
Department of Information and Computing Sciences

Planning Drivers for Shunting Yards

Masters Thesis

Author:

Luuk A. van Nes

Utrecht University

First Supervisor:

dr. J.A. Hoogeveen

Second Supervisor:

dr. ir. J.M. van den Akker

Supervisor NS:

Roel W. van den Broek

December 2023

Abstract

Throughout the day, trains are parked on shunting yards operated by
the NS. While at the shunting yards, trains undergo many jobs such as
riding, combining and splitting. These jobs then need to be executed by
drivers for which a planning needs to be made. These tasks come with
strict starting times or flexible time windows, considering factors like pre-
ferred starting times. The necessity for drivers to travel between jobs
is addressed by allowing walking or riding along with a train, introduc-
ing considerations for minimizing travel time. Some particular pairs of
jobs require synchronization and need to be planned to start at the same
time. Additionally, buffers are preferred to mitigate delays, particularly
for consecutively performed tasks that do not involve the same train. The
NS’s current scheduling method, involving heuristics and an Integer Lin-
ear Program (ILP), has become too slow. To tackle these issues, we pro-
pose a crew scheduling solution using a branch-and-price algorithm that
branches on time windows. The branch-and-price algorithm uses Dynamic
Programming in a novel way to solve the pricing problem. The proposed
algorithm is tested on real-life instances from NS’s shunting yards, solv-
ing smaller instances faster while finding a better solution. However, for
larger instances, the current scheduling method shows better results.

2

Contents

1 Introduction 4

2 Related Literature 6
2.1 Crew Scheduling . 6
2.2 VRP and VSP . 7
2.3 Solution Methods . 8

3 Mathematical formulations 12
3.1 Common Notation . 13
3.2 Time-indexed Model . 15
3.3 Mixed-integer Model . 16
3.4 Set Covering model . 18
3.5 Current Method used at NS . 20

4 Branch and Price 23
4.1 Decomposition . 23

4.1.1 Master Problem . 23
4.1.2 Pricing Problem (formulation) 25

4.2 Pricing Problem (solution) . 28
4.2.1 Case exclusions . 31

4.3 Branching . 31
4.3.1 Single starting time . 32
4.3.2 Break jobs . 32
4.3.3 Synchronization . 33

4.4 Restoring Integrality . 33
4.5 Acceleration Strategies . 33

4.5.1 Optimal Strategies . 33
4.5.2 Heuristic Strategies . 35

5 Results 37
5.1 Instances . 37
5.2 Parameters . 37
5.3 Small Instances . 40
5.4 Large Instances . 44
5.5 Performance . 44

6 Conclusion and Future Work 46

3

1 Introduction

The Nederlandse Spoorwegen (NS) is by far the largest passenger railway oper-
ator in the Netherlands, serving over one million passengers daily. Throughout
the day, the trains commonly used to transport these passengers are parked in
shunting yards whenever they are not in use. However, these shunting yards
are not simply parking lots. The NS needs to be as efficient as possible and
uses this downtime for trains to perform cleaning, repairs, and other prepara-
tory tasks for their departure. Consequently, the shunting yard is very active,
with many trains driving around a relatively small and crowded site, especially
outside of rush hours. A recent study by Van den Broek et al. (2022) has de-
veloped a method (HIP) to schedule these train operations. A large number of
these operations need to be performed by a train driver, necessitating a distinct
method of assigning these operations, from now on called jobs, to create efficient
schedules that adhere to all regulations and other constraints.

The current in-house method uses heuristics to limit the possible times jobs
can start and then uses an ILP to assign the jobs to drivers. This method
has become too inefficient due to several reasons. First, NS is struggling to
attract enough drivers in the current economy. Therefore, using the available
drivers as efficiently as possible is even more important. Second, the number
of train operations continues to increase, placing further strain on the system.
Third, while taking drivers into consideration, HIP is focused on optimizing the
train schedules instead of the drivers’ schedules, which further complicates the
driver scheduling process. Fourth, the regulations require drivers to perform
an increasing number of safety-related jobs. Finally, the NS would like to add
constraints to the problem it is currently unable to handle. These challenges
make it critical to develop an efficient method for driver scheduling that con-
siders the availability of drivers, constraints, and increasing workload while also
being adaptable to future constraints.

In this thesis, we try to solve the problem of assigning jobs to drivers, with
some freedom in how we plan the jobs. For example, it is possible to not plan
every job and some jobs have time windows in which they can be planned.
This boils down to a crew scheduling problem with complex constraints that
gives it many similarities to vehicle routing problems with time windows and
synchronization (VRPWSyn). Our primary objective is to schedule as many
jobs as possible, with a higher priority for jobs that involve driving the trains
from one place to another. Additionally, there are also less important preferences
that primarily aim to improve driver satisfaction and robustness.

Every problem instance has a group of drivers with their own (possibly
unique) working hours. For example, there could be a group with two drivers
working a morning shift and one working an afternoon shift. Moreover, each
driver starts their shift at a predetermined location. By labour regulations,
workers are prohibited from working more than four consecutive hours before
requiring a break. This means that some drivers need a meal break if their shift
is longer than four hours, preferably scheduled midway through their shift.

4

The drivers have to perform several different types of jobs, such as driving the
train, combining or splitting train units, and preparing the train for departure.
To avoid trains using the same tracks simultaneously, most jobs have a strict
schedule that tells them the exact time it needs to start. On the other hand,
some jobs, such as combining train units, can happen in place; this allows for
a bit more flexibility as it won’t interrupt other trains. Therefore, these more
flexible jobs have time windows in which they need to be started and completed.
The time windows consist of the earliest time after which the job can be started
and the latest time at which it has to be finished. In addition, these more
flexible jobs also have a preferred time for when they should be started, as these
jobs are generally being done in preparation for a train departing, which can
be done far in advance of the departure but is preferred to be done right before
departure.

Sticking to the train shunting schedule, the trains operated on in the jobs
are assigned to move between and park on several different tracks. Therefore,
a driver might need to do jobs in different locations. In this case, it may be
necessary for drivers to travel between two jobs. The easiest way to do this is by
walking between the locations on foot. However, as sometimes trains are riding
between two locations anyway, riding along with a train might allow a driver
to be on time for a job they would not otherwise be on time for. Therefore,
we allow drivers to ride along with jobs where a train moves from one location
to another. Riding along with a train does not count as completing the job of
driving that train. Due to the system’s current limitations, we only allow one
driver to ride along per job.

Generally, drivers do not like to travel a lot during their day. To avoid them
travelling too much, we try to minimize the distance the drivers have to walk
and ride along. The manual planners operating this technology can choose to
assign jobs to drivers beforehand. These jobs are fixed jobs (whereas other jobs
are free jobs), and can only be assigned to one specific driver and need to be
assigned to that driver in the final schedule. Furthermore, the time window of
a fixed job is equivalent to its duration, meaning that these jobs can only be
scheduled to start at a single predefined time point.

There are also cases where an operation on a train needs to be handled by
two drivers. This results in a pair of jobs that need to be synchronized, with
one job serving as the main job and one as the assisting job. As the name
implies, the main job is more important, and it is feasible to schedule the main
job without scheduling the assisting job; however, scheduling the assisting job
without scheduling the main job is not possible. If both jobs are scheduled,
they must be scheduled equidistantly from the beginning of their respective
time windows. For example, if the main job has a time window beginning at
time 1 and the assisting job’s time window starts at time 4, the assisting job
must be scheduled three minutes later than the main job. In rare cases, the first
job can be finished before the second job starts. In such cases, it is possible for
one driver to do both jobs.

Consecutively doing jobs on the same train if there is little downtime be-
tween them is convenient for the drivers. Therefore, to increase the driver’s

5

satisfaction, there are specific pairs of jobs for which we explicitly prefer to line
them up in the duty of a single driver. We call it the preferred succession for two
jobs that we want to line up this way. To ensure the schedule is affected less by
delays, we also prefer a buffer between jobs done consecutively by a single driver
that are not performed on the same train. This ensures that if a driver takes
too long for a particular job, it won’t affect future jobs as much. This buffer
is not preferred for successive jobs on the same train, as it would be strange
to have a driver waiting to do a second job on the train he has already worked on.

This thesis contributes in two ways. We solve this problem using branch and
price with a novel way to solve the pricing problem. On top of that, we are
able to test this algorithm on real-life instances provided by the NS, providing
valuable information on the performance on practical problems.

The thesis is organized as follows. In Section 2, we describe the relevant
literature. In Section 3, we present several ways to describe the problem as an
ILP and expand on the current method currently used at the NS. In Section 4,
we present the algorithm we created to solve the problem. In Section 5, we show
the results of how well our algorithm performed and compare it to the currently
used method. Finally, we provide a conclusion and a direction for future work
in Section 6.

2 Related Literature

This chapter gives an overview of which papers are relevant to this problem.
These papers mostly come from fields about crew scheduling and vehicle routing,
with which the problem of this paper shares many similarities. We first mention
each of these fields and give a survey paper for each field. We then highlight
the most common methods for solving these types of problems and showcase
the important papers that implement these methods.

2.1 Crew Scheduling

Numerous studies have been conducted on crew scheduling, initially focusing
on airport crew scheduling. Still, more recently, research efforts have also been
directed towards addressing similar problems in the railway industry. These
problems are particularly relevant due to the constraints imposed by working
conditions and employee satisfaction preferences. The constraints typically in-
clude limitations on working hours and meal breaks. In contrast, employee
satisfaction preferences may include, among other things, the desire for jobs
with high diversity where they can do many different things. The thesis writ-
ten by Gottenbos (2022) dives deeper into these types of employee satisfaction
preferences.

In general, the papers that address these problems typically describe them
in a similar manner. Specifically, a set of employees are required to perform a
given set of jobs, which, similar to our problem, often involve a combination of

6

duration, time window, and required skills. The allocation of jobs to an em-
ployee in a specific order results in the creation of a duty. Mathematically, these
problems are usually formulated as a set covering problem, where predetermined
duties are selected and assigned to the employees to cover all jobs. The paper
by Ernst et al. (2004) presents an overview of crew scheduling. It provides a
large number of relevant papers. While this paper is quite old, it still explains
some of the more common concepts present in many crew scheduling problems.
More recent crew scheduling surveys for train and airline crew scheduling are
listed below.

Train Crew Scheduling

Extensive research has been conducted in railway operations, focusing on de-
veloping efficient schedules for rolling stock to minimize the associated costs of
maintenance and material expenses. However, a significant portion of the total
costs incurred also relates to scheduling the crew members required to operate
the trains. These problems are more complex than merely assigning one crew
to each train line due to regulations concerning the working conditions of crew
members. For instance, crew members may require a meal break during their
shifts, necessitating the involvement of a different crew to operate the train they
were previously operating. The initial crew must be assigned to another train
after their meal break to create an efficient schedule.

The paper by Heil et al. (2020) presents a literature survey on all railway
crew scheduling studies conducted between 2000 and 2020. The paper offers
valuable insights into the challenges encountered in scheduling railway crews
and the methodologies developed to address these issues.

Airline Crew Scheduling

Labour costs represent airlines’ second largest expense, presenting a significant
opportunity for cost reduction. Since the late 1950s, considerable research efforts
have been dedicated to minimizing this cost, with a primary focus on optimizing
the crew schedules. In contrast to railway operations, the majority of research
studies have centered on optimizing crew schedules. The paper authored by
Kasirzadeh et al. (2017) provides an overview of the research conducted in this
area and attempts to solve some general instances using standard algorithms.

2.2 VRP and VSP

The Vehicle Routing Problem (VRP) and the Vehicle Scheduling Problem (VSP)
bear significant relevance to our current problem. In VRP, a set of customers
must be visited by vehicles. These visits then add up to become routes, which
are then allocated to the vehicles to obtain the solution. In VSP, the vehicles
must perform trips, i.e., driving the vehicle from one point to another at a given
time. In the solution, these trips are similarly lined up to become routes. Our
problem is a mixture of these two problems: some jobs can be viewed as visiting

7

customers (performing an operation on a train at a singular location), and some
jobs can be viewed as performing trips (driving the train from one location to
another). Although the practical application of VRP and VSP aligns closely
with crew scheduling, the notation and terminology used for these problems
typically differ. Some extensions present in VRP and VSP, which are not com-
monly found in crew scheduling, closely reflect our problem. These extensions
include Time Windows and Synchronization, both of which are also relevant
to our problem, as certain jobs possess time windows, and others require the
involvement of two drivers.

Home healthcare is an especially interesting field in which vehicle routing
problems are common. Efficient scheduling of staff is crucial in ensuring proper
patient care, particularly given the current challenges in attracting an adequate
number of caregivers. Generally, finding these schedules is modelled as a vehicle
routing problem. Unlike crew scheduling in the airline and railway industries,
research in staff scheduling for healthcare services often omits significant con-
straints related to labour laws. However, due to patients’ needs to receive care
from multiple caregivers, synchronization is a frequently studied constraint in
this field. Moreover, patients are usually only given an indication of a period
when caregivers will come by. Therefore, time windows present a significant
issue as well. As such, research in this area is highly relevant to our current
problem. The paper authored by Haitam et al. (2021) provides a survey of re-
search related to the vehicle routing problem in home health care services and
is particularly relevant to our problem.

2.3 Solution Methods

In the field of optimization, various techniques have been developed and ap-
plied to solve problems related to crew scheduling and vehicle routing. The
selection of these techniques often depends on the specific problem’s character-
istics and the research’s vintage. Four approaches, namely Exact, Heuristic,
Column Generation, and Meta-Heuristics, are commonly used to solve the pre-
viously mentioned optimization problems. While Column Generation can be
considered a technique that potentially falls under both the Exact and Heuris-
tic categories, it is used frequently enough to warrant its review. On top of
that, it has some characteristics that make it distinct from most other exact
and heuristic methods.

For crew scheduling problems, column generation is identified as the most
commonly used technique, owing to its ability to solve large-scale problems effi-
ciently. Additionally, meta-heuristic methods such as local search are frequently
employed, although to a lesser extent than column generation. While heuristics
are used slightly less than meta-heuristics, they still represent a significant pro-
portion of approaches employed in crew scheduling. Exact solutions were once
widely used in solving crew scheduling problems. However, with the increase
in problem size, exact solutions have become less popular as they are no longer
practical for most real-world instances.

8

In the case of vehicle routing problems, heuristic and exact solutions are used
with the same frequency as in crew scheduling. However, column generation is
not as popular in vehicle routing as in crew scheduling, and instead, meta-
heuristic methods are usually preferred. This is due to the ability of meta-
heuristic methods to handle the complexity of real-world instances of vehicle
routing problems.

Each of the approaches above will be elaborated upon below, linking several
important papers for both types of problems.

Exact Approaches

Regarding railway crew scheduling problems, exact ILP models are typically
only employed for very small instances. The most common approach is to use
a set covering problem (SCP) formulation, which involves calculating all possi-
ble duties and selecting a combination that satisfies all constraints. Even the
largest of these problems only involves around 60,000 possible duties. Airline
crew scheduling is solved similarly using a set covering approach. Boschetti et
al. (2004) use an SCP formulation to solve the Multiple Depot Crew Scheduling
Problem, where crew members can start at different depots and have to return
to their starting depot. Their solution can be used for both airline and railway
crew scheduling problems. Although there are exact solutions available for Ve-
hicle Routing Problems (VRP), they tend only to be useful for very basic VRP
instances and are not particularly relevant to this paper.

Heuristic Approaches

In crew scheduling, heuristics are frequently employed. Most of these heuristic
solutions involve efficiently identifying a promising set of duties and solving
the ILP with that specific, smaller set of duties. For instance, Chen et al.
(2013) found duties based on promising relief locations for meal breaks. Van den
Broek et al. (2020) addressed the problem of scheduling drivers on a shunting
yard, where drivers can ride along with any train activity. They used two
different heuristics to determine a partial order of driver activities and then used
dynamic programming to identify the exact times for each activity. Finally, they
presented a branch and price algorithm to compare the two heuristics.

Column Generation based algorithms

Column generation is a commonly employed approach in crew scheduling to
solve problems that can be defined as a set covering problem. The columns
in such problems represent duties that are usually independent. For example,
Zamorano and Stolletz (2017) used column generation to create schedules for
technicians, some of whom must work in pairs to complete specific jobs. How-
ever, unlike our problem, the technicians in their study were already paired up
at the start of the day and remained together throughout. Verhave (2015) also

9

used column generation to solve a regular crew scheduling problem with sched-
ules as columns that involved different skills, scheduling for an entire week at
once, and the possibility of overnight stays.

While ideally, the columns are not connected, in our problem, the columns
(driver schedules) are connected by the synchronization constraints. Bredstrom
and Ronnqvist (2007) use column generation in their algorithm to solve a prob-
lem in which the columns are similarly connected. They solve a vehicle rout-
ing and scheduling problem with synchronization constraints. To work around
the problem of connected columns, they start by relaxing the synchronization
constraints. To ensure the synchronization constraints are met in their final
solution, they branch on time windows until none of the supposedly synchro-
nized jobs have a different starting time. Dohn et al. (2011) tackled a similar
vehicle routing problem with time windows and temporal dependencies using
two other integer linear programming (ILP) models. The first ILP model was a
mixed-integer model that defined two variables for the order of the vehicles and
the times at which locations are visited. The second model was a time-indexed
model that used a graph with a node for each combination of vehicle, time,
and location, with edges between them representing the trips. In both cases,
the columns they must find are feasible vehicle routes. To find the best routes,
they have to solve the pricing problem, which they formulated as a shortest
path problem with time windows and capacity constraints. Their strategy also
involved branching on time windows, attempting to remove as many options as
possible. Building upon these concepts, Rasmussen et al. (2012) developed a
novel approach to solve the home care crew scheduling problem (HCCSP) with
synchronization and time windows. They also used branch and price to solve the
problem, resulting in a similar formulation using caregiver schedules as columns.
In addition to branching on time windows, they branched on assigning visits to
specific caregivers. This approach resulted in an efficient and effective solution
to the HCCSP, with potential applications in a variety of related fields.

Li et al. (2020) addressed a complex split delivery system problem involving
multiple different time windows for a single job and synchronization. Their type
of synchronization was based on selecting the same time windows for delivery,
and they utilized a branch and price algorithm to solve the problem. Their
branching rule consists of selecting a particular time window in one branch and
removing it as an option in the other branches. Van den Akker et al. (2012)
developed a solution for a parallel machine scheduling problem, which included
release dates, deadlines, and generalized precedence constraints, using column
generation. This method resulted in a master and pricing problem that closely
resembles other studies aimed at solving vehicle routing problems with temporal
dependencies and time windows. Unlike the previously mentioned studies, they
did include the synchronization constraints in the master problem. Furthermore,
in his thesis, Van den Broek (2022) utilized a branch and price algorithm to
address the scheduling of drivers in the shunting yard. Although the problem
lacked synchronization between routes, Van den Broek presented an interesting
approach in which the pricing problem calculated only the partial order of jobs

10

in a duty, while the master problem determined the exact completion times of
jobs.

Meta-Heuristics

In crew scheduling problems and vehicle routing problems, solutions are typ-
ically represented as an order of jobs or trips per employee or vehicle. This
representation allows for simple neighbourhood operators such as move, swap,
insert, and remove, which can be efficiently implemented. Therefore, differ-
ent Meta-Heuristics, such as local search and genetic algorithms, are commonly
used methods to solve these problems. Bräysy and Gendreau (2005) provided an
overview of the local search methods available at that time to solve the vehicle
routing problem with time windows (VRPTW). They detailed the neighbour-
hood operators that are commonly employed and discussed the evaluation of
algorithms for the VRPTW. Another example of a successful application of
optimization algorithms in crew scheduling is the work by Hanafi and Kozan
(2014), who employed simulated annealing to solve the problem of scheduling
railway crews with meal breaks. The main contribution of their work was the
introduction of flexible meal break timing at a relief point, as opposed to the
more common approach of scheduling meal breaks at the start of a relief point.
Their simulated annealing uses fairly simple neighbourhood operators to solve
the problem. Shen et al. (2013) applied a genetic algorithm to solve the crew
scheduling problem for public transport. Their algorithm uses an adaptive chro-
mosome length that reduces through crossover and mutation and increases in
length when an infeasible solution is found.

Ait Haddadene et al. (2016) utilized variable neighbourhood search with
multiple different starting points to solve VRPTWSyn, which includes synchro-
nization constraints in the VRPTW. Their neighbourhood operators were based
on adjusting the solution by moving and swapping customers. Similarly, R. Liu
et al. (2019) used simulated annealing to solve VRPTWSyn. They used simple
insert and removal operators that were combined and adjusted to work with
the synchronization and time window constraints. More recently, W. Liu et al.
(2021) solved the home health care routing and scheduling problem with time
windows, synchronized visits, and lunch breaks using four different algorithms,
each a combination of a genetic algorithm and a local search algorithm. They
found that the hybrid genetic general variable neighbourhood search algorithm
performed the best out of the four.

Szabó (2023) completed his thesis on scheduling mechanics on the shunting
yard, which turned out to be a problem similar to ours as it has both time
windows and synchronization. To solve the problem, he utilized a simulated
annealing algorithm. His major contribution was the introduction of a new op-
erator called GOLDS, which efficiently deals with synchronization in the local
search. This operator increases the duration of jobs in a way that allows them
to have some flexibility to move around during the search by constantly having
some breathing room. The simulated annealing algorithm adjusts the temper-
ature, reducing the effect of this increase until the jobs converge to be fully

11

synchronized. This approach allows for more efficient job scheduling while also
accommodating the synchronization constraint.

In the study conducted by van Twist et al. (2021), the authors solve the prob-
lem of assisting Passengers with Reduced Mobility (PRMs) while they make
their way around an airport. The objective is to devise an employee sched-
ule that maximizes support for PRMs and minimises waiting times. One of
their constraints involves the necessity for synchronized task execution to fa-
cilitate smooth PRM handovers. This study proposes a novel approach using
Simulated Annealing to determine feasible start times for passenger journeys.
Subsequently, a heuristic matching algorithm is employed to assign tasks to em-
ployees in each iteration of the decomposition model. The experimental results
showcase the algorithm’s capability to establish robust, smooth connections in
deterministic instances.

3 Mathematical formulations

In this section, we will present the problem as an ILP in four different ways.
The first two mathematical formulations are commonly used to model vehicle
routing problems with synchronization and time windows, both of which rely
on converting the problem into a graph. The graphs consist of nodes that rep-
resent jobs and arcs that connect them to indicate the order in which they are
completed by the driver. The two formulations differ in what data is contained
by the nodes. The first formulation, known as the time-indexed model, includes
a node for each possible combination of time, driver, and job. In contrast, the
second formulation, called the mixed-integer formulation, only includes a node
for each possible combination of driver and job, with a separate variable repre-
senting the time at which each job is completed. These first two formulations
will not be used to solve the problem and are included only to present a com-
plete picture of the problem. The thesis written by Szabó (2023) tested solving
another formulation, similar to the first two, using the Gurobi Solver. In his
formulation, he used a variable xij indicating that job i was the predecessor of
job j and a variable ti indicating the time at which job i was completed. While
his problem had some additional constraints and mainly focused on robustness
instead of trying to complete as many jobs as possible, this ILP approach was
so much too slow that even our slightly less complicated problem would not be
close to solvable by an ILP solver when using these approaches.

In the third formulation, we describe the model as a set covering problem
in which a set of duties is available for selection. It is assumed that each duty
is feasible, meaning it does not violate any constraints. This formulation will
be the basis for the solution method which we will present in the next section.
The fourth formulation is very similar to the time-indexed model and forms the
basis for the method currently used by the NS.

12

3.1 Common Notation

Each of the formulations uses a set of common notations, which will be explained
in this subsection. Additionally, each variable or set defined in this subsection
is shown in Table 1, Table 2 or Table 3. The set of drivers is denoted by
D = {1, 2, .., k − 1, k}, where k is the number of drivers. Each driver d has a
time window defined as [αd, βd], within which all scheduled jobs must start and
finish. A preferred break time for each driver d that is required to have a break
is defined as bd. The set of jobs is denoted by T = {1, 2, .., n − 1, n}. Riding
along with a train is very similar to regular jobs. The only difference is that for
normal jobs, there is a cost for not doing the job, while for riding along, there is
a cost for doing it. Riding along is not allowed in every shunting yard. However,
for those shunting yards that do allow it, every job that drives a train from one
location to another will have an accompanying riding-along job. Similarly, the
only difference between regular jobs and breaks is that some drivers need a break
in their schedule. Therefore, we represent both breaks and riding along as jobs
and add them to the set of jobs. Several subsets of jobs are defined: Tr ⊂ T
represents the set of jobs that represent riding along with the train, Tb ⊂ T is
the subset of jobs representing breaks, Tx ⊂ T is the subset of jobs that are
fixed. We also add a dummy starting and ending job for each driver, which are
denoted by 0d and nd, which make sure they start at the correct location. We
define the superset TS ⊃ T that includes all dummy starting and ending jobs.
Finally, we define the set M as all the minutes between the earliest possible
time and the latest possible time to plan anything.

For each job, i ∈ T , its duration is denoted by li and its time window is
defined as [αi, βi]. The cost of not completing job i is given by the parameter
ci; in case i is a riding along job ci is equal to the cost you save by not riding
along. The walking time between two jobs i and j is defined as wij , and the cost
for walking between the jobs is given by cij . The cost per minute of deviation
from the preferred time of a job i is defined as cdi . This cost is different depending
on whether job i is a break, ride-along, or regular job. The parameter aim is
defined as the difference of time between the preferred time and scheduled time
if job i is planned at minute m, which helps in calculating the cost of deviating
from the preferred time.

The set of synchronized pairs of jobs is defined as P , where each pair (i, j) ∈
P indicates that job i is the main job and job j is the assisting job. The delay
between the start of the main and assisting job is denoted by pij = αj − αi.
Each fixed job i is assigned to a specific driver di. Preferred successor pairs
(i, j) ∈ S are also defined, with the cost for job j not being the job planned
next after job i given by cs. Whenever we want a buffer of time between two
jobs to increase robustness, there is a maximum time after which extra buffer
time is not preferable. This maximum buffer time is defined as b.

13

Table 1: Common Notation - Sets

Set Description Possible Values
D Set of drivers {1, 2, .., k − 1, k}
T Set of jobs {1, 2, .., n− 1, n}
Tr Subset of jobs representing riding along

with the train
Subset of T

Tb Subset of jobs representing breaks Subset of T
Tx Subset of fixed jobs Subset of T
TS Superset of T including dummy starting

and ending jobs
Subset of T

M Set of minutes between earliest and lat-
est possible time

Numeric values

P Set of synchronized pairs of jobs Set of pairs from T
S Preferred successor pairs (i, j) Set of pairs from T

Table 2: Common Notation - Regular Variables

Variable Description Possible Values
αd, βd Time window for driver d Time intervals
bd Preferred break time for driver d Time points
li Duration of job i ∈ T Numeric values

[αi, βi] Time window for job i ∈ T Time intervals
aim Difference in time between preferred

and scheduled time for job i at minute
m

Numeric values

pij Delay between the start of main job i
and assisting job j

Numeric values

wij Walking time between jobs i and j Numeric values

Table 3: Common Notation - Costs

Cost Description Possible Values
ci Cost of not completing job i Numeric values
cij Cost for walking between jobs i and j Numeric values
cdi Cost per minute of deviation for job i Numeric values
cs Cost for job j not being the job planned

next after job i
Numeric values

b Maximum buffer time Numeric values
cijmm′ Buffer cost between job i scheduled to

start at minute m and job j scheduled
to start at minute m′

Numeric values

14

3.2 Time-indexed Model

The time-indexed model adopts a graph-based approach to model the problem,
where vertices represent each possible combination of job, driver, and time. For
instance, a vertex might be infeasible if it is a fixed job meant for another driver
or if the time is outside of that driver’s time window or outside of the job’s time
window. An arc is created for every pair of vertices that belong to the same
driver and for which it is possible to consecutively do the jobs. To formulate
the problem mathematically, we define the binary decision variable xijdm as 1
if driver d starts job i at minute m and then proceeds to job j. By doing so, we
select an edge between the vertex representing driver d starting job i at minute
m and one of the vertices for job j and driver d. Note that the exact time at
which job j will be done is still undecided at this point. On top of that, we
generalize the objective and constraint function to sum over M for each job,
while many jobs actually only have one possible starting time equal to the start
of their time window. We also introduce the binary coverage variable yi, which
is equal to 1 if we plan to execute job i and 0 otherwise. Finally, we define the
buffer cost parameter cijmm′ , which reflects the additional cost incurred when
executing job i at minute m and job j at minute m′. The resulting ILP is
shown below in model A, with (A.1 − A.5) making up the objective function
and (A.6−A.16) making up the constraints.

Objective Function

minimize∑
i∈T

ci · (1− yi)+ (A.1)∑
i∈TS

∑
j∈TS

∑
d∈D

∑
m∈M

cij · xijdm+ (A.2)∑
i∈T

∑
j∈TS

∑
d∈D

∑
m∈M

cdi · xijdm · aim+ (A.3)∑
(i,j)∈S

∑
d∈D

∑
m∈M

−cs · xijdm+ (A.4)

∑
h∈TS

∑
i∈TS/{h}

∑
j∈TS/{h,i}

∑
d∈D

∑
m∈M

∑
n∈M

cijmn · xijdm · xjhdn (A.5)

The time-indexed model has an objective that is built up from several smaller
goals. The most important objective (A.1) is assigning as many jobs as possi-
ble. Objective (A.2) adds the costs for walking between jobs. Objective (A.3)
adds the costs for deviating from the preferred time for jobs. Objective (A.4)
subtracts the costs for deviating from the preferred succession for a pair of jobs
for each succession pair that is selected. Objective (A.5) adds the costs for
not having the maximum buffer time. This objective is not linear but can be
linearized using the ’big M method’.

15

Constraints∑
j∈T

∑
d∈D

∑
m∈M

xijdm = 1, ∀i ∈ Tx (A.6)∑
i∈Tb

∑
j∈T

∑
m∈M

xijdm = 1, ∀d ∈ D (A.7)∑
j∈T

∑
d∈D

∑
m∈M

xijdm = yi, ∀i ∈ T/Tx/Tb (A.8)∑
j∈TS

∑
m∈M

x0djdm =
∑
j∈TS

∑
m∈M

xjnddm = 1, ∀d ∈ D (A.9)∑
i∈T

∑
m∈M

xihdm −
∑
j∈T

∑
m∈M

xhjdm = 0, ∀h ∈ T, ∀d ∈ D (A.10)

yi ≥ yj , ∀(i, j) ∈ P (A.11)∑
d∈D

∑
h∈T

xihdm ≥
∑
d∈D

∑
h∈T

xjhd(m−pij), ∀m ∈ M,∀(i, j) ∈ P (A.12)

xijdm ∈ {0, 1}, ∀i ∈ T, ∀j ∈ T, ∀m ∈ M,∀d ∈ D (A.13)
yi ∈ {0, 1}, ∀i ∈ T (A.14)

Constraints (A.6-A.7) ensure that each fixed job is assigned to exactly one
driver and each driver (that needs one) has been assigned a break job. Con-
straints (A.8) make sure the remaining jobs are assigned to at most one driver.
Constraints (A.9-A.10) guarantee that each driver’s schedule begins at its begin
job, ends at its end job and every vertex that has an outgoing edge has an
incoming edge. Constraints (A.11-A.12) make certain that an assisting job can
only be planned if its main job is planned. And that if a pair of synchronized
jobs are both planned, they are scheduled equidistantly from the beginning of
their respective time windows. Constraints (A.13-A.14) make sure the variables
x and y are binary.

3.3 Mixed-integer Model

The Mixed-Integer Model also adopts a graph-based approach to model the
problem. The vertices represent every potential combination of job and driver,
excluding the infeasible ones. For instance, a vertex might be infeasible if it
contains a fixed job assigned to another driver or if it is never possible to reach
the second job on time after completing the first job. An arc is created for every
pair of vertices that belong to the same driver and for which it is possible to
do the two jobs consecutively. Several variables are defined to formulate this
problem as a mixed-integer model. The binary coverage variable yi is defined as
1 if job i is planned and 0 if it is unplanned. The variable xijd is set to 1 if job j
is the direct successor of job i for driver d. The scheduling variable tid is set to 0
if job i is not planned for driver d, and it represents the time at which the job is
scheduled otherwise. Finally, the parameter hi is defined as the preferred start
time for job i. The resulting ILP is shown below in model B, with (B.1−B.5)

16

making up the objective function and (B.6−B.19) making up the constraints.

Objective Function

minimize∑
i∈T

ci · (1− yi)+ (B.1)∑
i∈TS

∑
j∈TS

∑
d∈D

cij · xijd+ (B.2)∑
i∈T

∑
d∈D

∑
j∈TS

cdi · |hi · xijd − tid|+ (B.3)∑
(i,j)∈S

∑
d∈D

−cs · xijd+ (B.4)

∑
h∈TS

∑
i∈TS

∑
j∈TS

∑
d∈D

xijd · xjhd ·max(min(b, tjd − tid − eij − li), 0) (B.5)

Similarly to (A), the mixed-integer model has an objective built up from
several smaller goals. The most important objective (B.1) is assigning as many
jobs as possible. Objective (B.2) adds the costs for walking between jobs. Ob-
jective (B.3) adds the costs for deviating from the preferred time for jobs. This
constraint is not linear but can be linearized using the ’big M method’. Objec-
tive (B.4) subtracts the costs for deviating from the preferred succession for a
pair of jobs for each succession pair that is selected. Objective (B.5) adds the
costs for not having the maximum buffer time. This objective is not linear but
can be linearized using the ’big M method’.

17

Constraints∑
d∈D

∑
j∈T

xijd = 1, ∀i ∈ Tx (B.6)∑
i∈Tb

∑
j∈T

xijd = 1, ∀d ∈ D (B.7)∑
d∈D

∑
j∈T

xijd = yi, ∀i ∈ T/Tx/Tb (B.8)∑
j∈T

x0djd =
∑
i∈T

xindd = 1, ∀d ∈ D (B.9)∑
j∈T

xijd −
∑
j∈T

xjid = 0, ∀i ∈ TS ,∀d ∈ D (B.10)

tid + eij + li − (M · xijd) ≤ tjd, ∀s ∈ S, ∀i, j ∈ TS (B.11)

αi ·
∑
j∈TS

xijd ≤ tid ≤ +βi ·
∑
j∈TS

xijd, ∀d ∈ D,∀i ∈ TS (B.12)

αd ≤ tid, ∀d ∈ D,∀i ∈ TS (B.13)
βd ≥ tid + li, ∀d ∈ D,∀i ∈ TS (B.14)

yj = 1 =⇒
∑
d∈D

tid −
∑
d∈D

tjd = pij , ∀(i, j) ∈ P (B.15)

yi ≥ yj , ∀(i, j) ∈ P (B.16)
xijd ∈ {0, 1}, ∀i ∈ TS ,∀j ∈ TS ,∀d ∈ D (B.17)
yi ∈ {0, 1}, ∀i ∈ T (B.18)
tid ∈ N, ∀i ∈ TS ,∀d ∈ D (B.19)

Constraints (B.6-B.7) ensure that each fixed job is assigned to precisely one
driver and each driver (that needs one) has been assigned a break job. Con-
straints (B.8) ensure the remaining jobs are assigned to at most one driver and
assign the variable yi to 1 if a job is planned. Constraints (B.9-B.10) guarantee
that each driver’s schedule begins at its begin job, ends at its end job, and is
not segmented. Constraints (B.11-B.14) ensure that each job is planned at a
time that complies with all the relevant time windows. Constraints (B.15-B.16)
make certain that each assisting job is only planned if its main job is planned.
And that if a pair of synchronized jobs are planned, they are scheduled equidis-
tantly from the beginning of their respective time windows. Constraints (B.16)
are currently not linear but can be linearized using the ’big M method’. Con-
straints (B.17-B.19) make sure the variables x and y are binary and that the
variably t is a natural number.

3.4 Set Covering model

In the set covering models, it is assumed that there is a predetermined set of
feasible duties R, and the task at hand is to select a subset of these duties in
a manner that satisfies all constraints. To achieve this, the binary variable λr

18

is introduced to represent the selection of schedule r ∈ R. Parameter cr defines
the cost of selecting schedule r, the exact costs cr is made up from are shown
below in equation CR which is a summation of (CR.1 − CR.4). Additionally,
the binary parameter air is introduced, where its value is 1 if job i is included in
schedule r, and 0 if it is not. The parameter tir is also defined, which indicates
the start time of job i in schedule r, with a value of 0 if i is not included in
the schedule. Finally, we define the parameter bdr , which is 1 if driver d can
complete schedule r. We also add a set of dummy drivers who can complete a
set of dummy schedules r. These schedules are used to insert a dummy starting
time for a pair of assisting jobs. For every job, we insert a series of such dummy
schedules containing only that job, with each possible starting time for that job
being contained in one of the schedules. The cost for not doing a job i (ci) is
contained within the cost of the dummy schedules. We also add a dummy driver
to D for every dummy schedule to select these dummy schedules. Finally, some
drivers are exactly equal, meaning they have the same starting time and ending
time, no fixed jobs and the same break time. To avoid symmetry in the ILP,
we add a parameter qd. The value of this parameter is equal to the number of
drivers who are exactly equal to this driver for one driver of such a group of
equal drivers and 0 for all other drivers in that group. For unique drivers, the
value of this parameter is equal to 1. The resulting ILP is shown below in model
C, with (C.1− C.6) making up the objective function and the constraints.

min
∑

r∈R∪R

cr · λr, (C.1)

st.
∑
r∈R

air · λr +
∑
r∈R

air · λr = 1, ∀i ∈ T (C.2)∑
r∈R

bdr · λr ≤ qd, ∀d ∈ D (C.3)∑
r∈R∪R

tir · λr −
∑

r∈R∪R

tjr · λr = pij ,∀(i, j) ∈ P (C.4)∑
r∈R

air · λr ≥
∑
r∈R

ajr · λr, ∀(i, j) ∈ P (C.5)

λr ∈ {0, 1}, ∀r ∈ R (C.6)

The objective function (C.1) is the costs of the selected schedules plus the costs
for not completing jobs contained within the dummy schedules. The constraints
(C.2) ensure that each job is either chosen by one of the regular schedules or one
of the dummy schedules. Constraints (C.3) ensure that each driver has at most
one selected schedule. Constraints (C.4-C.5) make certain that each assisting
job is only planned if its main job is planned. And that if a pair of synchronized
jobs are planned, they are scheduled equidistantly from the beginning of their
respective time windows. Constraints (C.6) make sure the variables λ are binary.

In this model, we have two types of schedules: one contains the dummy
schedules, while the other includes the normal schedules. The cost cr of a
dummy schedule is shown in Equation 1 while the cost for regular schedules is
shown in Equation CR. Variables used in this equation are equal to those used

19

in model B. This means the binary coverage variable yi is defined as 1 if job i
is planned and 0 if it is unplanned. The variable xijd is set to 1 if job j is the
direct successor of job i for driver d. The scheduling variable tid is set to 0 if
job i is not planned for driver d, and it represents the time at which the job is
scheduled otherwise. Finally, the parameter hi is defined as the preferred start
time for job i.

cr =
∑
i∈T

ci · air (1)

∑
i∈TS

∑
j∈TS

∑
d∈D

cij · xijd+ (CR.1)∑
i∈T

∑
d∈D

∑
j∈TS

cdi · |hi · xijd − tid|+ (CR.2)∑
(i,j)∈S

∑
d∈D

−cs · xijd+ (CR.3)

∑
h∈TS

∑
i∈TS

∑
j∈TS

∑
d∈D

xijd · xjhd ·max(min(b, tjd − tid − eij − li), 0) (CR.4)

3.5 Current Method used at NS

Currently, the method used at the NS to solve this problem is running CPLEX
on a variant of the time-indexed model. This model is listed below. For the
mathematical formulation, we define xidm as the vertex with job i started at
minute m by driver d, with value 1 if the vertex is selected and 0 if it is not.
Vertices are not added if it is a fixed job for another driver or if the time is
outside of that driver’s time window or outside of the job’s time window. An
arc zijdmn is created for every pair of vertices that belong to the same driver
and for which it is possible to consecutively do the jobs. If a driver d completes
job i started at minute m and then goes on to start job j at minute n, the
variable zijdmn is 1. We also define the binary coverage variable yi, where yi
is 1 if we have planned job i and 0 if job i is unplanned. Additionally, we cre-
ate a parameter cijmm′ , which is the buffer cost for starting job i at minute m
and job j at minute m′. Finally, the parameter aim is defined as the difference
of time between the preferred time and scheduled time if job i is planned at
minute m, which helps in calculating the cost of deviating from the preferred
time. The resulting ILP is shown below in model D, with (D.1−D.5) making
up the objective function and (D.6−D.16) making up the constraints.

20

Objective Function

minimize∑
i∈T

ci · yi+ (D.1)∑
i∈TS

∑
j∈TS

∑
d∈D

∑
m∈M

∑
n∈M

cij · zijdmn+ (D.2)∑
i∈T/Tr

∑
d∈D

∑
m∈M

cdi · xidm · aim+ (D.3)

∑
(i,j)∈S

∑
h∈TS/{j}

∑
d∈D

∑
m∈M

∑
n∈M

cs · zihdmn+ (D.4)

∑
i∈TS

∑
j∈TS/i

∑
d∈D

∑
m∈M

∑
n∈M

cijmn · zijdmn (D.5)

The current model has an objective built up from several smaller goals. The
most important objective (D.1) is assigning as many jobs as possible. Objective
(D.2) adds the costs for walking between jobs. Objective (D.3) adds the costs
for deviating from the preferred time for a job. Objective (D.4) subtracts the
costs for deviating from the preferred succession for a pair of jobs, for each suc-
cession pair that is selected. Objective (D.5) adds the costs for not having the
maximum buffer time.

Constraints∑
d∈D

∑
m∈M

xidm = 1, ∀i ∈ Tx (D.6)∑
i∈Tb

∑
m∈M

xidm = 1, ∀d ∈ D (D.7)∑
d∈D

∑
m∈M

xidm = yi, ∀i ∈ T/Tx/Tb (D.8)∑
h∈H

∑
n∈M

zihdmn = xidm, ∀i ∈ TS ,∀d ∈ D,∀m ∈ M, (D.9)∑
h∈T

∑
m∈M

zhjdmn = xjdn, ∀j ∈ TS ,∀d ∈ D,∀n ∈ N (D.10)∑
h∈T

∑
m∈M

z0dhdmn =
∑
h∈T

∑
m∈M

zhnddmn,∀j ∈ T, ∀d ∈ D,∀n ∈ N (D.11)

yi ≥ yj , ∀(i, j) ∈ P (D.12)∑
d∈D

xidm ≥
∑
d∈D

xjd(m−pij), ∀m ∈ M & ∀(i, j) ∈ P (D.13)

xidm ∈ {0, 1}, ∀i ∈ T, ∀m ∈ M,∀d ∈ D (D.14)
zijdmn ∈ {0, 1}, ∀i ∈ T, ∀j ∈ T, ∀m ∈ M,∀n ∈ M,∀d ∈ D (D.15)
yi ∈ {0, 1}, ∀i ∈ T (D.16)

21

Constraints (D.6-D.7) ensure that each fixed job has been assigned to exactly
one driver and each driver (that needs one) has been assigned a break job.
Constraints (D.8) ensure the remaining jobs are assigned to at most one driver.
Constraints (D.9-D.10) guarantee that if a node is used, it has both an incoming
and an outgoing edge. Constraints (D.11) make sure that each driver starts and
ends at its respective starting and ending node. Constraints (D.12-D.13) make
certain that each assisting job is only planned if its main job is planned and
that if a pair of synchronized jobs are planned, they are scheduled equidistantly
from the beginning of their respective time windows. Constraints (D.14-D.16)
make sure the variables x, z and y are binary.

Due to the computational complexity of solving the time-indexed model, the
NS has imposed several constraints on the number of nodes and arcs in their
graph. Specifically, nodes are restricted to containing only logical starting times
for jobs. There are a few moments they assume are logical. For every job, its
preferred time is added. For every pair of jobs, they add a time for the second
job in a way that the buffer time is maximized and in a way that it is maximized
while still allowing a third job to be put after the second job. Whenever a new
moment is added for a job, another moment is added to its preferred predeces-
sors and successors such that it fits exactly. Node creation is further restricted
by allowing nodes to be created only within a maximum distance from their
preferred time. This distance starts at 0 and increases to 5, 20, 60, and ∞.
Nodes are repeatedly created using the next maximum distance if the number
of nodes created is less than 10000.

After the nodes have been created, the arcs between them are generated,
subject to several restrictions. The number of arcs generated is limited by
dividing the maximum desired number of arcs by the number of nodes and
allowing each node to have only that many outgoing arcs. Additionally, arcs are
created only if they are deemed logical, which is determined based on whether
or not one of the below conditions is true for a possible arc from job i to job j:

1. There is no arc yet from i to j

2. The buffer using this arc is bigger than the buffer using the other arcs
going from i to j

3. The times for starting the jobs in this arc are closer to their preferred start
times than previous arcs from i to j

4. job j is either a main job or an assisting job

5. One of the predecessors or successors of i and j is a main or an assisting
job

6. Using this arc j can be started immediately on arrival

7. Part of the buffer time is maintained

8. If j is i’s assisting job and the time window of j starts once i is finished
in this arc.

22

4 Branch and Price

In this section, we will present the algorithm, a branch and price variation we
use to solve the problem. It is split up into four parts. First, we explain the
decomposition we use. Then we elaborate on our solution to the pricing problem.
Then, we explain the branching rules. Finally, we present some additional
strategies we use to potentially speed up the algorithm.

4.1 Decomposition

We will use a slight modification of the Dantzig-Wolfe decomposition described
in the set covering model, modelC, of the previous section. We use a branch-
and-price framework with column generation to solve the problem. Typically,
a branch-and-price framework splits the problem into two smaller problems:
a master problem and a subproblem. The subproblem focuses on generating
feasible driver schedules, while the master problem selects a combination of the
generated schedules to form a solution to the problem. We iteratively perform
branching on the time windows for the jobs until the starting times for all jobs
are consistent across the solution.

4.1.1 Master Problem

In this section, we describe the restricted master problem (RMP) in which we
select a duty for each driver out of a large set of duties. In Section 3, we intro-
duced a set partitioning-based formulation (model C, which we repeat below)
that serves as the foundation of our master problem. Model C is an ILP model
that assumes that every feasible duty can be selected. Due to the vast number
of feasible duties, an exhaustive enumeration becomes infeasible for solving the
model. Therefore, we try to solve the model with only a small number of simple
duties instead, creating the RMP.

min
∑

r∈R∪R

cr · λr, (C.1)

st.
∑
r∈R

air · λr +
∑
r∈R

air · λr = 1, ∀i ∈ T (C.2)∑
r∈R

bdr · λr ≤ qd, ∀d ∈ D (C.3)∑
r∈R∪R

tir · λr −
∑

r∈R∪R

tjr · λr = pij ,∀(i, j) ∈ P (C.4)∑
r∈R

air · λr ≥
∑
r∈R

ajr · λr, ∀(i, j) ∈ P (C.5)

λr ∈ {0, 1}, ∀r ∈ R (C.6)

To generate additional duties (or columns), we relax the integrality con-
straints (C.6). This allows us to compute the dual variables for the remaining
constraints. We also remove the upper limit of 1 of constraints (C.6) as that is

23

already enforced by constraints (C.2). We also relax the synchronization con-
straints (C.4) by removing them entirely from the LP, resulting in the Relaxed
Restricted Master Problem (RRMP). Using the dual variables, we can generate
additional columns with negative reduced cost iteratively until no columns with
negative reduced costs can be found anymore. The columns we find are allowed
to contain a single job more than once. This allows us to generate columns more
quickly as we can use a dynamic programming approach that does not need to
keep track of all jobs done as a part of the state. Finally, we remove all dummy
schedules containing only one job and add negative costs for doing a job in the
costs for the schedules.

Below we describe the RRMP. We use the variable λr, representing the
selection of schedule r. Additionally, we introduce the integral parameter air,
which represents the number of times job i is included in schedule r (note that
due to our method for solving the pricing problem, this can exceed 1). The
cost for selecting schedule r is denoted by cpr . You can find the calculation of
this cost in Equation CR, with a minor modification: this time we incorporate
negative costs for completing a job, eliminating the need to separately add costs
for not performing jobs. Finally, we define the parameter bdr , which is 1 if driver
d can complete schedule r.

min
∑
r∈R

cpr · λr (M.1)

st.
∑
r∈R

air · λr ≤ 1, ∀i ∈ T πi(M.2)∑
r∈R

bdr · λr ≤ qd, ∀d ∈ D ωd(M.3)∑
r∈R

air · λr ≥
∑
r∈R

ajr · λr,∀(i, j) ∈ P γij(M.4)

0 ≤ λr, ∀r ∈ R (M.5)

The objective function (M.1) is equal to the costs of the selected schedules. The
constraints (M.2) ensure that each job is selected at most once, with πi the
dual variable for job i. Constraints (M.3) ensure that each driver has at most
one selected schedule, with ωd the dual variable for driver d. Constraints (M.4)
ensure that each assisting job is only planned if its main job is planned, with
−γij the dual variable for job i and γij the dual variable for job j. Constraints
(M.5) make sure the variables λ are at least 0.

Ideally, the solution found in the RRMP satisfies the integrality and syn-
chronization constraints, with each job being planned in at most one schedule.
However, in practice, this is not always the case. To address violations of the
synchronization constraints and jobs occurring more than once, we branch on
the time windows of the jobs that violate these constraints. We additionally
branch on time windows if a job starts at different times in the (possibly partly)

24

selected schedules. This ensures that every job starts at a single time in the
solution we find (even if it is not integral). To restore integrality to the solution,
we employ a flow algorithm, which will be elaborated in Subsection 4.4.

After finding the primal solution for this LP we also obtain the dual solution
[πi, ωd, γij] where πi, ωd, γij are the dual variables of Constraints (M.2), (M.3)
and (M.4) respectively. Using these dual variables we can compute the reduced
cost (Equation 2) for adding a new schedule 0 with variable λ0.∑

d∈D

bd0 · c
p
0 −

∑
i∈T

πi · ai0 −
∑
d∈D

ωd · bd0 −
∑

(i,j)∈P

γij · (ai0 − aj0) (2)

4.1.2 Pricing Problem (formulation)

In the pricing problem, we attempt to generate a feasible schedule with the
biggest negative reduced cost. As the schedules we add to the master problem
correspond to a driver, we can split this problem into finding a schedule for an
individual driver d. This means we can simplify Equation 2 into Equation 3 by
changing the summations over D to only use the single driver d (this also means
bd0 is equal to 1). We can then use this to solve the pricing problem.

cp0 −
∑
i∈T

πi · ai0 − ωd −
∑
ij∈P

γij · (ai0 − aj0) (3)

To be more detailed, we have listed the ILP formulation for the pricing
problem below. This is not used to solve the pricing problem but does give
an exact overview of what we are trying to solve. For the formulation of the
pricing problem, we adopt the graph-based approach first described in model
A. Vertices represent each possible combination of job and time. For instance,
a vertex might be infeasible if the driver lacks the necessary skills for a task, if
it is a fixed job meant for another driver or if the time is outside of that driver’s
time window or outside of the job’s time window. An arc is created for every
pair of vertices for which it is possible to do the jobs consecutively.

To formulate the problem mathematically, we define the binary decision vari-
able xijm as 1 if driver d starts job i at minute m and then proceeds to job j.
By doing so, we select an edge between the vertex representing driver d starting
job i at minute m and one of the vertices for job j and driver d. Note that
the exact time at which job j will be done is still undecided at this point. On
top of that, we generalize the objective and constraint function to sum over M
for each job, while many jobs only have one possible starting time equal to the
start of their time window. We also introduce the binary coverage variable yi
(this will be relaxed to an integer variable later), which is equal to 1 if we plan
to execute job i and 0 otherwise. Finally, we define the buffer cost parameter
cijmm′ , which reflects the additional cost incurred when starting job i at minute
m and starting job j at minute m′.

25

Objective Function

minimize∑
i∈T

(ci + πi) · −yi+ (P.1)∑
i∈Tr

∑
j∈TS

∑
m∈M

cr · li · xijm+ (P.2)∑
i∈TS

∑
j∈TS

∑
m∈M

cij · xijm+ (P.3)∑
i∈T

∑
j∈TS

∑
m∈M

cdi · xidm · aim+ (P.4)∑
(i,j)∈S

∑
m∈M

−cs · xijm+ (P.5)

∑
(i,j)∈P

γi · (yi − yj)+ (P.6)

∑
h∈TS

∑
i∈TS/{h}

∑
j∈TS/{h,i}

∑
m∈M

∑
n∈M

cijmn · xijm · xjhn+ (P.7)

−ωd (P.8)

The Pricing Problem has an objective built up from several smaller goals.
The objective (P.1) subtracts the costs for not planning a job for all planned
jobs. It also subtracts the dual variable for that job. Objective (P.2) adds the
costs for riding along with the train. Objective (P.3) adds the costs for walking
between jobs. Objective (P.4) adds the costs for deviating from the preferred
time for jobs. Objective (P.5) subtracts the costs for deviating from the preferred
succession for a pair of jobs for each succession pair that is selected. This means
we get a lower objective score if a pair from S are planned to start consecutively.
Objective (P.6) adds the dual variables for constraints (M.4). Objective (P.7)
adds the costs of not having the maximum buffer time. This objective is not
linear but can be linearized using the big M method (which is not necessary
since we are not solving it as an ILP). Objective (P.8) adds the dual variable
for the driver d.

26

Constraints∑
j∈T

∑
m∈M

xijm = 1, ∀i ∈ TX (P.9)∑
j∈T

∑
m∈M

xpjm = 1, (P.10)∑
j∈T

∑
m∈M

xijm = yi, ∀i ∈ T/TX (P.11)∑
j∈TS

∑
m∈M

x0jm =
∑
j∈TS

∑
m∈M

xjnm = 1, (P.12)∑
i∈T

∑
m∈M

xihm −
∑
j∈T

∑
m∈M

xhjm = 0, ∀h ∈ T, (P.13)

xijm ∈ {0, 1}, ∀i ∈ T, ∀j ∈ T, ∀m ∈ M, (P.14)
yi ∈ {0, 1}, ∀i ∈ T (P.15)

Constraints (P.9, P.10) ensure that this driver has been assigned all its fixed
jobs and its break job. Constraints (P.11) ensure the remaining jobs are assigned
at most once. Constraints (P.12, P.13) guarantee that the duty begins at its
beginning job and ends at its end job, and every vertex that has an outgoing
edge has an incoming edge. Constraints (P.14-P.15) make sure the variables x
and y are binary.

Before we start solving this pricing problem, we relax some of its constraints.
We relax constraints (P.15) to not have an upper bound (this transforms yi into
an integer variable). This means that jobs can be completed more than once.
This is usually solved implicitly through the dual variables, as selecting a job
twice in a single variable will increase its dual variable, making it less likely to
be picked twice in the next round. It may be that despite of this, schedules will
still be selected with a single job planned twice. However, this will be fixed later
using the branching rules. We remove Constraints (P.9) and add fixed jobs to
constraints (P.11). To ensure that fixed jobs will still be completed, we add a
substantial negative cost for completing them. Due to fixed jobs having a time
window in which they can only be started at one time point, it is impossible to
select a fixed job twice in one schedule as the two occurrences would have to
overlap. Thus, we can easily increase the cost for them without fear of it being
highly likely to be in the resulting schedule more than once. For this reason, we
still keep constraints (P.10), as simply giving the break high negative costs will
result in it always getting selected multiple times. This results in the updated
constraints below (the objective function is unchanged).

27

Constraints∑
j∈T

∑
m∈M

xpjm = 1, (P.16)∑
j∈T

∑
m∈M

xijm = yi, ∀i ∈ T (P.17)∑
j∈TS

∑
m∈M

x0jm =
∑
j∈TS

∑
m∈M

xjnm = 1, (P.18)∑
i∈T

∑
m∈M

xihm −
∑
j∈T

∑
m∈M

xhjm = 0, ∀h ∈ T, (P.19)

xijm ∈ {0, 1}, ∀i ∈ T, ∀j ∈ T, ∀m ∈ M, (P.20)
yi ≥ 0, ∀i ∈ T (P.21)

4.2 Pricing Problem (solution)

To solve the pricing problem, we adopted a dynamic programming approach.
We aim to find the schedule with the largest negative reduced cost separately
for each driver. The driver d for which we are trying to find a schedule has to
start with the dummy job 0 and finish with the dummy job n. We define job
p as the break job for driver d if driver d has to have a break in his schedule.
Each job i has time window [αi, βi] and duration li. If two jobs require a buffer
between them bij is equal to true; otherwise, it is false. In our DP algorithm,
we denote Dm

i as the reduced cost for the best possible schedule that starts at
job 0 and ends at job i, which is started at minutem. This schedule incorporates
the relaxed model’s constraints (P.16-P.21).

We initialize the DP by setting the cost for Dα0
0 as the dual variable ωd, and

all other costs are set to infinity. We then iterate over each minute between the
end of job 0 (α0+ l0) and the start of job n (αn). For each minute m, we iterate
over the jobs to calculate the cost for Dm

i . Finally, we calculate Dαn
n to find the

best schedule. In case the driver has to have a break in his schedule, we denote
Dm

i as the best possible schedule that starts at job 0 and ends at job i, which
is started at minute m before having had the break and D

m

i after having had
the break.

Before presenting the complete DP calculation, we first define two auxiliary
functions. The first function p(i, j,m) returns the possible starting times for i
if job i is the job started before job j and job j starts at time m. This function
considers the context of the dynamic programming, meaning that it only returns
starting times that could potentially be the best. This function is based on the
fact that starting a job later will allow more jobs to be started before it and
can, thus, potentially be the best. However starting a job earlier might improve
the buffer and preferred time costs, which could also lead to a better solution.
On the other hand, it is never better to start a job earlier while not improving
buffer or preferred time costs, and we can avoid returning these starting times.

To aid in the calculation of p(i, j,m), we define the latest possible starting
time of starting job i while being on time to start job j at minute m as wijm =
min{βi − li,m − eij − li}, with eij being the walking time between job i and

28

j and li being the duration of job i. Additionally, the parameter hi represents
the preferred starting time for job i.

p(i, j,m) =

{} if αi > wijm(1)

{m− αj + αi} if (i, j) ∈ P (2)

{wijm} if bij ∧ wijm < m− bmax ∧ hi ≥ wijm(3)

{hi, ..., wijm} if bij ∧ wijm < m− bmax(4)

{max{αi,min {m− bmax, hi}}, ..., wijm} if bij(5)

{wijm} if wijm < hi(6)

{hi, ..., wijm} otherwise(7)

The cases considered in the function p(i, j,m) are as follows (note that the cases
are checked according to their order as if it were a large if-else, e.g. case (1) is
selected if both case (1) and case (2) are true): (1) it is not possible to start job
j at minute m and complete job i before it. (2) If jobs i and j form a pair of
assisting jobs, there is only one possible starting time that maintains the syn-
chronization constraints as we already know the second job’s starting time (m).
(3) A buffer between the jobs is desired, but the latest starting time already
has the maximum buffer and moving further back in time does not improve its
preferred starting time. (4) A buffer between the jobs is desired, but the latest
starting time already has the maximum buffer and moving further back in time
will improve its preferred starting time. (5) A buffer between the jobs is de-
sired, and moving further back in time will improve the buffer and possibly the
preferred starting time. (6) No buffer is desired and moving further back than
the latest starting time does not improve the preferred time. (7) No buffer is
desired and moving further back than the latest possible starting time improves
the preferred starting time.

The second auxiliary function f(i, j,m,m′) returns the additional costs for
adding job j planned to start at minute m to the end of the schedule that
previously had job i planned to start at minute m′. The calculation of the
function f listed below uses several variables defined below.

f(i, j,m,m′) = vj + vsij + vbijmm′ + vrj

The reduced cost for doing task j is defined as:

vj =

cj − πj + γji if ∃i ∈ T → (j, i) ∈ P

cj − πj − γij if ∃i ∈ T → (i, j) ∈ P

cj − πj otherwise

The bonus for not deviating from the preferred succession of (i, j) is defined as:

vsij =

{
−cs if (i, j) ∈ S

0 otherwiseo

29

The buffer cost for doing task i at minute m and then doing task j at minute
m′ is defined as:

vbijmm′ =

{
cijmm′ if bij

0 otherwise

Finally, using these functions, the DP can be described as follows:

Initialization:

For drivers who do not need a break, we initialize everything to infinity
except for the start of the schedule, which is starting job 0 at minute α0.

Dm
i =

{
−ωd if i = 0 and m = α0

∞ otherwise

For drivers who do need a break, we split the DP into two parts. We first ini-
tialize D as we did for drivers who do not need a break by initializing everything
to infinity except for the start of the schedule, which is starting job 0 at minute
α0. Then, we solve D before initializing the D with entries from the first DP
containing the break job (Dm

p).

Dm
i =

{
−ωd if i = 0 and m = α0

∞ otherwise

D
m

i =

{
Dm

i if i = p

∞ otherwise

Recurrence Relation:

We then iterate over each minute between the end of job 0 (α0 + l0) and the
start of job n (αn). For each minute m, we iterate over all the jobs to calculate
the cost for Dm

j . To do this we find the minimum of combining a job j starting
at minute m with a job i before it starting at minute m′. For drivers who do not
need a break, we calculate the DP in one go, starting with job 0 and finishing
with job n.

∀m ∈ {α0 + l0, ..., βn − ln}, ∀j ∈ T ∪ {n}:

Dm
j = min

i∈T∪{0}/{j}
{ min
m′∈p(i,j,m)

{Dm′

i + f(j, i,m,m′)}}

For drivers who need a break, we first calculate the part of the schedule preceding
the break job, starting with job 0 and finishing with the break job b.

∀m ∈ {α0 + l0, ..., βb − lb}, ∀j ∈ T :

Dm
j = min

i∈T∪{0}/{j,b}
{ min
m′∈p(i,j,m)

{Dm′

i + f(j, i,m,m′)}}

30

We then calculate the second part of the schedule starting with the break job b
and ending with the final job n.

∀m ∈ {αb, ..., βn − ln}, ∀j ∈ T ∩ {b} ∪ {n}:

D
m

j = min
i∈T/{j}

{ min
m′∈p(i,j,m)

{Dm′

i + f(j, i,m,m′)}}

4.2.1 Case exclusions

To speed up the dynamic programming we employ two strategies that exclude
many cases we would otherwise need to consider while calculating Dm

j . In the
first strategy, we try to exclude jobs that will never fit before j. To do this, we
create a set of jobs for each job that contains all the jobs that can be planned
right before job j. We exclude jobs from this set if any of the equations 4 are
true. In equation 4a, we check whether we can still start job j on time after
starting job i at its earliest starting time. In equation 4b, we check whether we
can start with the beginning job at its earliest starting time, then do job i and
still be on time for job j. In equation 4c, we check whether we can start with
job i at its earliest starting time, then do job j and still be on time to start the
ending job n. In case the driver has to do a break job, we do this preprocessing
step twice: once from the start until the break and once from the break until
the end.

αi + li + eij > βj − lj (4a)

α0 + l0 + e0i + li + eij > βj − lj (4b)

αi + li + eij + lj + ejn > βn − ln (4c)

In the second strategy, we leverage the fact that the majority of the extra
costs added when planning job j right after job i can already be calculated
without knowing the exact time job i starts (m′). In the function f(i, j,m,m′),
we only use m′ to calculate the added buffer costs (which can only increase the
result of f). This means we can already estimate the other costs vj , v

s
ij , v

r
j . To

use this, we keep track of the lowest Dm′′

i with m′′ < m found so far for each
job j using variable ri. If we then find that ri + vj + vsij + vrj is already higher
than the best previous job we found so far while calculating Dm

j , we can skip
job i and continue to the next job.

4.3 Branching

Once we can no longer find any columns with a negative reduced cost to add to
the master problem, we stop generating columns and continue with the branch
and bound. For the current node, we check whether the resulting cost of its
solution is lower than the cost of the best feasible solution found so far. If its
cost is not lower, we can discard this node as branching further on this node
can only result in worse solutions, meaning we will not find any node better

31

than the best node. If its cost is lower, we check whether the starting times
are consistent across the solution for each job (e.g. it is feasible apart from
integrality); if we find an inconsistency, we use one of the branching rules to
create new nodes. Otherwise, if the solution is consistent, we update it as the
lowest-cost solution found thus far.

The relaxed constraints (P.9, P.15) are handled in the branching part of the
branch-and-price algorithm. We employ three branching rules that are quite
similar. The first branching rule enforces that one job is started at a single time
point, the second rule enforces synchronization between two jobs (if required),
and the third branching rule ensures the planned starting times for breaks are
consistent. We select branches according to a specific order: firstly, we try
to branch on synchronization; secondly, we try to branch on single starting
time; and finally, we try to branch on break jobs. Below, we will present these
branching rules in an easier-to-explain order (note that this is not equal to the
order in which they are applied).

4.3.1 Single starting time

If, for any job j we find that it is planned to start at a number of different time
points W , we branch on the time window of that job. Let job j have a time
window [αj , βj] and a duration lj . Our branching rule splits the time window
at the midpoint between all the time points in W . We define the midpoint
as tm = ⌊

∑
t∈W t/|W |⌋, and we create two new nodes: the left node with

an updated time window for job j of [αj , tm + lj], and the right node with an
updated time window of [tm+1, βj]. The duration of the job is added to the end
of the time window in the left node to ensure that no possible starting times are
lost, and they are all contained within the two child nodes. When job j belongs
to a pair of synchronized jobs, such as (i, j) ∈ P or (j, i) ∈ P , we must also
modify the time window of its counterpart, job i. Let job i have a time window
[αi, βi] and a duration li, the left node will use time window [αi, tm−αi+αj+lj]
and the right node will use time window [tm+1−αi+αj , βi]. The job we choose
to branch on depends on two things: we prefer to choose a job with as many
different time points as possible; if no job has more different time points than
any other, we choose the job where the time points are furthest apart.

4.3.2 Break jobs

As we treat drivers who are equal as one in the master problem the situation
for break jobs is slightly different. In case there is a group of equal drivers of
size at least two, it is possible for their break jobs to be planned to start at two
different time points and still be a feasible solution. It only becomes a problem
once their breaks have been planned to start at more different time points than
there are drivers in the group. In this case, we split on the time window of the
break job for one of the drivers, which means that this driver is consequently
separated from the rest of the group as it is no longer equal.

32

4.3.3 Synchronization

If any pair of jobs (i, j) ∈ P are both selected in the solution with two time
points ti and tj such that ti ̸= tj − αi + αj , they are not properly synchronized
in the solution. In case a job itself is already planned to start at multiple time
points we take ti and tj as the average of its starting times. To get closer to
having these jobs synchronized in the solution, we branch on the time windows
for both jobs. We define tm = (ti + αj − αi + tj)/2. Similarly to the previous
section we create two new nodes: the left node with time window [αj , tm + lj]
for job j and time window [αi, tm − αi + αj + lj] for job i, while the right node
will have time windows [tm+1, βj] and [tm+1−αi+αj , βi]. For this branching
rule, we prefer a pair of time points that start as far from each other as possible.

4.4 Restoring Integrality

After all the nodes following the branching rules have been explored, we have a
lowest-cost solution that is still possibly infeasible due to lack of integrality. In
the solution we find, every job is only planned to start at a single starting time.
In van den Akker et al. (1996) they have a similar situation for which they prove
they can create an integral solution with the same cost as the fractional one, but
we have not been able to find a proof for our case due to the extra complexity of
the problem. Still, so far, we have been able to find an integral solution with the
same cost as the fractional solution for all our instances. Therefore, we think
that likely a similar proof exists for our problem. To find this (likely) integral
solution, we use the ILP formulation described in model D of the previous
chapter. While normally it would be very slow, we only add nodes and arcs
that are at least partially selected in the master problem of the lowest-cost
solution that we found. This means that for every selected schedule, we add a
node for each job with only the starting time it is planned at for only the drivers
whose schedules contain the job. Similarly, we only add arcs that already exist
in the schedule. This method can find an integral solution in only a fraction of
the time it took to find the fractional solution.

4.5 Acceleration Strategies

To accelerate the branch-and-price algorithm, we employ several strategies.
These strategies can be split into two parts: optimal strategies that still find an
optimal solution and heuristic strategies that do not necessarily find an optimal
solution. Each of these strategies has upsides and downsides. Generally, they
speed up one part of the algorithm while slowing down another part, or in the
case of heuristic strategies, they may worsen the solution while likely speeding
up the algorithm.

4.5.1 Optimal Strategies

First, we present optimal strategies. These strategies may or may not increase
the algorithm’s speed but will still result in an optimal solution.

33

Adding Multiple Columns
Typically, a prevalent acceleration strategy for similar problems is to add

multiple columns every time the pricing problem is solved. However, in our
case, it did not seem to work well. Generally, only a few fewer pricing problems
had to be solved while dramatically increasing the time spent on solving the
master problem. Instead, we choose to use a different way of adding multiple
columns. To do this, we group drivers based on their time windows; specifically
we create groups of drivers as large as possible that do not have any overlap
in their time windows. With no overlap in their time windows, these drivers
will likely have minimal overlap in terms of jobs they can do. This means that,
ideally, choosing a schedule for one of the drivers in a group will not cause a
major shift of dual variables for the jobs available for the other drivers in the
group. Once we have created these groups, we solve the pricing problem for
each group member before adding each of the discovered columns and solving
the master problem. In terms of running time, this generally means that slightly
more columns have to be generated as they are not perfectly accurate. However,
it also means that the number of times the master problem has to be solved is
lower. We also add a parameter that sets the minimum time between the time
windows of drivers before they are allowed to be in the same group. Having a
larger minimum time makes sure that jobs with a larger time window will not
be available for multiple drivers in the same group. This parameter therefore
allows us to find a balance between having larger groups and less overlap within
these groups.

Cooldown
During every iteration of the master problem, we attempt to find new

columns for each driver until no driver has a column with a negative reduced
cost left. Due to differences among drivers, it is possible that after several iter-
ations, we cannot find columns with a negative reduced cost for some drivers.
Continuing to calculate the entire pricing problem for these drivers is a huge
waste of time. To address this, we introduce the parameter ”cooldown”, which
determines the number of iterations we skip solving the pricing problem for a
driver after failing to find a column with a negative reduced cost.

Initial columns
Initializing the branch and bound with good columns can decrease the time

it takes to find an optimal solution to the master problem. We use a local search
method (simulated annealing) inspired by Szabó, 2023 that can quickly find a
decent solution. Our method has two major differences from his method. The
first difference is that we only try to find a decent solution to start the branch
and bound with, which means finding a local optimum is relatively okay. There-
fore, we can decrease the temperature much faster and place less emphasis on
operators that get us out of a local optimum. The second main difference is
that we do not consider the synchronization. We run the local search multiple
times for a very short time to find different local optimums and add all the

34

resulting columns to the first master problem. In our local search, we have five
neighbourhood operators listed below. When the operators use ’a schedule’,
this schedule corresponds to one of the available drivers.

Smart Insert Operator This operator takes a random, unplanned job and
a random schedule. It then tries to fit the job somewhere in the schedule and
chooses the best possible location (e.g. with the lowest cost).
Forced Insert Operator This operator takes a random, unplanned job and
a random schedule. It then tries to fit the job somewhere in the schedule and
chooses the best possible location (e.g. with the lowest cost). This operator is
allowed to move the job before and the job after the inserted job.
Remove Operator This operator takes a random schedule and a random in-
dex and tries to remove the job at that index. This operation fails if this job is
a fixed or a break job.
Move Operator This operator takes two random schedules and one random
index and tries to remove the job at the index of the first schedule. Then, using
the smart insert operator, the job is added to the second schedule.
Optimize Pair Operator This operator takes a schedule and a pair of jobs
next to each other in that schedule. It then optimizes the starting time for
these two jobs, where we try to minimize the costs for buffers and deviation
from preferred starting times.

4.5.2 Heuristic Strategies

Look back depth
In our DP, we encounter situations where a job may appear multiple times in

a schedule we find. To address this issue, we introduce a parameter, look back,
which allows us to prevent such occurrences by looking back in the best solu-
tion found so far; if we come across the job in this solution, we stop consid-
ering this option. In other words, while trying to calculate Dm

j , if we find a

Dm′

i + v(i, j,m,m′) that is lower than the current lowest, we look at the last
look back jobs to see if job j is among them. The advantage of this strategy is
that we find fewer schedules that will not be in the final solution anyway. How-
ever, we might also slow down the master problem due to a slower convergence
of the dual costs for the individual jobs. While this strategy is not necessarily
optimal, the experiments have shown that it usually finds the optimal solution.

Preferred Succession
Pairs of preferred successions are chosen based on three main properties:

firstly, both jobs operate on the same train; secondly, the end of the first job
and the start of the second job are at the same location; and thirdly, it is possible
(and desired) to immediately do the second job once the first is finished. While
the first property is only relevant for driver satisfaction, the second and third
properties are very commonly found in optimal solutions. While the objective
function already includes a cost for deviating from the preferred succession, op-
timal solutions that do not adhere to the preferred succession may exist. For

35

example, if another job is available only right before the second job and it is
possible to do the first job, then the other job and then the second job. However,
in practice, the preferred succession often indicates a strong likelihood of two
jobs succeeding each other in the optimal solution. To leverage this insight, we
introduce a parameter that determines whether we only consider the preferred
succession for jobs that are part of it. This means that if there is a pair of jobs
(i, j) ∈ S, and we are trying to calculate Dm

j , then we only look at job i (and
the starting dummy job 0). Thus, we allow the solution to break the preferred
succession only right after a driver’s shift starts. This approach significantly
speeds up the algorithm for two reasons: first, it reduces the number of op-
tions in the pricing problem calculations, resulting in faster generation of new
columns; second, it eliminates many possible columns, reducing the number of
iterations required before no more columns with negative reduced cost can be
found.

Stopping Criteria
At the beginning of the column generation process, nearly every column sig-

nificantly improves the solution. However, as the selection of columns available
for the master problem narrows and new columns contribute to increasingly
smaller improvements, many iterations may no longer enhance the solution. To
expedite this process, we considered stopping looking for improving columns
prematurely. However, in practice, this did not work very well; when stopping
earlier, the solution was more fractured which in turn resulted in many more
nodes having multiple schedules starting times.

Time skips
In the case of large problems, narrowing the search space becomes valuable.

We achieve this by restricting the number of starting times considered for a job.
With the parameter time skip, we only look at times which are a multiple of
time skip. This means that in the DP we only calculate Dm

i if time skip is
divisible by m−ai. This might exclude some very good options from the search
space, but it also speeds up the algorithm with the smaller search space.

Prepossessing riding along
The possibility of riding along with jobs makes the problem take a consider-

able amount of extra time to solve while generally not providing a large benefit
in terms of the total cost of the solution. To leverage this fact, we introduce
three strategies to deal with riding along. The first strategy is dealing with
them as if they are jobs that do not have any cost with not doing them; this
strategy is optimal but slightly slow. The second strategy is not to allow any
riding along at all. Obviously, this strategy is not optimal, but it is the fastest.
For the third strategy, we calculate where we ride along as a preprocessing step.
Typically, jobs that have a time window are easier to fit into a schedule some-
where. Therefore, we only allow riding along between two jobs that have a fixed
starting time. This is also due to only having to calculate the perfect riding
along job for one time point, as different riding along jobs may be available at

36

different time points in the time window. Between jobs with a fixed starting
time, we can easily calculate the riding along job that results in the lowest costs.
While solving the pricing problem, we always select this riding along job if the
two jobs follow each other in the schedule.

5 Results

This section aims to assess the performance of the branch and price algorithm
and compare it to the currently used algorithm. To achieve this, we experi-
ment with different settings for the parameters for the accelerating strategies
discussed in the previous chapter. First, we will elaborate on the instances we
will experiment with. Then, we will experiment with finding the best parame-
ters for the algorithm using some of the smaller instances. Finally, we present
the results for the larger instances using the previously found parameters. The
experiments are executed on an Intel(R) Core(TM) i5-8300H CPU with a clock
speed of 2.30 GHz.

5.1 Instances

To evaluate our implementation, we use thirteen real-life instances representing
various shunting yards in the Netherlands. Table 4 provides details about each
instance, indicating whether riding along is allowed (1) or not allowed (0) and
specifying the number of various job types present in the instance. Instances
are categorized into ’small’ and ’large’ based on whether or not the branch and
price can quickly solve the problem optimally. Notably, ”Rotterdam” and ”Den
Haag” are classified as large instances, while the rest fall under the easy category.
Consequently, this means Rotterdam and Den Haag are more important to solve
efficiently as the difference between fast and very fast is negligible. On the other
hand, the difference between slow and very slow is more noticeable.

5.2 Parameters

For each strategy explained in the accelerating strategies section of the previ-
ous chapter, there is an accompanying parameter that can take different values.
While for some of the parameters, this is a simple on or off switch, other param-
eters can take an integer value. For such parameters that take an integer value,
it is impossible to test every different option, especially since the parameters
often interact with each other. Testing every feasible combination of parameter
settings would simply take too long. Therefore we have selected a couple of
different options for each numerical parameter. We will present the results for
these parameters in two ways. We first show the results of the different values a
parameter can take independent of other variables (e.g. taking the average over
all runs with that parameter set to that value), including showcasing parameter-
specific effects for some parameters. In the next section, we will show the best
combinations of parameters and their performance.

37

Table 4: Instances used

Location Riding Along Assisting Pairs Drivers Jobs Time Windows

Amersfoort 0 0 14 174 22
Arnhem 0 1 3 19 1
Deventer 1 1 2 106 1
Eindhoven 1 1 10 253 8
Enschede 0 7 9 108 10
Groningen 1 0 11 291 0
Leeuwarden 0 0 15 139 25
Nijmegen 0 1 3 33 3
Zutphen 0 0 7 67 4
Zwolle 0 2 7 85 2
Utrecht 1 12 69 499 43

Rotterdam 1 47 37 800 88
Den Haag 1 84 53 900 169

The results for each of the parameters can be found in the Tables 5 - 10
below. For each parameter that does not affect optimality, we do not show the
cost which does not change with different parameter settings. Table 5 shows
the results of the cooldown strategy. For this parameter, we have chosen to test
with a cooldown of 0, 5, 10 and 15, meaning a driver is skipped respectively 0,
5, 10 and 15 iterations after not producing a column with reduced cost. From
these results, we can see that for most instances, a cooldown between 5 and
15 performs best. However, it should be noted that this likely scales with the
number of iterations necessary in general, meaning that skipping 15 iterations
while only needing 25 iterations makes less sense than skipping 15 iterations
while 300 are done. Table 6 shows the results of the strategy for adding multiple
columns. For this strategy, we have chosen to test with the settings 0, 4 and
1000, meaning drivers can be grouped if their time windows are apart by at
least 0, 4 and 1000 hours (where 1000 means drivers are never grouped). In this
table, we left out all instances that would not result in grouped columns due to
drivers having similar time windows. The results show that for most instances,
grouping with a distance of 0 hours is the fastest. Table 7 shows the results
for starting the problem with initial columns found using a simulated annealing
approach. For this strategy, we run the simulated annealing 4 times with 300000
iterations each (or stop if each job has been planned), adding each schedule to
the first node. This means that for smaller instances that did not need as many
iterations the simulated annealing took up a larger part of the used running
time. Therefore it performs much better on larger instances (or small instances
where every job can be planned). From the results, we can see that for larger
instances it is slightly faster when adding initial columns. Table 8 shows the
results of using the look back strategy. We left out each instance where there
are no time windows that allow for a job to be done twice in the same schedule.

38

The results show that it is highly dependent on the instance whether or not
using this strategy pays off. For some instances, it is slightly faster when using
the parameter, while for some other instances, it is slightly slower. Table 9
shows the results of using the preferred successor strategy. From these results,
we can see that it is nearly always much faster to use this strategy. For most
instances the preferred successors are also in the optimal solution, meaning that
using this strategy will not cause worse results. However, for some instances,
the results are much worse. One possible workaround could be to first run the
program with preferred successors before running it without. Table 10 shows
the results for different riding along strategies. From these results, we can see
that including riding along will only cause a small dip in solution quality while
providing marginal speedups. Therefore it could be useful for larger instances
to not use riding along as a possible option.

Table 5: Results for Cooldown strategy with settings 0, 5, 10 and 15

Location Time (ms)
0 5 10 15

Alkmaar 939 768 775 783
Amersfoort 113970 96194 98098 89958
Arnhem 282 270 271 280
Deventer 914 902 877 877
Eindhoven 3173 3081 3190 3257
Enschede 1782 1652 1636 1655
Groningen 245 227 227 228
Leeuwarden 1602 1023 971 976
Nijmegen 86 90 92 82
Utrecht 10139 8188 8018 8273
Zutphen 403 347 357 349
Zwolle 613 600 593 604

Table 6: Results for Adding Multiple Columns, with a minimum group distance
of 0, 4 and 1000 hours

Location Time (ms)
0 4 1000

Alkmaar 820 811 818
Amersfoort 91797 103961 102907
Enschede 1571 1721 1751
Groningen 233 230 233
Leeuwarden 1122 1180 1128
Utrecht 8396 8568 9000
Zutphen 363 377 353

39

Table 7: Results for using Initial Columns generated using simulated annealing

Location Time (ms)
no Initial Columns Initial Columns

Alkmaar 663 1098
Amersfoort 179507 172052
Arnhem 25 515
Deventer 529 1289
Eindhoven 3683 3172
Enschede 1338 2087
Groningen 237 228
Leeuwarden 801 1615
Nijmegen 93 78
Utrecht 9603 8794
Zutphen 76 661
Zwolle 329 858

Table 8: Results for Looking Back with a depth of 0, 4, 7

Location Time (ms)
0 4 7

Alkmaar 867 798 784
Amersfoort 109008 91456 98201
Eindhoven 3102 3196 3229
Enschede 1678 1692 1672

Leeuwarden 1260 1111 1059
Nijmegen 88 86 88
Utrecht 8573 8816 8575

5.3 Small Instances

Showing the performance results for the small instances using every combina-
tion of values for the parameters is impractical, even when only considering
the smaller subset of possible values. This would result in a table with over
1000 rows. Therefore, we select a subset of the possible combinations, including
the best individual combinations for each instance and the overall best param-
eter values. While this may result in somewhat cherry-picked results, we can
reasonably assume that repeating requests for the same location will also look
similar. Therefore the results are still likely to be representative of the actual
performance. In Table 11 you can see all the combinations of parameter settings
we will use. These settings are made up of two situations. They are either a
combination for the best time (with optimal cost) for one of the instances in

40

Table 9: Results for Only Successor strategy with settings true and false

Location Cost Time (ms)
false true false true

Alkmaar 5648300 6126700 663 489
Amersfoort 107801 107801 179507 15460
Arnhem 702986 702986 25 26
Deventer 908124 908124 529 437
Eindhoven 25504 25504 3683 3051
Enschede 703327 703327 1338 1237
Groningen 5070 5070 237 235
Leeuwarden 229524 407024 801 614
Nijmegen 2369 2369 93 96
Utrecht 6739375 7017186 9603 8388
Zutphen 1112780 1112780 76 83
Zwolle 108626 108626 329 354

Table 10: Results for different riding along settings with settings No Riding
Along (NRA), Preprocessed(PP) and As Jobs(AJ)

Location Cost Time (ms)
NRA PP AJ NRA PP AJ

Deventer 908124 908124 908124 792 880 1005
Eindhoven 25677 25578 25257 2800 2833.0 3893
Groningen 5070 5070 5070 176 327 192
Utrecht 6878539 6878201 6878139 7656 8888 9419

which case the Origin column will show the location for which it was the best
combination. Or, in this case, the Origin column is empty, it is a combination
that fills the gap between the other combinations. The table is sorted on the
settings from left to right.

Table 12 shows the time results for all the parameter combinations. In
this table entries that are not optimal are followed by * if it is due to the
successors only strategy and they are followed by ** if it is due to the riding
along strategy. In both cases, you can find the effect of using the strategy on
the cost in the respective tables for both of the strategies (Table 9 and Table
10). For example, for Utrecht, using the preprocessed riding along setting will
result in a solution with a cost 82 worse than using the As Jobs strategy. For
each location, the fastest optimal entry is made bold. From these results, we
can see that even though the parameter combinations influence the speed of the
algorithm somewhat, many combinations still give close results.

41

Table 11: All parameter settings used and by which id they are accompanied

id
O
ri
gi
n

C
o
ol
d
ow

n
M
u
lt
ip
le

In
it
ia
l

L
o
ok

B
a
ck

S
u
cc
es
so
r

R
id
in
g
A
lo
n
g

1
A
rn
h
em

0
4

0
0

1
N
o
P
a
ss
a
g
ie
re
n

2
D
ev
en
te
r

0
10
00
0

0
7

1
N
o
P
a
ss
a
g
ie
re
n

3
N
ij
m
eg
en

0
10
00
0

1
0

0
N
o
P
a
ss
a
g
ie
re
n

4
E
in
d
h
ov
en

0
10
00
0

1
0

1
P
a
ss
a
g
ie
re
n
A
s
J
o
b
s

5
5

0
0

7
1

N
o
P
a
ss
a
g
ie
re
n

6
5

10
00
0

1
7

0
N
o
P
a
ss
a
g
ie
re
n

7
G
ro
n
in
ge
n

5
10
00
0

1
7

1
N
o
P
a
ss
a
g
ie
re
n

8
U
tr
ec
h
t

10
0

1
7

0
P
a
ss
a
g
ie
re
n
A
s
J
o
b
s

9
A
lk
m
aa
r

10
4

0
7

0
N
o
P
a
ss
a
g
ie
re
n

10
10

4
1

7
0

N
o
P
a
ss
a
g
ie
re
n

11
Z
u
tp
h
en

10
10
00
0

0
7

0
N
o
P
a
ss
a
g
ie
re
n

12
E
n
sc
h
ed
e

15
0

0
0

1
N
o
P
a
ss
a
g
ie
re
n

13
15

0
1

7
0

N
o
P
a
ss
a
g
ie
re
n

14
15

4
1

7
0

N
o
P
a
ss
a
g
ie
re
n

15
Z
w
ol
le

15
4

0
7

0
N
o
P
a
ss
a
g
ie
re
n

16
A
m
er
sf
o
or
t

15
4

0
7

1
N
o
P
a
ss
a
g
ie
re
n

17
L
ee
u
w
ar
d
en

15
10
00
0

0
7

0
N
o
P
a
ss
a
g
ie
re
n

42

Table 12: For each parameter combination (show in Table 11) and location the
time it takes to solve the problem. Entries with * are not optimal due to the
successor-only strategy. Entries with ** are not optimal due to not using riding
along

lo
ca

ti
o
n

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

A
rn

h
em

2
0

2
3

4
9
0

X
2
3

5
2
9

5
1
9

X
3
1

5
1
1

2
5

2
4

5
1
8

5
2
4

3
3

2
3

2
5

D
ev

en
te
r

3
6
6

3
3
3

1
2
2
6

1
3
7
6

3
7
0

1
2
1
2

1
1
7
6

1
3
5
5

4
2
1

1
1
9
0

4
0
1

3
5
4

1
1
9
5

1
1
8
7

4
2
8

3
6
7

3
5
2

N
ij
m
eg

en
8
5

9
1

6
5

X
8
6

7
6

8
1

X
1
1
5

7
4

1
1
5

7
9

6
6

8
5

1
0
6

8
8

8
6

E
in
d
h
o
v
en

2
1
8
4
*
*
2
5
2
7
*
*

3
1
0
9
*
*

3
1
1
0
2
7
9
0
*
*
2
7
5
5
*
*
2
4
3
1
*
*
3
7
7
9
3
5
8
4
*
*
2
7
3
1
*
*
3
5
0
0
*
*
2
7
9
3
*
*
2
7
2
6
*
*
2
8
1
2
*
*
3
5
0
8
*
*
2
7
2
3
*
*
3
5
2
9
*
*

G
ro
n
in
g
en

1
8
9

1
9
9

1
8
5

2
0
1

1
7
5

1
7
4

1
5
7

1
7
6

1
6
3

1
6
9

1
8
4

1
7
5

1
7
9

1
7
7

1
7
9

1
7
0

1
8
4

U
tr
ec
h
t

6
0
3
4
*
*

8
0
1
2
*

1
0
5
3
7
*
*
8
5
1
2

7
0
4
2
*

7
5
7
0
*
*

6
4
2
0
*

6
6
4
6
6
2
0
7
*
*
6
3
1
4
*
*
8
6
4
5
*
*

6
0
6
9
*

7
4
6
6
*
*
7
1
2
1
*
*
7
1
9
4
*
*
7
2
7
8
*
*
9
3
2
5
*
*

A
lk
m
a
a
r

6
5
9
*

5
1
6
*

1
1
9
8

X
4
3
5
*

9
6
7

9
5
2
*

X
5
3
7

1
0
4
5

6
3
7

4
4
5
*

1
0
1
3

1
0
0
0

5
8
9

4
3
5
*

6
5
3

Z
u
tp

h
en

9
1

8
7

6
4
8

X
6
9

6
3
4

6
0
0

X
6
1

6
3
2

5
6

7
4

6
1
2

6
3
9

6
2

6
7

6
2

E
n
sc
h
ed

e
1
3
3
5

1
3
4
3

2
1
9
4

X
1
1
1
3

2
0
4
2

2
0
8
1

X
1
3
9
5

2
0
0
1

1
4
1
4

1
0
1
9

1
8
9
9

2
1
0
3

1
2
4
6

1
1
9
5

1
5
6
4

Z
w
o
ll
e

4
5
3

3
4
8

8
4
5

X
3
4
0

8
6
0

8
5
3

X
3
1
1

8
7
4

3
1
7

3
5
5

8
7
2

8
6
6

3
0
9

3
3
9

3
3
3

A
m
er
sf
o
o
rt

1
6
6
4
0

1
9
9
8
0

2
1
5
9
3
5

X
1
4
9
0
8

1
4
3
7
2
6

2
2
4
4
2

X
1
7
3
3
2
5
1
5
5
9
7
7
1
2
9
3
1
9

1
0
2
8
1

1
2
8
9
8
5
1
5
5
4
9
8
1
6
2
4
8
5

9
1
7
0

1
5
1
7
1
5

L
ee
u
w
a
rd

en
2
0
0
6
*

8
2
1
*

2
3
9
6

X
4
4
5
*

1
5
0
2

1
3
3
2
*

X
5
2
3

1
3
4
6

5
1
4

4
8
2
*

1
3
3
3

1
3
6
3

4
8
5

4
2
2
*

4
7
8

43

5.4 Large Instances

To run the algorithm for the larger instances, we take the best combination
of parameters for the five small locations that take the longest to solve, as
they are likely the most representative of the large locations, and change those
combinations to suit the large instances. First, we change the instances to
always use no riding along, as the change in cost is small while having a very
clear effect on the speed. Secondly, we add an extra parameter for the strategy
time skips that can have the values 1 or 2, meaning it only skips no cells in the
DP or skips every other cell, respectively. This parameter is far from optimal
as it skips large parts of the solution space, but does speed up the program
significantly. Finally, because we cannot solve these instances in a reasonable
time we put a limit of fifteen minutes on the running time before we stop. Once
the program reaches this limit, we take the best possible solution found so far, if
one has been found. In Table 13, you can see the results for the large instances.
The column parameter shows the original parameter combination coupled with
a setting for the time jump strategy. If we were not able to find a feasible
solution within the time limit we placed 900000 as the time and an X as the
cost. From these results, we can see that for Rotterdam we can find decent
results sometimes when using the time jump 1 parameter and also when using
time jump 2 with initial columns. For Den Haag, we are never able to find a
feasible solution.

Table 13: Results for different parameter combinations for the large locations

Parameters Rotterdam Den Haag
time (ms) cost time (ms) cost

4-1 900000 X 900000 X
4-2 900000 2788265 900000 X
8-1 900000 X 900000 X
8-2 900000 2788220 900000 X
9-1 900000 1489402 900000 X
9-2 900000 1489902 900000 X
12-1 900000 1489365 900000 X
12-2 900000 2788220 900000 X
16-1 900000 1489367 900000 X
16-2 900000 2698670 900000 X

5.5 Performance

In Table 14, you can see a comparison between the current algorithm (ILP)
and our algorithm (Branch). For each location, the best time is made bold,
and if there is a difference in the solution value, the lower cost has also been
made bold. What we can see from these results is that the branch and price
works much better for small locations; however, for large locations branch and

44

price finds solutions much worse while taking a lot more time than the current
algorithm. Finally, in Table 15, you can see the distribution of time spent on
the branch-and-price. The column total displays the total amount of time spent
on the instance, the column root node displays the time spent on the first node
of the algorithm, and the columns Col Gen and LP show how much time was
spent on creating additional columns and solving the LP after adding them,
respectively. Note that the columns Col Gen and LP are calculated over all
the nodes, including both the root node and subsequent nodes. Additionally,
you can see how often the different branching rules are applied. What we can
see from this is that for smaller instances, column generation takes a very large
portion of the time. For the larger instances, by far, the majority of the time
was spent on solving the LP.

Table 14: Comparison of results between branch and price and the current in-use
ILP technique

Location Branch ILP
time (ms) cost time (ms) cost

Arnhem 20 702986 79 702986
Deventer 333 908124 680 908124
Nijmegen 65 2369 218 2369
Eindhoven 3110 25257 10280 25557
Groningen 157 5070 884 5070
Utrecht 6646 6739233 150324 6739333
Alkmaar 537 5664450 611 5664450
Zutphen 56 1112780 348 1112780
Enschede 1019 803327 594 803327
Zwolle 309 419660 828 419660

Amersfoort 9170 107801 7020 107801
Leeuwarden 478 229524 1240 229524
Rotterdam 900723 1489365 133463 1210606
Den Haag 900000 X 322711 1680635

45

Table 15: Comparison of results between branch and price and the current in-use
ILP technique

Location Time spent(ms) Branching Rules
Total Root node Col Gen LP Synchronization Single Breaks

Arnhem 20 17 4 1 0 0 0
Deventer 333 298 178 99 0 0 0
Nijmegen 65 60 33 4 0 0 0
Eindhoven 3110 1490 1995 150 1 0 0
Groningen 157 154 101 4 0 0 0
Utrecht 6646 4259 3456 680 1 0 7
Alkmaar 537 276 410 60 6 0 0
Zutphen 56 53 46 3 0 0 0
Enschede 1019 1000 496 435 0 0 0
Zwolle 309 308 211 41 0 0 0

Amersfoort 9170 8303 6022 3023 0 1 1
Leeuwarden 478 471 430 40 0 0 0
Rotterdam 900723 414843 50373 828681 7 0 11
Den Haag 900000 895884 21578 874191 0 0 0

6 Conclusion and Future Work

We have formally introduced the Shunting Yard Driver Scheduling Problem.
This is a problem currently solved by the NS, which is in need of a more effi-
cient algorithm. We have formulated the problem as a set partitioning problem
with side constraints and developed a branch-and-price solution algorithm. Our
branch-and-price algorithm contains a pricing problem where we have to find
schedules for individual drivers. We have adopted a dynamic programming
approach to generate these columns. To increase the speed of the column gen-
eration, we allow schedules that contain a job more than once. To avoid this
in the final solution, this is addressed implicitly by the master problem, which
will likely choose schedules in the end that only contain each job once due to
converging reduced costs. To ensure the starting times for jobs are consistent
across the selected columns, we branch on the time windows of jobs. Addition-
ally, a similar branching rule ensures that synchronized jobs have equidistant
starting times. Finally, we use a flow algorithm to create a final solution that
does not contain fractional schedules. Several acceleration techniques have been
developed to further speed up the algorithm, each with advantages and disad-
vantages. The algorithm is experimented with using many different parameter
combinations for the acceleration strategies to discover the combinations that
provide the best balance between their ups and downsides.

To test the algorithm, we use real-life instances for shunting yards in the
Netherlands provided by the NS. To compare the algorithm, we tested it against
the currently used algorithm by the NS. We have found that the branch-and-

46

price algorithm is much faster when used for small instances. We can find a
solution marginally faster and sometimes with a slightly lower cost for nine
of the eleven smaller instances. For the remaining two instances, we can find
solutions nearly as fast. However, branch-and-price gets outperformed for the
largest instances. We cannot solve one of the largest two instances within a
time limit of fifteen minutes, and we cannot find a competitive solution in both
time and cost for the other large instance when compared to the currently used
algorithm. Unfortunately, this means it is impractical for actual use, as better
performance on larger instances is more critical than performance on smaller
instances.

In future research, a couple of areas of improvement could be made. One
critical area lies in the optimization of the tail end of the master problem. The
traditional strategy of prematurely halting column generation proves ineffective
in this problem. Therefore, we need to continue creating columns until no
negatively reduced cost can be found. This results in an extreme slowdown at
the end, where barely any columns improve the solution cost. This makes it
very difficult to tackle larger problems where too much time is spent on columns
that do not improve the objective. To tackle this, looking at stabilized column
generation techniques that result in a more linear improvement of the solution
could be usable.

One other possibility is to look at more elaborate ways to choose a time
window and time to branch on. The article Bredstrom and Ronnqvist (2007)
shows a way to branch in the most optimal way. In practice, however, this will
likely not cause a large enough improvement as, for the larger instances, the
algorithm is already too ’slow’ before even reaching a branching point. If it is
possible to improve the efficiency before reaching a branching point, it could be
a way to improve the algorithm even further.

Another issue that might currently slow down the algorithm is the master
problem LP slowing down once a lot of columns have been added. The first idea
would be to try to remove columns with a high reduced cost to maintain fewer
columns. In practice, this did not work very well, as removing these columns
required many more iterations to find additional columns. In other words, the
speedup of solving the LP was not enough to balance the need for additional
iterations. A potential cause for the large number of discovered columns is likely
that it finds columns that contain a job more than once. This can be seen in
the effect of the look back parameter. This parameter usually speeds up the
algorithm despite not necessarily finding optimal columns (within the dynamic
programming approach). Another possible way to do this would be to increase
the number of dimensions of the DP, keeping track of more previous jobs. Once
a number of iterations have passed, jobs become unlikely to appear more than
once in a schedule. From then on, returning to the current DP dimensions would
be beneficial.

Another area that may be improved upon is the breaks. For larger instances,
breaks are the jobs that need to be branched on by far the most. It may be
worth trying to discover techniques that can look at ways to unify the break
times to avoid having to branch on them.

47

References

Ait Haddadene, S. R., Labadie, N., & Prodhon, C. (2016). A grasp × ils for
the vehicle routing problem with time windows, synchronization and
precedence constraints. Expert Systems with Applications, 66, 274–294.
https://doi.org/10.1016/j.eswa.2016.09.002

Boschetti, M. A., Mingozzi, A., & Ricciardelli, S. (2004). An exact algorithm
for the simplified multiple depot crew scheduling problem. Annals of
Operations Research, 127 (1-4), 177–201.

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows,
part i: Route construction and local search algorithms. Transportation
science, 39 (1), 104–118.

Bredstrom, D., & Ronnqvist, M. (2007). A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization
constraints. NHH Dept. of Finance & Management Science, Discussion
Paper No. 2007/7 (1), 55–68. https://doi.org/http://dx.doi.org/10.
2139/ssrn.971726

Chen, S., Shen, Y., Su, X., & Chen, H. (2013). A crew scheduling with chinese
meal break rules. Journal of Transportation Systems Engineering and
Information Technology, 13 (2), 90–95. https://doi.org/10.1016/S1570-
6672(13)60105-1

Dohn, A., Rasmussen, M. S., & Larsen, J. (2011). The vehicle routing problem
with time windows and temporal dependencies. Networks, 58 (4), 273–
289.

Ernst, Jiang, Krishnamoorthy, & Sier. (2004). Staff scheduling and rostering:
A review of applications, methods and models. European journal of
operational research, 153 (1), 3–27.

Gottenbos, M. (2022). Balancing costs and driver satisfaction in cargo train
driver scheduling (Master’s thesis). https://studenttheses.uu.nl/handle/
20.500.12932/41930

Haitam, E., Najat, R., & Jaafar, A. (2021). A survey of the vehicle routing
problem in-home health care services. Proceedings on Engineering, 3 (4),
391–404.

Hanafi, R., & Kozan, E. (2014). A hybrid constructive heuristic and simulated
annealing for railway crew scheduling. Computers & Industrial Engi-
neering, 70, 11–19. https://doi.org/10.1016/j.cie.2014.01.002

Heil, J., Hoffmann, K., & Buscher, U. (2020). Railway crew scheduling: Models,
methods and applications. European Journal of Operational Research,
283 (2), 405–425. https://doi.org/10.1016/j.ejor.2019.06.016

Kasirzadeh, A., Saddoune, M., & Soumis, F. (2017). Airline crew scheduling:
Models, algorithms, and data sets. EURO Journal on Transportation
and Logistics, 6 (2), 111–137. https://doi .org/10.1007/s13676- 015-
0080-x

Li, J., Qin, H., Baldacci, R., & Zhu, W. (2020). Branch-and-price-and-cut for the
synchronized vehicle routing problem with split delivery, proportional

48

https://doi.org/10.1016/j.eswa.2016.09.002
https://doi.org/http://dx.doi.org/10.2139/ssrn.971726
https://doi.org/http://dx.doi.org/10.2139/ssrn.971726
https://doi.org/10.1016/S1570-6672(13)60105-1
https://doi.org/10.1016/S1570-6672(13)60105-1
https://studenttheses.uu.nl/handle/20.500.12932/41930
https://studenttheses.uu.nl/handle/20.500.12932/41930
https://doi.org/10.1016/j.cie.2014.01.002
https://doi.org/10.1016/j.ejor.2019.06.016
https://doi.org/10.1007/s13676-015-0080-x
https://doi.org/10.1007/s13676-015-0080-x

service time and multiple time windows. Transportation Research Part
E: Logistics and Transportation Review, 140, 101955.

Liu, R., Tao, Y., & Xie, X. (2019). An adaptive large neighborhood search heuris-
tic for the vehicle routing problem with time windows and synchro-
nized visits. Computers & Operations Research, 101, 250–262. https :
//doi.org/10.1016/j.cor.2018.08.002

Liu, W., Dridi, M., Fei, H., & El Hassani, A. H. (2021). Hybrid metaheuristics
for solving a home health care routing and scheduling problem with
time windows, synchronized visits and lunch breaks. Expert Systems
with Applications, 183, 115307.

Rasmussen, M. S., Justesen, T., Dohn, A., & Larsen, J. (2012). The home care
crew scheduling problem: Preference-based visit clustering and tempo-
ral dependencies. European journal of operational research, 219 (3), 598–
610.

Shen, Y., Peng, K., Chen, K., & Li, J. (2013). Evolutionary crew scheduling
with adaptive chromosomes. Transportation Research Part B: Method-
ological, 56, 174–185. https://doi.org/10.1016/j.trb.2013.08.003

Szabó, K. (2023). Scheduling mechanics on a shunting yard: Skills, synchroniza-
tion and train movements (Master’s thesis). https://studenttheses.uu.
nl/handle/20.500.12932/43524

Van den Akker, M., Hoogeveen, H., & van Kempen, J. (2012). Using column
generation to solve parallel machine scheduling problems with minmax
objective functions. Journal of Scheduling, 15, 801–810.

Van den Broek, R. (2022). Towards a robust planning of train shunting and
servicing (PhD thesis). Utrecht University.

Van den Broek, R., Hoogeveen, H., & Van den Akker, M. (2020). Person-
nel scheduling on railway yards. 20th Symposium on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (AT-
MOS 2020).

Van den Broek, R., Hoogeveen, H., Van den Akker, M., & Huisman, B. (2022).
A local search algorithm for train unit shunting with service scheduling.
Transportation Science, 56 (1), 141–161.

van den Akker, J., Hoogeveen, J., & van de Velde, S. (1996). Parallel machine
scheduling by column generation (april 1996 workshop). technical pub-
lication (tech. rep.). National Aerospace Lab., Amsterdam (NL); Univ.
Catholique de Louvain . . .

van Twist, R., van den Akker, M., & Hoogeveen, H. (2021). Synchronizing trans-
portation of people with reduced mobility through airport terminals.
Computers & Operations Research, 125, 105103.

Verhave, M. M. (2015). Column generation with a resource constrained shortest
path algorithm applied to train crew scheduling. (Master’s thesis). https:
//thesis.eur.nl/pub/32478/Verhave.pdf

Zamorano, E., & Stolletz, R. (2017). Branch-and-price approaches for the mul-
tiperiod technician routing and scheduling problem. European Journal
of Operational Research, 257 (1), 55–68. https://doi.org/10.1016/j.ejor.
2016.06.058

49

https://doi.org/10.1016/j.cor.2018.08.002
https://doi.org/10.1016/j.cor.2018.08.002
https://doi.org/10.1016/j.trb.2013.08.003
https://studenttheses.uu.nl/handle/20.500.12932/43524
https://studenttheses.uu.nl/handle/20.500.12932/43524
https://thesis.eur.nl/pub/32478/Verhave.pdf
https://thesis.eur.nl/pub/32478/Verhave.pdf
https://doi.org/10.1016/j.ejor.2016.06.058
https://doi.org/10.1016/j.ejor.2016.06.058

	Introduction
	Related Literature
	Crew Scheduling
	VRP and VSP
	Solution Methods

	Mathematical formulations
	Common Notation
	Time-indexed Model
	Mixed-integer Model
	Set Covering model
	Current Method used at NS

	Branch and Price
	Decomposition
	Master Problem
	Pricing Problem (formulation)

	Pricing Problem (solution)
	Case exclusions

	Branching
	Single starting time
	Break jobs
	Synchronization

	Restoring Integrality
	Acceleration Strategies
	Optimal Strategies
	Heuristic Strategies

	Results
	Instances
	Parameters
	Small Instances
	Large Instances
	Performance

	Conclusion and Future Work

