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Abstract

Recent experiments have shown that spin dynamics depend on spin inertia [1, 2]. If
the spin dynamics are dependent on spin inertia, the energy levels of a single spin could
have an inertia-dependence too. In this thesis, we investigate how spin inertia affects the
lowest energy levels of a single spin. To find this result, we consider a model of a large
spin, with easy-axis anisotropy. Furthermore, the spin is influenced by a magnetic field
and we place the spin in a bath of harmonic oscillators, to induce non-zero spin inertia.
We consider a spin which can have values in a single direction. We call this model the
circular-spin model. To find these lowest energy levels and their eigenenergies, we use
instanton calculus. For the circular-spin model, we find the lowest energy levels. This new
result tells us how spin inertia affects the lowest energy levels of a spin. We found that
these energy levels have a similar dependence on spin inertia as the lowest energy levels
of a particle in a double-well potential, depends on the mass of the particle. With this
result, we have a better fundamental understanding of the lowest energy levels of spins.
Furthermore, this result may provide a new way to experimentally detect spin inertia.
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1 Introduction

Magnetization dynamics play a crucial role in a wide range of applications. For example,
electronic data is saved in bits, which are represented by spins pointing either up or down.
To control these bits, and to know how to manipulate them, it is important to understand
the behaviour of spins. Individual spins aim to align with magnetic fields and are lowest in
energy if they are aligned with the effective magnetic field around them. If we include all
forces acting on the spin we end up with the dynamics of a spin. The dynamics of a single
spin S are mathematically described by the Landau–Lifshitz–Gilbert (LLG) equation [1],

Ṡ = S × (Beff − α0Ṡ) . (1.1)

This equation describes a single macro-spin in an effective magnetic field Beff . In the
effective magnetic field are typically included the external magnetic field and the intrinsic
magnetic field, generated by the magnet a spin itself can be part of. If the spin is not
isolated, it can dissipate energy into its environment, which leads to the Gilbert damping
term with coefficient α0. The LLG equation describes the dynamics of a spin returning
to its equilibrium position after it has been excited. The cross-product between the spin
and the effective magnetic field S × Beff , leads to the precession of the spin around the
effective magnetic field. The Gilbert damping term, S × α0Ṡ, leads to the damping to the
equilibrium state (see figure 1a).

Figure 1: An illustration of the dynamics of a spin. In ( a) we see a spin out of its
equilibrium position. The equilibrium position is the spin aligned with the effective magnetic
field Beff . The spin rotates around the equilibrium position, which is called precession. This
figure corresponds with the LLG equation (1.1). In (b) we see the same plot but now with
an extra movement. This is the nutation. This figure corresponds with the ILLG equation
(1.2), that includes spin inertia. The frequency of the nutation is usually much larger than
the frequency of the precession. The figures are adapted from the paper by K. Neeraj et al.
[1].

Recently, an extra component in the spin dynamic was observed experimentally [1],
namely nutation of the spin (see figure 1b). The nutation is described mathematically by
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including spin inertia I in the LLG equation [2, 3]

Ṡ = S × (Beff − α0Ṡ − IS̈) . (1.2)

This equation is also called the Inertial-Landau–Lifshitz–Gilbert (ILLG) equation. The
term including spin inertia can arise, for example, from high frequency modes from the
environment [4]. In the ILLG equation (1.2) the spin dynamics are dependent on the
inertia. To have an intuition of spin inertia, we see the spin inertia as the spin equivalent
of mass.

The relation between spin dynamics and spin inertia leads to many new questions.
Recently, research has been devoted to a better fundamental understanding of spin inertia,
which could result in making use of spin inertia in technology [3, 5, 6]. Some fundamental
questions that come to mind have to do with the energy levels of a spin system, which are
influenced by spin inertia. We are now interested in the following two questions. Under
what circumstances does spin inertia influence the energy levels of a spin? On which
variables do the spin energy levels depend? In this thesis, we are going to look specifically
at the lowest energy levels: the ground state and the first excited state of a spin.

To answer the questions above, we use a spin model with inertia. This model includes
a large spin, which allows us to use semi-classical approximations. This spin is localized
and in contact with a bath of harmonic oscillators, as this is a simple model which includes
inertia. We use the same bath as in the thesis by M. Gaspar Quarenta [4]. To have a good
description of the energy levels of a spin system, we have to take into account quantum
effects. This is because we are interested in particles that are so small that quantum effects
play a role. However, the ILLG equation does not include any quantum aspects of the spin.
To find the quantum mechanical energy levels of a spin, we will use path integrals. With the
path integral formulation, we can use the spin-instanton to find the lowest energies of the
spin. We find that the lowest energy levels of a spin are dependent on inertia if they are of
the following form: the lowest energy levels should be a superposition of multiple potential
minima. The reason for this is that only when the lowest energy levels are superpositions,
we can describe the ground state by the spin constantly tunneling between the multiple
potential minima.

Exactly when the spin tunnels between the potential minima, the spin is influenced by
inertia [7]. We can find the tunneling mathematically with the spin-instanton. If the spin
would have no inertia dependence, a spin could tunnel infinitely fast through the barrier
and that would cost no energy for a spin. In the derivation of the lowest energy levels
of a spin we make an assumption, which has the result that we can only use the spin-
instantons for a spin with non-zero inertia. A spin-instanton is a quasi-classical trajectory
of a spin going from one potential minimum to another. We call any trajectory which
includes a spin-instant a spin-instanton trajectory. To prevent confusion, we call a spin-
instanton, which trajectory goes once from one potential minimum to another, the single
spin-instanton. In this thesis we will therefore introduce the calculation of the ground-state
energies of a spin, using instanton calculus.

To have a good understanding of the instanton, we will first look at the ground-state
energies of a particle in a double-well potential. These ground-state energies are derived
by analyzing the instanton [8] as is reviewed in chapter 2. If readers are familiar with
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this derivation, they can skip chapter 2 and start reading chapter 3. In chapter 3 and
4 we study a spin that is macroscopic, localized and in contact with a bath of harmonic
oscillators. Also, the spin has easy-axis anisotropy and is influenced by a magnetic field
perpendicular to the easy-axis anisotropy. In this model, which we call the spherical-spin
model, the ground-state energies of the spin are derived using the spin-instanton.

In a general model, there are many quasi-classical paths to go from one spin-state to
another. However, if we look at a spin model with one degree of freedom, we only have to
take into account one or two quasi-classical paths between spin states. We will therefore
look at the model that we call circular-spin model. This is a model where we fix the y-
coordinate of a spin. What we are left with is a model with only one angle dependence and
therefore it is called the circular-spin model. The circular-spin model gives us information
about the spherical-spin model and we can calculate the ground-state energies of the spin,
using the spin-instanton. The derivation is roughly speaking similar to the derivation of
the ground-state energies in chapter 2.
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2 Ground-state energies of a particle in a double-well

potential

In this chapter, we consider a particle in the double-well potential as plotted in figure 2.
A remarkable property in quantum mechanics is, that for a particle in the double-well
potential, the ground state is a superposition of a particle in the left and right well of the
potential. In classical mechanics, a ground state cannot be a superposition. The classical
ground states are given by the particle in one of the wells. We can interpret the ground
state in quantum mechanics mentioned above as follows: a particle in the double-well
potential in the left well is influenced by the right well [9].

Classically, a particle that has not enough energy to cross a potential barrier, cannot
travel from one potential minimum to the other. However, in quantum mechanics this is
possible because a particle in the double-well potential can tunnel from one well through
the potential barrier to the other well. To find the ground-state energy for a particle in the
double-well potential, we need to know what the influence of tunneling is on the ground
state, as tunneling leads to a non-degenerate ground state. For a particle with a small mass
it is relatively easy to tunnel through the potential barrier. Therefore, the ground-state
energy of a particle in the double-well potential must have a non-trivial dependence on the
mass. The ground state we find with quantum mechanics, has a lower energy than if a
particle would be in one potential well only.

The easiest way of finding the lowest energy levels of the double-well potential is with
the WKB-method [10]. Another way of finding these states is by using the instanton [11].
In the path-integral description of quantum mechanics, the phenomenon of a particle going
from one potential minimum to the other over a high potential barrier is also possible as
this event is included as one optional path in the path integral. The path from one potential
minimum to the other is called the instanton. A more formal definition of the instanton is:
an instanton is a quasi-classical trajectory in Wick-rotated time of a particle going from
one potential extremum to the other. We call any trajectory which includes an instanton
an instanton trajectory. This gives us the same information as a particle tunneling from
one potential minimum to the other [12]. We can therefore find the lowest energy levels of
the double-well potential with the instanton.

How we can use exactly the instanton to find the ground-state energy is explained in
this chapter. One thing we should note is that the instanton only plays a role in the
derivations for an energy level, which is a superposition of two other states, as only then
tunneling is relevant.

2.1 The quantum instanton

The double-well potential (see figure 2) is given by the following equation

V (q) = mω
2
0

8a2
(a2 − q2)2. (2.1)

Here m is the mass of the particle and ±a are the positions of the minima of the potential.
Further, ω0 is the oscillator frequency, which determines the width of the potential and
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Figure 2: The double-well potential (in grey), with a Wick rotation of the double-well
potential (in blue). The Wick rotation flips the potential around the horizontal axis. This
is best to see via the equations of motion, which we get by varying the action in equation
(2.2). The equations of motion after the Wick rotation are given by −mq̈+ ∂v(q)∂q = 0 instead

of mq̈ + ∂v(q)
∂q = 0, which are the equations of motion in real-time. The extra minus sign

makes it possible for a particle to have a classical solution for a path from q = −a to q = a.
This solution, which is the instanton, can be seen as a particle going from one extremum to
the other in imaginary time. In the left well we see the potential of a harmonic oscillator.
The harmonic oscillator is a good approximation of the double-well potential in the vicinity
of the minima q = −a and q = a.

corresponds to the energy differences of a particle in a single well with the same curvature as
the double-well potential. The oscillation frequency is exactly the frequency of a harmonic
oscillator with which we will relate the double-well potential later (see equation (2.14)).
We should be aware of the fact that ω0 and a determine the height of the barrier between
the two wells [9].

Once we have the potential, we can write an expression for the action of a particle in
the double-well potential after a Wick rotation, t→ −iτ , by

S[q] =
ˆ τ

0

dτ ′(V (q) − m
2
q̇2). (2.2)

The goal of this chapter is to find the ground-state energies of a particle in a double-
well potential. To do so we use the following equation, which gives a relation between the
eigenenergies of the particle and the action [8]

∑
n

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩ = ⟨qf ∣e−Ĥτ ∣qi⟩ = C
ˆ qf

qi

Dq exp(−S[q]). (2.3)

Here C is a prefactor.1 A proof of the equation above is in appendix A. Let us explain

1We are not interested in the prefactor C. In this thesis the prefactor is not of importance, as only the
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this equation in words. The middle term in equation (2.3) is the probability amplitude for
a particle that starts at position qi at imaginary time zero, to be found at position qf at
imaginary time τ later. We work with imaginary time, as this is needed for the instanton.2

Furthermore, En are the eigenenergies of the Hamiltonian Ĥ with eigenbasis ∣n⟩. There is
no h̵ in this equation as we put in the whole thesis h̵ = 1. The right equality in equation
(2.3) holds, as this is the path integral between the initial state ∣qi⟩ and the final state ∣qf ⟩.
Before we can find an expression for the ground-state energies, we have to find the lowest
energy levels for the double-well potential.

2.2 The lowest energy levels

Equation (2.3) is only useful once we take the limit of τ → ∞. In this case all terms of
the form e−Enτ go to zero. The terms that go the slowest to zero, are the terms with the
lowest energy, En. These are the only relevant terms in the equation. We choose to look
not only at the ground state but also at the first excited state. We can include these two
states if the difference between the eigenenergies of the ground state and the first excited
state, ∆ϵ, is very small compared with the difference between the ground state and second
excited state [9]. This requirement holds if ω0a2 is large, as for these values the barrier
is large. When the barrier is large, there is relatively little influence from one well to the
other and therefore the ground state and the first excited state are nearly the same.

We can find the ground state and first excited state because we know that the double-
well potential and the Hamiltonian are symmetric under parity between the right and left
well. This means that we can switch all states in one well with all states in the other
well in the equations describing the system, and the mathematical results will be the
same. If a Hamiltonian is invariant under a certain symmetry, its eigenstates are invariant
under the same symmetry. The lowest energy levels which are invariant under parity
are the symmetric state ∣S⟩ = 1√

2
(∣L⟩ + ∣R⟩) and antisymmetric state ∣A⟩ = 1√

2
(∣L⟩ − ∣R⟩)

[13]. Calculations show that ∣S⟩ the ground state and ∣A⟩ is the first excited state of the
Hamiltonian [14]. In this description, ∣L⟩ and ∣R⟩ are the local ground states of the left
and right well respectively.

The lowest eigenenergies are given by ES = 1
2(ω0 −∆ϵ) and EA = 1

2(ω0 +∆ϵ). We argue

dependence in the exponential leads to the energy gap between the ground-state energy and first excited
state energy. The prefactor leads to the so-called reference energy, Eref =

1
2
(E0 + E1), however, there is

another way to find this prefactor, so for now we ignore it and say only that the probability amplitude is
proportional to the path integral.

2Let us explain why we have to work with Wick-rotated time when we are looking at instantons. The
instanton trajectories, or just instantons, are the quasi-classical trajectories between two potential minima.
This means that for an instanton the quantum fluctuations are not included. A particle has to get excited
if it goes classically from one well to the other, so if it follows a quasi-classical path between two minima. In
the double-well potential we are looking at, this excitation is so high, that we can ignore the contributions
from the particle going classically from one well to the other in real-time. However, we can do a Wick
rotation. In the Wick-rotated time τ the potential is suddenly flipped over the horizontal axis (See figure
2). This makes it possible to calculate the instanton trajectory in imaginary time, as a particle can now
go classically from one extremum to the other. The Wick rotation is a mathematical trick, which makes
it possible to calculate the instanton trajectory. We use the same procedure for the Wick rotation as is
done in general in physics [8].
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why this should be the lowest energies. If the two wells would be infinitely far away from
each other and as a result the barrier would be infinitely high, then the two wells would
look exactly like a harmonic oscillator with frequency ω0. In this case ∣L⟩ and ∣R⟩ are
ground states with eigenenergies ω0

2 . If we are looking at wells closer to each other, so for
a finite a, we would look at a finite barrier. Now, a particle in one well is influenced by the
other well and can travel passed the barrier and the eigenstates become the symmetric and
antisymmetric states. By letting the wells come closer to each other, we do not change the
total energy of the system. This means that if the ground-state energy becomes slightly
smaller, the first-excited-state energy becomes slightly larger [10]. We find that indeed the
lowest eigenenergies are given by ES = 1

2(ω0 −∆ϵ) and EA = 1
2(ω0 +∆ϵ).

2.3 The path integral

Figure 3: The trajectory of a particle going from one extremum to the other without quan-
tum fluctuations, also called a single instanton trajectory. The particle starts at q = −a
and travels to q = a. The path the instanton takes is determined using energy conservation
(see appendix B why we can consider energy conservation in Wick-rotated time). The total
energy E is given by the sum of kinetic energy K ′(q) = −m2 q̇2 and potential energy V (q),
E = K ′(q) + V (q). The double-well potential in Wick-rotated time is such that V (±a) = 0.
When the particle is on an extremum, it is not moving, so there the kinetic energy in
Wick-rotated time is zero, K ′(±a) = 0. This means that the total energy is zero, E = 0. On
all other positions in the potential, the energy is conserved so m

2 q̇
2 = V (q). This is a first-

order differential equation, which we can solve. We find that q(τ) = a tanh(12(ac1 + ωτ).
The constant c1 determines when the particle is moving from one extremum to the other.
The single instanton trajectory, which is plotted above, is given by q(τ).

We can use the lowest energy levels to write equation (2.3) as follows

lim
τ→∞

∑
n∈{S,A}

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩∝ lim
τ→∞

ˆ qf

qi

Dq exp(−S[q]). (2.4)

To get a useful result out of this equation, we have approximate the path integral from qi to
qf . The path integral is calculated by the quasi-classical paths with corrections, as is done
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in the saddle-point approximation [8]. These corrections are the quantum fluctuations.
This is seemingly a long computation as there are many paths, but we can simplify the
problem. First, we say that a particle is nearly all its (Wick-rotated) time τ , fluctuating
around the positions q = ±a. Only on rare occasions, a particle is traveling from one
extremum to the other (see figure 3).

Figure 4: A single trajectory of a particle going from q = −a to q = a with quantum
fluctuations. The position of the particle is plotted against the imaginary time τ . Around
the time τi the particle moves from position. We make the assumption that the instanton
time, τins, is very small. The instanton time is the time when the displacement of the
particle gives a relevant contribution to the integral in equation (2.8). A particle starts
moving from one well to another due to quantum fluctuations. The instanton time is
determined by the time between the moment the particle leaves the area dominated by
quantum fluctuations and the time it arrives in the area dominated by quantum fluctuations
around the other extremum. Further, we see in the plot that the quantum fluctuations are
small compared with the displacement from q = −a to q = a. We therefore only have to take
into account quantum fluctuations when the particle is on an extremum.

On the parts of the instanton trajectories where the particle flips from potential ex-
tremum, the quantum fluctuations are negligible compared with the change in the position
of the particle (see figure 4). Because of this reason, with the fact that the particle is
mostly on an extremum, we only have to consider quantum fluctuations when a particle is
on an extremum.

We make the assumption that the quantum fluctuations are local, which means that
they are only changing the path slightly. We can now split the path integral into two
parts, the quasi-classical part and the quantum fluctuations. In the quasi-classical part,
we only integrate over quasi-classical paths, which are all paths that could happen using
only classical principles. For the quantum fluctuations, we consider all the fluctuations
around the quasi-classical paths. We call this paths quasi-classical and not classical as we
are still considering a quantum system.

We split the path integral in two parts by writing the action as a combination of quasi-

12



Figure 5: Three possible paths for a particle starting at q = −a. To calculate the eigenener-
gies of a particle in the double-well potential, we have to integrate over all paths. Luckily
there are only some paths relevant as they give a bigger contribution. The particle is highly
unlikely to do a random path from q = −a to q = a. The only relevant path going from
q = −a to q = a once is the single instanton trajectory. As argued in the text, we only have
to integrate over all possible quantum fluctuations when a particle is on an extremum and
we have to sum over the different moments when a particle can travel from one extremum
to the other extremum.

classical paths with quantum corrections

S[q] = S[qcl + δq]. (2.5)

In this equation, we write the position q = qcl + δq, where qcl is the classical position and
δq are fluctuations around qcl. We can therefore write the action in a term with only the
quasi-classical paths and separately the corrections which are given by

Squ[δq] = S[qcl] − S[qcl + δq]. (2.6)

As we integrate over all paths, we have to integrate over both the quasi-classical paths and
the quantum fluctuations (see figure 5). We end up with the following equation

ˆ qf

qi

Dq exp(−S[q]) = ∑
{qcl}

Ccle
−S[qcl]

ˆ
Dδq exp(Squ[δq]). (2.7)

Here sum includes all possible quasi-classical paths. In this equation Ccl is only a prefactor
which we need to add for all different quasi-classical paths. In equation (2.6) we have the
instanton trajectories

∑
{qcl}

Ccle
−S[qcl],

and the quantum fluctuations ˆ
Dq′ exp(Squ[q′]).
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We ignore the time that the particle is moving from one extremum to the other for the
quantum fluctuations. Ignoring this time only leads to a tiny difference in outcome. Be-
cause of this, together with the approximation that we only look at quantum fluctuations
when the particle is on an extremum, we can evaluate the quantum fluctuations indepen-
dently of the quasi-classical paths. Therefore, we can really evaluate the right-hand side
of equation (2.7) as two separate integrals.

2.4 The single instanton trajectory

Before we compute the path integral over the classical action, we look at a single instanton
trajectory first. A single instanton trajectory is the path of a particle going once from one
minimum to the other (see figure 4). Due to symmetry, the single instanton trajectory
from q = −a to q = a has the same outcome as from q = a to q = −a. We want to calculate
the path integral over a single instanton trajectory (Iinst)

Iinst = Ca exp(−
ˆ ∞
0

dτ ′(V (qcl) +
m

2
q̇2cl)) = Ca exp (−Sinst) , (2.8)

where q̇cl = ∂qcl
∂τ ′ and Sinst is the single instanton action. Further, Ca is a prefactor which

results from taking the path integral.
Looking at the single instanton trajectory, the time integral going to infinity seems

intimidating. However, it is enough to integrate from zero to a time τins, the instanton
time. This needs some explanation, as we expect classically that the particle would not
even move if it is on an extremum. Due to quantum fluctuations, the particle is often
not exactly on an extremum. Secondly, it would take an infinite time to get exactly to
the other extremum. However, the particle reaches the area around the extremum, where
quantum fluctuations are dominant, after a certain time. This time is called the instanton
time τins (see figure 4). Once the particle is in the area where the quantum fluctuations
dominate, we say that it went from one extremum to the other.

For a particle close to an extremum, its classical contribution to the action is negligible.
Indeed for a particle close to an extremum, its velocity is nearly zero and therefore the
kinetic term too, V (q) = 0 for q = ±a. The contribution from the integral from τins to
infinity is ignored. We can therefore take the integral from zero to τins.

We can find a convenient expression for the single instanton action, by using energy
conservation. The total energy is conserved so m

2 q̇
2 = V (q). With this we find that

Sinst =
ˆ τins

0

dτ ′
dqcl
dτ ′
(mq̇cl) =

ˆ a

−a
dq(2mV (q))

1
2 . (2.9)

In the equation above, q is now a dummy variable, so we can integrate over the position.
The double-well potential V (q) is given in equation (2.1). We find that

Sinst =
2

3
mω0a

2. (2.10)

Now the single instanton trajectory can be calculated, as the single instanton action is
independent of position. We then find that

Iinst ∝ exp (−Sinst) = exp(−
2

3
mω0a

2) . (2.11)
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With this result, we found a convenient expression for the contribution of the mass of a
particle and the shape of the well to the single instanton trajectory.

2.5 Classical paths

Figure 6: A possible instanton trajectory without quantum fluctuations. A particle starts at
the extremum q = −a. Around an imaginary time τ1 it moves to the other extremum. Then
it moves back at τ2 and so on. We can order the times when the particle moves between
extrema. All classically possible paths can be determined in this way.

In equation (2.7) we integrate over all possible quasi-classical paths from −a to a,
including the paths where a particle goes from one extremum to another multiple times
(see figure 6). The particle can travel many times from one extremum to another. However,
for a particle with mass, a particle is most of the time in one of the extrema. The instanton
time multiplied with the number of switches, is small compared with the time a particle
is in the extrema. If the particle would be massless, it would have no kinetic energy and
it would travel infinitely fast from one extremum to the other, if we ignore relativity. The
massless particle could switch infinitely many times from position. In this situation we
cannot use the instanton. We need particles to be massive to introduce the instanton.

Now we go back to the classical part of the path integral (2.7). To compute this, we have
to look at the main contributions. The classical solutions are always of the following form:
A particle starts on a potential extremum ±a, then moves n times from one extremum to
the other. The moment it moves is given by τi, where the index stands for after how many
switches between extrema the particle moves. After a time τ , we stop and see where the
particle is. All classically possible paths the particle has taken are the trajectories.

To include all trajectories we have to integrate over all classically relevant paths. We
do this by integrating over the times that the particle can go from one extremum to the
other τi. Now we can calculate all classically relevant paths together. We get that the
quasi-classical paths from equation (2.7) are given by the following equation

∑
{qcl}

Ccle
−S[qcl] =∑

n

ˆ τ

0

dτ1...

ˆ τn−1

0

dτn (Iinst)n . (2.12)

15



In this equation, n is the number of single instanton trajectories, as this is the number
of switches between extrema the particle has taken. We have used here that all single
instanton trajectories give the same contribution. We integrate τi from 0 to τi−1 as all
instanton trajectories can be ordered in time. Using that

´ τ
0
dτ1...

´ τn−1
0

dτn = τn

n! gives

∑
{qcl}

Ccle
−S[qcl] =∑

n

1

n!
(τIinst)n . (2.13)

In this expression is convenient, as it only depends on the single instanton trajectory.

2.6 Quantum fluctuations

Now we look at the quantum fluctuations. As said before, we only have to look at the
fluctuations when the particle is on an extremum. When we look at the particle in one of
the wells we can make the approximation that both wells individually are very similar to
a single well. This single well has a potential, which is given by

VHO(x) =
m

2
ω2
0x

2. (2.14)

This is the potential for a harmonic oscillator, which is a well-known potential in quantum
mechanics. This potential corresponds really well with the double-well potential around
the points q = ±a in the double-well potential. We find the single-well potential after a
coordinate shift q − a = x for the left well, and q + a = x for the right well. One can see
that the approximation is good by making a Taylor expansion in the double-well potential
around q = ±a and comparing it with the potential for the harmonic oscillator. Up to
second order in the Taylor expansion they are identical.

We can now find the quantum fluctuations as we know how to get them for the harmonic
oscillator. The quantum fluctuations for a particle being on a potential extremum for a
time τ are given by

ˆ xf

xi

Dx exp(−Squ[x]) =
ˆ xf

xi

Dx exp(−
ˆ τ

0

dτ ′(VHO(x) +
m

2
ẋ2)) . (2.15)

We know how to work with the harmonic oscillator in real-time. In appendix C we derive
the following result ˆ xf

xi

Dx exp(−Squ[x]) = C ′ sin(−iω0τ)−
1
2 , (2.16)

where C ′ is a constant, which is irrelevant for now. To calculate the path integral from
equation (2.3), we have to look at all possible paths. We therefore have to look at a particle
being in one of the wells for a time ∆τ , before it travels to the other well. We assume that
a particle is much longer on an extremum than the time it takes for a particle to do a single
quantum fluctuation. This means mathematically that ω0∆τ >> 1. With this assumption
we can write equation (2.16) as a single exponential

sin(−iω0∆τ) =
1

2i
(eω0∆τ − e−ω0∆τ) ≈ 1

2i
eω0∆τ . (2.17)
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With this we find that for a particle being on an extremum of the potential for a time ∆τ ,
the path integral is given by ˆ xf

xi

Dx exp(−Squ[x]) = C ′e−
ω0∆τ

2 . (2.18)

Notice that this is exactly the same expression as the path integral of a particle being in
the ground state of a single-well potential for a time ∆τ , as the ground-state energy of a
particle in a single well potential is given by E0 = ω0

2 .
Now we want to find the quantum fluctuation for the whole path integral. As the

particle is nearly always on the position q = ±a, it is a good assumption to take the
quantum fluctuations from the particle on an extremum for the entire time τ . With this
assumption, we find that the total contribution from the quantum fluctuations is given byˆ

Dδq exp(−Squ[δq]) = C ′e−
ω0τ

2 . (2.19)

Next, we can use the result of the quantum fluctuations and quasi-classical paths to
find a result for the path integral in equation (2.7)ˆ qf

qi

Dq exp(−S[q]) = C ′e−
ω0τ

2 ∑
n

1

n!
τn exp (−nSinst) . (2.20)

We can combine this with equation (2.4) and we find

lim
τ→∞

∑
n∈{S,A}

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩∝ lim
τ→∞

e−
ω0τ

2 ∑
n

1

n!
τn exp (−nSinst) . (2.21)

We can use this equation to find the lowest energies of a particle in a double-well potential.

2.7 The energy gap

To see how the lowest energy levels are related to the instanton, we have a look at the
left-hand side of equation (2.21). Here the ground state and first excited state are given by
the symmetric and antisymmetric eigenstates respectively. These eigenstates have eigenen-
ergies given by ES = 1

2(ω0 −∆ϵ) and EA = 1
2(ω0 +∆ϵ) [7]. Fortunately, we can relate the

energy difference between the ground state and the first excited state ∆ϵ with the single
instanton (see appendix D). We find that the energy gap between the ground state and
the first excited state is given by

∆ϵ = Iinst. (2.22)

We can combine this with equations (2.10) and (2.11) and we find that

∆ϵ∝ exp(−2
3
mω0a

2) . (2.23)

The energy gap is, as expected, dependent on the mass of the particle. The bigger the
mass of the particle is, the smaller the energy gap is. This is as expected, because for a
particle with a big mass, it is harder to go from one extremum to the other, exactly as it
is harder to go from one extremum to the other if the barrier is high. For a high barrier
the energy gap is smaller. Similarly, for a higher mass the energy gap is smaller too.
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2.8 Conclusion

We found a procedure to get the ground-state energies of a particle in a double-well po-
tential, by using the instanton. This procedure is more complicated than if we would find
the ground-state energies via the WKB-method [10]. We found exactly the same result as
is found with the WKB-method, namely

∆ϵ∝ exp(−2
3
mω0a

2) . (2.24)

This is the same result as in the book by A. Altland et al. [8].
We want to note explicitly that the energy gap is proportional to e−m, so the energy

gap is getting exponentially smaller for a bigger mass. If the mass would be infinitely large,
a particle could not tunnel through the barrier, and therefore the two potentials would be
independent of each other. This would lead to two exactly the same single-well potentials
and therefore two degenerate ground states.

The reason that we used the instanton in the derivation is that we are now familiar
with instanton calculus. We find the ground-state energies for a spin using an instanton
in the next chapters. The procedure is the same for the particle in a double-well potential
as for a spin, but the spin Hamiltonian has different terms, which makes the derivation
more complicated. However, many steps are the same and a good understanding of the
instanton for a particle in a double-well potential makes the derivation easier to follow.

After calculating the ground-state energies, we have a better understanding of super-
positions, as we know how a particle can move between two wells. We also found the path
integral of a particle moving between wells, as this is the single instanton trajectory. In the
derivation of the ground-state energies, we assumed that some paths from one well to the
other are physically relevant and other paths we neglected. Still, we found the right result
for the lowest energy levels of a particle in a double-well potential. This means that our
assumption when a path is likely to happen or not, is reasonable. We can conclude that
the quasi-classical paths between potential minima are the most relevant paths together
with small quantum deviations of these paths.

We found a result which explains the influence of tunneling on ground-state energies.
However, tunneling is also interesting for other situations such as potentials where one
potential minimum is a lot smaller than another. With tunneling one could find how big
the probability is that a particle would go from a higher potential minimum to a lower
potential state after crossing a barrier. The instanton could be used for such a problem
too.
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3 The spherical-spin model

In this chapter we look at spin systems. Where in chapter 2 we reproduced a result which
is already known, we now give a new result and we do a derivation which has not been
done before. As has been explained in the introduction, we are interested in a spin system
with non-zero inertia.

For this system we are looking for the lowest energy levels and the ground-state energies
of a spin. We argued in the introduction that the lowest energy levels are dependent on
inertia if they are a superposition of multiple potential minima. For such lowest energy
levels, tunneling has to be taken into account. We can calculate these lowest energy levels
with an instanton, the spin-instanton. For the derivation of the lowest eigenenergies for
a spin, we use the same steps as in chapter 2. However, now the derivation is more
complicated as even a simple spin system has many variables to take into account. In the
following chapters, we consider a large single spin, which is localized.

In this chapter we first create a spin model which has a dependence on inertia. In this
model the spin can point in any direction on a sphere. The model is therefore called the
spherical-spin model. For this model we use instanton calculus to find the lowest energy
levels and the energy gap between the ground state and the first excited state. As it turns
out, finding the lowest energies for the spherical-spin model is hard. To make a good
derivation of the energy gap between the ground state and the first excited state, we look
at a more simple model, namely the circular-spin model. In the circular-spin model the
spin can only point in a direction on a circle. This model is explained in chapter 4. In
chapter 3, we first explain the spherical-spin model in detail, then we derive the spin action
and equations of motion. Finally we discuss what has to be done to find the energy gap
between the lowest eigenenergies of the spherical-spin model.

3.1 The spin Hamiltonian

We find an interesting spin model, if we look at a macrospin in a magnet with easy-axis
anisotropy. We also add an external magnetic field on the spin. We choose the z-direction
such, that it corresponds with the direction of the anisotropy. We choose the external
magnetic field to be in the negative x-direction as this is the most convenient choice, so
Bx < 0. The Hamiltonian which corresponds with this model is given by

Ĥspin = −KŜ2
z −BxŜx. (3.1)

We call this the spin Hamiltonian. In the spin Hamiltonian, K is the anisotropy parameter
[15, 16]. The addition of a magnetic field leads to a significant effect if the magnetic field
has the same order of magnitude as the anisotropy parameter multiplied with the total
spin S, so −Bx ∼KS.

The potential corresponding with the spin Hamiltonian, called the spin potential, is
given by (see figure 7)

V = −KS2
z −BxSx. (3.2)

This potential has two minima. Also, the spin potential and the spin Hamiltonian are
invariant under parity in the z-direction Sz. For this model, the lowest energy levels are a
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superposition of the spin being both of the potential minima. This means that to find the
ground state, we have to take into account the instanton. We now have a model of a spin
system which has a relevant spin-instanton dependence.

One might wonder why we have to include a magnetic field in the model. If we look
at the same model but with Bx = 0, we would be working with the so-called easy-axis
Hamiltonian

Ĥea = −KŜ2
z . (3.3)

This Hamiltonian is invariant under parity in the z-direction too. However, after looking
at the corresponding potential Vea = −KS2

z , we see that the potential minima are given by
Sz = S and Sz = −S. These minima are eigenstates of the easy-axis Hamiltonian. Therefore,
the spin does not have to tunnel to the other potential minimum to lower its energy and
thus the spin-instanton does not play a role in this system.

By adding the magnetic field in our model, the potential minima are no longer eigen-
states of the corresponding Hamiltonian. This has the consequence that the ground state
is a superposition of the two potential minima and we need the spin-instanton to find the
lowest energy levels.

Figure 7: In this figure the dimensionless spin potential ( V
KS2 ) is plotted against the spin

value in the z- and x-direction. The potential minima are dependent on Sx and they are no
eigenstates of the spin Hamiltonian. Due to parity symmetry we know that the eigenstates
are a superposition of the potential minima. The two lowest eigenenergies are not equal.
This means that the minimal eigenstates are non-degenerate and thus the spin-instanton
has to be taken into account. We used that Bx

K = −6 and S = 5.5. We look at Bx

K and not at
Bx and K individually, as Bx

K is dimensionless and Bx and K come always in pairs in the
potential divided by KS2.

3.2 The symmetric and antisymmetric state

The spin Hamiltonian is invariant under parity in the z-direction. This means that the
ground state and first excited state are given by the symmetric ∣S⟩ = 1√

2
(∣l⟩ + ∣r⟩) and

antisymmetric spin eigenstates ∣A⟩ = 1√
2
(∣l⟩ − ∣r⟩) respectively. Here the state ∣l⟩ and ∣r⟩
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are defined as the spin in a local ground state of a potential minimum of the potential in
equation (3.2). The symmetric eigenstate has an eigenenergy which is slightly lower than
the energy of a local ground state of the spin. Similarly, the antisymmetric eigenenergy is
slightly higher. Due to symmetry we know that the eigenenergies are given by

E0 = ES = Eref −
1

2
∆ϵ, (3.4)

and

E1 = EA = Eref +
1

2
∆ϵ. (3.5)

The reference energy Eref is the energy for a spin which is not influenced by another
local minimum. Fortunately we know this energy as it is the ground-state energy of the
easy-axis Hamiltonian.3 Locally around the extrema, the easy-axis Hamiltonian is a good
approximation for the spin Hamiltonian. Therefore, we can use the easy-axis Hamiltonian
to find a good approximation of the reference energy.

The ground states of the easy-axis Hamiltonian are given by the spin pointing either
in the positive z-direction, ∣S,S⟩, or in the negative z-direction, ∣S,−S⟩. In this thesis we
denote these states as follows: The spin in the positive z-direction, ∣S,S⟩ ∶= ∣⇑⟩ and in the
negative z-direction, ∣S,−S⟩ ∶= ∣⇓⟩. The eigenenergies of the ground states are found by

Eref ∣⇑⟩ ≈ Ĥea ∣⇑⟩ = −KŜ2
z ∣⇑⟩ . (3.6)

From appendix E we know that Ŝz ∣⇑⟩ = S ∣⇑⟩. This leads to Eref ≈ −KS2.
Next, we want to find the energy gap ∆ϵ. As said before, we are going to calculate the

energy gap with the spin-instanton. We can already make some educated guesses about
the energy gap. It must be dependent on the magnetic field, as at Bx = 0, there is no
energy gap. For the double-well potential, the energy gap is dependent on the mass. This
is because the bigger the mass, the more energy it costs to go from one well to the other.
We expect that the energy gap for spin is dependent on the inertia as inertia determines
how difficult it is for a particle to go from one place to another. We expect that the bigger
the inertia is, the more energy it costs to tunnel from potential minimum. It is interesting
to know what the influence of inertia on the ground state is exactly.

3.3 The spin propagator

We have now described the model for a spin. Next, we want to get the ground-state
energies of the spin and we want to find the description of the spin-instanton. To find this,
we take the same steps as we did for the particle in the double-well potential. We start by

3To better understand why we can use the easy-axis Hamiltonian to find the reference energy Eref , we
want the reader to be aware of the analog with the double-well potential. For the double-well potential,
we found that the reference energy is found by looking at an infinite barrier. Here a particle in one well
is not influenced by the other well. The single reference energy is then found by looking at the ground
state of a single well (see [14]). Similarly, for the spin system, one minimum spin state is not influenced
by another minimum, if there is no magnetic field. We can therefore find the reference energy by looking
at the easy-axis Hamiltonian and finding its ground-state energy.
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deriving a path integral from the propagator (for a detailed derivation of equation (3.7)
see appendix F). In this derivation we use that the spin is not interacting with anything

lim
τ→∞

∑
n∈{S,A}

⟨ψf ∣n⟩ e−Enτ ⟨n∣ψi⟩ = lim
τ→∞
⟨ψf ∣e−Ĥτ ∣ψi⟩ = c lim

τ→∞

ˆ ψf

ψi

Dg exp(−S[g]). (3.7)

The initial and final states of the propagator are given by ∣ψi⟩ and ∣ψf ⟩ respectively. Fur-
ther, we have that c is a prefactor, which is not important in this thesis.4 In equation
(3.7), S[g] is the spin action, which depends on the spin coherent states ∣g⟩. For more
information about spin coherent states, see appendix E. To derive equation (3.7), we add
unit operators of coherent states and time evolution operators in the propagator.

On the left-hand side of equation (3.7) we take into account the ground state and the
first excited state of the spin. We take into account both states as we are interested in the
energy gap between the eigenenergies of the ground state and the first excited state. We
take the limit of τ →∞ to be able to ignore all higher energy levels than the first excited
state. We can only ignore the higher energy levels and take into account the first excited
state, after taking the limit of τ →∞, if

E1 −E0

E2 −E0

≪ 1. (3.8)

For this limit the ground-state energy E0 and the energy of the first excited state E1 are
nearly identical.

A part of the results of this thesis is to find the ground-state energy and the energy of
the first excited state for the spherical-spin model. We can therefore not give an analytical
derivation yet to relate the variables K, Bx and S to see when inequality (3.8) holds. We
need this inequality to be able to include both the ground state and first excited state and
not the higher order states in our calculation to find a result for E0 and E1. However, we
can calculate E0, E1 and E2 numerically for a spin with easy-axis anisotropy in a magnetic
field as described above (see figure 8). The numerical results do not include a bath, and
thus also no spin inertia.

We see in figure 8) that the first excited state and the ground state have eigenenergies
are nearly identical compared with higher order eigenenergies of the spin Hamiltonian, if
we take ∣Bx∣

K < S. This has the consequence that, for ∣Bx∣
K < S, we have to take not only

the symmetric state into account in equation (3.7), but we also have to take into account
the antisymmetric state, which is the first excited state. This is exactly what we wanted,
because with the instanton calculus we can find the energy gap between the ground state
energy and the first excited state energy. We are therefore looking at a model where
∣Bx∣
K < S.

4We are not interested in the prefactor c for the same reasons as we are not interested in the prefactor
in equation (2.3) for the double-well potential. In this thesis the prefactor is not of importance, as only the
dependence in the exponential leads to the energy gap between the ground-state energy and first excited
state energy. The prefactor leads to the so-called reference energy, Eref =

1
2
(E0 +E1). However, there is

another way to find this prefactor, so for now we ignore it and say only that the probability amplitude is
proportional to the path integral.
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Figure 8: The difference in energy between the two lowest states E1−E0 over the difference
in energy between the ground state and second excited state E2 −E0 are plotted against the
magnetic field over the anisotropy parameter multiplied with the total spin. We see that
the fraction is very small for ∣Bx∣

K < S. This result is found numerically for a spin system
with S = 10. In the numerical calculation of the energies, we did not include any bath.

Later in the thesis, we are going to work with a bath of harmonic oscillators. The
interaction with a bath changes the energies, but we find later in this thesis that if the spin
is interacting with a bath, the energy difference E1 −E0 becomes smaller (see 4.9). This

means that the fraction is only smaller for a larger regime of ∣Bx∣
K < S, which coincides with

the approximation we made of ignoring higher energy levels in equation (3.7). We see in

figure 8 that the fraction in equation (3.8 is very small for ∣Bx∣
K < S. We can now include the

ground state and first excited state in equation (3.7) and discard all higher energy levels
when we take the limit of τ →∞.

3.4 The spin action

Next, we have a look at the action corresponding to the spherical-spin model. We identified
in appendix F, that the action is given by

S[g] =
ˆ
dτ(i ⟨ġ∣g⟩ + ⟨g∣Ĥ ∣g⟩). (3.9)

Here ∣g⟩ are the spin coherent states. The term given by ⟨ġ∣g⟩, is called the Berry-phase
term [17] (see appendix G).

To include spin inertia in the model, we look at a spin in a bath. We do this because
we have to take into account conservation of angular moment. This means that if the
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spin inertia changes, somewhere else a rotation must change too. This is accomplished by
placing the spin in a bath. When the spin interacts with a bath, it can dissipate energy
and therefore the spin inertia can be included in the equations of motion of the system. For
this thesis we choose a simple bath, namely a bath of harmonic oscillators. Using this bath
makes it easy to do integration over position and momenta, as the harmonic oscillators has
the consequence that we have to work with Gaussian integrals.

We can split the Hamiltonian of a spin in a bath into three parts

Ĥ = Ĥspin + Ĥbath + Ĥint. (3.10)

We already know what is Ĥspin (see equation (3.1)). The Hamiltonian of the bath is given
by harmonic oscillators so

Ĥbath =∑
α

( p̂2
α

2mα

+ mαω2
α

2
q̂2
α) . (3.11)

Here the index α runs over all harmonic oscillators in the bath and qα is the position of the
harmonic oscillator with index α. The last term, Ĥint, describes the interaction between
the bath and the spin. For simplicity, we assume linear coupling between the spin and the
harmonic oscillators

Ĥint = −∑
α

γαŜ ⋅ q̂α. (3.12)

Here γα is a coupling constant.
As the spin is now interacting with a bath, the expression for the propagator changes.

We now have to integrate not only over the spin coherent states but also over the positions
and momenta of the harmonic oscillators. We then have the following path integral

⟨ψf ∣e−Ĥτ ∣ψi⟩∝∏
α′

ˆ
Dpα′

ˆ
Dqα′

ˆ ψf

ψi

Dg exp(i
ˆ
dτ (−i ⟨ġ∣g⟩ + ⟨g∣∑

α

pα ⋅ q̇α − Ĥ ∣g⟩)).

(3.13)
In this equation we write the Hamiltonian still as an operator, as it is an operator with
respect to the spin coherent states. This means that all spin operators are still operators.
However, the terms with the momenta and positions of the harmonic oscillators are no
operators. This is for the same reasons as we used in section 2.1 in the derivation of the
path integral. We can now write the propagator as follows

⟨ψf ∣e−Ĥτ ∣ψi⟩∝∏
α′

ˆ
Dpα′

ˆ
Dqα′

ˆ ψf

ψi

Dg exp(−S ′[g,qα]). (3.14)

Here S ′ is the action which is given by

S ′[g,qα] =
ˆ
dτ∑

α

(−i ⟨ġ∣g⟩ + ⟨g∣Ĥspin − γαŜ ⋅ qα +
p2
α

2mα

+ mαω2
α

2
q2
α + pα ⋅ q̇α∣g⟩) . (3.15)

This action is long and hard to work with. In the next section we write this action in a
more convenient way.
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3.5 Retarded and advanced kernel functions

To simplify equation (3.15), we want to get rid of the spin operators. To do so, we use
that ⟨g∣Ŝ∣g⟩ = S. Then we can write the action as

S ′[g,qα] =
ˆ
dτ∑

α

(−i ⟨ġ∣g⟩ −KS2
z −BxSx + γαS ⋅ qα +

p2
α

2mα

+ mαω2
α

2
q2
α + pα ⋅ q̇α) . (3.16)

In equation (3.16) the action is quadratic both in the momenta and in the positions of
the harmonic oscillators. This means that we can simplify the equation with Gaussian
integrals. The Gaussian integral over the momenta of the harmonic oscillators gives us a

term of the form −mq̇2

2 .
We can use integration by part to get a term quadratic in the positions of the harmonic

oscillators. We can only find this quadratic term if we do a Fourier transformation. Using
the Fourier transformation, we find the following action (see appendix H)

S[g] =
ˆ
dτ ′ (−i ⟨ġ∣g⟩ −KS2

z −BxSx) +
ˆ
dτ ′
ˆ
dτ ′′S(τ ′)αR/A(τ ′ − τ ′′)S(τ ′′)) . (3.17)

In this equation, αR(τ − τ ′) is the retarded kernel function between the spin at time τ and
τ ′. The advanced kernel function is αA(τ − τ ′). The kernel functions are given by

αR/A(τ − τ ′) =
ˆ
dω

4π
∑
α

e−iω(τ−τ
′) γ2α
mα(ω2

α − (ω ± iη)2)
. (3.18)

This expression is not useful in this form, but we will be working a lot with its Fourier
transform. The Fourier transform of the retarded and advanced kernel functions can be
approximated to

αR/A(ω) ≈ ±iα0ω +
I

2
ω2. (3.19)

Here α0 is the Gilbert damping coefficient and I is the spin inertia. This approximation
is discussed in detail in the paper by R. Verstraten et al. [18].5 The Gilbert damping is
a damping term, which brings back a spin out of equilibrium to its equilibrium position
[20]. The Gilbert damping coefficient and the spin inertia in equation (3.19) are the same
quantities as in the ILLG equation (1.2).

We can now Fourier transform the retarded and advanced kernel functions back to find
αR/A(τ − τ ′).

αR/A(τ − τ ′) = ∓α0∂τ ′δ(τ − τ ′) −
I

2
∂2τ ′δ(τ − τ ′). (3.20)

5In the thesis by M. Gaspar Quarenta [4] and the paper by R. Verstraten et al. [18] a similar action
is used as our action. The difference is that we are working with normal integrals and they are working
with Keldysh integrals. In Keldysh formalism, time is transformed into a contour over infinitely large
future and past times [19]. We use normal integrals as this makes it possible to find relatively easy
results for instantons. Even though we use different integrals than in Keldysh formalism, we use the same
approximation for the retarded kernel function as in the references [4, 18]. We can do this because the
kernel functions are identical. In this thesis we do not give a derivation of this approximation. For a full
derivation one should have a look at chapter 4 in the thesis by M. Gaspar Quarenta [4].
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We use this result of the kernel function, and we get that the action is given by

S[g] =
ˆ
dτ ′ (−i ⟨ġ∣g⟩ −BxSx −KS2

z ± α0S ⋅ Ṡ +
I

2
Ṡ ⋅ Ṡ) . (3.21)

The Gilbert damping term vanishes as S⋅Ṡ = 0. One can see this by looking at the definition
of the spin vector S and just take the time derivative (see appendix E). As a result we find
that the action does not lead to a dependence on the Gilbert damping.6

In our kernel function, only the inertia term gives a non-zero result. We are therefore
looking at a setup where there is no Gilbert damping. For the rest of this thesis we set the
Gilbert damping coefficient to zero, so α0 = 0. Now the kernel functions are both given by

αR/A(τ − τ ′) = δ(τ − τ ′)∂2τ ′ . (3.22)

This is the final approximation we use for the kernel functions.
We can use the approximation of the kernel functions to get a convenient expression

for the spin action

S[g] =
ˆ
dτ (−i ⟨ġ∣g⟩ −KS2

z −BxSx −
I

2
S ⋅ S̈) . (3.23)

Here the minus sign comes from integration by parts. We continue working with the action
in equation (3.23) to find the energy gap for the spin. We will determine the equations of
motion for this action, but first we look at what this action tells us about the propagator
in equation (3.14.

We simplified equation (3.14) by getting rid of the dependence on position and momen-
tum of the harmonic oscillators in the bath. This makes it possible to write the propagator
as follows

⟨ψf ∣e−Ĥτ ∣ψi⟩∝
ˆ ψf

ψi

Dg exp(−S[g]). (3.24)

This equation is the same as the right equality in equation (3.7) without taking the limit
of τ →∞. However, in equation (3.24) the action is dependent on the spin inertia, as we
derived this action from a spin interacting with a bath. In the next section, we determine
the main contributions of the action to the integral on the right-hand side of equation
(3.24). These are the paths where the action is small. Now one can see why we are
looking at a macrospin. For a large spin, the paths in equation (3.24) are exponentially
suppressed. Only the paths with a small action will give a relevant contribution. This paths
are exactly the paths which correspond to the equations of motion. We look therefore in
the next section at the equations of motion of the action.

6The Gilbert term is leading to a nonzero term in Keldysh formalism, as here the integral is split in
a path going forward with fluctuations, and a path going backward with fluctuations. These paths do
not cancel out as for a normal integral, but they add up. I will not work out the result of the Gilbert
term in Keldysh formalism in this thesis, as this is not possible if you are working with normal integrals.
The instanton is namely not well-known in Keldysh formalism, but it is better understood with normal
integrals. There are ideas on how to look at instantons in Keldysh formalism [21], but that goes beyond
this thesis. In this thesis, we are be working with a system without a Gilbert term, so we can focus on
the spin inertia, which is well-defined with normal integral. By only looking at the spin inertia we find
interesting results too.
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3.6 Spin equations of motion

To find the equations of motion, we write the spin in spherical coordinates. The spin
vector, S = ⟨g∣Ŝ∣g⟩, is in spherical coordinates given by (see appendix E)

S = S
⎛
⎜
⎝

sin θ cosϕ
sin θ sinϕ
cos θ

⎞
⎟
⎠
. (3.25)

We find the equations of motion by varying the action. The quasi-classical equations of
motion are given by

δS
δθ
= Sϕ̇ sin θ +

⎛
⎜
⎝

cos θ cosϕ
cos θ sinϕ
− sin θ

⎞
⎟
⎠
⋅ (Beff − IS̈) = 0, (3.26)

and

δS
δϕ
= −Sθ̇ sin θ +

⎛
⎜
⎝

− sin θ sinϕ
sin θ cosϕ

0

⎞
⎟
⎠
⋅ (Beff − IS̈) = 0, (3.27)

where we introduced the effective magnetic field

Beff =
⎛
⎜
⎝

−Bx

0
−2KSz

⎞
⎟
⎠
. (3.28)

Equations (3.26) and (3.27) are equivalent to the following equation (see appendix I)

Ṡ = S × (Beff − IS̈) . (3.29)

The best way to derive the equations of motion to the form of equation (3.29), is by writing
out the expression for Ṡ and writing out the cross product. Then one should find terms in
Ṡ which are of the form θ̇ sin θ and ϕ̇ sin θ and use equations (3.26) and (3.27) to find the
right-hand side of equation (3.28).

Equation (3.29) is the Inertial-Landau–Lifshitz–Gilbert (ILLG) equation (see equation
1.2) without Gilbert damping. For more information about the ILLG equation we refer to
the paper by E. Olive et al. [3].

We can write not only the action in spherical coordinates, but also the potential. If we
combine equations (3.2) and (3.25), we find that the potential in spherical coordinates is
given by (see figure 9)

V (θ, ϕ) = −KS2 cos2 θ −BxS sin θ cosϕ. (3.30)

The two potential minima in spherical coordinates are ϕ = π and θ ∈ {b, π − b}, where b is
defined as b ∶= arcsin( −Bx

2KS ).
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Figure 9: The potential of the spin in spherical coordinates, corresponding to equation
(3.30). We see that there are two potential minima. These are located at ϕ = π and
θ ∈ {b, π − b}, where b is defined as b ∶= arcsin( −Bx

2KS ). The parameters in the plot are again
Bx

K = −6 and S = 5.5.

3.7 The lowest energy levels of a spin

To find the lowest energy levels of the spherical-spin model, we take similar steps as is done
for the particle in a double-well potential. First we relate the two lowest energy levels with
the path integral, as in equation (3.7). Then, as we have an expression for the action, we
compute the integral. We have to look at the quantum fluctuations and classical instanton
trajectories.

Finding the classical instanton trajectories for the spherical-spin model, however, is not
easy. This is because there are infinitely many paths to go from one potential minimum to
the other (see figure 7), while the path is still a solution of the equations of motion. This
means that there are infinitely many different single instanton trajectories. The derivation
of the path integral is a lot more complicated if we have to take into account all these single
instanton trajectories. There are infinitely many paths to go from one minimum classically
to the other minimum, because we have two degrees of freedom in our action, namely the
θ and ϕ dependence, and there is only one restriction on the equations of motion, namely
conservation of energy.

To go around this difficulty, we have first a look at a simplification of the spherical-
spin model. This is the circular-spin model. In the circular-spin model we only have to
deal with one degree of freedom, as in the circular-spin model the ϕ-coordinate is set to
a constant. This makes it a lot easier to find the main contributions of the path integral
and thus to find the lowest energy levels.
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4 The circular-spin model

Before we go further with the spherical-spin model, we look at a simplification: the circular-
spin model. The circular-spin model is a spin system where we can describe the model
with a single coordinate. The possible spin states spins pointing in the direction of a value
on a circle instead of on a sphere. As there is only a single coordinate in the circular-spin
model, there is a limited amount of quasi-classical paths between the potential minima.
This makes it possible to find the lowest energies of the circular-spin model with the spin-
instanton. We derive in this chapter the lowest energies of the circular-spin model and the
energy gap between these energies.

4.1 The circular-spin potential

We want the circular-spin model to be such that it has again two classical minima, which
are not eigenstates of the Hamiltonian. As with the double-well potential, we want to
calculate the instanton, going from one minimum to the other. We choose the circular-spin
model as a restriction on the spherical-spin model of chapter 3. The restriction is given
by taking ϕ ∈ {0, π} and θ ∈ [0, π]. This is equivalent to taking ϕ = π and θ ∈ [0,2π],
where we do the following transformation. We replace the points on (ϕ, θ) = (0, θ) for
(ϕ, θ) = (π,2π − θ). We choose the circular-spin model as described above, because it tells
us something about the spherical-spin model. Further, we choose the ϕ-coordinate such
that the potential minima of equation (3.30) are included in the circular-spin model. By
defining the circular-spin model in this way, we are able to use many techniques which we
used for the double-well potential. This is because both models have one spatial degree of
freedom.

We have been mathematically a little inaccurate with the poles of the spin model when
we did the transformation. We did not specify well what happens exactly at θ = 0 and
θ = 2π. This is not needed as it turns out that the problematic points are not part of any
relevant path in the path integral, that we use to find the lowest energies of the spin.

By taking ϕ = π in equation (3.30), we can write the potential of the circular-spin model
as

V1(θ) = −KS2 cos2 θ +BxS sin θ. (4.1)

In this potential we are still working with real-time t. We find that the minima of the
potential located at θ = b and θ = π − b with b as before b ∶= arcsin( −Bx

2KS ).
For later purposes we shift the potential in a way that the potential minima are zero.

We find that at θ = b and θ = π − b, the minima of V1 are given by

V1(b) = −
B2
x

4K
−KS2. (4.2)

After shifting the potential we find a new potential V (θ) = V1(θ) − V1(b). We find that

V (θ) = −KS2 cos2 θ +BxS sin θ + B
2
x

4K
+KS2. (4.3)

This potential is called the circular-spin potential.
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Figure 10: The circular-spin potential, corresponding to equation (4.3). The shortest path
between the two minima is plotted in green. The minima of the potential are located at
θ = b and θ = π − b with b ∶= arcsin( −Bx

2KS ). Here the parameters are as follows: Bx

K = −6 and
S = 5.5.

4.2 Potential barriers

The calculation of the instanton trajectories is more convenient if we only have to take into
account one trajectory between the extrema. If we look at figure 10, we see that the spin
can tunnel more easily through the green barrier than through the blue barrier, as this
barrier is larger. For now it is unclear when the single instanton trajectory is negligible,
for a particle moving through the blue barrier in figure 10 from one extremum to the other.
We want to work with a model where one of the potential barriers is much higher than the
other, just as is the case in figure 10. This means roughly that

V (3π2 )
V (π2 )

≫ 1, (4.4)

as there is a maximum at θ = 3π
2 and a local maximum at θ = π

2 . For such a model, we
only have to take into account tunneling through the green barrier in figure 10 and we
can ignore tunneling through the blue barrier. This means that we only have to take into
account one kind of instanton trajectory, namely the instanton trajectory from b to π − b
corresponding with tunneling through the green barrier.

We want to write the difference in barrier heights in terms of the variables we can
change in our system, namely Bx, K and S. We can write the inequality (4.4) in terms of
the variables

−BxKS + 1
4B

2
x + (KS)2

BxKS + 1
4B

2
x + (KS)2

≫ 1. (4.5)
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This is the same as

(2KS −Bx)2
(2KS +Bx)2

≫ 1. (4.6)

As the magnetic field is always negative in the x-direction, we see that one barrier is a lot
higher than the other if 2KS+Bx is small compared with 2KS−Bx and when −Bx < 2KS.
However, −Bx cannot be much smaller than 2KS, otherwise we have to take into account
tunneling through the blue barrier too. Notice that for determining the regime, we can
only compare the magnetic field with the product of anisotropy parameter K and the total
spin S, and not with them separately. If Bx would not be big enough, we would have to
take into account the paths via both potential barriers.

In figure 10 we used the following parameters Bx

K = −6. For these parameters

(2KS −Bx)2
(2KS +Bx)2

= 16≫ 1, (4.7)

We can conclude that the plots we made coincide with the regime we are working with
to find the lowest energy levels. Later we give an accurate regime where we only have to
take into account the instanton which corresponds to tunneling through the green barrier
and where we can ignore the instanton which corresponds to tunneling through the blue
barrier.

4.3 The circular-spin model action

The action for the circular-spin model is given by

S[θ] =
ˆ
dtL(θ) =

ˆ
dt (T (θ) − V (θ)) . (4.8)

Here T is the kinetic energy, given by T (θ) = − I2S2θ̇2. We choose for our model to have
this kinetic energy as it coincides with the kinetic energy in the spherical-spin model on
the regime of the circular-spin model. Why the kinetic energies coincide for T (θ) = − I2S2θ̇2

will become clear in a moment. In total we find that the action is given by

S[θ] =
ˆ
dt(KS2 cos2 θ −BxS sin θ − B

2
x

4K
−KS2 − I

2
S2θ̇2). (4.9)

Varying the action with respect to θ gives us the equation of motion

Bx cos θ + 2KS sin θ cos θ + ISθ̈ = 0. (4.10)

In action and the equations of motion above we see why the spin inertia is the spin equiv-
alent of mass. In the action and the equations of motion the spin inertia has exactly the
same role as the mass for a particle in a potential.

For the circular-spin model we use the saddle-point approximation (see appendix J), to
calculate the path integral. Before we can use the saddle-point approximation we have to
write the action in equation (4.9) in Wick-rotated time

S[θ] =
ˆ
dτ(KS2 cos2 θ −BxS sin θ − B

2
x

4K
−KS2 + I

2
S2θ̇2). (4.11)
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From this action we can see why we have the kinetic energy as above. This is because
now we find the action for the spherical-spin model (see equation (3.23)), but now for a
constant angle ϕ. Taking ϕ constant has the consequence that the Berry phase disappears.
The minus sign in front of I

2S
2θ̇2 is different than in equation (3.23). This is because of

integration by parts.
For the next steps, we write the action as follows

S[θ] = S f[θ], (4.12)

where f[θ] is a smooth functional. We are looking at the action in Wick-rotated time, as
the path integral in real-time is an integral over the action multiplied with i. If we work
in Wick-rotated time, we can use the saddle-point approximation, as now the integral is
of the right form. For the circular-spin model, where the action is only dependent on one
variable, the saddle-point approximation is given by

ˆ qf

qi

Dθ exp(−S f[θ(τ)])

≈ ∑
minima

ˆ qf

qi

Dθ exp(−S(f[θ0(τ)] +
ˆ
dτ

ˆ
dτ ′

1

2
∆θ(τ) δ

2f[θ0(τ)]
δθ(τ)δθ(τ ′)∆θ(τ

′))) (4.13)

= ∑
minima

exp(−Sf[θ0(τ)])Iqf , (4.14)

where Iqf are the quantum fluctuations. First we have to find the trajectories between
the classical potential extrema via the equations of motion, the so-called quasi-classical
trajectories. We start by looking at a single path from one minimum to the other.

4.4 The quasi-classical trajectories

We continue by finding the quasi-classical trajectories of the spin. The sum over all quasi-
classical trajectories is given by

∑
minima

exp (−Sf[θ0(τ)]) = C∑
n

ˆ τ

0

dτ1...

ˆ τn−1

0

dτn (Isins)n , (4.15)

where Isins is the integral over a single spin-instanton going from one extremum to the
other, which is called a single instanton trajectory. Further, the prefactor C contains all
prefactor for the individual paths. Equation (4.15) is correct if there is only one kind of
single spin-instanton trajectory we have to take into account. This is when we can ignore
tunneling through the blue barrier in figure 10.

In equation (4.15) we made the assumption that the instantons do not overlap in time.
This is a good assumption if the spin has non-zero inertia, because when the inertia is
non-zero, the spin is most of its (Wick-rotated) time in one of the potential minima. Only
rarely the spin changes direction and therefore we can assume that the instantons do not
overlap in time. However, when the spin has no inertia, it does not take energy for the spin
to change from potential minimum. The assumption above does not hold for a spin with
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no inertia. We can only do the derivation of the quasi-classical trajectories of the spin if
we look at a spin with inertia.

Next, we use that in equation (4.15) all single instanton trajectories can be time ordered.
Therefore, the sum over all quasi-classical trajectories is given by

∑
minima

exp(−Sf[θ0(τ)]) = C∑
n

1

n!
(τIsins)n . (4.16)

To continue simplifying the expression of the sum of the quasi-classical trajectories, we
have to focus on the single instanton trajectory.

4.5 The single instanton trajectory

To calculate the classical-instanton trajectories, we flip the potential with a Wick rotation
t→ −iτ around the horizontal axis. This flip is exactly the same as we did for a particle in
the double-well potential (see figure 11). In both cases the action is of the form

S[x] = exp(−
ˆ t

0

dt′(V (x) − C
2
ẋ2)) . (4.17)

Therefore, the Wick rotation has the same effect on the spin potential as it had on the
double-well potential, namely it flips it around the horizontal axis. Now there exists a
quasi-classical solution to go via the red trajectory in figure 11 from θ = b to θ = π− b. This
solution is the single spin-instanton for the circular-spin model.

The single spin-instanton trajectory is given by the following

Isins ∝ exp(−Ssins), (4.18)

where Ssins is the single spin-instanton action, which we find after doing a Wick rotation.
The single spin-instanton action in Wick-rotated time is given by

Ssins[θcl] =
ˆ τ

0

dτ ′(KS2 cos2 θcl −BxS sin θcl −
B2
x

4K
−KS2 + I

2
S2θ̇2cl). (4.19)

Here θcl is the quasi-classical path.
We can calculate the single instanton trajectory by using conservation of energy. In

appendix B we see that the conservation law for total energy E = V + T in Wick-rotated
time is given by

d

dτ
E = d

dτ
(−KS2 cos2 θcl +BxS sin θcl +

B2
x

4K
+KS2 − I

2
S2θ̇2cl) = 0. (4.20)

The minus sign in front of the inertia term comes from the fact that we work in Wick-
rotated time. Energy conservation has the consequence that on the path of the instanton,
the energy is always the same. We know the total energy E when the spin is in a classical
minimum and without motion as this is the same as the potential at θ = b and θ = π − b.
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Figure 11: This is the same plot as in figure 10, but now with the potential after a Wick
rotation. A single spin-instanton is exactly a particle going from θ = b to θ = π − b over
the red trajectory or over the orange trajectory. The parameters are as usual Bx

K = −6 and
S = 5.5.

Therefore, the total energy is zero. This means that we have the following conserved
quantity

−KS2 cos2 θcl +BxS sin θcl +
B2
x

4K
+KS2 − I

2
S2θ̇2cl = 0. (4.21)

After combining equation (4.21) with equation (4.19), we find that the single spin-
instanton action can now be written by the following expression

Ssins[θcl] =
ˆ τ

0

dτ ′IS2θ̇2cl. (4.22)

We can simplify this, because the total energy is time-independent and because we can
integrate over the angle θcl instead of time. The single instanton trajectory over the red
trajectory in figure 11 the action is given by

Ssins[θcl] =
ˆ π−b

b

dθclIS
2θ̇cl. (4.23)
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Now we rewrite equation (4.21) to find an expression for θ̇cl

θ̇cl =
√

2

IS2
(−KS2 cos2 θcl +BxS sin θcl +

B2
x

4K
+KS2). (4.24)

Further, we can integrate over θ instead of θcl, as the angle became a dummy variable.
Now the action of a single instanton is given by

Ssins[θ] =
√
2IS2

ˆ π−b

b

dθ

√
−KS2 cos2 θ +BxS sin+B

2
x

4K
+KS2. (4.25)

We recognize the potential in this equation

Ssins[θ] =
√
2IS2

ˆ π−b

b

dθ
√
V (θ). (4.26)

Here we note that this integral is well-defined as the potential in real-time is always positive.
Taking the integral over θ gives us the following result

Ssins =
√
2IKS4

⎛
⎝

√
4 − ( Bx

KS
)
2

− π
2

Bx

KS
+ Bx

KS
arcsin( Bx

2KS
)
⎞
⎠
. (4.27)

In this equation we wrote the expression in terms of Bx

KS . This makes it possible to plot
the action as a function of Bx

KS (see figure 12). Now we have an expression for the single
instanton trajectory by combining equations (4.18) and (4.27). We find that

Isins ∝ exp
⎛
⎝
−
√
2IKS4

⎛
⎝

√
4 − ( Bx

KS
)
2

− π
2

Bx

KS
+ Bx

KS
arcsin( Bx

2KS
)
⎞
⎠
⎞
⎠
. (4.28)

4.6 Excluding instanton trajectories

To use the expression in equation (4.15), we have to exclude instanton trajectories over
the orange trajectory in figure 11. We found a way to calculate the instanton trajectories.
Now we can find in what regime the instanton trajectory over the red trajectory is way
larger than the instanton trajectory over the orange trajectory. We remind you that the
single spin-instanton trajectory (equation (4.18)) is given by

Isins ∝ exp(−Ssins). (4.29)

We find the wanted regime by looking at

Iorange
Isins

≪ 1. (4.30)

Here Iorange is the single spin-instanton trajectory over the orange trajectory. This is given
by

Sorange[θ] =
√
2IS2

ˆ 2π+b

π−b
dθ
√
V (θ) (4.31)

=
√
2IKS4

⎛
⎝

√
4 − ( Bx

KS
)
2

+ π
2

Bx

KS
+ Bx

KS
arcsin( Bx

2KS
)
⎞
⎠
. (4.32)
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Figure 12: The actions of a single instanton. In red we see the single spin-instanton action
of the red trajectory in figure 11 and in orange we see the single spin-instanton action of
the orange trajectory.

Here we note that this is just a minus sign different from equation (4.27). Now we can find
the single spin-instanton trajectory over the orange trajectory by

Iorange ∝ exp(−Sorange). (4.33)

In figure 13 we see that the single spin-instanton trajectory over the orange trajectory can
be neglected for Bx

KS > 0.5 as here it is significantly smaller than the single spin-instanton
trajectory over the red trajectory.

4.7 The regime of the magnetic field

Our derivation of the ground-state energies for the spin using instanton calculus uses many
approximations. These approximations only work in certain regimes. We find in figure 13
that the magnetic field should be big enough compared withKS in order to only include one
single instanton trajectory. We also see in figure 8 that Bx

KS should be small enough in order
to have the energies of the two lowest energy levels of nearly the same size. These regimes
exclude a big part of the spectrum of magnetic fields for which we can do predictions on
the ground-state energies. Fortunately, for Bx ≈ KS, both approximations can be made
and therefore there is a regime in which our model can be tested experimentally.

4.8 Quantum fluctuations

Now we look at the quantum fluctuations. As discussed before, we only have to consider
the quantum fluctuations in the classical minima. Also, the fluctuations are the same in
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Figure 13: Here the fraction of single spin-instanton trajectories via the red and orange
trajectorys in figure 11 is plotted against the magnetic field over the anisotropy parameter
multiplied by the total spin.

both minima. The fluctuations Iqf in a minimum are given by the following expression

Iqf =
ˆ θf

θi

D∆θ exp(−
ˆ
dτ

ˆ
dτ ′

1

2
∆θ(τ) [ δ2S[θ]

δθ(τ)δθ(τ ′)]
θ=b

∆θ(τ ′)). (4.34)

Here we used the action from equation (4.11). This we can solve by taking the functional
derivatives of the action to θ(τ) and θ(τ ′)

δ2S[θ]
δθ(τ)δθ(τ ′) = δ(τ − τ

′)(BxS sin θ(τ) + 2KS2 (sin2 θ(τ) − cos2 θ(τ))) + IS2 ∂
2

∂τ ′2
δ(τ − τ ′).

(4.35)
Combining this with equation (4.34) leads to

Iqf =
ˆ θf

θi

D∆θ exp(−1
2

ˆ
dτ∆θ(τ) [M(τ)]θ=b∆θ(τ)), (4.36)

where M(τ) is an operator, given by

M(τ) = BxS sin θ(τ) + 2KS2 (sin2 θ(τ) − cos2 θ(τ)) + IS2 ∂
2

∂τ ′2
. (4.37)

We look at the quantum fluctuations when the spin is in a minimum, so θ = b or θ = π − b.
Due to symmetry, the quantum fluctuations of both minima give the same contribution to
the path integral. We therefore only calculate the quantum fluctuations for θ = b. This
leads to

[M(τ)]θ=b = −2KS2 − B
2
x

2K
+ IS2 ∂

2

∂τ 2
. (4.38)
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We can write the integral of the quantum fluctuations as follows

Iqf =
ˆ θf

θi

D∆θ exp(−1
2

ˆ τ ′

0

dτ∆θ(τ) (−2KS2 − B
2
x

2K
+ IS2 ∂

2

∂τ 2
)∆θ(τ)). (4.39)

Here τ ′ is the time we integrate over to find the quantum fluctuations. In our case this is
the Wick-rotated time between two instanton trajectories. The next step is Wick rotating
back to real-time

Iqf =
ˆ θf

θi

D∆θ exp(− i
2

ˆ t′

0

dt∆θ(t) (−2KS2 − B
2
x

2K
− IS2 ∂

2

∂t2
)∆θ(t)). (4.40)

Now the integral is exactly of the same form as the quantum fluctuations of the harmonic
oscillator. We solved the path integral of the harmonic oscillator in appendix C. As we are
working now with quantum fluctuations which are only around the potential minima of
the circular-spin model, we can follow exactly the same steps as we did for the harmonic
oscillator.

After taking the Gaussian integral over ∆θ, we find that the quantum fluctuations are
given by

Iqf = Adet(KS2 + B
2
x

4K
+ I
2
S2∂2t )

− 1
2

. (4.41)

Here A is a prefactor. We can solve this determinant by looking at a basis of eigenstates

of the operator KS2 + B2
x

4K + I
2S

2∂2t . We use the assumption that at the initial and final
time, the spin is at an extremum, so there is no fluctuation. This means that the boundary
conditions are ∆θ(t = 0) = 0 and ∆θ(t = t′) = 0. Now the basis of eigenstates is given by

θn(t) = sin (nπ t
t′
) with eigenenergies ϵn =KS2 + B2

x

4K + I2S2 (nπ
t′
)2. With this we find that the

determinant is as follows

Iqf = Adet(KS2 + B
2
x

4K
+ I
2
S2∂2t )

− 1
2

= A
∞
∏
n=1
(ϵn)−

1
2 . (4.42)

This infinite product diverges and we can therefore not find a reasonable result for the
quantum fluctuations. However, we can find the quantum fluctuations of a spin in the
easy-axis model, which is not influenced by inertia.

The ground-state energies for the easy-axis Hamiltonian are independent of the instan-
ton trajectories. Therefore the ground-state energies are fully determined by the quantum
fluctuations. The quantum fluctuations are now given by the exponential of the spin being
in the ground state for a time τ

Iea,qf = eτE0 = e−τKS2

, (4.43)

where E0 = −KS2 is the minimal energy of the easy-axis model.
The easy-axis potential and the potential with a magnetic field are locally in their

minima nearly identical. The quantum fluctuations are small and local too. We make
the educated guess that the quantum fluctuations for the ground states of the easy-axis
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Hamiltonian are nearly the same as the quantum fluctuations for the ground-state energies
of the system we are looking at. We can therefore neglect the dependence on the magnetic
field in the quantum fluctuations. The ground states of the easy-axis Hamiltonian are
independent of inertia. However, inertia probably changes the ground-state energy of a
spin in a bath of harmonic oscillators but without a magnetic field, even for a spin in an
easy-axis potential. This would be a spin described with the Hamiltonian in equation 3.10,
but with Bx = 0. In this thesis we do not show the change of the ground state of the
easy-axis Hamiltonian by the inertia. We assume that this change is small compared with
the energy gap. We use the approximation that the quantum fluctuations are given by

Iqf = eτE0 = e−τKS2

. (4.44)

With this result, we now know that the ground-state energy for the circular-spin model is
given by E0 = −KS2 − 1

2∆ϵ and the first excited state energy is given by E1 = −KS2 + 1
2∆ϵ.

4.9 The energy gap

To find the energy gap, we are going to use equation (3.7)

lim
τ→∞

∑
n∈{S,A}

⟨ψf ∣n⟩ e−Enτ ⟨n∣ψi⟩∝ lim
τ→∞

ˆ ψf

ψi

Dg exp(−S[g]). (4.45)

To find the left-hand side of equation (3.7) we do the same steps as for the double-well
potential to relate the eigenenergies with the action (see appendix D). First we look at
the spin starting and ending in a potential minimum, ∣ψi⟩ = ∣ψf ⟩ = ∣l⟩. We could also have
chosen the starting and ending state to be ∣r⟩. This leads to the same result due to parity
symmetry. The states ∣l⟩ and ∣r⟩ are defined by a spin being in a local ground state of a
potential minimum. We also used this states for the spherical-spin model. Now these are
local ground states of the potential minima of the circular-spin potential (equation (4.3)).
For the following steps, we do not write the limit of τ →∞ for convenience in writing. We
will include the limit later again. With the choices above we find that

⟨l∣S⟩ e−ESτ ⟨S∣l⟩ + ⟨l∣A⟩ e−EAτ ⟨A∣l⟩ = e−(KS2−∆ϵ
2
)τ + e−(KS2+∆ϵ

2
)τ

= e−KS2τ cosh(∆ϵτ).
(4.46)

The steps in equation (4.46) are straightforward, so we let this as an exercise for the reader
to check.

Next, we look at the right-hand side of equation (4.45). With equation (4.13) and
equation (4.16) we can write the right-hand side without the limit as follows

ˆ ψf

ψi

Dg exp(−S[g]) = Iqf∑
n

1

n!
(τIsins)n . (4.47)

For the spin starting and ending in the same state, n is even. We then find that

ˆ ψf

ψi

Dg exp(−S[g])∝ e−KS
2τ ∑
neven

1

n!
(τIsins)n = e−KS

2τ cosh (τIsins). (4.48)
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Next, we combine the right and left-hand sides of equation (4.45) using equations (4.48)
and (4.46). This leads to

lim
τ→∞

e−KS
2τ cosh(∆ϵτ)∝ lim

τ→∞
e−KS

2τ cosh (τIsins). (4.49)

As equation (4.49) holds for all large time τ , we can read off that the energy gap is given
by

∆ϵ = Isins ∝ exp
⎛
⎝
−
√
2IKS4

⎛
⎝

√
4 − ( Bx

KS
)
2

+ π
2

Bx

KS
+ Bx

KS
arcsin( Bx

2KS
)
⎞
⎠
⎞
⎠
. (4.50)

We find that the spin-instanton action is proportional to the square root of the spin
inertia,

√
I. However, we found in chapter 2 that the action for a particle in a double-well

potential is proportional to the mass, m. The square root over the spin inertia comes
from the fact that the circular-spin potential (4.3) has no spin inertia dependence The
double-well potential (2.1), however, is dependent on the mass.

We expected the energy gap to be zero when there is no magnetic field. However, if we
fill in Bx = 0 in equation (4.50), we find a non-zero term for ∆ϵ. It seems that our result
is wrong. However, in the derivation we said that we could only exclude other instanton
paths than the minimum path if Bx is not too small (see section 4.6). Therefore, the
expression in equation (4.50) is not valid for a small magnetic field. We can only give a

result of the energy gap for a magnetic field if ∣Bx∣
K ≈ S.

In figure 8 we said that the energy gap between the ground state and the first excited
state becomes smaller if the spin is interacting with a bath. This is the case because when
there the spin is interacting with a bath, the inertia becomes larger. In equation (4.50) we
find that the energy gap becomes smaller when we add a non-zero spin inertia or when the
spin inertia becomes larger.
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5 Back to the spherical-spin model

We found the ground-state energies for the circular-spin model, but we want to find the
same for the spherical-spin model. In this chapter we are not going to do the derivation in
detail, but we make some educated guesses. We therefore only give the result we expect and
do not claim that we found the right result. We use the results we found for the circular-
spin model to substantiate our predictions. We leave it as a task for further research to
check the educated guesses we make.

5.1 Single spin-instantons

The solutions of the equations of motion are the main contributions of the path integral.
To find the main contributions of the path integral, we therefore look at the paths when
δS[g(τ)]
δg(τ) = 0. We remind the reader that the potential minima of the spherical-spin model

are the same as the potential minima of the circular-spin model. The two potential minima
in spherical coordinates are ϕ = π and θ ∈ {b, π − b}, where b is defined as b ∶= arcsin( −Bx

2KS ).
The green path in the circular-spin model (10) is plotted in figure 14.

There are more solutions to the equations of motion for the spherical-spin model. Many
of these solutions are single instanton trajectories of the spherical spin model and therefore
contribute to the energy gap between the lowest state energies. We label these single in-
stanton trajectories with an index i. Any trajectory can be determined by a quasi-classical
path in spherical coordinates. We call the coordinates of the ith instanton trajectory θcl,i
and ϕcl,i.

Figure 14: The potential of the spin model in spherical coordinates, corresponding to equa-
tion (3.30). This is the same plot as figure 9, but now with the minimal path of the spherical
spin model plotted in green. The parameters are again Bx

K = −6 and S = 5.5.

Finding the instanton trajectories out of these equations of motion is hard, as we have
a path with two degrees of freedom, but only one conserved quantity. This means that
there are infinitely many instanton trajectories. The conserved quantity in this system is
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the total energy. In general, a system can be analytically solved if there are at least as
many conserved quantities as free parameters. Therefore we are not going to find the exact
instanton trajectories for all paths.

In the circular-spin model, we only had to consider one trajectory between the potential
minima. The other path we could neglect as its contribution was small compared with the
minimal path in a certain limit. The spherical-spin model, in contrary to the circular-spin
model, has infinitely many quasi-classical paths to go from one minimum to the other.
Some paths are just slightly less likely to happen than others as the spin potential (3.2)
is smooth. Therefore, these paths have nearly the same contribution to the path integral
as the minimal path. We can therefore not exclude all paths but one, as we did for the
circular-spin model. It is also hard to find the minimal path between the potential minima.
What we can do, is making an educated guess about the instanton trajectories.

We expect that for a single path with index i from one potential minimum to the other
the action is given by

Ssins,i[θcl,i, ϕcl,i] =
√
2IS2

ˆ π−b

b

dθcl,i

ˆ 0

0

dϕcl,i
√
V (θcl,i, ϕcl,i), (5.1)

where we use that any solution to the equation of motion, is fully determined by the
coordinates. The equation above is an educated guess as we have not derived this equation.
We expect this result, because one can parameterize the trajectories between the minima.
The same has been done for the circular-spin model, but there the parametrization was
trivial. After the parametrization, one can use energy conservation to get rid of time
derivatives. What we are left with is an integral over the square root of the potential and√
2IS2 in front of the integral, because of the substitution of the kinetic term. With this

substitution we can find with the energy conservation as is done in equation (4.24). We
see the parametrization of the instanton trajectories as a good starting point for further
research.

5.2 A predicted energy gap

With the actions in equation (5.1) we can find the single instanton trajectories

Isins,i ∝ exp(−Ssins,i). (5.2)

In our educated guess, the dependence on inertia I is the same for all different single
instanton paths. They only differ in the integral over angles θ and ϕ. To find the main
contributions of the path integral for the spherical-spin model, we have to include not only
the sum over instanton trajectories which are the same, as we did for the circular-spin
model, but we should include all trajectories where the spin switches from one minimum
to the other first via one path, and then via other paths too (see equation (5.3)). We find
that the sum over all full instanton trajectories is given by

Ifull ∝ ∑
minima

exp (−Sf[θ0(τ), ϕ0(τ)]) =∑
n
∑
i

ˆ τ

0

dτ1...

ˆ τn−1

0

dτn (Isins,i)n . (5.3)
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The fact that we have different single instanton trajectories makes the derivation of the
full instanton trajectory a lot more complicated.

However, we made the educated guess that the dependence on inertia I is the same
for all different single instanton paths, so we can take that term out of the summations.
We therefore expect that the energy gap between the ground-state energy and the first
excited state energy of the spherical-spin model has the same dependence on inertia as the
circular-spin model, namely

∆ϵ∝ exp (−
√
Iκ), (5.4)

where κ is a parameter that is independent of inertia.
Before we can claim the relation in equation (5.4), we need to argue why the quantum

fluctuations do not influence the energy gap. For this we can use the same argument as
in the circular-spin model and the particle in the double-well potential. We assume that
the spin is most of the time in one of the extrema. Only here the quantum fluctuations
are of significant role as, when the spin is on a trajectory from one minimum to the
other, the quantum fluctuations are negligible. The quantum fluctuations can therefore be
approximated by a spin in a local potential minimum. This does not influence the energy
gap, it only determines the reference energy Eref .

We could use the educated guess that the dependence on inertia I is the same for all
different single instanton paths would be correct for the circular spin model too. This
would have the consequence that for the circular-spin model, we can include not only the
red trajectory in figure 11, but also the orange trajectory. If we could include the orange
trajectory for finding the energy gap, the theory would be valid for a larger regime of the
magnetic field Bx.
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6 Conclusion and outlook

The goal of this thesis is to find when and how the ground-state energies of a spin are
dependent on the spin inertia. We argued that inertia changes the energy gap between
the ground-state energy and the first excited state energy if the lowest energy levels are
a superposition of multiple potential minima. This is because a spin is influenced by the
spin inertia when it has to cross a barrier. We therefore looked at the spherical-spin model
and the circular-spin model.

For the circular-spin model, with a magnetic field which obeys Bx ≈KS, we found that
the lowest eigenenergies are given by

E0 = −KS2 − 1

2
∆ϵ, (6.1)

and

E1 = −KS2 + 1

2
∆ϵ, (6.2)

where the energy gap is given by

∆ϵ∝ exp
⎛
⎝
−
√
2IKS4

⎛
⎝

√
4 − ( Bx

KS
)
2

+ π
2

Bx

KS
+ Bx

KS
arcsin( Bx

2KS
)
⎞
⎠
⎞
⎠
. (6.3)

This is an interesting result as it relates the lowest energies with the spin inertia.
As we said before, the spin inertia is the spin equivalent of mass. We find it therefore

interesting that the energy gap for a particle in a double-well potential is given by

∆ϵ∝ exp(−2
3
mω0a

2) . (6.4)

Remarkably, there is no square root for the mass in this equation. To explain this difference
in energy gap for the spin and the particle in the double-well potential we have to look at
the procedure with which we found the energy gap.

We found that the energy gap is proportional to a single instanton trajectory. Such a
single instanton trajectory for the circular-spin model is given by (4.26)

Isins ∝ exp(−
√
2IS2

ˆ π−b

b

dθ
√
V (θ)) , (6.5)

and for the particle in the double-well potential, the single instanton trajectory is given by
(2.9)

Iinst ∝ exp(−
√
2m

ˆ a

−a
dq
√
V (q)) . (6.6)

The reason that there is no square root in equation (6.4) comes from the fact that the
double-well potential is itself dependent on the mass. If the potential would be independent
of the mass, the relation between the energy gap and the mass for a particle in a double-well
potential would be the same as the relation between the energy gap and the spin inertia
for a circular-spin model.
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The energy gap in equation (6.3) is maximal when there is no spin inertia. The larger
the spin inertia gets, the smaller the energy gap becomes. This is what we expected, be-
cause for a large spin inertia, it is more difficult for a spin to switch from one potential
minimum to the other. This is not intuitive for a spin, but by considering spin inertia
as the spin equivalent of mass, this makes sense as for a particle with a mass it is more
difficult to go from one potential minimum to another if the mass becomes larger. This
is because the higher the mass the less likely a particle is to tunnel. If the spin inertia is
infinitely large, it costs infinitely much energy to go from one potential minimum to the
other. In this limit, the regions around the two potential minima are seen as completely
independent and then the model has two degenerate ground states.

We made an educated guess for the energy gap between the ground-state energy and
the first excited state energy

∆ϵ∝ exp (−
√
Iκ). (6.7)

As we have not proven the result of the energy gap for the spherical-spin model, this would
be interesting for further research.

Until now, we focused on the spin inertia dependence on the instanton trajectories and
not on the quantum fluctuations. However, it is still an open question how the quantum
fluctuations depend on spin inertia too. We expect that even without a magnetic field, the
energy levels would depend on spin inertia. Looking at the dependence on spin inertia of
the quantum fluctuations is something which should be worked out in further research.

We found a result that could be tested experimentally, namely, the dependence of
the energy gap between the ground-state energy and the first excited state energy (see
equations (6.3)). The energy gap could be found experimentally for different baths, which
leads to different values in spin inertia. Further, the magnetic field can be varied easily, so
this could be checked experimentally too. An experimental check whether the outcome of
the thesis is correct, would be valuable.

In this thesis, we looked at a system without Gilbert damping. In future research,
Gilbert damping should be taken into account.

In earlier research, the tunneling rate has been calculated with instantons for potentials,
where the potential minima are not the same [7, 22]. For a follow-up of this thesis, it would
be interesting to look at the influence of tunneling on the lowest energy levels of a particle
in a potential with unequal potential minima. In relation with this thesis, it is especially
interested to look at spin systems with this phenomenon.
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A From the probability amplitude to a path integral

In this appendix we derive equation (2.3), which relates the path integral with the proba-
bility amplitude between qi and qf and with the eigenenergies of a Hamiltonian. Equation
(2.3) is given by

∑
n

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩ = ⟨qf ∣e−Ĥτ ∣qi⟩∝
ˆ qf

qi

Dq exp(−S[q]). (A.1)

We start with the left-hand side. All the eigenstates of the Hamiltonian, ∣n⟩, form a basis
of states. Further, the equation for eigenstates is Ĥ ∣n⟩ = En ∣n⟩. We use the following
identities

∑
n

∣n⟩ ⟨n∣ = 1 (A.2)

and
⟨n∣n′⟩ = δ(n − n′). (A.3)

If we sum over all eigenstates of the Hamiltonian we find that

⟨qf ∣e−Ĥτ ∣qi⟩ = ∑
n,n′
⟨qf ∣n′⟩ ⟨n′∣e−Ĥτ ∣n⟩ ⟨n∣qi⟩ (A.4)

= ∑
n,n′
⟨qf ∣n′⟩ ⟨n′∣e−Enτ ∣n⟩ ⟨n∣qi⟩ (A.5)

=∑
n

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩ . (A.6)

Next, we look at the right-hand side of equation (A.1). Again, we do not worry about the
limit in the beginning. To find the path integral of the form in equation (A.1) we look first
at the Hamiltonian.

For a single particle in a potential we have the following Hamiltonian

Ĥ = p̂2

2m
+ V (q̂). (A.7)

Using the path integral we find

⟨qf ∣e−Ĥτ ∣qi⟩ =
ˆ qf

qi

Dq

ˆ
Dp e

´ τ
0 dτ

′(−H+ipq̇). (A.8)

In the notation of the path integral we have the advantage that there are no longer oper-

ators, but all operators are replaced by variables. We can now just fill in H = p2

2m + V (q)
and get

⟨qf ∣e−Ĥτ ∣qi⟩ =
ˆ qf

qi

Dqe−
´ τ
0 dτ

′V (q)
ˆ
Dp e

´ τ
0 dτ

′(− p2

2m
+ipq̇). (A.9)

The next step we take, is completing the square to write the integral such that it becomes
Gaussian

− p
2

2m
+ ipq̇ = ( ip√

2m
+
√
m

2
q̇)2 − m

2
q̇2. (A.10)

46



Next, we substitute equation (A.10) in equation (A.9) and we get a Gaussian integral. We
can solve this integral, but it gives a prefactor C, which is not interesting for this thesis.
We end up with the following equation

⟨qf ∣e−Ĥτ ∣qi⟩ = C
ˆ qf

qi

Dqe−
´ τ
0 dτ

′(V (q)+m
2
q̇2). (A.11)

The term in the exponent is exactly the instanton action. We can see this, because the
action is related with the Lagrangian in the following way

S[q] =
ˆ τ

0

dτ ′L(q, q̇). (A.12)

If we now make a Wick rotation back to real-time, we find that the Lagrangian for a
particle in a potential is given by

L(q, q̇) = −V (q) + m
2
q̇2. (A.13)

This is exactly the standard expression for a Lagrangian, and therefore we can conclude
that the probability amplitude between qi and qf is related with the action in the following
way

⟨qf ∣e−Ĥτ ∣qi⟩ = C
ˆ qf

qi

Dqe−S[q]. (A.14)

When we combine equations (A.4) and (A.14), we find the wanted equation (A.1).
We are not interested in the prefactor C. In this thesis the prefactor is not of im-

portance, as only the dependence in the exponential leads to the energy gap between the
ground-state energy and first excited state energy. The prefactor leads to the so-called
reference energy, Eref = 1

2(E0 + E1), however, there is another way to find this prefactor,
so for now we ignore it and say only that the probability amplitude is proportional to the
path integral.

B Energy conservation in Wick-rotated time

Noethers theorem states that energy conservation is a result of symmetry in time. For the
instanton we are not working with real-time, but with Wick-rotated time. If a system is
symmetric in time, it has a symmetry in Wick-rotated time too. In this appendix we are
going to derive a conserved quantity corresponding to symmetry in Wick-rotated time.

First we look at the conservation of energy in real-time for a Lagrangian L[x] dependent
on position x, with kinetic energy T = mẋ2

2 and potential energy V = V (x)

L[x] = mẋ
2

2
− V (x). (B.1)

The Euler-Lagrange equations are now given by

mẍ = −∂xV (x). (B.2)
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If we multiply both sides with ẋ, we find

mẋẍ = −ẋ∂xV (x) (B.3)

= d

dt
(mẋ

2

2
) = − d

dt
V (x). (B.4)

We then find the following conservation law

d

dt
E = d

dt
(mẋ

2

2
+ V (x)) = 0, (B.5)

where E = T + V = mẋ2

2 + V (x) is the conserved energy, which corresponds with Noethers
theorem.

In Wick-rotated time we have a similar result. By rotating the time to imaginary time
t→ −iτ , we find that the Lagrangian is given by

L[x] = −mẋ
2

2
− V (x). (B.6)

With exactly the same derivation as for real-time we find that the conservation law in
Wick-rotated time is given by

d

dt
E = d

dt
(−mẋ

2

2
+ V (x)) = 0. (B.7)

Now the conserved energy is given by E = T + V = −mẋ22 + V (x), where the kinetic energy

is now given by T = −mẋ22 . This means that we can still talk about conservation of energy
in Wick-rotated time.

C The path integral for a harmonic oscillator

The quantum fluctuations of a particle in one of the potential minima of the double-well
potential are nearly identical to the quantum fluctuations of a particle in a single well. This
is because the potentials are locally nearly identical and because the energies involved with
quantum fluctuations are a lot smaller than the energy it costs to go over the potential
barrier in the double-well potential. As we can find the quantum fluctuations of a particle
in the double-well potential to a good extend with the quantum fluctuations of a particle
in a single well, we work out this result in this appendix. To calculate the path integral
for a particle in a single well, we use that the single-well potential is of the same form as
in section 2.6

VHO(x) =
m

2
ω2
0x

2. (C.1)

A particle in the single-well potential above is called an harmonic oscillator.
The quantum fluctuations for a particle being at x = 0 after a time τ is given byˆ xf

xi

Dx exp(−Squ[x]) =
ˆ xf

xi

Dx exp(−
ˆ τ

0

dτ ′(VHO(x) +
m

2
ẋ2)) (C.2)

=
ˆ xf

xi

Dx exp(−
ˆ τ

0

dτ ′ x
m

2
(ω2

0 − ∂2τ ′)x) . (C.3)
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We know how to work with the harmonic oscillator in real-time. We therefore make a
transformation from imaginary time to real-time τ → it. This leads to

ˆ xf

xi

Dx exp(−Squ[x]) =
ˆ xf

xi

Dx exp(−i
ˆ t

0

dt′ x
m

2
(ω2

0 + ∂2t′)x) . (C.4)

This is a Gaussian integral, so [8]

ˆ xf

xi

Dx exp(−Squ[x]) = C det(−m
2
(ω2

0 + ∂2t ))
− 1

2

. (C.5)

Here C is a prefactor.
We can find the value of this determinant by looking how it acts on the basis of eigen-

states of the particle in the single-well potential. This basis consists of the eigenstates of
the operator −m2 (ω2

0+∂2t′). We use the boundary condition that the particle starts and ends
at the position x = 0, so xi = x(t′ = 0) = 0 and xf = x(t′ = t) = 0. The basis of eigenstates is
given by xn(t′) = sin(nπ t

′

t ) and the eigenvalues are ϵn = m
2 ((nπt )2 − ω2

0). Now we can solve
equation (C.5)

C det(−m
2
(ω2

0 + ∂2t ))
− 1

2

= C
∞
∏
n=1
(m
2
((nπ

t
)2 − ω2

0))
− 1

2

. (C.6)

This is an inconvenient expression as we have an infinite product. Fortunately, we can
solve this by comparing this expression with the path integral of a free particle.

ˆ xf

xi

Dx exp(−Squ[x]) = C
∞
∏
n=1
(m
2
((nπ

t
)2))

− 1
2 ∞
∏
n=1
(1 − (ω0t

nπ
)2)

− 1
2

. (C.7)

Here the path integral of a free particle is given by equation (C.6) with ω0 = 0 as the
potential (C.1) is constant when ω0 = 0

ˆ xf

xi

Dx exp(−Sfree[x]) = C
∞
∏
n=1
(m
2
((nπ

t
)2))

− 1
2

. (C.8)

We can also calculate the path integral of a free particle differently
ˆ xf

xi

Dx exp(−Sfree[x]) = ⟨xf ∣e−itĤfree ∣xi⟩ = ⟨xf ∣e−it
p̂2

2m ∣xi⟩ = ⟨xf ∣e−it
p̂2

2m

ˆ
dp ∣p⟩ ⟨p∣xi⟩ . (C.9)

Here we implemented 1 written as 1 =
´
dp ∣p⟩ ⟨p∣. We can take the integral in front, as it

commutes with the momentum operator. We also use that ⟨p∣xi⟩ = e−ipxi . Then

⟨xf ∣e−it
p̂2

2m

ˆ
dp ∣p⟩ ⟨p∣xi⟩ =

ˆ
dp eipxf e−it

p2

2m e−ipxi . (C.10)

This is a simple Gaussian integral, so we find that

ˆ xf

xi

Dx exp(−Sfree[x]) =
√

2πm

it
e

im
2t
(xf−xi)2 =

√
2πm

it
. (C.11)
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Here we used again, for the particle in the single well, that xi = xf = 0. Now we look at
the other part of equation (C.7) by using the identity

∞
∏
n=1
(1 − ( y

nπ
)2)

−1
= y

sin y
. (C.12)

Now we can combine the results of equations (C.8) and (C.12) in equation (C.7)

ˆ xf

xi

Dx exp(−Squ[x]) = C
√

2πm

it

√
tω0

sin(tω0)
= C ′ sin(tω0)−

1
2 . (C.13)

We have now calculated the quantum fluctuations for the single well. We now want to go
back to complex time, to get a result for equation (C.2). To do so we do again a Wick
rotation. We find that for a particle on an extremum after a time τ , its path integral is
proportional to the following

ˆ xf

xi

Dx exp(−Squ[x]) = C ′ sin(−iω0τ)−
1
2 , (C.14)

where C ′ is a constant. This are the quantum fluctuations of a particle in a single-well
potential.

D The ground state energies and the instanton

To find the energy gap between the ground-state energy and the energy of the first excited
state, we use equation (2.21)

lim
τ→∞

∑
n∈{S,A}

⟨qf ∣n⟩ e−Enτ ⟨n∣qi⟩ = lim
τ→∞

Ce−
ω0τ

2 ∑
n

1

n!
(τIinst)n. (D.1)

The lowest energy levels for the double-well potential are the symmetric and antisymmetric
states. These are given by ∣S⟩ = 1√

2
(∣L⟩ + ∣R⟩) and ∣A⟩ = 1√

2
(∣L⟩ − ∣R⟩), and they have

eigenenergies ES = 1
2(ω0 −∆ϵ) and EA = 1

2(ω0 +∆ϵ). As before, ∣L⟩ and ∣R⟩ are the local
ground states of the left and right well respectively, without taking into account quantum
effects.

It is now a useful step to look at two different solutions of the path integral in equation
(D.1). The first solution is where the particle starts and ends at the same place. For
simplicity we let the particle start and end in the left well, so q = −a. Taking q = a gives
the same result due to symmetry. The number of instanton contributions to let the particle
start and end in the same well has to be even. Now equation (2.21) is, ignoring the limits
on both sides, given by

⟨−a∣S⟩ e−ESτ ⟨S∣ − a⟩ + ⟨−a∣A⟩ e−EAτ ⟨A∣ − a⟩∝ e−
ω0τ

2 ∑
n even

1

n!
(τIinst)n . (D.2)
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The next simplification we can do is by looking at the brackets. We use that ⟨L∣a⟩ = 0
because the single well around q = −a is not influenced by the right well. Similarly we have
that ⟨R∣ − a⟩ = 0. On the other hand, ⟨R∣a⟩ = C1, with C1 a constant and due to symmetry
we have the same constant for ⟨L∣ − a⟩ = C1. Now, after filling in the eigenenergies for ∣S⟩
and ∣A⟩, the left-hand side of equation (D.2) is written as

⟨−a∣S⟩ e−ESτ ⟨S∣ − a⟩ + ⟨−a∣A⟩ e−EAτ ⟨A∣ − a⟩∝ C2
1e
−(ω0

2
−∆ϵ

2
)τ +C2

1e
−(ω0

2
+∆ϵ

2
)τ

∝ C2
1e
−ω0τ

2 cosh(∆ϵτ).
(D.3)

Next, we look at the right-hand side of equation (D.2). We see that the sum is the
Fourier series of the hyperbolic cosine

e−
ω0τ

2 ∑
n even

1

n!
(τIinst)n = e−

ω0τ

2 cosh (τIinst) . (D.4)

We can now combine equation (D.3) with (D.4)

e−
ω0τ

2 cosh(∆ϵτ)∝ e−
ω0τ

2 cosh (τIinst) . (D.5)

This equality holds for all time τ . This leads to the following

∆ϵ = Iinst. (D.6)

We can also start at q = −a and end at q = a. Doing the same steps as above, but with the
other boundary condition and taking only even values for n, we find that

e−
ω0τ

2 sinh(∆ϵτ)∝ e−
ω0τ

2 sinh (τIinst) . (D.7)

This gives the same result for ∆ϵ as equation (D.6). With this result, we now see why we
had to include both the ground state and the first excited state in equation (2.4).

E Spin coherent states

We want to write a path integral over all possible spin states. To do this mathematically
efficiently, we introduce spin coherent states. Spin coherent states are defined in a way
that they span all possible spin states [8]

∣g′(ϕ, θ,ψ)⟩ = e−iϕŜze−iθŜye−iψŜz ∣⇑⟩ . (E.1)

Here ∣⇑⟩ is defined as spin pointing in the z-direction, such that Ŝz ∣⇑⟩ = S ∣⇑⟩, where S is
the total spin. This coincides with the spin state ∣S,m = S⟩, where ∣S,m⟩ is the spin state

defined by: Ŝ
2 ∣S,m⟩ = S(S + 1) ∣S,m⟩ and Ŝz ∣S,m⟩ = m ∣S,m⟩. For a spin pointing in the

z-direction ∣S,m = S⟩, we find that Ŝz ∣S,S⟩ = S ∣S,S⟩
Further in equation (E.1), ϕ, θ and ψ are the so-called Euler angles. The angles ϕ,

θ determine the direction the spin points at. We call this the direction of the spin. The
angle ψ determines how quickly the spin turns around the direction of the spin. We are
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not interested in ϕ throughout the whole thesis, as no physical quantity is dependent on
it. This means that we have the freedom to choose ψ. We take ψ = 0 which leads to a new
definition of coherent states

∣g(ϕ, θ)⟩ = e−iϕŜze−iθŜy ∣⇑⟩ , (E.2)

Now we have a look at some properties of spin coherent states, which also motivate why
we have defined these states in this way.

Spin coherent states are such that ⟨g∣Ŝ∣g⟩ = S, where the spin vector S

S = S
⎛
⎜
⎝

sin θ cosϕ
sin θ sinϕ
cos θ

⎞
⎟
⎠
. (E.3)

This is the spin written in spherical coordinates. Further, the spin coherent states have
the property that

1 =
ˆ
dg ∣g⟩ ⟨g∣ . (E.4)

This property is useful as well for creating the path integral. Also, the spin coherent states
are normalized, so ⟨g∣g⟩ = 1.

F The isolated spin path integral

As for the quantum particle, we want to relate the eigenenergies of a spin with the action
of an isolated. With an isolated spin we mean a spin which is not interacting with a bath
or something else. To find this relation we want to use the following equation

∑
n

⟨ψf ∣n⟩ e−Enτ ⟨n∣ψi⟩ = ⟨ψf ∣e−Ĥτ ∣ψi⟩∝
ˆ ψf

ψi

Dg exp(−S[g]) (F.1)

In this appendix we show that why equation (F.1) holds.
The proof of the left equality in equation (F.1) is exactly the same as the proof for the

left equality in equation (A.1) (see appendix A), so we only look at the other equality in
the equation. We start by writing the time evolution operator, which is given as follows

Û(τ, τ0) = e−iĤ(τ−τ0). (F.2)

We can also split the time evolution operator in many pieces

Û(τ, τ0) = Û(τ, τN−1)Û(τN−1, τN−2)...Û(τ1, τ0). (F.3)

Now we add between all small time evolution operators a unit operator, consisting of spin
coherent states. We choose τ0 = 0. Then

Û(τ,0) = Û(τ, τN−1)1N−1...1n+1Û(τn+1, τn)1n...11Û(τ1,0). (F.4)
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Here the unit operator is defined by

1n =
ˆ
dgn ∣gn⟩ ⟨gn∣ . (F.5)

In this equation n is an index. It is useful to focus on the following expression

⟨gn+1∣Û(τn+1, τn)∣gn⟩ . (F.6)

Next, we Taylor expand Û(τn+1, τn) as τn+1 − τn =∆τ is very small. We get that

⟨gn+1∣Û(τn+1, τn)∣gn⟩ = ⟨gn+1∣1 − i∆τĤ ∣gn⟩ = ⟨gn+1∣gn⟩ + ⟨gn+1∣ − i∆τĤ ∣gn⟩ . (F.7)

We use the trick of adding zero written as ⟨gn∣gn⟩ − ⟨gn∣gn⟩ and we remark that the spin
coherent states are normalized, so ⟨gn∣gn⟩ = 1. We then find that

⟨gn+1∣Û(τn+1, τn)∣gn⟩ = 1 + i∆τ (−i
⟨gn+1∣gn⟩ − ⟨gn∣gn⟩

∆τ
− ⟨gn+1∣Ĥ ∣gn⟩) (F.8)

= 1 + i∆τ (−i ⟨ġn+1∣gn⟩ − ⟨gn+1∣Ĥ ∣gn⟩) . (F.9)

Here ġ is the derivative of g to τ . Now we can write the time evolution operator as an
exponential

⟨gN ∣Û(τN , τN−1)1N−1...1n+1Û(τn+1, τn)1n...11Û(τ1,0)∣g0⟩ =
N

∑
n=0
(1 + i∆τ (−i ⟨ġn+1∣gn⟩ − ⟨gn+1∣Ĥ ∣gn⟩)).

(F.10)

We used in this equation that ∣gN⟩ = ∣ψf ⟩ and ∣g0⟩ = ∣ψi⟩. For small ∆τ we can write this
as an integral over an exponential. Then the following expression holds

N

∑
n=0
(1 + i∆τ (−i ⟨ġn+1∣gn⟩ − ⟨gn+1∣Ĥ ∣gn⟩)) =

ˆ ψf

ψi

Dgei
´
dτ(−i⟨ġ∣g⟩−⟨g∣Ĥ ∣g⟩) (F.11)

=
ˆ ψf

ψi

Dge−iS[g]. (F.12)

Here the integral in the exponent is identified as the action S[g], so

S[g] =
ˆ
dτ (i ⟨ġ∣g⟩ + ⟨g∣Ĥ ∣g⟩) . (F.13)

In equation (F.13) the term ⟨ġ∣g⟩ is called the Berry-phase term (see appendix G).
If we combine the equations above, we find that the right equality in equation (F.1)

holds. We found a starting position to calculate the energy levels of an isolated spin with
the action.
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G Berry-phase term

The Berry-phase term was introduced in 1984 by Michael Berry [17]. Berry found that
there is a geometric change in the Hamiltonian under which the ground state of a quantum
system does not change. This change in the Hamiltonian means that we can include a
phase factor in the Hamiltonian, without changing the lowest energy levels [23]. This
phase is called the Berry-phase term.

For our system, the Berry-phase term is given by ⟨ġ∣g⟩. We want to write the Berry-
phase term in polar coordinates, in order to take the path integral over the action. For
this, we need the definition of the spin coherent states from equation (E.2). Now we see
that

⟨ġ∣g⟩ = ⟨⇑ ∣∂t(eiθŜyeiϕŜz)e−iϕŜze−iθŜy ∣ ⇑⟩ = ⟨⇑ ∣iθ̇Ŝy ∣ ⇑⟩ + ⟨⇑ ∣eiθŜy iϕ̇Ŝze
−iθŜy ∣ ⇑⟩ . (G.1)

We use the identity from [8] that for i ≠ j

eiθŜiŜje
−iθŜi = Ŝj cos θ + ϵijkŜk sin θ, (G.2)

and find that
⟨ġ∣g⟩ = ⟨⇑ ∣iθ̇Ŝy ∣ ⇑⟩ + ⟨⇑ ∣iϕ̇(Ŝz cos θ + Ŝx sin θ)∣ ⇑⟩ . (G.3)

Now we use that ⟨⇑ ∣Ŝy ∣ ⇑⟩ = ⟨⇑ ∣Ŝx∣ ⇑⟩ = 0 and ⟨⇑ ∣Ŝz ∣ ⇑⟩ = S, and we find the convenient
expression

⟨ġ∣g⟩ = iSϕ̇ cos θ. (G.4)

This outcome can be used to calculate the equations of motion for the spin system.7

H The Gaussian integrals of the spin action

In this appendix, we simplify the action in equation (3.16). We start with the relation
between the propagator and the path integral from equation (3.14)

⟨ψf ∣e−Ĥτ ∣ψi⟩∝∏
α′

ˆ
Dpα′

ˆ
Dqα′

ˆ ψf

ψi

Dg exp(−S ′[g,qα]), (H.1)

where the action is given by (see equation (3.16))

S ′[g,qα] =
ˆ
dτ∑

α

(−i ⟨ġ∣g⟩ −KS2
z −BxSx + γαS ⋅ qα +

p2
α

2mα

+ mαω2
α

2
q2
α + pα ⋅ q̇α) . (H.2)

Notice here that the action is quadratic in both the momenta and the positions of the
harmonic oscillators. This means that we can do a Gaussian integral twice. The Gaussian

7In many pieces of literature they use a different value for ψ, which leads to ⟨ġ∣g⟩ = iSϕ̇(1 − cos θ).
However, for this thesis it is fine to work with the expression in equation (G.4) as they both lead to the
same result. For the rest of the thesis it is more convenient to work with equation (G.4) so that is why we
chose this.
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integral over the momenta of the harmonic oscillators gives us a term of the form −mq̇2

2 .
Now we can do a Gaussian integral over the positions of the harmonic oscillators. We then
get the following

⟨ψf ∣e−Ĥτ ∣ψi⟩∝∏
α′

ˆ
Dqα′

ˆ ψf

ψi

Dg exp
⎛
⎝
−
ˆ
dτ∑

α

( − i ⟨ġ∣g⟩ −KS2
z −BxSx

− γαS ⋅ qα + qα
mα(ω2

α + ∂2τ )
2

qα)
⎞
⎠
.

(H.3)

We want to take the Gaussian integral over all qα. We cannot do this yet as we cannot take
the inverse of the time derivative. We can use the following equation to do the Gaussian
integral for a path integral, which has an operator M(t, t′) [8].

ˆ
Dx(t) exp(−1

2

ˆ
dt

ˆ
dt′ x(t)M(t, t′)x(t′) +

ˆ
dtj(t)x(t))∝

(detM)−
1
2 exp(1

2

ˆ
dt

ˆ
dt′j(t)M−1(t, t′)j(t′)) . (H.4)

For now, we are only looking at the action of the system. The action is only dependent
on the terms which are in the exponent and not on the prefactors. We therefore ignore the
determinant, as it only gives a prefactor. This means that we only have to focus on the
following part of equation (H.3), which we call Z

Z =∏
α′

ˆ
Dqα′ exp(−

ˆ
dτ∑

α

(γαS(τ) ⋅ qα(τ) +
ˆ
dτ ′qα(τ)

mα

2
(ω2

α + ∂2τ )δ(τ − τ ′)qα(τ ′))).

(H.5)
Here we added an integral and a delta function. By integrating by parts with respect to τ ,
we find an operator Aα(τ − τ ′) = mα

2 (ω2
αδ(τ − τ ′) + δ′′(τ − τ ′)). Finding the inverse of this

operator is equivalent to finding an operator A−1α (τ − τ ′) such that
ˆ
dτ ′A−1α (τ − τ ′)Aα(τ ′ − τ ′′) = δ(τ − τ ′′). (H.6)

To find A−1α (τ − τ ′), we have to do a Fourier transform. We then find that

A−1α (ω) =
1

Aα(ω)
= 2

mα(ω2
α − ω2) (H.7)

and

A−1α (τ − τ ′) =
ˆ
dω

2π
e−iω(τ−τ

′) 2

mα(ω2
α − ω2) . (H.8)

This integral is not well-defined, as it diverges at ω = ±ωα, for all ωα. To solve this we
make an infinitesimal shift η into the imaginary plane. We have two choices for the shift
ω → ω ± iη. When the plus sign is used, the operator is called retarded (R). When the
minus sign is used, the operator is called advanced (A). With the retarded/advanced
operator we can do a contour integral.
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(AR/A)−1α (τ − τ ′) =
ˆ
dω

2π
e−iω(τ−τ

′) 2

mα(ω2
α − (ω ± iη)2)

. (H.9)

The added η is infinitesimally small.
Next, we combine equation (H.4) with equation (H.5). We find that

Z ∝ exp(1
4

ˆ
τ

ˆ
τ ′∑

α

S(τ)γ2α(AR/A)−1α (τ − τ ′)S(τ ′)) . (H.10)

Now we define the retarded and advanced kernel functions in the following way

αR/A(τ − τ ′) = 1

4
∑
α

γ2α(AR/A)−1α (τ − τ ′) =
ˆ
dω

4π
∑
α

e−iω(τ−τ
′) γ2α
mα(ω2

α − (ω ± iη)2)
. (H.11)

This means that the Fourier transform of the kernel functions is

αR/A(ω) = 1

4
∑
α

γ2α(AR/A)−1α (ω) =
1

2
∑
α

γ2α
mα(ω2

α − (ω ± iη)2)
. (H.12)

For now it is unclear when we have to use the retarded or the advanced kernel function.
It turns out that they lead to the same action and thus to the same equations of motion.
It thus does not matter which kernel function we choose to use. We get that the action is
given by

S[g] =
ˆ
dτ (−i ⟨ġ∣g⟩ −KS2

z −BxSx +
ˆ
dτ

ˆ
dτ ′S(τ)αR/A(τ − τ ′)S(τ ′)) . (H.13)

In the end we found an expression for the action, which is only dependent on the spin.

I Equations of motion for spin

To find the equations of motion for the spin system corresponding with the action in
equation (H.13), we have to vary the action. As has been shown before, we know that
the coherent states are dependent on θ and ϕ, which are dependent on the time τ . We
therefore vary with respect to θ(τ) and ϕ(τ). To not be confused with the imaginary time
integrals in the action, we write the action as follows

S[g] =
ˆ
dτ ′ (−i ⟨ġ∣g⟩ −KS2

z −BxSx +
ˆ
dτ ′
ˆ
dτ ′′S(τ ′)αR/A(τ ′ − τ ′′)S(τ ′′)) . (I.1)

We now vary the action with respect to θ and take the functional derivative

δS[g]
δθ(t) =

δ(−i ⟨ġ∣g⟩ −KS2
z −BxSx)

δθ(t) +
ˆ
dτ ′′

δ(S(τ))
δθ(τ) α

R/A(τ − τ ′′)S(τ ′′) (I.2)

+
ˆ
dτ ′S(τ ′)αR/A(τ ′ − τ)δ(S(τ))

δθ(τ) . (I.3)
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For this thesis, we take the same approximation as is done in Keldysh formalism [18]

αR/A(ω) ≈ ±α0ω +
I

2
ω2. (I.4)

Here α0 is the Gilbert damping and I is the spin inertia. We can now Fourier transform
back to find α(τ − τ ′)

αR/A(τ − τ ′) = ∓α0∂τ ′δ(τ − τ ′) −
I

2
∂2τ ′δ(τ − τ ′). (I.5)

We have the following relation between the retarded and advanced kernel function

αR(τ − τ ′) = αA(τ ′ − τ). (I.6)

Further, we note that αR/A and S commute as αR/A is a function and not as an operator.
This means that we can write the variation of the action as

δS[g]
δθ(τ) = −i

δ ⟨ġ∣g⟩
δθ(τ) +

δS(τ)
δθ(τ) ⋅Beff +

ˆ
dτ ′S(τ ′)(αR(τ − τ ′) + αA(τ − τ ′))δS(τ)

δθ(τ) , (I.7)

where the effective magnetic field Beff is given by

Beff =
⎛
⎜
⎝

−Bx

0
−2KSz

⎞
⎟
⎠
. (I.8)

It does not matter which shift we make into the complex plain. We add either a small
frequency η in the positive complex direction or in the negative complex direction. Both
the retarded and advanced kernel function lead to the same action and thus the same
physics. Now we can fill in the expression for the kernel functions from equation (I.5) into
equation (I.7), we find that

δS[g]
δθ(τ) = −i

δ ⟨ġ∣g⟩
δθ(τ) +

δS(τ)
δθ(τ) ⋅ (Beff − I

ˆ
dτ ′S(τ ′)∂2τ ′δ(τ − τ ′)) (I.9)

= −iδ ⟨ġ∣g⟩
δθ(τ) +

δS(τ)
δθ(τ) ⋅ (Beff − IS̈(τ)) . (I.10)

So far, we only varied the action with respect to θ. We have not used any property of
θ yet, so we can do exactly the same for ϕ. We then get exactly the same equation, but
with ϕ instead of θ.

For finding the equations of motion, we look at δS[g]
δθ(τ) = 0 and δS

δϕ(τ) = 0. This gives us
the following equations

δS[g]
δθ(τ) = Sϕ̇ sin θ +

⎛
⎜
⎝

cos θ cosϕ
cos θ sinϕ
− sin θ

⎞
⎟
⎠
⋅ (Beff − IS̈) = 0, (I.11)
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and

δS[g]
δϕ(τ) = −Sθ̇ sin θ +

⎛
⎜
⎝

− sin θ sinϕ
sin θ cosϕ

0

⎞
⎟
⎠
⋅ (Beff − IS̈) = 0. (I.12)

These expressions are equivalent with

Ṡ = S × (Beff − IS̈) . (I.13)

This equation is the Inertial-Landau–Lifshitz–Gilbert (ILLG) equation (see equation 1.2)
without Gilbert damping [4]. One can easily find that equation (I.13) is equivalent to
equations (I.11) and (I.12). First one needs to get the expressions for ϕ̇ and θ̇ out of
equations (I.11) and (I.12) respectively. Then one takes the time derivative of S and fills
the expressions for ϕ̇ and θ̇. One can see then that this is equivalent to the right-hand
side of equation (I.13). Equation (I.13) consists of three equations and (I.11) and (I.12)
are just two equations. In (I.13) we have included that the length of the spin is constant,
which we also assume in the equations before.

About this expression, some nice approximations are made in Keldysh formalism [4]

αR/A(ω) = ±iα0ω +
I

2
ω2. (I.14)

In this thesis, we use this approximation and we have a look at its consequences.

J The saddle-point approximation

We cannot solve the path integral in equation (3.23) exactly. However, with the saddle-
point approximation we can approximate the path integral. For the spin-instanton we are
considering, we can use this technique. In this appendix we explain what is the saddle-point
approximation.

The saddle-point approximation for a smooth function f of a single variable x, is the
following. For Q≫ 1, the following integral, is approximated by

ˆ b

a

dx exp(−Qf(x)) ≈ ∑
minima of f

ˆ b

a

dx exp(−Q(f(x0) +
f ′′(x0)

2
∆x2)), (J.1)

where ∆x = x − x0 and f ′′(x0) is the second derivative of f at the point x0. This approx-
imation is good for large Q, as in that case the only parts of the function that have a
contribution to the integral, are the minima and the vicinities of the minima.

Using the saddle-point approximation is similar to what we have done for the particle
in the double-well potential. Here we had that the path that gives the main contribution,
is the classical solution. The second-order corrections in equation (J.1) lead to the paths,
which are equivalent to the paths in the vicinity of the minimal solution. For the spherical-
spin model there are many of such paths, as it is a two dimensional model. Therefore we
use the saddle-point approximation for the path integral over the action. Further, the
second-order corrections in equation (J.1) include also the quantum corrections.
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There is one important difference between the normal saddle-point approximation and
the approximation for the path integral we have to take into account, and that is that the
action is not a function, but a functional. The idea of the saddle-point approximation is
that we look at the main contributions of the path integral. The other contributions are
ignored. We can do this as we look at a system where Q≫ 1.

For the path integral over the action, see equation (J.2), we have to take into account
the paths when the action is very small

Ipath =
ˆ qf

qi

Dq exp(−S[q(t)]). (J.2)

We find the minima of the action when δS[q(t)]
δq(t) = 0. We also have to include the paths

close to these minima of the action. These close paths we find by fluctuating around the
minima. So around a minimum path q0(t), which goes from qi to qf , we can write the
action as

S[q(t)] = S[q0(t)] +
ˆ
dt′
ˆ
dt′′

1

2
∆q(t′) δ

2S[q0(t)]
δq(t′)δq(t′′)∆q(t

′′) +O(∆q3). (J.3)

The first-order derivative of the functional is zero as we look at a minimal path. The
saddle-point approximation says that, if we can write the action as S[q(t)] = Sf[q(t)],
with S ≫ 1, we find that the path integral is given by

Ipath ≈ ∑
minima

ˆ qf

qi

Dq exp(−S(f[q0(t)] +
ˆ
dt′
ˆ
dt′′

1

2
∆q(t′) δ

2S[q0(t)]
δq(t′)δq(t′′)∆q(t

′′))) . (J.4)

We now integrate over all paths, but we only have to take into account the minimal paths
and the paths which are in the vicinity of the minimal paths. All other paths have an
irrelevant contribution to the integral, because the constant S is large.

For the spherical-spin model, we have that the action is dependent on two variables θ
and ϕ. For the approximation, we now have to take the functional derivatives to both θ
and ϕ. Now we have to take also cross-terms into account. The path integral can now be
calculated by

ˆ qf

qi

Dg exp(−S f[θ(t), ϕ(t)]) ≈

∑
minima

ˆ qf

qi

Dg exp(−S(f[θ0(t), ϕ0(t)] +
ˆ
dt′
ˆ
dt′′

1

2
∆θ(t′)δ

2f[θ0(t), ϕ0(t)]
δθ(t′)δθ(t′′) ∆θ(t′′)

+
ˆ
dt′
ˆ
dt′′∆θ(t′)δ

2f[θ0(t), ϕ0(t)]
δθ(t′)δϕ(t′′) ∆ϕ(t′′) +

ˆ
dt′
ˆ
dt′′

1

2
∆ϕ(t′)δ

2f[θ0(t), ϕ0(t)]
δϕ(t′)δϕ(t′′) ∆ϕ(t′′))).

(J.5)

This is the saddle-point approximation for the spherical-spin model.
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