Ultimately, we opted to utilize a
greedy search algorithm to uncover the solution, in order to take some advantage of its
efficiency in development and robustness in deployment. Moreover, it is important to
note that a neural network may also work on solving the optimization problem but that
would take much longer time to implement and exceed our expected time.

Before we start explaining how the greedy algorithm works, it’s crucial to lay out
the segmentation rules. These rules serve as governing principles, dictating the behav-
ior of the segmentation functions to align with our intended objectives. Here are the

35

https://huggingface.co/com3dian/Bart-large-paper2slides-expander

segmentation rules we follow:

• A paragraph serves as the fundamental segmentation unit, and it should not be
divided across multiple blocks.

• Each block should exclusively contain content from a single section within the
input article.

• The total tokens within a block should not exceed 1024. This constraint is at-
tributed to the input length restriction of the BART model.

With the rules now distinctly established, we can delve into the specifics of the
greedy algorithm. The inputs for this optimization process encompass the article’s text
including the titles and the contents of individual sections, as well as the user’s indicated
range for desired slide length. This range is bounded by two values, namely minpage
and maxpage. Importantly, minpage is expected to have a numerical value smaller than
maxpage, and maxpage should be lesser than the total count of paragraphs within the
input article.

“...” “...” “...” “...” “...” “...” “...” “...”Paragraphs

Difference in
Reconstruction
Loss

“...” “...” “... …” “...” “...” “...” “...”Updated
Blocks

*

Figure 3.9: The update rule of the greedy algorithm, the highest value of the difference
in reconstruction loss is marked with a *.

The greedy algorithm starts from the most subdivided state of the article, where
the article is fully decomposed into paragraphs. The algorithm computes and stores
the reconstruction loss associated with each paragraph. During each update cycle, the
algorithm computes and records the reconstruction loss for every pair of consecutive
paragraphs. This computation is performed under the condition that no rule is violated
after merging these two paragraphs into a single block within a segmentation. Following
this, the algorithm selects and concatenates the two consecutive paragraphs, denoted as
T ∗ = (t∗1, t

∗
2), that exhibit the highest difference in reconstruction loss before and after

merging them. This selection represents the optimal update, aimed at minimizing the
overall reconstruction loss.

Note that the aim of the greedy optimization algorithm is to minimize the global
reconstruction loss, therefore at each update step, the algorithm should compare the
difference in reconstruction loss before and after the update, denote as D(seg1, seg2),

36

D(seg1, seg2) =

ti∈seg1∑
reconstructionLoss(ti)−

ti∈seg2∑
reconstructionLoss(ti) (3.5)

In our greedy algorithm, the update is only performed on two paragraphs, T ∗ =
(t∗1, t

∗
2), in a segmentation, therefore the difference in reconstruction loss could also be

written as,

D(T) =

ti∈seg1∑
reconstructionLoss(ti)−

ti∈seg2∑
reconstructionLoss(ti)

= reconstractionLoss(t∗1) + reconstractionLoss(t∗2)− reconstractionLoss(T)
(3.6)

where the reconstruction loss is computed through the fine-tuned S-E stack. In the
rest of this paper, we will refer to D(T) simply as the difference in reconstruction loss
for a pair of paragraphs T = (t1, t2).

Applying formula 3.6, it becomes possible to compute the difference in reconstruction
loss by comparing the concatenated sequential paragraphs with the sum of reconstruction
loss of the same paragraphs taken individually. This computation can be efficiently done
using stored data, allowing for the identification of the optimal update based on the
difference in reconstruction loss, as depicted in Figure 3.9.

After each update, we assess whether the total number of blocks remains greater
than a given maxpage value. If this criterion is met, we repeat the previous step.
However, if the maxpage limit is reached, we modify the update rule. In this case,
we merge the consecutive paragraphs T ∗ = (t∗1, t

∗
2) that possess the highest D(T ∗),

exclusively when D(T ∗) is positive. Essentially, we only update the reconstruction loss
if this specific update results in a decrease in the global reconstruction loss. If no
such paragraphs satisfy these conditions, or if the minimum required number of pages
(minpage) is attained, the program is terminated.

Once we get the segmented texts, the segmented text subsequently undergoes pro-
cessing through the fine-tuned summarizer model to generate content for the slides.
The generated content is further refined by employing post-processing utility functions,
which transform the content into a LaTeX file. This file is eventually compiled into
slides, serving as the final output.

37

Chapter 4

Experiments

We offer an extensive assessment of the Paper2Slides framework, encompassing evalu-
ations of the main model and its sub-components. These evaluations involve multiple
dimensions, including gauging the performance of the pre-trained expander model on
the CNN-daily dataset, conducting human evaluations comparing the fine-tuned sum-
marizer model with the baseline Bart-large-CNN model, and executing a comprehensive
system-level comparison between the proposed Paper2Slides model and the D2S model,
which acts as the baseline for comparison. Additionally, we provide illustrative examples
showcasing the outputs of the individual sub-models.

4.1. Pre-trained Expander Assessment

Within this section, we provide an overview of the evaluation outcomes concerning the
pre-trained model. It’s crucial to highlight that the pre-training procedure exclusively
targets the expander model, consequently, our evaluative endeavors are concentrated on
analyzing the expander model’s performance within the pre-trained S-E stack. Upon
carefully assessing the expander model’s performance using the CNN-daily dataset, we
will subsequently provide a selection of exemplary outputs generated by both our sum-
marizer and pre-trained expander models. These illustrative examples serve to effectively
showcase the practical outcomes and capabilities of our models in real-world scenarios.

4.1.1. Experimental Results

In this section, we present assessment results for the pre-trained model, specifically fo-
cusing on the extracted expander model from the pre-trained S-E stack. Our testing
procedure involved the following steps: For each highlight in the test dataset, we em-
ployed the expander model to extend it into longer text, aiming for a length equivalent
to the corresponding article. Subsequently, the Rouge score is computed between the
expanded text and the ground truth article.

We utilized the ROUGE score as an automated assessment tool, which is a commonly
employed metric that assesses the quality of generated text by measuring the degree of
token or n-gram overlap [Lin04]. The results from the tests, as illustrated in Figure 4.1,
align with our expectations, revealing a significant coherence between the expander’s

39

Figure 4.1: Rouge scores on test dataset

outputs and the provided information. However, it’s important to highlight that the ex-
pander model may have limitations in generating entirely novel information. The Rouge
precision of our experiment results is notably high, indicating that the expanded text
encompasses nearly all the details found in the article. Meanwhile, the recall rate is rel-
atively lower, suggesting that substantial information within the expanded text remains
absent. This matches the fact that many intricate details are usually not included in
the initial loaded highlights. To provide a visual representation, the Venn diagram in
Figure 4.2 illustrates the information coverage across highlights, articles, and expanded
highlights.

Article

Expanded highlights

Highlights

Figure 4.2: The Venn diagram of the information in the article, highlights, and ex-
panded highlights. The area with a crossed texture represents the shared information
between the article and the expanded highlights (outputs of the S-E model). The ratio
of the crosshatched area to the blue disk’s area represents the recall value, while the
ratio of the crosshatched area to the green teardrop shape’s area corresponds to the
precision value.

40

4.1.2. Examples

In this section, we showcase two illustrative cases that exhibit the performance of our
summarizer and pre-trained expander model. These cases are drawn from original arti-
cles in the CNN-daily test dataset. To conduct the assessment, we input these articles
into our unfine-tuned summarizer model, which is aligned with the BART-large-CNN
model. Subsequently, the outputs from the summarizer are fed into the pre-trained ex-
pander model. Throughout this section, we provide two examples to highlight various
attributes exhibited by the pre-trained models. A consistent observation across these
examples is the expander model’s ability to generate new information through logical
inferences or by tapping into broader world knowledge.

In every case, we employ a color-coded method to underscore information that is
present in both the original news and the summaries. This information is highlighted in
blue. Moreover, we identify content that is introduced for the first time in the expander
outputs using a green color highlight.

The first example comes from the news of an accident at a zoo.
Article:

“A drunk teenage boy had to be rescued by security after jumping into a lions’
enclosure at a zoo in western India. Rahul Kumar, 17, clambered over the en-
closure fence at the\xa0Kamla Nehru Zoological Park in Ahmedabad, and began
running towards the animals, shouting he would ’kill them’. Mr Kumar explained
afterwards that he was drunk and ’thought I’d stand a good chance’against the
predators. Next level drunk: Intoxicated Rahul Kumar, 17, climbed into the li-
ons’ enclosure at a zoo in Ahmedabad and began running towards the animals
shouting ’Today I kill a lion!’ Mr Kumar had been sitting near the enclosure when
he suddenly made a dash for the lions, surprising zoo security. The intoxicated
teenager ran towards the lions, shouting: ’Today I kill a lion or a lion kills me!’
A zoo spokesman said: ’Guards had earlier spotted him close to the enclosure but
had no idea he was planing to enter it. ’Fortunately, there are eight moats to cross
before getting to where the lions usually are and he fell into the second on”

Summarizer outputs:

“Rahul Kumar, 17, clambered over the enclosure fence at the\xa0Kamla Nehru
Zoological Park in Ahmedabad. He ran towards the animals, shouting he would
‘kill them’ Mr Kumar explained afterwards that he was drunk and ‘thought I’d
stand a good chance’ ”

Expander outputs:

“Rahul Kumar, 17, clambered over the enclosure fence at the\xa0Kamla Nehru
Zoological Park in Ahmedabad. He ran towards the animals, shouting he would
‘kill them’ Mr Kumar explained afterwards that he was drunk and ‘thought I’d
stand a good chance’ He said: ‘I thought I would be able to protect the animals.
I was drunk. I didn’t think I’d be able to kill them. I thought I’d protect them”

In this example, the expander model attempted to produce previously unencoun-
tered information by making logical inferences about Rahul Kumar’s intuitions. The
subsequent example originates from a sports news article.

41

Article:

“Dougie Freedman is on the verge of agreeing a new two-year deal to remain at
Nottingham Forest. Freedman has stabilised Forest since he replaced cult hero
Stuart Pearce and the club’s owners are pleased with the job he has done at the
City Ground. Dougie Freedman is set to sign a new deal at Nottingham Forest
. Freedman has impressed at the City Ground since replacing Stuart Pearce in
February . They made an audacious attempt on the play-off places when Freed-
man replaced Pearce but have tailed off in recent weeks. That has not prevented
Forest’s ownership making moves to secure Freedman on a contract for the next
two seasons.”

Summarizer outputs:

“Dougie Freedman is on the verge of agreeing a new two-year deal. Freedman
has stabilised Forest since he replaced Stuart Pearce. Forest made an audacious
attempt on the play-off places when Freedman replaced Pearce but have tailed off
in recent weeks.”

Expander outputs:

“Dougie Freedman is on the verge of agreeing a new two-year deal. Freedman
has stabilised Forest since he replaced Stuart Pearce. Forest made an audacious
attempt on the play-off places when Freedman replaced Pearce but have tailed
off in recent weeks. CLICK HERE for all the latest transfer news with our live
updates from the Premier League and the Capital One Cup. Back to Mail Online
home. back to the page you came from. Click here for the latest Premier League
news.”

In this example, the expander model endeavored to create previously unencountered
information by using the world’s knowledge about the commonly seen hint buttons on
sports website.

4.2. Fine-tuned Models Assessment

After obtaining the fine-tuned summarizer and the expander model, we proceeded to
conduct a human evaluation experiment. Unfortunately, we were unable to find a base-
line expander model, leading us to exclusively carry out evaluations on the summarizer
model. In these experiments, we compared the performance of our fine-tuned Bart model
against the original Bart-large-cnn model. The results of these experiments are given
in section 4.2.1 and several examples from the fine-tuned models are shown in section
4.2.2.

4.2.1. Experimental Results

Our experiments focused on 75 randomly selected paragraphs from 18 scientific articles,
most of them are published in scientific journals and else are master’s or PhD theses.
The paper includes multiple science areas including pure mathematics [iK11], philoso-
phy [Bac20], human geography [SL23], climate science [FC23, CF23], history [Bel05],

42

artificial intelligence [VSP+17, HLC+22, BB19, HCX+22, MBB21, BCLR22, ZCLS22,
CvD22, SCVD22], electronic engineering, mechatronic engineerings [ZFW+23, PSC+22],
biology [LMS23], and statistics [CJLZ22].

To ensure the credibility of the data, the papers were sourced from someone who
possesses extensive familiarity with them (either as the author or by recently reading
them) at our request. Alongside the papers, this individual also supplied feedback
regarding the quality of the summaries produced by both the fine-tuned model and
the Bart-large-CNN model. They were requested to evaluate whether the summaries
effectively extract important information from the original text and determine their
suitability for use in slides. Notably, the summaries were generated using identical
parameters and were directly copied into the investigation document without undergoing
any post-editing.

The article’s providers are presented with three choices: they can either indicate the
preferred summary number (0/1) or select the ‘no decision’ option. The ultimate findings
reveal that in 45.33% of instances, providers favored the result from our fine-tuned
model. In 28.00% of cases, providers perceived both summaries as having equal quality,
while in 26.67% of cases, providers favored the baseline model’s result. The consistent
preference for our model’s summaries by providers, coupled with a notable percentage
of cases where our model was deemed superior, strongly supports the conclusion that
our fine-tuned model outperforms the baseline.

In many cases, the fine-tuned and baseline models generate similar results. It’s in-
teresting to note that the fine-tuned model shows a preference for shorter sentences and
avoids using first-person expressions to a greater extent. Additionally, the fine-tuned
model tends to produce more sentences overall, despite their shorter length, when com-
pared to the baseline model under the same settings. We also observed a shared pattern
between both language models: they excel when important information is located at
the beginning or end of the input context. However, their performance notably declines
when crucial information is situated in the middle of the context. This observation also
matches with a recent paper on the topic of LLM behavior in long contexts [LVdMJ+21].

4.2.2. Examples

In this section, we created several examples to demonstrate and compare the performance
of our fine-tuned summarizer and expander models. These examples showcase how the
fine-tuned models handle scientific input texts, highlighting their ability to generate
summaries and expand content. By using real-world texts and comparing them with
the outputs of your models, we illustrate the effectiveness, features, and advancements
of our approach compared to existing models.

The input texts for the summarizer models are carefully selected from the paper
titled Attention is all you need [VSP+17]. All the examples presented in this context are
directly extracted from the outputs of the program, without any subsequent editing. The
same method of information highlighting utilized in the previous section is retained here,
with an additional emphasis on information found both in the original source material
and the outputs of the baseline summarizer model, denoted by an orange underline.

In the first example, the original text material revolves around paragraphs discussing
the bag-of-features representations.

43

Paper contents:

“We here recount the main elements of a classic bag-of-features model before in-
troducing the simpler DNN-based BagNets in the next paragraph. Bag-of-feature
representations can be described by analogy to bag-of-words representations. With
bag-of-words, one counts the number of occurrences of words from a vocabulary
in a document. This vocabulary contains important words (but not common ones
like "and" or "the") and word clusters (i.e. semantically similar words like "gigan-
tic" and "enormous" are subsumed). The counts of each word in the vocabulary
are assembled as one long term vector. This is called the bag-of-words document
representation because all ordering of the words is lost. Likewise, bag-of-feature
representations are based on a vocabulary of visual words which represent clusters
of local image features. The term vector for an image is then simply the number
of occurrences of each visual word in the vocabulary. This term vector is used as
an input to a classifier (e.g. SVM or MLP). Many successful image classification
models have been based on this pipeline (Csurka et al., 2004; Jurie & Triggs, 2005;
Zhang et al., 2007; Lazebnik et al., 2006), see O’Hara & Draper (2011) for an
up-to-date overview.”

Fine-tuned Summarizer’s outputs:

“Bag-of feature representations can be described by analogy to bag-of-words rep-
resentations. Bag-of feature representations are based on a vocabulary of visual
words which represent clusters of local image features. We here recount the main
elements of a classic bag-of features model before introducing the simpler DNN-
based BagNets in the next paragraph”

Baseline summarizer model’s outputs:

“Bag-of-feature representations are based on a vocabulary of visual words. The
counts of each word in the vocabulary are assembled as one long term vector. This
term vector is used as an input to a classifier (e.g. SVM or MLP) Many successful
image classification models have been based on this pipeline.”

In this example, it becomes evident that both the baseline and fine-tuned models pro-
duced summaries primarily centered around three sentences within the paper. However,
the fine-tuned model’s output places emphasis on the essential attributes of the bag-of-
features representation, capturing the core concept of the paragraph. In contrast, the
baseline model’s output pertains to addresses more minor details of the bag-of-features
representation.

Moving to the second example of the summarizer model’s outputs, the selected input
paragraphs serve as an introduction to the self-attention mechanism.

Paper contents:

“The goal of reducing sequential computation also forms the foundation of the
Extended Neural GPU [16], ByteNet [18] and ConvS2S [9], all of which use convo-
lutional neural networks as basic building block, computing hidden representations
in parallel for all input and output positions. In these models, the number of op-
erations required to relate signals from two arbitrary input or output positions

44

grows in the distance between positions, linearly for ConvS2S and logarithmi-
cally for ByteNet. This makes it more difficult to learn dependencies between
distant positions [12]. In the Transformer this is reduced to a constant number
of operations, albeit at the cost of reduced effective resolution due to averaging
attention-weighted positions, an effect we counteract with Multi-Head Attention
as described in section 3.2.

Self-attention, sometimes called intra-attention is an attention mechanism relat-
ing different positions of a single sequence in order to compute a representation
of the sequence. Self-attention has been used successfully in a variety of tasks
including reading comprehension, abstractive summarization, textual entailment
and learning task-independent sentence representations [4, 27, 28, 22].

End-to-end memory networks are based on a recurrent attention mechanism in-
stead of sequencealigned recurrence and have been shown to perform well on
simple-language question answering and language modeling tasks [34].

To the best of our knowledge, however, the Transformer is the first transduction
model relying entirely on self-attention to compute representations of its input
and output without using sequencealigned RNNs or convolution. In the following
sections, we will describe the Transformer, motivate self-attention and discuss its
advantages over models such as [17, 18] and [9].”

Fine-tuned Summarizer’s outputs:

“Self-attention is an attention mechanism relating different positions of a single se-
quence in order to compute a representation of the sequence. The goal of reducing
sequential computation also forms the foundation of the Extended Neural GPU
[16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural networks
as basic building block, computing hidden representations in parallel for all input
and output positions. In the Transformer this is reduced to a constant number
of operations, albeit at the cost of reduced effective resolution due to averaging
attention-weighted positions, an effect we counteract with Multi-Head Attention
as described in section 3.2. ”

Baseline summarizer model’s outputs:

“Self-attention is an attention mechanism relating different positions of a single se-
quence in order to compute a representation of the sequence. The goal of reducing
sequential computation also forms the foundation of the Extended Neural GPU.
In the Transformer this is reduced to a constant number of operations, albeit at
the cost of reduced effective resolution. We counteract this effect with Multi-Head
Attention as described in section 3.2.”

In this example, both models generate summaries based on the same information in
the original test dataset. However, the fine-tuned model offers a marginally more detailed
account of parallel computation and sequential computation within neural networks
compared to the baseline model.

For the expander model’s examples, we utilize the output from the fine-tuned sum-
marizer model as the input for illustrating the performance of the expander model. In

45

the subsequent example, only the outputs of the fine-tuned expander model are dis-
played. In the first example from the expander model, the inputs are derived from the
outputs of the summarizer model in the first summarization instance.

Input tests:

“Bag-of feature representations can be described by analogy to bag-of-words rep-
resentations. Bag-of feature representations are based on a vocabulary of visual
words which represent clusters of local image features. We here recount the main
elements of a classic bag-of features model before introducing the simpler DNN-
based BagNets in the next paragraph.”

Expander’s outputs:

“Bag-of feature representations can be described by analogy to bag-of-words rep-
resentations. Bag-of features representations are based on a vocabulary of visual
words which represent clusters of local image features. We here recount the main
elements of a classic bag- of features model before introducing the simpler DNN-
based BagNets in the next paragraph. In the following paragraph, we describe the
main features of a BagNet model. We then describe the DNN model that is used
to represent the bagNets model.”

The subsequent example involving the expander model utilizes the outputs of the
summarizer model from the second summarization example as its inputs.

Input texts:

“Self-attention is an attention mechanism relating different positions of a single
sequence in order to compute a representation of the sequence. The goal of reducing
sequential computation also forms the foundation of the Extended Neural GPU
[16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural networks
as basic building block, computing hidden representations in parallel for all input
and output positions. In the Transformer this is reduced to a constant number
of operations, albeit at the cost of reduced effective resolution due to averaging
attention-weighted positions, an effect we counteract with Multi-Head Attention
as described in section 3.2.”

Expander’s outputs:

“Self-attention is an attention mechanism relating different positions of a single se-
quence in order to compute a representation of the sequence. In the Transformer
this is reduced to a constant number of operations, albeit at the cost of reduced
effective resolution due to averaging attention-weighted positions. The goal of re-
ducing sequential computation also forms the foundation of the Extended Neural
GPU [16], ByteNet [18] and ConvS2S [9], all of which use convolutional neural net-
works as basic building block, computing hidden representations in parallel for all
input and output positions. In section 3.2.2, we counteract this effect with Multi-
Head Attention as described in section 3, 3.3.2 and 3,3.4. We describe how to
compute hidden representations using self-att attention and multi-head attention.
We also discuss how to reduce the number of sequential operations by averaging

46

attention weighted positions to reduce effective resolution. We conclude by dis-
cussing how to use self attention and Multi-head Attention to reduce sequential
operations.”

4.3. Property of Reconstruction Loss

Recall that without proof, we claimed that for a certain S-E pair, the more coherent
paragraphs would show a smaller reconstruction loss compared to a text that displays
more significant logical inconsistency. This suggests that the optimization framework
based on reconstruction loss could potentially address the segmentation challenge inher-
ent in the paper-to-slide generation process.

4.3.1. Hypothesis Testing

In this section, we provide evidence to support the above-mentioned claim through a
verification test. We conducted a hypothesis testing experiment that involved comparing
the difference in reconstruction loss between a two-paragraph piece of text and the sum of
reconstruction losses of the same two paragraphs when separated. Mathematically, given
a piece of text T consisting of two paragraphs t1 and t2, the difference in reconstruction
loss can be formulated as follows:

D(T) = reconstractionLoss(t1) + reconstractionLoss(t2)− reconstractionLoss(T)

where the reconstruction loss is computed using the fine-tuned S-E stack.
It’s important to note that for the majority of cases, the value D(T) is negative due

to the fact that longer text typically results in a higher reconstruction loss. In our ex-
periment, we carefully selected 2000 pairs of coherent and consecutive paragraphs from
the dataset ‘Automatic Slide Generation from Scientific Papers’ [SMWG21]. We calcu-
lated the difference in reconstruction loss for these pairs, and the resulting scores are
illustrated in the pink violin plot presented in Figure 4.3. For the sake of comparison,
we also conducted an exercise where we randomly shuffled the pairs of those paragraphs.
This was done in a way that each preceding paragraph was paired with a subsequent
paragraph in a random manner. Subsequently, we computed the difference in recon-
struction loss for these shuffled pairs and depicted the distribution of these scores in the
green violin plot within 4.3.

Upon analyzing Figure 4.3, a distinct trend becomes evident: the difference in re-
construction loss of coherent paragraphs is notably greater when compared to randomly
paired paragraphs. To provide a more robust assessment, we employed the Wilcoxon
signed-rank test, a nonparametric statistical method available in the Scipy package.
The Wilcoxon signed-rank test serves as a nonparametric alternative to the T-test and
is used here to determine whether the difference between paired samples from two dis-
tributions is symmetrically centered around zero. The Wilcoxon can not be used on
normal distributions. Therefore, prior to conducting the Wilcoxon signed-rank test, we
undertook an important step - evaluating the normality of the distribution of the differ-
ence in reconstruction loss using the Shapiro-Wilk test. The testing results show that
the distributions are not normal.

47

Figure 4.3: Difference in reconstruction loss of coherent paragraphs and randomly
matched paragraphs.

Our Wilcoxon signed-rank test centers around the examination of the null hypothe-
sis, which posits that the difference in reconstruction loss for incoherent paragraphs is
statistically equal to or greater than that of consecutive paragraphs. The results of this
examination yield a test statistic of 964303.0 and a p-value of 0.03784. The signifi-
cance of this p-value, being below the conventional threshold of 0.05, leads us to reject
the null hypothesis. This rejection highlights a significant finding: the difference in re-
construction loss for consecutive paragraphs significantly surpasses that of incoherent
paragraphs.

The observation and the statistical test results validate our hypothesis and provide
additional support for the notion that optimal segmentation not only serves as a solu-
tion to the optimization challenge pertaining to information quantity but also functions
effectively as an article decomposition or topical detection technique.

4.4. System Assessment

In this section, we present the outcomes of our testing in comparison to existing state-of-
art models. Initially, our intention was to assess our model’s performance against both
the DOC2PPT [FWMS22] and D2S [SHW+21] models. However, we encountered a
limitation with the DOC2PPT dataset. The slides in the DOC2PPT dataset were avail-
able only as images, without the corresponding extracted text. As a result, we couldn’t
carry out a meaningful comparison against the results of the DOC2PPT model. On the
other hand, the D2S team graciously provided their processed dataset for evaluation.
Therefore, we solely conduct the comparison against the D2S model.

48

4.4.1. Experimental Results

The D2S dataset includes a test dataset comprising 81 pairs of published papers and
slides in the NLP area. Out of these pairs, we successfully obtained and processed 80
pairs utilizing our software to generate slide content. By comparing the content produced
through our software with the reference ground truth from the dataset, we calculated
Rouge scores. These scores were subsequently compared to the metrics presented in the
D2S paper.

Figure 4.4: Comparison of test results between our model and D2S model. The result
from the D2S model is textured with little circular markings.

In Figure 4.4, we observe that our model’s Rouge-1 and Rouge-2 scores are notably
higher than those of the D2S model. However, this doesn’t hold for the Rouge-L score.
This inconsistency intrigued us, prompting further investigation. Upon examining the
code of the D2S model available on GitHub, we noticed that the authors might have
utilized version 4.0.0 of the nlp library to calculate Rouge scores [LVdMJ+21]. Interest-
ingly, a GitHub issue posted after the publication of D2S work, indicating a potential
confusion in the implementation of Rouge-L and Rouge-Lsum scores within the nlp
package. As a consequence, it’s likely that the scores presented in the D2S work might
actually represent the Rouge-Lsum score rather than Rouge-L. This discrepancy could
provide an explanation for the inconsistency observed across all Rouge scores. It’s im-
portant to highlight that the nlp package is no longer actively maintained, as its code
has been integrated into another package under a different namespace. Unfortunately,
due to this circumstance, it is uneasy to perform a definitive test to verify our hypothesis.
Therefore, to ensure a rigorous approach, we have chosen to report both the Rouge-L
and Rouge-Lsum scores in our analysis.

It’s important to highlight that the D2S model leverages factual slide titles to gen-
erate slide content, which constitutes supplementary data in contrast to our approach.
However, our comprehensive comparative study demonstrates that our outcomes con-

49

https://github.com/huggingface/datasets/issues/617

sistently outperform or are similar to the scores achieved by the D2S model across all
metrics. This strong validation further highlights the effectiveness and superiority of our
proposed approach over the state-of-art D2S model.

50

Chapter 5

Conclusion

In conclusion, this project has been driven by the aim of automating the process of gener-
ating presentation slides from paper documents. To achieve this goal, we have framed the
problem as an optimization task centered around minimizing the global reconstruction
loss. Drawing inspiration from the principles of autoencoder networks and unsuper-
vised machine translation algorithms, we have meticulously designed an optimization
framework tailored to address the unique challenges of this task. Through extensive
automated evaluations, our system has demonstrated its superiority over baseline mod-
els, positioning itself as a benchmark for the evolving field of paper-to-slide generation.
Looking ahead, we envision further enhancing the accessibility and usability of our so-
lution by implementing a web-hosted application via the Huggingface Hub. This not
only underscores the practical applicability of our approach but also underscores our
commitment to fostering wider engagement and utilization within the academic and
professional communities. Ultimately, our work signifies a substantial step forward in
automating the process of turning scholarly material into visually captivating presenta-
tion slides. This has profound implications for improving how knowledge is shared and
communicated effectively.

51

Bibliography

[Bac20] Andrew Bacon. Logical Combinatorialism. The Philosophical Review,
129(4):537–589, 10 2020.

[BB19] Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-
local-features models works surprisingly well on imagenet. arXiv preprint
arXiv:1904.00760, 2019.

[BCB16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2016.

[BCLR22] Jawwad Baig, Guanyi Chen, Chenghua Lin, and Ehud Reiter. DrivingBea-
con: Driving behaviour change support system considering mobile use and
geo-information. In Proceedings of the First Workshop on Natural Lan-
guage Generation in Healthcare, pages 1–8, Waterville, Maine, USA and
virtual meeting, July 2022. Association for Computational Linguistics.

[Bel05] David A Bello. To go where no han could go for long: Malaria and the qing
construction of ethnic administrative space in frontier yunnan. Modern
China, 31(3):283–317, 2005.

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Foundations and
Trends® in Machine Learning, 2(1):1–127, 2009.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners, 2020.

[CD16] Christopher Clark and Santosh Divvala. Pdffigures 2.0: Mining figures
from research papers. 2016.

[CF23] Nan Chen and Xianghui Fang. A simple multiscale intermediate coupled
stochastic model for el niño diversity and complexity. Journal of Advances
in Modeling Earth Systems, 15(4):e2022MS003469, 2023. e2022MS003469
2022MS003469.

53

[CGCB14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling, 2014.

[CJLZ22] Xi Chen, Wenbo Jing, Weidong Liu, and Yichen Zhang. Distributed esti-
mation and inference for semi-parametric binary response models, 2022.

[CvD22] Guanyi Chen and Kees van Deemter. Understanding the use of quantifiers
in Mandarin. In Findings of the Association for Computational Linguistics:
AACL-IJCNLP 2022, pages 73–80, Online only, November 2022. Associa-
tion for Computational Linguistics.

[CvMG+14] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing, 2019.

[FC23] Xianghui Fang and Nan Chen. Quantifying the predictability of enso com-
plexity using a statistically accurate multiscale stochastic model and infor-
mation theory. Journal of Climate, 36(8):2681 – 2702, 2023.

[FWMS22] Tsu-Jui Fu, William Yang Wang, Daniel McDuff, and Yale Song. Doc2ppt:
Automatic presentation slides generation from scientific documents. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 634–642, 2022.

[GK18] Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. J. Artif. Int.
Res., 61(1):65–170, jan 2018.

[GRO23] Grobid. https://github.com/kermitt2/grobid, 2008–2023.

[HBD+20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The
curious case of neural text degeneration, 2020.

[HBFC19] Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious
case of neural text degeneration. CoRR, abs/1904.09751, 2019.

[HCX+22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. Masked autoencoders are scalable vision learners. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 16000–16009, June 2022.

54

https://github.com/kermitt2/grobid

[HKG+15] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espe-
holt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines
to read and comprehend. In NIPS, pages 1693–1701, 2015.

[HLC+22] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Lay-
outlmv3: Pre-training for document ai with unified text and image mask-
ing. In Proceedings of the 30th ACM International Conference on Multi-
media, MM ’22, page 4083–4091, New York, NY, USA, 2022. Association
for Computing Machinery.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9:1735–80, 12 1997.

[HW15] Yue Hu and Xiaojun Wan. Ppsgen: Learning-based presentation slides
generation for academic papers. IEEE Transactions on Knowledge and
Data Engineering, 27(4):1085–1097, 2015.

[iK11] Ulr ich Krähmer. Notes on koszul algebras. 2011.

[JHG00] Nathalie Japkowicz, Stephen José Hanson, and Mark A. Gluck. Non-
linear Autoassociation Is Not Equivalent to PCA. Neural Computation,
12(3):531–545, 03 2000.

[Kes07] Srinivasan Keshav. How to read a paper. ACM SIGCOMM Computer
Communication Review, 37(3):83–84, 2007.

[KKD+17] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexan-
der M. Rush. Opennmt: Open-source toolkit for neural machine transla-
tion, 2017.

[KKM+19] Wojciech Kryscinski, Nitish Shirish Keskar, Bryan McCann, Caiming
Xiong, and Richard Socher. Neural text summarization: A critical eval-
uation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 540–551, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[Kra91] Mark A. Kramer. Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE Journal, 37(2):233–243, 1991.

[LCDR18] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio
Ranzato. Unsupervised machine translation using monolingual corpora
only, 2018.

[LHML21] Da-Wei Li, Danqing Huang, Tingting Ma, and Chin-Yew Lin. Towards
topic-aware slide generation for academic papers with unsupervised mutual
learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13243–13251, 2021.

55

[Lin04] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries.
In Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July
2004. Association for Computational Linguistics.

[LLG+19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer.
BART: denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. CoRR, abs/1910.13461, 2019.

[LMS23] Xipeng Liu, Siyu Mei, and Joana Falcão Salles. Do inoculated microbial
consortia perform better than single strains in living soil? a meta-analysis.
bioRxiv, 2023.

[LOC+18] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and
Marc’Aurelio Ranzato. Phrase-based & neural unsupervised machine
translation, 2018.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach, 2019.

[LVdMJ+21] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek
Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama
Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan
Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh,
Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matussière, Lysandre Debut,
Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 175–184, Online and Punta Cana, Dominican Re-
public, November 2021. Association for Computational Linguistics.

[MBB21] Andrei Manolache, Florin Brad, and Elena Burceanu. Date: Detect-
ing anomalies in text via self-supervision of transformers. arXiv preprint
arXiv:2104.05591, 2021.

[PSC+22] Zhaoqin Peng, Zhengyi Sun, Juan Chen, Zilong Ping, Kunyu Dong, Jia
Li, Yongling Fu, and Enrico Zio. A fault diagnosis approach for electrome-
chanical actuators with simulating model under small experimental data
sample condition. Actuators, 11(3), 2022.

[PXS17] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced
model for abstractive summarization, 2017.

[RSR+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer, 2020.

56

[Rus20] Bertrand Russell. Principles of mathematics. Routledge, 2020.

[SCVD22] Fahime Same, Guanyi Chen, and Kees Van Deemter. Non-neural models
matter: a re-evaluation of neural referring expression generation systems.
In Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 5554–5567, Dublin,
Ireland, May 2022. Association for Computational Linguistics.

[SHW+21] Edward Sun, Yufang Hou, Dakuo Wang, Yunfeng Zhang, and Nancy XR
Wang. D2s: Document-to-slide generation via query-based text summa-
rization. arXiv preprint arXiv:2105.03664, 2021.

[SII05] Mostafa Shaikh, Mitsuru Ishizuka, and Md Tawhidul Islam. ’auto-
presentation’: a multi-agent system for building automatic multi-modal
presentation of a topic from world wide web information. pages 246– 249,
10 2005.

[SL23] Yue Shen and Xueyao Luo. Linking spatial and temporal contexts to
multi-contextual segregation by hukou status in urban china. Journal of
Transport Geography, 107:103540, 2023.

[SLM17] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point:
Summarization with pointer-generator networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1073–1083, Vancouver, Canada, July 2017. Asso-
ciation for Computational Linguistics.

[SMWG21] Athar Sefid, Prasenjit Mitra, Jian Wu, and C Lee Giles. Extractive research
slide generation using windowed labeling ranking. In Proceedings of the
Second Workshop on Scholarly Document Processing, pages 91–96, Online,
June 2021. Association for Computational Linguistics.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks, 2014.

[TFH+22] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv
Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker,
Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri,
Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee
Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi,
Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen,
Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson,
Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Ra-
jakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fen-
ton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas,

57

Claire Cui, Marian Croak, Ed Chi, and Quoc Le. Lamda: Language models
for dialog applications, 2022.

[TLI+23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need, 2017.

[ZCLS22] Yinhe Zheng, Guanyi Chen, Xin Liu, and Jian Sun. MMChat: Multi-modal
chat dataset on social media. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 5778–5786, Marseille, France,
June 2022. European Language Resources Association.

[ZFW+23] Shicheng Zheng, Yongling Fu, Deyi Wang, Ziyu Liu, Junlin Pan, and Juan
Chen. Effect of structural parameters and load states on ptrb’s load dis-
tribution. Advances in Mechanical Engineering, 15(3):16878132231161004,
2023.

58

Appendix A

Example Slides Outputs

In this section, we have included the slide deck that was generated based on this paper.
To create the slides, a modified version of the thesis was used, wherein we excluded
the part of the literature review section and the examples subsections. This was done
to manage the overall length of the generated slides effectively. The slide generation
process was parameterized with ’minpage = 10’ and ’maxpage = 30’, ensuring that the
resulting slide deck contains between 10 to 30 pages.

UNSUPERVISED PAPER2SLIDES GENERATION

Zehao Lu

Utrecht University, ML6

08.17

59

ABSTRACT

▶ There has been a scarcity of research into automating the "paper to slides" generation task, and a
lack of publicly available datasets.

▶ We propose an inventive optimization framework based on reconstruction loss, harnessing
cutting-edge Large Language Models (LLMs) and unsupervised learning.

▶ This approach facilitates the creation of high-quality slide decks from scientific papers, offering
heightened adaptability and flexibility.

UNSUPERVISED PAPER2SLIDES GENERATION 1 / 24

INTRODUCTION

▶ Paper2Slides software is composed of three core elements: a pre-processing unit that reads and
loads data from .pdf files, the Paper2Slides model responsible for generating slide content, and a
post-processing unit in charge of arranging the layout and producing the slides.

▶ Each sub-model within the Paper2Slideds model has undergone a comprehensive training process,
which includes both pre-training and fine-tuning phases.

UNSUPERVISED PAPER2SLIDES GENERATION 2 / 24

PAPER-TO-SLIDE GENERATION

▶ The challenge of producing slides to accompany academic papers has not been thoroughly
investigated and poses a significant difficulty.

▶ Earlier researcher mainly focuses on rule-based methods, their works focus on selecting the most
important sentences and re-organize them.

▶ More recent approaches such as the D2S model and the DOC2PPT model are using neural
networks on both sentence selection and summarization tasks.

UNSUPERVISED PAPER2SLIDES GENERATION 3 / 24

60

DOC2PPT

Figure 2: An overview of our architecture. It consists of
modules (DR, PT, OP, PAR) that read a document and gen-
erate a slide deck in a hierarchically structured manner.

slide. It also predicts the location and the size of each
object to be placed on the slide;

• A Paraphraser (PAR) takes the selected sentence and
rewrites it in a concise form before putting it on a slide.

Notation. A document D is organized into sections S =
{Si}i∈Nin

S
and figures F = {F inq }q∈Min

F
. Each section

Si contains sentences T ini = {T ini,k}k∈Nin
i

, and each fig-
ure Fq = {Iq, Cq} contains an image Iq and a caption
Cq . We do not assign figures to any particular section be-
cause multiple sections can reference the same figure. A
slide deck O = {Oj}j∈Nout

O
contains a number of slides,

each containing sentences T outj = {T outj,k }k∈Nout
j

and fig-
ures Foutj = {F outj,k }k∈Mout

j
. We encode the position and

the size of each object on a slide in a bounding box format
using an auxiliary layout variable Lj,k, which includes four
real-valued numbers {lx, ly, lw, lh} encoding the x-y offsets
(top-left corner), the width and height of a bounding box.

Model
Document Reader (DR). We extract sentence and fig-
ure embeddings from an input document and project them
to a shared embedding space so that the OP treats both
textual and visual elements as an object coming from a
joint multimodal distribution. For each section Si, we use
RoBERTa (Liu et al. 2019) to encode each of the sentences
T ini,k, and then use a bidirectional GRU (Chung et al. 2014)
to extract contextualized sentence embeddings Xin

i,k:

Bini,k = RoBERTa(T ini,k),

Xin
i,k = Bi-GRU(Bini,0, ..., B

in
i,Nin

i −1
)
k
,

(1)

Similarly, for each figure F inq = {Iinq , Cinq }, we apply
ResNet-152 (He et al. 2016) to extract the image embedding

of Iinq and RoBERTa for the caption embedding of Cinq . We
then concatenate them as the figure embedding V inq :

V inq = [ResNet(F inq),RoBERTa(Cinq)]. (2)

Next, we project Xin
i,k and V inq to a shared embedding us-

ing a two-layer multilayer perceptron (MLP) and combine
Etxti and Efig as the section embedding Eseci of Si:

Etxti,k = MLPtxt(Xin
i,k), Efigq = MLPfig(V inq),

Eseci = {Etxti,k , E
fig
q }k∈Nin

i ,q∈Min
F

(3)

We include all figures F in each section embedding Eseci
because each section can reference any of the figures.

Progress Tracker (PT). We define the PT as a state ma-
chine operating in a hierarchically-structured space with sec-
tions ([SEC]), slides ([SLIDE]), and objects ([OBJ]). This is
to reflect the structure of documents and slides, i.e., each
section of a document can have multiple corresponding
slides, and each slide can contain multiple objects.

The PT maintains pointers to the current section i and the
current slide j, and learns a policy to proceed to the next sec-
tion/slide as it generates slides. For simplicity, we initialize
i = j = 0, i.e., the output slides will follow the natural or-
der of sections in an input document. We construct PT as a
three-layer hierarchical RNN with (PTsec,PTslide,PTobj),
where each RNN encodes the latent space for each level in
a section-slide-object hierarchy. This is a natural choice to
encode our prior knowledge about the hierarchical structure.

First, PTsec takes as input the head-tail contextualized
sentence embeddings from the DR, which encodes the over-
all information of the current section Si. We use GRU for
PTsec and initialize hsec0 to the contextualized sentence em-
beddings of the first section, i.e., hsec0 = [Xin

0,1, X
in
0,Nin

0 −1
]:

hseci = PTsec(hseci−1, [X
in
i,1, X

in
i,Nin

i
]), (4)

Based on the section state hseci , PTslide models the
section-to-slide relationships:

asecj , hslidej = PTslide(asecj−1, h
slide
j−1 , E

sec
i), (5)

where hslide0 = hseci , Eseci is the section embedding (Eq. 3),
and asecj is a binary action variable that tracks the section
pointer, i.e, it decides if the model should generate a new
slide for the current section Si or proceed to the next section
Si+1. We implement PTslide as a GRU and a two-layer MLP
with a binary decision head that learns a policy φ to predict
asecj = {[NEW SLIDE],[END SEC]}:

asecj = MLPslideφ ([hslidej ,
∑

r
αslidej,r Eseci,r]),

αslidej = softmax(hslidej W (Eseci)ᵀ).
(6)

αslidej ∈ RNin
i +Min

is an attention map overEseci that com-
putes the bilinear compatibility between hslidej and Eseci .

Finally, the object PTobj tracks which objects to put on
the current slide Oj based on the slide state hslidej :

aslidek , hobjk = PTobj(aslidek−1 , h
obj
k−1, E

sec
i),

aslidek = MLPobjψ ([hobjk ,
∑

r
αobjk,rE

sec
i,r]),

αobjk = softmax(hobjk W (Eseci)ᵀ).

(7)

▶ DOC2PPT model is composed of multiple blocks, including the document reader, progress tracker,
object placer, and paraphraser.

▶ One of the major drawbacks of the model is that the paragrapher block can only rephrase sentences
but not paragraph-level summarization.

▶ In different contexts, the appropriate segmentation of a given piece of text can vary significantly.
DOC2PPT framework’s RNN-based Document Reader struggles with long-range dependencies,
making it hard to fully understand the bigger picture for accurate segmentation.

UNSUPERVISED PAPER2SLIDES GENERATION 4 / 24

D2S

▶ D2S model operates within a framework centered on closed-domain question answering.
▶ Users input desired slide titles, prompting IR module to identify relevant keywords by comparing

word embeddings based similarity and Levenshtein distance.
▶ These keywords are then matched with section titles using the keyword module, which subsequently

extracts content from corresponding sections.
▶ QA module is applied to generate the actual slide content.

UNSUPERVISED PAPER2SLIDES GENERATION 5 / 24

SUPERVISED APPROACH LIMITATIONS

▶ An important decision we made during our model’s implementation process was to utilize
unsupervised learning method, even though there are a few accessible datasets for the
paper-to-slide generation task.

▶ We perform a comparative analysis of various training frameworks used in prior research and
contrast them with our approach.

▶ Limited size of publicly available publicly available dataset poses challenge for training modern large
language model (LLM) powered software from scratch.

▶ Modern LLMs commonly encompass more than 300 million parameters, while existing paper-to-slide
datasets consist of 1000 to 10000 training data pairs.

▶ The paired paper-slides dataset does not give paragraph-’bullet point’ level matching labels.
▶ The ’content generation’ units are trained on noisy labeled dataset.

UNSUPERVISED PAPER2SLIDES GENERATION 6 / 24

61

METHOD

▶ The PDF reader utilized in this project consisted of two primary phases: text processing (GROBID)
and detection of figure-like objects (pdffigures2).

▶ Paper2Slides model serves as core component of the proposed software.
▶ Paper2Slide model produces textual slide content, which is inserted into a predefined template along

with figure-like objects.
▶ Post-processing unit plays a crucial role in converting the content generated by our system into a

finalized PDF format.

UNSUPERVISED PAPER2SLIDES GENERATION 7 / 24

PAPER-TO-SLIDE PROBLEM

▶ To tackle the limitation of the existing works, we approach the task of paper-toslide paper-to-slides
generation as an optimization problem focused on minimizing information reconstruction loss.

▶ We start by formulating a redefined research question and subsequently progress through a
sequence of structured steps to arrive at our proposed solution.

UNSUPERVISED PAPER2SLIDES GENERATION 8 / 24

TASK RE-INTRODUCTION

▶ Previous research has suggested that this task comprises two distinct components: structural
decomposition (segmentation) and slides’ content generation (summarization) We propose a
different perspective.

▶ To tackle the limitation of the existing works, we approach the task of paper-toslide paper-to-slides
generation as an optimization problem focused on minimizing information reconstruction loss.

▶ We start by formulating a redefined research question and subsequently progress through a
sequence of structured steps to arrive at our proposed solution.

▶ We claim that the essence of the paper-to-slides generation task lies in extracting the most valuable
information and presenting it in the form of slides.

UNSUPERVISED PAPER2SLIDES GENERATION 9 / 24

62

SUMMARIZER-EXPANDER STRUCTURE

▶ How can we effectively measure quantity of information embedded in textual language?
▶ To answer this question, we turn to summarization models as valuable tools, which serve as useful

indicators of the most essential information within a text.

UNSUPERVISED PAPER2SLIDES GENERATION 10 / 24

SUMMARIZER-EXPANDER STRUCTURE

 Text Summary

“Symbolic or Formal Logic—I shall use these terms as synonyms—is the
study of the various general types of deduction. The word symbolic
designates the subject by an accidental characteristic, for the employment
of mathematical symbols, here as elsewhere, is merely a theoretically
irrelevant convenience. The syllogism in all its figures belongs to Symbolic
Logic, and would be the whole subject if all deduction were syllogistic, as

the scholastic tradition supposed. ”

“With an unwavering commitment to excellence, our team of trailblazers
fuels the engine of innovation. We paint the canvas of success with bold
strokes of brilliance, creating a symphony of achievement that reverberates
across industries. Embrace the enigmatic fusion of creativity and
cutting-edge technology, and witness the transformation of your aspirations
into reality. This is not just a journey; it's a breathtaking expedition to the
pinnacle of greatness.”

{
 "summary": The paragraph emphasizes a
 team's commitment to excellence
 and innovation.
}

{
 "summary": Symbolic Logic studies general
 types of deduction, including
 the syllogism in all its
 figures.
}

▶ Summarization tasks can be viewed as an effort to capture the main ideas and concisely articulate
them in human language.

▶ Texts with high information density present a greater challenge for summarization compared to texts
with lower information density, even when both texts share the same length.

▶ The varying quantities of information present in the texts affect human understanding, thus
influencing the lengths and quality of summaries generated by both the AI model and humans.

UNSUPERVISED PAPER2SLIDES GENERATION 11 / 24

SUMMARIZER-EXPANDER STRUCTURE

“Self-attention is an attention mechanism relating
different positions of a single sequence in order to
compute a representation of the sequence.”

{
 "expand": Self-attention is an attention mechanism relating
 different positions of a single sequence in order
 to compute a representation of the sequence.
 Self-attention is used to compute the
 representation of a sequence of sequences. Self
 attention can be used in a number of ways to
 compute different positions in a sequence.
}

 Text Expanded

▶ We extend our focus to the expander models.
▶ The expander model is a functional construct capable of generating longer text based on the

information contained in a shorter text.
▶ The expander model incorporates information that is inferred from or logically related to the original

text, thereby augmenting the quality of the output.

UNSUPERVISED PAPER2SLIDES GENERATION 12 / 24

63

RECONSTRUCTION LOSS

 Summarizer Model

“...”

Expander Model
tensor(
 [[...], [...], ...]
)

“... … …”

“... … …”

tensor(
 [[...], [...], ...]
)

Decode Decode

Text

 Text Text

 Probability Probability

▶ reconstractionLoss(t) = CrossEntropy(E(S(t)), E([?]dot), t) where cross entropy loss is a measure of
the cross entropy of a piece of the difference between text t, and S-E pair S(•), E[?]dot output E(S(t)).

▶ Both the summarizer and the expander are language models, therefore, their outputs are
probabilities, hence we could use cross entropy to measure the difference.

▶ Figure shows how the reconstruction loss is computed.
▶ With the S-E stack at hand, we could now reformulate the problem of ’extracting the most valuable

information and presenting it in the form of slides’ in mathematical form
seg∗ = argminseg∈S

∑ti reconstructionLoss(ti).
▶ Without proof, we claimed that for a certain S-E pair, the more coherent paragraphs would show a

smaller reconstruction loss compared to a text that displays more significant logical inconsistency.
UNSUPERVISED PAPER2SLIDES GENERATION 13 / 24

PAPER2SLIDES MODEL

▶ In this section, we delve into the specifics of implementing and training submodels within the
Paper2Slides framework.

▶ We provide a comprehensive account of the greedy algorithm utilized to address the optimization
challenge of the reconstruction loss.

▶ We also discuss the pre-training of the S-E stack performed on the expander model,
textcolorblueplus the fine-tuning of both summarizer and expander models.

UNSUPERVISED PAPER2SLIDES GENERATION 14 / 24

PRE-TRAINING S-E STACK

Pre-Training
Stacked S-E Structure

On Expander Model

 Summarizer Model Expander Model
tensor(
 [[...], [...], ...]
)

“... … …”

“... … …”

tensor(
 [[...], [...], ...]
)

Bart-Large-CNN Cross Entropy Loss

Article

 Highlights

 Article

 Probability Model Outputs

Bart-Large

 Pre-trained Pre-trained

“...” Language model head

▶ The S-E stack plays a crucial role in computing the reconstruction loss and achieving a more
convincing measurement of information quantity.

▶ To ensure maximum effectiveness, both the summarizer model and the expander model need to be
highly powerful.

▶ Since there were no pre-trained expanders available, we took on the task of pre-training one from
scratch.

▶ For both summarization and expanding tasks, we utilized BART model as the underlying neural
network structure.

UNSUPERVISED PAPER2SLIDES GENERATION 15 / 24

64

FINE-TUNING S & E

End-to-End Training
Encoder Model

Back Generation Training

Initial Summarizer Model

Fine-tuned Summarizer Model

Domain of Encoder Models
 Domain of Language Models

▶ End-to-end training of the S-E stack is not possible,

UNSUPERVISED PAPER2SLIDES GENERATION 16 / 24

FINE-TUNING S & E

 Paragraphs

 Summarizer Model “...” Expander Model“... … …”

 Paragraphs

“... … …”

“...” Expander Model “... … …” Summarizer Model

Cross Entropy Loss

tensor(
 [[...], [...], ...]
)

tensor(
 [[...], [...], ...]
)

 Bullet Points

“...”

Cross Entropy Loss

 Bullet Points

Back Generation &
Training
Expander Model

Back Generation &
Training
Summarizer Model

▶ End-to-end training of the S-E stack is not possible, so we use an unsupervised training algorithm
discussed in the literature review section.

▶ We utilize this algorithm to parallelly train both the summarizer and the expander models.
▶ During each iteration of training, both models were utilized to summarize or expand some given

piece of text.
▶ The generated text and its source text are used as training input and the label to train the other

model.
UNSUPERVISED PAPER2SLIDES GENERATION 17 / 24

GREEDY OPTIMIZER

“...” “...” “...” “...” “...” “...” “...” “...”Paragraphs

Difference in
Reconstruction
Loss

“...” “...” “... …” “...” “...” “...” “...”Updated
Blocks

*

▶ where the symbol "seg" represents a segmentation method and ti are segmented blocks from the
input article.

▶ We are unable to derive a precise mathematical formula for the optimal segmentation, denoted as
seg * * .

▶ In light of this, we need to turn to iterative optimization methods that can dynamically adjust and
adapt, rather than relying on fixed procedures.

▶ We opted to utilize a greedy search algorithm to uncover the solution, in order to take some
advantage of its efficiency in development and robustness in deployment

UNSUPERVISED PAPER2SLIDES GENERATION 18 / 24

65

EXPERIMENTS

▶ We offer an extensive assessment of the Paper2Slides framework, encompassing evaluations of the
main model and its sub-components.

▶ These evaluations involve multiple dimensions, including gauging the performance of the pretrained
expander model on the CNN-daily dataset.

▶ We provide illustrative examples showcasing the outputs of the individual sub-models.

UNSUPERVISED PAPER2SLIDES GENERATION 19 / 24

PRE-TRAINED EXPANDER ASSESSMENT

▶ We used the ROUGE score as an automated assessment tool, which is a commonly employed
metric that assesses the quality of generated text by measuring the degree of token or n-gram
overlap lin-2004-rouge.

▶ For each highlight in the test dataset, we employed the expander model to extend it into longer text,
aiming for a length equivalent to the corresponding article.

▶ Subsequently, the Rouge score is computed between the expanded text and the ground truth article.
▶ The

UNSUPERVISED PAPER2SLIDES GENERATION 20 / 24

FINE-TUNED MODELS ASSESSMENT

▶ Our experiments focused on 75 randomly selected paragraphs from 18 scientific articles, most of
them are published in scientific journals and else are master’s or PhD theses.

▶ We were unable to find a baseline expander model, leading us to exclusively carry out evaluations
on the summarizer model.

▶ The ultimate findings reveal that in 45.33% of instances, providers favored the result from our
fine-tuned model. In 28.00% of cases, providers perceived both summaries as having equal quality,
while in 26.67% of cases, providers favored the baseline model’s result.

▶ The consistent preference for our model’s summaries by providers strongly supports the conclusion
that our fine-tuned model outperforms the baseline.

UNSUPERVISED PAPER2SLIDES GENERATION 21 / 24

66

PROPERTY OF RECONSTRUCTION LOSS

▶ In this section, we provide evidence to support the above-mentioned claim through a verification test.
▶ We claimed that for a certain S-E pair, the more coherent paragraphs would show a smaller

reconstruction loss compared to a text that displays more significant logical inconsistency.
▶ This suggests that the optimization framework based on reconstruction loss could potentially

address the segmentation challenge inherent in the paper-to-slide generation process.
▶ We carefully selected 2000 pairs of coherent and consecutive paragraphs from the dataset

’Automatic
UNSUPERVISED PAPER2SLIDES GENERATION 22 / 24

SYSTEM ASSESSMENT

▶ In this section, we present the outcomes of our testing in comparison to existing state-of-art models.
▶ Initially, our intention was to assess our model’s performance against both the DOC2PPT and

D2Smodels.
▶ However, we encountered a limitation with the DOC 2PPT dataset, without the corresponding

extracted text.
▶ On the other hand, we solely conduct the comparison against the D2S model.
▶ model’s Rouge-1 and Rouge-2 scores are significantly higher than the D2S model.

UNSUPERVISED PAPER2SLIDES GENERATION 23 / 24

CONCLUSION

▶ This project has been driven by the aim of automating the process of generating presentation slides
from paper documents.

▶ We have meticulously designed an optimization framework tailored to address the unique challenges
of this task.

▶ Through extensive automated evaluations, our system has demonstrated its superiority over
baseline models, positioning itself as a benchmark for the evolving field of paper-to-slide generation.

UNSUPERVISED PAPER2SLIDES GENERATION 24 / 24

67

	Introduction
	Related Works
	Autoencoder Networks
	Seq2seq Models
	Recurrent Neural Networks
	Attention Mechanism
	Transformers & Large Language Model

	Seq2seq Decoding Methods
	Greedy Search
	Beam Search
	Top-K Sampling & Top-P Sampling

	Unsupervised Machine Translation (UMT)
	Unsupervised Machine Translation

	Paper-to-slide Generation
	DOC2PPT
	D2S
	Supervised Approach Limitations

	Method
	Data Processing
	Pre- & Post-Processing

	Paper-to-Slide Problem
	Task Re-Introduction
	Summarizer-Expander Structure
	Reconstruction Loss

	Paper2Slides Model
	Pre-training S-E Stack
	Fine-tuning S & E
	Greedy Optimizer

	Experiments
	Pre-trained Expander Assessment
	Experimental Results
	Examples

	Fine-tuned Models Assessment
	Experimental Results
	Examples

	Property of Reconstruction Loss
	Hypothesis Testing

	System Assessment
	Experimental Results

	Conclusion
	Example Slides Outputs

