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Abstract 
Water is an essential nutrient for a healthy and productive dairy herd, as most life processes require water. 

As cows produce more milk, their water requirement increases. Therefore, insight into the drinking 

behavior of dairy herds is important, but the data currently available is outdated. Furthermore, although 

the importance of water is globally recognized, the daily water intake of individual cows is currently not 

monitored, making it impossible to ensure that all cows meet their water needs. Efficient techniques to 

monitor the water intake of individual cows are highly needed. Computer vision can be used to complete 

almost all the tasks required for such monitoring job. The process requires detection of drinking behavior 

and identification of individual cows. The approach involves training a Siamese neural network with triplet 

loss to identify individual cows. This network generates feature vectors (embeddings) from images, 

ensuring that embeddings of the same cow are close while those of different cows are far apart. 

Ultimately, the neural network can learn to distinguish coat patterns on cows, rather than directly learning 

identifiers that correspond to images. After training, the model can distinguish the spot patterns of cows 

well enough to need one or few images per cow to correctly classify all the cows in the herd. Therefore, this 

classification is called one-shot classification. Inference involves computing embeddings for new images 

and making predictions based on the most similar embeddings in the database. The model however had a 

fairly low accuracy when testing, and upon closer inspection, it seemed to be affected by the image's 

background. The proposal to tackle this problem has been addressed by using the instance segmentation 

model SAM by meta-AI along with GroundingDINO for zero-shot detection, in order to build a model that 

could correctly spot a cow in each image and subsequently segment it, leading to a clear image. Although 

the model now looks promising, further work is required to validate the model on the images without 

background. Once achieved, our model can work with pose estimation systems like DeepLabCut to monitor 

cow drinking behavior and assess individual water needs on the farm. 
 

 

Layman’s Summary 
A dairy cow's milk quantity and quality depend on the amount of water it consumes. In recent decades, 

there has been a significant increase in milk production per cow. As a result, the water requirements for 

each cow have risen. However, we currently lack a system to precisely monitor individual cow water intake 

on dairy farms. To address this issue, we aim to harness the power of artificial intelligence (AI). We plan to 

install cameras near the cow drinking troughs to observe their drinking behavior. These cameras will 

employ advanced algorithms like GroundingDINO to detect when a cow is present in an image and,  to 

further determine if the cow is actively drinking, an algorithm called DeepLabCut. 
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To ensure accurate tracking of each cow's water consumption, we've developed a model called a "Siamese 

Neural Network"(SNN). This unique AI system is capable of two crucial tasks: distinguishing between 

different cows in images and recognizing the same cow across various images. By integrating these 

components, we can analyze video footage and precisely identify when a cow is drinking, and which specific 

cow is doing so. It's important to note that our Siamese Neural Network has been improved to remove 

background elements, leaving only the cow visible in the image, leading to more accurate results. 

However, while our system shows promise, it still requires further training using a larger dataset. Once this 

is complete, we will be able to accurately measure the duration of time each cow spends drinking. This 

information, combined with data from water flow meters, will enable us to closely monitor the quantity of 

water each cow consumes. Ultimately, this approach will ensure that our cows receive the optimal amount 

of water necessary for high-quality milk production. 
 

 

1. Introduction 
 

1.1 Water Consumption in Dairy Cattle 
 

Water is widely acknowledged as a pivotal factor in the health and productivity of dairy herds (Houpt, 1984). 

Within the context of dairy nutrition, water is often designated as the quintessential nutrient, essential for 

facilitating critical physiological processes. These processes encompass digestion, nutrient metabolism, 

thermoregulation, maintenance of fluid and ion equilibrium, and waste elimination. To underscore its 

significance, even a relatively modest 20% loss of body water can be fatal for dairy cattle. Insufficient access 

to water carries tangible consequences for dairy herd performance. Studies conducted by Little et al. in 

1980 demonstrated a notable decrease in milk production when adult cattle were subject to water 

deprivation. Furthermore, Kertz, Reutzel, and Mahoney's research in 1984(Kertz et al., n.d.) highlighted that 

inadequate water intake in calves correlates with suboptimal weight gain. Notably, milk yield per cow per 

year has increased from 2580 to 9200 kg in the Netherlands between 1910 and 2022 (How Much Milk Does a 

Cow Produce?, 2023), from 6700 to 9300 kg in the United States and from 4900 to 6600 kg in Germany 

between 1990 and 2009 (Zehetmeier et al., 2012). This substantial upsurge in milk production per cow 

raises pertinent questions concerning the adequacy of water resources to sustain such elevated levels of 

production considering that milk is for roughly 87% made of water. 

Beyond the immediate impact on productivity, ensuring a dependable water supply for dairy cattle is 

increasingly recognized as a matter of welfare and sustainability. Ongoing concerns associated with climate 

change (Henning Steinfeld, 2006) and water scarcity (Ridoutt et al., 2010; Cardot et al., 2008)  have 

prompted a re-evaluation of the dairy industry's environmental footprint. Concurrently, attention to the 

health and well-being of dairy cows has grown (Barkema et al., 2015).  

A conspicuous trend within the dairy sector is the substantial increase in milk production per cow in the last 

decade (Zehetmeier et al., 2012). This upsurge raises pertinent questions concerning the adequacy of water 

resources to sustain such elevated levels of production. Consequently, it is imperative to institute a 

rigorous system to monitor water consumption of dairy cows. This urgency is further underscored by the 

observed disconnect between extant data and the contemporary milk production per cow, necessitating 

updated and meticulous water intake monitoring to uphold the health and productivity of dairy herds 

(Houpt, 1984; Murphy, 1992.; Jensen & Vestergaard, 2021). 
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1.2 Automation of Free Water Intake Monitoring and Addressing the Identification Challenge 
 

In recent decades, we've witnessed remarkable technological progress, particularly in the realm of 

automation. These advances have transformed the landscape of surveillance and detection across various 

sectors, with agriculture standing out as a prime beneficiary. Automation doesn't just simplify once 

laborious data collection tasks; it also empowers us to monitor vital parameters that were once challenging 

to assess manually. One such parameter is the water consumption of dairy cows, a critical aspect of their 

well-being (Cardot et al., 2008; Meyer et al., 2004). 

While the significance of water consumption for animal welfare is widely recognized, there remain 

significant gaps in our ability to routinely monitor individual Free Water Intake (FWI) (Cardot et al., 2008). 

Historically, FWI measurements were confined to experimental settings and were not seamlessly integrated 

into daily monitoring practices. In experimental contexts, FWI has been quantified through automatic water 

flow registration (Melin et al., 2005) or by manually reading water meters associated with individual 

stalls(Huuskonen et al., 2011); (Liang et al., 2020). 

Concurrently, an equally pivotal facet of effective monitoring is the precise identification of individual cows 

within a dairy herd. Traditionally, Radio-Frequency Identification (RFID) has been the go-to method for 

animal identification (Mendes et al., 2011; (Matthews et al., 2016). However, despite its widespread 

adoption, RFID has inherent limitations. Initially, it involves an invasive data gathering process, mandating 

the physical attachment of an RFID tag to each and every animal. Thereafter, every cow necessitates a 

distinct RFID tag, resulting in increasing expenses that correlate with the herd's size. Lastly, RFID relies on 

proximity, demanding the deployment of RFID scanners at multiple locations for data collection. 

To comprehensively overcome these challenges and present an all-encompassing solution, we advocate for 

the pioneering implementation of computer vision technology. This non-intrusive method not only 

streamlines the identification of individual cows within a dairy herd but also carries the potential for 

seamlessly automating FWI monitoring. This holistic approach holds the promise of optimizing dairy herd 

management while ensuring consistent access to an adequate water supply for every dairy cow. 

 

1.3 Introduction to the Application of Computer Vision 
 

In the expansive landscape of scientific inquiry, computer vision emerges as an interdisciplinary domain, 

strategically poised to replicate the complexities of the human visual system. This endeavor empowers 

computers with the ability to perform tasks reminiscent of human capabilities (Huang, 1996). Within the 

tapestry of this multifaceted discipline lies a diverse array of subtasks, ranging from object detection to 

object recognition and pose estimation. 

Our focus is on Grounding DINO, a groundbreaking system that redefines the possibilities of object 

detection and recognition (Liu et al., 2023). This innovative solution marries the robust capabilities of the 

Transformer-based detector DINO with grounded pre-training. The result is a system with the remarkable 

capacity to identify diverse objects, even when guided by human inputs such as category names or 

referring expressions. Grounding DINO's charm surpasses its competence as it stands as the only zero-shot 

detection system with an impressive 52.5 Average Precision (AP) score on the COCO detection zero-shot 

transfer benchmark. Moreover, its open-source architecture offers unparalleled versatility, facilitating 

seamless adaptation for training on specialized datasets (Liu et al., 2023). 
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In contrast, pose estimation, a critical facet of computer vision, finds its embodiment in DeepLabCut (DLC) 

(Mathis et al., 2018). This tool is complemented by a user-friendly graphical interface (Nath et al., 2019), 

greatly simplifying the labor-intensive tasks of data labeling and model training. These innovative 

methodologies provide the bedrock for the development of customized systems designed to monitor 

drinking behavior through the lens of computer vision. For example, DLC empowers users to precisely 

determine the spatial positions of various segments of a cow's anatomy. These spatial cues are 

instrumental in discerning whether a cow is actively engaged in the act of drinking. When a cow's mouth, 

for instance, approaches a water trough, it signifies a higher likelihood of the cow assuming a drinking 

posture compared to when the mouth is distanced from the trough. 

However, the task of monitoring drinking behavior necessitates the accurate identification of cows during 

the act of drinking. To address this challenge comprehensively, we advocate for the utilization of Siamese 

Neural Networks (SNN), a promising solution within the realm of computer vision. 

 

1.4 Siamese Neural Network (SNN) 
 

A Siamese Neural Network (SNN) exemplifies the concept of similarity learning, distinguished by a two-

stage process depicted in Figure 1. In the training stage, instead of directly associating labels with images, 

the SNN focuses on learning to distinguish between different objects without predicting their correct labels. 

This is akin to how a human can visually differentiate between, say, an elephant and a monkey without 

necessarily knowing their names. Only after becoming adept at distinguishing individual cows, does the 

model employ the corresponding labels in the inference stage to classify new images. During the training 

stage, the inclusion of more images per cow and a greater overall number of images accelerates the 

learning process. However, once the inference stage is reached, only one or a few images per cow are 

sufficient for accurate classification. In essence, the SNN becomes a one-shot classifier, requiring minimal 

examples to classify a cow correctly (Koch et al., 2015; Schroff et al., 2015). 

The SNN operates by converting images into n-dimensional feature vectors, also known as embeddings, 

through convolution. In the training stage, it learns to make embeddings of the same cow more similar 

while making embeddings of different cows less similar. In the inference stage, classification involves 

comparing the embedding of a new cow image with the embeddings of cow images in a database, with the 

most similar embedding likely belonging to the same cow (Koch et al., 2015.; Schroff et al., 2015). One 

significant advantage of the SNN is its reduced need for retraining when introducing a new cow to the herd. 

Rather than learning specific spot patterns, the model learns to distinguish different spot patterns. 

Assuming the model generalizes effectively, only one image of a new cow is required to update the 

database without extensive retraining. However, effective generalization relies on training the SNN on a 

sufficiently large dataset that encompasses the full spectrum of possible variations in cows' spot patterns 

(Wang et al., 2014; Schroff et al., 2015). Consequently, an SNN trained on herd A may not seamlessly 

distinguish all cows in herd B, but with an increasing number of cows in herd A, its ability to differentiate 

cows in herd B should improve. 

Triplet Loss 
The SNN is often visually depicted as a network with multiple identical Convolutional Neural Networks 

(CNNs) stacked on top of each other. While this visualization aids in understanding, it's essential to note 

that there is only one CNN. Comparing the outputs of this CNN is achieved through a concept known as 

triplet loss. Triplet loss groups three embeddings into triplets: an anchor (xa), a positive (xp), and a negative 

(xn). The anchor (xa) and positive (xp) are embeddings from the same cow, while the anchor (xa) and 

negative (xn) are from different cows. Triplet loss penalizes both large distances (D) between embeddings of 
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the same cow, D (xa, xp), and small distances between embeddings of different cows, D (xa, xn). This triplet 

organization motivates the stacked visualization. 

Offline Triplet Generation 
Two main methods exist for implementing triplet loss: offline and online (Schroff et al., 2015). Offline triplet 

generation occurs before or between training epochs. Data is organized into triplets (xa, xp, xn), split into 

batches, and then training commences. While this approach offers swift computation, its performance can 

deteriorate over time as the model optimizes weights to make D (xa, xp) small and D (xa, xn) large, gradually 

losing information (Schroff et al., 2015). This limitation can be mitigated by periodically regenerating 

triplets every few epochs (Schroff et al., 2015). 

Online Triplet Generation 
In contrast, online triplet generation occurs within mini-batches to identify the most informative triplets 

after converting them into embeddings. Each embedding can serve as an anchor (x a), and the positive (xp) 

with the largest D (xa, xp) and the negative (xn) with the smallest D (xa, xn) within each batch have the most 

significant impact on training (Schroff et al., 2015). Although this approach consumes more time, it 

generally yields better performance gains (Schroff et al., 2015). 
 

 
Fig. 1: 
Proposed workflow of the drinking monitor 

 

2. Materials and methods 

2.1 Datasets 
 

For our study, a surveillance system on a Dutch dairy farm was set up, equipped with six strategically 

positioned cameras, each focused on a different drinking trough. On October 10, 2022, 24 hours of 

continuous video footage were collected. This dataset serves as the foundation for our research, allowing 

us to investigate dairy cow behavior and water consumption patterns. In the following sections, we'll detail 

our analysis methods to gain insights into the datasets structure. 
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DONE dataset 
On the same farm, we extended our surveillance efforts to encompass the automated milking robots. Four 

cameras were strategically installed, situated at the robot entrances and directed downward to capture the top 

view of each cow. This initiative resulted in the recording of a total of 221 cows during their milking sessions. 

From this extensive dataset, we manually extracted twenty images for each of the 170 cows, out of the 221, 

during a milking session. It's worth noting that the reason for the reduction of cows used was essential due to 

the time-consuming nature of data extraction. These images were sourced from three distinct milking robots, 

ensuring diversity within the dataset. In summary, our dataset, denoted as "DONE," comprises a collection of 

3,400 images, featuring 170 distinct cows. To facilitate model training and validation, we divided this dataset 

into an 80% training subset and a 20% validation subset. Additionally, because all frames in the video recordings 

were equipped with timestamps and cam-labels, we applied blurring techniques to these in all images 

preventing the model from learning the timing or camera sources. 

 

Fig. 2:  

Comparison of images from the 2 datasets. 

IC-64 

A subset of a dataset published by (Li et al., 2021), comprises 1,040 high-quality images featuring 13 distinct 

cows. Each cow is represented by 80 images, ensuring diverse angles, lighting conditions, and backgrounds. 

To maintain equal image representation for our model, we utilized this subset, splitting it into an 80%/20% 

train-validation ratio. This selection was made to assess the potential impact of dataset quality on model 

performance while maintaining a balanced class distribution. 

 

2.2 Background work and Model architecture 
 

The model architecture comprises two main stages: feature extraction and feature mapping. In the first 

stage, multiple convolutional layers are employed to extract features from the input image. In the second 

stage, these extracted features are transformed into a 128-dimensional vector. The model, previously 

initiated by Daniël M. van Herwijnen, is derived from Google's InceptionResnet (Szegedy et al., 2016), with 

a notable modification. Unlike InceptionResnet, which utilizes pretrained weights, this adaptation initializes 

the weights randomly. Following the Inception network, the architecture incorporates two fully connected 

layers, each consisting of 1028 neurons, and a final fully connected layer that produces a 128-dimensional 
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vector. To enhance the robustness of the model, the input data undergo augmentation through random 

adjustments in brightness, contrast, and translation. The translation layer introduces horizontal and vertical 

shifts to reduce the model's dependency on the precise positioning of the cow within the image. 

Subsequently, the model underwent significant refinements to enhance its adaptability and adherence to 

best practices, aligning it more closely with the FAIR (Findable, Accessible, Interoperable, and Reusable) 

principles (Wilkinson et al., 2016) by refining  the documentation. These refinements included the addition 

of comprehensive comments throughout the code, improving readability and making the implementation 

more transparent to future developers and collaborators. These efforts aimed to facilitate easier access, 

understanding, and reusability of the model. Although the core architecture remained intact, substantial 

modifications were introduced to improve its functionality. 

Originally, the model relied on predetermined pathways and GPU resources for processing, applying a 

uniform augmentation process to all images. However, these limitations have been addressed and rectified 

in the following ways: 

Dynamic Resource Allocation 
The model's adaptability has been greatly enhanced by implementing dynamic resource allocation. It can 

now detect available GPUs or TPUs and gracefully fall back to CPU processing if none are found. This 

ensures that the model can efficiently utilize the computing resources at its disposal. 

Flexible Directory Structure 
The rigid directory structure has been revamped to operate within a more flexible environment. This 

change allows for greater versatility in handling various file structures and locations, making the algorithm 

more adaptable to different data setups. 

Randomized Augmentation 
The augmentation process has been redesigned to introduce randomness when applied to different 

images. Rather than a uniform augmentation approach, the algorithm now initiates diverse augmentation 

techniques for individual images. This enhances the model's versatility and usability across a wide range of 

datasets. 

Improved Documentation 
 Recognizing the significance of comprehensive documentation, considerable efforts have been invested in 

enhancing the code's clarity and accessibility. This endeavor aims to make the codebase more transparent 

and user-friendly, aligning it better with FAIR principles (Wilkinson et al., 2016). By providing more 

comprehensive documentation, we seek to facilitate a deeper understanding of the code's functionalities 

and ensure a smoother user experience. 

Enhanced Functionality 
Several enhancements have been made to the codebase to improve efficiency and accommodate more 

flexible data handling. This includes transitioning from fixed quantities to percentage-based data handling 

and incorporating reminder logic for batch creation. 

These extensive refinements collectively contribute to a more adaptable, user-friendly, and FAIR-compliant 

model architecture, poised to meet the evolving needs of scientific research and application. 

 

2.3 Background removal pipeline 
 

After the initial training, some improvement in the model's accuracy was observed. However, further 

investigation was deemed necessary, as suggested by Daniël M. van Herwijnen's hypothesis, to identify 

potential factors affecting performance. A critical consideration in this context was the presence of 
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background elements in the training images. Upon closer examination, when the trained model was 

evaluated on the validation dataset, it exhibited some degree of accuracy, albeit marginally above that of a 

random classifier. However, a noteworthy anomaly surfaced when the same set of images, with 

backgrounds removed, was employed for evaluation. In this scenario, the model's performance suffered a 

substantial decline, confirming the hypothesis that the model primarily recognized the entire image rather 

than accurately detecting and recognizing the cow. This limitation became especially apparent due to the 

similarity in backgrounds across all images, which hindered the model's ability to effectively identify the 

cows. 

 

Fig. 3: 
Background removal pipeline step-by-step process, on the left the original image, in the middle the mask 

and on the right the final image. 

To address this issue, a series of strategic steps were meticulously executed, leveraging the resources of 

Google Collab. These measures were undertaken to tackle the challenge of enhancing the model's accuracy 

and effectively isolating cows within images while transitioning to a cloud-based approach and adhering to 

TensorFlow's directory structure requirements. Initially, the DONE dataset was uploaded to Google Drive, 

then the following procedures were carried out:  

Segment Anything Model (SAM) Installation 
We installed the Segment Anything Model (SAM) developed by Meta AI (Kirillov et al., 2023). SAM is a 

powerful computer vision model designed for precise object segmentation within images. It excels in 

identifying and separating objects or regions of interest, regardless of their complexity or variety. 

GroundingDINO Integration 

GroundingDINO (Liu et al., 2023), another key component of our methodology, was incorporated into the 

workflow. GroundingDINO is an advanced object detection model that combines elements from 

Transformer-based detectors and grounded pre-training. It possesses the capability to detect arbitrary 

objects based on human inputs such as category names or referring expressions, adding an extra layer of 

flexibility to our approach. 

Object Detection and Bounding Box Creation 

With GroundingDINO in place, we initiated the process of cow detection. The model effectively identified 

the cows within the images and generated bounding boxes around them. These bounding boxes outlined 

the regions containing the cows. 

Segmentation with SAM 

The Segment Anything Model (SAM)(Kirillov et al., 2023) was then employed to perform precise 

segmentation. SAM focused exclusively on the area defined by the bounding boxes, effectively creating 
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masks. These masks isolated the cows from the background, producing a clean and distinct representation 

of each cow within the images. 

 

Mask Application 

Finally, the masks generated by SAM were overlaid on the original images. This step effectively removed all 

elements except for the cows, resulting in images featuring only the isolated cow subjects. 

This refined approach allowed us to enhance the accuracy of our model by ensuring that it was no longer 

trying to recognize the entire image but instead focusing on the crucial task of detecting and recognizing 

individual cows. By strategically combining the capabilities of SAM and GroundingDINO, we achieved a 

more precise and efficient method for isolating cows within images, contributing to the overall success of 

our study (Fig. 3). Thereafter, the edited dataset was moved to the Azure blob.   

 

2.4 Retraining and Integration of cloud-based approach 
 

In the subsequent project phase, our aim was to seamlessly adapt our algorithm to a cloud-based 

infrastructure, reducing its reliance on local storage resources. This strategic shift was prompted by our 

commitment to enhance scalability and accessibility. However, this transition towards a cloud-centric 

approach proved to be more intricate than initially expected, primarily due to the notable incompatibility 

between specific Tensorflow(Martín~Abadi et al., 2015) classes and the Azure file system. While we 

addressed all six essential functions and successfully implemented the first five, the last function 

encountered challenges related to file uploading due to compatibility issues with the Azure file system. 

As of today, our code has not achieved full adaptability to the cloud environment. Although the model 

functions, minor implementations are required for complete compatibility with the cloud-based 

architecture. These necessities arose due to unexpected challenges stemming from the Tensorflow-Azure 

interaction. Extensive investigation and dedicated problem-solving efforts have yielded valuable insights 

into the necessary coding and system configuration adjustments. The ongoing refinement and fine-tuning 

of our algorithm play a pivotal role in ensuring resilience, effectiveness, and seamless integration within the 

chosen cloud environment. These continuous efforts are integral to advancing the overall success and 

scalability of our project. 

 

2.5 Metrics 
 

In our efforts to evaluate the progress of our model's training, we rely on two pivotal metrics: the 

silhouette score, an evaluator of clustering performance, and cosine similarity, a measure of vector 

similarity. These metrics serve as essential tools for continuously assessing our model's performance 

throughout the training journey. 

Silhouette Score 
The silhouette score provides us with insights into how effectively an individual embedding (referred to as 

'i') has been clustered concerning other embeddings. To compute this score, we commence by determining 

the average distance from 'i' to all embeddings sharing the same label, which we denote as 'a(i)'. 

Subsequently, we calculate the average distance from 'i' to all embeddings within the closest cluster, 

denoted as 'b(i)'. The silhouette score ('s(i)'), expressed by the formula: 
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𝑠(𝑖): =
𝑏(𝑖) −  𝑎(𝑖)

𝑚𝑎𝑥 (𝑎(𝑖), 𝑏(𝑖))
 

This score spans from -1, indicating suboptimal clustering, to 1, signifying exemplary clustering. By 

calculating the silhouette score at each training step, we gain invaluable insights into the progress of our 

model's training (Rousseeuw, 1987). 

Cosine Similarity 
Cosine similarity is a measure of vector similarity (Jiawei Han, 2012), ranging from -1 to 1. Its definition is as 

follows: 

𝑐𝑜𝑠(𝜃) : =
𝐴 ·  𝐵

|(|𝐴|)| ∗  |(|𝐵|)|
 

A value of 1 denotes identical vectors, while -1 suggests opposite vectors. Within our context, we harness 

cosine similarity to predict the label of an unknown embedding from a collection of known embeddings. 

This prediction hinges on identifying the embedding with the highest cosine similarity to the unknown one. 

Cosine similarity plays a pivotal role during the inference phase of our SNN, facilitating the determination of 

a cow's identity in an image based on the similarities between embeddings. 
 

 

3. Results 

 

3.1 Image Extraction 
 

Through the collaborative utilization of GroundingDINO and SAM, we have effectively implemented a 

comprehensive pipeline for the precise isolation of cows within our images. This refined methodology 

seamlessly extends its applicability to the raw images used during the inference phase, enabling accurate 

cow detection. Subsequently, the model assesses whether the cow is in the act of drinking. If this behavior 

is detected, our pipeline ensures the removal of background elements, resulting in images that are 

specifically refined for further analysis within the Siamese Neural Network (SNN). The SNN plays a pivotal 

role in classifying and distinguishing between individual cows, thereby making a significant contribution to 

the overall success and accuracy of our project. 

 

 



11 
 

 

Fig. 4: 
Detection of drinking cow and removal of the background 

 

3.2 Model Improvements 
 

After the various implementations and retraining of the model, as explained in sections 2.3 and 2.4, the 

model achieved its best performance, demonstrating avoidance of overfitting after 50 epochs. As a result, 

the model checkpoints were extracted and evaluated. This evaluation showed a significant improvement in 

the Loss score compared to the original model, with a reduction of -0.35 for training (from 0.45  to 0.1) and 

-0.38 for validation (from 0.5 to 0.12). These improvements signify a substantial decrease in errors and 

demonstrate the model's enhanced accuracy and precision. 

Additionally, the Silhouette scores displayed remarkable progress, with an increase of 0.23 for training 

(from 0.05 to 0.28) and 0.4 for validation (from 0.1 to 0.5) compared to the previous model. This indicates 

that the latest model excels in effectively clustering similar cows together. This enhancement reflects the 

model's ability to consistently and accurately group cows in images, a notable improvement from its 

previous performance. 

Furthermore, the accuracy of the model has seen significant gains during validation, with a 0.31 

improvement when provided with an unedited image (from 0.39 to 0.7) and of a 0.76 increase when given 

an image with the background removed (from 0.1 to 0.86). Overall, these findings indicate that the model 

has become considerably more robust and is now highly effective in detecting cows with a high degree of 

certainty. These improvements signify a substantial leap in the model's performance, demonstrating its 

enhanced accuracy and consistency in identifying and classifying cows in images.  
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Fig. 5: 
Graphic representation of Loss score, Silhouette score and Accuracy across multiple model steps.  
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3.3 Fairness 
 

Given the scope and time constraints of this substantial project, the primary objective was not to complete 

it in its entirety but to lay a solid foundation for its continuation. To achieve this, we placed significant 

emphasis on creating comprehensive documentation and adhering to the FAIR principles (Wilkinson et al., 

2016), ensuring that the work remains accessible and extensible. Here's an expanded and improved version 

of the text: 

Code Availability 
Extensive measures were taken to ensure the availability and comprehensibility of the codebase. The entire 

codebase was meticulously documented, employing a systematic approach with clear structure and 

variable naming that adhered to conventions. In addition, we provided a comprehensive HTML file, 

produced with sphinx (Brandl, 2021), that explains its functionality and offers guidance on utilizing the 

major classes integrated into the algorithm. To further assist users and researchers, the code and 

documentation have been made publicly available on my personal GitHub repository. This repository also 

includes Jupyter notebooks that exemplify how the code can be effectively applied in various scenarios. 

Furthermore, to facilitate code execution, a requirements-file is included within the repository, enabling 

users to effortlessly install all the requisite Python packages. 

Data Availability 
The collected data, a valuable asset to this project, has been securely stored on an external hard drive 

entrusted to the corresponding author and has since been returned upon the project's completion. We 

took great care to meticulously structure and annotate the data, ensuring its traceability and utility. For 

those interested in accessing the data, it is available upon request, reflecting our commitment to 

transparency and responsible data management. 
 

 

4. Discussion 
 

4.1 Future implementations of the model 
 

At its current stage, our model adeptly detects whether a cow is engaged in drinking behavior and can 

distinguish between individual cows with the necessary cow-specific data. Nevertheless, an exciting avenue 

for potential future development lies in expanding the model's capabilities to measure the duration of a 

cow's drinking activity, which is essential for accurately estimating water consumption.  Our vision for the 

next phase includes implementing Grounding Dino to handle video file formats. This enhancement would 

enable continuous monitoring of cows' drinking patterns and durations, providing a more comprehensive 

view of their drinking behaviors. With this extended functionality, we can proceed to model the rate at 

which cows drink, a critical factor for assessing their water consumption. In theory, once these milestones 

are achieved, the model could effectively determine if each bovine meets its water intake requirements.  

This innovative approach involves strategically placing cameras near water troughs, making our model a 

more cost-effective and versatile alternative to the current RFID (Radio Frequency Identification) 

monitoring sensors. Such an implementation would represent a significant advancement in our project's 

capabilities, contributing to more efficient cattle management. 
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At its current stage, our model demonstrates strong performance. However, an intriguing avenue for 

exploration involves assessing its adaptability in diverse scenarios, including herds that haven't been 

previously tested and even within specific cattle breeds that lack distinctive coat motifs. The successful 

performance of the model under these circumstances would mark a significant achievement.   

Envisioning the future, one possibility is to transition our model into a user-friendly application. By doing 

so, we could facilitate its widespread use across farms worldwide, ensuring its accessibility to diverse 

agricultural settings. This expansion would represent a remarkable step forward in making our algorithm 

readily available and beneficial to the global farming community. 

 

4.2 Possible applications of the model 
 

Leveraging the model's ease of trainability and its remarkable performance scores, the algorithm opens the 

door to numerous prospective applications, particularly when fine-tuned for specific contexts. A captivating 

avenue for exploration involves broadening the model's utility by enabling it to monitor a diverse spectrum 

of behaviors among cows. This extension could be realized through the utilization of techniques like 

Grounding Dino or Deep Lab Cut to model the requisite behaviors, followed by input to the Siamese Neural 

Network (SNN) for cow detection. Such an enhancement holds the potential to unveil anomalies within the 

herd, a pivotal aspect of effective livestock management. This exciting possibility harmonizes with our 

continuous dedication to optimizing the model's capabilities across a range of scenarios. 
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