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Abstract 
Europe needs to increase wind energy capacity to reach 440 GW installed capacity by 2030. Wind 

energy deployment has multiple impacts, of which some negative impacts have resulted in opposition 

to its implementation. However, the job creation is a positive impact, and could contribute to 

increasing social acceptance. Assessing the job creation impact from wind energy deployment 

thoroughly, requires an accurate and consistent quantification method. As this is missing in the 

current literature, this research provides such a method and a model. The main research question is: 

How does job creation of wind energy deployment in the wind power industry differ per location 

within Europe by 2030?  

This research applies multiple methodological approaches to define a job quantification method. We 

performed a systematic quantitative literature review, from which job creation quantities for different 

job creation stages (development, construction, manufacturing, operation and maintenance and 

decommissioning) were retrieved. Additionally, semi-structured interviews have been conducted to 

enhance the collected data. An employment factor approach has been used to quantify job creation 

in job-years/MW installed capacity (job-years/MWi). A multivariate regression analysis has been 

performed on the collected data, creating model input. We validated the model using the data 

retrieved from the interviews. Also, a sensitivity analysis has been performed on multiple parameters.  

Results show that the number of wind turbines per park does not influence the employment factor. 

Higher turbine capacities results in higher employment factors for operation and maintenance. Over 

the entire lifetime, onshore job creation is 15.26 job-years/MWi lower than offshore job creation. 

Overall, Europe and North America show lower employment factors than other locations for similar 

wind parks. Within Europe, the only difference in job creation is related to the manufacturing stage. 

Manufacturing jobs are created internationally, or nationally if a manufacturing organization is 

present. Germany, Spain and Denmark might benefit most from wind energy deployment, as these 

countries have a manufacturing organization. From 2023 to 2030, a total of 15.7 million job-years 

could be created if Europe reaches 440 GW installed capacity. This corresponds to 724 thousand direct 

jobs in 2030, of which only a small share will be created locally. Its potential for increasing local 

acceptance of wind energy deployment therefore seems limited. Still, this research increased insight 

into the variables influencing job creation, and provides a consistent job quantification model. 

Additional data points, especially for decommissioning, could increase model accuracy and enable 

using smaller locational scales.  
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1. Introduction 

1.1 Societal background 
Human overexploitation of fossil fuels for the production of energy has resulted in increased 

atmospheric concentrations of greenhouse gases (GHGs), consequently leading to global warming (Al-

Ghussain, 2019). From the start of industrial revolution until 2020, atmospheric carbon dioxide (CO2) 

concentrations have increased from 285 to 415 ppm, resulting in an average global temperature 

increase of around 1.2 degrees Celsius (Chen, 2021). Rising sea levels and melting glaciers are 

examples of currently noticeable effects of global warming (Kumar et al., 2012). Future effects of 

global warming could result in species extinction and more extreme weather conditions, with long 

periods of drought and more frequent storms (Kumar et al., 2012). Recognizing the threats of global 

warming, 196 parties adopted the Paris Agreement in 2015 (UNFCCC, 2023). The main objective of the 

Paris Agreement is limiting global warming to 2.0 degrees Celsius and pursuing to stay below 1.5 

degrees Celsius compared to pre-industrial levels (Ourbak & Magnan, 2018). In persuasion of limiting 

global warming to 1.5 degrees Celsius, 124 countries pledged reducing GHGs drastically and becoming 

carbon neutral by the year 2050 or 2060 (Chen, 2021).  

The energy sector has the highest contribution to annual CO2 emissions, and was responsible for 38.8% 

of global CO2 emissions in 2019 (Yoro & Daramola, 2020). Reaching carbon neutrality requires 

significant CO2 emission reductions. This can be achieved by reducing fossil fuel energy production 

and increasing renewable energy production (Halkos & Gkampoura, 2020). Reduction of fossil fuel 

energy production has proven difficult, as last decades global energy production from coal, natural 

gas and oil has significantly increased (Ritchie et al., 2022). At the same time, renewable energy 

production has increased. However, as global wind and solar energy production only equaled 4% of 

total energy production in 2020, its share remains relatively small (Ritchie et al., 2022). A significant 

increase in global renewable energy production is required to reduce fossil fuel dependency and to 

comply with the Paris Agreement (Pablo-Romero et al., 2022). 

Wind energy is a renewable energy source that contributes to the decarbonization of the energy 

sector (Saidur et al., 2011). The technology is not entirely GHG emission free due to emissions released 

during construction, operation and maintenance (O&M) and decommissioning (Kumar et al., 2016). 

However, the lifecycle carbon intensity of wind energy equals 5 grams of CO2 per KWh (Li et al., 2020), 

whereas for a coal fired power plant this equals around 900 grams of CO2 per KWh (IEA, 2022). Despite 

this significant contribution of wind energy to reduce CO2 emissions, wind energy has received 

opposition to its implementation. Wind energy is often linked to the ‘not in my backyard’ (NIMBY) 

effect, which refers to situations where individuals’ positive attitude towards wind energy changes 

once the turbines are placed close to their homes (Wolsink, 2012). Locally, individuals feel they only 

get the burden and not the benefits of wind energy, resulting in opposition (Jørgensen et al., 2020). 

This local burden is caused by negative impacts created by wind energy deployment (Enevoldsen & 

Sovacool, 2016).  

1.2 Impacts of wind turbines  
Potential negative environmental, visual and socioeconomic impacts are attributed to wind energy 

(Enevoldsen & Sovacool, 2016). Environmental impacts refer to the reduction of flora, fauna and 

wildlife. Wind turbines could form a threat to wildlife due to the rotations of wind turbine blades, 

potentially killing birds and bats (Saidur et al., 2011). However, as shown by Erickson et al. (2005), bird 

mortality caused by wind turbines only accounts for a fraction of total bird mortality from 

anthropogenic causes. Visual impacts of wind turbines include the visual pollution of the landscape 

and the flicker effect created by the shadow of the turbine blades. Another impact of wind energy is 
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the noise resulting from the rotating blades. There are however technologies available to mitigate this 

impact (Deshmukh et al., 2019). Socioeconomic impacts of wind turbines consider the reduced 

attractiveness of the area, in some cases resulting in reduced land and property values (Enevoldsen & 

Sovacool, 2016). Besides, wind turbines could interfere with radio and TV signals leading to signal 

losses (Angulo et al., 2014; Mohtasham, 2015). These negative impacts mainly arise locally whereas 

most positive impacts arise nationally (Brown, 2011). 

Nationally, wind energy creates multiple positive impacts on the environment (Jaber, 2014). During 

operation wind energy does not emit CO2 emissions, release hazardous waste and does not require 

natural resources (e.g. oil, gas, biomass or coal) for energy production (Jaber, 2014). Besides national  

positive impacts, wind energy also creates local positive impacts. An example is the potential to 

increase local tourism with tours at the wind park (Jaber, 2014). Another important positive impact of 

wind energy, that could be both locally and nationally, is job creation. Job creation should be 

stimulated as it reduces unemployment and could increase gross domestic product (GDP) (Bulavskaya 

& Reynès, 2018). Due to the increased installed wind energy capacity, the global amount of jobs 

created by wind energy deployment has almost doubled from 2010 to 2020 (Haidi & Cheddadi, 2022). 

1.3 Knowledge gap 
Local resistance to wind energy should be reduced in order to enable wind energy to contribute to the 

decarbonization of the energy sector. In an effort to reduce resistance and increase social acceptance 

of wind energy, the EU funded the Wind in My Backyard (WIMBY) project (European Commission, 

2023). The aim of the WIMBY project is to model social impacts of wind energy, in order to increase 

social acceptance of wind energy. Reducing local opposition to wind energy deployment could be 

achieved by finding locations where negative impacts are the least and positive impacts are the most. 

Determining these locations requires accurate quantification methods for the different impacts. 

Regarding job creation, quantifying jobs created by wind energy deployment is difficult due to multiple 

reasons. Firstly, no specific job quantification method is available and secondly there is inconsistency 

and non-transparency in the current literature.  

Instead of providing precise wind energy job quantification methods for wind energy job creation, 

current literature mainly focuses on general job creation values. Rutovitz et al. (2015) provide a 

method to quantify energy jobs based on a general job creation value, which should be adapted based 

on a country’s GDP. Esteban et al. (2011) also use a general job creation value, and include a 

technological decline factor to project a future job creation value. Both methods project wind energy 

job creation by using a general job creation value and only adapting it with one variable. More specific 

job quantification models are required to provide a detailed job creation value for different wind parks 

at different locations.  

Inconsistency in current literature occurs both in the different job types and sectors included in 

quantification, and in the unit in which job creation is measured. Considering job types, Fragkos & 

Paroussos, (2018) include direct, indirect and induced jobs in quantifying job creation, whereas Hondo 

& Moriizumi (2017) only consider direct and indirect jobs. Some other papers only include direct jobs 

or do not specify what job types are included. Regarding different job sectors included in job 

quantification, current literature is not consistent. As shown in the article of Simas & Pacca (2014) 

previous studies included different job sectors in quantifying job creation. Often Manufacturing, 

construction and O&M jobs are included in quantifying job creation. However, only limited studies 

include project development in job creation. Regarding the entire lifecycle of wind turbines, 

decommissioning should also be considered in quantifying total job creation (Trypolska et al., 2022). 

A third inconsistency in literature is the unit in which job creation is expressed. Job creation is 
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expressed in jobs or job-years per MW installed capacity (MWi) or GWh, in money invested or value 

generated. Also, most articles do not distinguish between onshore and offshore job creation, whereas 

Simas & Pacca (2014) suggest offshore wind creates slightly more jobs per MWi.  

As there is a lot of inconsistency and no specific modelling method, it is difficult to determine the 

impact of wind energy deployment on job creation. Especially when aiming to identify locations with 

a high positive impact on job creation, more available data is required. Most studies quantify (a part 

of) job creation without mentioning a specific location. The article of Fragkos & Paroussos (2018)                                     

identifies job creation in Europe. Whereas the article of Trypolska et al. (2022) quantifies job creation 

in Ukraine, however this only focuses on job creation for decommissioning. As a result, the current 

literature lacks a consistent and comparable wind energy job quantification method for different wind 

parks at different locations.   

1.4 Research aim and questions 
The aim of this research is to create insight into the impact of wind energy deployment on job creation 

within European countries. First of all, this research has developed a consistent and transparent 

method to quantify job creation of wind energy deployment at different locations and for different 

wind parks. Job creation has been quantified as precisely as possible. It therefore includes all job types 

and sectors related to the different lifecycle stages of a wind turbine. To ensure consistency and 

transparency, all lifecycle stages, related jobs and job types are explored. The purpose of a transparent 

and consistent method of quantifying job creation is to enable comparison between job creations for 

different wind power projects (onshore or offshore and scale) at different locations. By accurately 

quantifying the wind energy job creation potential, this research contributes to the WIMBY project to 

increase social acceptance of wind energy. This research answers the following research question:  

How does job creation of wind energy deployment in the wind power industry differ per 

location within Europe by 2030? 

Answering this research question requires answers to five related sub questions. These sub 

questions are provided below: 

1) How does the wind turbine capacity and the number of wind turbines per wind park 

influence job creation of wind energy deployment? 

2) How does onshore wind deployment job creation differ from offshore wind deployment job 

creation? 

3) What is the geographical context in which wind energy jobs are created?  

4) How does job creation from wind energy deployment differ per location?  

5) How many wind energy jobs will be created in Europe if Europe reaches its 2030 renewable 

wind energy target? 

The first sub question is required to determine any scale effects of wind turbines on job creation. It 

identifies the relationship between different wind turbine capacities and the number of wind turbines 

on job creation. Sub question two determines the relationship between onshore and offshore wind 

parks on job creation. The third sub question elaborates on the likeliness of local, national or 

international job creation. Sub question four quantifies job creation of different wind power projects 

for different locations. Answering the fourth sub question required national data regarding job 

creation of wind energy deployment in combination with the relationships found under sub questions 

one, two and three. The last sub question quantifies future total job creation in Europe in 2030. The 

combination of all sub questions provides the answer to the main research question.  
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1.5 Scientific relevance 
This research collects all available wind energy job creation data in existing literature and converts it 

to the same units to enable comparison. It therefore contributes to increasing transparency and 

consistency in the quantification of wind energy jobs. Based on this data a model has been developed, 

which enables quantification of the impact of wind energy development on job creation. This model 

could be used to identify locations where the deployment of new wind energy parks create the highest 

positive impact on job creation. Deploying wind turbines at high positive job creation impact locations, 

potentially leads to increased social acceptance of wind energy deployment. This research therefore 

contributes to enabling strategic placement of wind turbines, which might reduce local resistance. 

Besides, it creates insight into the number of new wind energy jobs that will be created for a certain 

wind energy park at a certain location. Additionally expected future wind energy jobs in Europe have 

been quantified. The elaboration on locally versus internationally generated jobs offers valuable 

information on which locations will benefit most from new wind energy deployment.   

2. Theoretical background 
This section provides a definition of the wind power industry jobs, and of the approach used to 

quantify job creation. It discusses the different lifecycle stages of wind parks and their related jobs, 

which will be referred to as job sectors. Secondly it provides different job types used in current 

literature for job quantification.  

2.1 Wind power industry jobs (job sectors)  
According to Llera et al. (2013) renewable energy technologies generally have a lifecycle consisting of 

five different stages. The first stage includes the research, project design and development. The 

second stage is manufacturing of the renewable energy technology (wind turbines in this case). The 

third stage includes the transport, installation and commissioning of the wind farm. Operation and 

maintenance is the fourth stage of wind parks. The last stage relates to renovation or 

decommissioning of the wind turbines. IRENA (2011) mentions: processing of raw materials, 

manufacturing, project design and management, installation and or construction, operation and 

maintenance, and eventually decommissioning as different jobs related to wind energy. The different 

jobs mentioned by IRENA (2011) correlate with the five different lifecycle stages mentioned by Llera 

et al. (2013). This research will therefore consider the same five lifecycle stages and refer to these as 

job sectors. The job sectors are: development, manufacturing, construction, O&M and 

decommissioning.  

The duration of each job sector is of importance for quantifying job creation. Construction and 

decommissioning are often seen as temporary jobs, whereas planning, manufacturing and O&M are 

regarded as permanent jobs (Llera et al., 2013). This is largely supported by Hanna et al. (2022), who 

also consider O&M as a permanents job. Manufacturing of a single turbine could be seen as 

temporary, however, regarding the expected increase in wind turbines, it could also be seen as a 

permanent job (Hanna et al., 2022). Permanent jobs are often expressed in number of jobs, whereas 

temporary jobs are expressed in job-years. One job-year refers to work for the duration of one year 

for one employee. Another aspect of jobs creation is whether the job is created locally, nationally or 

internationally. According to Hanna et al. (2022) manufacturing jobs can be created both locally, 

nationally and internationally, the other jobs are likely created locally or nationally. Local, national or 

international job creation of manufacturing jobs depends on the presence of wind turbine 

manufacturing organizations.  



12 
 

2.2 Job types  
Generally, there are three different job types in the wind power industry: direct, indirect and induced 

jobs (IRENA, 2011). According to IRENA (2011) direct jobs refer to jobs related to the core activities of 

a sector, indirect jobs refer to jobs supplying the renewable power (wind power) industry, and induced 

jobs refer to jobs created due to additional expenditure resulting from increased wealth. Direct jobs 

for the wind energy sector are jobs directly related to any of the previously mentioned job sectors. 

Indirect wind energy jobs could be jobs required for the production of steel for wind turbines. Current 

literature mainly focusses on direct job creation, and lesser attention is given to indirect and induced 

jobs (Bowen, 2016). Only considering direct job creation will give a lower job creation value than what 

the job creation value will be in reality (Ram et al., 2022). To give the most accurate value of jobs 

created by wind energy, all job types are included in this research. Values for indirect and induced jobs 

can be estimated based on a local job multiplier. Local job multiplier accounts for additional jobs 

created due to new job creation (Bartik & Sotherland, 2019). According to Bartik & Sotherland (2019) 

additional jobs can be created by supplier linkages or worker demand. Supplier linkages account for 

additional jobs created at the supplier side due to the increase in employees in the industry. This can 

therefore be seen as indirect jobs. Worker demand refers to the additional expenditure of the new 

employees, resulting in additional job creation. This can therefore be seen as induced jobs.  

2.3 Employment factor approach 
There are two main approaches for the quantification of job creation of renewable energy, which are 

the input-output model (IO) and employment factor approach (EF) (Breitschopf et al., 2013). The IO 

approach quantifies job creation based on the output and employment of a sector. It therefore 

includes both direct and indirect job creation (Fragkos & Paroussos, 2018). However, it does not clearly 

determine the share of direct and indirect jobs on total job creation (direct, indirect and induced). The 

EF approach quantifies job creation based on number of jobs related to installed capacity (Fragkos & 

Paroussos, 2018). It projects the number of employees required per job sector, for a wind park with a 

specific capacity. This approach typically includes direct job creation. Since this research aims to 

include all job categories, the IO approach seems the better option. However, in literature it is found 

that the EF approach is used, and indirect and induced jobs are also included. As is the case in the 

article of Simas & Pacca (2014), where direct, indirect and induced jobs are included while using the 

EF approach. Besides, local job multipliers enable estimating indirect and induced jobs. Another 

difference between the EF and IO model approach is that the EF approach is generally more 

straightforward and transparent (Fragkos & Paroussos, 2018). For these reasons this research applies 

the EF approach for quantifying job creation.  

Typically, the EF approach quantifies job creation in jobs/MWi (jobs per MW installed capacity) or job-

years/MWi (job years per MW installed capacity). The calculation for the employment factor is shown 

in Equation (1).  

 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  ∑
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑗𝑜𝑏 𝑠𝑒𝑐𝑡𝑜𝑟 (𝑗𝑜𝑏𝑠)

𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑊𝑖)
                      (1) 

However, in literature sometimes values are provided per Gigawatt hour (GWh). Job creation is then 

quantified in jobs/GWh or job-years/GWh, where GWh refers to produced energy.  

3. Methodology  
This quantitative research required a total of three different steps to provide an answer to the 

research questions. The first research step consists of data collection, for which scientific and grey 

literature and semi-structured interviews will be used. The second step involves data analysis, after 
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which the first three research questions have been answered. During the final step a model has been 

developed to project job creation values, and to allow the fourth and fifth research questions to be 

answered. Error! Reference source not found. is a visual representation of the different research steps 

and shows what research questions have been answered during which research step.  

 

Figure 1: Methodological framework. 

3.1 Step one: data collection 

3.1.1 Scientific literature review 
A systematic quantitative literature review has been performed as defined by (Pickering & Byrne, 

2014). This method is used to systematically select scientific literature and collect quantitative data. 

The selection of literature involved two different phases. The first phase provided a list of primary, 

secondary and tertiary key words used to retrieve literature. As the objective of the research is to 

quantify job creation, primary key words used were: jobs, job creation, employment, employment 

creation and employment factor. As job creation has been quantified for wind energy deployment, 

the secondary key words used were: wind energy, wind power and wind turbines. As the focus of this 

research is on job creation of wind energy in Europe, the tertiary key words used were: Europe and 

EU. For the collection of scientific literature there has been made use of a script in the Python 

programming language. This script searches in the scientific literature database of Scopus using the 

Scopus API. The script uses the different (primary, secondary and tertiary) key words to search for 

literature. To increase the amount of literature, the script has also been run only on the primary and 

secondary key words. This enabled retrieving wind energy job creation literature from outside Europe. 

The Python script provided the bibliography and abstract of the references.  

Phase two involved the inclusion or exclusion of references from the literature review. Firstly, all 

abstracts have been read and assessed on relevance to the research questions. References were 

considered relevant to the research questions if they included information or data directly related to 

job creation in the wind power industry. Based on the abstract, references have been included or 

excluded from the remainder of the literature review. Secondly, articles that were eighter not 

accessible to the author, or that were written in another language than English or Dutch (these are 

the languages spoken by the author) have been excluded from the literature review.  All included 

references have been read in full, and relevant quantitative data concerning job creation has been 

documented and organized in numerical tables.   

Additionally to scientific literature, grey literature has been used to retrieve supplementary data. A 

lack of available scientific data resulted in data gaps. Grey literature helped reduce data gaps and 

provided additional indications for an EF.   
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3.1.2 Semi-structured interviews 
Next to scientific literature, interviews have been conducted to collect additional data and increase 

overall understanding of wind energy job creation. The main aim of the interviews was to retrieve 

specific quantitative data on job creation, and to determine factors that may influence job creation. 

As it is difficult to provide exact EF values, the interviews were of a semi-structured nature. Semi-

structured interviews allowed for additional questions to be asked that might give indications for an 

EF, or other data from which an EF could be derived. The semi-structured interviews have been 

conducted with organizations associated with the Horizon Europe project WIMBY. These organizations 

are active within the wind power industry, and therefore could provide valuable practical data and 

information. Due to confidentiality of the type of information provided during the interviews, the 

interviewees and the organizations have been made anonymous. A total of four interviews have been 

conducted during this research, from which the transcripts can be found in appendix C. Interviewee A 

is self-employed and works as a consultant on small to large scale wind energy parks. He/she is 

involved in a wind energy project mainly during the construction stage. Interviewee B is a sustainable 

energy manager for a large energy provider. He/she is involved during the development stage of wind 

projects. Interviewee C and D both work for the same large energy provider. Interviewee C works as a 

renewable global project portfolio manager and interviewee D is a wind park decommissioning expert.  

3.2 Step two: data analysis 
During step two the collected data has been analyzed. First all, collected data has been converted into 

the same unit. As most EFs in the literature were provided in job-years/MWi, this unit has been used 

to quantify job creation. This reduced conversion time from one unit to the other unit. Conversion 

from jobs/GWh to jobs/MWi is based on the capacity factor and lifetime of the wind park. Values 

provided in jobs/MWi have been converted to job-years/MWi. Values in jobs/MWi can be normalized 

to job-years/MWi by multiplying by the lifetime of the technology or job duration (Dufo-López et al., 

2016). If no job duration was provided for the job sector, a typical duration value was applied. This 

typical duration value has been determined based on most frequently used job durations found in 

literature. 

The collected data has been analyzed using a descriptive analysis approach. This type of analysis 

generally analyzes data based on statistical techniques, such as mean, median, mode, standard 

deviation, frequency distribution and correlation (Siedlecki, 2020). Mean, median and mode values 

have been determined and used if multiple data points were collected for the same wind park. More 

interesting however, is the correlation or relationship among different variables influencing the EFs 

found in literature. These relationships have been determined using a multiple linear regression 

analysis. This analysis accounts for the variation of multiple independent variables on the dependent 

variable. The general equation for this multivariate regression analysis is provided in equation 2, as 

adopted from Uyanık & Güler (2013).  

𝛾 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀         (2) 

Where: 𝛾 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝛽𝑖 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑥𝑖 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝜀 = 𝑒𝑟𝑟𝑜𝑟.       

In this case, the dependent variable is the EF of the different job sectors. The independent variables 

are the variables that influence the EF. The respective values of the parameters corresponding to the 

independent variables have been derived using ANOVA statistics. A significance level of 5% has been 

applied to the regressions, to determine if the independent variables likely determine the dependent 

variable. If the regression significance is above 5%, the regression has been considered as not 

significant. A regression significance of 5% or lower, suggests that the independent variables likely 

determine the dependent variable. Therefore, regressions with a regression significance of 5% or 
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lower, are considered as significant. A significance level of 5% has been applied, as this is the most 

commonly applied value, and results in only a small chance that a significant regression does actually 

not determine the dependent variable (Fang & Yang, 2019). The significant regressions provided the 

answer to research questions one, two and three. Research questions one and two could directly be 

answered from the derived relationships.  

3.3 Step three: model development 
Step three involved the creation of a model to quantify job creation for different wind parks (number 

of turbines, turbines capacity, onshore or offshore) at different locations. The model is based on the 

significant regressions for the different job sectors found during step two. The total function to 

quantify job creation includes all regressions of the EFs for the different job sectors. As all EFs of all 

job sectors are converted to the same unit, one total job creation EF is provided. This job creation EF 

(in job-years/MWi) is therefore the sum of all EFs of the job sectors. Quantifying total job creation for 

a specific wind park requires the total EF to be multiplied by the amount of MW that will be installed. 

The equation is shown in equation 3.   

𝑗𝑜𝑏 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 = (𝐸𝐹𝑑𝑣 + 𝐸𝐹𝑚 + 𝐸𝐹𝑐 + 𝐸𝐹𝑜&𝑚 + 𝐸𝐹𝑑𝑐) × 𝑀𝑊𝑖       (3) 

Where: EF is the employment factor (job-years/MWi) and the subscripts dv, m, c, o&m and dc represent 

the development, manufacturing, construction, operation and maintenance and decommissioning job 

sectors respectively.  

Based on this job creation function a model has been developed in Excel. This model is created based 

on all available data collected during step one. Preferably the model had been created based on 80% 

of the retrieved data, to allow for model validation based on the other 20%. Due to limited retrieved 

data however, all retrieved data was required to serve as model input. Therefore, model validation is 

based on a comparison of model results with other methods and trends or relationships provided 

during the interviews. Model results allow research questions four and five to be answered.   

3.4 Uncertainties  
During the study, two factors made the creation of a robust model difficult. First of all, the lack of data 

made it difficult to perform a regression analysis. As a result, not all EFs have been determined from 

the regressions. If a regression analysis was not possible, due to too little data, the EF has been 

determined from average, minimum and maximum values. Also, due to a lack of data, all data was 

required as input data. Therefore, the accuracy of the model cannot be checked using other available 

data points. Model validation is therefore done by examining similar trends retrieved from the 

interviews and from other job creation methods. Secondly, only 4 interviews were conducted in this 

research. Preferably more interviews were conducted to increase total data points. Besides, more 

interviews would make model validation more robust. As a result, it is possible that the model provides 

job creation values that are too high or too low. This problem has been minimized by creating a range 

for the EFs and the total EF in the model. The model provides the projected job creation EF, as well as 

this value plus and minus one standard deviation. This increases the chance that actual job creation 

falls within the range projected by the model.  

4. Results 

4.1 Results literature review 
Running the Python script, retrieved a total of 526 unique references. Of these references, 162 were 

found to be relevant for the literature review based on their abstract and title. All 162 articles have 

been thoroughly reviewed, and job creation data has been documented. However, not all references 
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have been used to collect data. First of all, 8 articles were in a different language and were therefore 

not reviewed. Secondly, two articles were not accessible, and 85 articles did not contain job creation 

data. As a result, a total of 67 references have been used to retrieve data. An overview of the 162 

references, and their reason for exclusion, can be found in the appendix (Appendix A).  

It was noted during the literature review that multiple articles provided the same job creation 

quantities. This is explained by the fact that these articles often used the same job creation quantities 

as provided by another article. The article of Simas & Pacca (2014) is included in the literature review, 

and their employment factor has also been used in the articles of Vasconcellos & Caiado Couto (2021), 

that is also included in the review. Another article that multiple articles referred to was the article of  

Rutovitz et al. (2015). This paper was not retrieved from the literature search in Scopus, and was 

therefore not included in the literature review. However, as multiple articles referred to this article, it 

has been added manually. Two other articles have also been added manually to the literature review, 

as these were suggested by organizations when asked for an interview and relevant data about job 

creation of wind energy. Therefore, the total literature review included 165 references, of which 70 

provided useful data (Appendix A). The data from the articles using the employment factors from 

Simas & Pacca (2014) or Rutovitz et al. (2015) have been documented, but have not been used in the 

regression analysis as this would lead to double counting. Data from the articles of Okkonen & 

Lehtonen (2016), Greene & Geisken (2013) and Ejdemo & Söderholm (2015) have also been 

documented, but have not been used in the regression analysis. These articles only quantified created 

jobs in a smaller town or region. These values do not represent all the created jobs but only a certain 

share (for a specific town). As this is not further specified, values cannot be compared with total job 

creation quantities.  

Appendix B provides an overview of all data points that have been collected from the literature. There 

are many variations in the data that has been collected from the literature. This is caused by different 

included job sectors, job types, and the unit in which jobs have been quantified. All data has been 

collected and grouped per job sector. However, some articles did not specifically provide job creation 

values per job sector separately, but provided one total value. Some other articles only mentioned job 

quantities referring to a construction phase. The construction phase includes the job sectors of 

development, construction and manufacturing.  

Regarding the different job types, only limited articles provided job creation values for all three job 

types (direct, indirect and induced). Some mentioned a total value without specifying what job types 

were included in the total job quantity. Other articles quantified job creation for direct plus indirect 

jobs combined.  

Also, articles quantified job creation in different units. The two most common job creation units used 

were jobs/MWi or job-years/MWi. All data found in the literature has been converted to job-years, if 

necessary. If jobs were quantified in jobs/MWi and no duration was determined, a typical duration for 

the job sector was used. However, in the current literature different durations are used. For instance, 

a 20-year O&M duration is used by Slattery et al. (2011), and a 40-year O&M duration is used by 

Jacobson et al. (2014). Corresponding direct job-years/MWi values are 0.9 and 6.2 respectively. 

However, if a 25-year job duration had been used, it would have resulted in 1.1 and 3.9 job-years/MWi 

respectively. The job duration can therefore have a great impact on the job creation quantity. Ranges 

for job duration per sector found in the literature were: a few years to 5 years for development, half 

a year to 2.5 years for construction and manufacturing, 20 to 40 years for O&M, and 1 to 3 years for 

decommissioning. If job quantities were provided in jobs/MWi, a job duration of 1 year has been used 

for construction, manufacturing and decommissioning, 3 years for development, and 25 years for 
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O&M, as these were the most commonly used durations. Figure 2 shows the different job sectors and 

their duration ranges found in the literature.  

 

Figure 2: Job sectors and their duration (range) in years. 

Apart from using different job sectors, job types and units, only limited articles described the wind 

park. Some articles provided different employment factors for onshore and offshore wind, while 

others only provided an EF for wind in general. Besides, not all articles described the wind farm in 

terms of the number of turbines, turbine capacity or total capacity. The same is true for the reference 

year on which the EF is based. If no clear reference year was provided, the publishing year has been 

used as a reference year.  

Next to job creation quantities, data has been retrieved regarding the local nature of job creation. This 

data showed the share of jobs created locally and internationally, and can also be found in Appendix 

B. Also, 2 articles discussed the educational level of jobs required in the wind power industry. Swift et 

al. (2019) found that the worker profile in the wind power industry was 79.9% vocational training and 

27.1% university degree. According to Pegels & Lütkenhorst (2014), manufacturing, construction and 

operation and maintenance jobs require 14%, 6% and 17% university degree workers, respectively.  

4.2 results regression analysis  
This section provides the results of the different regression analysis per job sector. The independent 

variables included in the regression analysis were: Onshore/offshore dummy (OS), locations in Europe 

(EU), North America (NA), South America (SA), Asia (AS) and Africa (AF), turbine capacity (TC), number 

of turbines (Nr.T), and reference year (RY).  

4.2.1 development  
A total of five different data points have been retrieved from the literature for the development stage 

of wind energy. As a result, performing a regression analysis is only based on limited data points. On 

all possible combinations, a regression analysis has been performed. Of all regression runs, none were 

significant and could be used to project job creation for the development stage. Therefore, the 

minimum, maximum, average, median and standard deviation are the only values that can be used to 

quantify job creation. All these values for direct, indirect, induced and total jobs are presented in table 

1. The induced and total jobs are only based on two different values resulting in similar average and 

median values.  

Table 1: Direct, indirect, induced & total EFs for the development stage. Values provided in job-years/MWi. 

Development Direct jobs Indirect jobs Induced jobs Total jobs 

Min 0.21 0.26 0.48 1.34 

Max 1.41 1.09 0.70 2.37 

Average 0.69 0.59 0.59 1.86 

Median 0.58 0.41 0.59 1.58 
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St.dev 0.52 0.44 0.16 0.73 

 

4.2.2 construction  
All significant regressions found for direct, indirect and induced jobs during the construction are 

shown in table 2. For direct jobs, a total of three different significant regressions have been 

determined. Direct jobs run one and run two are both based on the same independent variables. 

These independent variables were the locations in EU and NA and at onshore or offshore. The 

difference between run one and run two is the observation count. Run one included two outlier 

values, which have been removed in run two. As a result, the regression analysis result changed 

slightly. First of all, the intercept and independent variable coefficients changed. Secondly, the 

regression significance, R2, and standard deviation changed. The R2 value increased, meaning that the 

found regression better fits the model data than in run one. Therefore, direct jobs run two is more 

suitable for the model than run one. Direct jobs run three was significant for the number of turbines, 

turbine capacity, reference year and the location EU and was based on 18 observations. However, for 

this run only two data points were actually in the EU. Removing these data points or running the 

regression without checking for the location EU, the regression was no longer significant. Besides, 

following direct jobs run 3, a wind turbine with a capacity of more than 2.4 MW could result in a 

negative EF, depending on the location. This makes direct jobs run three unsuitable for job creation 

projection. The EF for direct construction jobs is therefore based on the direct jobs run 2.  

Indirect run one and run two and induced run one and run two, all show significant regressions with 

high R2 values. As can be seen, for both indirect and induced runs, run one and run two have exactly 

the same independent variables coefficients and P-values, but for different independent variables. 

This is caused by the fact that all onshore wind data points are also outside the EU, and all offshore 

data points are within the EU. Both independent variables are dummy variables. Although the 

independent variables are different, for the regression they are the same and show identical results. 

Running the regression analysis, including both onshore/offshore and EU in combination with turbine 

capacity, resulted in a non-significant regression. Following indirect jobs run one, the indirect EF for 

an onshore wind turbine is negative (no matter the turbine capacity). Following indirect jobs run two, 

the indirect EF for a wind turbine outside Europe is negative (no matter the turbine capacity). 

According to induced jobs run 2, a 5 MW onshore wind turbine in the EU creates 6.65 job-years/MWi. 

This seems a plausible EF value. However, the same wind turbine creates -2.47 job-years/MWi 

following induced job run 1, which is unrealistic. A 5 MW offshore wind turbine outside the EU creates 

-2.47 job-years/MWi or 6.65 job-years/MWi according to induced jobs run 2 and run 1, respectively. 

All four significant regressions suggest unrealistic EFs for realistic wind turbine situations. Therefore, 

job creation of indirect and induced jobs in this research is based on their minimum, maximum and 

average values as shown in table 3.   

Table 2: Significant EF regressions for the construction stage. 

Dependent 
variable 

Obs. Int. 
coef 

Int. P-
value 

Independent 
variable(s) 
coef 

Independent 
variable(s) 
P-value 

Regres. 
sig F 

R2 St.dev 

Direct jobs 
run 1 

48 11.281 8E-10 OS) -5.477 
EU) -4.454 
NA) -4.295 

OS) 2E-06 
EU) 0.0028 
NA) 0.0006 

9E-07 0.502 2.561 

Direct jobs 
run 2 

46 9.457 3E-11 OS) -3.653 
EU) -4.072 
NA) -4.372 

OS) 2E-05 
EU) 0.0002 
NA) 3E-06 

2E-07 0.551 1.801 
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Direct jobs 
run 3 

18 13.560 0.0005 Nr.T) 
0.000353 
TC) -1.803 
OS) -9.402 
EU) 7.159 

Nr.T) 0.0041 
TC) 0.0070 
OS) 0.0010 
EU) 0.0176 

9.6E-05 0.819 1.772 

Indirect 
jobs run 1 

8 20.769 0.00059 TC) -2.136 
OS) -15.463 

TC) 0.0247 
OS) 0.0064 

0.0106 0.838 1.681 

Indirect 
jobs run 2 

8 5.306 0.01275 TC) -2.136 
EU) 15.463 

TC) 0.0247 
EU) 0.0064 

0.0106 0.838 1.681 

Induced 
jobs run 1 

7 11.787 0.00508 TC) -1.026 
OS) -9.125 

TC) 0.0309 
OS) 0.0046 

0.0044 0.933 0.777 

Induced 
jobs run 2 

7 2.662 0.01768 TC) -1.026 
EU) 9.125 

TC) 0.0309 
EU) 0.0046 

0.0044 0.933 0.777 

 

Table 3: Indirect, induced and total EFs for the construction stage. Values provided in job-years/MWi. 

Construction Indirect jobs Induced jobs Total jobs 

Min 0.08 0.15 0.48 

Max 11.10 14.40 44.30 

Average 3.08 4.16 9.11 

Median 2.11 1.50 3.32 

St.dev 2.70 4.98 13.55 

 

4.2.3 manufacturing 
A total of three regressions retrieved significant values for direct jobs in the manufacturing sector, and 

are presented in table 4. One regression was significant for direct and indirect jobs together. Direct 

run 1 only included one independent variable, which is the onshore/offshore dummy variable. Its EF 

is 13.37 job-years/MWi for offshore wind and 3.87 job-years/MWi for onshore wind. Direct run two is 

based on three independent variables: turbine capacity, EU and reference year. Although the 

regression is significant, the intercept values raise some questions. Both intercept values are high 

negative values. As a result, an 8 MW wind turbine outside the EU in 2020 creates an EF of -4.16 job-

years/MWi following run 2, and an 8 MW wind turbine onshore in 2020 results in an EF of -7.02 job-

years/MWi according to run 3. Besides, both regressions are only based on 6 observations. Of these 6 

observations, two data points included a 0.06 or 0.08 MW wind turbine from the reference year 1985. 

These turbine capacities are very low and not representative for current and future wind turbines. 

Removal of the two data points resulted in non-significant values. As a result, the found regressions 

runs two and run three are not usable to project job creation.  

The direct and indirect jobs combined regression was significant for the reference year and the 

location AS. Also, this regression shows a high negative intercept value and a high coefficient value for 

the reference year. This suggest that the reference year has a high influence of the EF. As a result, a 

wind park in Asia in 2050 creates 11.55 job-years/MWi, whereas the same park in Asia in 2025 creates 

-25 job-years/MWi. The found regression is therefore unsuitable for projecting job creation. This 

leaves only direct jobs run one to project direct job creation. Indirect and induced jobs are based on 

their minimum, maximum and average values as shown in table 5.  
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Table 4: Significant EF regressions for the manufacturing stage. 

Dependent 
variable 

Obs. Int. 
coef 

Int. P-
value 

Independent 
variable(s) 
coef 

Independent 
variable(s) 
P-value 

Regres. 
sig F 

R2 St.dev 

Direct jobs 
run 1 

24 13.366 9.8E-16 OS) -9.496 OS) 1E-05 1E-05 0.595 3.964 

Direct jobs 
run 2 

6 -826.4 0.00463 TC) -1.814 
EU) 7.292 
RY) 0.414 

TC) 0.0066 
EU) 0.0057 
RY) 0.0046 

0.0119 0.992 0.336 

Direct jobs 
run 3 

6 -282.5 0.0146 TC) -1.916 
OS) -10.152 
RY) 0.149 

TC) 0.0078 
OS) 0.0068 
RY) 0.0134 

0.0144 0.990 0.370 

Direct + 
indirect 
jobs 

10 -2926 0.0132 RY) 1.456 
AS) -47.689 

RY) 0.0129 
AS) 0.0202 

0.0355 0.615 8.377 

 

Table 5: Indirect, induced & total EFs for the manufacturing stage. Values provided in job-years/MWi. 

Manufacturing Indirect jobs Induced jobs Total jobs 

Min 2.26 3.20 1.25 

Max 16.90 4.10 39.40 

Average 5.68 3.65 14.77 

Median 3.89 3.65 10.99 

St.dev 4.55 0.64 13.09 

 

4.2.4 operation and maintenance 
Running all possible regressions for operation and maintenance resulted in a total of five significant 

regressions. Firstly, two regressions on direct jobs were found to be significant, which are direct job 

run one and run two in table 6. Both regressions were run on the independent variables of turbine 

capacity, EU, NA and AS. The values for EU, NA and AS were significant in  both runs. However, the 

turbine capacity variable is in both cases slightly above the significant value of 0.05. Direct jobs run 1 

contains one outlier value, where the difference between the projected EF and the actual data point 

is 19 job-years/MWi. This could be caused by the job duration of 40 years for this specific data point. 

If a job duration of 25 years had been used the difference would have been reduced to 11 job-

years/MWi. Direct jobs run 2 is based on a 25-years job duration for this data point. Differences 

between direct jobs run one and run two is the higher R2 and a lower standard deviation for run 2. 

This suggests that run 2 better fits the data points. Only the P-value for turbine capacity slightly 

increased to a just not significant value, considering an alpha value of 0.05. However, as it is close to 

this value and it is the best fit from all regressions, run two is used in the model.  

Only one significant regression was found for indirect jobs. This run was significant for turbine 

capacity. The turbine capacity variable has a value of 1.71, which suggests that larger capacity wind 

turbines result in a higher EF. This run is based on 10 observations with a relatively high R2 value. 

However, as the intercept P-value is not significant the regression has not been used in the model.  

Two significant regressions were found for induced jobs. Induced run 1 is based on 11 observations 

and is significant for turbine capacity. Again, the intercept P-value is not significant, and the regression 

is therefore not used in the model. Induced jobs run 2 is based on 15 observations, but has a much 

lower R2 value. Overall regression significance F shows a significant value. The intercept coefficient is 
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-3554 and the reference year coefficient has a value of 1.77. According to this run, the EF for all wind 

parks commissioned before 2007 are negative. This seems highly unlikely, and therefore induced jobs 

run 2 has not been used in the model.  

Table 6: Significant EF regression for the O&M stage. 

Dependent 
variable 

Obs. Int. 
coef 

Int. P-
value 

Independent 
variable(s) 
coef 

Independent 
variable(s) 
P-value 

Regres. 
sig F 

R2 St.dev 

Direct jobs 
run 1 

25 18.835 0.0013 TC) 1.5598 
EU) -19.05 
NA) -19.34 
AS) -19.29 

TC) 0.0507 
EU) 0.0128 
NA) 0.0016 
AS) 0.0073 

0.0121 0.4588 5.0183 

Direct jobs 
run 2 

25 19.382 8E-06 TC) 0.91638 
EU) -15.74 
NA) -18.83 
AS) -17.59 

TC) 0.0722 
EU) 0.0022 
NA) 2.2E-05 
AS) 0.0004 

0.0002 0.6531 3.2291 

Indirect 
jobs 

10 -0.950 0.5526 TC) 1.7145 TC) 0.0031 0.0031 0.6855 2.7272 

Induced 
jobs run 1 

11 -1.544 0.2881 TC) 1.9645 TC) 0.00062 0.00062 0.7452 2.6659 

Induced 
jobs run 2 

15 -3554 0.0297 RY) 1.7703 RY) 0.0293 0.0293 0.3157 15.733 

 

For direct, indirect and induced jobs a regression has been found. However, all regressions show 

slightly insignificant values. Therefore, also the min, max and average values are shown in table 7. The 

direct jobs regressions include a just not significant value for turbine capacity, whereas both indirect 

and induced regressions include insignificant intercept values. The indirect and induced regressions 

have both been run on turbine capacity. As turbine capacities included ranges from 0.9 to 8 MW, the 

regression cannot provide a significant intercept value. Potentially the found regression could be used 

but only for wind turbines with a higher capacity than 0.9 MW. However, the indirect and induced 

jobs in the model are based on the minimum, maximum and average values.   

Table 7: Direct, indirect, induced and total EFs for the O&M stage. Values provided in job-years/MWi. 

O&M Direct jobs Indirect jobs Induced jobs Total jobs 

Min 0.90 0.20 1.00 2.63 

Max 52.50 63.50 71.50 46.30 

Average 7.87 9.36 12.53 15.56 

Median 5.00 5.00 4.94 9.81 

St.dev 7.87 13.07 18.72 14.61 

 

4.2.5 decommissioning 
A total of six data points were available for the regression analysis on decommissioning. A lack of data 

only allowed for regressions on direct jobs with the independent variables of reference year, location, 

onshore/offshore dummy and total wind park capacity. All possible combinations have been used in 

the regression analysis. Results show that the analysis was significant for directs jobs for onshore or 

offshore wind parks. This suggests that direct decommissioning jobs can be determined based on 

whether it is an onshore or offshore park. The regression coefficients and P-values are shown in table 

8. Even though the regression is only based on six observations, the result is still significant, and shows 
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a high R2 value (0.988). The reason for the high R2 value and the low standard deviation results from 

data points with only marginal different values. This could be caused by the fact that four out of six 

observations based their employment factors on Rutovitz et al. (2015). The values were only slightly 

adapted to the specific regions or years, and are therefore close to each other.  

Table 8: Significant EF regression for the decommissioning stage. 

Dependent 
variable 

Obs. Int. 
coef 

Int. P-
value 

Independent 
variable(s) 
coef 

Independent 
variable(s) 
P-value 

Regres. 
sig F 

R2 St.dev 

Direct jobs 6 2.8225 8.1E-06 OS) -2.111 
 

OS) 5.8E-05 5.8E-05 0.988 0.136 

 

Regarding indirect jobs, only 2 data points were available. For induced and total jobs, only 1 data point 

was available. This made performing a regression analysis impossible. Indirect jobs are therefore 

based on the average value, whereas induced and total jobs are only based on one value. Minimum, 

maximum and average values for indirect, induced and total jobs can be found in table 9. 

Table 9: Indirect, induced & total EFs for the decommissioning stage. Values provided in job-years/MWi. 

Decommissioning Indirect jobs Induced jobs Total jobs 

Min 0.615 1.005 4.275 

Max 1.186 1.005 4.275 

Average 0.901 1.005 4.275 

Median 0.901 1.005 4.275 

St.dev 0.404 - - 

 

4.2.6 construction phase 
Some references provided job creation quantities for the construction phase, roughly referring to the 

job sectors: development, construction and manufacturing. Some mentioned including all before 

operation, whereas others referred to construction and manufacturing. It was therefore not always 

clear if the development stage was also included. Besides, combining three different job sectors into 

one, makes the model less detailed. As a result, the found significant regressions have not been used 

in the model. The significant regressions are however used to compare with the regression and model 

results from the development, construction and manufacturing stages combined. In total two 

different significant regressions have been found based on only 7 observations. These regressions can 

be found in table 10. Both regressions include the independent onshore/offshore dummy variable. 

However, direct jobs run 1 also included the location variables EU and NA. Direct jobs run 1 includes 

more independent variables, and shows a higher R2 value and lower standard deviation. Therefore, 

direct jobs run 1 has been used to compare with the development, construction and manufacturing 

job sector values and regressions.  

Table 10: Significant EF regressions for the construction phase. 

Dependent 
variable 

Obs. Int. 
coef 

Int. P-
value 

Independent 
variable(s) 
coef 

Independent 
variable(s) 
P-value 

Regres. 
sig F 

R2 St.dev 

Direct jobs 
run 1 

7 18.100 0.0004 OS) -8.31 
EU) -4.075 
NA) -7.55 

OS) 0.0054 
EU) 0.0205 
NA) 0.0071 

0.0045 0.9809 0.9914 
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Direct jobs 
run 2 

7 18.100 0.002 OS) -10.927 OS) 0.026 0.0258 0.6627 3.2274 

 

The minimum, maximum and average values for all different job types are shown in table 11 and have 

been used to check for similar values when adding up development, construction and manufacturing 

jobs. 

Table 11: Direct, indirect, induced & total EFs construction phase. Values provided in job-years/MWi. 

Construction 
phase 

Direct jobs Indirect jobs Induced jobs Total jobs 

Min 2.24 2.79 2.80 16.92 

Max 18.10 25.70 12.27 52.00 

Average 8.35 12.53 7.22 31.89 

Median 8.60 9.63 6.90 29.80 

St.dev 4.22 9.38 4.03 12.67 

 

4.2.7 local and international share of job creation  
Based on the data retrieved from the literature, it has been determined where the jobs are created. 

For the development and decommissioning stages, jobs could be created locally and nationally 

(Schallenberg-Rodriguez & Inchausti-Sintes, 2021). Construction and O&M jobs are also found to be 

created locally or nationally. Vasconcellos & Caiado Couto (2021), found a 90% local job share for 

construction and O&M jobs with a total national share of 95%. In the article of Slattery et al. (2011) a 

100% local share of direct O&M jobs is provided. Therefore, construction and O&M jobs are expected 

to be created locally or nationally. Manufacturing jobs can be created both nationally and 

internationally. Charles Rajesh Kumar et al. (2019) found a 40% share of manufacturing jobs in India. 

This is based on the share of nationally produced wind turbines of the total amount of installed wind 

turbines. Whether manufacturing jobs are created nationally or internationally, depends on the 

presence of a large manufacturing organization.  

In 2017, a total of 5 European wind turbine manufacturers (Vestas, SGRE, Enercon, Nordex and 

Senvion) were present in the global top 10 wind turbine manufacturers market (Lacal-Ar, 2018). In 

2019, only three European wind turbine manufacturers (Vestas, SGRE and Nordex) were still present 

in this top 10 (Gönül et al., 2021). Enercon lost world market share and Senvion filed for bankruptcy. 

Vestas, SGRE and Nordex are European manufacturers located in Denmark, Spain and Germany 

respectively, Enercon is also located in Germany. As a result, manufacturing jobs in any of these 

countries are regarded as nationally created jobs. If a wind park is commissioned in another European 

country than the previously mentioned countries, the manufacturing jobs are regarded as 

internationally created jobs. Potentially, part of the internationally created manufacturing jobs are 

created in Germany, Denmark or Spain. The location where jobs per job sector are assumed to be 

created is shown in table 12. 

Table 12: Location of the job creation per job sector.  

Job sectors Locational nature 

Development Local/national 

Construction Local/national 

Manufacturing National/international 

Operation and maintenance Local/national 
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Decommissioning Local/national 

4.3 Job quantification model 

4.3.1 Model input 
The significant and useful regressions retrieved from the regression analysis have been used to create 

the job quantification model. If no (significant) regression was found, the average value retrieved in 

literature was used. To create a job creation range, the value of the average plus or minus one 

standard deviation is provided in the model. The average values and the range are provided in table 

13. If the average minus one standard deviation gives a value below the lowest value retrieved from 

the data, this minimum value is used instead. All used regressions in the model are shown in equations 

4 till equation 7.  

𝐸𝐹𝑐𝑜𝑛, 𝑑𝑖𝑟 = 9.46 − (3.65 × 𝑂𝑆) − (4.01 × 𝐸𝑈) − (4.37 × 𝑁𝐴)                (eq. 4) 

𝐸𝐹𝑚𝑎𝑛𝑢, 𝑑𝑖𝑟 = 13.37 − (9.50 × 𝑂𝑆)                              (eq. 5) 

𝐸𝐹𝑜&𝑚, 𝑑𝑖𝑟 = 19.38 + (0.92 × 𝑇𝑆) − (15.74 × 𝐸𝑈) − (18.83 × 𝑁𝐴) − (17.59 × 𝐴𝑆) 
                        (eq. 6) 

𝐸𝐹𝑑𝑒𝑐𝑜𝑚, 𝑑𝑖𝑟 = 2.82 − (2.11 × 𝑂𝑆)                    (eq. 7) 

Where TC is the turbine capacity in MW, and OS, EU, NA, and AS are dummy variables having a value 

of 1 or 0.  As a result, job creation is projected based on its location, whether it is onshore or offshore 

and on the turbine capacity.  

Table 13: EF model input (range) values (job-years/MWi). 

 -1 St.dev Average  +1 St.dev 

Development 

Direct 0.21 0.69 1.21 

Indirect  0.26 0.59 1.03 

Induced  0.48 0.59 0.70 

Construction 

Indirect  0.38 3.08 5.78 

Induced 0.15 4.16 9.14 

Manufacturing 

Indirect  2.26 5.68 10.23 

Induced  3.20 3.65 4.10 

O&M 

Indirect  0.20 9.36 22.43 

Induced  1.00 12.53 31.25 

Decommissioning 

Indirect  0.62 0.90 1.19 

Induced  1.01 1.01 1.01 

 

4.3.2 Model results 
The model retrieves the EF for different wind parks. For comparison, results are presented for 5 MW 

wind turbines, as 5 MW is within the range of current onshore and offshore wind turbines (Enevoldsen 

& Xydis, 2019). The different EFs, for all job types and sectors for a 5 MW offshore wind turbine in the 

EU, are shown in figure 3. Keeping wind turbine capacity at 5 MW, but for different locations, onshore 

and offshore, results in slightly different EFs for the job types and job sectors. However, the 

development sector EFs and all indirect and induced EFs for the other job sectors, remain the same. 
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Only the direct EFs, for the construction, manufacturing, O&M and decommissioning sectors, change. 

Differences in these direct EFs, for the job sectors of a 5 MW wind turbine for different locations, are 

shown in figure 4. The total EFs (range), for the 5 MW wind turbines at different locations, are 

presented in table 14.  

Comparing a 5 MW onshore wind turbine in the EU with a 5 MW offshore wind turbine in the EU, a 

total difference of 15 job-years/MWi can be observed (Table 14). This difference is mainly created by 

many more manufacturing job-years/MWi for offshore wind turbines than for onshore wind turbines 

(Figure 4). Also, direct construction and decommissioning EFs for offshore are more than a threefold 

of direct onshore EFs. Although, in absolute terms this difference is smaller than the difference in 

manufacturing EFs. Comparing 5 MW onshore wind turbines in the EU with similar turbines in North 

America, shows only a relatively small difference. The total EF in North America is 3.4 job-years/MWi 

less than in the EU. Most values between the EU and North America remain the same, except for the 

direct construction and O&M EFs. The construction sector shows a relatively small difference, whereas 

in North America, the wind turbine creates 3 job-years/MWi less for the O&M sector. Larger 

differences are found when comparing 5 MW onshore wind turbines in the EU or North America to 

similar wind turbines in other locations. For both Asia, Africa and South America, the direct 

construction EFs are roughly 3.5 times higher compared to the EU or North America. The O&M EF is 

slightly higher in Asia than in North America, but lower than in the EU. However, the direct O&M EFs 

in Africa and South America are much higher than for other regions. This higher EF value could have 

multiple causes. Conflicts between the local community and the wind park operator, required 

additional security jobs for a wind park in Northern Kenya (Schilling et al., 2018). Also, new roads 

needed to be built before construction could start at this wind park. Besides, people from the local 

community were used for digging holes and mixing cement for wind turbine foundations. Potentially, 

the efficiency (in terms of job duration and number of employees required) of the local community is 

lower than the efficiency of a construction organization, resulting in a higher EF.  

 

 

Figure 3: Direct, indirect and induced EFs (job-years/MWi) for a 5 MW offshore wind turbine in the EU. 
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Figure 4: Direct EFs for a 5 MW wind turbine at different locations. 

Table 14: Total EFs range (job-years/MWi) for a 5 MW wind turbine at different locations. 

 Offshore EU Onshore EU Onshore NA Onshore AS Onshore AF 

Total – st.dev 30.46 16.25 13.16 18.17 35.76 

Total  72.06 56.80 53.41 59.02 76.61 

Total + st.dev 127.02 111.76 108.37 113.98 131.57 

 

Differences in direct EFs between the different locations, have resulted in different job sector shares 

to the total EF. The different job sector shares for the different locations are shown in figure 5. The 

high O&M EF for Africa and South America, results in a relatively high O&M job sector share (60%). 

The absolute difference in EFs for the other job sectors is smaller. This is also visible in the different 

job sector shares. 

 

Figure 5: Total job sector shares for a 5 MW wind turbine at different locations. 

In the past, wind turbine capacities were much smaller. In 1998, onshore capacities started at 1 MW 

and offshore capacities at 1.5 MW (Enevoldsen & Xydis, 2019). Future wind turbine capacities are 

expected to increase up to 8 MW for onshore and 10 to 15 MW for offshore (Nejad et al., 2022). 

Therefore, differences in job creation shares for 2 MW, 8 MW and 12 MW wind turbines in the EU are 

presented in figures 6 (onshore) and 7 (offshore). Generally, it can be observed that onshore wind, 
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regardless of the turbines capacity, has a higher O&M share of total jobs than offshore wind. Offshore 

wind, on the other hand, has a higher manufacturing share of total jobs than onshore wind. 

Furthermore, it can be observed that larger turbines (both onshore and offshore) have a higher O&M 

job share from total jobs. This is caused by the fact that in the model only O&M jobs depend on turbine 

capacity. This results in more job-years/MWi for larger wind turbines in the O&M stage.  

 

Figure 6: Total job sector shares for 2, 8 & 12 MW onshore wind turbines in the EU. 

 

Figure 7: Total job sector shares for 2, 8 & 12 MW offshore wind turbines in the EU. 

4.3.3 Model validation & comparison 
Model validation based on interviews: 

Job duration values retrieved from the different interviews were; 1 to 2 years for the construction and 

manufacturing stage, 5 to 7 years for the development stage, 20 years for the O&M stage with a life 

extension of a couple of years. These values are in line with the values used in the model if jobs were 

provided in jobs instead of job-years. No value was retrieved during the interviews for the 

decommissioning stage.  

The assumptions in the model regarding the local nature of jobs are also confirmed by the interviews. 

Interviewee A mentioned that manufacturing jobs are likely created internationally, as the 

Netherlands for instance, does not have a large wind turbine manufacturer. This statement was also 

assumed in the job creation model. Besides, the regression also found no significant values for the 

independent location variables. This means that no matter the location of the wind turbines, job 
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creation per MWi remains the same. This could be explained by the international nature of 

manufacturing jobs, as most wind turbines are manufactured by the same manufacturers.  

Other jobs are likely created nationally according to interviewee A, B and C, but not locally. Most 

construction organizations are large international organizations with national divisions. As a result, 

the jobs are mostly created nationally and some even internationally. Interviewee A also mentions 

that 1/3 of all construction jobs are flex jobs. Most of these flex jobs are lower skilled work and are 

typically performed by employees from low income countries. Therefore a part of the construction 

jobs could also be created internationally. Another reason for low local job creation, provided by 

interviewee A and C, is the requirement for highly skilled people. Both state that finding highly skilled 

people locally is difficult. O&M jobs also require highly skilled people according to interviewee A and 

C. Therefore local job creation is low and most jobs are created nationally. According to interviewee 

C, the EU and North America have a lot of highly skilled employees, but elsewhere there is more 

manual and less efficient work, making it require more people. This is in line with the regression used 

in the model. For the construction stage, 4 job-years/MWi need to be subtracted from the total EF if 

the wind park is located in the EU, or in North America. All other regions create 4 more job-years  per 

MWi compared to the EU and North America.  

However, secondary jobs (induced jobs) have a higher chance to be created locally according to 

interviewee C. The construction employees need a restaurant, a place to sleep, rent a car etc. These 

jobs could be created locally. Interviewee B states that development jobs are typically created locally. 

Developers typically work with many local stakeholders. It is therefore preferred for developers to 

have a local developing team to ensure knowing all the different stakeholders, according to 

interviewee B.  

From the interviews it was concluded that no direct scaling effects can be determined during the 

construction stage. A larger wind park will result in some efficiency increase leading to less employees 

per turbine or per MWi. However, interviewee A and C both mentioned that larger wind parks have a 

larger budget available. This budget will therefore be spent on more employees (and more expensive 

employees) to create more quality and performance. This will therefore reduce the efficiency effect. 

Interviewee C also mentioned that locational complexity largely influences job duration and creation. 

A more complex location may require additional work to make it accessible. For the development 

stage, only a limited scaling effect is expected according to interviewee B. Whether 100 or 15 MW 

needs to be developed, all the permits and procedures remain the same. A larger difference is 

expected between onshore and offshore for the development stage. It is stated that offshore wind is 

more complex and therefore a larger development team will be required, according to interviewee B. 

The same is true for O&M. During the construction stage also more employees are required for 

offshore wind, although it will be only a bit more according to interviewee C. Offshore also requires 

even more highly skilled employees mentions interviewee C. This is also reflected in the model, where 

offshore requires 3.7 more job-years/MWi than onshore wind.  

Regarding the decommissioning sector, the model is only based on average values due to a lack of 

data. This could be caused by the fact that the decommissioning sector of wind turbines is not a 

mature sector according to interviewee C. Interviewee D also mentioned that there is no clear view or 

strategy on how to recycle wind turbines in the future. It is expected therefore that the 

decommissioning and recycling sector of wind turbines will change and become more organized, due 

to higher future volumes. As a result, the job creation potential of decommissioning jobs could change 

in the future.  

Comparison construction phase with construction, manufacturing and development: 
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The construction phase roughly consists of the development, construction and manufacturing stages. 

The sum of these three stages and the construction phase model output are represented in figure 8. 

The development, construction and manufacturing stage EFs are dependent on the locations EU and 

North America and for onshore and offshore. This is the same for the construction phase regression. 

The influence of these locations and onshore or offshore have similar values in both regressions. As a 

result, both the sum of development, construction and manufacturing and the construction phase 

show similar trends, with relatively small differences in values. Figure 8a and figure 8b, shows the 

difference for onshore and offshore. It can be observed that both show higher values for offshore than 

for onshore. Comparing onshore wind turbines in the EU with onshore wind turbines in North America 

(Fig. 8b and Fig. 8c) again shows similar trends. However, the difference in the direct EF projections 

for the construction phase regression is much smaller than for the sum of the development, 

construction and manufacturing stage in North America. This is caused by different independent 

variable coefficients between the construction phase run and the other runs. For the construction 

phase regression, the independent variable coefficient for North America is minus 7.55 job-years/MWi 

whereas it is only minus 4.37 job-years/MWi in the construction stage. The dependent variable 

coefficients for the EU are minus 4.08 job-years/MWi and minus 4.07 job-years/MWi for the 

construction phase and construction stage respectively. Therefore, the difference in the projected EF 

is smaller for the EU projections. Regarding other locations than the EU or North America, values 

provided by the construction phase regression are close to the sum of the development, construction 

and manufacturing stages (Fig. 8d). The values are however higher than the values for the EU and 

North America. Overall, EF projections for the construction phase regression and the sum of the 

development, construction and manufacturing regressions show similar trends and provide relatively 

similar values. Besides, in both cases the EF is only dependent on onshore or offshore and the locations 

EU and North America.  

 

Figure 8: EFs (job-years/MWI) for the construction phase and for the development, construction and manufacturing stages 
combined, for a 5 MW wind turbine in: a) offshore in EU, b) onshore in EU, c) onshore in NA, d) onshore in AS, AF or SA. 

Comparison model with other methods: 

Rutovitz et al. (2015) provide a method to determine an EF. This EF is a value for OECD countries and 

has a reference year of 2015. From this value other EFs in different years and countries can be derived. 

To do so, Rutovitz et al. (2015) make use of regional job multipliers and a technological decline factor. 
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The regional job multiplier is based on the GDP per capita of the country compared to OECD countries. 

Rutovitz et al. (2015) provide regional job multipliers for different regions in the years 2015, 2020 and 

2030. On average these regional job multiplier values are; 5.2 for Africa, 2.1 for China, 4.9 for Eastern 

Europe/ Eurasia, 5.5 for India, 3.2 for Latin America, 1.3 for the Middle East, and 2.2 for Non-OECD 

Asia (Rutovitz et al., 2015). These differences between the regions are also represented in the model 

created during this study. However, the method provided by Rutovitz et al. (2015), distinguishes 

between different locations than the model created during this study. As Europe and North America 

are both part of the OECD countries, their EFs should be lower than non-OECD countries, where job 

multipliers should be applied. This effect is also visible in the modeling results of the model created in 

this study. For the construction stage EF and for locations in the EU or North America, respectively, a 

value of 4.01 job-years/MWi or 4.37 job-years/MWi should be subtracted from the intercept value. 

This suggests that OECD countries create around 4 job-years/MWi less than other regions. During the 

O&M stage, similar results are found. However, also for locations in Asia, a similar to OECD countries 

value, should be subtracted. This could be caused by the fact that part of the countries in Asia also 

belong to the OECD countries, resulting in similar values. The regional job multiplier effects are 

therefore also represented in the model created during this study. However, the regional job 

multiplier for Africa should be 5.2 according to Rutovitz et al. (2015). Results of the model created 

during this study, show higher values for Africa, but not with a factor of 5.2. This is likely caused by 

the fact that the model created during this study, due to limited data points, uses average values for 

some direct jobs, and for all indirect and induced jobs. This potentially results in a lower overall 

differences between the regions.  

The technological decline factor should result in lower EFs over the years. Esteban et al. (2011)  also 

use a decline rate in the EF for offshore wind due to technological learning. For the period of 2010 till 

2020, an annual decline factor of 3.90% is used and an annual decline factor of 1.50% is used for the 

years 2020 till 2030. Ram et al. (2020) based the annual decline factors on capital expenditure (CAPEX) 

or operating expenses (OPEX) values. This shows that multiple other methods include a decline factor 

over time, to determine current and future EFs of wind energy deployment. In the model created 

during this study however, no similar trends have been observed. This could be caused by a lack of 

data points, making the regressions not significant for reference year.  

Overall model results and trends are in line with the interviews and the EF method using regional job 

multipliers. Also model results for the sum of development, construction and manufacturing and the 

construction phase show similar trends and values. Only a technological decline factor, resulting in a 

lower EF over time, is not represented in the model results.  

4.4 European wind jobs quantification  
Modern average wind turbine capacities for onshore wind turbines is 4.1 MW, and 8.0 MW for 

offshore wind turbines (WindEurope, 2023). The employment factor for onshore wind turbines of 4.1 

MW equals 14.42 job-years/MWi and 55.97 job-years/MWi, for direct and total jobs respectively. The 

employment factor, as derived from our model, for offshore wind turbines of 8.0 MW equals 33.27 

job-years/MWi and 74.82 job-years/MWi, for direct and total jobs respectively. The shares of the 

different job sectors contribution to the total job creation value, for the 4.1 MW onshore and 8.0 MW 

offshore wind turbines, are shown in figure 9.  
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Figure 9: Total job sector shares for: a) 4.1 MW onshore wind turbine in the EU, b) 8.0 MW offshore wind turbine in the EU. 

Based on these EFs and the annually expected installed wind capacity in Europe till 2027 (retrieved 

from (WindEurope, 2023)), the total job creation in Europe has been determined. The results are 

shown in figure 28. Summing up values from all countries results in a total of 7.9 million total job-years 

in 5-year time (2023 till 2027). For direct job-years this adds up to 2.5 million, roughly averaging 0.5 

million job-years created per year. 

Table 15: Direct and total job creation from wind energy deployment in Europe from 2023 till 2027. Values provided in 1000 
job-years. 

Country Total 
combined 

Direct 
combined 

Country Total 
combined 

Direct 
combined 

Slovakia 1 0 Romania 94 24 

Luxembourg 3 1 Austria 112 29 

Norway 4 2 Greece 114 29 

Albania 7 2 Belgium 165 56 

Montenegro 9 2 Ireland 189 57 

Switzerland 11 3 Italy 261 78 

Czechia 17 4 Finland 268 69 

North 
Macedonia 

21 5 Poland 274 99 

Ukraine 25 6 Denmark 295 110 

Bosnia-
Herzegovina 

26 7 Sweden 363 93 

Estonia 42 11 Netherlands 406 165 

Latvia 45 12 Turkey 456 118 

Portugal 55 14 France 690 228 

Croatia 59 15 Spain 695 181 

Lithuania 82 21 UK 1358 528 

Serbia 86 22 Germany 1655 516 

 

The job sectors of development, construction, O&M and decommissioning could all be created locally 

or nationally. The exact shares of the local and national jobs vary per wind park and are difficult to 

estimate. Besides, as all locally created jobs are also nationally created jobs, only a distiction has been 

made between national and international jobs. Table 16 represents the national and international 

quantities of job-years created by wind energy deployment from 2023 till 2027. A total of 1.4 million 
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total job-years are created internationally. Potentially, a part of these international jobs can be 

created in Germany, Spain or Denmark.  

Table 16: Job creation Europe (2023-2027). Values provided in 1000 job-years. 

Country National International Country National International 

Austria 85 27 Poland 199 75 

Belgium 121 44 Portugal 42 13 

Croatia 45 14 Romania 71 23 

Czechia 13 4 Slovakia 0 0 

Denmark 295 0 Spain 695 0 

Estonia 32 10 Sweden 276 87 

Finland 203 64 Albania 5 2 

France 508 182 Bosnia-
Herzegovina 

20 6 

Germany 1655 0 Montenegro 7 2 

Greece 86 27 North 
Macedonia 

16 5 

Ireland 141 48 Norway 3 1 

Italy 195 66 Serbia 66 21 

Latvia 34 11 Switzerland 9 3 

Lithuania 63 20 Turkey 347 109 

Luxembourg 2 1 UK 975 383 

Netherlands 290 117 Ukraine 19 6 

  

Considering the European 2030 energy target for wind energy (440 GW installed capacity), annually 

around 31 GW of wind energy should be installed (WindEurope, 2023). WindEurope (2023) provides 

a scenario to achieve the European 2030 wind energy target. Following this scenario, from 2023 till 

2030, a total of 15.7 million total job-years would be created. The annual number of job-years created 

are represented in table 17. This value is based on 4.1 MW onshore wind turbines and 8.0 MW 

offshore wind turbines. If onshore wind turbines of 5 MW and offshore wind turbines of 10 MW are 

used instead, total job creation from 2023 till 2030 would create 16.0 million job-years. The difference 

is only 0.3 million job-years over 7 years in Europe. It should be noted that the created job-years are 

created over the entire lifetime of the wind park. In 2025 therefore, due to newly installed wind 

turbines in 2025, a total of 1.3 million job-years are created over the entire lifetime of the wind park. 

Decommissioning jobs will only be created at the end of the lifetime of the wind park. However, 

Europe currently has 255 GW of wind capacity installed (225 GW onshore and 30 GW offshore) 

(WindEurope, 2023). This installed capacity still creates O&M jobs, and in the future will create 

decommissioning jobs. According to WindEurope (2023), Europe will have more than 78 GW of 

installed capacity wind parks older than 20 years in 2030. Part of these wind parks will be 

decommissioned. 

Table 17: Job creation Europe 2030 target. Values provided in 1000 job-years. 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

onshore 
job-years 

823 795 879 963 1136 1248 1338 1410 

offshore 
job-years 

135 284 426 733 1055 1309 1504 1676 
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total job-
years 

957 1079 1305 1696 2191 2557 2842 3086 

 

WindEurope (2017) estimated a total of 716 thousand (direct) jobs in 2030 for the wind energy sector 

in Europe, based on an installed capacity of 397 GW. The current target is 440 GW installed capacity, 

which is slightly higher. Considering the 440 GW installed capacity target, job creation in 2030 has 

been determined using the model data. In 2030, 1676 thousand total offshore job-years and 1410 

thousand total onshore job-years will be created based on the 2030 target. This corresponds to 745 

thousand direct offshore job-years and 363 thousand direct onshore job-years. Construction and 

manufacturing jobs are expected to be created in the same year and have a total job duration of 1 

year. Therefore, based on the direct jobs share of construction and manufacturing the amount of 

workers in 2030 has been determined. In 2030, a total of 163 thousand direct construction jobs and 

396 thousand direct manufacturing jobs are required. Development jobs typically take 3 years, so in 

2030 a total of 11 thousand direct development jobs are required. Regarding O&M jobs, a total of 440 

GW of installed wind capacity requires O&M in 2030. This requires a total of 147 thousand direct O&M 

jobs. Installed wind capacity in 2030 creates a total of 85 thousand direct decommissioning jobs. 

However, these jobs will only be created in 2055. Therefore, direct decommissioning jobs in 2030 

depend on the decommissioned capacity in 2030. In 2005 Europe installed an additional 6 GW of wind 

power (GWEC, 2006), which will be at the end of its lifetime in 2030. Based on 6 GW of wind power 

decommissioning, a total of 7 thousand direct jobs will be created in 2030. Including all direct jobs, 

wind power will create 724 thousand jobs in the year 2030. This value is only slightly higher than the 

716 thousand jobs estimation by WindEurope (2017). The results are presented in table 19.  

Table 18: Direct job creation (in 1000 jobs) in 2030 within Europe. 

 Onshore 
direct job 
sector 
share% 

Offshore 
direct job 
sector 
share% 

Onshore jobs 
2030 in 1000 
jobs 

Offshore jobs 
2030 in 1000 
jobs 

Total jobs 
2030 in 
1000 jobs 

Development 5 2 6 5 11 

Construction 12 16 44 119 163 

Manufacturing 27 40 98 298 396 

O&M 51 33 98 49 147 

Decommissioning 5 9 3 4 7 

Total 100 100 249 475 724 

 

4.5 uncertainty analysis 
There are a multiple uncertainties within the future job creation potential of wind energy deployment. 

Firstly, it is difficult to determine what wind turbine capacities will be used for future wind parks. For 

job quantification therefore an average current installed capacity value has been used. However, per 

wind park this will differ and potentially lead to a slightly different outcome. As also mentioned by 

interviewee C, there is a difference between commercially available wind turbines and what they say 

they are capable of manufacturing. Determining exactly what turbine capacities will be placed in a few 

years’ time is therefore uncertain. However, wind turbine capacities are expected to increase in the 

next years (WindEurope, 2023). The effect of an increased turbine capacity has already been reflected 

upon and the difference was limited. A 12 MW onshore wind turbine in Europe is expected to create 

63 total job-years/MWi of which 22 are direct. Compared to the 4.1 MW turbine this is an increase in 

total jobs of 13%. A 15 MW offshore wind turbine in Europe is expected to create 81 job-years/MWi 
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of which 40 are direct. This is an increase of 9% compared to an 8 MW turbine. However, considering 

jobs per turbine, a 12 MW onshore turbine creates 231% more job-years per turbine than a 4.1 MW 

onshore turbine, and a 15 MW offshore wind turbine creates 104% more job-years per turbine than 

an 8 MW offshore turbine.  

Next to turbine capacity, the decommissioning job quantification is uncertain. The model is based on 

only limited data points. Besides, the wind turbine decommissioning sector is not a mature industry 

yet. As mentioned during the interviews, the future end-of-life treatment for wind turbines is unknow. 

The fact that in the future more and more wind turbines will be decommissioned, will result in a more 

mature decommissioning sector. Typically, a more mature industry results in more efficient work. 

However, future wind turbines ready for decommissioning, will be larger than current wind turbines 

ready for decommissioning. This could influence future EFs for the decommissioning stage. The effect 

of a doubling of the decommissioning EF on the total EF is relatively small. For an 8.0 MW offshore 

wind turbine in Europe, a doubling of the decommissioning EF results in an increase on the total EF of 

only 6.3%. For a 4.1 MW onshore wind turbine in Europe the effect is even smaller, with only a 4.7% 

increase on the total EF. Another uncertainty that has a bigger impact on the total EF is the job 

duration of the O&M sector. Current wind parks have a typical lifetime of around 25 years. However, 

Lacal-Arántegui et al. (2019) mention, wind turbine decommissioning, refurbishment (or partial 

repowering), repowering, life extension and run to fail as options for wind turbines approaching the 

end of their lifetime. Repowering of wind turbines, involves the replacement of old wind turbines by 

new wind turbines at the same location (Lacal-Arántegui et al., 2019). This could be regarded as a new 

wind turbine or wind park, and does therefore not extend the current wind turbine lifetime. However, 

life extension and run to fail, would increase the wind turbine lifetime. An additional lifetime of 5 or 

10 years, results in a total EF increase for a 4.1 MW onshore wind turbine in Europe of 10.5% or 20.9% 

respectively. For an 8.0 MW offshore wind turbine, this increase would be 8.8% or 17.6% respectively.   

5. discussion 
This research has provided more in-depth insights into the dynamics of wind energy deployment on 

job creation potential. The created model allows for location and wind park specific job quantification, 

including direct, indirect and induced jobs. This enables finding the locations where the job creation 

of wind energy deployment is high, which could be used to increase social acceptance of wind energy 

deployment.  

From the regression analysis it can be observed that the EF can be projected based on multiple 

independent variables. The independent variables influencing the EF are the locations Europe, North 

America and Asia, the turbine capacity and also whether the wind park is onshore or offshore. This 

suggests that the number of wind turbines does not influence the EF. However, in absolute terms, 2 

wind turbines create twice as many jobs as one wind turbine. The turbine capacity on the other hand, 

does influence the EF. A higher turbine capacity results in a higher EF for direct O&M jobs. The 

independent variable coefficient for turbine capacity is 0.92. This indicates an increase of 0.92 

additional job-years/MWi, if turbine capacity increases by 1 MW. Higher turbine capacities therefore 

result in higher EFs. Onshore and offshore wind turbines also differ from each other regarding the EF. 

Direct jobs for the construction, manufacturing and decommissioning sector are all dependent on 

whether the turbines are onshore or offshore. Overall, the difference in EF for onshore and offshore 

wind turbines is 15.26 less direct job-years/MWi for onshore wind turbines. For indirect and induced 

jobs no difference was found between onshore and offshore wind turbines. Regarding the locational 

nature of wind energy deployment jobs, it is observed that most jobs are created on a national level. 

Construction, O&M and decommissioning jobs are likely created on a national level, whereas 
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development jobs have a higher chance to be created locally. Manufacturing jobs can be created both 

nationally and internationally. This depends on the presence of a national wind turbine manufacturer. 

Within Europe, only for Denmark, Germany and Spain the manufacturing jobs are created nationally. 

All other countries create manufacturing jobs on an international level. This results in different 

national job creation potential for European countries. For countries outside Europe, national or 

international manufacturing job creation, also depends on the national presence of a manufacturing 

organization. The last influence on the EF for wind energy deployment is the location of the wind park. 

Differences are observed between Europe, North America, Asia and the rest of the world. The direct 

construction EF is 4 job-years/MWi lower for Europe and North America compared to other locations. 

The direct O&M EF is 15.7, 18.8 and 17.6 job-years/MWi lower for Europe, North America and Asia 

respectively, compared to other locations. Overall, North America has the lowest EF, followed by 

Europe, then Asia, and then other locations. Looking at the expected wind energy job creation in 

Europe from newly installed capacity till 2027, it can be observed that Germany will create most jobs. 

Germany, the United Kingdom, Spain, France, Turkey, the Netherlands, Sweden and Denmark will 

create the most wind energy jobs in Europe till 2027, ranked from highest to lowest. Germany, Spain 

and Denmark potentially benefit most from additional wind energy deployment. Part  of the 

(international) manufacturing jobs created by European wind energy deployment, could be created in 

Germany, Spain or Denmark.    

The found relationship between the turbine capacity and an increased EF can be explained by the fact 

that turbines with a higher capacity are larger. larger turbines could require more jobs per MWi than 

smaller turbines. Interviewee A mentioned that overall, offshore wind is more complex, and therefore 

likely requires more jobs compared to onshore wind. This could explain the difference between 

onshore and offshore wind creation. The relationship between the different locations and the EF could 

be explained by GDP per capita. Rutovitz et al. (2015) used the GDP per capita to determine the EF for 

a certain location. This is in line with the differences between the locations retrieved from the model 

created during this study.  

Most jobs are created on a national or international level. The highest chance for local job creation is 

in the development sector. However, job creation in the development sector is roughly 3% of total job 

creation, for both, onshore and offshore wind parks. Besides, these jobs typically have a duration of 3 

years. This implies that only limited and for a temporary period of time, jobs will be created locally. 

This could make it difficult to use job creation potential for increasing local support for wind energy. 

Although, indirect and induced jobs could also be created locally. Quantification of these amounts is 

however difficult, and these jobs are likely only temporary. Secondly, offshore wind has a higher EF 

than onshore wind. Regarding the European energy target, around 25% of expected newly installed 

capacity is offshore and 75% onshore. From a job creation perspective, it would be better to install 

more offshore wind than onshore wind. Also, from a national job creation perspective, offshore wind 

creates more national job-years/MWi than onshore wind.  

The results of the research must be placed in the context of some model and research limitations. First 

of all, jobs are quantified based on an employment factor in job-years/MWi. It, therefore, quantifies 

additional job creation for newly commissioned or future wind parks in job-years. This quantification 

method does not directly provide a value for the total number of employees at any moment in time. 

It rather quantifies the total job-years the park will create over its entire lifetime. For instance, 

decommissioning jobs will only be created at the end of the lifetime. Secondly, regarding this 

decommissioning sector. Only limited wind parks have been decommissioned currently, and many 

more will be decommissioned in the future. As a result, the EF for decommissioning might increase or 

decrease significantly. Overall, this impact will be small, as this sector only accounts for a few percent 
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of total jobs. This small share, of the decommissioning sector on total jobs, is also reflected in the 

number of articles providing job creation data for this job sector. This is the same for the development 

sector. For both job sectors only limited data points have been retrieved from the literature, resulting 

in a lack of data. Overall, a lack of data is one of the main limitations of this research. More data points 

could have made it possible to perform more regressions on more independent variables. Too little 

data points, for many combinations of independent variables, made it impossible to perform a 

regression analysis. Thirdly, only the five main job sectors have been included in the model. Actual job 

creation might therefore be slightly higher. Kalinina et al. (2020) for instance, also included 

transportation. However, the share of the transportation jobs was only 1% of the total jobs created in 

their research. Another limitation is data uncertainty. To reduce this uncertainty, a job creation range 

is provided, and an uncertainty analysis has been performed. However, if data was provided in 

jobs/MWi it has been converted to job-years/MWi based on predefined job durations for the different 

job sectors. This assumes that job duration has one value and is the same for all locations. It could 

however be that job duration is slightly different for different locations. Also, the model only provides 

different job creation values for five different locations. Preferably, the model provides differences 

between smaller locations than the locations used in the model. Due data limitations this was not 

possible.  

Interesting future research directions are therefore, more regional or locational specific 

characteristics, influencing job creation of wind energy deployment. Interviewee C also mentioned 

that the landscape complexity could influence job creation. Complex landscapes might require  

removal of ice and stones or flattening of the area, before construction can start. Future research 

could increase insight into the influence of these landscape characteristics on job creation. Besides 

more available data points would enable performing more, and a more detailed regression analysis. 

Additionally, more data points could validate, and build upon, the created model in this research. This 

could potentially lead to additions of more independent variables, to project future job creation more 

precisely. Therefore, additional research is required to generate data points for multiple wind parks, 

including the amount of created direct, indirect and induced jobs, as well as the wind park and 

locational characteristics. Besides, this study’s model does not include a decline factor over time, as 

the regression analysis, including the reference year, was not significant. However, as the technology 

matures over time, a reduction in the EF could be possible. Potentially, a lack of data resulted in a not 

significant regression. Future research should determine if a decline factor over time should be applied 

to any or to all of the job sectors.  

6. conclusion 
Job creation potential of new wind energy deployment can be projected based on a few independent 

variables. These variables are the location, onshore or offshore and the turbine capacity. Higher 

turbine capacities result in a higher EF. Also, offshore wind creates significantly more job-years/MWi 

than onshore wind. Different locations also result in different EFs. Overall, Europe and North America 

have the lowest EFs. Differences in total job quantities between countries depend on the amount of 

newly installed capacity and the type of wind park. The type of wind park determines the EF, which 

should be multiplied by the total amount of MW installed to project the job creation. The share of jobs 

created nationally is equal to the sum of the shares of the job sectors: development, construction, 

O&M and decommissioning. Only manufacturing jobs are created internationally, except for wind 

parks in Germany, Denmark or Spain. These countries have large wind turbine manufacturing 

organizations, which manufacture wind turbines internationally. Germany, Denmark and Spain would 

therefore be the European countries that could benefit most from new wind energy deployment. 

Additionally to their national job creation from their own new installed capacity, manufacturing jobs 
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are created due to newly installed capacity in other European (or outside Europe) countries. Overall 

European job creation is expected to increase in the future. From 2023 till 2027, a total of 7.9 million 

job-years is expected to be created due to newly installed wind capacity in Europe. From 2023 till 2030 

a total of 15.7 million job-years could be created in Europe, with a total of 724 thousand direct wind 

energy jobs in 2030. Most of the jobs are created on a national scale, and only limited on a local scale. 

Locally only development jobs are created for a temporary period, resulting in a relatively low positive 

local job creation impact. As a result, using local job creation to increase local acceptance of wind 

energy deployment seems difficult.  The national positive impact of wind energy deployment is much 

higher. High capacity and offshore wind turbines have the highest positive job creation impact. This 

wind park could therefore contribute most to increasing social acceptance of wind energy 

deployment.  
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Appendices 

Appendix A: literature review papers 
 

source  Included/excludes  Number 

(Ortega-Izquierdo & Río, 2020) Included 1 

(Brunner & Schwegman, 2022) Excluded, no job creation data 2 

(Duarte et al., 2022) Included 3 

(Sharma et al., 2022) Included 4 

(Tănasie et al., 2022) Excluded, no job creation data 5 

(Janikowska & Jebreel, 2022) Included 6 

(Sohrab et al., 2019) Included 7 

(Gönül et al., 2021) Included 8 

(Wabukala et al., 2021) Excluded, no job creation data 9 

(Schallenberg-Rodriguez & Inchausti-
Sintes, 2021) 

Included 10 

(Y. Chen & Li, 2021) Included 11 

(Shoeib et al., 2021) Excluded, no job creation data 12 

(Estévez et al., 2021) Excluded, no job creation data 13 

(Costa & Veiga, 2021) Excluded, no job creation data 14 

(Connolly, 2020) Excluded, no job creation data 15 

(Gonçalves et al., 2020) Excluded, no job creation data 16 

(Dorrell & Lee, 2020) Excluded, no job creation data 17 

(Vicuña & Pérez, 2020) Excluded, different language 18 

(Kalinina et al., 2020) Included 19 

(de Oliveira Noronha et al., 2019) Excluded, no job creation data 20 

(Charles Rajesh Kumar et al., 2019) Included 21 

(Ciupăgeanu et al., 2019) Excluded, no job creation data 22 

(Du & Takeuchi, 2019) Excluded, no job creation data 23 

(Lacal-Arántegui, 2019) Excluded, no job creation data 24 

(Gebauer & Binz, 2018) Excluded, no job creation data 25 

(Swift et al., 2019) Included 26 

(Martínez Mendoza et al., 2019) Excluded, different language 27 

(Schilling et al., 2018) Included 28 

(Kahouli & Martin, 2018)  Included 29 

(Jaraitė et al., 2017) Excluded, no job creation data 30 

(Varela-Vázquez & Sánchez-Carreira, 
2017) 

Included 31 

(Ortega et al., 2015) Included 32 

(Akuru & Kamper, 2015) Excluded, no job creation data 33 

(Varela-Vázquez & Sánchez-Carreira, 
2015) 

Excluded, no job creation data 34 

(Heinbach et al., 2014) Excluded, no job creation data 35 

(Pegels & Lütkenhorst, 2014) Included 36 

(Varela Vázquez & Sánchez Carreira, 
2014) 

Excluded, different language 37 

(Corsatea, 2014) Included 38 

(Simas & Pacca, 2014) Included 39 

(Aretz et al., 2013) Excluded, different language 40 
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(Collins et al., 2012) Included 41 

(Langbroek & Vaclav, 2012) Excluded, no job creation data 42 

(Ulrich et al., 2012) Excluded, no job creation data 43 

(Dalton & Lewis, 2011) Excluded, no job creation data 44 

(Bilgili et al., 2011) Excluded, no job creation data 45 

(Mostafaeipour, 2010) Excluded, no job creation data 46 

(Blanco & Rodrigues, 2009) Excluded, no job creation data 47 

(Williams et al., 2008) Included 48 

(Varela-Vázquez et al., 2019) Excluded, no job creation data 49 

(Cibinskiene et al., 2021) Excluded, no job creation data 50 

(Tingley, 2021) Excluded, no job creation data 51 

(Vieira et al., 2019) Included 52 

(Barthelmie, 1998) Excluded, no job creation data 53 

(Hassan et al., 2022) Excluded, no job creation data 54 

(Hansen et al., 2021) Excluded, no job creation data 55 

(Zhou et al., 2020) Included 56 

(Fragkos & Paroussos, 2018) Included 57 

(Zerrahn, 2017) Excluded, no job creation data 58 

(Khan et al., 2017) Excluded, no job creation data 59 

(Matatiele & Gulumian, 2016) Excluded, no job creation data 60 

(Coon et al., 2015) Included 61 

(Hill, 2014) Excluded, no job creation data 62 

(Brown et al., 2012) Included 63 

(Morgan et al., 2012) Excluded, no job creation data 64 

(Bolinger & Wiser, 2012) Excluded, no job creation data 65 

(Greenwald & Gray, 2012) Excluded, no job creation data 66 

(Schubel, 2010) Excluded, no job creation data 67 

(Grover, 2002) Included 68 

(Twidell, 1986) Included 69 

(Renner et al., 2008) Excluded, no job creation data 70 

(Warren & Birnie, 2009) Excluded, no job creation data 71 

(Koasidis et al., 2022) Included 72 

(Trypolska et al., 2022) Included 73 

(Satir et al., 2018) Excluded, no job creation data 74 

(Buchmayr et al., 2022) Included 75 

(Ruiz Romero et al., 2012) Excluded, no job creation data 76 

(EL Kinani et al., 2023) Included 77 

(Kursun, 2023) Excluded, no job creation data 78 

(Osorio-Aravena et al., 2022) Included 79 

(R. Li et al., 2022) Excluded, no job creation data 80 

(Garsous & Worack, 2022) Included 81 

(Ma et al., 2022) Excluded, no job creation data 82 

(Zhou et al., 2022) Excluded, no job creation data 83 

(Attaullah et al., 2022) Excluded, no job creation data 84 

(Ullah et al., 2021) Excluded, no job creation data 85 

(Suman, 2021) Excluded, no job creation data 86 

(Vasconcellos & Caiado Couto, 2021) Included 87 

(Oyewo et al., 2021) Excluded, no job creation data 88 

(Zwarteveen et al., 2021) Excluded, no job creation data 89 

(Heras & Martín, 2020) Included 90 
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(Faturay et al., 2020) Excluded, no job creation data 91 

(van der Waal, 2020) Excluded, no job creation data 92 

(Ram et al., 2020) Included 93 

(Kandrot et al., 2020) Included 94 

(Aldieri et al., 2020) Included 95 

(Rahmanifard & Plaksina, 2019) Excluded, no job creation data 96 

(Lee & Chang, 2018) Included 97 

(De Fátima Barbosa Góes et al., 2018) Excluded, different language 98 

(Nakano et al., 2018) Excluded, no job creation data 99 

(Mu et al., 2018) Included 100 

(Jacobson et al., 2017) Included 101 

(Waewsak et al., 2017) Excluded, no job creation data 102 

(Child et al., 2017) Included 103 

(Sun et al., 2016) Excluded, no job creation data 104 

(Hayashi et al., 2016) Excluded, no job creation data 105 

(Behrens et al., 2016) Included 106 

(Loomis et al., 2016) Included 107 

(Bates & Firestone, 2015) Excluded, no job creation data 108 

(Ek & Matti, 2014) Excluded, no job creation data 109 

(Hoagland et al., 2015) Excluded, no job creation data 110 

(Jacobson et al., 2015) Excluded, no job creation data 111 

(Şengül et al., 2015) Included 112 

(Hosking et al., 2015) Excluded, no job creation data 113 

(Hartley et al., 2015) Included 114 

(Walwyn & Brent, 2015) Excluded, no job creation data 115 

(Jacobson et al., 2014) Included 116 

(Kosenius & Ollikainen, 2013) Excluded, no job creation data 117 

(Landry et al., 2013) Included 118 

(Katinas et al., 2013) Excluded, no job creation data 119 

(Van der Zwaan et al., 2013) Included 120 

(Moldvay et al., 2013) Included 121 

(Jacobson et al., 2013) Included 122 

(Simas & Pacca, 2013a) Excluded, different language 123 

(Simas & Pacca, 2013b) Included 124 

(Greene & Geisken, 2013) Included 125 

(Morris et al., 2012) Excluded, no access 126 

  (Brown, 2011) Included 127 

(Slattery et al., 2011) Included 128 

(Borgford-Parnell, 2011) Excluded, no job creation data 129 

(Esteban et al., 2011) Included 130 

(Cai et al., 2011) Excluded, no job creation data 131 

(Rodgers, 2011) Excluded, no access 132 

(Munday et al., 2011) Excluded, no job creation data 133 

(Renewable Energy Magazine, 2010) Excluded, no job creation data 134 

(Starling, 2010) Excluded, no job creation data 135 

(webzell, 2010) Excluded, no job creation data 136 

(Peltier, 2009) Excluded, no job creation data 137 

(Energy Institute, 2023) Excluded, no job creation data 138 

(Larry Leistritz & Coon, 2009) Included 139 

(Michael, 2001) Excluded, no job creation data 140 
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(Rose et al., 2022) Included  141 

(Haidi & Cheddadi, 2022) Excluded, no job creation data 142 

(Nagle et al., 2022) Excluded, no job creation data 143 

(Stebbings et al., 2020) Excluded, no job creation data 144 

(Grechukhina et al., 2016) Excluded, different language 145 

(Dedrick et al., 2014) Included 146 

(Matsumoto & Matsumura, 2022) Excluded, no job creation data 147 

(Shoeib et al., 2022) Included 148 

(Mayfield & Jenkins, 2021) Excluded, no job creation data 149 

(Kim & Kim, 2021) Included 150 

(Oh et al., 2020) Excluded, no job creation data 151 

(Mauritzen, 2020) Excluded, no job creation data 152 

(Kabayo et al., 2019) Included 153 

(Keček et al., 2019) Included 154 

(Mikuli et al., 2018) Included 155 

(Silva et al., 2016) Excluded, no job creation data 156 

(Okkonen & Lehtonen, 2016) Included 157 

(Ejdemo & Söderholm, 2015) Included 158 

(Regueiro Ferreira & Sánchez Sellero, 
2014) 

Excluded, different language 159 

(Fischer et al., 2008) Excluded, no job creation data 160 

(Bergmann et al., 2006) Excluded, no job creation data 161 

(Roy et al., 2022) Included 162 

(Deloitte, 2021) Included, added manually 163 

(Hanna et al., 2022) Included, added manually 164 

(Rutovitz et al., 2015) Included, added manually 165 

 

 

 

 

 

 

 

 

 

 

 



Appendix B: collected data 

B1: development data 
 JOBS (JOB-YEARS/MWI) SCALE ONSHORE 

/ 
OFFSHORE 

LOCATION REFERENCE 
YEAR SOURCE  Direct  Indirect  Direct + 

indirect  
Induced Total  Nr. 

turbines 
Turbine 
capacity 
(MW) 

Total 
capacity 
(MW) 

Schallenberg-Rodriguez 
& Inchausti-Sintes, 2021) 

1.41 0.26 1.67 0.7 2.37 40 5 200 Offshore Gran 
Canaria 

2021 

(Kalinina et al., 2020) 0.69 1.09 1.78     798.8 Onshore Ukraine  2019 
(Kahouli & Martin, 2018) 0.46 0.41 0.87 0.48 1.34 62 8 496 Offshore France 2020 
Varela-Vázquez & 
Sánchez-Carreira, 2017) 

  3   99 5 495 Offshore Spain  2030 

(Dedrick et al., 2014) 0.21     50 2 100 Onshore  US 2014 
(Okkonen & Lehtonen, 
2016) 

  0.6 0.15 0.75 31 0.9 27.6 Onshore Northern 
Scotland 

2009 ** 

** = only regional impact/job creation/part of job creation, * = values based on Rutovitz et al (2015).  

B2: construction data 
 JOBS (JOB-YEARS/MWI) SCALE ONSHORE/ 

OFFSHORE 
LOCATION REF. 

YEAR 

Source Direct Indirect Direct + 
indirect 

induced total Nr. 
turbines 

Turbine 
capacity 
(MW) 

Total 
capacity 
(MW)  

   

(Ortega-Izquierdo & Río, 2020) 2.217 1.667 3.884      onshore EU-28 2016 
(Ortega-Izquierdo & Río, 2020) 3.128 2.346 5.474      offshore EU-28 2016 
(Sharma et al., 2022) 1.83       65000 onshore US 2019 
(Janikowska & Jebreel, 2022)   11.4      onshore Poland 2022 
(Sohrab et al., 2019) 1.97 4.93 6.9      onshore Iran 2050 
Schallenberg-Rodriguez & 
Inchausti-Sintes, 2021) 

15 11.1 26.1 7.1 44.3 40 5 200 offshore 
floating 

Gran Canaria 2021 

(Kalinina et al., 2020) 3.057 4.861 7.918     798.8 onshore Ukraine 2019 
(Kahouli & Martin, 2018) 3.04 2.67 5.71 3.13 8.84 62 8 496 offshore France 2020 
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Varela-Vázquez & Sánchez-
Carreira, 2017) 

  1.5   99 5 495 offshore 
floating 

Spain 2030 

Ortega et al., 2015) 2.5 1.88 4.38      onshore Global 2012 
Ortega et al., 2015) 4.28 3.28 7.56      offshore Global 2012 
Simas & Pacca, 2014) 6.75 0.84 7.59      onshore Brazil 2017 
(Williams et al., 2008) 1.71       10.5 onshore US, northern 

Arizona 
2008 

(Williams et al., 2008) 1.67       60 onshore US, northern 
Arizona 

2008 

(Williams et al., 2008) 1.67       180 onshore US, northern 
Arizona 

2008 

Vieira et al., 2019) 4.3 3.2 7.5  7.5    offshore Portugal 2030 
Fragkos & Paroussos, 2018) 3.2        onshore EU-28 2015 

* 
(Coon et al., 2015) 1.28       147 onshore US, 

Oklahoma 
2012 

(Brown et al., 2012) 1.35        onshore US 2008 
(Grover, 2002) 0.244 0.077 0.321 0.154 0.47

5 
260 1.5 390 onshore US, 

Washington 
2002 

Twidell, 1986) 4        onshore Denmark 1985 
Koasidis et al., 2022) 2.894        onshore EU  2025 
Koasidis et al., 2022) 6.575        offshore EU 2025 
(Buchmayr et al., 2022) 2.48      3  onshore Belgium 2022 
(Buchmayr et al., 2022) 6.09      5  offshore Belgium 2022 
Osorio-Aravena et al., 2022) 3.2     303 2 606 onshore Spain 2022 

* 
(Ram et al., 2020) 3.2        onshore global 2015 

* 
(Ram et al., 2020) 8        offshore global 2015 

* 
Aldieri et al., 2020) 13        nc Spain 2010 
Aldieri et al., 2020) 2.1 6.13 8.23      nc Japan 2017 
Aldieri et al., 2020) 1.48 0.95 2.43     3500 offshore France 2040 
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Aldieri et al., 2020) 6 8 14      nc USA, 
Montana 

2014 

(Jacobson et al., 2017)   7.06 9.1     onshore US 2012 
(Jacobson et al., 2017)   9.3 14.4     offshore US 2012 
(Loomis et al., 2016) 0.72 3.49 4.21 1.5 9.2 2223 1.5 3335 onshore US, Illinois 2012 
Hartley et al., 2015) 0.67       100 onshore US, Texas 2011 
(Jacobson et al., 2014) 4.05     24720 5 123600 onshore US, California 2014 
(Jacobson et al., 2014) 7.3     7800 5 39000 offshore US, California 2014 
Landry et al., 2013) 0.81 0.92 1.73 0.52 3.17 33 3 100 onshore Canada 2013 
Landry et al., 2013) 0.99     44 2.3 101.2 onshore Canada, ON  2013 
Landry et al., 2013) 0.91     73 1.5 109.5 onshore Canada, Qc 2013 
Landry et al., 2013) 0.73     32 3 96 onshore Canada, NB 2013 
Landry et al., 2013) 0.81       100 onshore Canada, NB 2013 
Landry et al., 2013) 1.49     126 1.5 189 onshore Canada, ON  2013 
Landry et al., 2013) 0.61     73 1.5 109.5 onshore Canada, Qc 2013 
Landry et al., 2013) 0.42     10 3 30 onshore Canada, PEI 2013 
Landry et al., 2013) 0.67     67 1.5 100.5 onshore Canada, Qc 2013 
Van der Zwaan et al., 2013 1.5 1.125 2.625  2.62

5 
   onshore Middle East 2050 

Jacobson et al., 2013) 3.05        onshore New York 2030 
Jacobson et al., 2013) 5.04        offshore New York 2030 
Simas & Pacca, 2013b) 7.605        onshore Brazil 2016 
(Brown, 2011) 10.3       520 onshore Brazil, Ceara 2007 
(Slattery et al., 2011) 0.37 1.55 1.92 0.66 2.58 421 1.75 735.5 onshore US, texas 2011 
(Slattery et al., 2011) 0.62 1.86 2.48 0.85 3.32 407 1.63 662.5 onshore US, texas 2011 
(Larry Leistritz & Coon, 2009) 0.85 0.7 1.55   106 1.5 159 onshore Great plains 2009 
(Rose et al., 2022) 14.6       10000 offshore US, california 2040 
(Dedrick et al., 2014) 0.99     50 2 100 onshore US 2014 
(Shoeib et al., 2022) 1.31       100 onshore US 2015 
Kabayo et al., 2019) 3.2     2599 2 5046 onshore Portugal 2015 

* 
(Okkonen & Lehtonen, 2016)   1.34 0.33 1.67 31 0.9 27.6 onshore Northern 

Scotland 
2009 
** 
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Ejdemo & Söderholm, 2015) 0.852 0.19 1.042  1.04
2 

  4000 onshore Northern 
Sweden 

2019 
** 

(Hanna et al., 2022) 4.2        onshore global 2022 
(Hanna et al., 2022) 7.2         offshore global 2022 
(Rutovitz et al., 2015) 3.2        onshore global 2015 
(Rutovitz et al., 2015) 8        offshore global 2015 
(Rutovitz et al., 2015) 6.7        onshore Latin 

America 
2015 

(Rutovitz et al., 2015) 8.9        offshore North 
America 

2015 

(Rutovitz et al., 2015) 7.1        offshore EU 2015 
** = only regional impact/job creation/part of job creation, * = values based on Rutovitz et al (2015).  

B3: manufacturing data 
 JOBS (JOB-YEARS/MWI) SCALE ONSHORE/ 

OFFSHORE 
LOCATION REF. 

YEAR 

Source Direct Indirect Direct + 
indirect 

induced total Nr. 
turbines 

Turbine 
capacity 
(MW) 

Total 
capacity 
(MW)  

   

(Ortega-Izquierdo & Río, 2020) 5.466 3.889 9.355      onshore EU-28 2016 
(Ortega-Izquierdo & Río, 2020) 9.216 6.912 16.128      offshore EU-28 2016 
(Sharma et al., 2022)     1.25   65000 onshore US 2019 
Schallenberg-Rodriguez & 
Inchausti-Sintes, 2021) 

9.05 3.835 12.885 4.1 16.9
85 

40 5 200 offshore 
floating 

Gran Canaria 2021 

(Kalinina et al., 2020) 1.68 2.67 4.35     798.8 onshore Ukraine 2019 
(Kahouli & Martin, 2018) 3.11 2.72 5.83 3.2 9.02 62 8 496 offshore France, 

Brittany 
2020 

Varela-Vázquez & Sánchez-
Carreira, 2017) 

  33   99 5 495 offshore 
floating 

Spain 2030 

Ortega et al., 2015) 7.5 5 12.5      onshore global 2012 
Ortega et al., 2015) 29.61 20.7 50.31      offshore global 2012 
Simas & Pacca, 2014) 3.4 2.26 5.66      onshore Brazil 2017 
Vieira et al., 2019) 22.5 16.9 39.4  39.4    offshore Portugal 2030 
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Fragkos & Paroussos, 2018) 4.7        onshore EU-28 2015 
* 

Twidell, 1986) 2.92     1500 0.08 120 onshore Denmark 1985 
Twidell, 1986) 3.07     700 0.0605 42.35 onshore Denmark 1985 
Koasidis et al., 2022) 4.25        onshore EU  2025 
Koasidis et al., 2022) 12.821        offshore EU 2025 
(Ram et al., 2020) 4.7        onshore global 2015

* 
(Ram et al., 2020) 15.6        offshore global 2015 

* 
Hartley et al., 2015) 3.13       100 onshore global 2011 
Van der Zwaan et al., 2013 6.6 4.95 11.55  11.5

5 
   onshore Middle east 2050 

(Moldvay et al., 2013) 0.625        onshore South Africa 2013 
Simas & Pacca, 2013b) 3.51        onshore Brazil 2016 
(Larry Leistritz & Coon, 2009) 3.4 7.02 10.42  10.4

2 
106 1.5 159 onshore Great plains 2009 

(Dedrick et al., 2014) 3.91     50 2 100 onshore US 2014 
Kabayo et al., 2019) 4.7     2599 2 5046 onshore Portugal 2015 

* 
(Okkonen & Lehtonen, 2016)   0.12 0.04 0.16 31 0.9 27.6 onshore Northern 

Scotland 
2009 
** 

Ejdemo & Söderholm, 2015)     1.44
2 

  4000 onshore Northern 
Sweden 

2019 
** 

(Hanna et al., 2022) 8        onshore global 2022 
(Hanna et al., 2022) 16.8        offshore global 2022 
(Rutovitz et al., 2015) 4.7        onshore global 2015 
(Rutovitz et al., 2015) 15.6        offshore global 2015 
(Rutovitz et al., 2015) 3.4        onshore Latin 

America 
2015 

(Rutovitz et al., 2015) 20.5        offshore North 
America 

2015 

(Rutovitz et al., 2015) 10.7        offshore EU 2015 
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** = only regional impact/job creation/part of job creation, * = values based on Rutovitz et al (2015).  

B4: operation and maintenance data 
 JOBS (JOB-YEARS/MWI) SCALE  ONSHORE/ 

OFFSHORE 
LOCATION REF. 

YEAR SOURCE Direct  Indirect  Direct + 
indirect  

Induced Total  Nr. 
turbines 

Turbine 
capacity 
(MW) 

Total 
capacity 
(MW) 

(Ortega-Izquierdo & Río, 
2020) 

8.868 6.651 15.519      onshore EU-28 2016 

(Ortega-Izquierdo & Río, 
2020) 

4.895 3.671 8.566      offshore EU-28 2016 

(Sohrab et al., 2019) 7.857 19.643 27.5     50 onshore Iran 2050 
Schallenberg-Rodriguez 
& Inchausti-Sintes, 
2021) 

14.125 2.375 16.5 6.375 22.9 40 5 200 offshore 
floating 

Gran 
Canaria 

2021 

(Kalinina et al., 2020) 5.915 9.405 15.32      onshore Ukraine 2019 
(Schilling et al., 2018) 20.161     365 0.85 310 onshore Northern 

Kenya 
2018 

(Kahouli & Martin, 
2018) 

8.065 14.8395 22.9 18.105 41.0 62 8 496 offshore France, 
Brittany 

2020 

Varela-Vázquez & 
Sánchez-Carreira, 2017) 

5.25     99 5 495 offshore 
floating 

Spain 2030 

Ortega et al., 2015) 10 7.5 17.5      onshore Global 2012 
Ortega et al., 2015) 22.5 17 39.5      offshore Global 2012 
(Corsatea, 2014) 10        onshore EU  2010 
Simas & Pacca, 2014) 14.75        onshore Brazil 2014 
(Collins et al., 2012) 3.81     164 2 328 onshore US, 

Appalachia 
2010 

(Williams et al., 2008) 11.9       10.5 onshore Northern 
Arizona, US 

2008 

(Williams et al., 2008) 12.5       60 onshore Northern 
Arizona, US 

2008 
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(Williams et al., 2008) 12.5       180 onshore Northern 
Arizona, US 

2008 

(Vieira et al., 2019) 18 13.6 31.6  31.6    offshore Portugal 2030 
(Fragkos & Paroussos, 
2018) 

7.5        onshore EU 2015 
* 

(Fragkos & Paroussos, 
2018) 

6        onshore EU 2011 

(Fragkos & Paroussos, 
2018) 

1.25        onshore EU 2017 

(Fragkos & Paroussos, 
2018) 

2        onshore EU 2008 

(Fragkos & Paroussos, 
2018) 

7.5        onshore EU 2015 

(Coon et al., 2015) 2.21       147 onshore Oklahoma 2012 
(Brown et al., 2012) 8.75        onshore US  2008 
(Grover, 2002) 1.41 0.199 1.609 1.81 3.419 260 1.5 390 onshore US, 

Washingto
n 

2002 

(Twidell, 1986) 25        onshore Denmark 1985 
(Koasidis et al., 2022) 6.95        onshore EU 2025 
(Koasidis et al., 2022) 4.575        offshore EU 2025 
(Buchmayr et al., 2022) 4.6475        onshore Belgium 2022 
(Buchmayr et al., 2022) 3.04        offshore Belgium 2022 
(Osorio-Aravena et al., 
2022) 

7.5     303 2 606 onshore Spain 2022 
* 

(Vasconcellos & Caiado 
Couto, 2021) 

12.937 14.765 27.702 18.598 46.3    onshore Brazil 2023 

(Vasconcellos & Caiado 
Couto, 2021) 

14.75        onshore Brazil 2014 
* 

(Vasconcellos & Caiado 
Couto, 2021) 

52.5 63.5 116 71.5     onshore Italy 2023 

(Ram et al., 2020) 7.5        onshore Global 2015 
* 



64 
 

(Ram et al., 2020) 5        offshore Global 2015 
* 

(Aldieri et al., 2020) 5        nc Spain 2010 
(Aldieri et al., 2020) 9.375        nc Greece 2020 
(Aldieri et al., 2020) 6.75        nc Italy 2014 
(Aldieri et al., 2020) 4.38 3.94 8.32      nc Japan 2017 
(Aldieri et al., 2020) 2.857 3.643 6.5      offshore France  2040 
(Aldieri et al., 2020) 7.5       63.1 nc Germany 2023 
(Aldieri et al., 2020) 2.5        nc Canada 2020 
(Aldieri et al., 2020) 5        nc Middle east 2050 
(Aldieri et al., 2020) 10 7.5 17.5      nc US, 

Montana 
2014 

(Jacobson et al., 2017)   11.1 14.319     onshore US 2012 
(Jacobson et al., 2017)   18.9 25.515     offshore US 2012 
(Child et al., 2017) 5       70 onshore Aland 

island 
2030 

(Child et al., 2017) 5       100 offshore Aland 
island 

2030 

(Loomis et al., 2016) 1.582 2.279 3.861 2.256 6.117 2223 1.5 3335 onshore US, Illinois 2012 
(Hartley et al., 2015) 23.75       100 onshore US, Texas 2011 
(Jacobson et al., 2014) 6.18     24720 5 123600 onshore US, 

California 
2014 

(Jacobson et al., 2014) 26.36     7800 5 39000 offshore US, 
California 

2014 

(Landry et al., 2013) 2.25 1 3.25 1 4.25 33 3 100 onshore Canada 2013 
(Landry et al., 2013) 1.5     44 2.3 101.2 nc Canada, 

ON 
2013 

(Landry et al., 2013) 2.25     73 1.5 109.5 nc Canada, Qc 2013 
(Landry et al., 2013) 1.75     32 3 96 nc Canada, NB 2013 
(Landry et al., 2013) 3     33 3 99 nc Canada, NB 2013 
(Landry et al., 2013) 2.25       100 nc Canada, NB 2013 
(Landry et al., 2013) 2.25     126 1.5 189 nc Canada, 

ON 
2013 
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(Landry et al., 2013) 2.25     73 1.5 109.5 nc Canada, Qc 2013 
(Landry et al., 2013) 2.5     10 3 30 nc Canada, PEI 2013 
(Landry et al., 2013) 2.5     67 1.5 100.5 nc Canada, Qc 2013 
(Van der Zwaan et al., 
2013) 

1.5 1.125 2.625  2.625    nc Middle East 2050 

(Jacobson et al., 2013) 2.82     4020 5 20100 onshore New York 2030 
(Jacobson et al., 2013) 2.81     12700 5 63500 offshore New York 2030 
(Simas & Pacca, 2013b) 11.7        nc Brazil 2016 
(Greene & Geisken, 
2013) 

2.5850
34014 

8.29931
9728 

10.88435
374 

9.251700
68 

20.1360
5442 

98 1.5 147 onshore Weatherfor
d, Texas, 
US 

2013 
** 

(Brown, 2011) 12       520 onshore Brazil, 
Ceara 

2007 

(Slattery et al., 2011) 0.897 2.203 3.100 1.768 4.867 421 1.747 735.5 onshore Texas, US 2011 
(Slattery et al., 2011) 0.906 2.234 3.140 1.992 5.132 407 1.628 662.5 onshore Texas, US 2011 
(Esteban et al., 2011) 12        offshore Britain 2009 
(Larry Leistritz & Coon, 
2009) 

1.572 3.302 4.874 4.874 9.748 106 1.5 159 onshore Great 
plains 

2009 

(Rose et al., 2022) 10.625       10000 offshore California 2040 
(Dedrick et al., 2014) 2.4     50 2 100 onshore US 2014  
(Shoeib et al., 2022) 14.44       100 onshore US 2015 
(Kim & Kim, 2021) 5 5 10 0 10 5 2 10 onshore Korea 2015 
(Kim & Kim, 2021) 5 10 15 5 20 24 5 120 offshore Korea 2015 
(Kabayo et al., 2019) 7.5     2599 2 5046 onshore Portugal 2015 

* 
(Okkonen & Lehtonen, 
2016) 

  7.61 2.26 9.87 31 0.9 27.6 onshore Northern 
Scotland 

2009 

(Ejdemo & Söderholm, 
2015) 

0.3125 0.125 0.4375  0.4375   4000 onshore Northern 
Sweden 

2019 
** 

(Hanna et al., 2022) 7.5        onshore global 2022 
(Hanna et al., 2022) 12.5        offshore global 2022 
(Rutovitz et al., 2015) 7.5        onshore global 2015 
(Rutovitz et al., 2015) 5        offshore global 2015 
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(Rutovitz et al., 2015) 15        onshore Latin 
America 

2015 

(Rutovitz et al., 2015) 2.25        offshore North 
America 

2015 

(Rutovitz et al., 2015) 5        offshore EU 2015 
(Sharma et al., 2022) 1.97        onshore US 2019 
(Janikowska & Jebreel, 
2022) 

  11.4      onshore Poland 2022 

** = only regional impact/job creation/part of job creation, * = values based on Rutovitz et al (2015).  

B5: decommissioning data 
 JOBS (JOB-YEARS/MWI) SCALE ONSHORE 

/ 
OFFSHORE 

LOCATIO
N 

REFERENCE 
YEAR SOURCE  Direct  Indirec

t  
Direct + 
indirect  

Induced Total  Nr. 
turbines 

Turbine 
capacity 
(MW) 

Total 
capacity 
(MW) 

(Schallenberg-Rodriguez 
& Inchausti-Sintes, 2021)   

2.655 0.615 3.27 1.005 4.27
5 

40 5 200 Offshore Gran 
Canaria 

2021 

(Kalinina et al., 2020)  0.746 1.186 1.932     798.8 Onshore Ukraine 2019 
(Trypolska et al., 2022)  0.78       3600 Onshore  Ukraine 2050 
(Ram et al., 2020)  0.72        Onshore Global 2015 
(Ram et al., 2020)  2.99        Offshore  Global 2015 
(Kabayo et al., 2019)  0.6     2599 2 5046 Onshore Portugal 2015 
(Okkonen & Lehtonen, 
2016)  

  0.1 0.02 0.12 31 0.9 27.6 Onshore Northern 
Scotland 

2009 **  

** = only regional impact/job creation/part of job creation, * = values based on Rutovitz et al (2015).  

B6: construction phase data 
 JOBS (JOB-YEARS/MWI) SCALE ONSHORE 

/ 
OFFSHORE 

LOCATION REF. 
YEAR SOURCE  Direct  Indirect  Direct + 

indirect  
Induced Total  Nr. 

turbines 
Turbine 
capacity 
(MW) 

Total 
capacity 
(MW) 

(Schilling et al., 2018)   24.2   365 0.85 310 onshore northern 
Kenya 

2018 
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(Corsatea, 2014) 1.25        onshore EU 2010 
(Collins et al., 2012) 2.24     164 2 328 onshore US, 

Appalachia 
2010 

Vasconcellos & Caiado 
Couto, 2021) 

10.03 9.63 19.66 12.27 31.9
3 

   onshore Brazil 2023 

Vasconcellos & Caiado 
Couto, 2021) 

10.74 2.79 13.53      onshore Brazil 2023 ** 

Vasconcellos & Caiado 
Couto, 2021) 

5.18 6.14 11.32 5.6 16.9
2 

   onshore Italy 2023 

Aldieri et al., 2020) 8.8        nc Greece 2020 
Aldieri et al., 2020) 10.74 2.79 13.53      onshore Brazil 2017 ** 
Aldieri et al., 2020) 9.9        nc  Italy 2014 
Aldieri et al., 2020) 3.92        nc Canada 2020 
Aldieri et al., 2020) 8.1        nc Middle east 2050 
(Child et al., 2017) 8.6       70 onshore Aland islands 2030 * 
(Child et al., 2017) 18.1       100 offshore Aland islands 2030 * 
(Greene & Geisken, 
2013) 

0.014 0.286 0.3 0.34 0.63
9 

98 1.5 147 onshore USA, texas 2013 
*** 

(Esteban et al., 2011)     28.8    offshore Britain 2009 
(Kim & Kim, 2021) 8.6 18.4 27 2.8 29.8 5 2 10 onshore Korea 2015 * 
(Kim & Kim, 2021) 18.1 25.7 43.8 8.2 52 24 5 120 offshore Korea 2015 * 

*** = only regional impact/regional job creation, ** = data from IRENA, * =  data from Simas and Pacca, 2015.  

B7: other data  
 JOBS ONSHORE / 

OFFSHORE 
LOCATION REF. 

YEAR 
UNIT  

SOURCE  Direct  Indirect  Direct + indirect  Induced Total      
(Duarte et al., 2022)     0.96 n.d. Spain 2005 jobs/MWi 

(EL Kinani et al., 2023)     1.2 n.d. France 2010 jobs/MWi 

(EL Kinani et al., 2023)     13.2 n.d. Spain 2010 job-years/MWi 

(Heras & Martín, 2020) 9.0     onshore Spain 2011 jobs/MWi 

(Kandrot et al., 2020)     6.418 offshore Ireland 2030 job-years/MWi 

(Mu et al., 2018)   26.4   onshore China 2018 jobs/MWi 
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(Behrens et al., 2016)     1.15 n.d. Portugal 2010 jobs/MWi 

(Şengül et al., 2015)     0.335 n.d. Turkey 2015 average and person/MWi 

(Roy et al., 2022)     1.1 n.d. India 2022 jobs/MWi 

(Deloitte, 2021) 0.1 3.7 3.8  3.7 n.d. Portugal 2021 jobs/MWi 

(Chen & Li, 2021) 15.8 19.3 35.1   n.d. global 
south 

2021 jobs/US$1 million invested 

(Zhou et al., 2020)     30% 
reduction 
potential  

n.d. China 2020 30% labor reduction new 
maintenance schedule  

(Lee & Chang, 2018)     0.17 n.d. Taiwan 2018 jobs/kWh 
(Keček et al., 2019) 6 3 9 5 14 onshore Croatia 2019 FTE/million invested 
(Keček et al., 2019) 1 7 8 4 11 onshore Croatia 2019 FTE/million value produced 
(Mikuli et al., 2018) 6.1 3.2 9.3 5 14.3 onshore Croatia 2018 FTE/million invested 
(Mikuli et al., 2018) 0.6 6.5 7.1 3.6 10.7 Onshore Croatia 2018 FTE/million value produced 

 

B8: local share data 
 JOB 

SECTOR 
(SHARE) LOCAL (SHARE) 

NATIONAL 
TOTAL 
NATIONAL 

LOCATION ON/OFFSHORE YEAR 

(Gönül et al., 2021) Manu 0% 0%  Turkey onshore 2019 
(Gönül et al., 2021) Manu 0% 0%  Turkey offshore 2019 
(Charles Rajesh Kumar et al., 
2019) 

Manu  40% 40% India  2018 

(Schilling et al., 2018) O&M  81% 81% Northern Kenya  2018 
(Garsous & Worack, 2022) Manu  75% 75% China  2016 
(Garsous & Worack, 2022) Manu  70% 70% Spain  2016 
(Vasconcellos & Caiado Couto, 
2021) 

O&M 90% 5% 95% Brazil onshore 2023 

(Vasconcellos & Caiado Couto, 
2021) 

Manu 50% 30% 80% Brazil onshore 2023 

(Vasconcellos & Caiado Couto, 
2021) 

Con 90% 5% 95% Brazil onshore 2023 

(Kandrot et al., 2020) Con local   Ireland offshore 2030 
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(Kandrot et al., 2020) O&M local   Ireland offshore 2030 
(Kandrot et al., 2020) Plan local   Ireland offshore 2030 
(Kandrot et al., 2020) Manu  0%  Ireland offshore 2030 
(Moldvay et al., 2013) Manu  66-80%  South Africa onshore 2013 
(Slattery et al., 2011) Con 24%   US, Texas onshore 2011 
(Slattery et al., 2011) O&M 72%   US, Texas onshore 2011 
(Slattery et al., 2011) Con 20%   US, Texas onshore 2011 
(Slattery et al., 2011) O&M 57%   US, Texas onshore 2011 
(Kabayo et al., 2019) Manu  0%  Portugal  onshore 2015 
(Kabayo et al., 2019) O&M local   Portugal  onshore 2015 
(Kabayo et al., 2019) Con local   Portugal  onshore 2015 
(Kabayo et al., 2019) decom local   Portugal  onshore 2019 

 

Appendix C: interviews 
Interviewee A:  

interviewA.docx

 

Interviewee B:  

interviewB.docx

 

Interviewee C:  

interviewC.docx
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Interviewee D:  

interviewD.docx

 

 

 

 

 


