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Abstract 

Understanding the gene transcription rules present in non-coding DNA is essential for 

unraveling the genetic code that establishes cellular fate. In this study, we aim to narrow down 

on regulatory regions and motifs within the central nervous system (CNS) that determine cell 

specificity. While the use of ATAC-seq data has been proven efficient in defining relevant 

regions of open chromatin, further analysis is required in order to obtain insights into specific 

regulatory elements. To that end, we propose a strategy involving natural language processing 

techniques to identify DNA transcription factor (TF) binding sites relevant to each cell type. 

We employ topic modelling for co-clustering of ATAC-seq peak sequences and cell types; as 

a result, we can retrieve ‘topics’ consisting of functionally related non-coding DNA regions, 

that provide a starting point for further analysis and identification of cell-specific feature 

combinations. Furthermore, we finetune a BigBird language model, pre-trained on the human 

genome, to distinguish between GABAergic, glutamatergic, and non-neuronal cells. The Byte-

Pair Encoding tokenization method allows us to extract the most important DNA motifs for 

making the class predictions, as well as their corresponding attention scores, which can be 

mapped back to the peak sequences to identify TF binding sites. We show that this method 

allows identification of known regulatory elements and propose new strategies to extract more 

meaningful and specific information from the language models.  

 

Layman’s Abstract 

A large portion of our DNA does not code for genes, but instead contains a set of instructions 

that specify which of these genes need to be active to grant a cell its specific type. This study 

aims to understand how and which of these DNA elements work together to determine the 

types of cells in the brain. Using artificial intelligence techniques that have been developed to 

process natural language, we look for specific DNA patterns that are distinct between these 

types of cells. To do this, we first employ a method called ‘topic modelling’ to group together 

similar DNA sequences and cell types, providing us with a starting set of regions to explore. 

In order to obtain more specific motifs, we leverage the power of transformer language models 

which can be efficiently used for transfer learning. In simple terms, a model that has been 

trained for a very general task on a large amount of data can serve as the starting model and be 

re-trained for a more specific task. Following this method, we fine-tune a BigBird model to 

distinguish between different types of brain cells, such as GABAergic, glutamatergic, and non-

neuronal cells. By analyzing the internal attention mechanism of this model, we can identify 

specific patterns that the transformer found to be important for determining the cell type. We 

further show how information can be used to recognize known regions where proteins called 

transcription factors bind to the DNA and control gene activity. 
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Introduction 

Cellular fate is a result of the expression of particular gene patterns, which are in turn regulated 

by the binding of transcription factors (TFs) to DNA regulatory regions. Networks of TFs work 

together to coordinate cell division, differentiation and death. These DNA regulatory regions 

are present in the form of specific sequences that can be recognized by the DNA-binding 

domain of the TFs, and aid in initiating RNA transcription (promoters) or increase the 

transcription rate (enhancers) of a certain gene. In disease, these networks can be misregulated 

due to mutations, therefore, understanding the ‘code’ behind these pathways is a key step in 

interpreting DNA variants in such context (Minnoye et al., 2020).  

Modern technologies used in screening for disease-related genomic mutations, in the form of 

genome-wide association studies (GWAS) (Uffelmann et al., 2021), or rare variant association 

studies (RVAS) (Auer & Lettre, 2015), have seen great success in detecting common and rare 

genetic variants. However, functional interpretation of non-coding mutations is still 

challenging, because determining their effect requires understanding of the disruption they 

cause in the gene regulatory pathways. Therefore, knowledge of the regulatory DNA ‘code’ 

present in the non-coding genome and the interactions of these regulatory elements can 

facilitate the interpretation of the effect of such mutations. In this project, we aim to develop 

strategies that can help us discover regulatory DNA elements and how they relate to cell types 

in the central nervous system (CNS). The focus of this research will be using supervised and 

unsupervised natural language processing (NLP) strategies to determine whether DNA 

language models are able to capture the underlying structure of the non-coding genome, and 

highlight relevant motifs for cell differentiation.  

The central nervous system carries a great variety of cell types with different functional tasks, 

which is possible due to the activity of alternative gene regulatory programmes. In order to 

obtain insights into CNS cellular evolution, an ideal study region is the primary motor cortex 

(M1) due to its functional conservation across mammals. In their study, Bakken et al., 2021 

use single-nucleus chromatin accessibility and messenger RNA expression sequencing 

(SNARE-seq) to human, marmoset and mouse M1 samples; this technique combines ATAC-

seq and RNA analysis in order to profile chromatin accessibility and gene expression at once 

(Chen et al., 2019). The Assay of Transposable Accessible Chromatin sequencing (ATAC-seq) 

technique employs mutated Tn5 transposases to identify open chromatin regions and cut it to 

ligate adaptors that allow for later sequencing (Buenrostro et al., 2015). While annotating these 

regions allows us to determine sequences of open chromatin, it does not provide further insight 

into the actual mechanisms behind the regulatory networks (Yan et al., 2020), nor does it allow 

identification of specific motifs to which transcription factors might bind. In order to facilitate 

this process, we investigate whether natural language tools, in the form of topic modelling and 

classification using transformers, are able to pinpoint cell-type-relevant regulatory sites in the 

ATAC-seq data.  

Firstly, for topic modelling, the cisTopic (Bravo González-Blas et al., 2019) framework, built 

on latent Dirichlet allocation (LDA) (Blei et al., 2003) and Gibbs sampling, can co-cluster 

DNA regulatory regions and cell types. This grouping is based on patterns of opening and 
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closing between functionally related regions. As a language tool, topic modelling is generally 

used for document clustering. In this context, it works by retrieving representative words for 

each pre-defined topic, and consequently assigning topics to input documents. In biological 

terms, the input peaks are assigned into regulatory topics based on activity patterns, followed 

by cell type classification based on these findings. Thus, the topics that are found through this 

analysis provide a starting point to investigate combinations of regulatory elements that are 

responsible for gene transcription management in particular cell types.  

Secondly, we harness the power of supervised language models to determine whether they are 

able learn the ‘language’ of DNA non-coding elements. Due to the inherent similarities and 

translatability between biological sequences and natural language, the latest research in the 

field of bioinformatics has been focused on identifying ways in which these language models 

can be applied to answer biological questions (Zhang et al., 2023). In this project, we are 

exploring the use of transformers, which revolutionized the field of artificial intelligence when 

introduced in 2017 by Vaswani et al. due to their attention mechanism. Previously, Recurrent 

Neural Networks (RNNs) and Long-Short Term Memory (LSTM) networks were used to 

tackle text processing tasks; however, these methods have proven less effective when dealing 

with long input sequences, as they struggle to process the dependencies between long-distance 

word groups. This issue was solved by the introduction of neural attention mechanism, which 

processes the inputs in pairs of tokens instead of sequentially, meaning that an attention score 

is calculated for each pair of words in the input sequence. This score allows the model to 

understand the importance of each interaction of possible word pairs, thus being able to more 

efficiently model the relationships between the data.  

While these algorithms have been used for a variety of tasks, from translation to question 

answering, when it comes to input classification, an encoder is preferred, such as the 

Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al., 2019). 

This type of model is used to generate numerical embeddings for the input sequences which 

capture contextual information, and can be then passed on to a classifier for predictive tasks. 

This concept is called transfer learning, where a model is pre-trained on a large amount of data 

to learn general relevant features, and can then be fine-tuned to answer a specific classification 

task. 

In the field of bioinformatics, DNA sequence processing is usually done using DNABERT (Ji 

et al., 2021), which was trained to specifically encode DNA sequences into numerical 

representations. BigBird (Zaheer et al., 2020), a transformer model with a highly similar 

architecture to BERT, has been developed in order to tackle the need for parsing longer input 

sequences; it does so by computing a limited number of the paired attention scores, thus 

resulting in a sparse attention matrix. In this project, we employ GENA-LM (Fishman et al., 

2023), a transformer model using the BigBird architecture that has been pre-trained on the 

entire genome, and we fine-tune it to distinguish between CNS cell types given the 

corresponding ATAC-seq peaks as input.  

Overall, we wish to determine if NLP algorithms are able to learn the gene regulatory rules 

encoded in the genome, and whether the decisions behind these models can be interpreted to 

narrow down on cell type-specific regulatory motifs. 
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Methods 

1. Dataset 

The data used in this project has been collected by Bakken et al., 2021 using SNARE-seq to 

profile the chromatin accessibility of M1 cells. The resulting dataset consists of a sparse matrix 

of mapped ATAC-seq reads across 273103 genome regions for 84178 cells, along with their 

corresponding cell type from high-level (neuronal vs non-neuronal), to more specific 

characterizations. Furthermore, an RNA count matrix is available, providing the read counts of 

the 84178 cells across 31741 genes. 

2. Topic modelling of open chromatin regions 

2.1. Co-clustering into topics 

In order to perform topic modelling on the available ATAC-seq dataset, the software cisTopic 

(Bravo González-Blas et al., 2019) was implemented in an R script. The sparse matrix 

containing the reads for each cell and DNA region pair was transformed into a cisTopic object, 

and the corresponding metadata was added to each cell record. The model training was 

performed for 2-20, 30, 40 and 50 topics; finally, 14 topics were chosen as the optimal number 

using the value of the second derivative in each point of the likelihood curve. For each DNA 

region present in the input data, a score was obtained representing the contribution to each of 

the 14 topics, as well as 14 scores defining the topic contributions in each cell. 

2.2. Pathway analysis 

To determine whether the topics that were found had biological relevance, the ATAC-seq peaks 

were linked to the closest gene using the LinkPeaks() function available from the Signac 

package (Stuart et al., 2021), which follows the method described in Ma et al., 2020. A Gene 

Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)  was used to determine pathways 

that were significantly over-represented in each topic, based on all DNA region-topic scores 

and the linked genes. A linear regression model was used to determine the pathways that are 

up- and down-regulated in each separate topic, by using those particular topic scores as the 

function output. The dataset used for this analysis corresponds to the C5 gene ontology set 

from version 7.4 of the Molecular Signatures Database (Liberzon et al., 2011). Only the 

resulting pathways with adjusted p-values smaller than 0.05 were considered significantly 

enriched. Using information found in literature, these results were compared with the cell type 

most representative of several topics in order to draw conclusions about the gene pathways 

driving them.  

2.3.  Cell type prediction from topic scores 

A feed-forward neural network implemented for a multi-class classification was used to predict 

the highest-level type (‘GABAergic’, ‘Glutamatergic’ or ‘Non-Neuronal’) of each input cell, 

given the 14 topic scores as inputs (Figure S2). The model was implemented using the 

TensorFlow for R package, version 2.11.0.  
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The raw dataset consisted of 24006 non-neuronal, 22217 GABAergic and 37955 glutamatergic 

cells. To achieve more balance between the classes, the glutamatergic cells were randomly 

subset to 24006. During splitting, 80% of the records of each class were used as a training set 

and 20% were set aside for testing. During training, 20% of the training set was used for 

validation after each epoch. 

The architecture of the neural network was formed by an input layer of 14 nodes, followed by 

a fully connected hidden layer with 7 nodes, a dropout layer with a dropout rate of 25%, and 

finally an output layer of three nodes. For the hidden layer, ReLu was employed as an activation 

function, while softmax was used in the output in order to obtain probability scores for each 

class. The model was trained for 40 epochs as a result of the implemented early stopping 

mechanism, using TensorFlow’s categorical cross entropy as a loss function and accuracy as a 

performance metric. 

3. Transformer models used for cell type prediction 

Fishman et al.’s GENA-LM-BigBird-base-T2T pre-trained model was finetuned to a multi-

class classification problem. To predict the type (‘GABAergic’, ‘Glutamatergic’ or ‘Non-

Neuronal’) of each input cell, a set of DNA sequences was used as input for each data point, 

corresponding to ATAC-seq peaks. For tokenization of the input sequences, GENA-LM-

BigBird-base-T2T’s pre-trained Byte-Pair-Encoding (BPE) tokenizer was used. Figure 1 

shows an overview of the model fine-tuning process.  

 

Figure 1: Illustration showing the use of a BigBird transformer model for cell type classification. 

The input peak sequences are tokenized using BPE tokenization and are encoded using GENA-LM-

BigBird’s pre-trained tokenizer. They are passed onto the pre-trained BigBird model, and the resulting 

encodings are classified into one of the three cell-types: GABAergic, Glutamatergic and Non-Neuronal.  

 

3.1.  Input pre-processing 

To obtain a set of representative ATAC-seq peaks for each data point, the selection was 

performed in two steps. First, the read counts were normalized by the length of each peak 

region to avoid bias towards longer peaks. Afterwards, for each cell, only the regions that had 

more than the 90th percentile number of reads were considered in order to remove noise.  
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Secondly, a differential accessibility analysis was conducted using Seurat’s (Hao et al., 2021) 

FindMarkers() function between each pair of cell types, where only differentially accessible 

regions (DARs) that were detected in at least 5% of either population were considered The 

results were concatenated per cell type, and only the peaks with a positive log-fold change 

(logfc) of expression and an adjusted p-value below 0.05 were considered. We obtained 2602 

glutamatergic, 333 GABAergic and 44 non-neuronal DARs.  

3.2. Creating training and testing sets 

To create the initial input dataset, for each cell, the remaining regions per cell after the first 

step were intersected with the peaks that had passed the differential accessibility test for that 

particular cell type. Cells with duplicate inputs were removed. The resulting dataset consisted 

of 22202 GABAergic, 37955 glutamatergic and 10572 non-neuronal cells. 

This number was further subset to balance the classes. Finally, an equal number of 6767 cells 

(the maximum available from the least frequent cell type) from each class were randomly 

selected for the training set 1 (80%), 2114 for the test set 1 (20%) and 1691 for the validation 

set 1 (20% of training). The inputs were tokenized using Fishman et al.’s pretrained Byte Pair 

Encoding (BPE) tokenizer, with a maximum of 4096 tokens.  

A second test set (test set 2) was created using the same protocol, but with the difference that 

the input peaks were no longer intersected with the differentially accessible regions, only subset 

based on the read count as described previously. This set, containing 1805 glutamatergic, 2905 

GABAergic and 1632 non-neuronal cell samples was also used to test the first model. 

The pre-trained GENA-LM-BigBird transformer model was fine-tuned again (model 2) on a 

differently processed dataset. In this case, the differentially accessible peaks were separated 

between the training (80%) and test set (20%) within each cell type, and only those were used 

for the intersection in the final input processing for the corresponding dataset. The duplicated 

entries were removed in both. The training set was further balanced and split, so that an equal 

number of 5748 cells of each type were used for training, 1437 for validation, while the test set 

remained uneven with 37952 glutamatergic, 16145 GABAergic and 186 non-neuronal cells.  

An overview of all the datasets used for model training and testing is available in the 

Supplementary Material (Table S2). 

 

3.3. Model training and testing 

The pre-trained model was finetuned two separate times (model 1, model 2), each time for 10 

epochs on the multi-classification tasks of predicting the type of the input cell (glutamatergic, 

GABAergic or non-neuronal) using Pytorch’s (version 1.9.0) Transformers package. Torch’s 

cross-entropy function was used to estimate the training and validation losses, and the accuracy 

was recorded for each epoch to estimate the performance. For all three test sets, accuracy, 

precision, recall and F1 score were recorded in order to determine the classifier performance.  
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3.4. Interpretation of attention scores 

After training of the transformer model was completed, we passed the DNA sequence of a 

randomly chosen peak through the model and extracted the computed attention matrices 

between the input tokens at each of the 12 layers and 12 heads. To be able to determine the 

effect of each token on the class prediction, we considered the attention score between each 

input token and the [CLS] token, which represents an encoding of the entire input ‘sentence’.  

Following a similar method to DNABERT-viz (Ji et al., 2021), the attention scores of the token 

pairs were summed over all the layers and heads, thus resulting in numerical values that 

quantify the importance of each input token. 

In order to visualize these directly onto the input sequences, we mapped the scores to the peaks 

of interest. The corresponding attention score was added at each position in the DNA sequence 

when a token was encountered. The number of overlapping base-pairs between previously 

annotated regulatory sites (Pachkov et al., 2013) and the positions with scores higher than the 

90th percentile in the given region were then counted. These were compared with the overlap 

resulting after random shuffling of the attention scores over each sequence 100 times. This 

analysis was both performed on three hand-picked regions, as well as separately on a larger 

dataset of 18 peak sequences which had high topic scores. The exact chromosomal locations 

that were used are provided in the Supplementary Material (Table S1). For the latter dataset, 

a one-sided Wilcoxon rank-sum test was performed to determine whether the difference 

between the attention-generated overlap and the average shuffled overlap was significant.  

 

The source code for this project is available in two repositories:  

1. https://github.com/rafaella-buzatu/regElem (Methods 2) 

2. https://github.com/rafaella-buzatu/GENALM_Finetune_regElem (Methods 3) 

 

 

 

 

 

 

 

 

 

https://github.com/rafaella-buzatu/regElem
https://github.com/rafaella-buzatu/GENALM_Finetune_regElem
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Results 

In this study, we aimed to determine whether natural language models are able to pick up on 

the gene regulatory rules encoded in the open chromatin regions of the non-coding genome and 

how they can be used to narrow down on CNS cell-type specific regulatory regions and motifs.  

1. Topic modelling of open chromatin regions 

1.1.  Co-clustering into topics 

To achieve this, we began by using cisTopic (Bravo González-Blas et al., 2019) to group the 

open chromatin regions obtained through ATAC-seq into clusters referred to as ‘topics’, as 

well as to determine the contribution of each of these topics to the different cell types. By 

examining the log likelihood curve, we determined that 14 topics were the number that allowed 

for the best optimization of the two probability distributions. Thus, we obtained two output 

sets: first, a contribution score of each topic to every cell in the dataset, and second, a 

probability score for each topic-region pair.  

 In order to visualize these results, we performed a tSNE analysis on the cell-topic probabilities 

through the same software and overlaid the scores of each topic on this mapping. Figure 2 

illustrates the clusters, colored by the cell type at the highest (Figure 2A) and lowest level 

(Figure 2B) available in the dataset, while showcasing several examples of the topic 

specificity. 

There is a clear differentiation between the three broad cell types based on the topic modelling 

results, and even further separation when looking into the more specific subclasses. Astrocytes, 

micro perivascular macrophages (Micro-PVM), oligodendrocyte progenitor cells (OPC) and 

oligodendrocytes (Oligo) are examples of cell types that form their own, well-separated 

clusters, while also showing overlap with specific topics. The peaks assigned to topic 12, for 

instance, appear to be highly relevant to astrocytes (Figure 2F), while topic 5 is almost 

exclusively active in Micro-PVM cells (Figure 2E), and topic 2 is highly expressed in OPCs 

(Figure 2D). However, certain topics appear to be active across all cell types, such as topic 1 

(Figure 2C), thus providing less information about specificity. Figures showcasing the same 

analysis for each topic are available in the Supplementary Materials.  

Topic modelling in itself, however, is an unsupervised method, meaning that there is no simple 

way to determine the quality of this clustering or its level of informativeness. As a result, we 

decided to examine whether the topic-cell assignments held any biological significance. 
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Figure 2: tSNE showcasing the clustering of the cells in the dataset based on the cell-topic 

distributions. The cells are coloured based on cell type, following the (A) highest and (B) lowest level 

classification known. The topic scores are superimposed on the clustering plot, showing which topics 

are active in which cells: Topic 1- no cell specificity (C), Topic 2 – OPC cells (D),  Topic 5 – micro-

PVM cells (E) and Topic 12 – astrocytes (F).  
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1.2.  Pathway analysis 

We wished to see if this topic-cell type specificity could be explained through an investigation 

into the cellular pathways that are active in each topic. Based on the RNA expression levels, 

we were able to draw links between the ATAC-seq peaks and relevant genes. Using the 

connection between topics and DNA regions in a GSEA analysis, we obtained a list of cellular 

pathways that were significantly enriched in each topic. The results are available in the 

Supplementary Materials folder (‘GSEAresults.xlsx’). 

When trying to link these pathways to the cellular functions, we were able to discover several 

relevant connections. Topic 5, for instance, overlays the micro-PVM cell type, which are a 

population of brain cells whose main function is maintaining the integrity of the blood-brain 

barrier (BBB) through regulation of immune responses (Faraco et al., 2017). These cells can 

function as antigen-presenting cells (APCs), thus being part of the immunological synapse 

between a T cell and an APC, which relates to one of the pathways correlated with topic 5. 

Topic 7 shows a high contribution to PVALB cells, which are a subtype of GABAergic neurons 

that modulate the activity of voltage-gated calcium ion channels (Baimbridge et al., 1992). This 

reflects in the corresponding pathway related to neuronal ion channel clustering. Finally, topic 

12 overlaps with the cluster of astrocyte cells, which, like micro-PVM cells, also contribute to 

the maintenance and regulation of the BBB. According to our analysis, the genes linked to the 

astrocyte-dominated topic are active in T-cell as well as chondrocyte differentiation pathways, 

both connections which have been previously suggested in scientific literature ( Onore Beurel 

et al., 2014; Kepes et al., 1984). Nevertheless, most of the cell-pathway connections were not 

as obvious and proved difficult to interpret directly.  

1.3.  Cell type prediction from topic score 

Because of this difficulty in deciphering the biological significance of the topics, we decided 

to assess whether they were indeed sufficiently predictive to distinguish between cell types.  

Thus, we used the topic scores in a multi-class classification model, trained to predict the high-

level type of each cell (GABAergic, glutamatergic or non-neuronal). The evolution of the loss 

function and accuracy during training is stored in the Supplementary Figure S3. Figure 3 

illustrates the results of the class prediction on the test set, with 4501/4512 samples correctly 

predicted as non-neuronal, 4711/4713 as glutamatergic and, finally, 4743/4777 accurately 

assigned the label GABAergic, corresponding to an accuracy of 99.67%. Thus, at a high level, 

the topic scores appear to hold enough information to make this distinction.  

In order to gather further insights into the logic behind the topic clustering, this experiment can 

be extended to a model that distinguishes between more specialized cell types. Furthermore, in 

order to grasp exactly which topics and, consequently, which DNA regions, are active within 

specific cell types, we need to look into the predictive mechanism of the model.  
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Figure 3: Confusion matrix showcasing the results of the neural network model used to predict 

the cell type using the topic scores as input. The accuracy of prediction is 99%, suggesting that 

predicting the cell type by using the topic scores alone is a simple task for such a model. 

  

2. Transformer models for cell type prediction 

Since it did not prove intuitive to determine the performance of an unsupervised model on 

understanding the intricate regulatory networks of genes, we also experimented with using a 

supervised model. To this end, we fine-tuned the GENA-LM BigBird encoder model, which 

had been pre-trained on the entire genome, to differentiate between the three high-level cell 

types (non-neuronal, GABAergic and glutamatergic) when given the respective ATAC-seq 

peaks as input. 

2.1. Model fine-tuning 

To begin with, we trained model 1 on a dataset which was pre-processed to capture the most 

relevant peaks through a differential accessibility analysis. The evolution of the loss function 

during training is recorded in Supplementary Figure S4. It was first tested on the test 1 dataset 

that had gone through the same pre-processing steps as the training. The results of this 

evaluation are portrayed in the confusion matrix from Figure 4A, as well as in Table 1, 

showing that 2114 non-neuronal, 2111 glutamatergic and 2112 GABAergic cells were 

classified correctly out of the 2114 representing each class, resulting in 99.92% accuracy. 

However, when testing the same model on the test set 2, which was not subset using DARs, 

the performance was significantly poorer, as almost all samples were predicted as 

Glutamatergic, resulting in a weighted average F1 score of 0.29 (Figure 4B, Table 2).  These 

results show that the model is not able to generalize on a less pre-processed dataset, and it 

might have not learnt to associate regulatory motifs with cell type, as was expected. 
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Figure 4: Confusion matrices from the results of the first fine-tuned GENA-LM-BigBird model 

on test set 1 (A) and test set 2 (B). The prediction accuracy of the model on test set 1 is 99%, however 

the performance significantly decreases when the model is tested on a less pre-processed set of peaks 

(test 2). Most cells are now predicted as Glutamatergic, which can be explained by the initial high 

variability in this class’s differentially accesible peaks, which are now re-introduced as input sequences 

for the other classes and are likely recognised as glutamatergic by the trained model.  
 

 

Since it is not clear from these results whether the model was able to learn the patterns of 

regulatory motifs, we decided to test that by fine-tuning the model on a different set of input 

data, in which case the DARs were split between the training and test sets. The rationale behind 

thi is that we expect the motifs we are looking for to actually be shared between different peaks 

that are cell-specific. Thus, if the model were to actually learn the sequence features we are 

interested in, it should be able to recognize them in the test set despite not having been trained 

on the corresponding entire peak sequences. 

The evolution of the loss function and accuracy during training is stored in the Supplementary 

Figure S5. Figure 5 shows the results of the model on the corresponding test set, while Table 

3 indicates the F1 score per class, as well as on average. Firstly, the prediction accuracy for the 

non-neuronal cells is 0%, suggesting that none of the patterns that the model had learnt for this 

class during training were recognised in the test set. This could be caused by the low variety of 

DARs that were left for this testing subset – eight peaks. We can see that, while the other two 

classes have better performances, with F1 scores of 0.61 (GABAergic) and 0.81 

(Glutamatergic), the prediction power appears to decrease with the number of DARs that can 

be used as input. Therefore, while the results suggest that the model is indeed capable of 

learning and recognising cell-specific motifs in these open chromatin regions, testing is limited 

by the amount of available data. Alternatively, we could try to remove the non-neuronal class 

and re-train the model on more specific cell types to further assess its learning abilities.  
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Figure 5: Confusion matrix showcasing the results of the second fine-tuned GENA-LM-BigBird 

model. The prediction accuracy per class decreases with the number of available DARs that were used 

for preprocessing, such that Glutamatergic and GABAergic classes have good predictions, while Non-

Neuronal, which had 44 differentially accesible peaks, has an accuracy of 0%. However, for the former 

two classes, the model is able to recognise regulatory elements in the test set even if it has not 

encountered the peak sequences in the training set. 
 

 

Table 1. Table showing the performance metrics of the first fine-tuned model on test set 1 

 Precision Recall F1 Support Accuracy 

Glutamatergic 1.00 1.00 1.00 2114 

0.99 GABAergic 1.00 1.00 1.00 2114 

Non-Neuronal 1.00 1.00 1.00 2114 

Weighted average 1.00 1.00 1.00 2114  

 

 

Table 2. Table showing the performance metrics of the first fine-tuned model on test set 2 

 Precision Recall F1 Support Weighted Accuracy 

Non-Neuronal 0.00 0.00 0.00 1805 

0.46 Glutamatergic 0.46 1.00 0.63 2905 

GABAergic 0.25 0.00 0.01 1632 

Weighted average 0.27 0.46 0.29 6342  

 

 

Table 3. Table showing the performance metrics of the second fine-tuned model  

 Precision Recall F1 Support Weighted Accuracy 

Non-Neuronal 0.00 0.00 0.00 186 

0.74 Glutamatergic 0.86 0.76 0.81 37952 

GABAergic 0.55 0.70 0.61 16145 

Weighted average 0.76 0.74 0.75 54283  
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2.2. Interpretation of attention scores 

The next step toward the goal of identifying cell type-specific features within the open 

chromatin regions involves extracting and interpreting information from the transformer 

model. Therefore, we decided to use the token attention scores to determine the specific motifs 

that the model was considering when making each prediction. For an initial look, we used the 

first model we fine-tuned and randomly selected the peak located at chr5:76952593-76954930 

to visually inspect the results. We passed the peak through the model, mapped the cumulative 

attention scores of the existent tokens onto the DNA sequence and plotted heatmaps for 

visualization of three sub-regions of the chosen peak (Figure 6). The same figure also 

illustrates the comparison with previously annotated transcription factor binding sites form the 

Swiss Regulion database (Pachkov et al., 2013). A visual examination supports a certain degree 

of overlap between the sites most important for the prediction and the known regulatory 

element locations, however this overlap also appears skewed in certain places, such as for 

RCOR1 (Figure 6A) and RUNX1 (Figure 6B). Furthermore, there appear to be other locations 

which, while highlighted by the attention mechanism, have no previous annotation (Figure 

6C).  

To determine whether this overlap was indeed informative, we randomly shuffled the attention 

scores within these three regions 100 times (Figure S6) and compared the number of 

overlapping base pairs of each resulting score vector with the known locations of the regulatory 

elements. The results are recorded in Table 4. For the three sub-regions of the chosen peak, 

the difference between the overlap counts is positive in all cases, showing a better recognition 

of annotated elements. To get a better idea of the significance of our findings, we repeated the 

analysis on the entire DNA sequences of 18 peaks chosen for high topic score assignments 

(Table 4). The differences are also positive in the regions where known TF binding sites were 

actually present, and a Wilcoxon sum-ranked test proves them to be significant (p-value 

0.00865). Therefore, it is possible to identify sites of regulatory elements by leveraging the 

attention scores, however, more precise results are likely to be obtained when intepreting a 

model with higher accuracy.  
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Figure 6: Token attention scores mapped on a the region chr5:76953480-76953582 compared to 

annotated TF binding sites from the  SwissRegulion database. The figure indicates a rough overlap 

between some of  the DNA regions with high cummulative mapped attention scores (higher than 1) and 

the annotated elements. Shown are (A) chr5:76953480- 76953582; (B) chr5:76952738-76952840; (C)   

chr5:76953035-76953137.  
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 Table 4. Table showing the difference in the overlap count between the mapped shuffled scores  

Location Overlap mapped 

attention 

Overlap shuffled Difference 

chr5:76953480-76953582* 76 61.72 14.28 

chr5:76952738-76952840* 30 20.94 9.06 

chr5:76953035-76953137* 15 8.98 6.02 

chr1:633543-634316 0 0 0 

chr3:93470467-93471024 0 0 0 

chr5:76952593-76954930 205 157.19 47.81 

chr13:110306246-110308993 405 311.20 93.70 

chr5:100900736-100903868 172 173,34 -1.34 

chr2:17877787-17879898 309 255.45 53.55 

chr11:16605771-1660816 0 0 0 

chr7:8433246-8434867 611 481.97 129.3 

chr13:37868657-37871376 777 319.44 457.56 

chr2:170815757-170818430 478 373.37 104.63 

chr18:12253588-12256062 374 260.43 113.57 

chr1:18071366-18074416 0 0 0 

chr9:135166103-135168844 0 0 0 

chr3:194621781-194624359 0 0 0 

chr7:45407218-45409817 0 0 0 

chr9:127679563-127681320 0 0 0 

chr18:51857753-51859599 0 0 0 

chr11:119416959-119418818 0 0 0 

* the three hand-picked regions for the initial analysis 

 

Wilcoxon Test (>)  

statistic p-values 

  35.0 0.00865 

 

 

Discussion and Conclusion 

The aim of this research was to develop a strategy involving natural language tools to discover 

DNA features that can aid us in determining which regulatory elements determine which cell 

type within a dataset of human CNS cells. In order to address this, we used a dataset of open 

chromatin regions and their respective read count for each cell. We began our investigation by 

using topic modelling in order to cluster the ATAC-seq peaks into 14 regulatory ‘topics’ that 

represent groups of regions that are active together. This is done by optimizing two 

distributions: the peak regions are assigned a probability for participating in each topic, while 

the contribution of all of these topics in each cell is also scored. Following this analysis, we are 

able to create a link between which DNA regions are likely to be open together in specific cell 

types. However, when we tried to connect this information to known gene pathways for a more 

in-depth look into the biological meaning behind the topics, we were not able to find many 

easily interpretable connections. Thus, in order to further assess the reliability of the topic 

assignment itself, we tested whether the 14 scores were informative enough to predict the cell 

type. To tackle this, we created a neural network model which was able to predict with high 
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accuracy whether an input cell was glutamatergic, GABAergic or non-neuronal, based on its 

scores in each of the topics.  

A suitable follow-up would involve further training of a similar model to classify more specific 

cell types. In order to extract relevant DNA motifs from such a model, however, a new protocol 

still needs to be developed that can help us understand the model’s inner workings. A simple 

analysis strategy can be exploited, in which different input scores are removed before being 

passed onto the model, in order to determine their importance in making the final prediction.  

Thus, a selection of topics could be obtained which are relevant for each predicted class. On 

the other hand, for a more direct approach, we could try to translate this into a linear model, 

for which one can easily extract the weights of each topic in relation to the predicted class. 

Ultimately, a different method would still be necessary to determine the most relevant open 

chromatin regions that are active together as a topic, before being able to test for any motif 

enrichment. To address that, the tSNE reduction could be repeated on the region-topic 

distribution to try to cluster which regions function together within which topic combinations.  

On the other hand, we chose to also assess if a supervised NLP technique would be able to 

learn the regulatory elements that determine the different cellular functionalities. To achieve 

this, we utilized a pre-trained BigBird model and fine-tuned it on the task of classifying the 

cells into the three high-level types (glutamatergic, GABAergic and non-neuronal) based on 

the input peak sequences. While the model had a great performance on the initial test set 

(99.92% accuracy), where the input peaks were selected based on a differential accessibility 

analysis, when we removed this pre-processing step from the test set, the accuracy dropped 

significantly, and almost all the cells were predicted as glutamatergic. To explain this, we have 

to consider how the transformer model and the tokenization step work. We used a pre-trained 

BPE tokenizer, which extracted high-frequency motifs from our peak sequences, which were 

then given as input to the model. The differential accessibility analysis allowed us to pre-

determine the regions that were open in a significantly larger percentage for each cell type, 

which can then lead to more specific motifs being picked up during the tokenization process.  

After all the pre-processing, the glutamatergic cellular class had a far larger number of possible 

peaks than the other two types. Therefore, when so many regions are introduced back into the 

test dataset, it is likely that they were recognized as glutamatergic purely due to the higher 

initial variety in the training sequences. However, these results raise a different question, 

namely whether it was indeed relevant regulatory motifs that the model was able to learn, or it 

simply exploited some other pattern in the data.  

In order to address this concern, we split the DARs between the training and test set and fine-

tuned a new model to see whether it would be able to recognize relevant motifs within peak 

sequences it had not previously seen during training. The results of this second model suggest 

that is indeed the case, however what it also made obvious was the loss of predictive power 

given a lower number of available cell specific DARs. For a successful model, a different pre-

processing strategy would need to be developed in order to address this lack of balance between 

the peaks in each class. One could try to simply provide the model with all peaks that have a 

significant read count, without using the differential accessibility analysis results, while still 

randomly splitting them between training and test per class. However, it is possible that this 
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introduces a large amount of noise within the data, and whether the model is capable of finding 

the important features within this noise remains to be seen. On the other hand, the transformer 

could be fine-tuned on a larger number of classes, representing more specific cell-types, which 

could help lower the variability between the available DARs.  

Nonetheless, once a model with suitable accuracy is obtained, it further needs to be interpreted 

in order to reach our initial research goals. Going a step beyond training, we attempted to 

implement a protocol that could help us visualize which tokens were most relevant for the 

prediction by diving into the attention score matrix. By adding the attention contribution of 

each token to the [CLS] token, which represents an input-wide encoding and is used for the 

classification, we can obtain an ‘importance’ score of each input token for the final prediction. 

When we mapped these scores back to the ATAC-seq peak regions, we were able to roughly 

overlap the regions the model found important with the locations of known TF binding sites. 

A Wilcoxon sum-ranked test showed that the overlap obtained through this process was 

significantly better (p-value 0.00865) than achieved through random attention score 

assignments. It is likely that this significance would only improve with a more accurate fine-

tuned model and would allow us to more reliably extract cell-specific DNA motifs.  

Nevertheless, we wish to propose other techniques of explainable AI which could provide us 

with more insights into the model’s predictive behavior. A deep dive into the attention matrix 

would prove difficult due to its complexity and high dimensionality. However, a simple yet 

effective strategy could involve token nullification, where random combinations of tokens are 

removed from the input in order to determine the effect on the prediction performance. This 

could allow us to piece together which token combinations are relevant to which classes by 

assessing the change in the class probabilities given the removal.  

 

In conclusion, these results show that there is sufficient predictive power in ATAC-seq data to 

be able to differentiate between CNS cell types at a high level, and natural language tools are 

indeed able to pick up those distinguishing characteristics. However, understanding which 

DNA features control the specificity of these cells and how they work together to regulate gene 

transcription still requires exploration of these models. Further work is needed to address cell 

differentiation at a lower level, as well as to perfect the protocols that would allow us to extract 

reliably relevant features.  
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