
Deep learning-based segmentation of
cell protrusions
A method towards enabling better understanding of the tumor
microenvironment of Diffuse Midline Glioma

Matthijs Kemp - 5299890

Utrecht University

FACULTY OF SCIENCE
Graduate School of Natural Sciences
www.uu.nl

https://www.uu.nl/en

Master’s thesis 2022

Master’s thesis in Artificial Intelligence commissioned by
the Princess Maxima Center

Matthijs Kemp

Faculty of Science
Graduate School of Natural Sciences

Utrecht University
Utrecht, the Netherlands 2022

Supervisor: Michiel Kleinnijenhuis, Rios Group, Princess Maxima Center
First examiner: Tim Ophelders, Utrecht University
Second examiner: Alex Telea, Utrecht University

Faculty of Science
Graduate School of Natural Sciences
Utrecht University
Heidelberglaan 8
3584 CS Utrecht
Telephone +31 (0)30 253 35 50

Commissioned by:
Princess Maxima Center
Research division
Rios Group
Heidelberglaan 25
3584 CS Utrecht
Telephone +31 (0)88 972 72 72

Cover: Diffuse Midline Glioma cells under a microscope, scalebar 50 µm. Imaged
on the Leica Thunder microscope, using widefield microscopy with objective 40x.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria

© Matthijs Kemp, 2022.

iv

Abstract
Recently it was discovered that brain tumor cells exhibit tumor microtubes, long
membranous tubes that provide a physical connection between neighboring tumor
cells which can be harnessed to communicate or facilitate invasion. Cell segmenta-
tion and tracking is essential to better study the role of tumor microtubes in the
invasiveness of certain brain malignancies. This research aims to develop a deep
learning model to segment tumor microtubes and track their nuclei. A supervised
training method was used to train several models. The performance of these models
is compared to state-of-the-art models using widely-used metrics. The method de-
veloped in this work enables higher throughput research into cell-to-cell interactions
and vastly speeds up behavioral studies on tumor microtubes.

Keywords: segmentation, tracking, cancer, DMG, DIPG, deep learning.

v

Acknowledgements
First off I would like to extend my sincere thanks to Michiel Kleinnijenhuis and Tim
Ophelders for the daily and weekly supervision and feedback. I am also thankful
for colleagues Sam de Blank and Raphaël Collot who provided me with (annotated)
data and domain expertise. Thanks should also go to Ravian van Ineveld for setting
up an imaging experiment on the microscope which led to the cover image. Lastly,
I would like to express my gratitude towards Alex Telea, who took time out of his
holiday to examine this work as a 2nd examiner.

Matthijs Kemp, Utrecht, July 2022

vi

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order. Letters that are capitalized in the acronyms are also capitalized
in the definitions. Plural forms of acronyms will be suffixed with a lower capital s,
for example CNNs means Convolutional Neural Networks.

CNN Convolutional Neural Network
DIPG Diffuse Intrinsic Midline Glioma
DL Deep Learning
DMG Diffuse Midline Glioma
ELU Exponential Linear Unit
EX mouse Embryo, X days old.
GPU Graphical Processing Unit
GUI Graphical User Interface
HO Hyperparameter Optimization
IoU Intersection over Union
LAP Linear Assignment Problem
S mLSR-3D multispectral, Large-Scale Single-cell Resolution 3D
OBS Organotypic Brain Slice
OS Overall Survivial
PX Post-natal mouse, X days old
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SNR Signal-to-Noise ratio
SOTA State-Of-The-Art
STAPL-3D SegmenTation Analysis by ParaLlelization of 3D Datasets
TM Tumor Microtube

vii

viii

Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis. Single-use variables, sets and parameters are defined in
the location they are used, and therefore not included in the nomenclature.

Indices
i General index
j Index for the layers in a network
s Index for iterative steps
t Index for time steps

Sets

H Set of the history of iterates in optimizer
Ht Set of the history of iterates up to and including t
N Set of natural numbers
W Set of weights
Wj Set of weights at layer j
X Set of input variables
Y Set of ground truth
Ŷ Set of predictions
θ Set of model parameters
φ Set of hyperparameters
∇`(θs) Set of first partial derivatives of loss ` over parameters θ at step s

Distributions

U Uniform distribution
N Normal distribution

ix

Parameters

l Atrous rate
p Parameter for probability
α Learning rate
γ Momentum parameter or focal parameter
ε Parameter for numerical stability, i.e. preventing division by zero
λ Parameter for the measure of deformation

Variables

x Input
y True output
ŷ Predicted output

x

Contents

List of Acronyms vii

Nomenclature ix

List of Figures xiii

List of Tables xiv

List of Equations xv

1 Introduction 1

2 Related work 3

3 Methods 5
3.1 Data . 5
3.2 Ground truth generation . 6
3.3 Preprocessing . 9
3.4 Model architecture . 10
3.5 Hyperparameter optimization . 11

3.5.1 Activation functions . 12
3.5.2 Kernel initializers . 13
3.5.3 Learning rate . 14
3.5.4 Optimizer . 15
3.5.5 Pooling . 16

3.6 Loss function . 16
3.7 Performance metrics . 17
3.8 Model architecture variations . 18

3.8.1 3D Attention U-NET . 18
3.8.2 DeepLabV3+ . 19

3.9 Nucleus segmentation . 20
3.10 Tracking . 20

3.10.1 Trackmate . 20
3.10.2 3DeeCellTracker . 21

4 Results 23
4.1 Protrusion segmentation . 23
4.2 Nuclei segmentation . 25

xi

Contents

4.3 Tracking . 25
4.4 Data protocol . 26

4.4.1 Data collection . 27
4.4.2 Data preprocessing . 27

5 Discussion 31

6 Conclusion 33

Bibliography 33

A Appendix 1 I

xii

List of Figures

3.1 Image of brain cells exhibiting tumor microtubes 6
3.2 Protocol mice to image . 7
3.3 Microglia augmentation . 7
3.4 Results of ground truth generation 8
3.5 3D U-NET architecture . 11
3.6 3D attention module . 18
3.7 Standard vs atrous convolution . 19

4.1 Protrusion segmentation results . 24
4.2 3DeeCellTracker results . 26
4.3 TrackMate results . 28
4.4 Nuclei segmentation results . 29

A.1 TrackMate final timepoint full size II

xiii

List of Tables

3.1 Hyperparameter optimization search space 12
3.2 Update rules per optimization algorithm 15

4.1 Hyperparameter optimization results 23
4.2 Metrics of protrusion segmentation performance per model architecture 25

xiv

List of Equations

3.1 Normalization functions . 10
3.2 Activation functions . 13
3.3 Kernel initializers . 14
3.4 Loss functions . 17
3.5 Performance metrics . 17

xv

1
Introduction

Diffuse midline gliomas (DMG), such as diffuse intrinsic pontine glioma (DIPG),
are a rare and highly lethal type of brain malignancy in children. They are very
difficult to treat, mostly due to the tumor’s highly infiltrative spread. Therefore,
targeting the invasive nature of DMG is a promising way to treat these children.
Understanding the cellular and molecular mechanisms responsible for invasiveness
is essential to achieve this.
Recently, brain tumor malignancies have been found to exhibit long membranous
tubes that provide a physical connection between neighboring tumor cells which
can be used for invasion. These tubes have been named tumor microtubes (TM)
[1, 2, 3] and add a new level of complexity to brain tumors. TMs have been shown
to form a functional network that can extend over a long distance. This network is
responsible for the tumor’s plasticity, resistance and heterogeneity. However, little
is known about the role of TMs in defining tumor cell behavioral patterns. DMG
cells exhibit heterogeneous behaviors [4], but it is not known if these behaviors are
dictated by the integration of tumor cells in the TM-network.
Visualization is key to characterize the dynamic nature of living cells and pinpoint
the features that facilitate invasiveness. Particularly, the methods of single-cell
resolution 3D imaging enable visualization of tumor cell behavior in its native envi-
ronment [5]. However, the extraction of the desired information from the resulting
imaging data is often restricted by the lack of adequate computational methods for
this specific purpose. Studying tumor cell dynamic behavior requires tools to reli-
ably identify all individual tumor cells (instance segmentation) and follow all these
objects over different timepoints (tracking). Although tracking the tumor cell nuclei
is already a demanding yet worthwhile task, the biggest challenge lies in segment-
ing the protrusions surrounding the nuclei. Accurate identification of cell-to-cell
connections through segmentation of protrusions would enable in-depth character-
ization of the structure and dynamic properties of TM-networks, allowing better
understanding of the infiltrative capacities of DMG tumors.
DMG patients have a poor prognosis. Although clinical trials have been going on for
years, no therapeutic strategies other than radiotherapy exist. Radiotherapy is not
a very successful treatment of DMG, with patients having a median overall survival
(OS) of 11.2 months [6].
In this research we develop deep learning (DL)-based tools for accurate segmentation
and tracking of tumor cells exhibiting TM over long distances, with the final goal of
creating a dynamic graph of tumor cell connectivity that can be related to different
behavioral patterns exhibited by the tumor cells.

1

1. Introduction

The Rios lab1 has recently developed 8-color, multispectral, large-scale single-cell
resolution 3D (mLSR-3D) imaging and image analysis software for the parallelized,
DL–based segmentation of large numbers of single cells in tissues, called Segmen-
Tation Analysis by ParaLlelization of 3D Datasets (STAPL-3D) [5]. However, algo-
rithms geared towards segmenting extensive protrusions are not yet featured in this
pipeline. This research aims to apply and adapt state-of-the-art (SOTA) DL ap-
proaches for astrocyte segmentation and methods for single-cell tracking and make
them suitable for brain cell segmentation integrated into the STAPL-3D pipeline.

1https://research.prinsesmaximacentrum.nl/en/research-groups/rios-group

2

https://research.prinsesmaximacentrum.nl/en/research-groups/rios-group

2
Related work

In 2006, 29 clinical studies performed in DMG patients were reviewed, ranging from
1984 to 2005, including a total of 973 patients [7]. Most of these studies were non-
randomized. This makes for a difficult comparison as the inclusion criteria were ill
defined. The authors did find that the use of hyperfractionated radiotherapy, pre-
irradiation chemotherapy, concurrent chemo-radiotherapy, adjuvant chemotherapy,
high-dose chemotherapy regimens and radiosensitizers did not increase long-term
OS in DMG patients.
Since then, immunotherapy approaches have been, or are being, implemented in
clinical trials [8, 9, 10], with limited success. Immunotherapy treatment poses a
number of challenges as the DMG tumor microenvironment is immunosuppressive
and has a debilitated immune surveillance. The immunosuppressive property of
DMG is due to the absence of antigen presenting cells and downregulation of the
histocompatibility complex dampening the anti-tumor response [11], which essen-
tially renders the tumor unresponsive to the use of immunotherapies alone. One way
to circumvent this problem is to combine adjuvant therapies with immunotherapies.
This combination has the potential to elicit anti-tumor responses [12].
To date, little research on the dynamic tumor microenvironment has been conducted,
even though new insights are essential to developing successful therapeutic strate-
gies. Research into the role of TM in defining tumor cell behavioral patterns is,
amongst others, needed to better understand this microenvironment. To facilitate
such research, tracking and segmentation of cells exhibiting TM is needed so that
their behavior can be logged and studied.
In recent years, various algorithms have been created to segment and/or track cells
[13]. These algorithms were made in response to the need for quantification of the
large amounts of image data generated by microscopy. Quantification of image data
would previously require counting and segmenting cells manually.
Specialized software would be written on a case-by-case basis, as different laborato-
ries focus of different aspects of cellular data. Learning-based methods are often used
to eliminate the need for specialized software. Common solutions of this type include
ilastik [14] and WEKA [15]. In more recent times, deep learning as a learning-based
method has gained more traction. Its main advantage being the automatic extrac-
tion of optimal image features and therefore eliminating the need for human expert
feature design [13, 16, 17].
This brought upon a breakthrough in biomedical image analysis through deep con-
volutional neural networks (CNNs), specifically the U-Net architecture [13]. Deep
learning-based image processing is the fastest available method. Its adaptive nature
further improves the performance and robustness.

3

2. Related work

However, to study the dynamic tumor cell behavior, cell segmentation alone is not
sufficient. Behavior is exhibited over time, not in a single timepoint. Tracking of
segmented cells is required to study this dynamic cell behavior. To do so, con-
ventional object tracking algorithms exist [18, 19, 20]. These algorithms have been
successfully applied to live-cell imaging data. However, limitations exist. Cell track-
ing is an arduous task, as cell division and cells entering and leaving the field of view
often lead to erroneous tracks. In addition, a single segmentation error can render
its tracking unfit for analysis.
Recent works [21, 22] proved the capability of DL-based methods to track single
dividing or non-dividing cells over time after segmentation. These methods are far
more generalizable than traditional tracking algorithms and therefore require less
parameter setting and manual intervention. Deep-learning based tracking methods
will be tested on DMG cells to assert their performance.

4

3
Methods

The goal of this work was to segment and track cells forming a TM-network, in order
to better understand their behavioral patterns. Patterns of TM can then be studied
to determine their role in tumor cell behavior. This segmentation task consisted of
two parts, as segmentation of the nucleus as well as the cell membrane (that forms
the TM) were needed. Thereafter, each cell nucleus needed to be tracked through
time and space. Additionally we presented a data protocol as the results of an
investigation into how to obtain data that is compatible with the proposed method.
The goal beyond the scope of this work is to gather information about events of
cell-to-cell connections which is critical to get a full understanding of behavioral
implications, as these events could be related to intra-cell communication.

3.1 Data
The data used in this research is confocal laser scanning fluorescence microscopy
data. All image experiments were done on the ZEISS LSM 880 confocal microscope.
The objective lenses used are 10x and 25x. For the 10x objective the numerical
aperture was set to 0.45 and the voxel size to x = 0.83 µm, y = 0.83 µm and z = 3.23
µm for each of the spatial dimensions. For the 25x objective the numerical aperture
was set to 0.8 and the voxel size to x = 0.332 µm, y = 0.332 µm and z = 1.21
µm. Time interval was set to 10 minutes in all cases. Images were captured in five
dimensions. Three of those dimensions are the spatial dimensions of height, width
and depth. The remaining dimensions are the number of channels captured and the
temporal dimension, i.e. how many frames there were captured. The datatype is
16-bit unsigned integer, meaning we capture values in the range of N ∩ [0, 65536].
These datasets were created from the live imaging of mice. The procedure of obtain-
ing tissue starts with plugging C57Bl/6 mice to allow for pup collection. Pregnancy
was confirmed after the embryo was 10 days old (E10) and the birth of the litter
was checked from E19-E21. At 9 days post-natal (P9) a small number of pups
(n = 1 ∨ n = 2) were collected from the litter for the organotypic brain slice (OBS)
protocol. The mice were initially euthanized via CO2 before being decapitated by
scissors to ensure euthanasia. After decapitation brain samples were collected. Us-
ing a Vibratome with brains embedded in agarose, the brain was sliced into sagittal
sections including the midbrain areas. The slices were 350 µm thick. The obtained
slices were put in culture for 15 days whereafter a patient-derived tumor spheroid
was implanted in each slice. These slice were then prepared for endogenous fluores-
cence in which fluorescent proteins are embedded into the cells. The tissue is then

5

3. Methods

ready for image acquisition on the microscope.
A visual representation of this protocol is illustrated in Figure 3.2. The time-lapse
imaging that is generated in step 4 of this protocol was used in this work. One frame
of this time-lapse, with cells exhibiting tumor microtubes, is shown in Figure 3.1.
In this figure, the nuclei are shown in green and the cell membrane in red.

Figure 3.1: Image of brain cells exhibiting tumor microtubes in red and their
nuclei in green. The fluorescent proteins used to color the nuclei and membranes
are H2B-mNeonGreen and mScarletl-CAAX respectively. H2B is a histone protein
and CAAX is a hydrophobic motif. The image is processed such that the contrast
is adjusted (range unknown) and smoothed (smoothing factor unknown) for visual
clarity.

3.2 Ground truth generation
To establish a ground truth set for the DMG cell membrane channel, a labeled
dataset of microglia cells stained with an ionized calcium-binding adapter molecule 1
(IBA1) marker was used to train a 3D U-NET model. Leveraging the fact that
microglia exhibit similar structures as DMG protrusions, the trained U-NET model

6

3. Methods

Figure 3.2: Protocol for going from P9 (9 days postnatal) mice to image data.
Data for this proposed research is generated in step 4 of this pipeline.

can be used to generate a mask. This mask can be manually corrected where needed
to the end of obtaining a ground truth.
There are some innate differences between microglia cells and DMG cells as well
as characteristics of the data sets. To bridge some of these differences, image
augmentation methods were used. A combination of Gaussian noise (µ = 0.0,
σ = 0.001), brightness noise (scaling factor sampled from U [−0.4, 0.1]) and pep-
per noise (p = 0.05) made the two datasets look visually comparable. Figure 3.3
shows the microglia cell data before and after augmentation. Notice that the level of
noise, the brightness of the signal and overall pixel intensity match the DMG data
in Figure 3.4a after augmentation. The model was then trained on the augmented
microglia data.

(a) Microglia (b) Augmented image of microglia

Figure 3.3: Unaugmented and augmented 2D slices of microglia data. For visual
clarity the flipping and rotation augmentations were not applied.

To be able to use the model for inference on the DMG data, the data needed to be
sliced up in tiles to fit the available memory of the GPU (NVIDIA Quadro RTX
6000 24GB). Tiles of size 320× 320× 32 in the dimensions of x, y and z were sliced.
To avoid artifacts that could occur near the borders of the input images, an overlap
of 10 pixels in the x and y dimensions and 2 in the z dimension was added. The
resulting tiles were stitched back together minus the overlap.

7

(a) Original data (b) Pixel-wise probability map

(c) Thresholded probability map in red overlain on the original data

Figure 3.4: Results the ground truth generation where in (a) we see an example
of a 2D slice of the data. In (b) we see the probability map obtained from the
model. Figure (c) combines figure (a) with a thresholded probability map show in
red. Threshold value = 0.225.

3. Methods

After having obtained the predictions on the DMG data, post-processing was ap-
plied. As the result of the prediction is an image with pixel-wise probabilities (nor-
malised to values between 0 and 1), a threshold needs to be set to obtain a binary
mask. Visual inspection of the pixel-wise probabilities on several regions of the im-
age indicated that the threshold value would lie between 0.2 and 0.3. Masks obtained
with threshold values of 0.2, 0.225, 0.25, 0.275 and 0.3 were overlain on the original
image, of which the value of 0.225 was the best trade-off between capturing all of
the signal and capturing the least amount of noise. In addition to thresholding, a
minimum size filter was applied to remove some of the noise that ended up in the
mask due to the relatively low threshold value. The filter size was set to filter any
volume smaller than 1000 pixels. After obtaining the masks for all of the tiles for
all the timepoints, the overlapping pixels were removed and all tiles were stitched
back together. A 2D slice of the result can be seen in Figure 3.4. Because the mask
contained mistakes, we cherry picked regions where the mask matched the data and
used them for training.

3.3 Preprocessing
After obtaining a ground truth, the data was prepared for training. Data augmen-
tation operations were implemented to increase the number of training data points
as well as ensure robustness of the model against variance with respect to contrast,
brightness, resolution and signal-to-noise ratios (SNR). The described robustness
was attained with the data augmentation operations of flipping, cropping, trans-
lation and several types of noise. Flipping was implemented with a probability of
p = 0.25 over any of the three spatial dimensions. The cropping operation was
always performed as cropping manages our memory requirement by ensuring each
datapoint fits in memory. Additionally it trained the model on structures that might
be partially cropped out. As proposed in [13] and [23], slight elastic deformations
were implemented to make the model invariant against biologically plausible defor-
mations without having them well-represented in the training data. Implementation
of these deformation was done via Elasticdeform [24], a python repository to deform
N-dimensional images. Deformation grids of 3, 4 and 5 points were used, with a
measure of deformation λ ∈ N ∩ [3, 10]. The probability of deformation was set to
p = 0.5.

In addition to augmentation we applied normalization to the data, specifically per-
centile min-max normalization which scales all values to the range of [0, 1]. Regular
min-max normalization is highly sensitive to outliers as you divide every datapoint
by the maximal value in the dataset. In our case, using 16-bit unsigned integers,
that maximal value is 216 − 1 = 65535. However, these maximal values are exclu-
sively observed in noise. We circumvented normalizing on noise by using the 99th

percentile as our max value. However, dividing our data by the 99th percentile would
result in values larger than one. We brought our values into the desired range by
clipping all values larger than 1 to 1. Since our data consisted of unsigned integers
we did not need to check for values below 0. Clipping values above 1 changes the
mean and variance of the data, which is not a problem since we assumed no Gaus-

9

3. Methods

sian distribution in our data.

Let N be the ordered list of pixel values X. Let P be the percentile. Then, using
Equation 3.1a, we calculated the P th percentile index n. We ensured n ∈ N by uti-
lizing the floor function, indicated by the square brackets in Equation 3.1a. Let Nn

be the value in N corresponding to index n. Now having obtained the P th percentile
value, for every xi ∈ X, we used Equation 3.1b to rescale the value. After having
rescaled every value in X, we clipped all values above 1 to 1 using Equation 3.1c.

OrdinalRank(N,P)

n = [P100 ×N] (3.1a)

Normalize(N, n,X)

f(xi) = xi
Nn

(3.1b)

Clip(xi)

f(xi) =

1 if xi > 1
xi otherwise

(3.1c)

3.4 Model architecture

The SOTA cell segmentation model is currently 3D U-NET [23], depicted in Fig-
ure 3.5. 3D U-NET can be defined in two paths. The first path is a contractive
(encoder) path, the second being a expansive (decoder) path. In the contractive
path, the network starts with a series of convolutional blocks using two 3 × 3 × 3
convolutional layers, batch normalisation and ReLU (Rectified Linear Units) acti-
vations. These blocks effectively downsample the input, while doubling the number
of feature channels. Between every convolutional block, a 2 × 2 × 2 max pooling
operation is inserted with a stride of two in every dimension. In the expansive path,
blocks consist of a 2× 2× 2 up-convolution with a stride of two in every dimension
followed by the same double convolution as the contractive path employs. These
up-convolutions upsample the feature maps back to the original input dimensions.
Additionally, a skip connection is implemented between layers in the contractive and
expansive paths of equal resolution. The final layer consists of a 1×1×1 convolution
that reduces the output to the number of channels.
To establish a baseline performance, a 3D U-NET was trained and the resulting
model evaluated. Implementation was done in Tensorflow’s Keras [25]. The imple-
mentation was done as per the authors specification. The model was trained for as
many iterations as training data points, which equated to 27500 iterations in our
case. Computation time was just under 60 hours, or 2.5 days.

10

3. Methods

Figure 3.5: The 3D U-NET architecture. The blue boxes are the feature maps in
every layer. Above every feature map is the number of channels. Adopted from [23].

3.5 Hyperparameter optimization

After training the 3D U-NET model, an effort was made to see whether any perfor-
mance could be gained by hyperparameter optimization (HO). The most common
HO algorithms are grid search and random search [26]. These strategies are, how-
ever, naive approaches. The grid search takes a grid of parameters and values and
tries every possible combination, resulting in an exponentially increasing number
of evaluations. Therefore, grid search becomes too computationally demanding in
higher dimension parameter spaces. The other naive approach, random search, ran-
domly samples possible combinations. Because these combinations are sampled from
the entire parameter range, in stead of a grid, more distinct values are sampled. This
increases the chance of finding an optimal value.
Bayesian optimization methods [27, 28, 29] have been developed in an effort to
increase search efficiency with respect to naive methods. This family of methods
focuses on identifying good configurations faster than naive methods by adaptively
selecting configurations from the parameter space. Although Bayesian optimiza-
tion methods outperform random sampling, Li et al. [30] found the increase in
performance to be marginal. In their work, they also propose a novel algorithm
called Hyperband. The idea behind Hyperband is to select a resource, epochs for
example. The resource is then divided and allocated to randomly sampled con-
figurations. Every configuration is used in training a model, where early stopping
stops poorly performing training cycles, and more resources are allocated to well
performing training cycles.
To be able to employ the Hyperband algorithm, a hyperparameter space needs to

11

3. Methods

Table 3.1: Hyperparameter optimization search space. Note that the activation
function does not pertain to the output layer’s activation function.

Parameter Search space
activation function ELU, LeakyReLU, ReLU
kernel initializer He normal, He uniform, zeros, ones
learning rate [1e-5, 1e-2]
optimizer Adam, Stochastic Gradient Descent
- Adam: β1 [1e-2, 0.9999]
- Adam: β2 [1e-2, 0.9999]
- SGD: Momentum [1e-2, 0.9]
- SGD: Nesterov True, False
pooling operation Max pooling, average pooling

be defined. As with any HO algorithm, the hyperparameters in this space need
to carefully chosen by estimating their influence on model performance. Table 4.1
depicts the chosen hyperparameters and their search space. The following sections
state why these hyperparameters were chosen to be tuned. Computation time for
the hyperparameter tuning including the training of the model with the optimal
parameters was 178 hours, or 7.4 days.

3.5.1 Activation functions
In the original 3D U-NET, the activation functions of the hidden layers are all ReLU
[31] activation functions. While ReLU is the most popular activation function [32],
it does have limitations. One such shortcoming is the dying ReLU problem where a
very large gradient updates the weights (or the bias) such that the neuron becomes
inactive and outputs zero for virtually every input. If large numbers of neurons
output zero, backpropagation fails to update weights and the network can no longer
learn.
To circumvent the dying ReLU problem, a small positive gradient can be added to
prevent neurons from dying. ReLU with an additional positive gradient is called
LeakyReLU, as seen in Equation 3.2b. LeakyReLU attempts to solve the dying
ReLU problem by having a small slope for negative inputs. Another alternative
to ReLU is Exponential Linear Unit (ELU, Equation 3.2c) in which the derivative
of the negative part of the function approaches a 0-asymptote. Therefore, there is
always a gradient larger than 0, albeit a small one.

12

3. Methods

ReLU(x)

f(x) =

x if x > 0
0 otherwise

(3.2a)

LeakyReLU(x)

f(x) =

x if x ≥ 0
0.01x otherwise

(3.2b)

ELU(x, α)

f(x) =

x if x ≥ 0
α(ex − 1) otherwise

(3.2c)

3.5.2 Kernel initializers
Performance of weight initialization strategies in neural networks is governed by the
activation function of the neurons. To be more concise, the type of non-linearity
present in the activation function affects the choice of weight initialization [33].
Firstly, we want the weight initialization strategy to be of a non-constant nature.
Consider a network initialized with constant weights α. During the forward pass
all neurons contribute equally to the cost because the output of all neurons will be
f(αx1 + αx2 + · · · + αxn) where f is some activation function. Therefore, every
neuron will have the same gradient and update the same way.
There are many non-constant weight initialization strategies. Most common are
random normal (Equation 3.3a), random uniform (Equation 3.3b), Xavier normal
(Equation 3.3c), Xavier uniform (Equation 3.3d, [34]), He normal (Equation 3.3e,
[33]) and He uniform initialization (Equation 3.3f). Random normal initialization
is randomly sampling a normal distribution with a zero mean and small (≈ 0.05)
standard deviation. Random uniform initialization is randomly sampling a uniform
distribution where the min and max value are set to have a zero mean, conventionally
-0.05 and 0.05.
Xavier uniform initialization is not applicable, since it assumes linearity of the ac-
tivation function. This initialization strategy is proposed to work best for sigmoid
and tanh activation functions, as these functions are approximately linear for small,
zero-centered, inputs. ReLU and its derived activation functions do not meet this
criteria. He et al. [33] proposed a small change to the Xavier initialization to
make it suitable for activation functions such as ReLU and LeakyReLU as they are
non-differentiable at 0 and non-linear around 0.
Let W be the weights, Wj be the weights at layer j and nj be the number of input
units in the weight tensor at layer j. Per mathematical convention N and U denote
Gaussian normal and uniform distributions, respectively. Then, the distributions
can be defined as follows.

13

3. Methods

Normal(µ, σ)

W ∼ N (µ, σ2) (3.3a)

Uniform(α)

W ∼ U [−α, α] (3.3b)

XavierNormal(nj)

Wj ∼ N (0,
√

2
nj + nj+1

) (3.3c)

XavierUniform(nj)

Wj ∼ U [−
√

6
nj + nj+1

,

√
6

nj + nj+1
] (3.3d)

HeNormal(nj)

Wj ∼ N (0,
√

2
nj

) (3.3e)

HeUniform(nj)

Wj ∼ U [−
√

6
nj
,

√
6
nj

] (3.3f)

These distributions were coined to initialize the weights of fully connected dense
layers containing neurons. Coincidentally, we can use these distributions to initialize
the weights of the kernels in convolutional layers. The weight tensor will be shape
of the kernel size, the number of input units will be the feature map or the input
image in the previous layer, depending on which occurs in the previous layer, and
the number of output units will be the feature map in the next layer. Consequently
we were able to sample one of the distributions above to fill the weight tensor.

3.5.3 Learning rate
The learning rate of a network is of direct influence on time to convergence and
therefore of significant importance. Setting the learning rate too low will increase
time to convergence and increase the chance of getting stuck in saddle points (local
minima). Setting the learning rate too high can result in perpetually overshooting
the global minimum.

“Determining a good learning rate [...] becomes more of an art than
science for many problems.” Lu. [35]

Each optimizer needed to be tuned separately, as the learning rate for one optimizer
might not be optimal for another. Some optimizers require an initial learning rate,
which will then be decayed or mutated in some way following a set protocol. Other
optimizers use a constant learning rate. To this end, a somewhat wide range of
learning rates was chosen. As per convention, the learning rate space follows a
logarithmic scale: 1e-2, 1e-3, 1e-4, 1e-5.

14

3. Methods

Table 3.2: Update rules per optimization algorithm, adapted from [36]

SGD(Ht, ηt)
θt+1 = θt − ηt∇`(θt)

Momentum(Ht, ηt, γ)
v0 = 0
vt+1 = γvt +∇`(θt)
θt+1 = θt − ηtvt+1

NAG(Ht, ηt, γ)
v0 = 0
vt+1 = γvt +∇`(θt)
θt+1 = θt − ηt(γvt+1 +∇`(θt))

Adam(Ht, αt, β1, β2, ε)
m0 = 0, v0 = 0
mt+1 = β1mt + (1− β1)∇`(θt)
vt+1 = β2vt + (1− β2)∇`(θt)2

bt+1 =
√

1−βt+1
2

1−βt+1
1

θt+1 = θt − αt mt+1√
vt+1+εbt+1

3.5.4 Optimizer
Choosing the right optimizer determines the training speed and the final perfor-
mance of the network [36]. Because there is no theory or protocol in finding the
right optimizer, empirical studies were referenced [37] and hyperparameter tuning
strategies were employed.
The optimizer algorithms chosen were Stochastic Gradient Descent (SGD), SGD
with Momentum (Momentum), SGD with Nesterov Accelerated Gradient (NAG)
and Adam. Optimization algorithms can be defined by the update rule which they
employ [36]. Out of all optimization algorithms used for training neural networks,
SGD employs the simplest update rule. The momentum algorithm is an adaptation
of the SGD algorithm, which simulates momentum through the incorporation of the
previous parameter update in the update rule. Table 3.2 states the update rules per
algorithm, with Ht being the history of iterates including the function and gradient
values such that Ht = {θs,∇`(θs), `(θs)}ts=0 where ` is a differentiable loss function,
∇`(θs) is the vector of first partial derivatives and θ represents the vector of model
parameters. Each optimizer has their own hyperparameters. In SGD, there is a
learning rate scheduler n. Momentum and NAG have a learning rate scheduler
n and a momentum parameter γ, only differing in their implementation. Adam’s
hyperparameters are stepsize α, exponential decay rate for 1st and second moment
estimates β1 and β2 and a parameter for numerical stability ε.
As stated by Choi et al. [36] an optimizer algorithm can be fully defined by its

15

3. Methods

update rule and hyperparameters φ. Conventionally, only subsets of optimizer hy-
perparameters are tuned, which could lead to false conclusions regarding optimal
hyperparameter settings or optimizer algorithms. Using the definition of Choi et
al., we can state that Momentum(Ht, nt, γ) 6= Momentum(Ht, nt, 0.8) because the
former has a two free hyperparameters and the latter has one. For this reason, all
optimizer hyperparameters were passed to the Hyperband algorithm to be tuned.

3.5.5 Pooling
The idea of feature pooling is, as many operations in neural networks, inspired by
biology [38]. There are a few pooling operations that are used in deep learning,
mostly average pooling and max pooling. Pooling can happen in one, two or three
dimensions. The goal of pooling is to achieve invariance with respect to, amongst
others, spatial position, noise and brightness. Boureau et al. [39] concluded that
the best performance of either max pooling of average pooling largely depends on
the data and features. As per these findings, max pooling and average pooling
were added to the search space of the Hyperband algorithm. To keep the size of
the hyperparameter space within reason, all layers will were given the same pooling
operation. By doing this, we increased the hyperparameter space by a factor of 21

in stead of 23 since we apply the pooling operation three times.

3.6 Loss function
The loss function cannot be tuned by the Hyperband algorithm, as this is the metric
that determines the fitness of every candidate model. Tuning the loss function
would be the equivalent of selecting the loss function that generally outputs the
lowest values. There are several loss functions used in image segmentation, of which
a few are suitable to binary classification problems [40]. The abundance of loss
functions meant a selection of loss functions needed to be made. Evaluation of
every loss function that is applicable to binary image segmentation would have
been too time-intensive. Instead, findings of other authors in the medical image
segmentation domain were used to select promising loss functions. The resulting
selection consisted of four candidate loss functions (Equation 3.4).
Binary cross-entropy is derived from cross-entropy, where the target is either 1 or 0.
To obtain the range of values needed for binary cross-entropy, a sigmoid activation
function was employed in the final layer of the network. This activation function
outputs values between 0 and 1 which ensures that both log(ŷ) and log(1 − ŷ) are
defined, as log(x)∀x ∈ [0,−∞] and log(1 − x)∀x ∈ [1,∞] are undefined. The Dice
Loss is adapted from the Dice coefficient, which is a metric of similarity commonly
used in computer vision. It is defined by subtracting the Dice coefficient from 1.
The Tversky loss is adapted from the Tversky index, similar to the Dice loss. The
Tversky index is a generalization of the Dice coefficient. Through introducing a β
coefficient, the Tversky loss weighs the false positives and false negatives heavier or
lighter. By weighing false positives more, the loss function attempts to minimize
the occurrence of false positives. This is analogous for false negatives. The Focal
Tversky loss takes the Tversky index and scales it by a factor γ. The result is a

16

3. Methods

better learning of hard examples (if γ > 1), for example with very imbalanced classes
where the occurrence of a certain class is minimal. The value of this factor should
lie in the range of γ ∈ [1, 3] [41] where if γ = 1 the equation simplifies to the Tversky
loss.
Having a degree of control over the penalization of false negatives and false posi-
tives gives us an indirect influence on the recall vs precision trade-off. This is a great
benefit to have since we wanted to account for false negatives by having high recall.
Predicting no cancer cell where there is cancer should occur as little as possible.
The Tversky loss allowed us to do this. In stead of using the FocalTverskyLoss to
focus on hard examples, we assign each class a weight. This eliminated the need to
tune yet another parameter while achieving the same concept of focusing more on
signal than noise.

BinaryCrossEntropy(y, ŷ)

`BCE = −(ylog(ŷ) + (1− y)log(1− ŷ)) (3.4a)

DiceLoss(y, ŷ, ε)

`DL = 1− 2yŷ + ε

y + ŷ + ε
(3.4b)

TverskyLoss(y, ŷ, β, ε)

`TL = 1− yŷ + ε

yŷ + β(1− y)ŷ + (1− β)(1− ŷ)y + ε
(3.4c)

FocalTverskyLoss(y, ŷ, β, ε, γ)

`FTL = `TL(y, ŷ, β, ε)γ (3.4d)

3.7 Performance metrics
To be able to compare different models we needed metrics to evaluate every model
on. For this work the Tversky index (Equation 3.5a) and the Intersection over Union
(IoU, Equation 3.5b) were used. The Tversky index parameters β and ε were set to
0.3 and 0.7, respectively. These values emphasize higher recall. The Tversky index
and IoU were chosen as they are commonly used in computer vision in addition to
being blindly selected as most representative of the quality of the prediction by the
researcher who imaged the data, R. Collot.

TverskyIndex(y, ŷ, β, ε)

TI = yŷ + ε

yŷ + β(1− y)ŷ + (1− β)(1− ŷ)y + ε
(3.5a)

IoU(y, ŷ)

IoU = yŷ

yŷ + (1− y)ŷ + (1− ŷ)y (3.5b)

17

3. Methods

Figure 3.6: 3D attention module displaying the spatial and channel attention with
skip connection. Adopted from [43].

3.8 Model architecture variations

In addition to the 3D U-NET architecture, different architectures were evaluated.
In response to the 3D U-NET paper, many works attempted to improve upon the
performance by substituting the regular convolutional blocks with more advanced
blocks. Even though these variations were published as improvements, (3D) U-
NET (based on citations and GitHub statistics) is still the most-used semantic
segmentation model in the biomedical imaging domain. Outside of the biomedical
imaging domain, the DeepLabv3+ [42] method is popular method for performing
semantic image segmentation. Like U-NET, a 3D version is available.

3.8.1 3D Attention U-NET

3D Attention U-NET [43] is a variation on 3D U-NET in which attention gates are
placed in each layer of the expansive part of the 3D U-NET architecture. Attention
gates generate spatial and channel attention by evaluating feature relationships be-
tween channels and spatial dimensions. The result is the trimming of features that
are insignificant. This ensures that only information-rich output is passed on to the
next layer.

To obtain the 3D attention map a 1 × 1 × C convolution is performed, where C is
the number of channels. This convolution aggregates all spatial feature correlations
to a dimension of H × W × 1 where H and W indicate height and width of the
feature map. At the same time, average pooling is performed and the result is fed
to a neural network to get the channel correlations. Additionally a skip-connection
is made next to these parallel excitations. The resulting information of these three
operations is summed to obtain the 3D attention map. The entire 3D attention
module is visualized in Figure 3.6. The addition of 3D attention modules in the 3D
U-NET architecture required no additional changes to hyperparameters, training
data or others.

18

3. Methods

(a) l = 1 (b) l = 2

Figure 3.7: (a) Standard convolution with kernel size 3 × 3, stride 2, padding 1
and atrous rate l = 1. (b) Atrous convolution with kernel size 3 × 3, stride 1, no
padding and atrous rate l = 2. Adopted from [45].

3.8.2 DeepLabV3+

DeepLab is a method for semantic segmentation developed by Google. The newest
iteration, DeepLabV3+ [42] was made for 2D image segmentation. However, 3D
adaptations exist [44].

DeepLabV3+ employs an encoder-decoder type architecture, just like 3D U-NET.
In the encoder they encode multi-scale contextual information by applying atrous
convolutions. In an atrous convolution, the convolution filter (or kernel) is not simply
overlaid on top of the input feature map. In stead, there is an extra parameter called
the atrous rate l which dictates the dilation of the kernel applied on the input feature
map. The atrous rate can be interpreted as sampling the input feature map every
l pixels. Therefore, with l = 1 the atrous convolution simplifies to a standard
convolution (Figure 3.7).

Atrous convolution is applied at multiple scales, meaning different atrous rates are
employed. This simulates sampling at different resolutions. They use the rates
of 6, 12, and 18 with a kernel size of 3 × 3. In addition to atrous convolution, a
1 × 1 standard convolution and an image pooling operation are concatenated and
fed to another 1×1 standard convolution. The output of this convolution then goes
through the decoder part of DeepLabV3+. The decoder starts by upsampling the
encoder output and concatenating the result with the low-level features that come
through a skip-connection from the atrous convolutional layers in the encoder part.
This concatenation is then passed through a 3 × 3 convolution and upsampled to
the original image dimensions.

19

3. Methods

3.9 Nucleus segmentation
To the end of nucleus segmentation, multiple methods are available. The preferred
method of the Rios lab is StarDist [46, 47]. One of the known limitations of StarDist
is the poor performance on elongated or deformed nuclei shapes with respect to
rounder shapes, which are prevalent in DMG brain cells. This leads to a phenomenon
called over-segmentation in which one nucleus is segmented as two or more, like in
Figure 4.4e.
StarDist’s performance on DMG nuclei can be party explained by the method relying
on star-convexity of the objects to be segmented. Star-convex shapes are shapes
where there exists a point x0 in the object X such that a line between point x0 and
every other point xn ∈ X lies fully within the object. Some DMG nuclei are not
star-convex as they tend to fold themselves into a U shape when changing directions.
The software Ilastik [14] is able to learn from sparsely annotated nuclei. This elim-
inates the need for ground truth data, only requiring a few sparsely annotated
examples (Figure 4.4a). The reason we cannot directly employ 3D U-NET or other
segmentation models here is because for tracking we need instance segmentation,
while the aforementioned models perform semantic segmentation.

3.10 Tracking
This section lists the different tracking methods that are compared as well as their
reasons for consideration. The tracking methods are an established traditional
method of tracking and a machine learning algorithm. Comparing a traditional
tracking algorithm with a machine learning tracking algorithm presents a good
opportunity to highlight the strengths and weaknesses of each method as well as
showing whether the task of tracking is better suited to a machine learning solution.

3.10.1 Trackmate
TrackMate [20, 48] is an open source Fiji [49] plugin that can be used for automated,
semi-automated, and manual tracking of single-particles. While it incorporates seg-
mentation pipelines, only the tracker module of the software was used for this work.
The tracker module has the ability to load a labeled image and perform tracking.
TrackMate offers several tracking methods for labeled images. Not every tracking
method is applicable to our data, as some methods rely on overlap between time-
frames or constant velocity in the objects to track. TrackMate’s implementation of
the Linear Assignment Problem (LAP) tracker, based on the LAP framework pro-
posed by Jaqaman et al. [50], is designed for single particle tracking. It assigns a
single pixel in the center of each label as a particle, after which linking costs based
on the squared distance are calculated. These costs can be modulated through set-
ting features such as shape matching, intensity matching, etc. TrackMate offers a
feature to tune these feature values.
While the quality of the tracking results is most important, TrackMate is also highly
integrable in any pipeline by providing incorporation of most common segmentation
tools like Ilastik [14], StarDist [46, 47], Cellpose [51] and Weka [52] directly in the

20

3. Methods

graphical user interface (GUI). It is also extensible through programming languages
Python and Java. TrackMate is therefore highly versatile and easy to integrate
regardless of the users workflow, which is partly why it was considered for this
work.

3.10.2 3DeeCellTracker
3DeeCellTracker [22] is a method developed to automate the entire pipeline of seg-
mentation and tracking in 3D microscopy timelapse data. It attempts to do so by
utilizing deep learning to optimize the parameters that would normally have to be
re-optimized when, for instance, lighting conditions change.
3DeeCellTracker takes in 3D timelapse images and feeds them to a 3D U-Net with
a watershed transformation to obtain the object identities. These object identities
need to be manually corrected in timepoint 1. It then uses another transformation
function (a combination of a feed forward neural network and a rigid point registra-
tion method called PR-GLS [53]) to correct all subsequent timepoints based on the
manual adjustments and track the cells.
3DeeCellTracker is, to our knowledge, the only free, openly available 3D tracking
method that fully relies on deep learning. This comes with a few caveats. The
first being that manual correction of one intermediary step is required. The second
caveat is that 3DeeCellTracker has a few tracking parameters that need to be tuned.
Lastly, the authors recommend altering the architecture of the 3D U-NET inspired
network that is used for their segmentation based on the imaging conditions. This
requires in-depth knowledge of neural networks and the influence of the architecture
on performance and decreases generalizability of the method.

21

3. Methods

22

4
Results

Our results can be divided in semantic protrusion segmentation, nuclei instance
segmentation, nuclei tracking and the data protocol.

4.1 Protrusion segmentation
Every model proved to be usable for the task of protrusion segmentation. Differences
between models pertained mostly to errors in very thin protrusions and sensitivity
to noise. Performance was measured using the metrics described in Section 3.7,
using a test set that was not used for training or validation. The evaluation of each
model is shown in Table 4.2, where we can see the best value per metric highlighted
in bold. We observe the best Tversky index and binary IoU in the tuned 3D-UNET
model. We observe the worst metric scores on the DeepLabV3+ model.

Predictions of each model can be seen in Figure 4.1. The small blobs that are
most prominent in the bottom left of the figures are considered signal as they are
biological material that was excreted from the cell membranes.
The HO algorithm Hyperband, used to tune the 3D-UNET model, ran 145 trials
until settling on the approximate optimal values as shown in Table 4.1. Note that
the optimizer parameter values and the pooling operation significantly differ from
their suggested default values. Where in Adam the β1 and β2 are suggested to be
set on 0.9 and 0.999 respectively, we observe significantly lower values. Where Çiçek
et al. proposed maximum pooling operations, Hyperband finds average pooling to
be more optimal.

Table 4.1: Hyperparameter optimization results. Note that the activation function
does not pertain to the output layer’s activation function.

Parameter Optimal value
activation function ELU
kernel initializer He normal
learning rate 7.29e-4
optimizer Adam
- Adam: β1 0.317
- Adam: β2 0.208
pooling operation Average pooling

23

(a) Original image

(b) 3D-UNET, threshold 0.8 (c) Hyperband, threshold 0.95

(d) DeepLabV3+, threshold 0.75 (e) 3D Attention U-NET, threshold 0.8

Figure 4.1: Protrusion segmentation results shown as a 2D slice of the XY-plane.
In figure (a) we see the original image, contrast adjusted for visual clarity. The
3D-UNET model’s predictions are shown in (b). (c) contains the predictions of the
Hyperband 3D-UNET model. In (d) we show the prediction of the DeepLabV3+
model. Lastly (e) depicts the 3D Attention U-NET.

4. Results

Table 4.2: Metrics of protrusion segmentation performance per model architecture.
Best score in each metric is highlighted in bold.

Model Tversky index Binary IoU
3D U-NET 0.683 0.638
3D U-NET Hyperband 0.821 0.836
3D Attention U-NET 0.763 0.702
DeepLabV3+ 0.641 0.623

4.2 Nuclei segmentation
Ilastik’s GUI makes annotating cells and training an object classifier relatively sim-
ple such that no coding expertise is required, nor any extensive domain knowledge.
Nuclei segmentation in Ilastik required annotating a total of 40 cells over 3 time-
points. The timepoints used where the first, middle and last timepoint. The process
was done iteratively, starting with the annotation a few cells and correcting mis-
takes in segmentation by annotating them. The results are shown in Figure 4.4.
Several cells are under or over-segmented. The over-segmentation errors highlighted
in Figure 4.4e are most likely caused by really dim signal in the thin center of the
nuclei. The dim signal is mistakenly labeled as background and the two remaining
halves of the nucleus are labeled as different instances. Under-segmentation occurs
mostly in adjacent nuclei that have no hyperplane of background to separate them.
By drawing a line of background between touching cells in the annotation phase, the
model would start to over-segment cells in other regions as it would learn to predict
background in signal if the intensity was lower at some location in the nuclei. The
2D slice depicted in Figure 4.4 was found to be representable of the whole dataset in
terms of number of errors. As this method is unsupervised, no performance metrics
can be computed.

4.3 Tracking
Tracking could then be performed using the segmented nuclei. The 3DeeCellTracker
method requires a manual correction of its predicted segmentation in the first time-
point, for which we used the segmentation results from Ilastik. As seen in Figure 4.2
quite a lot of cell positions were adjusted. Using our data, the 3DCellTracker method
often predicts cells from a certain area to co-migrate towards a specific spot. Adjust-
ing the parameters β and λ which control coherence/independence of cell positions
resulted in less severe convergence of cell positions. Additionally the number of
tracking iterations was increased to 10 to potentially increase the tracking accuracy.

After optimizing the parameters, the results from Figure 4.2 were obtained. In this
figure we see the convergence problem is still present. In addition to wrongly pre-
dicting this co-migration, the distance that it is predicting is too large. As 3DeeCell-
Tracker has no parameter for setting a maximum distance between two timepoints,
we were unable to correct this issue. On the left side of Figure 4.2a we notice a lot

25

4. Results

(a) Timepoint 0. Elapsed time: 00:00:00 (b) Timepoint 1. Elapsed time: 10:00:00

Figure 4.2: 2D slice of the tracking results of the 3DeeCellTracker method in which
red circles depict nuclei, blue crosses indicate the cell position was adjusted based
on the manual correction of the segmentation, blue lines indicate the predicted track
with respect to the next timepoint.

of blue crosses but no accompanying red, indicating some cells were no longer found.

Tracking with TrackMate required inputting the segmentation obtained from Ilastik.
Results of the TrackMate method can be found in Figure 4.3. We observe less obvi-
ous tracking mistakes when compared to 3DeeCellTracker. Mistakes in TrackMate
mostly pertain to segmentation mistakes, namely under-segmentation causing tracks
to merge. TrackMate was set to a maximum migration distance of 50 µm, using the
LAP tracker. A larger size image of the final timepoint can be found in Appendix A.1
Note that TrackMate was significantly faster in computation time when compared
to 3DeeCellTracker. Where 3DeeCellTracker took around 15 minutes per timepoint,
TrackMate took 1 second per timepoints.

4.4 Data protocol

To ensure usability of the proposed method, a data protocol was established. Not
all microscopy methods and imaging experiments are compatible with the proposed
method. This chapter aims to describe the degree of generalizability over different
imaging settings when doing imaging experiments.

26

4. Results

4.4.1 Data collection
For imaging experiments, guarantee of usable results can only be given on laser
scanning confocal microscopes. Use an objective of 10x or 25x. For the 10x objective
the numerical aperture was 0.45 and the voxel size to x = 0.83 µm, y = 0.83 µm
and z = 3.23 µm. For the 25x objective the numerical aperture was 0.8 and the
voxel size to x = 0.332 µm, y = 0.332 µm and z = 1.21 µm. Deviating from
these objectives might result in degraded performance. Imaging data used in this
method was 16-bit. In theory, 8-bit and 32-bit data can be used as the preprocessing
dictates normalization to the range of [0, 1]. However, going 8-bit means imaging
at a lower quality, which could impact performance. Because of the augmentation
steps implemented during the training phase of the protrusion segmentation, SNRs
do not influence performance, given noise levels are within reason. A good concept
to remember when judging fitness of the produced data for this method is "garbage
in, garbage out", which is often reiterated in the ML community.
Tracking performance was calculated on datasets with timesteps of 10 to 15 minutes
apart, which dictates a certain disparity of position between frames. Using smaller
windows between frames is less influential on tracking performance than using larger
windows.
The method for obtaining mouse tissue containing DMG cells is described in chapter
3.1.

4.4.2 Data preprocessing
Most preprocessing steps are done automatically because of the implementation of
the method into the STAPL3D software. Keep in mind that 99th percentile min-
max normalization might not be suitable to all data. One can usually find a suitable
percentile experimentally by looking at the histogram of observed values.

27

(a) Timepoint 0. Elapsed time: 00:00:00 (b) Timepoint 4. Elapsed time: 00:40:00

(c) Timepoint 9. Elapsed time: 01:30:00 (d) Timepoint 14. Elapsed time: 02:20:00

Figure 4.3: Tracking results obtained from TrackMate at four different timepoints,
shown as 2D slices. Each color represents the tracking of a nucleus. Note that while
nuclei might disappear because they change z-plane, tracks are still drawn.

(a) Sparsely annotated cells (b) Class-wise probability

(c) Foreground-background segmen-
tation

(d) Instance segmentation

(e) Examples of over and under-segmentation

Figure 4.4: Nuclei segmentation results, shown as a 2D slice of the XY-plane. In
(a) we see the sparsely annotated cells in yellow and background in blue. Figure
(b) shows the computed probability map based on the annotation. This probability
is then thresholded to obtain mask (c). Using hysteresis thresholding, the final in-
stance segmentation results (d) are obtained. Examples of mistakes are highlighted
with arrows in (e).

5
Discussion

The results indicate that 3D U-NET with optimized hyperparameters performs the
best in the task of semantic segmentation of DMG protrusions. This is in line with
the relevant literature [13, 23, 30] discussed in the related work chapter. Due to
time constraints HO could only be performed on one model, which was chosen to be
3D U-NET. Therefore, one could argue that other models which did not have their
hyperparameters optimized might perform better when optimized with Hyperband.
If we make the naive assumption that all models would benefit equally from hyper-
parameter tuning, 3D Attention U-NET would outperform the tuned 3D U-NET
by 4% on the Tversky index. We speculate that we observe the lowest scores with
the DeepLabV3+ model because it was designed to perform well on the semantic
segmentation benchmarks. In contrast, U-NET derived architectures were designed
to work with sparse data and a low number of classes specifically within the med-
ical imaging domain. Applying a domain specific model could be the cause of the
difference in performance on this specific task.

The results of the Hyperband algorithm indicate that average pooling outperforms
max pooling, while max pooling is suggested by the authors of 3D U-NET. The
authors of the 3D Attention U-NET also suggest changing the pooling operation,
possibly for also having observed an increase in performance. Additionally, optimal
optimizer hyperparameters were found to be significantly different than the values
proposed in their work. This validates the claim by Choi et al. [36] that optimizers
are defined by their free parameters and all parameters should be tuned for optimal
results.

A choice was made to not use the same neural network for both membrane and
nucleus segmentation as this would limit the experimental models to ones that
are designed for multi-label predictions. Additionally the including of the nucleus
segmentation could hinder the performance of the membrane segmentation as the
classification problem becomes more complex. On the contrary, including nucleus
segmentation in the same model as protrusion segmentation would have the benefits
of reducing the number components to the end of simplicity of the method. The
different models that were compared in this work all support multi-class labels, how-
ever at the time of creating the experimental set-up it was not clear which models
would be compared.

The results we obtained using 3DeeCellTracker conflict with its authors’ findings. In
their work, they successfully segment and track a 3D tumor spheroid, with an accu-

31

5. Discussion

racy of 97% over 894 cells. In our implementation of their work, such performance
could not be replicated. While implementing their work, several bugs in the code-
base were found and fixed, pertaining to the reading and processing of input data.
Possibly, some bugs remained unnoticed that hindered the performance of their
method. If this proved to be true, the comparison between a SOTA DL algorithm
and a traditional algorithm would be based on the quality of the implementation.
For this reason, it is not possible to conclude whether deep learning-based or tradi-
tional tracking methods are better suited to the task of tracking elongated. We can
only state that TrackMate outperforms 3DeeCellTracker.

The method proposed in this work is possibly limited to the microscopy method that
was used to obtain the experimental data. While the Rios Lab uses confocal laser
scanning microscopy to do live imaging of DMG cells, other research labs might not
own this type of microscope. If the imaged data of other researchers is incompatible
with the trained models and classifiers used in this work, new models need to be
trained.

The real value of this work lies future work where this method is used to enable
in-depth characterization of the structure and dynamic properties of TM-networks,
allowing better understanding of the infiltrative capacities of DMG tumors. Addi-
tional future work could look into methods combining information from the nucleus
and membrane channel. This would require instance segmentation of each protrusion
next to linking each nucleus instance to a membrane instance. This enables charac-
terization of protrusion behaviour, possibly uncovering novel information about the
role of TM-networks in defining tumor cell behavioral patterns. Another continua-
tion of this work could look into combining the segmentation task of both channels
into one model, where an effort would have to be made to create ground truth data
for both channels.

32

6
Conclusion

In this work we have proposed a method to optimally segment DMG nuclei and mem-
brane protrusion data taken from confocal laser scanning fluorescence microscopy
by combining SOTA methods for each of the necessary intermediary steps. Pro-
trusion segmentation was achieved through combining a 3D-UNET neural network
with the bandit based HO algorithm Hyperband to outperform some of the SOTA
segmentation models. We observe a significant improvement of almost 20% through
HO when compared to the proposed hyperparameters of 3D-UNET. Using the Hy-
perband algorithm, a bigger parameter space could exhausted when compared to
naive or Bayesian optimization approaches.

Nucleus segmentation was accomplished with Ilastik’s pixel classifier and object de-
tector networks, outperforming the go-to method in the Rios Lab, StarDist, while
being considerably faster in both computation time and set-up time. Another perk
is that no coding expertise or extensive domain knowledge is needed to train or
use Ilastik’s classifier, eliminating the need for biologists to delegate these tasks to
bioinformaticians.

The optimal tracking method is TrackMate, which provides excellent integration
for the Ilastik pixel classifier as well as performance that trumps machine learning
approaches. TrackMate shares Ilastik’s perk of providing a simple GUI to enable
people without coding expertise to use the method. The DL-based method proved
to be inadequate for the tracking of DMG nuclei all while being significantly slower.

By having drafted a data protocol, researchers can use said protocol to prepare or
create new data to the end of protrusion segmentation and nucleus tracking. The
data protocol contains information about the microscope settings, data type and size
and the required preprocessing steps. Additionally, the method was implemented in
the software package managed by the Rios lab, STAPL-3D.

To our knowledge, this work is the first to combine the SOTA hyperparameter
tuning algorithms and 3D-UNET. We show that there is significant performance to
be gained when applied to the task of protrusion segmentation. No other work has
demonstrated the ability to segment and track elongated nuclei in 3D in addition to
segmenting their cell membranes exhibiting tumor microtubes. This work can serve
as a guide to enable research into in-depth characterization of the now incurable
disease, to the end of targeting the invasive nature of DMG as a means of treatment.

33

6. Conclusion

34

Bibliography

[1] H. S. Venkatesh, W. Morishita, A. C. Geraghty, D. Silverbush, S. M. Gillespie,
M. Arzt, L. T. Tam, C. Espenel, A. Ponnuswami, L. Ni, et al., “Electrical and
synaptic integration of glioma into neural circuits,” Nature, vol. 573, no. 7775,
pp. 539–545, 2019.

[2] S. Gillespie and M. Monje, “An active role for neurons in glioma progression:
making sense of scherer’s structures,” Neuro-oncology, vol. 20, no. 10, pp. 1292–
1299, 2018.

[3] N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. I.
Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for
highly efficient and stable perovskite solar cells,” Nature Energy, vol. 3, no. 8,
pp. 682–689, 2018.

[4] E. R. Gerstner, “Mri and pet: Noninvasive tools to probe the biology of diffuse
intrinsic pontine glioma,” Journal of Nuclear Medicine, vol. 58, no. 8, pp. 1262–
1263, 2017.

[5] R. L. van Ineveld, M. Kleinnijenhuis, M. Alieva, S. de Blank, M. B. Roman, E. J.
van Vliet, C. M. Mir, H. R. Johnson, F. L. Bos, R. Heukers, et al., “Revealing
the spatio-phenotypic patterning of cells in healthy and tumor tissues with
mlsr-3d and stapl-3d,” Nature Biotechnology, pp. 1–7, 2021.

[6] T. Cooney, A. Lane, U. Bartels, E. Bouffet, S. Goldman, S. E. Leary, N. K.
Foreman, R. J. Packer, A. Broniscer, J. E. Minturn, et al., “Contemporary
survival endpoints: an international diffuse intrinsic pontine glioma registry
study,” Neuro-oncology, vol. 19, no. 9, pp. 1279–1280, 2017.

[7] D. Hargrave, U. Bartels, and E. Bouffet, “Diffuse brainstem glioma in children:
critical review of clinical trials,” The lancet oncology, vol. 7, no. 3, pp. 241–248,
2006.

[8] W.-T. Wu, W.-Y. Lin, Y.-W. Chen, C.-F. Lin, H.-H. Wang, S.-H. Wu, and
Y.-Y. Lee, “New era of immunotherapy in pediatric brain tumors: Chimeric
antigen receptor t-cell therapy,” International Journal of Molecular Sciences,
vol. 22, no. 5, p. 2404, 2021.

[9] R. Majzner, S. Ramakrishna, A. Mochizuki, S. Patel, H. Chinnasamy, K. Yeom,
L. Schultz, R. Richards, C. Campen, A. Reschke, et al., “Epct-14. gd2 car t-cells
mediate clinical activity and manageable toxicity in children and young adults
with h3k27m-mutated dipg and spinal cord dmg,” Neuro-Oncology, vol. 23,
no. Supplement_1, pp. i49–i50, 2021.

[10] J. Theruvath, E. Sotillo, C. W. Mount, C. M. Graef, A. Delaidelli,
S. Heitzeneder, L. Labanieh, S. Dhingra, A. Leruste, R. G. Majzner, et al.,
“Locoregionally administered b7-h3-targeted car t cells for treatment of atyp-

35

Bibliography

ical teratoid/rhabdoid tumors,” Nature medicine, vol. 26, no. 5, pp. 712–719,
2020.

[11] G. L. Lin, S. Nagaraja, M. G. Filbin, M. L. Suvà, H. Vogel, and M. Monje, “Non-
inflammatory tumor microenvironment of diffuse intrinsic pontine glioma,”
Acta neuropathologica communications, vol. 6, no. 1, pp. 1–12, 2018.

[12] D. Benitez-Ribas, R. Cabezón, G. Flórez-Grau, M. C. Molero, P. Puerta,
A. Guillen, E. A. González-Navarro, S. Paco, A. M. Carcaboso, V. Santa-
Maria Lopez, et al., “Immune response generated with the administration of
autologous dendritic cells pulsed with an allogenic tumoral cell-lines lysate in
patients with newly diagnosed diffuse intrinsic pontine glioma,” Frontiers in
oncology, vol. 8, p. 127, 2018.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

[14] C. Sommer, C. Straehle, U. Köthe, and F. A. Hamprecht, “Ilastik: Interactive
learning and segmentation toolkit,” in 2011 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pp. 230–233, 2011.

[15] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning work-
bench,” in Proceedings of ANZIIS’94-Australian New Zealnd Intelligent Infor-
mation Systems Conference, pp. 357–361, IEEE, 1994.

[16] N. Rusk, “Deep learning,” Nature Methods, vol. 13, no. 1, pp. 35–35, 2016.
[17] S. Webb, “Deep learning for biology.,” Nature, vol. 554, no. 7690, pp. 555–558,

2018.
[18] T. Kudo, S. Jeknić, D. N. Macklin, S. Akhter, J. J. Hughey, S. Regot, and

M. W. Covert, “Live-cell measurements of kinase activity in single cells using
translocation reporters,” Nature protocols, vol. 13, no. 1, pp. 155–169, 2018.

[19] K. E. Magnusson, J. Jaldén, P. M. Gilbert, and H. M. Blau, “Global linking of
cell tracks using the viterbi algorithm,” IEEE transactions on medical imaging,
vol. 34, no. 4, pp. 911–929, 2014.

[20] D. Ershov, M.-S. Phan, J. W. Pylvänäinen, S. U. Rigaud, L. Le Blanc,
A. Charles-Orszag, J. R. Conway, R. F. Laine, N. H. Roy, D. Bonazzi,
et al., “Bringing trackmate in the era of machine-learning and deep-learning.,”
Biorxiv, 2021.

[21] C. Wen, T. Miura, Y. Fujie, T. Teramoto, T. Ishihara, and K. D. Kimura,
“Deep-learning-based flexible pipeline for segmenting and tracking cells in 3d
image time series for whole brain imaging,” bioRxiv, p. 385567, 2018.

[22] C. Wen, T. Miura, V. Voleti, K. Yamaguchi, M. Tsutsumi, K. Yamamoto,
K. Otomo, Y. Fujie, T. Teramoto, T. Ishihara, et al., “3deecelltracker, a deep
learning-based pipeline for segmenting and tracking cells in 3d time lapse im-
ages,” Elife, vol. 10, p. e59187, 2021.

[23] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d
u-net: learning dense volumetric segmentation from sparse annotation,” in In-
ternational conference on medical image computing and computer-assisted in-
tervention, pp. 424–432, Springer, 2016.

[24] G. van Tulder, “elasticdeform: Elastic deformations for N-dimensional images,”
Mar. 2021.

36

Bibliography

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale ma-
chine learning,” in 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pp. 265–283, 2016.

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
The Journal of Machine Learning Research, vol. 13, pp. 281–305, 03 2012.

[27] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” Advances in neural information processing
systems, vol. 25, 2012.

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based opti-
mization for general algorithm configuration,” in International conference on
learning and intelligent optimization, pp. 507–523, Springer, 2011.

[29] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing systems,
vol. 24, 2011.

[30] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: A novel bandit-based approach to hyperparameter optimization,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6765–6816, 2017.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

[32] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
arXiv preprint arXiv:1710.05941, 2017.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, pp. 1026–1034, 2015.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pp. 249–256, JMLR Workshop and Con-
ference Proceedings, 2010.

[35] J. Lu, “Adasmooth: An adaptive learning rate method based on effective ratio,”
2022.

[36] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl,
“On empirical comparisons of optimizers for deep learning,” arXiv preprint
arXiv:1910.05446, 2019.

[37] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal
value of adaptive gradient methods in machine learning,” Advances in neural
information processing systems, vol. 30, 2017.

[38] D. Kato, M. Baba, K. S. Sasaki, and I. Ohzawa, “Effects of generalized pool-
ing on binocular disparity selectivity of neurons in the early visual cortex,”
Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 371,
no. 1697, p. 20150266, 2016.

[39] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pool-
ing in visual recognition,” in Proceedings of the 27th international conference
on machine learning (ICML-10), pp. 111–118, 2010.

37

Bibliography

[40] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020
IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology (CIBCB), pp. 1–7, IEEE, 2020.

[41] N. Abraham and N. M. Khan, “A novel focal tversky loss function with im-
proved attention u-net for lesion segmentation,” in 2019 IEEE 16th interna-
tional symposium on biomedical imaging (ISBI 2019), pp. 683–687, IEEE, 2019.

[42] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmentation,” in
Proceedings of the European conference on computer vision (ECCV), pp. 801–
818, 2018.

[43] M. Islam, V. Vibashan, V. Jose, N. Wijethilake, U. Utkarsh, and H. Ren,
“Brain tumor segmentation and survival prediction using 3d attention unet,”
in International MICCAI Brainlesion Workshop, pp. 262–272, Springer, 2019.

[44] D. Choi, “Pytorch deeplabv3+ 3d,” 2019.
[45] C. Yu, Z. Hu, B. Han, P. Wang, Y. Zhao, and H. Wu, “Intelligent measure-

ment of morphological characteristics of fish using improved u-net,” Electronics,
vol. 10, no. 12, p. 1426, 2021.

[46] U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell detection with
star-convex polygons,” in Medical Image Computing and Computer Assisted
Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part II, pp. 265–273, 2018.

[47] M. Weigert, U. Schmidt, R. Haase, K. Sugawara, and G. Myers, “Star-convex
polyhedra for 3d object detection and segmentation in microscopy,” in The
IEEE Winter Conference on Applications of Computer Vision (WACV), March
2020.

[48] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. La-
plantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An
open and extensible platform for single-particle tracking,” Methods, vol. 115,
pp. 80–90, 2017.

[49] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al., “Fiji: an open-source
platform for biological-image analysis,” Nature methods, vol. 9, no. 7, pp. 676–
682, 2012.

[50] K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and
G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,”
Nature methods, vol. 5, no. 8, pp. 695–702, 2008.

[51] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: a generalist
algorithm for cellular segmentation,” Nature methods, vol. 18, no. 1, pp. 100–
106, 2021.

[52] S. R. Garner et al., “Weka: The waikato environment for knowledge analysis,”
in Proceedings of the New Zealand computer science research students confer-
ence, vol. 1995, pp. 57–64, 1995.

[53] J. Ma, J. Zhao, and A. L. Yuille, “Non-rigid point set registration by preserving
global and local structures,” IEEE Transactions on image Processing, vol. 25,
no. 1, pp. 53–64, 2015.

38

A
Appendix 1

I

A. Appendix 1

Figure A.1

II

GRADUATE SCHOOL OF NATURAL SCIENCES
UTRECHT UNIVERSITY
Utrecht, the Netherlands
www.uu.nl

	List of Acronyms
	Nomenclature
	List of Figures
	List of Tables
	List of Equations
	Introduction
	Related work
	Methods
	Data
	Ground truth generation
	Preprocessing
	Model architecture
	Hyperparameter optimization
	Activation functions
	Kernel initializers
	Learning rate
	Optimizer
	Pooling

	Loss function
	Performance metrics
	Model architecture variations
	3D Attention U-NET
	DeepLabV3+

	Nucleus segmentation
	Tracking
	Trackmate
	3DeeCellTracker

	Results
	Protrusion segmentation
	Nuclei segmentation
	Tracking
	Data protocol
	Data collection
	Data preprocessing

	Discussion
	Conclusion
	Bibliography
	Appendix 1

