
 

 
 

Deep learning approaches to predicting Autism 
Spectrum Disorder diagnosis from video data 

 
 
 
 
 
 
 
 
 
 

Shotaro Hato 
 

Supervised by Ulrike Gehring and Sonja de 
Zwarte 

 
MSc Bioinformatics and Biocomplexity 

 
Utrecht University 

 
 
 
 
 
 
 
 
 



2 
 

Title: Deep learning approaches to predicting Autism Spectrum Disorder 
diagnosis from video data 

 
 
Shotaro Hato 

s.hato@students.uu.nl 
Student number: 1066757 
MSc Bioinformatics and Biocomplexity 

Utrecht University 
 
 

Writing Assignment (December 17th, 2023 – January 15th, 2024) 
Under the supervision of Ulrike Gehring and Sonja de Zwarte 
Utrecht University 

Yalelaan 2 
3584 CM Utrecht 
The Netherlands 



3 
 

Contents 
 
Contents …..................................................................................... 3 

Abstract ……................................................................................... 4 
Layman’s summary ........................................................................ 5 
Introduction .................................................................................. 6 

 ASD characteristics ................................................................ 6 
 Traditional ASD diagnosis and its limitations .............................. 7 
AI approaches in ASD diagnosis ....................................................... 8 

 AI overview and application examples ....................................... 8 
 AI approaches in ASD diagnosis with video data as input ............. 9 
  ASD diagnosis with facial videos .................................... 14 

  ASD diagnosis with pose and gait videos ......................... 15 
  ASD diagnosis with multimodal features from videos ......... 17 
Discussion ................................................................................... 19 

Discussion and comparison of nine video-based AI approaches for 
ASD diagnosis .............................................................................. 19 
 Machine learning approaches in ASD diagnosis ......................... 22 

 Other modalities for AI approaches in ASD diagnosis ................. 23 
Conclusion ................................................................................... 24 
References .................................................................................. 24 

 
  



4 
 

Abstract 
 
Autism Spectrum Disorder (ASD), a neurodevelopmental condition, affects 

approximately 1 in 100 individuals worldwide. Confirming a clinical 
diagnosis of ASD relies predominantly on interviews and questionnaires, 
yet these approaches have inherent limitations. Presently, the rapid 

development of Artificial Intelligence (AI) technologies across various 
domains, including medical research, has spurred considerable interest 
among researchers exploring AI applications in ASD studies. A noteworthy 

approach is the utilization of video-based ASD diagnosis with AI, offering 
advantages in terms of accessibility and information volume compared to 
other data modalities, such as facial and brain images. 

 In this study, we conducted a search for video and AI-based ASD 
diagnosis studies published between 2018 and 2024, identifying nine 
pertinent papers. Our analysis and discussion of these papers, segregated 

by input features, 1. Facial features, 2. Pose and gait features and 3. 
Multimodal features. These input features resulted in a promising ASD 
prediction accuracy on the test data range of 79.7-96.39%. However, we 

also highlighted certain issues and areas for improvement like out-of-
cohort validation, sample size, the black box problem with AI, low 
specificity, and the establishment of robust and easy video-capturing 

protocol. These insights contribute valuable information for future clinical 
applications in the domain of ASD diagnosis.  
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Layman’s summary 

 
According to a report by the World Health Organization (WHO), Autism 

Spectrum Disorder (ASD) affects 1 in 100 children. Neurodevelopmental 
disorders, including ASD and Attention Deficit Hyperactivity Disorder 
(ADHD), significantly impact individuals' social lives. ASD patients often 

encounter challenges in focusing on tasks, leading to difficulties in school 
activities. ASD, being a spectrum disorder, exhibits varying degrees of 
severity among individuals. The co-occurrence of ASD and ADHD in an 

individual can result in an intense concentration on specific interests but 
vulnerability to distraction by other stimuli. Pinpointing causal factors or 
genes is challenging due to the diversity in the ASD population and its 

developmental nature within brain neurons. 
  
 Despite these complexities, the substantial impact of ASD on individuals' 

lives has spurred research into diagnosis and treatment. Traditional 
diagnostic methods rely on interviews with clinicians and questionnaires 
completed by parents and children. Generally, ASD can be diagnosed at 

the age of months 18 and 24, but symptoms are more distinct at older 
ages. Therefore, a definitive diagnosis can be made later. Still, Early 
diagnosis makes early interventions possible to prevent developmental 

delays. However, the interview-based approach has faced limitations, 
such as the difficulty of early-age diagnosis, the time-consuming nature of 
interviews, and the stress imposed on medical experts, children, and 

parents. The accuracy of traditional diagnoses with interviews remains a 
concern, as even with sophisticated and standardized instructions for ASD 
diagnosis, interviewers may overlook minor symptoms in affected 

individuals. Furthermore, comprehending the diverse spectrum of ASD 
poses a formidable challenge for human evaluators. 
  

 To address these issues, there is growing interest in leveraging Artificial 
Intelligence (AI) technologies for ASD diagnosis. AI, with its capacity to 
handle extensive datasets and solve complex tasks swiftly, is gaining 

prominence in various scientific studies. Many ASD researchers advocate 
for AI applications in diagnosis, utilizing multiple inputs such as facial 
images, brain images, and audio data. Videos, as a promising input for 

ASD diagnosis, provide rich information, capturing specific behavioral and 
facial movements exhibited by ASD patients. The accessibility of video 
data further enhances its appeal for ASD diagnosis in young children. 

  
 Thus, in this study, we review papers about AI approaches in ASD 
diagnosis specifically focusing on video data. 
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1. Introduction 

 
1.1. ASD characteristics 

 
Autism Spectrum Disorder (ASD) constitutes a neurodevelopmental 
condition that impacts social activities such as communication, education, 

and vocational pursuits. The prevalence of ASD is reported to be 1 in 100 
children (Zeidan et al., 2022). Recently, the ASD population has 
continued to rise. A comprehensive review paper addressing the 

escalation of ASD (Matson and Kozlowski, 2011) posited that changes and 
advancements in ASD diagnosis might contribute to the observed 
increase. Environmental and genetic factors may underlie this 

phenomenon; however, the intricate nature of ASD etiology renders it still 
largely unknown. 
 Individuals with ASD exhibit distinctive behaviors in their daily lives. 

Echolalia, characterized by the repetitive use of phrases, is a notable trait. 
Additional ASD-specific patterns encompass challenges in communication, 
difficulty in transitioning between activities, and a tendency to adhere 

rigidly to specific behaviors or objects (WHO, 2023). Moreover, individuals 
with ASD display reduced facial expressions and emotional expressions. 
In stressful situations, individuals with ASD may exhibit an intense 

response known as a meltdown. These deviations from typical 
development (TD) can impede various tasks, including academic studies 
and occupational responsibilities. 

 Contemporary parlance designates autism as a spectrum, acknowledging 
the existence of a continuum of traits. The severity of symptoms 
correlates with the requisite level of support. Due to the comorbidity of 

ASD with conditions such as depression, Attention Deficit Hyperactivity 
Disorder (ADHD), and other mental disorders, investigating not only ASD 
cohorts but also cohorts focussing on these related conditions is 

significant to make accurate diagnoses for subsequent medical 
examinations and therapeutic interventions. The Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5; American Psychiatric 

Association, 2013) stands as a comprehensive diagnostic manual 
encompassing over 70 disorders, including ASD. Involving more than 200 
experts, the criteria in DSM-5 are highly credible. According to DSM-5, 

ASD can be categorized into three levels: Requiring Support (Level 1), 
Requiring Substantial Support (Level 2), and Requiring Very Substantial 
Support (Level 3). Subjects are classified based on the severity of 

repetitive movements, insistence on sameness, fixated interests, etc. 
 Researchers and healthcare professionals worldwide express keen 
interest in the exploration of ASD studies and therapeutic interventions. 

Conventional therapeutic approaches include parent training and Applied 
Behavior Analysis (ABA). The former entails the active involvement of 

parents in the training of children with ASD, while the latter necessitates 
intensive intervention programs (Brentani et al., 2013). Although there 
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exist over a thousand different strategies for treating ASD symptoms, the 
efficacy of these approaches varies among individuals. 

 
1.2. Traditional ASD diagnosis and its limitations 
 

Traditionally, ASD diagnoses rely on interviews and questionnaires based 
on criteria like DSM-5. For example, the Modified Checklist for Autism in 
Toddlers (M-CHAT; Robins et al., 2001) and M-CHAT with Follow-Up (M-

CHAT/F) serve as reliable screening criteria for early ASD detection 
globally (Kleinman et al., 2008). The M-CHAT comprises 23 yes/no 
questions for parents addressing children's behavior and development. 

Despite the demonstrated high reliability in an experiment involving 1293 
children, it does not necessitate specialized devices (Robins et al., 2001). 
 The Screening Tool for Autism in Toddlers & Young Children (STAT) offers 

another viable method for ASD identification, targeting children aged 2-3 
years. STAT requires only 20 minutes for assessment by a clinician and 
consists of 12 items pertaining to children's social activities, interactions, 

and behaviors. In many instances, psychiatrists and pediatricians cannot 
provide a definitive ASD diagnosis for at-risk individuals until they reach 
the age of 3.5 years. Nevertheless, early diagnosis using these 

characteristics is crucial as it facilitates early tailored therapies, stress 
reduction, and cost savings (Okoye et al., 2023). ASD traits may manifest 
in infants under 9 months, starting with a lack of response to their name 

and facial expressions. As the child ages, more ASD-specific traits and 
behaviors may become observable during interactions with parents and 
peers. 

 ASD diagnosis has been investigated by many researchers, but there are 
certain limitations. Firstly, as mentioned above, ASD has a diverse 
spectrum. Three-level classifications like DSM-5 or binary classifications 

are not enough. Acknowledging the spectrum and divergence of autism 
holds significance for therapeutic approaches and follow-up assessments. 
Despite that, non-binary and more accurate assessment methods by 

clinicians have not been developed. As highlighted earlier, early diagnoses 
are imperative, and numerous screening tools aim to fulfill this objective. 
However, since infants show fewer ASD features compared with older 

children, symptoms are not obvious to clinicians. Taking into account 
these facts, a non-human i.e. computer-based approach has been 
developed in ASD studies. 

 Additionally, there are potential drawbacks to early diagnosis. For 
instance, an ASD diagnosis can carry a stigma for children at a young 
age. Additionally, the false positive rate of early diagnosis exceeds that of 

late diagnosis due to certain symptoms manifesting at older ages in the 
context of social communication (Okoye et al., 2023). Thus, precise 
diagnosis, extensive research, and societal understanding are essential for 

future ASD studies. 
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2. AI approaches in ASD diagnosis 
 
2.1. AI overview and application examples 

 
In various academic disciplines, there is a growing emphasis on the 
application of artificial intelligence (AI). AI demonstrates proficiency in 

handling extensive datasets such as genetic data, images, videos, and 
natural languages. Within the domain of AI, notable subsets include 
Machine Learning (ML), Deep Learning (DL), and Deep Neural Network 

(DNN). These methodologies are adept at processing input data, engaging 
in learning processes, adjusting parameters, and ultimately generating 
values or classifications. 

 DL comprises a network of neurons that produce output values based on 
the non-linear combination of inputs (LeCun et al., 2015). Given the 
intricate nature of phenomena encountered in the fields of biology and 

medicine, coupled with the vastness of available data, there has been a 
notable surge in interest among biologists and medical researchers in 
leveraging AI technologies. 

 AI has made significant strides in the realm of ASD studies, with a 
notable application being facial affect detection in individuals with ASD. 
The challenges faced by individuals with ASD in expressing emotions 

through facial expressions can pose substantial obstacles to forming 
meaningful relationships. Due to the distinctive nature of facial 
expressions in individuals with ASD, the development of facial processing 

technologies tailored to this population is an ongoing endeavour (Gepner 
et al., 2001). 
 Various AI technologies, including Convolutional Neural Networks (CNN) 

and vision transformers (ViT), designed for image processing have 
emerged as promising tools for facial affect detection. A study 
(Awatramani and Hasteer, 2020) conducted by investigated the 

performance of a CNN model in facial affect recognition. The model was 
trained using 28,709 facial expression images and tested with 3,589 
images from the FER-2013 dataset (Goodfellow et al., 2013). After 

categorizing emotions into seven classes (Angry, Disgust, Happy, Sad, 
Scared, Surprise, and Neutral), the model achieved an accuracy of 
67.50%. The researchers suggested that CNNs could be applied to real-

time videos, including those involving individuals with ASD. 
 Videos and AI demonstrate effective synergy due to the substantial 
volume of data inherent in video datasets, which aligns with AI's 

proficiency in managing extensive datasets. For example, there are 
successful applications of DL methods with video data in investigating 
head movements typical of ASD (Dawson et al., 2018; Martin et al., 

2018). The field of video-based diagnosis utilizing AI technologies stands 
out as a promising avenue in ASD studies. The notable facial expression 

and behavior differences between ASD and typically developing (TD) 
groups make a video-based approach a potential diagnostic tool for ASD. 
The salient advantage of the video-based approach lies in its accessibility 
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and availability, particularly when compared to other data inputs. Home 
videos, conveniently captured by parents of children at risk of ASD, 

emerge as a practical means for diagnosis. If ASD diagnosis can be 
effectively conducted through these videos, parents can readily identify 
potential ASD risks without the need for extended visits to medical 

institutes. Even in cases where video-based diagnoses result in false 
positives, seeking medical checks based on such diagnoses can help 
alleviate parental concerns. Furthermore, the rapid development of AI 

technology in video processing underscores the potential efficacy of this 
approach. 
 

2.2. AI approaches in ASD diagnosis with video data as input 
 
Building upon the significance highlighted in Section 2.1, the field of 

video-based diagnosis utilizing AI technologies stands out as a promising 
avenue in ASD studies. Particularly, a home video-based approach proves 
to be convenient for clinicians, patients, and their families. Consequently, 

the primary objective of this paper is to review studies focusing on AI 
approaches in ASD diagnosis utilizing video data as input. 
 

This review paper specifically selected English-language papers pertinent 
to AI approaches in ASD diagnosis with video data as the primary input. 
The literature search was conducted using Scopus and PubMed, with a 

restriction on the publication year from 2018 to 2024. The initial search 
was performed on December 30th, yielding a total of 155 papers (133 
from Scopus and 22 from PubMed). 

 The initial search query was ("Autism" OR "Autism Spectrum Disorder") 
AND ("Convolutional Neural Network" OR "Deep Learning" OR "Deep 
Neural Network" OR "Recurrent Neural Networks" OR "Deep belief 

networks" OR "Neural Network" OR "Multilayer neural networks") AND 
("video"). Then, we narrowed down these papers based on the following 
process. 

 
1. Remove duplicates 
2. Papers that did not pertain to the domains of diagnosis, video, and AI 

(excluding machine learning) were excluded from the selection. 
 
In the refinement process, 17 duplicated papers were initially excluded. 

Subsequently, 146 additional papers were excluded based on criteria 2. 
These excluded papers encompassed affect recognition by individuals with 
ASD, ASD therapy, images as input, and various traditional machine 

learning methods. Consequently, only 9 papers met the specified criteria 
and were included for review in this paper. 
 

The summarized findings of these 9 papers are presented in Table 1. 
Three distinct input features to diagnose ASD were identified: 
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1. Features from facial videos (e.g., facial landmarks) 
2. Features from behavioral videos (e.g., gait) 

3. Multimodal features from videos (the combination of 1., 2. and other 
features like voice, and demographic and clinical data) 
 

We divided the following sections based on the differences in these input 
features. 
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Table 1. AI approaches studies in ASD diagnosis with video data as input 
as published between 2018 and 2024 

Study Sample Method Input Result 

Tang et al., 
2020 

45 high-risk 
ASD and 43 

TD (Chinese; 
Age 0-2) 

NN 
(OpenPose) 

+ CNN 
(MTCNN) + 
SVM 

Multimodal 
data (Head-

Movement, 
facial and 
vocal) 

In the split 
test sample 

 
Accuracy = 
96.4% 

 
Sensitivity = 
95.0% 

 
Specificity = 
97.7% 

Kojovic et 
al., 2021 

Dataset 1: 68 
ASD and 68 
TD (European; 

Age 1-3) 
 
Dataset 2: 

101 ASD 
(European; 
Age 3-4, Out-

of-sample) 

NN 
(OpenPose) 
+ CNN-

LSTM 

Behavioral 
video (Pose 
+ Gait) 

Dataset 1:  
 
In the split 

test sample 
 
Accuracy = 

80.9% 
 
Sensitivity = 

85.4% 
 
Specificity = 

76.5% 
 
Dataset 2:  

 
Accuracy =  
80.2% 

Wu et al., 
2021 

133 infants 
(American; 
Age 0-3) 

NN Multimodal 
data (Look 
face rate + 

Social smile 
rate + social 
vocal rate 

age and 
gender) 

In the split 
test sample 
 

Accuracy = 
82.0% 
 

Sensitivity = 
92.0% 
 

Specificity = 
71.0% 

Cai et al., 

2022 

57 ASD and 

25 TD (Region 
and age NA) 

CNN Facial video 3-fold cross-

validation 
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Accuracy = 
95.1% 

 
Sensitivity = 
92.6% 

 
Specificity = 
96.5% 

Chanyoung 
et al., 2022 

50 TD children 
and 44 ASD 
(Korean; Age 

2-6) 

CNN + 
LSTM 

Facial video In the split 
test sample 
 

Accuracy = 
91.8% 
 

Sensitivity = 
95.3% 

Patankar et 

al., 2022 

27 ASD 

children and 
43 TD (Indian; 
Age 0-10) 

CNN + RNN Facial video In the split 

test sample 
 
Accuracy = 

90.5% 

Saranya 
and 

Anandan., 
2022 

50 ASD and 
non-ASD 

subjects 
(Region NA; 
Age 5-8, 9-12, 

13-16 and 45-
50) 

DEAF Multimodal 
data (Facial 

emotion and 
gait) 
 

In the split 
test sample 

 
Accuracy = 
95.4% 

 
Sensitivity = 
93.5% 

 
Specificity = 
94.0% 

(Age 5-8) 
 
Accuracy = 

96.0% 
 
Sensitivity = 

94.5% 
 
Specificity = 

94.5% 
(Age 9-12) 
 

Accuracy = 
95.5% 
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Sensitivity = 
94.5% 

 
Specificity = 
94.0% 

(Age 13-16) 
 
Accuracy = 

96.5% 
 
Sensitivity = 

94.5% 
 
Specificity = 

95.0% 
(Age 45-50) 

Henderson 

et al., 2023 

Dataset 1: 50 

ASD and 50 
TD (Iraqi; 
childcare and 

kindergarten) 
 
Dataset 2: 30 

ASD and 30 
TD 
(Malaysian; 

Age 4-14) 

CNN Behavioral 

video (Gait) 

Dataset 1: 

 
In the split 
test sample 

 
TAT 
accuracy = 

95.6% 
 
Dataset 2: 

 
In the split 
test sample 

 
TAT 
accuracy = 

80.0% 

Prakash et 
al., 2023 

400 ASD, 600 
neurotypical 

and 250 Other 
Developmental 
Delay (Indian; 

Age 1.5-5) 

R-CNN + 
DNN 

(DeepPose) 
+ CNN 

Behavioral 
video (Pose) 

In the split 
test sample 

 
Accuracy = 
79.7% 

Abbreviations in the table: CNN = Convolutional Neural Network, DEAF = 
Deep Extreme Adaptive Fuzzy, DNN = Deep Neural Network, LSTM = 

Long Short-term Memory, NN = Neural Network, R-CNN = Region-based 
Convolutional Neural Network, RNN = Recurrent Neural Network, SVM = 
Support Vector Machine, TAT = Test Time Augmentation 
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2.2.1. ASD diagnosis with facial videos 
 

Three studies were conducted to explore AI approaches in the diagnosis 
of ASD using raw videos as input. 
 

Chanyoung et al. employed a combination of Long Short-term Memory 
(LSTM) and Convolutional Neural Networks (CNN) for feature extraction. 
CNNs, commonly utilized in image and video processing, apply a weight 

matrix, known as a kernel, to two-dimensional image data. This process 
compresses the original data into an attention map, preserving significant 
features while reducing dimensionality. The convolutional layers in this 

study were pretrained using the ImageNet dataset (Deng et al., 2016). In 
this dataset, images of humans, animals, plants, and inorganic substance 
objects are included. The CNN outputs were then fed into the LSTM 

architecture, a subset of Recurrent Neural Networks (RNNs) capable of 
utilizing memory in a cyclic manner. LSTMs incorporate a forget gate, 
enabling the retention of relevant information while discarding 

unnecessary data. Without LSTM architecture, RNNs encounter the 
vanishing gradient problem, resulting in excessively small gradients 
during network updates. The output from the LSTM architecture was 

subsequently processed through fully connected and dropout layers to 
generate predictions (ASD or not). Video frames from 50 typically 
developing (TD) children and 44 ASD children, aged 25 to 72 months, 

were obtained from the Child and Adolescent Psychiatry Division of Seoul 
National University Hospital and preschools in Korea. Parents of these 
subjects were instructed to sit in front of a camera with toys to capture 

joint attention skills. The proposed model was evaluated using a total of 
918 video clips (TD = 484, ASD = 434), comparing ASD prediction 
accuracy between raw videos and background-removed videos. The 

results for the raw videos test dataset were as follows: Accuracy = 
91.6%, Precision = 90.0%, Sensitivity = 94.5%, and F1 score = 92.2%. 
The background-removed videos achieved Accuracy = 91.8%, Precision = 

88.0%, Sensitivity = 95.3%, and F1 score = 91.5%. 
 
Patankar et al. utilized a combined CNN-RNN model for ASD diagnosis. 

The CNN component employed the Inception-V3 pretrained model from 
TensorFlow (Szegedy et al., 2015), consisting of convolution, pooling, 
dropout, and fully connected layers. Inception-V3 achieved high accuracy 

in object classification. In this study, they applied this object classifier to 
detect ASD and non-ASD. CNN architecture learned facial landmarks in 
the training process. These facial landmarks were shown as heatmap-like 

activation maps. The RNN architecture employed a Gated Recurrent Unit 
(GRU) layer, suitable for training models with time-series or sequence 
data like videos. Although the CNN-RNN model was not highly complex, it 

focused on high-level facial landmarks as essential features, making it 
convenient due to the lack of necessity for detailed facial features in the 
analysis. The study involved 27 ASD children and 43 TD children from the 
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Indian region who provided questionnaires and videos via a responsive 
web app, AutiScan. Three approaches—(1) CNN-RNN, (2) Long-term 

Recurrent Convolutional Network (LRCN), and (3) Convolutional LSTM 
(ConvLSTM)—resulted in test accuracies of 90.48%, 69.23%, and 
53.85%, respectively. 

 
Cai et al. employed a CNN architecture for the diagnosis of ASD. In this 
study, frames were sampled from videos, and OpenFace 2.0 (Baltrusaitis 

et al., 2018) was utilized to automatically detect facial landmarks, eye 
movement, and other facial behaviors. The data, comprising 709 
dimensions obtained from OpenFace, underwent a feature selection 

process, wherein significant features were chosen for input into the CNN 
architecture. The CNN model ResNet-50 (He et al., 2016), a network 
consisting of 50 layers, was used for calculating ASD scores. The average 

score of the video frames was used for binary ASD diagnosis. Videos, 
recorded on the parents' phones, featured parents capturing the attention 
of their children through name-calling and the use of toys. Thus, recorded 

videos are similar to the paper from Chanyoung et al. This approach, 
involving short home videos with an average length of 18.74 seconds, 
was convenient for both subjects and researchers.  

 The dataset encompassed videos from 57 children with ASD and 25 TD 
children. The age of the subjects was not explicitly specified in this 
experimental context. Employing the top 100 significant features, their 

methodology achieved an accuracy of 95.06%, surpassing that of 
machine learning (ML) classifiers, such as Support Vector Machines 
(SVM), which achieved an accuracy of 75.62%. The study further 

conducted a comparative analysis of accuracy based on different input 
feature numbers. Notably, an accuracy of 91.40% and 90.17% were 
attained with 50 and 200 features, while 100 features resulted in an 

accuracy of 95.06%. This comparison underscored the significance of 
judicious feature selection in the diagnostic process. 
 

2.2.2. ASD diagnosis with pose and gait videos 
 
Kojovic et al. employed deep neural network-based pose estimation 

software and utilized deep learning classification for the diagnosis of ASD. 
To isolate only the skeletal information from the gathered videos, the 
researchers employed OpenPose (Cao et al., 2019), a software capable of 

detecting multiple human poses simultaneously. The deep learning 
architecture of OpenPose consists of multiple convolutional layers. Given 
the presence of not only the target subjects but also additional individuals 

in the videos, this multi-person pose estimation tool proved beneficial for 
the study. 
 Eighteen key points representing the detected skeleton in the videos 

were input into a CNN-LSTM deep neural network architecture. As the 
CNN architecture, VGG16 (Simonyan and Zisserman, 2015) was utilized, 
comprising 16 convolutional layers and pretrained with the ImageNet 
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dataset to extract features of the skeleton. Subsequently, after passing 
through the LSTM, ASD binary classification was performed using the 

softmax function. 
 For the experimental phase, two datasets were prepared. The first 
dataset comprised 68 children with ASD and 68 TD children, all aged 

between 1 and 3 years. The second dataset exclusively included 101 
children with ASD aged between 3 and 4 years. The ASD prediction model 
trained on the first dataset exhibited an accuracy of 80.9%, a specificity 

of 76.5%, and a sensitivity of 85.4%. Notably, the second dataset yielded 
a comparable accuracy of 80.2%, affirming the robustness of their 
approach. 

 
Henderson et al. proposed a novel diagnostic approach for ASD based on 
gait data utilizing CNNs. The architecture of their CNN is notably 

uncomplicated, comprising three layers. Nevertheless, their study 
diverges from others in terms of the specific focal point of the selected 
feature and the method employed for accuracy calculation. They 

introduced the Joint Energy Image (JEI) as the input for the CNN, derived 
from the initial extraction of 3D joint positions and trajectories from video 
data to measure the mobility of skeletons in the pixel. These 3D joint 

features were subsequently translated into 2-dimensional maps denoted 
as JEI. 
 In the context of ASD classification accuracy assessment, Test Time 

Augmentation (TAT) accuracy was employed. During TAT calculation, 
classification results were initially obtained using randomly modified 
(augmented) frame data. TAT accuracy represents the average accuracy 

across augmentations. The evaluation utilized two distinct datasets. The 
first dataset consisted of videos capturing straight-walking behavior from 
68 individuals with ASD and 50 children from childcare and kindergarten 

settings. The second dataset encompassed 30 individuals with ASD and 
30 TD children aged 4-14 from the National Autism Society of Malaysia 
center. 

 Training the respective datasets yielded TAT accuracy values of 95.56% 
and 80.00%. Additionally, conventional (non-TAT, without 
augmentations) accuracy values were reported, namely, 88.89% and 

93.33%. 
 
Prakash et al. employed Human Action Recognition (HAR) technology in 

the context of ASD diagnosis. Their HAR methodology is structured into 
three sequential phases, encompassing Human Detection, Temporal 
Action Localization, and Action Recognition. In the Human Detection 

phase, in order to identify the location of children, the Faster R-CNN 
(Girshick, 2015) was deployed, which is a CNN-based Region Proposal 
Network (RPN). Extracting features from the CNN, the RPN proposes 

object detection in the form of a 2-dimensional bounding box. The Faster 
R-CNN algorithm successfully identified children, play partners, and 
objects within the video content. 
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 For the Temporal Action Localization phase, the Asynchronous Interaction 
Aggregation network (AIA; Tang et al., 2020) was employed. AIA, 

functioning as a network system, analyzes interactions between objects 
within the videos through accumulated transformer blocks. Notably, AIA 
exhibits limitations in detecting objects when interactions are absent; 

consequently, simultaneous pose-tracking using DeepPose (Toshev et al., 
2014) was implemented. DeepPose detected 10 key points, such as the 
elbow and head, concurrently. 

 The final phase involved constructing a behavior action recognition model 
with 3-dimensional convolutional layers, drawing on previous work by 
Carreira and Zisserman (2018). The researchers amassed a dataset 

comprising videos from 400 individuals with ASD, 600 neurotypical 
patients (defined as low ASD possibility and high developmental 
quotient), and 250 individuals with other developmental delays (high-risk: 

low-risk = 125: 125). The interaction videos between children (aged 1.5-
5) and therapists had durations ranging from 7 to 12 minutes. Following 
the training of the model with ASD and ODD cohorts, it demonstrated 

accuracy rates of 79.7%, 77.2%, and 80.8% in the detection of ASD, 
ODD, and neurotypical cases, respectively. 
 

2.2.3. ASD diagnosis with multimodal features from videos 
 
Tang et al. developed a High-risk (HR) ASD classifier employing video and 

audio data. Unlike other studies, this study investigated HR-ASD which is 
not ASD patients. For HR-ASD diagnosis, the authors extracted head 
movement, facial appearance, and vocal data from the provided videos. 

The OpenPose framework was utilized to extract features related to head 
movement. This involved investigating the movement of the head based 
on detected locations such as eyes, ears, and nose. Concurrently, the 

CNN-based architecture MTCNN (Zhang, 2016) and OpenFace were 
applied to extract facial appearance features. In this phase, 68 facial 
landmarks were identified from faces detected by MTCNN. 

 In addition to the head and facial features, a 384-dimensional dataset 
pertaining to vocal characteristics, including frequency, energy, and 
spectrum, was extracted from the videos. Subsequently, these features 

were input into a SVM, a machine learning method. Videos spanning 2 
minutes each were recorded for 45 HR-ASD and 43 TD infants aged 8-24 
months. The recordings involved one frontal and two non-frontal cameras 

capturing the subjects, with parents seated in front of the infants. 
 The SVM classification achieved notable performance metrics, including 
an accuracy of 96.39%, sensitivity of 95.00%, specificity of 97.67%, and 

an Area Under the Curve (AUC) of 94.59% for HR-ASD classifications 
using head movement, facial appearance, and vocal features. 
Remarkably, identical results were obtained even when excluding head 

movement features. 
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Saranya and Anandan proposed an ASD diagnosis methodology that 
integrates facial emotion analysis and human gait assessment using the 

Deep Extreme Adaptive Fuzzy (DEAF) learning algorithm. The DEAF model 
consists of two key algorithms: 1. Feature extraction through 
Convolutional Neural Network (CNN) and 2. Fuzzy-fused Extreme 

Learning Machine (ELM). 
 Given the well-established distinctions in facial features between 
individuals with ASD and those without, coupled with the specific gait 

patterns observed in individuals with ASD (Calhoun et al., 2011), the CNN 
model was developed to extract features from both facial expressions and 
human gaits. The facial feature extraction phase involved the 

classification of seven emotions (Anger, Disgust, Happiness, Sadness, 
Surprise, and Neutral). Simultaneously, gait features such as swings of 
hands (swing ratio), number of steps per minute (cadence), velocity, and 

others were extracted. Subsequently, these features were input into the 
Fuzzy-based Extreme Learning Machine (FELM). The Extreme Learning 
Machine (ELM) is a single hidden layer network (Huang and Chen, 2007) 

renowned for its ability to minimize training errors and enhance 
approximation. Given the diverse nature of ASD cases, the authors 
introduced "fuzzy" to the ELM, essentially transforming it into a fuzzy 

inference system. 
 The study involved the analysis of videos from 50 subjects across various 
age groups (5-8, 9-12, 13-16, 45-50). Facial emotions were classified 

with an accuracy of 89.0% on the Karolinska Directed Emotional Faces 
(KDEF) datasets, while human gait movements were detected with 90.0% 
accuracy on the Chinese Academy of Sciences, Institute of Automation 

(CASIA) dataset. Specific to the age group 5-8, ASD prediction accuracy 
for facial emotions, human gaits, and fused features reached 87.5%, 
88.5%, and 95.4%, respectively. For the age group 45-50, accuracies of 

88.0%, 88.5%, and 96.5% were achieved for facial emotions, human 
gaits, and fused features, respectively. Thus, results do not show age 
dependency. 

 
Wu et al. proposed an approach for ASD diagnosis based on Machine 
Learning (ML) and Deep Neural Network (DNN) analysis of facial videos. 

Notably, raw videos were not utilized in training the Neural Network, a 
decision attributed to the authors' possession of a limited video dataset 
and a comprehensive understanding of distinctive ASD signs. As a 

machine learning method, recursive Feature Elimination (RFE), Ridge 
Regression (RR), Mutual Information Estimation (MI), and Kolmogorov 
Smirnov Test (KS) were chosen as ML methodologies for selecting 

significant features. All these techniques are adept at discerning 
influential values from multiple variables, with RFE and RR assuming 
normal distribution in input features, while MI and KS do not. ML 

techniques selected features, including look face rate, vocal rate, smile 
rate, age, and gender. For ASD diagnosis, these features were fed into a 
Neural Network (NN) consisting of three fully connected layers. The 
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performance of ML-based feature selection was compared with that of 
using all features and two sampling methods: Synthetic minority Over-

sampling and Tomek Links under-sampling. Over and under-sampling 
were implemented due to the significant disparity in the number of ASD 
and non-ASD samples. 

 The study involved the collection of 3-minute videos featuring infants 
aged 3 to 36 months, along with their parents, from the UC Davis MIND 
Institute. The videos, totaling 1707, were manually labeled for signs such 

as smiles. Ultimately, 547 videos from 133 infants were employed.  The 
results indicated that over-and-under-sampling with all features and NN 
yielded the highest accuracy at 82%, outperforming other methods (51% 

for selected features). 
 The authors also proposed two Deep Learning (DL) methods for detecting 
behavioral events. The first method employed image and DNN-based 

detection, utilizing ResNet-18, a CNN with 18 layers to classify behavioral 
events like smiling, look face, and look objects. This ResNet-18 is not 
deeper than ResNet-50. However, deeper architecture is not necessarily 

more accurate. Therefore, choosing the best depth architecture is the 
most significant. Frame images from videos served as input to this DNN 
model. The second method employed OpenFace 2.0 (Baltrusaitis et al., 

2018) to detect behavioral events using facial landmarks. The first 
method achieved accuracies of 70%, 68%, 67%, and 53% for manually 
annotated smile, look face, look object, and vocal detection, respectively. 

The second tool achieved accuracies of 68.5%, 66.0%, and 50.0% for 
smile, look face, and vocal detection from videos. Combining these 
detection tools with the proposed NN demonstrated effectiveness in 

diagnosing ASD. These automatically detected features were not utilized 
in the ASD diagnosis in this study. 
 

3. Discussion 
 
3.1. Discussion and comparison of nine video-based AI 
approaches for ASD diagnosis 

 
The nine aforementioned papers possess both advantages and 
disadvantages. Regarding video data collection methods, a majority of the 

studies recorded videos in controlled settings such as laboratories or 
hospitals. Conducting experiments and diagnoses in these facilities incurs 
costs and time. In this context, the innovation introduced by Patankar et 

al., known as Autiscan, is noteworthy. Autiscan, being a web application, 
enables the easy involvement of subjects and their parents in the 
experimental process. This application accommodates questionnaires with 

videos acquired at home. In addition to videos, experts utilize 
questionnaires for ASD diagnosis, thereby potentially enhancing 

diagnostic accuracy and mitigating false positive and negative outcomes. 
Cai et al. similarly obtained semistructured videos from parents of 
subjects, providing explicit recording instructions for parents to attract 
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their children's attention through name-calling or the use of toys. Such 
succinct instructions are imperative for clinical applications. Conversely, 

Tang et al.'s study necessitated the deployment of three cameras to 
capture detailed facial movements around subjects, demanding the 
involvement of clinical experts. Nevertheless, it holds promise for 

expediting and simplifying the diagnostic process. 
 Subjects across the experiments exhibit differences among the papers. 
Five studies (Tang et al., Kojovic et al., Wu et al., Chanyoung et al., and 

Prakash et al.) focused on subjects under six years old, while other 
papers encompass subjects older than six. As underscored, early 
diagnosis is imperative for timely therapeutic interventions and parental 

support, yet diagnosing ASD at an early age is inherently more 
challenging due to delayed manifestation of certain symptoms in social 
interactions. Tang et al. specifically investigated HR-ASD, achieving a 

notable accuracy of 96.39%. However, this approach does not provide a 
pure ASD diagnosis applicable across the entire spectrum. Conversely, 
Chanyoung et al. achieved a high ASD diagnosis accuracy of 91.8% for 

subjects aged 2-6. Nevertheless, clinical experts at these ages can also 
achieve decent diagnoses using interviews and questionnaires. A study 
focusing on interviews and questionnaires for ASD diagnosis in children 

aged 1-4 (Christiansz et al., 2016) disclosed that the modified DSM-5 
criteria yielded a sensitivity (true positive rate) of 97% and specificity 
(true negative rate) of 41%. It is noteworthy to underscore the 

importance of statistical measures in this context. Simultaneously 
achieving high sensitivity and specificity poses challenges for both human 
evaluators and AI. The occurrence of false negatives is a concern, as they 

can carry stigmatizing implications for children. Consequently, in the 
context of clinical applications, the judicious selection of statistical 
measures holds significant relevance. 

 As previously discussed, further investigation is warranted for the 
diagnosis of infants, and numerous studies have been conducted on early 
ASD diagnosis. An inquiry focusing on subjects aged 2 years old 

(Charman et al., 2005) reported that, out of 26 subjects diagnosed with 
ASD using the Autism Diagnostic Interview-Revised (ADI-R), 22 received 
a consistent ASD diagnosis at the age of 9 years. Thus, without 

adjustment to age, traditional ASD diagnosis can achieve accurate 
diagnosis to some extent. Another study (Luyster et al., 2009) adapted 
the Autism Diagnostic Observation Schedule for children under 30 

months, achieving a specificity of 93% and sensitivity of 95%. Luyster's 
study involved modifications to the experimental design and criteria 
tailored for infants displaying fewer reactions than older children. 

Similarly, for the further development of video-based ASD diagnosis 
approaches, experimental methods, such as recording techniques with 
toys, should be tailored to specific target age groups. 

 The majority of the studies were geographically specific, leading to 
possible biases in diagnosis or video samples based on cultural 
differences. A study about cultural differences in ASD diagnosis reported 
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that ASD and non-ASD thresholds can be different because of the degree 
of development expected by others including parents (Matson et al., 

2011). Chanyoung et al. conducted experiments exclusively with Korean 
cohorts. Furthermore, Patankar et al.'s motivation stemmed from the 
observation that ASD studies in the Indian region lag behind those 

conducted with European and US samples. In practical AI use outside of 
ASD diagnosis, in 2020, an AI algorithm wrongly arrested a black male 
because of biased training (Perkowitz et al., 2021). Despite ASD not being 

inherently region-specific, the potential for AI to inadvertently learn 
region-specific parameters during training underscores the importance of 
considering overfitting to training samples in AI studies. 
 The nine papers focused on distinct features for diagnosis, with facial 
studies demonstrating an accuracy range of approximately 90%-95%, 
pose or gait studies exhibiting about 80%-95% accuracy, and multimodal 

studies yielding results in the range of 80%-95%. Nevertheless, the 
challenge associated with obtaining high-quality video data varies across 
different features, with behavioral data posing greater difficulties in 

processing and standardization in comparison to facial data, owing to the 
potential inclusion of extraneous information. Consequently, it appears 
that facial studies possess certain advantages. However, for the sake of 

diagnostic robustness, multimodal studies potentially mitigate the risk of 
false negatives, given the diversity of symptoms and severity in the ASD 
population that an ASD diagnosis often necessitates consideration of 

multiple features rather than relying on a single aspect. 
 Accuracy may also be contingent on sample size, particularly in the realm 
of AI research. Most papers involved approximately 100 participants 

(ASD: TD = 50: 50). While multiple videos and frames were collected 
from each participant, training neural networks with such limited 
participants raises concerns about potential overfitting to the involved 

cohorts. Moreover, the global prevalence of ASD is approximately 1%, 
introducing a skewed learning environment due to the discrepancy in ASD 
ratios across the world population. Furthermore, it is essential to include 

related disorders such as ADHD and Schizophrenia in the sample and 
ensure high sensitivity in their diagnosis simultaneously. These 
considerations underscore the significance of out-of-sample replication. 

With the exception of the study by Kojovic et al. (2021), the video 
samples were typically divided into training and test datasets. Following 
the training of AI with the training dataset, performance validation 

occurred using the test dataset. Consequently, the performance of neural 
networks was not corroborated with an out-of-sample dataset, potentially 
leading to unintentionally high accuracy due to the risk of overfitting to 

the sample dataset. 
 Additionally, as highlighted in the introduction, autism is a spectrum 
disorder. Consequently, the binary classification of input data and 

diagnosis poses a challenge in clinical applications. One potential solution 
involves the utilization of a numeric score in ASD diagnosis. Many DL 
studies typically employ the softmax function at the conclusion of the DL 
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architecture. However, by omitting the softmax functions and 
implementing standardization, a numeric score can be derived, effectively 

representing the spectrum of ASD severity. While not an AI diagnostic 
method, the Childhood Autism Rating Scale also offers numeric scores in 
clinical applications (Chlebowski et al., 2010). 

 In summary, the video-based AI approach in ASD diagnosis exhibits 
numerous advantages and challenges, as discussed herein. 
 

3.2. Machine learning approaches in ASD diagnosis 
 
Despite the development of advanced AI methods, such as Deep Learning 

and Deep Neural Networks, the application of machine learning is 
anticipated to remain valuable across various research fields. Machine 
learning methods have also been employed for video-based ASD 

diagnosis and may provide future direction for research using advanced 
AI methods, such as additional input features. It is noteworthy that ML 
methods are generally less complex than DL methods. This characteristic 

renders ML more interpretable for humans. 
 Li et al. (2018) employed Support Vector Machines (SVM) by inputting 
eye-tracking data from videos. Given the distinctive eye movement 

patterns associated with individuals with ASD, SVM was trained with 
videos featuring 53 ASD and 136 TD children. This approach achieved a 
noteworthy 93.7% accuracy in predicting ASD solely based on eye-

tracking videos, showcasing the efficacy of the combination of eye-
tracking data and machine learning. However, it is important to note that 
recording eye-tracking videos may present challenges in household 

settings when compared to obtaining behavioral videos. 
 An alternative approach involves the creation of a mobile web portal for 
ASD diagnosis utilizing video data (Tariq et al., 2018). This portal 

leverages multiple features, such as expressive language, eye contact, 
and echolalia, extracted from 3-minute home videos. Three types of 
machine learning methods—Decision Tree, Logistic Regression, and SVM—

were applied to the ASD diagnosis process. The evaluation encompassed 
116 ASD and 46 non-ASD participants. Notably, one Decision Tree 
method demonstrated sensitivity, specificity, and accuracy rates of 100%, 

22.4%, and 76.1%, respectively, while one Logistic Regression method 
exhibited rates of 94.5%, 77.4%, and 88.9%. This outcome underscores 
two significant findings: the potential for logistic regression to achieve 

high prediction accuracy and the observation that, despite high sensitivity 
(true positive rate), specificity (true negative rate) can be comparatively 
low even with AI approaches. The ease of capturing videos in home 

environments renders this approach promising for accessible ASD 
diagnosis. 
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3.3. Other modalities for AI approaches in ASD diagnosis 
 

In conjunction with the video approach, diverse AI methodologies have 
been applied to the diagnosis of ASD using non-video-based modalities, 
focusing on neurodevelopmental aspects such as the analysis of brain 

regions and neurons and vocal characteristics. 
 Functional Magnetic Resonance Imaging (fMRI) serves as a non-invasive 
technology for studying the brain, and research employing fMRI images 

has yielded valuable insights into functional connections (FCs) within the 
brain. A study conducted by Shao et al. (2021) revealed that FCs in 
individuals with ASD exhibited weakened connections in the cerebral 

hemisphere. Through the utilization of Deep Feature Selection (DFS), 
ASD-specific FCs were identified, and the application of a Graphical 
Convolutional Network (GCN) resulted in an ASD diagnosis accuracy of 

79.5%. It is important to note, however, that the recording of fMRI data 
is considerably more expensive and inconvenient compared to the 
collection of home videos that can achieve higher accuracies in ASD 

diagnosis. 
 Audio data has also been harnessed for ASD diagnosis through the 
implementation of AI algorithms. Researchers employed Long Short-term 

Memory (LSTM) and Synthetic Random Forest to construct a framework 
for predicting the Autism Diagnostic Observation Schedule (ADOS-2) 
Calibrated Severity Score (CSS) of Social Affect (SA) using audio data, 

achieving an R2 value of 0.402 (Sadiq et al., 2019). This outcome, 
considering the sole utilization of audio data as input, indicates promising 
potential for future research endeavors, and can be incorporated as 

additional features derived from home videos, such as the use of vocal 
rate seen in Wu et al., (2021). 
 Several characteristics of ASD are anticipated to be integrated into the 

diagnostic process. However, the challenge associated with the utilization 
of AI lies in its opacity. While the AI approach can attain a heightened 
level of diagnostic accuracy and effectively manage extensive datasets, 

the complexity of neural networks renders it challenging for researchers 
to elucidate the rationale behind diagnostic decisions. Consequently, the 
adoption of the latest technology known as explainable AI (XAI) is 

envisaged in clinical settings. XAI is a technological advancement capable 
of highlighting crucial regions, parameters and neurons within the 
architecture and input. A prior investigation (Alam et al., 2023) employed 

DL methods in conjunction with XAI for ASD diagnosis based on images. 
This study not only achieved a commendable predictive accuracy of 
98.9% but also implemented the XAI technology referred to as Grad-CAM 

(Selvaraju et al., 2020). Grad-CAM is applicable to CNN architectures and, 
during image processing, visualizes noteworthy features within the 
images as a heatmap. Regions such as the forehead, the center of the 

eyes, the nose, and the lips were identified as areas frequently utilized in 
the learning process. Similar explainable artificial intelligence (XAI) 
techniques, including Grad-CAM, as well as other XAI methods, were 
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employed in an activity recognition study utilizing video data (Hiley et al., 
2020). In this study, XAI methods elucidated the contribution of each 

pixel in the input frame. For example, relevant background information is 
explained as unnecessary information for activity recognition. The 
application of such XAI methods holds potential for future studies in ASD 

diagnosis in selecting the best features and modalities. 
 The prospect of integrating these methods with a video-based ASD 
diagnosis is anticipated. 

 

4. Conclusion 
 
This review paper delves into AI approaches employed in the diagnosis of 

ASD using video data. While ASD has been extensively studied, traditional 
diagnostic methods, reliant on interviews and questionnaires, exhibit 
certain limitations, such as prolonged diagnostic durations and 

questionable accuracy at very early ages. In response to these 
challenges, there has been an exploration of a video-based approach 
incorporating AI applications. The nine examined papers focused on facial, 

pose, or gait, as well as multimodal features within videos for ASD 
detection, showcasing high accuracy in predicting diagnosis. However, 
there remains potential for further development to achieve practical 

clinical applications. 
 It is noteworthy that many studies have collected video data in controlled 
environments, such as medical institutions or laboratories. Yet, for 

leveraging video data effectively, the future development of home video-
based approaches is anticipated. To realize this objective, researchers 
must establish a robust protocol with clear instructions for parents to 

capture semi-structured home videos of their children for diagnostic 
purposes. From an AI perspective, numerous challenges exist, including 
sample biases and the black box problem in training. As discussed in the 

review, XAI holds promise in addressing these issues, although the 
technology is still in its developmental stages. Consequently, additional 
investigations involving larger training sample sizes and out-of-sample 

replication, or using alternative AI technologies for video processing are 
deemed necessary for the continued advancement of this research field. 
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