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Abstract—Schizophrenia, a profound psychiatric challenge
affecting the global population, remains a focus of intensive
research. In this ongoing project, we initiate the development of
a comprehensive pipeline for the analysis of magnetic resonance
imaging (MRI) scans, aiming to unravel the complex dynamics
associated with High-Risk Mental States (HRMS) and First
Episode of Psychosis (FEP). The project spans a longitudinal
cohort study, providing a 2-year prognostic trajectory evaluation
for individuals in HRMS and those experiencing FEP.

The neuroimaging component plays a pivotal role in un-
derstanding the intricate mind-brain interaction. MRI sessions,
incorporating structural and functional scans, commenced with
an initial dataset of 10 patients. The preprocessing of T1 scans
involves segmentation and skull stripping, laying the foundation
for subsequent analyses. Functional MRI (fMRI) scans, focusing
on the cingulate gyrus associated with psychosis, offer dynamic
insights into neural processes.

Our current analysis, albeit with a limited dataset, sets the
groundwork for future investigations. Both structural (T1) and
functional (fMRI) MRI results are inconclusive at this early stage
due to the small dataset. The ongoing exploration of functional
activation patterns in the cingulate gyrus provides valuable
early insights. The pipeline’s developmental phase anticipates an
expanded dataset over the next year and a half, promising a more
comprehensive understanding of schizophrenia’s neuroimaging
correlates.

This project underscores the evolving nature of psychiatric
research, acknowledging the ongoing journey toward a deeper
comprehension of schizophrenia’s complexities. As the dataset
grows and the pipeline refines, our efforts aim to contribute
significantly to the broader understanding of this debilitating
disorder.

1. INTRODUCTION
Mental illness & Schizophrenia

Mental illness is a vast and multifaceted category encom-
passing various conditions that profoundly affect cognitive,
emotional, and behavioral well-being. The impact of mental
illness extends beyond the individual, creating challenges for
families, communities, and global public health systems. These
conditions disrupt an individual’s thinking, mood, and daily
functioning, creating a pervasive and complex challenge for
societies worldwide.

Globally, mental illness has emerged as a significant public
health concern, affecting millions of individuals across diverse
demographics. The World Health Organization (WHO) empha-
sizes the widespread prevalence and far-reaching consequences
of mental health disorders, underscoring the urgent need for
comprehensive research and effective interventions. Within

this landscape, schizophrenia stands as a particularly severe
mental disorder, disrupting thought processes, perceptions, and
emotions. The global prevalence of schizophrenia emphasizes
its critical role in mental health research, with implications for
diagnosis, treatment, and prevention [1].

Within the spectrum of mental health disorders, certain
individuals are at a heightened risk of transitioning from a
high-risk profile to experiencing a first psychotic episode. The
identification of these high-risk factors is crucial for early
intervention and the development of targeted preventive care
strategies. Factors contributing to this vulnerability include
genetic predisposition, environmental influences, and neurode-
velopmental markers [2].

This research project addresses the pressing need for im-
proved protocols in identifying individuals at high risk of
developing psychosis. By concentrating on early detection, the
protocol aims to provide timely and targeted preventive care
for these vulnerable populations. This includes interventions
that extend beyond the traditional scope of mental health
care, incorporating psychoeducation, community support, and
pharmacological interventions [3].

The mind-brain interaction

The mind-brain interaction forms the intricate foundation
of our understanding of mental health. This relationship is
bidirectional, suggesting that changes in brain function can
influence mental processes, and vice versa. For instance,
psychological stress can impact neural activity, while neu-
rochemical imbalances can significantly influence mood and
cognition [4].

Navigating the vast terrain of consciousness studies involves
confronting the explanatory gap, which comprises the “easy”
and “hard” problems of consciousness. While the “easy”
problems focus on understanding specific cognitive functions,
the “hard” problem delves into the intricate complexities of
subjective experiences. To bridge this gap, a comprehensive
exploration is essential, seeking to unveil how physical brain
processes correlate with the intricate tapestry of human con-
sciousness [5].

Defining the mind requires navigating a spectrum of philo-
sophical models that shape our understanding of its rela-
tionship with the brain. Traditionally, many researchers have
leaned towards materialistic and functionalistic views, but this
project adopts an open perspective to explore the intricate
nature of the mind-brain interaction.



Several philosophical models define the brain as a product,
conceptualizing the mind as the local byproduct of individual
brain activity. Identity theories [6, 7], functionalism [8, 9],
connectionism [10, 11], biological naturalism [12, 13], com-
putational theory of mind [14, 15], emergentism [16, 17], and
materialism [18, 19] all align with this view, emphasizing the
uniqueness of the mind as it emerges from individual brain
processes.

On the contrary, alternative philosophical models posit the
mind as a universal field or property, suggesting an interaction
with the brain that goes beyond causation. Substance dualism
[20, 21], property dualism [22, 23], idealism [24, 25], and
panpsychism [26, 27] represent these views, proposing a more
expansive and interconnected relationship between the mind
and the brain, where the mind is considered a universal force
or property influencing consciousness.

In the realm of consciousness studies, these contrasting
perspectives open doors to diverse hypotheses and approaches.
By acknowledging the multiplicity of viewpoints, this project
aims to contribute to a more nuanced and comprehensive
understanding of the mind-brain interaction. This openness
invites exploration beyond conventional materialistic and func-
tionalistic frameworks, fostering an environment where diverse
philosophical models can inform and enrich our understanding
of consciousness and mental processes.

Bridging the gap

In the pursuit of unraveling the intricate relationship be-
tween the mind and the brain, neuroscience employs a diverse
array of tools and methodologies, each contributing to a more
profound understanding of the mind-brain interaction. One
pivotal avenue involves uncovering abnormal neurochemical
processes associated with mental illness. Delving into the
intricate mechanisms underlying these conditions, researchers
investigate neurotransmitters such as dopamine and glutamate,
providing valuable insights into the neurochemical basis of
mental health disorders [28].

Artificial intelligence (AI) and image processing algorithms
stand out as indispensable tools in deciphering the com-
plexities of neuroimaging data. These advancements enable
the extraction of meaningful patterns and correlations from
vast datasets, offering unprecedented insights into the mind-
brain relationship. The refinement of neuroimaging techniques,
facilitated by sophisticated algorithms, enhances the accuracy
and efficiency of data interpretation, pushing the boundaries
of our understanding [29].

Beyond the traditionally implied materialistic and function-
alistic models in research, this project explores new philo-
sophical frameworks, recognizing their paramount importance.
Alternative perspectives broaden our understanding of the
mind-brain interaction, challenging traditional paradigms and
fostering fresh insights. This intellectual exploration opens
avenues for innovative approaches and hypotheses, contribut-
ing to a richer understanding of consciousness and mental
processes [30].

Central to this research project is a specific emphasis
on finding reliable biomarkers, a key tool in bridging the
explanatory gap between neurochemical processes and mental
health disorders. Concentrating on this aspect, the study aims
to identify correlations that establish a robust foundation for
providing preventive care strategies tailored to individuals at
high risk of developing psychosis [31].

2. STUDY DESIGN

Schizophrenia, a heterogeneous psychiatric disorder with
diverse clinical and biological manifestations, stands as a
major cause of disability among young individuals. Identifying
those in High-Risk Mental States of developing psychosis
(HRMS) emerges as a crucial strategy to enhance prognosis
and functionality in this disorder. Despite being an emerging
field, few studies address the characteristics and risk factors
of these individuals in their transition to psychosis.

The objective of this project is to establish a longitudinal co-
hort of individuals aged 16 to 35, comprising three subgroups:
1) individuals with HRMS; 2) individuals with a diagnosis
of first-episode psychosis (FEP); and 3) healthy controls.
The 2-year prognosis evaluation will encompass measuring
the transition to psychosis and the onset of other psychiatric
disorders in the HRMS group, and the stability of diagnosis
and socio-occupational functioning in the FEP group. The
secondary objective will explore the impact of specific pre-
dictors (clinical, neuropsychological, and neuroimaging) on
this prognosis, enhancing the ability to predict outcomes and
implement preventive interventions in psychosis.

Participants with HRMS and FEP will undergo 3-tesla mag-
netic resonance imaging sessions at the study’s initiation and
during the third visit (2 years of follow-up). Healthy controls
will undergo this test at the study’s outset. These sessions
will utilize standardized scanning sequences, including T1 and
T2 structural images, H-MRS in the anterior cingulate cortex
and left hippocampus, and resting-state functional magnetic
resonance imaging (rs-fMRI).

Data collection will utilize standardized scanning sequences
previously employed in European multicenter studies such as
PSYSCAN, OPTiMiSE, and EU-GEI, minimizing variation
between recruitment sites. Structural image parameters will be
based on those from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), specifically developed for multicenter stud-
ies. The sequence will include a FLAIR scan, classified as a
clinical examination, performed at HUB or OSATEK based
on availability. Magnetic resonance data will be transferred
to OSATEK via a secure server, ensuring efficient data flow
and compliance with privacy laws, guaranteeing central quality
control and audit.

For this preliminary phase of the project, we worked with
a dataset comprising a total of 10 subjects, categorized into
three groups: 4 control subjects, 2 individuals in High-Risk
Mental States (EMA), and 4 individuals experiencing a First
Episode of Psychosis (PSI).

The neuroimaging component of the study involved two
distinct MRI modalities: T1 scans and functional MRI (fMRI)



scans. T1 scans provide detailed structural information about
the brain, allowing for the assessment of anatomical features.
The parameters for the T1 scans were as follows: Field of
View (FOV) of 248x256x208, voxel resolution of 1x1x1, a
response time of 2300 ms, and an echo time of 2.98 ms.

Functional MRI (fMRI) scans, on the other hand, focus on
capturing dynamic changes in brain activity associated with
specific tasks or at rest. The parameters for the fMRI scans
were: Field of View (FOV) of 88x88x60, voxel resolution of
2.5x2.5x2.5, a response time of 1500 ms, and an echo time of
33 ms. These fMRI scans provide insights into the functional
connectivity and activation patterns within the brain, with a
specific focus on regions associated with psychosis, such as
the cingulate gyrus.

While the dataset is currently limited to 10 subjects,
comprising controls, individuals in High-Risk Mental States
(EMA), and those with a First Episode of Psychosis (PSI), this
serves as an initial exploration. As the project progresses, the
dataset is expected to expand, providing a more comprehensive
foundation for subsequent analyses and a deeper understanding
of the neuroimaging correlates of schizophrenia.

3. PREPROCESSING
3.1. Structural data

The T1 data underwent a comprehensive preprocessing
pipeline utilizing SPM12, integrating segmentation, bias cor-
rection, and spatial normalization into a unified model—an ex-
tension of the unified segmentation algorithm, "New Segment”
in SPMS. This sophisticated process classified the data into
distinct tissue types, including white matter, grey matter, CSF,
bone, soft tissue, and air/background. The iterative algorithm
addressed the circularity in traditional segmentation methods,
employing a generative model with parameters for image
intensity non-uniformity, such as FWHM of the bias, bias
regularization, and a cleanup procedure.

This integrated model, detailed in the Unified Segmentation
paper [32], represents an evolution of the older algorithm,
introducing improvements like nuanced mixing proportions,
an enhanced registration model, multi-spectral data integra-
tion, and an extended set of tissue probability maps. Despite
ongoing development of toolbox options and pending seamless
integration into SPMS, this approach has proven effective.
Many researchers historically relied on older SPM versions
for optimized voxel-based morphometry (VBM), emphasizing
spatial normalization, tissue segmentation, and smoothing be-
fore statistical tests. The aim was to align brain images with
standard space, mitigating confounding effects from non-brain
structural variability.

The unified model overcomes the historical circularity chal-
lenge, where registration required initial tissue classification
and vice versa. By consolidating both components into a single
generative model, it includes parameters addressing image
intensity non-uniformity. The iterative estimation of model
parameters alternates among classification, bias correction, and
registration steps, providing a superior alternative to serial
applications of each component.

The data were classified into different tissue types based
on tissue probability maps. The number of Gaussians used
to represent the intensity distribution for each tissue class
was flexible, acknowledging the non-Gaussian nature of tissue
intensity distributions. The unified segmentation algorithm
also allowed for the consideration of multiple channels, en-
abling the integration of information from scans with different
contrasts.

The preprocessing pipeline included the consideration of
warping options and parameters, such as MRF cleanup, to
enhance the accuracy of subsequent analyses. Affine regu-
larization ensured robust initial alignment, and the procedure
included the derivation of a fudge factor based on smoothness,
allowing for improved model accuracy.

Deformation fields, both forward and inverse, could be
saved for further analysis. The preprocessing pipeline also
considered voxel sizes and bounding box specifications for
the written normalized or imported images.

In summary, the T1 preprocessing pipeline was a sophis-
ticated and integrated approach that aimed to enhance the
accuracy of subsequent analyses by addressing bias, improv-
ing tissue classification, and achieving spatial normalization.
The unified segmentation algorithm in SPM12 allowed for a
comprehensive and iterative process that considered multiple
parameters to optimize the results.

In the preprocessing section, we present three figures, each
consisting of four images, to illustrate the results of the
structural data preprocessing for control (Fig. 1), EMA (Fig.
2), and PSI (Fig. 3) groups.

Control_12

CSF segmentation

Gray matter segmentation White matter segmentation

Fig. 1: The figure displays the original T1-weighted image
of one subject of the control group, the cerebrospinal fluid
(CSF) segmented mask, the segmented gray matter mask and
the segmented white matter mask.
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CSF segmentation
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Fig. 2: The figure displays the original T1-weighted image of
one subject of the EMA group, the cerebrospinal fluid (CSF)
segmented mask, the segmented gray matter mask and the
segmented white matter mask.

PSI_25 CSF segmentation

Gray matter segmentation White matter segmentation

Fig. 3: The figure displays the original T1-weighted image of
one subject of the PSI group, the cerebrospinal fluid (CSF)
segmented mask, the segmented gray matter mask and the
segmented white matter mask.

3.2. Functional data

Functional and anatomical data were preprocessed using a
flexible preprocessing pipeline [33] including realignment with
correction of susceptibility distortion interactions, slice timing
correction, outlier detection, direct segmentation and MNI-
space normalization, and smoothing. Functional data were
realigned using SPM realign & unwarp procedure [34], where
all scans were coregistered to a reference image (first scan
of the first session) using a least squares approach and a
6 parameter (rigid body) transformation [35], and resampled
using b-spline interpolation to correct for motion and magnetic
susceptibility interactions. Temporal misalignment between
different slices of the functional data was corrected following

SPM slice-timing correction (STC) procedure [36, 37], using
sinc temporal interpolation to resample each slice BOLD
timeseries to a common mid-acquisition time. Potential outlier
scans were identified using ART [38] as acquisitions with
framewise displacement above 0.5 mm or global BOLD signal
changes above 3 standard deviations [39, 40], and a reference
BOLD image was computed for each subject by averaging all
scans excluding outliers. Functional and anatomical data were
normalized into standard MNI space, segmented into grey
matter, white matter, and CSF tissue classes, and resampled
to 2.5 mm isotropic voxels following a direct normalization
procedure [32, 41] using SPM unified segmentation and nor-
malization algorithm [42, 43] with the default IXI-549 tissue
probability map template. Last, functional data were smoothed
using spatial convolution with a Gaussian kernel of 8 mm full
width half maximum (FWHM).

Two figures are presented below to visually represent the
impact of the preprocessing pipeline on the functional. The
first figure (Fig. 4) provides insight into the initial state of
the functional images, emphasizing any variations or artifacts
present in the raw data. The second figure (Fig. 5) highlights
the effectiveness of the preprocessing pipeline in enhancing the
quality and consistency of the functional data. By juxtaposing
the preprocessed and raw data, these figures serve as valuable
tools for assessing the impact of the preprocessing steps on
the functional images across the cohort of ten subjects.

Fig. 4: The figure captures the first and last volume of each
subject’s functional data before undergoing preprocessing.



Fig. 5: The figure captures the first and last volume of each
subject’s functional data after undergoing preprocessing.

In addition, functional data were denoised using a standard
denoising pipeline [43] including the regression of potential
confounding effects characterized by white matter timeseries
(10 CompCor noise components), CSF timeseries (5 CompCor
noise components), motion parameters and their first order
derivatives (12 factors) [44] , outlier scans (below 63 factors)
[39], session effects and their first order derivatives (2 factors),
and linear trends (2 factors) within each functional run, fol-
lowed by high-pass frequency filtering of the BOLD timeseries
[45] above 0.01 Hz. CompCor [46, 47] noise components
within white matter and CSF were estimated by computing
the average BOLD signal as well as the largest principal com-
ponents orthogonal to the BOLD average, motion parameters,
and outlier scans within each subject’s eroded segmentation
masks. From the number of noise terms included in this
denoising strategy, the effective degrees of freedom of the
BOLD signal after denoising were estimated to range from
199.8 to 257.1 (average 242.6) across all subjects [40].

4. ANALYSIS
4.1. Structural data

In the analysis of structural data, our study delved
into a comprehensive examination of various parameters
derived from the segmented tissue images obtained through
meticulous preprocessing. These parameters play a pivotal
role in unraveling crucial insights into the neuroanatomical
characteristics of our subjects and are instrumental in
understanding potential variations associated with the studied
groups. The computed parameters include brain volume, gray
matter volume, gray matter ratio (expressed as the ratio of
gray matter volume to brain volume), white matter volume,
white matter ratio (calculated as the ratio of white matter
volume to brain volume), and cerebrospinal fluid volume.
Each of these parameters serves as a valuable metric for
investigating structural alterations and abnormalities, offering

a nuanced perspective on brain morphology and composition.

o Brain Volume: The brain volume, representing the total
space occupied by the entire brain, is a foundational
metric crucial for structural assessments. This parameter
allows for direct comparisons of overall brain size across
different subjects, forming the basis for various analyses
in neuroimaging studies.

o White Matter Volume: White matter volume encompasses
the space occupied by nerve fibers and myelinated ax-
ons within the brain’s white matter regions. Exploring
white matter volume is crucial for understanding neural
connectivity and integrity, shedding light on the intricate
communication networks within the brain.

o White Matter Ratio: The white matter ratio, defined as
the proportion of white matter volume relative to the total
brain volume, quantifies the contribution of white matter
to overall brain size. This parameter is essential for eval-
uating neural connectivity, offering valuable insights into
how white matter relates to the structural composition of
the entire brain.

o Gray Matter Volume: Gray matter volume refers to the
space occupied by neuronal cell bodies, dendrites, and
synaptic connections within the brain’s gray matter re-
gions. Analyzing gray matter volume provides valuable
insights into the density and distribution of neural ele-
ments, contributing significantly to our understanding of
neuroanatomy and variations across individuals.

o Gray Matter Ratio: The gray matter ratio, calculated as
the proportion of gray matter volume relative to the total
brain volume, offers a quantitative measure of the con-
centration of gray matter. This parameter is instrumental
in assessing neural density in relation to the overall size
of the brain, providing a nuanced perspective on brain
composition.

o Cerebrospinal Fluid Volume: Cerebrospinal fluid volume
represents the space occupied by cerebrospinal fluid,
encompassing fluid-filled regions within the brain. An-
alyzing CSF volume provides critical information about
the overall composition and fluid dynamics within the
central nervous system. This parameter contributes to a
comprehensive understanding of brain structure, partic-
ularly in relation to the distribution and dynamics of
cerebrospinal fluid.



4.2. Functional data

In our pursuit to understand the neural underpinnings of
schizophrenia, the cingulate gyrus took center stage as a
focal point of investigation. While numerous brain regions and
neural pathways offer valuable insights into the complexities
of schizophrenia, practical considerations, including the con-
straints of time and resources, prompted a strategic focus on
the cingulate gyrus for this particular study.

The cingulate gyrus holds immense relevance in the
schizophrenia research landscape due to its integral role
in mediating emotional regulation, cognitive functions, and
attentional processes [48, 49]. This brain region’s intricate
connectivity with various neural networks positions it as a
key player in the manifestation of symptoms associated with
schizophrenia [50]. Understanding the nuanced alterations
within the cingulate gyrus may unlock valuable insights into
the disorder’s underlying mechanisms.

The decision to concentrate on the cingulate gyrus does not
diminish the importance of other brain regions or pathways
implicated in schizophrenia. Rather, it reflects a pragmatic ap-
proach to conduct an in-depth exploration within a manageable
scope. This focused investigation allows for a more detailed
and comprehensive analysis of the cingulate gyrus, laying the
foundation for future studies that can expand the examination
to encompass additional regions of interest.

By acknowledging the limitations of a focused investigation,
we aim to contribute valuable data on the cingulate gyrus’s
role in schizophrenia while recognizing the broader landscape
of potential neural contributors to the disorder. This
strategic focus serves as a stepping stone for more extensive
explorations, providing a foundation for future research
endeavors to delve into the rich tapestry of interconnected
brain regions implicated in schizophrenia.

4.2.1. First-level analysis: Seed-based connectivity maps
(SBC) and ROI-to-ROI connectivity matrices (RRC) were
estimated characterizing the patterns of functional connectivity
with atlas.AC (Cingulate Gyrus, anterior division), and
atlas.PC (Cingulate Gyrus, posterior division). Functional
connectivity strength was represented by Fisher-transformed
bivariate correlation coefficients from a weighted general
linear model (weighted-GLM [51]), defined separately for
each pair of seed and target areas, modeling the association
between their BOLD signal timeseries.

4.2.2. Group-level analyses: Group-level analyses were
performed using a General Linear Model (GLM [52]). For
each individual voxel a separate GLM was estimated, with
first-level connectivity measures at this voxel as dependent
variables (one independent sample per subject and one mea-
surement per task or experimental condition, if applicable),
and groups or other subject-level identifiers as independent
variables. Voxel-level hypotheses were evaluated using mul-
tivariate parametric statistics with random-effects across sub-
jects and sample covariance estimation across multiple mea-
surements. Inferences were performed at the level of individual

clusters (groups of contiguous voxels). Cluster-level inferences
were based on parametric statistics from Gaussian Random
Field theory [53, 54]. Results were thresholded using a com-
bination of a cluster-forming p<0.001 voxel-level threshold,
and a familywise corrected p-FDR <0.05 cluster-size threshold
[55].

5. RESULTS

Our exploration into the neural correlates of schizophrenia
encompasses both structural and functional dimensions, pro-
viding insights into the disorder’s complex nature. It’s essential
to acknowledge the study’s limitations, notably the modest
dataset size, which influences result robustness. Structural
analyses involved a detailed preprocessing pipeline, revealing
parameters like brain volume and tissue ratios. Meanwhile,
functional investigations focused on the cingulate gyrus, rec-
ognizing the complexities of connectivity analysis. Despite
limitations, our findings offer initial glimpses into schizophre-
nia’s neural aspects, laying the groundwork for future, more
extensive studies.

5.1. Structural data

Our initial hypothesis posited that individuals in the EMA
and PSI groups would exhibit lower brain, white matter, and
gray matter volumes, potentially accompanied by a higher
cerebrospinal fluid (CSF) volume. However, given the inherent
limitations of our small dataset, it is crucial to interpret the re-
sults with caution. While we cannot definitively confirm these
trends, preliminary observations suggest a notable alignment
of mean values with our initial expectations.

In comparing the mean values across groups, it becomes
apparent that the control group tends to exhibit higher brain,
white matter, and gray matter volumes, while demonstrating
a lower CSF volume. These trends, although suggestive,
underscore the need for a larger sample size and more compre-
hensive investigations to draw definitive conclusions regarding
structural differences associated with schizophrenia and related
psychotic disorders. The following graphs present a visual
representation of these trends in brain (Fig. 6), white matter
(Fig. 10, 11), gray matter (Fig. 8, 9), and CSF (Fig. 7) volumes
among the study groups.
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5.2. Functional data

In examining the functional dynamics associated with
schizophrenia and related psychotic disorders, we present
the 1st-level and 2nd-level results. These outcomes offer
insights into the patterns of functional connectivity within
the cingulate gyrus, contributing to our understanding of
neural alterations linked to these psychiatric conditions. The
Ist-level results explore seed-based connectivity maps (SBC)
and ROI-to-ROI connectivity matrices (RRC), while the
2nd-level results, employing a General Linear Model (GLM),
provide a collective perspective across subjects.

5.2.1. First-level results: In the lst-level functional con-
nectivity analysis, we present multi-slice images capturing
distinct axial planes of the brain, focusing on the posterior
division of the cingulate gyrus. The color overlays on these
images depict the patterns of connectivity, with warm colors
indicating positive connectivity and cool colors representing
negative connectivity. This visualization method provides a
comprehensive view of how different brain regions interact
in three individual subjects: one from the control group (Fig.
12), one from the EMA group (Fig. 13), and one from the PSI
group (Fig. 14).

Positive connectivity, reflected in warm colors, signifies
regions of the brain where the Blood Oxygen Level Dependent
(BOLD) signal fluctuations are positively correlated, indicat-
ing synchronized activity between those regions. In contrast,
negative connectivity, represented by cool colors, suggests
regions with negatively correlated BOLD signal fluctuations,
indicating an inverse relationship in activity.

The connectivity values range from 1 to -1, where 0 to 1
corresponds to warm colors, indicating positive connectivity,
and O to -1 corresponds to cool colors, indicating negative
connectivity. Notably, these results showcase the activity in
the posterior division of the cingulate gyrus across the three
groups during resting-state conditions.

1.00

-1.00

Fig. 12: The figure shows 16 brain slices from a control
subject. They are overlayed with the connectivity data.

Fig. 13: The figure shows 16 brain slices from an EMA
subject. They are overlayed with the connectivity data.

1.00

Fig. 14: The figure shows 16 brain slices from a PSI subject.
They are overlayed with the connectivity data.

5.2.2. Group-level results: In the 2nd-level functional con-
nectivity analysis, we delve into the intricate patterns of posi-
tive and negative connectivity within the cingulate gyrus. Two
multi-slice images capture axial views of the brain, offering
insights into the group-level differences in connectivity. The
first image focuses on the control group (Fig. 15), while the
second image combines data from both EMA and PSI groups
(Fig. 16).

The connectivity range in the control group’s image spans
from 310.89 to -98.37, illustrating variability in connectivity
strength across this small sample. Notably, the second im-
age, representing patients (EMA and PSI groups combined),
demonstrates a narrower range, from 47.44 to -13.28. The
narrower range in the second image suggests a potentially
more confined range of connectivity values in the cingulate
gyrus for patients compared to controls.

However, upon observing the activation areas of both im-
ages, it becomes evident that the activation area in the second
image is broader than in the first one. This could imply two
possibilities: either the activation area of the cingulate gyrus



in patients is larger, or the increased variance in connectivity
within the patient group, possibly influenced by the larger
sample size, is contributing to the observed difference.

Given the limited dataset, drawing definitive conclusions
requires caution. However, these preliminary 2nd-level results
provide a foundation for future investigations with larger co-
horts. Further exploration, potentially incorporating additional
neuroimaging data, is essential for a more nuanced understand-
ing of functional connectivity alterations in the cingulate gyrus
associated with schizophrenia spectrum disorders.

310.89

T3)

-98.37

Fig. 15: The figure shows 16 brain slices overlayed with the
results of the GLM in the control group.

47.44

T(5)

-13.28

Fig. 16: The figure shows 16 brain slices overlayed with the
results of the GLM in the patients group (EMA and PSI).

6. DISCUSSION

In the discussion section, we acknowledge the inherent
limitations imposed by the small dataset size, which restricts
the conclusiveness of our findings. This limitation serves as a
critical factor in interpreting the results and underscores the
need for future research with larger cohorts.

Despite the constraints posed by the dataset size, the devel-
oped pipeline stands out for its emphasis on generalizability,
scalability, and replicability. The unified segmentation algo-
rithm, incorporating segmentation, bias correction, and spatial
normalization within a single model, offers a comprehensive
and efficient approach. This integrated model, an extension of
the unified segmentation algorithm known as "New Segment”
in SPM8, presents a robust foundation for preprocessing T1
data. The iterative algorithm, addressing circularity challenges
in traditional segmentation methods, enhances accuracy and
sets the stage for more nuanced analyses.

While our initial focus on the cingulate gyrus in the
functional analysis yielded intriguing insights, the discussion
underscores the need for caution in drawing definitive con-
clusions. The discussion emphasizes the potential for more
profound results with an expanded dataset size and more
in-depth analyses. Scaling up the dataset and incorporating
additional neuroimaging data could unveil novel insights into
the neural underpinnings of schizophrenia spectrum disorders.

The scalable and replicable nature of the pipeline positions
this research as a valuable stepping stone for future inves-
tigations. It serves as a solid foundation upon which subse-
quent studies can build, allowing for a more comprehensive
exploration of the intricate neural mechanisms associated with
schizophrenia. As the dataset grows and analysis becomes
more sophisticated, the potential for meaningful contributions
to the understanding of this complex disorder increases.
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