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Abstract
The use of linguistic influences from various languages, or the fluid alternation between
languages, is known as code-switching. This phenomenon is particularly prevalent in areas
shaped by diverse cultural influences, such as young urban communities in the Netherlands.
Tools for Natural Language Processing (NLP) have seen an increase in use and performance
quality over the last decade, but are typically not trained to work with multilingual, urban
youth speech styles. In this thesis, I train models with different levels of complexity with the
objective to recognize code-switching. For this objective I use the Moroccorp: an unlabeled
Moroccan-Dutch corpus that consists of chat conversations between Moroccan-Dutch internet
forum users. I annotate this dataset on word-level, with labels that describe the languages and
linguistic varieties that are present, as well as labels for language independent utterances.
Two deep learning models are fine-tuned on the annotated dataset. For this, I use two
pretrained transformer models and compare their performance to a multinomial logistic
regression baseline model on language identification. I use the Dutch model RobBERT and
Multilingual BERT, that is trained on over a hundred languages, including Dutch, English
and Arabic, which are all present in the Moroccan-Dutch corpus I use. If informal code-
switched texts can be processed as well as more formal, monolingual texts by NLP tools
like RobBERT, this could reduce performance bias for non-standard Dutch in technological
appliances like voice activated tools or hate speech detectors on social media. The annotated
subset of the Moroccorp contains about 10% of code-switched sentences, with a Code-
mixing index (10,92) that is similar to other datasets used for language identification. The
best hyperparameter configurations for both models reach a higher F1-score (F1 = 0,83) than
the logistic regression baseline model (F1 = 0,53) on the token classification task. Although
differences in F1-score between the two transformers proved to be insignificant (p=0,07),
M-BERT shows higher precision, whereas RobBERT shows higher recall and accuracy.
Recognizing code-switching and the Moroccan ethnolect simultaneously is shown to be
complex for the models. Higher performance may be achieved by focusing on the two tasks
individually and by using a more balanced dataset.
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1 Introduction
This chapter introduces many different concepts, which are all tied together by my thesis,
as I focus on the recognition and classification of multiple languages in one conversation
or sentence, some of which are under-resourced or even difficult to define as a single well-
established language. For this classification I use machine learning models for Natural Lan-
guage Processing (NLP). In Section 1.1 I introduce the phenomenon of code-switching. Then,
I introduce the NLP task of language identification in Section 1.2. The linguistic concept of
a multi-ethnolect is explored in Section 1.3. Then, I dive into the relevance of working with
under-resourced languages in Section 1.4.

1.1 Code-switching
Many people in the world are bilingual. As the group of bilinguals is large and diverse,
there is a range of individual differences with regard to their language use, proficiency
and alternating between languages [Genesee 2016]. Some bilinguals use each language they
speak roughly equally often, and some may be more proficient in one over the other. Some
switch languages frequently within one conversation, whereas others use each language only
in separate contexts, switching rarely [Mann and de Bruin 2021]. For example, Moroccan
immigrants in the Netherlands may speak a Berber dialect with close family members, but
speak only Dutch at work [Schmeets and Cornips 2021]. However, in informal situations, like
on social media, speakers may alternate more, choosing their language-use based on their
communicative goals [Bali et al. 2014].

The phenomenon of using at least two languages in the same utterance, sentence or
conversation is referred to as code-switching. See (1) for an example of code-switching from
English to Spanish from Mellado and Lignos [2022]:

(1) I got it, but prefiero usar mi Dell para cosas sencillas.
I got it, but I’d rather use my Dell for simple things.

In (1), the switch happens within the same sentence, but we also speak of code-switching
when the switch happens between sentences. There are several ways to categorize different
types of code-switching. For example, the location of the switch, or the reason of its occur-
rence. I will introduce these in Section 2.1.2.

On social media, code-switching occurs frequently: over 10% of the X (formerly Twitter)
users tweet in more than one language, but not necessarily within one tweet [Hale 2014],
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6 Chapter 1 Introduction

and Rijhwani et al. [2017] estimate that about 3.5% of tweets are code-switched, using more
than one language in a single tweet. Although there has been research in the field of NLP
on models that are focused on code-switching, like James et al. [2022], Samih et al. [2016],
monolingual models are much more common and there is still a lot to explore, especially in
low-resource language varieties. Although code-switching is a general phenomenon, I mainly
focus on code-switching between Dutch and Moroccan-Dutch in my thesis.

1.2 Language Identification
As many NLP models are processed and analyzed in a language-specific way, it is imperative
to identify the language in which a particular segment is written in order to handle code-
switched data [Aguilar et al. 2020]. Language Detection, or Language Identification (LID),
is the process of identifying the language of a given text or document automatically. In the
context of code-switching, the language identification takes places more locally, obtaining
language labels on the sentence-level or token- or even subword-level [Mager et al. 2019],
depending on the type of code-switching that is present. Inversely, labeling each word with
labels that identify the language in which it is written is also a way to detect code-switching,
by detecting a change in labels. There are other methods to detect code-switching, like lexical-
based approaches, such as a dictionary lookup [Nguyen and Doğruöz 2013] or syntax-based
approaches, such as using Part-of-speech tags to quantify the complexity of code-switching
[Kodali et al. 2022].

Compared to more complex NLP tasks, such as Question Answering or Natural Language
inference, LID is a relatively easy task. Some scholars believe it to be an almost solved
problem, especially outside the context of code-switching, at the document-level [McNamee
2005]. However, there are still many factors that make LID a challenging task in short and
informal texts, such as chat utterances, that are characterized by misspellings, phonetic typing,
word play or uncommon abbreviations [Das and Gambäck 2014, Thara and Poornachandran
2021]. Short texts may not contain enough linguistic features to determine the language,
especially in the presence of grammatical errors, obscuring important linguistic patterns. On
the other hand, it is possible that the to be identified language is relatively rare, ill-documented
or not expected by a classifier and therefore difficult to detect [Adebara et al. 2022]. Other
challenges of LID will be addressed in Section 2.3.1.

1.3 Multi-ethnolects
A type of language variety that is characterized by a combination of code-switching and
the mentioned challenges of LID, like phonetic typing, grammatical errors and insufficient
documentation is the one categorized as a multi-ethnolect [Kossmann 2019, Nortier and
Dorleijn 2013]. This is an umbrella term for dialects and speech styles that are mainly used
by young people in multi-ethnic urban communities that are rich in cultures and languages,
caused by language contact [Quist 2008]. Language contact is the phenomenon where two
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groups of people who speak different languages meet and influence each other’s language use
[Bell 2013, p.47]. Migration is a prevalent source of language contact, but can have different
outcomes regarding impact on language use [Auer 2020].

In urban areas of the Netherlands, the multi-ethnolect that is used is called Straattaal (lit.:
street language), which is often used by second, third or even fourth generation immigrants
with a background in various parts of the world [Appel 1999, Nortier and Dorleijn 2013].
Straattaal was first identified and researched in 1999 and is based in Dutch, although its
lexicon draws from multiple languages, including the Surinamese language Sranan Tongo
and English [Appel 1999, Nortier and Dorleijn 2013]. See (2) for an example of a sentence
in Straattaal from [Kossmann 2019]. Words in italic are non-Dutch insertions, those not in
italic are standard Dutch. ‘Agga’ is simply a distorted version of ‘Den Haag’, a city in the
Netherlands, whereas ‘osso’ means ‘house’ in Sranan Tongo.

(2) Kom
Come

we
we

gaan
go

vandaag
today

naar
to

Agga
The Hague

of
or

gaan
go

we
we

gelijk
straight

naar
to

osso?
home?

I will elaborate on the characteristics and terminology of these language varieties in
Section 2.2.

1.4 Under-resourced language variants in NLP research
Deep Learning language models have seen a large increase in performance on all common
Natural Language Processing (NLP) tasks over the past few years. In November 2023, 22
different deep learning models have surpassed human baselines on the GLUE benchmark1,
which evaluates performance on various NLP tasks [Wang et al. 2019]. Very recently, Chat-
GPT, an application of the Large Language Model GPT-32 [Brown et al. 2020], received a
lot of praise and attention from the general public for being able to generate text about any
subject that can be indistinguishable from text written by a human [Dale 2021].

In order to achieve this level of proficiency, Large Language Models (LLMs) are frequently
pre-trained on corpora consisting of vast amounts of text, often exceeding 1 billion words, to
provide them with statistical patterns of natural language, to predict the most likely word to
follow a given input. Once pre-trained, these models may be fine-tuned for specific tasks such
as Sentiment Analysis, Machine Translation, or Text Generation through additional training,
typically on tasks distinct from those employed in pre-training. Fine-tuning requires a smaller
amount of data and less time compared to the pre-training process.

A shortcoming of popular pre-trained language models, like BERT [Devlin et al. 2019]
and GPT-3 [Brown et al. 2020] is that they draw mostly from high-resource languages, lan-
guages for which many sources are available. Moreover, NLP research tends to focus on a

1 https://gluebenchmark.com/leaderboard/
2 At the time of writing, Chat-GPT uses GPT-3, but may in the future use newer and more advanced models, like
GPT-4, which is at the moment only available for premium members
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handful of Indo-European languages, leaving behind other frequently used languages [Hovy
and Spruit 2016]. According to a taxonomy of languages in NLP [Joshi et al. 2020], about
88% of the 6,500 languages taken into consideration are currently without representation, due
to the absence of (un)labeled datasets, despite being used by over 1.2 billion speakers. How-
ever, awareness for this problem has been spread widely over the last few years, leading to
an increase in research on linguistic diversity in NLP [Blasi et al. 2021, Levow et al. 2021].
Language diversity was even a special theme at the Association of Computational Linguis-
tics (ACL) 20223, to encourage research in low-resource languages, as well as endangered
languages to be sustained.

Interestingly, data that is available on social media for under-resourced languages, are
often code-mixed [Thara and Poornachandran 2021]. As stated earlier, language models are
often monolingual, trained on corpora written in a single language. Multi-language models
exist, but are usually trained on monolingual documents taken from various high-resource
languages, like Multilingual BERT (M-BERT) [Pires et al. 2019]. Usually single-language
models perform better on downstream NLP tasks in that specific language [Martin et al. 2020,
De Vries et al. 2019].

1.4.1 Problems of under-researched language variants
While models trained on high-resource languages, like the over-represented English, perform
well on those languages, they may encounter problems when the to be processed text data
is written in other varieties of the same language, like a dialect, as most English language
models are almost exclusively trained and evaluated on Standard British English or Standard
American English [Blodgett et al. 2016, Ziems et al. 2022]. For instance, African American
Vernacular English is more likely to be misclassified as Non-English [Blodgett and O’Connor
2017] or as Hate Speech [Rios 2020] and is more difficult to identify in the first place
[Jurgens et al. 2017]. The reasons behind this are complex and not entirely explainable from
underrepresentation alone, but increasing inclusivity of dialects and language varieties is a
step towards a reduction in inequality of NLP model performance for these dialects compared
to their standard counterparts [Groenwold et al. 2020].

In the field of psychology, research tends to be carried out on samples drawn entirely from
Western, Educated, Industrialized, Rich and Democratic (WEIRD) societies [Henrich et al.
2010], creating results that only apply to that demographic group. Similarly, if NLP models are
only trained on language used by one demographic group, they will naturally perform worse
on data falling out of the scope of the training data. Depending on the training data, a model
would perform worse on certain demographic groups that are not represented in the training
data at hand, like young people [Hovy and Søgaard 2015] or ethnic minorities [Jørgensen
et al. 2015]. This can lead to exclusion or demographic misrepresentation, especially once

3 https://www.2022.aclweb.org/post/acl-2022-theme-track-language-diversity-from-low-resource-to-endangered-languages
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a model is applied in consumer facing technology, such as Google Translate, or a chatbot
helpdesk. This reinforces demographic differences by making technology less useful for
already disadvantaged groups [Hovy and Spruit 2016].

One way to mitigate the issue of linguistic bias, is to train models on balanced datasets that
are diverse and representative of a broad demographic and reflects reality as well as possible
[Dixon et al. 2018]. An approach to realize such a diverse dataset is to collect several datasets
from multiple sources, including different demographic groups and geographical locations.
Realizing such a diverse dataset would be a task too big for the scope of this thesis. Instead
I will be focusing on one isolated low-resource language variety, similar to Papalexakis et al.
[2014], who predict code-switching in a large online discussion forum for the Turkish-Dutch
immigrant community in the Netherlands.

1.5 Research Goals and Chapter Overview
Both code-switching and the use of multi-ethnolects are phenomena that occur in modern
society, specifically in immigrant communities in the Netherlands. Multilingual language
varieties, especially multi-ethnolects such as Straattaal, are underrepresented in NLP research.
One of the first steps needed to take in multilingual NLP is Language Identification (LID).

In Chapter 2, I have done a literature review on the phenomenon of code-switching, the
Moroccan-Dutch ethnolect as well as on other works of language detection datasets and report
on methods to measure code-switching. I conducted analysis on the annotated dataset using
these methods, to examine if code-switching occurred in the Moroccorp, and how much.

I present the following two research deliverables:
I present an annotated dataset4, suitable for a word-level language identification task that

focuses on the identification of code-switching as well as the use of the Moroccan-Dutch
ethnolect in the form of non-standard Dutch, like spelling variations and grammatical errors
and the usage of wrong words. The words are tagged with labels that do not exclusively
represent languages, but also include language varieties, like the Moroccan-Dutch ethnolect.
I use the Moroccorp, a dataset composed by Ruette and Van de Velde [2013]. The corpus
consists of informal chat messages in which the conversations are predominantly written in
Dutch, but also contain messages with elements of other languages, like Arabic and English.
I annotate the data on word-level. Each word receives a label that identifies the language or
language variety in which it is written, or which category of language independent tokens it
is. My approach for the annotation of the dataset is discussed in Chapter 3. The analysis to
measure the amount of code-switching in the Moroccorp is found there as well.

Moreover, I have fine-tuned two deep learning language models that can perform a
custom Language Identification task on the annotated dataset in the form of Multiclass Token
Classification, as well as a baseline model. I fine-tune two pre-trained BERT-models on

4 Dataset can be found here: https://huggingface.co/datasets/Tommert25/extradata0908/tree/main
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Language Identification: RobBERT5 [Delobelle et al. 2020], a Dutch language model, and
Multilingual BERT (M-BERT)6 [Pires et al. 2019]. I fine-tune the models on the annotated
Moroccorp. I evaluate the models on accuracy, precision and F1-score. I searched for the
highest scoring model on a validation set by performing hyperparameter tuning. Then I run
the best performing model for five different random seeds, and perform error analysis on the
highest scoring model. I compare their performance to a logistic regression baseline model.

I found that transformer models do relatively well on the task, better than logistic regression
(F1-score = 0,528), but between RobBERT (F1-score = 0,817) and M-BERT (F1-score =
0,812) remains little difference (0,01 on macro-average F1-score).

In Chapter 4, I discuss the fine-tuning of the two transformer models, as well as training the
baseline logistic regression model. After hyperparameter tuning and choosing the best models
for each architecture, I analyze what the models can do in Chapter 5. Finally, limitations of
my research as well as ideas for future work are discussed in this chapter.

5 The fine-tuned RobBERT model can be found here: https://huggingface.co/Tommert25/RobBERTBestModelOct13
6 The fine-tuned M-BERT model can be found here: https://huggingface.co/Tommert25/MultiBERTBestModelOct13



2 Theoretical Framework and
Related Work
My thesis touches upon diverse topics spanning various research fields, which have each been
both researched individually, as well as in combination with each other. To provide context
on each of the topics I introduced in the previous chapter, I conducted a literature review,
which has resulted in the following sections: In Section 2.1, I discuss linguistic research
on code-switching. In Section 2.2 I elaborate on what characterizes the Moroccan-Dutch
ethnolect. Then, in Section 2.3 I discuss previous NLP research on multilingual datasets and
language detection. A general explanation of Transformer models and specifically the models
RobBERT and M-BERT follows in Section 2.4.

2.1 Code-switching from a linguistic perspective
Since the 1980s, code-switching - using multiple languages in an utterance, sentence or
conversation - has been recognized as a part of multilingual language use and is researched
mainly in the context of sociolinguistics [Das and Gambäck 2014]. The phenomenon of code-
switching is often looked down upon, both from inside as well as outside of the communities
that participate in it, and is sometimes considered a corrupted semi-language [Bell 2013,
p.114]. A misconception of code-switching may be that a speaker resorts to using another
language because they do not master the first one well enough. However, code-switching
shows predictable structures, such as preservation of grammatical structure of each language
involved and speakers who use code-switching are usually proficient bilinguals [Myers-
Scotton 1997].

In a code-switched utterance or conversation, one language is usually dominant over the
other. This dominant language is often referred to as the matrix language [Myers-Scotton
1995], which creates the skeleton for each sentence, predominantly using that language’s
grammatical structure and word order. The embedded language is Myers-Scotton’s term for
the other language, which is the less dominant language, often only used for content material,
like vocabulary insertions.

(3) ‘Leo
today

si
1s/neg

ku-
past/neg

come
come

na
with

books
books

zangu.’
my

‘Today I did not come with my books.’

11



12 Chapter 2 Theoretical Framework and Related Work

In (3), Swahili is the matrix language, and English is the embedded language. The switches
are made both from Swahili to English and back to Swahili, amounting to four code-switches
in total. The grammatical structure is provided by Swahili, and is therefore the matrix
language. The use of the terms matrix language and embedded language has been spread
widely throughout code-switching research [Das and Gambäck 2014, Khanuja et al. 2020,
Solorio et al. 2014], but has also received criticism. For instance, the matrix language and the
embedded language can switch places from sentence to sentence. Although it is uncommon
for texts that use code-switching to lack a clear matrix language, it is theoretically possible,
especially if the text is short. In both examples (1) and (4), the sentence starts in English, but
finishes in Spanish and Turkish, respectively. As neither one looks more dominant than the
other, contextual clues are necessary to determine which language is the matrix language.

2.1.1 Types of code-switching
There are several ways to define categories of code-switching, based on where the switch
occurs, why a switch happens and how it relates to other multilingual phenomena, like lexical
borrowing, which I discuss in Section 2.1.2. For the location of the switch, linguists generally
agree on three types of switches, originally identified by linguist Shana Poplack [Poplack
1980]. The first two are intersentential and intrasentential switching. Respectively, switches
that happen at sentence boundaries like in (4), in which a switch happens from Dutch to
Turkish [Nguyen and Doğruöz 2013], and switches that happen within a sentence, like in (5)
[Aguilar et al. 2020]. Code-switching within the same sentence is also referred to as ‘code-
mixing’. A third type, shown in (6) [Esenjul 2022] is called tag switching, where the switch
occurs in a sentence tag like ‘you know?’ in English [Poplack 1980]. As a tag occurs usually
within the same sentence, it can be argued that this is a subset of intrasentential switching. An
overview of the categories is given in Figure 2.1.

(4) Mijn dag kan niet stuk. Cok guzel bir haber aldim.
My day cannot go wrong. I received good news

(5) LREC será hosted in Marseille.
LREC will be hosted in Marseille.

(6) Él es de Oaxaca y ası́ los criaron a ellos, if you know what I mean.
He is from Oaxaca and that’s how they were raised if you know what I mean.

(7) oetverkocht
sold out

Mcarthur [1992] identified a fourth type, intra-word switching, in which a change occurs
within a word boundary (7) [Nguyen and Cornips 2016]. Some scholars use different def-
initions of inter- and intrasentential code-switching, including switches at a clause bound-
ary within the same sentence as intersentential [Das and Gambäck 2014, Lynn and Scannell



2.1 Code-switching from a linguistic perspective 13

Code-switching

Within sentence (‘Code-mixing’)

Within word

Intra-word switching

Between words

Tag switching Intra-sentential switching

Between sentences

Intersentential Switching

Figure 2.1 Schematic overview of types of code-switching based on location. On a high-level split into
two types, with three subtypes of switching within a sentence.

2019]. Although including clause boundaries can make the distinction between intra- and in-
tersentential code-switching ambiguous, most scholars agree on the sentence boundary for
intersentential switching.

There are several theories on why a code-switch happens. According to research on
Chinese-English code-mixing in highly bilingual societies in Hong Kong [Li 2000] and Macao
[San 2009], the primary reasons for switching to English were found to be linguistic in nature,
rather than social, for instance, the absence of a certain expression in Chinese and therefore
needing to switch to English. However, this is inconsistent with studies on different language
pairs [Bock 2013, Negrón 2009], which suggest that code-mixing is often used at the start of a
message, or through simple insertions, mainly to indicate in-group membership. Examples of
moments in a conversation in which code-switching is more likely to occur are: Introducing
a quotation, which is usually an intrasentential switch, like in (8); picking out a specific
addressee, which is often intersentential, as it is in (9); an interjection, which is almost always
the same as a tag switch (6) [Gumperz 1977]. The following examples are from Gumperz
[1977]:

(8) I went to Agra, to maine apne bhaiko bola ki, if you come to Delhi you must buy me
some lunch.
I went to Agra, then I said to my brother that, if you come to Delhi, you must buy me
some lunch.

(9) B (to A in Slovenian): je ki tako nasičen z jabolka pa je že čist’ stum, je pa stran.
it is so overloaded with apples and the entire tree is bent already
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B (in German, turning to C sitting apart): Regen werd, so ein Wind ist draußen
It will rain, it is so windy outside.

Gumperz also found that some switches are situational, when the association between a
social situation and language causes the speaker to switch to a certain language, lasting as
long as the situation does. For instance, researchers observed in Norway that the entry of
outsiders caused a local group to switch from a local dialect, Ranamål, to standard, Bokmål
[Gumperz 1977]. Changes in conversational topics, such as a switch from business to personal
topics also triggered a switch from standard speech to dialect.

Also, it is not always clear how each segment of a word that carries meaning, or morpheme,
should be classified. (10) is an example from Maharjan et al. [2015], in which the word
’snapchateame’ could be considered code-switching within the word, as ’snapchat’ is an
English term, mixed with a Spanish verb conjugation ’chateame’, which means ’chat me’.
However, one could also argue that the verb ‘snapchateame’ is not code-switching at all,
counting ‘snapchat’ as a single borrowed word, which was then conjugated in Spanish.

(10) Ayy que pepe snapchateame el arreglo

Ay, what a ‘Pepe’, snapchat me the arrangement

2.1.2 Code-switching compared to lexical borrowing
Code-switching overlaps quite a lot with lexical borrowing, incorporating a word or lexical
unit from one language into another language [Haugen 1950], but it is not equivalent to
code-switching. Most words that are borrowed from other languages, are well-established
loanwords in the matrix language and are often adapted to fit the sound system and grammar
of that language [Poplack and Dion 2012]. (11) is an example of a single lexical borrowing
from Mellado and Lignos [2022]:

(11) Intentando comprar online uno de los nuevos discos duros que saco Samsung, pero
qué lata tener que rellenar tanto formulario
Trying to buy one of the new hard disks that Samsung released online, but what a
nuisance to have to fill in so many forms

In order to borrow a single lexical item from a second language while retaining the gram-
matical structure from the first one, one does not necessarily need knowledge of that other
language. Typically, linguists have distinguished code-switching from borrowing, because for
code-switching speakers must deliberately draw from their knowledge of both languages to
produce a word or phrase from either language [Jose et al. 2020, Poplack and Dion 2012].
However, speakers do not always do this in the same way, and even relatively well-established
code-switched languages like Spanglish (Code-switched Spanish and English) or Hinglish
(code-switched Hindi and English) are very dynamic [Sitaram et al. 2019].
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As there does not seem to be a consensus on a clear-cut definition of code-switching,
it remains hard to concretely distinguish code-switching from lexical borrowing. However,
Mellado and Lignos [2022] set guidelines as to what they consider a lexical borrowing,
and therefore not a code-switch. They investigated Spanish-English code-switching, with the
Spanish language as the matrix language, and elements of the English language embedded in
the speech. According to them, the following types of words are considered borrowings and
should not - by themselves - be categorized as code-switching:

• Technology words and words related to Twitter terminology1, like follower, blog, com-
puter or online.

• English words that are already registered in the official Spanish language dictionaries or
have an entry in Spanish Wikipedia.

• Words that originate from the English language, but are used following Spanish gram-
matical structure, like an English adjective following a Spanish noun.

Whether the last type is borrowing or code-switching is defined by the usage of the
grammatical structures of both languages involved. When Spanish grammar does not need
to make way for English grammar, it is regarded as a lexical borrowing.

2.2 The Moroccan-Dutch Ethnolect
This sections discusses the Moroccan-Dutch ethnolect. First, I provide context on the origin
of the prevalence of Moroccans in the Netherlands in Section 2.2.1. Then, in Section 2.2.2
I define which terms I’ll be using throughout the thesis for the different linguistic varieties
I discuss. Section 2.2.3 covers what the origins are of the Moroccan-Dutch ethnolect, and I
discuss what characterizes it as well as its differences from Straattaal in Section 2.2.4. Lastly,
I introduce the dataset I use for annotation and language identification in Section 2.2.5.

2.2.1 Recent history of migration and language contact in the Netherlands
As briefly discussed in Chapter 1, migration influences the development of new language
forms. In recent history, migration started to increase in the Netherlands after the wars of
the 20th century. A prevalent reason for migration to the Netherlands was decolonization:
after World War II, many people from the former Dutch colony Indonesia migrated to
the Netherlands. In the years right before and after 1975, when Suriname gained their
independence from the Netherlands, a mass migration took place as well [Schumacher 1987].
Along with the Antillians, which are still a part of the Kingdom of the Netherlands today,
the Surinamese are the most recent examples of migration from former Dutch colonies and
special municipalities as well as the most influential. In contrast to Indonesian Dutch, which

1 Mellado and Lignos [2022] specifically work with data from X (formerly Twitter), which is why these are singled
out. This could be replaced with any foreign domain-specific terminology, depending on the context.
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Country of Origin First Generation Second Generation Share of General Population
Türkiye 215.073 228.619 2,49%
Morocco 175.207 249.706 2,38%
Suriname 176.213 185.206 2,02%
Indonesia 89.917 256.447 1,94%
Germany 110.806 228.539 1,90%
Poland 182.613 50.045 1,31%

Table 2.1 Top 6 origins of citizens with migration background [CBS 2023]

is used less over time [De Vries 2005], the Curaçao and Suriname ethnolects of Dutch are
commonly used, and their influence is reflected in the linguistic variety Straattaal (street
language) [Kossmann 2019].

Later, reasons for migration were usually non-colonial and not unique to the Netherlands.
The 1960s and 1970s faced a shortage of skilled workers, especially in food, mining, steel
and textile sectors, as a consequence of a surge in education and prosperity in all of North-
Western Europe. These workers migrated from Italy, Spain, Morocco and Türkiye, stimulated
by the Dutch government to work in the Netherlands, since they could do the same work as
the Dutch, but cheaper [Bardaı̈ 2003]. After the first oil crisis, this stream of immigration
ended, and most workers, especially those from Spain and Italy, returned to their countries of
origin. The same applies to Turkish and Moroccan migrants. Respectively 85% and 70% of
the migrants from these countries were no longer living in the Netherlands by 2003 [Bonjour
2009]. Others invited their families to the Netherlands, to continue building their lives there.

As depicted in Table 2.1, the Turkish community is currently the largest group of citizens in
the Netherlands with a migration background, and also has the most first generation migrants.
Second place is Morocco, showing a slight increase in second generation from Türkiye. The
largest group of second generation migrants are Indonesians, but the group of first generation
migrants is in their case significantly lower than the other groups.

Between the two largest groups, the Turkish and Moroccan communities show some
differences in language use. Nortier and Dorleijn [2008] found that people from Türkiye
alternate between speaking Turkish and Dutch with their peers, depending on the majority
language in the group. However, this is different for Moroccans in the Netherlands. Although
Moroccans alternate as well, Dutch Moroccans usually communicate in Dutch. Specifically,
a language variety that relates to Straattaal and is typically called the Moroccan-Dutch
ethnolect.
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2.2.2 Terminology of multilingual language varieties
A few decades after the first generation migration wave, the second generation of the immi-
grated ethnic groups have created Straattaal. Although there have been attempts to list lexical
items that are commonly used in Straattaal [Appel 1999], a clear-cut definition has not arisen.
Kossmann [2019] even states that the term can be interpreted as its literal translation ‘street
language’: ‘the type of speech that you would use on the streets (i.e. outside home, classroom
or work)’. As stated in Chapter 1, Straattaal is heavily influenced by Sranan Tongo, a Suri-
namese language, but also draws from Papiamentu, Turkish, Berber, vernacular Dutch and
English [Appel 1999, Kossmann 2019].

An example from Kossmann [2019]:

(12) Hind:
Hind:

Ey
Ey

faka
hi[Sranan]

dan
then

met
with

die
that

torrie
story[Sranan]

op
at

scorro?
school[Sranan] ?

Hind: Ey what’s up then with that story at school?

(13) Was
Was

er
there

fittie
fight[Sranan]

tussen
between

Mo
Mo

en
and

Apps,
Apps,

wollah
by

gruwelijk
God![Arabic] ,

eh mattie.
gruesome,

mate[Sranan] .
Was there a fight between Mo and Apps, by God!, gruesome, mate.’

As shown in both (12) and (13), Straattaal is characterized by an informal Dutch sentence
structure, thus acting as the matrix language, alternated by insertions of single words from
various other languages. This is different from code-switching, as there is not one ‘embedded
language’, but rather an embedded lexicon. Straattaal has little function words nor its own
grammatical structure, which prevents it from acting as the matrix language. It is therefore
rarely classified as a language, but rather a linguistic variety.

Several terms have been created in order to describe linguistic varieties like Straattaal, such
as:

Urban Youth Speech Styles (UYSS) [Dorleijn et al. 2015].
Dorleijn et al. [2020] define UYSS as: ‘Linguistic practices involving the use of linguistic
material from different languages by young people in a multilingual urban environment, with
a performative character, and which the speaker can control.’

Ethnolect: Originally non-indigenous intermediate varieties of the dominant language
in an area, are referred to as ‘ethnolects’ [Hinskens 2011]. The word ethnolect consists of
‘ethno’, meaning with regard to ethnicity, and ‘lect’, implying a set of linguistic features
that separates it from standard language or other ‘lects’ [Quist 2008]. The term ethnolect has
been criticized for both parts: The term ‘ethno’ is imprecise and directs attention to just one
aspect of a socially complex phenomenon, and is deemed unsuitable for migrants in Europe
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[Kossmann 2019] and ‘lect’ is said to be inappropriate for describing a style, stylization or
variety [Nortier and Dorleijn 2013].
Multi-Ethnolect: A multi-ethnolect is different from an ethnolect, as it arises from the
dynamics of multi-heritage groups, instead of a single heritage [Cheshire et al. 2011]. Multi-
ethnolects typically emerge in particular among adolescents in the context of ethnically
diverse urban regions, and its users can have any ethnic background, including the dominant,
mainstream background, like ethnically Dutch youths using Straattaal [Nortier and Dorleijn
2013].

Unlike regional dialects, such as Limburgs, multi-ethnolects are not necessarily bound to
specific ethnicities or geographic areas. Multi-ethnolects come in many forms, depending
on the dominant language in the area as well as on the present multi-heritage groups. For
example, in Amsterdam, the Netherlands, a multi-ethnolect is manifested as Straattaal, but
in Oslo, Norway, a multi-ethnolect takes the form of Kebabnorsk [Nortier and Dorleijn
2013]. Speakers of multi-ethnolects in Western Europe often have a background from outside
Western Europe, like Morocco, Suriname or Indonesia. However, a multi-ethnolect emerges
anywhere with multi-ethnic prevalence, and is therefore not exclusive to Western Europe, but
also occurs in African, American and Asian cities [Svendsen 2015].

Communicating in an ethnolect that takes words from their own background, provides a
way for immigrants to construct and present a sense of identity [Svendsen 2015]. To explain
why (multi-)ethnolect speakers are so involved in identity construction and presentation,
Nortier [2016] names it an ‘unavoidable consequence’ of living in the large multi-ethnic
urban area in a landscape with a plethora of linguistic possibilities, without any dominant
tendencies. However, borrowing lexical items from Berber or Arabic can also be a way of
keying a message to be ironic, and not meant seriously, especially when used in an online,
informal environment, like in (14) [Kossmann 2017]:

(14) Oepppaaaaaaaaaaaaaaaaaaa
Up!

wajoow
wow (wayyaw)

me
my

moeder
mother

wilt
wants

me
me

naar
to

gekken
mad

tehuis
house

sturen
send

wollah
by god! (wollah)

ik
I

zit
sit

bhel
like (bh. al)

shi
some (ši)

zombi
zombie

achter
behind

de
the

laptop
laptop

om
to

te
be

kijken
looking

of
whether

je
you

al
already

een
a

vervolg
sequel

had
had

geplaatst!!
posted.

Up! my mother wants to send me to the mad house, by god I sit like some kind of
zombie behind the laptop looking if you already posted a sequel!!

To prevent further confusion by alternating between terms, I will refer to Straattaal as
a multi-ethnolect, and to Moroccan-specific linguistic varieties of Dutch as the Moroccan-
Dutch ethnolect.
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2.2.3 Moroccan Languages and the Moroccan-Dutch ethnolect
The two most common languages in Morocco stem from different language families. Moroc-
can Arabic is a Semitic language, whereas the Berber languages are categorized as a Hamito-
Kushitic language or as a category of its own within the Afro-Asiatic language families. Both
languages influenced each other due to their longtime parallel existence in Morocco, but not
to the extent that they became mutually intelligible [Dorleijn and Nortier 2009].

In the Netherlands, the majority of the Moroccan community is a Berber-speaker, as most
immigrants originate from a region in the north of Morocco called the Rif, where Tarifiyt
Berber is the dominant language [Kossmann 2017]. Generally, Berber-speakers in Morocco
are to some degree familiar with Moroccan Arabic, as it is considered the lingua franca,
or ‘bridge language’ in Morocco. In the Netherlands on the other hand, fluency in Arabic
is not common among Moroccans [El Aissati 1997]. Berber is not taught in schools in the
Netherlands, and does not have one standard written form, so the second and third generation
of Moroccans in the Netherlands have higher proficiency in Dutch. Another complication is
the unequal status of Berber and Arabic, which reflects a diglossic situation. This diglossia
signifies the presence of distinct but interconnected language forms, where one form is
typically used locally and informally, and another is more prestigious and universal [Ferguson
1959]. For example, varieties of Colloquial Arabic and Classical Arabic [Bell 2013, p.109].

Although the Berber language is not a different version of the Arabic language, the social
part of the diglossia phenomenon is still present, as the Berber language is stigmatized
in Morocco and an Arabic speaker may be offended when addressed in Berber [Dorleijn
and Nortier 2009]. To mitigate such problems, when Moroccan-Dutch speakers are unsure
whether their interlocutor speaks Arabic or Berber, nor which dialect of either language, they
speak Dutch instead, as it is the most neutral choice [Dorleijn and Nortier 2009, El Aissati
2002].

Dutch Moroccans speak their own ethnolect, which is among other factors characterized
by occasionally inserting words from Berber and Arabic. These insertions are often function
words such as indefinite articles, like in (15) or question markers, see (16) [Kossmann 2017].

(15) En
And

wa7id
one (wah. id)[Arabic]

meisje
girl

doet
acts

fh7al
like (fh. al)[Arabic]

shie
some (ši)[Arabic]

lesbie
lesbian

&
and

knuffelde
hugged

wa7id
a (wah. id)[Arabic]

vriendin
friend

van
of

mij
mine

en
and

die
she

vond
found

dat
that

kapot
terribly

eng.
scary.

(16) wesh
question marker[Arabic]

ga je
are you going

nog
even

verder
further

of
or

niet?
not?

Although the inserted function words often exist in both Berber and Arabic, usually only
one of the words is used in the Moroccan-Dutch ethnolect. For instance the Berber equivalent
‘ma’ of the Arabic question marker ‘wesh’, is almost not used [Kossmann 2017]. Also,
although a speaker may use Berber when speaking full sentences in the heritage language,
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insertions while speaking Dutch will still come from both languages, often in the same
sentence, like in (17).

(17) en
and

als
when

ik
I

de slappelach heb
have a fit of laughter

dan
then

lach
I

ik
laugh

bhal
like[Arabic]

izjen
some kind of [Berber]

spongebob.
Spongebob.

The Moroccan-Dutch ethnolect, or Moroccan Flavored Dutch (MFD) as Nortier and
Dorleijn [2008] call it, is recognizable mostly phonetically and include characteristics such
as a strongly voiced /z/, or the use of /sh/ instead of /s/ in consonant combinations, like in
the word ‘school’ [Nortier 2018]. On the internet, identity messages can only be conveyed
through written text, which is therefore rich in terms of identity markers [Nortier 2018]. For
instance, the ethnolect is shown by spelling words phonetically. Here are two examples from
[Nortier 2016]:

(18) ben
(I) am

nu
now

op
at

shgool
school

en
and

we
we

miss
miss

you
you

a
a

lot!!
lot!!

(I) am now at school and we miss you a lot!!

(19) als
if

je
you

voor
for

shlet
slut

aangezien
considered

wilt
want

worden
to be

if you want to be considered a slut

Regularly, the Dutch words are spelled ‘school’ and ‘slet’, without the ‘h’, unlike in (18) and
(19).

This overlaps with another characteristic of multi-ethnolects: rebellion spelling, in which
users deliberately spell words incorrectly for expressive purposes [Sebba 2003, Shaw 2008].
However, misspellings in the form of letter repetition are also a characteristic of computer
mediated communication in general, showing creativity and excitement [Darics 2013].

For the insertions from neither of the two Moroccan languages there is a commonly known
orthography, resulting in creative freedom when writing sounds that lack a simple Dutch
equivalent. For example, Kossmann [2017] found 57 different spellings of ‘wahed’ (one) on a
Moroccan-Dutch internet forum.

2.2.4 Moroccan-Dutch ethnolect and Straattaal compared
Interestingly, the ethnolect that the Moroccans created, has come to be popular with people
from different sociocultural backgrounds: white, native Dutch youths also pick up on this way
of speaking, as do other Mediterranean and/or Muslim ethnic minorities in the Netherlands
that do not identify as Moroccan [Nortier and Dorleijn 2008]. Other ethnic minorities in the
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Netherlands, like people from a Surinamese, Antillian or African background are not typical
users of the Moroccan-Dutch ethnolect, while they do engage in Straattaal [Cornips and de
Rooij 2003].

Kossmann [2019] performed analysis on a Moroccan Dutch chat forum named chaima.nl,
which is used as a space for young Moroccan girls, characterized by its all-pink lay-out.
According to Kossmann [2017], the demographic that uses the forum are Moroccan-Dutch
girls between 12-22 years old, who live in a big city in the Netherlands and ‘almost invari-
ably present themselves as sensible, decent girls that attach great importance to being a good
Muslim.’ Kossmann attempted to create categories for Straattaal and the Moroccan-Dutch eth-
nolect, to improve delimiting the two styles. They found that most insertions from Moroccan
languages are function words and only a few content words from Berber and Arabic would
appear regularly in the chats, but all of these have a strong emotional connotative association,
e.g. words for ‘Morocco’, ‘Berber’, and derogatory term for ‘police’.

What sets the usage of the Straattaal lexicon apart from the Moroccan lexical elements,
is the choice of which nouns and adjectives are taken from Sranan in comparison to Mo-
roccan. The Sranan lexicon provides quite mundane and concrete nouns in Straattaal, e.g.
‘oso’(house), ‘pata’ (shoe). This stands in contrast to the Moroccan Lexical elements used in
Straattaal, which have strong cultural and expressive associations, like ‘rwina’ (chaos), ‘za-
mel’(homosexual), or ‘lmegrib’ (Morocco) [Kossmann 2019].

Moroccans frequently use Sranan words as well as Moroccan words in informal conver-
sations held in Straattaal, whereas Surinamese speakers do not mix Moroccan elements into
their speech as much. An example of a Moroccan speaker from Nortier and Dorleijn [2013]:

(20) tfoee
shit[Berber]

jullie
you guys

hebben
have

(...) nog
yet

nooit
never

in
in

jilla
jail[Sranan]

gezeten
been

he?
right?

shit you guys have never been in jail right?

2.2.5 Moroccorp
The Moroccorp [Ruette and Van de Velde 2013] is a dataset that documents the written form
of the the Moroccan-Dutch ethnolect: mixing Straattaal, Dutch, Arabic, Berber and English. I
will use this dataset for my research goals and describe the properties of this dataset in more
detail in Section 3.1, while diving into its content here.

Although being certain about the identity of the chatters is nearly impossible, many clues
were given about their ties to Morocco. Usernames often refer to their Moroccan identity, e.g.
‘femmedumaroc’ (woman from Morocco), ‘marokkaans20jaar’ (morroccan20years). More-
over, the corpus’ authors report that approximately 1% of the lines in the corpus contain a
reference to Morocco. Ruette and Van de Velde [2013] performed a lexical analysis to collect
evidence that the Moroccorp is representative for Dutch chat language of users with a Moroc-
can background, as it was spoken in the summer of 2012. For this analysis, they used a Stable
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Words Description
salaam, salam, wslm, ewa, beslama Moroccan greetings

marokkaanse, marokko, marokkanen self references
gwn, wrm internet acronyms

wollah, hmdl Moroccan exclamations
broeder, trouwen, dame, vader topic words
islam, moslim, ramadan, allah religion

Table 2.2 Table from Ruette and Van de Velde [2013], showing evidence for affiliation with Morocco
of corpus

Lexical Marker analysis from Speelman et al. [2008] in which they compare frequencies of
certain words in this corpus to a reference corpus. As a reference corpus, they used the ConDiv
corpus [Grondelaers et al. 2000], another Dutch chat corpus, without any ties to a Moroccan
community. Ruette et al. found six categories of words that received a particularly high score,
meaning that these words appeared statistically more frequently in the Moroccorp than in the
ConDiv corpus. See Table 2.2. Especially the first, second, fourth and sixth categories are
strongly Moroccan-themed.

Another indication which shows that this corpus can be used to study the Moroccan-Dutch
ethnolect is the statistically more prevalent existence of a wrongly inflected adjective before
a noun with a neutral gender, e.g. ‘een mooie huis’ (a beautiful house), instead of the correct
‘een mooi huis’. This is a common mistake for any learner of Dutch as a second language, as
well as for Moroccan Dutch speakers, but very uncommon for native Dutch speakers without
a migration background [Ziemann et al. 2011]. Ruette et al. performed a statistical analysis on
the corpus, and found that this construction was present in about a third of the cases, whereas
the reference corpus ConDiv showed barely any signs of it.

2.3 Code-switching and Language Identification in NLP
Language Identification (LID) has been a topic of interest for quite a long time in the
context of information science [Gold 1967]. Typically, this was done to identify the language
a monolingual document was written in. However, other forms of LID, such as obtaining
word-level language labels for multilingual code-switched texts are more complicated and
therefore interesting to investigate. Methods for LID range from simply tagging individual
words without taking context into account, using dictionaries or statistics, to more complex
models that use LSTMs or Transformer architectures. Incorporating context does improve
performance compared to static dictionaries, but a high focus on the context can also reduce
performance in bilingual documents [Nguyen and Doğruöz 2013].
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Over the past few years, NLP has seen several initiatives for LID. For instance, several
shared tasks [Barman et al. 2014, Molina et al. 2016, Solorio et al. 2014] and benchmarks on
code-switched data were created for various NLP tasks, including LID [Aguilar et al. 2020,
Khanuja et al. 2020]. Each of these works have similarities and small differences in their
approach on dataset annotation, and the training and evaluation of types of models, which I
discuss in Section 2.3.2 and Section 2.3.3, respectively. First, I will elaborate on the challenges
in Language Identification.

2.3.1 Challenges in Language Identification
Multilingual documents bring different challenges depending on the languages involved.
For instance, two languages can share similar linguistic features, such as vocabulary or
grammatical structure, making it difficult to determine which is which [Molina et al. 2016].
This is even more difficult when the task is to distinguish between different dialects of the
same language, like Modern Standard Arabic and Egyptian Arabic, which have a significantly
large word overlap [Solorio et al. 2014]. However, the same words often do not mean the same
thing in each dialect [Aguilar et al. 2020].

Likewise, research shows that language pairs that are more different from each other, e.g.
Nepali and English, are easier for a deep learning model to distinguish than languages that
are more similar [Molina et al. 2016, Solorio et al. 2014]. Differences between languages are
most apparent when the languages involved in a document each use a different writing system,
such as Arabic-Dutch or Hindi-English. This is called script variance. However, in online
text forums or other informal settings, like social media, the Roman script is most often used
for languages that originally use another script, for convenience of typing [Jose et al. 2020,
Rosowsky 2010]. Romanized versions of languages that originally use a different script do
not have standardized spellings, which makes it more difficult for models to recognize words
[Khanuja et al. 2020]. Especially for a lower-resource language like Nepali, this is a challenge,
as most monolingual resources for Nepali are written in its own script, making it difficult to
align the two versions [Aguilar et al. 2020].

Moreover, Barman et al. [2014] observes that romanizing a language that originally uses a
non-roman writing system, increases the chance of code-switching with a language that uses
the Roman alphabet. Grammatical difference also encourages the amount of code-switching
points, since languages preserve their grammatical structure when code-switching occurs. For
example, Nepali has a Subject-Object-Verb (SOV) structure, whereas English has a Subject-
Verb-Object (SVO) structure. This calls for more nuanced alternations to adhere to both SOV
and SVO structures.

Aguilar et al. [2020] created a Benchmark for code-switched data on various NLP tasks:
Linguistic Code-switching Evaluation (LinCE). It comprises ten datasets, spanning over
four language pairs, Spanish-English, Hindi-English, Nepali-English and Modern Standard
Arabic-Egyptian Arabic and four NLP tasks, including Language Identification. Findings by



24 Chapter 2 Theoretical Framework and Related Work

Aguilar et al. [2020] confirm that the code-switching rate in a Nepali-English dataset was
above average, compared to datasets that involved languages that are both traditionally written
in the Roman script and use the same grammatical structure. Despite the high prevalence of
code-switching in the Nepali-English dataset, the models deployed in LinCE were able to
reach results on the LID task that were similar to those reached on a code-switched Spanish-
English dataset [Aguilar et al. 2020]. Conversely, the dataset consisting of code-switching
between Egyptian Arabic and Modern Standard Arabic proved to be much more difficult for
these models, suggesting that vocabulary overlap is one of the hardest challenges to overcome
for LID.

Another possible issue is that the algorithm that performs LID may not be trained on the
same character encoding standard as the one present in the to be processed document [Das and
Gambäck 2014]. For example, the algorithm is trained on ASCII-encoded text, but the text to
be identified is encoded using the UTF-8 character set, it can lead to problems [Jauhiainen
et al. 2018]. If the language used in a document is new, or relatively rare, it may not exist
in the algorithm’s set of labels, making it impossible to identify the language accurately. For
instance, Python library LangID is trained on 97 languages, but not on Berber, so the Berber
language would be inaccurately identified [Lui and Baldwin 2012]. To be able to identify rare
languages, like Straattaal or Berber, a model can be trained on custom-defined labels for each
relevant language used within a dataset.

2.3.2 Annotation decisions for code-switched datasets
Choosing target labels for a dataset is an important part of Language Identification, as it
specifies what a model trains on to learn. There are two parts to this: the span of a label and
its content.

Most datasets are annotated on token-level [Maharjan et al. 2015, Molina et al. 2016,
Solorio et al. 2014], but sometimes take into account longer sequences. This can be forum
posts [Nguyen and Doğruöz 2013], sentences or even fragments, like in Barman et al. [2014].
See Table 2.3 for an overview in which I color-coded the different levels of annotation.
Nguyen and Doğruöz [2013] annotated forum posts on token-level, but additionally annotated
posts as either bilingual (BL), for the appearance of both languages, or either Turkish (TR) or
Dutch (NL). Barman et al. [2014] tag four different levels of code-mixing: sentence, fragment,
inclusion and word-level code-mixing. A sentence is identified with its base language. If this
language was mixed, a fragment for each language was also identified. The fragment tag
showcases intrasentential code-switching.

Barman et al. [2014] define an inclusion as a foreign word in a sentence or fragment which
is assimilated in the native language. This label is similar to lexical borrowing, such as used
in [Mellado and Lignos 2022], but not equivalent, as it depends on the definition of lexical
borrowing and code-mixing one works with. Barman et al. [2014] do not give a clear definition
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Annotation Level Example
Post [BL] [NL] Mijn dag kan niet stuk :) [/NL]

[TR] Cok guzel bir haber aldim [/TR] [/BL]
Token [TR] kahvalti[/TR][NL]met vriendinnen by my thuis [/NL]

Sentence [EN] what a.....6 hrs long...but really nice tennis.... [/EN]
Fragment [MIXD] [HI] oye hoye .. angreji me kahte hai ke[/HI]

[EN] I love u.. !!! [/EN][/MIXD]
Inclusion [BN] Na re [“EN”] seriously [/incl]

ami khub kharap achi.[/BN]
Word-level code-mixing [“en-and-bn-suffix”] classe [/wlcm]

Table 2.3 Levels of annotation beyond token-level, first two examples from Nguyen and Doğruöz
[2013] and others from Barman et al. [2014]

on when a word is ’assimilated’ and when not, whereas Mellado and Lignos [2022] do make
explicit what they count as a lexical borrowing, which I listed in Section 2.1.2.

On the most fine-grained level, word-level code-mixing was identified if a word from one
language was used with a prefix or suffix of another language. The labels in Barman et al.
[2014] also specified which languages were present and how they were mixed in the word,
distinguishing ‘en-and-bn-suffix’ from ‘bn-and-en-suffix’, instead of using simply ‘mixed’.

Even if longer sequences were taken into account, the data was still annotated on token
level in order to make that happen. This prompted me to decide to also annotate on token-
level.

2.3.2.1 Labels used for LID
Most researchers use labels for the most common languages in a dataset, as well as labels for
named entities and language independent utterances. Nguyen and Doğruöz [2013] ignored
language independent tokens altogether and deleted phrases that consisted exclusively of
tokens that did not fit in with either language they were investigating and would have been
categorized as other. In addition to the most commonly found labels, other labels can be
applied depending on the focus of a project. These additional labels are listed in Table 2.4.

A label for ambiguous, unknown or otherwise hard to categorize tokens is often added as
well, like unk, undef, ambiguous [Aguilar et al. 2020, Barman et al. 2014, Das and Gambäck
2014]. Some take into account intra-word code-switching in the form of a mixed label [Ma-
harjan et al. 2015, Solorio et al. 2014], whereas others specify which language mixes with
which, in the form en+hi suffix [Das and Gambäck 2014]. Especially in morphologically rich
languages, intra-word code-switching is used frequently, which makes sub-word level Lan-
guage Identification necessary [Mager et al. 2019]. Lexical borrowing can be distinguished
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Label names Description
Foreign word (Fw), Other Language different from the focus languages

Ambiguous Possible to be either of the focus languages
Unk, Undef Unrecognizable words, unable to classify otherwise

Mixed, Bilingual Words or sequences partially in both focus languages
Mixed+en-hi-suffix Like Mixed, specifiying present languages

Borrow Lexical borrowing

Table 2.4 Overview of other possible labels to include for LID, from Aguilar et al. [2020], Barman
et al. [2014], Das and Gambäck [2014], Maharjan et al. [2015], Mellado and Lignos [2022],
Solorio et al. [2014]

from code-switching with a separate label, if there are clear boundaries as to what counts as a
borrowing and what does not [Mellado and Lignos 2022].

In the annotated datasets, it can happen that created labels are rarely found in the dataset.
For instance, in Aguilar et al. [2020] the labels unk (unknown) and fw (other language) were
almost not used. Mixed and ambiguous were also infrequent.

2.3.3 Model Approaches and Evaluations for LID
Language Identification has seen many different approaches, from n-grams to deep learning.
I will discuss several approaches in this section.

Solorio et al. [2014] organized a shared task on language detection. Different implemen-
tations were submitted, of which Support Vector Machines and Conditional Random Fields
were the most popular. Models were tested on four types of code-switched data, each con-
taining a different language pair, Nepali-English (NEP-EN), Dialectal Arabic-Modern Stan-
dard Arabic (DA-MSA), Spanish-English (SPA-EN) and Mandarin-English (MAN-EN). They
found that the language pairs that are more different from each other, e.g. Nepali and English,
are easier for a model to distinguish, than languages that are more closely related, like Mod-
ern Standard Arabic and Dialect Arabic, which received the lowest scores. The highest avg
F-measure was 0,417, reached by a Support Vector Machine (SVM). It was also the only lan-
guage pair for which at least one model was not able to surpass a lexicon-based baseline. The
language pair NEP-EN reaches the highest average F-measure of 0,977, using an SVM. The
highest score for SPA-EN was also reached using SVMs (F-measure: 0,95). However, For
MAN-EN, an extended Markov model performed the best (F-measure : 0,894), followed by a
Conditional Random Field (CRF) model.

Molina et al. [2016] also did a shared task two years later. They only used two datasets,
again the language pairs SPA-EN and DA-MSA. The most popular implementation was still
a Conditional Random Field. For this second shared task, two Deep Learning models were
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present, one CNN and a LSTM model. The LSTM model performed the best on the DA-MSA
dataset, with a weighted average F1-score of 0,876. Although the same model performed high
(Avg-F: 0,968) on the SPA-EN dataset, it was outperformed by a Logistic Regression model,
which received a weighted average F1-score of 0,973.

In many cases, deep learning approaches return improved results over traditional machine
learning approaches. Iliescu et al. [2021] compared methods like n-grams, support vector
machines and logistic regression to BERT-based approaches for code-switch detection, and
found that semi-supervised methods are performing worse. The best in this category was a
Viterbi model, with a weighted F1-score of 92.23%, whereas the BERT model scored 98.43%.

In the same category, Lui and Baldwin [2012] created a single python file that loads in a
fast-working naive Bayes classifier that can identify up to 97 languages, receiving an accuracy
score of up to 99% on certain domains, and 91.3% on a Wikipedia dataset. The model has not
been evaluated on datasets that use code-switching, and is most successful on document-level.

Another way to facilitate working with multiple languages in one model, is multilingual
token representation. Cross-lingual embedding techniques, like BiCCA [Faruqui and Dyer
2014] or BiSkip [Luong et al. 2015], have shown to perform well on cross-lingual tasks. How-
ever, they are not ideal for processing code-switched texts [Pratapa et al. 2018].Khanuja et al.
[2020] found that Multilingual BERT (M-BERT) [Pires et al. 2019] outperforms cross-lingual
embedding techniques on language detection (F1-score: 96,6), as well as the other tasks of
GLUECoS, a benchmark for code-switched language processing. This includes Language
Identification from text, POS tagging, Named Entity Recognition, Sentiment Analysis, Ques-
tion Answering and Natural Language Inference for code-switching [Khanuja et al. 2020].
They used two versions of M-BERT, one that is called bert-base-multilingual-cased and a
modified M-BERT, that was fine-tuned by Sun et al. [2019]. Fine-tuned M-BERT performed
better or nearly the same as baseline M-BERT on each task of the GLUECoS benchmark.

Aguilar et al. [2020] created another Benchmark for code-switched data on various NLP
tasks: Linguistic Code-switching Evaluation (LinCE). Aguilar et al. [2020] used BiLSTM,
ELMo and M-BERT for the LID task. For this benchmark M-BERT also yielded the highest
accuracy for each language pair, the highest being Spanish-English (0,9853) and the lowest
MSA-EA (0,8414).

In the next section, I elaborate on M-BERT and its architecture, the transformer.

2.4 Transformer models
The Large Language Models of today, like GPT-3 [Brown et al. 2020], XL-net [Yang et al.
2019] and BERT [Devlin et al. 2019] are all run on the Transformer architecture, that was
introduced by Vaswani et al. [2017]. The transformer uses a self-attention mechanism that
makes it possible to create contextualized embeddings, that create a different embedding for
every occurrence of the same word in a different context, as well as facilitate working with
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long-range dependencies in sentences, and therefore create a more accurate representation of
language than simpler models.

Within the transformer architecture, there are various types of models that are usually
trained for a certain task. A transformer can be found as encoder-decoder, encoder-only
or decoder-only. An encoder-only transformer is designed to process input data, without
generating an output. It is used for tasks where the primary objective is to encode and
represent tokens into a meaningful way, like text classification. Conversely, a decoder-only
transformer’s main function is to use pre-existing representations to generate an output
sequence in the form of readable text. The BERT models are encoder-only and therefore
mainly used for tasks that require Language Understanding and the GPT models are decoder-
only, which is more suitable for Text Generation. An encoder-decoder model would be
suitable for tasks that need to understand language as well as generate language, like Machine
Translation.

Large Language Models (LLM) that are transformer-based have shown to be good at
language processing tasks [Devlin et al. 2019, Liu et al. 2019, Pires et al. 2019]. Generally, a
LLM is pre-trained once on a large, unlabeled training dataset and then fine-tuned on a smaller
dataset for each time the model needs to perform a specific downstream task, like Question
Answering or Language Identification.

As the transformer models I use are both BERT models, I discuss their architecture and
pre-training in the next sections.

2.4.1 Pre-training BERT models
Pre-training a transformer-based language model can be split into two steps: tokenization
and training. A BERT model is comprised of multiple layers of encoders, usually 12. The
first encoder is provided with embeddings from a tokenization algorithm, and each following
encoder works with the output from the one before. An encoder has two parts: a self-attention
layer and a feed forward neural network. For a visual representation, I added Figure 2.2, which
depicts the journey of a token through an encoder layer.

2.4.1.1 Tokenization
Each LLM uses a tokenizer, that splits the text into pieces: words and/or subwords. To
represent these (sub)words in the model, they are embedded with a vector filled with real-
valued numbers that contains semantic and syntactic information about a word, based on
frequent co-occurrences with other words. There are several strategies to split words into
tokens. For example, BERT and Multilingual BERT [Devlin et al. 2019] use WordPiece [Wu
et al. 2016], an algorithm for tokenizing a set amount of tokens, prioritizing words that appear
frequently. Some newer models, like RobBERT and RoBERTa [Delobelle et al. 2020, Liu et al.
2019], use Byte Pair Encoding (BPE) [Sennrich et al. 2016]. The BPE algorithm incrementally
constructs its vocabulary by replacing the most frequently occurring sequential tokens with a
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Figure 2.2 The contents of one encoder, by Alammar [2018]

novel, combined token. For example, ‘c’ occurs often with ‘at’, creating ‘cat’. For RobBERT,
a vocabulary size constraint of 40,000 words was imposed. An advantage of this technique
is being able to encode larger texts while retaining a smaller vocabulary. However, BPE also
tends to add words multiple times, e.g. including and excluding white spaces or capitalized
and lowercase versions of the same words.

2.4.1.2 Training Architecture: Self-attention
The tokenized vocabulary is then mapped to word embeddings of a set length (768 for BERT).
These are initially random, and are trained in each layer. The created word embeddings are
given to the first self attention layer, where three vectors are made: a query, a key and a
value vector for each word embedding. To make this more clear, I included a visualization
by Alammar [2018], see Figure 2.3. The figure depicts the different vectors that are used as
a representation for a word. These vectors are calculated by multiplying the input vectors
by a weight matrix, one for each of the three. Typically, the three vectors are much smaller
than the input or output vectors for computation time reduction. The three vectors are used
to calculate self-attention for each token. A score is calculated by comparing a token’s query
vector with the key vector from every other word. This makes clear which words in a sentence
depend on each other or are related to each other. Then the value vectors are multiplied by this
score and added together, to create an output vector which is sent along to the feed forward
neural network. This creation of the query, key and value vectors and subsequent processing
is called an attention head. Most models use more than one attention head (Both BERT and
RobBERT use twelve), each randomly initialized and then trained. Instead of sending each
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Figure 2.3 Example of self-attention per word, from Alammar [2018]

of these vectors to the feed forward network individually, the model concatenates the output
vectors from each attention head to one large vector and multiplies it with another trained
weight matrix, in order to produce a smaller vector that captures the information from all
attention heads. For clarity of this process, I again added a visual from Alammar [2018], see
Figure 2.4. This recaps the process from the tokenization of an input sentence to the end of a
self-attention layer.

In addition to each sublayer of the encoder (self-attention and feed forward), layer normal-
ization is applied, by adding the original word embeddings to the output vectors.

2.4.1.3 Training: MLM and NSP
The model’s next step is to train the embeddings of the created tokens, by having the feed-
forward neural network in each layer of the model perform a task. The BERT models are
pre-trained on two tasks. One is Masked Language Modeling (MLM), a self-supervised task
that has facilitated the use of large datasets, as no annotation is needed, making virtually any
dataset instantly usable. During MLM, the model conceals one or more words in a sequence
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Figure 2.4 Recap of self-attention layer, from Alammar [2018]

and makes itself provide the word on its own accord, then checks if it was correct. With regard
to the difference between the prediction and the ground truth, a Loss score is computed and
the weights of the masked words at present are updated to reduce the loss and feed-forwarded
into the next layer of the model. This repeats itself until a set amount of training epochs have
elapsed. Masking can be done statically, or dynamically. During static masking, masking is
performed once in the preprocessing phase, resulting in showing a training sequence with the
same mask multiple times. Dynamic masking generates the mask each time a sequence is fed
to the model [Liu et al. 2019]. A second task BERT was trained on is called Next Sentence
Prediction (NSP), which asks to infer based on two input sentences if they follow each other.
One version of this task takes sentences randomly, and another either swaps two sentences or
leaves them in their original order. Liu et al. [2019] concluded that leaving out NSP did not
alter the results much. This task is left out in both RoBERTa and RobBERT.

2.4.2 Fine-tuning a transformer for token classification
A pre-trained transformer model, like BERT, has trained embeddings for tokens, taking into
account its frequent context. However, before it can perform specific tasks, it needs to be
trained further on such a task, which is called fine-tuning. Fine-tuning is done by sending
labeled training data through all the layers of the pre-trained model, including an additional
final neural network layer, which produces a relevant output for the specified task. This layer
is often randomly initialized. In case of Token classification this final layer is linear, but for
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other tasks, such as Sentiment Analysis, it can also be made non-linear with an activation
function, like ReLU.

The pre-trained layers of the BERT model outputs a tensor with hidden units, containing
information about the input sentence. These are then forwarded to the final layer: the classifier.
During fine-tuning, the total network is trained by forwarding batches of data through the
network, computing the loss, gradients and then updating the weights of the network using
the optimizer. This is repeated for a set amount of epochs.

The loss can be computed in various ways, but a common loss function for token classifica-
tion is Cross Entropy Loss with softmax. This transforms the outputs from the interim results
to probabilities, and compares the model’s results to the original labels, which are one-hot
encoded vectors. The optimizer then aims to minimize the loss, by updating the weights.

The classifier outputs raw logits, transforming the information from BERT into a pre-
defined number of categories. A final prediction can be given by simply taking the logit with
the highest value, or first transforming these into probabilities using a softmax function. The
category with the highest probability is the one the model assigns to the token, and this is then
evaluated by comparing it to the actual label.

Subsequently, the fine-tuned model can be evaluated, and tuned on its hyperparameters,
like learning rate, batch size or amount of epochs and eventually used to perform the task it
was trained for.

2.4.3 Pre-trained transformer models suitable for handling Moroccan-Dutch
ethnolect
My aim is to find a transformer model capable of language identification within a pre-
dominantly Dutch dataset containing elements of various languages. Popular and large deep
learning models for the Dutch language, like BERT-NL [Brandsen et al. 2019] and BERTje
[De Vries et al. 2019] are trained on standard Dutch, as they were trained on Dutch Wikipedia
articles. A newer Dutch BERT-model, named RobBERT [Delobelle et al. 2020], uses the same
architecture as RoBERTa [Liu et al. 2019], which is a re-implemented and improved version of
BERT [Devlin et al. 2019]. The creators of RobBERT initially designed two separate versions.
The first version uses the same vocabulary as RoBERTa. Despite RobBERT being designed
for another language, it is possible to use the same vocabulary, as this vocabulary was created
using BPE [Sennrich et al. 2016], and should therefore be language independent in principle.
For the second version Delobelle et al. [2020] created a new vocabulary using a BPE algo-
rithm, but applied to a Dutch text. The second version was shown to perform better, and is
henceforth the only version I will refer to.

As shown in Table 2.5, RobBERT outperforms both BERTje and BERT-NL on Sentiment
Analysis [Delobelle et al. 2020]. Also, RobBERT performs the best on Die/Dat Disambigua-
tion, which is a Dutch-specific task, asking the model to predict which demonstrative pronoun
is needed before a noun, depending on the gender of the noun. Also, RobBERT was shown
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Task and metrics RobBERT BERTje BERT-NL M-BERT
Sentiment Analysis (F1-score) 95,14 - 84,0 -

Named Entity Recognition (F1-score) 89,08 88,3 89,7 90,94
Part-of-speech Tagging (Accuracy) 96,4 96,3 - 96,5
Die/Dat Disambiguation (Accuracy) 98,75 94,94 - 90,21

Table 2.5 Comparing scores per model on downstream NLP tasks, as found in Delobelle et al. [2020].
For Sentiment Analysis and Named Entity Recognition the F1-score is used. For the other
two tasks, accuracy is used. The highest score per task is highlighted in bold.

Model M-BERT RobBERT
Architecture BERT RoBERTa

Training Task MLM and NSP MLM
Data Source Wikipedia in 104 languages Dutch part of OSCAR

Size of Training Data unknown2 39GB or 6.6M words
Size 170M Parameters 355M Parameters

Tokenization algorithm WordPiece Byte Pair Encoding (BPE)
Vocabulary Size 105.879 tokens 40.000 tokens

Table 2.6 Comparing M-BERT and RobBERT on their pre-training procedures.

to perform better on smaller datasets, making it a suitable model for taks with limited data
available.

RobBERT was trained on the Dutch part of the OSCAR corpus. The OSCAR corpus
is a 12GB multilingual corpus, obtained by Language Identification and filtering of the
CommonCrawl corpus, a huge dataset containing plain text extracts of web pages written in a
large variety of languages and covering all possible types of topics [Ortiz Suárez et al. 2020].
Pre-processing for RobBERT made sure that sequences start and end in complete sentences
with a maximum length of 512 tokens.

Another model that performs well on Dutch text, but is also proficient in 103 other
languages, is Multilingual BERT (M-BERT). In Table 2.5, M-BERT is shown to reach
the highest score on Named Entity Recognition and Part-of-speech tagging, scoring higher
than Dutch-only models. M-BERT is a BERT-model trained on Wikipedia articles, written
in the 104 languages that are used the most on Wikipedia, including Dutch, English and
Arabic (not specified which dialect). These Wikipedia articles contain relatively formal
texts, with dialectal text and other varieties, such as multi-ethnolects largely absent. The
model uses a shared vocabulary, with no markers denoting which language a word is from.
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Notably, languages with large wikipedias were downsampled whereas languages with smaller
wikipedias were upsampled. M-BERT was not trained on Berber or any other languages
that are the origin of certain Straattaal vocabulary. However, Pires et al. [2019] found that
M-BERT, although exclusively trained on monolingual corpora, has the ability to transfer
between languages that are written in different scripts, thus proving useful for multilingual
objectives. Interestingly, M-BERT performed better on Part-of-speech categorization on a
code-switched dataset, than on a monolingual one [Pires et al. 2019]. It performed POS on
two datasets with code-switched Hindi and English. One where both languages appeared in
the Latin script, and one where Hindi was written in their original Devanagari script. The
second time M-BERT performed the POS task almost twice as well.



3 Annotating and Analyzing
the Moroccorp
This chapter is structured in the following way: The original, unlabeled Moroccorp is dis-
cussed in Section 3.1. Then, I present the custom labels I use in Section 3.2.1. In Section 3.2.2,
I discuss details on the procedure of annotating. Interesting findings and difficulties during
annotation are elaborated on in Section 3.2.3. Finally, the annotated dataset is evaluated and
analyzed in Section 3.3.

3.1 Dataset
I use the Moroccorp, a large text corpus that contains over 10 million words, taken from
maroc.nl, a Dutch forum-like chat website [Ruette and Van de Velde 2013]. Whereas there is
no certainty about the ethnicity of the forum users, there is reason to assume that the majority
is affiliated with Morocco, which I discussed in Section 2.2.5.

The dataset was created and made public to encourage sociolinguistic research, and in
particular, the consequences of language contact between Dutch and Moroccan Arabic and/or
Berber. I have not been able to find other publicly available corpora that contain Moroccan
Dutch, unless they only contain spoken Dutch, instead of written, like the Dutch Bilingual
Database [Boumans and Crevels 2005].

The authors created the corpus by logging the chat directly from the website. Logging was
not done continuously. This was both for technical reasons, as well as to remain unnoticed by
the present chatters, as logging could solely be done ‘online’, visible to every present user.
The conversations are from two separate channels, #maroc and #maroc.nl, each accessible
from a different website. The conversations in the corpus were logged during the summer of
2012, the first channel in the first two months, and the second channel in the last two months
of the in total four month period of logging.

Initially, the scraped corpus contained 24 million words, before Ruette et al. cleaned up
the dataset and reduced this to about 10 million words. During the cleaning they removed
mostly functional messages that were written by bots, such as local prayer times. The time at
which a message was sent was also deleted, leaving lines of the following format: ‘<author>
message’
Like in (21):

35
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Metric Moroccorp
Number of Words 10M words
Vocabulary Size 200k unique words
Number of Lines 2.033.927 lines

Average Length of a Line 6,81 words per line
Unique Lines 1.788.273 unique sentences

Number of Unique Users 30.156 users

Table 3.1 Size of the Moroccorp

(21) ‘<Thee-drinker> Pff.. Wat een bruiloft was dat’
‘<Tea-drinker> Pff.. What a wedding that was’

To illustrate the size of the Moroccorp, I display various metrics in Table 3.1. Notably, the
number of lines in the Moroccorp does not correspond completely with the linguistic concept
of sentences, as it frequently happens that chat users send a message before they finish a
sentence, see (22). Users can also type multiple sentences in the same line, although that
occurs less frequently:

(22) ”<badmeester> vier”
”<badmeester> 5”
”<badmeester> mag ook”
”<badmeester> met chillie saus”

3.2 Annotation
This section covers the process of annotating the dataset, from the selection of labels for
the classification task in Section 3.2.1, to the process of sampling and decision making in
Section 3.2.2 and interesting, ambiguous cases in Section 3.2.3.

3.2.1 Selecting Classification Labels
In Section 2.3.2, I discussed differences in levels of granularity for annotation of multilingual
text, for example sentence-level or word-level annotation. Researchers also differ in number
and content of unique labels for the Language Identification (LID) task. I made an overview
of the most widely used labels for LID in Table 3.2. Most researchers use labels for each
language that appears regularly in the data, in the form lang1, lang2, as well as labels for
language independent utterances such as named entities NE (named entity) and tokens like
‘@’, ‘:)’ and ‘!!!’, although each approach seems to use a different label name for this: other,
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Label names Description Examples
lang1, English, EN Words in English ‘text’, ‘book’, ‘example’

lang2, Spanish, SPA Words in Spanish ‘ejemplo’, ‘libro’, ‘texto’
Named entity, NE Named entities ‘John’, ‘Facebook’, ‘Chicago’
Other, Univ, None Language independent utterances ‘:)’, ‘hahahha’, ‘!!!’

Table 3.2 Overview of most common LID labels for Spanish-English code-switched data

univ, none [Aguilar et al. 2020, Das and Gambäck 2014, Maharjan et al. 2015, Solorio et al.
2014].

The labels lang1, lang2 and NE see little controversy or ambiguity, but the label other
is also used to describe words in a language other than the ones focused on [Mellado and
Lignos 2022], whereas some studies separate this category in the form of ‘Foreign word (Fw)’
[Aguilar et al. 2020].

The labels I used for my annotation are showcased in Table 3.3 and partially overlap
with these widely recognized labels from Table 3.2. Specifically, lang1 corresponds to NL
and lang2 to ENG. I also introduced a third label, MOR, which can be considered a third
language. NE corresponds to NAME. The common label Other from Table 3.2 corresponds
with my label NON in Table 3.3. Additionally, I will also use a ‘Foreign word’ label, denoted
as OTH, following the example of Aguilar et al. [2020]. Language independent utterances will
be referred to as NON.

Lastly, I have introduced a novel and distinct label denoted as VAR. Given the source of
the dataset I am annotating, a Moroccan-Dutch internet forum, I have reason to expect use of
the Moroccan-Dutch ethnolect in the text, which is partly characterized by the use of phonetic
misspellings and grammatical mistakes like wrong inflections of adjectives, as I stated in
Section 2.2. VAR is added to capture spelling variations of Dutch. This is interesting, because
it quantifies the amount of spelling and grammatical variations in this dataset and it may help
recognizing the Moroccan-Dutch ethnolect.

Subsequently, each label will be explained in detail.

• NL, for tokens that are well formed Dutch, without any grammatical or spelling errors.
If an ambiguous word appeared that could be labeled as either Dutch or something else,
I always chose Dutch. To decide whether a word with roots in another language, such
as English or Sranan Tongo, qualified as Dutch, I used online dictionary van Dale1, like
was done similarly in Mellado and Lignos [2022]. Words that are not in the dictionary, I
would not annotate as NL, but as ENG or OTH, depending on the word. Words unknown
to me I would first search on the Internet.

1 https://www.vandale.nl/
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Label Short Description Example
NL Well formed Dutch words Ik ben nog lang niet jarig

ENG English words You are so cute.
MOR Moroccan Arabic or Berber words Hmdl ieshem a ochti
VAR Spelling variations and ill-formed Dutch jaaa iuk oooook
OTH Words from other languages aah tu parle francais?
NON Emoji’s, human sounds etc. hahaha :)

NAME Named entities catherine zeta jones

Table 3.3 The classification labels for my annotation of the Moroccorp. The abbreviations stand
for Dutch, English, Moroccan languages, Variation of Dutch, Other, None and Name,
respectively.

• ENG, for tokens that are written in English. Words that are borrowed so often that they
have become part of the Dutch lexicon, are not included and labeled NL instead. To
decide to which category a word belongs, I used van Dale, like was done similarly in
Mellado and Lignos [2022].

• MOR for tokens that are Moroccan Arabic or Berber. As I do not speak Arabic or Berber
and am unqualified to spot the difference, I haven’t created separate labels for the two
Moroccan languages, but treat them as a single category instead.

• VAR, for words that are Dutch, but contain at least one spelling variation, and for words
that are used in a wrong way, either grammatically or semantically. This includes letter
repetitions, ellipses and grammatical mistakes.

• OTH, for words from languages that I did not expect to find, like French, German or
Turkish.

• NON, for language independent utterances or words that cannot be put in any of the
established categories. For instance, utterances that only convey an act of emotion, like
an emoticon, e.g. ‘:D’, or sounds in text form, like laughter, e.g. ‘hahaha’, ‘pff’.

• NAME, for the usernames of the forum users or references to these usernames, as well
as other named entities, like ‘Johan Cruijf’, or ‘Ajax’.

3.2.2 Annotation Process
I annotated in two batches. For the first batch I used Doccano2, a tool that facilitated the
annotation process by providing a graphic interface [Nakayama et al. 2018], for the second I
used Microsoft Excel, using a tile for each word and label, as shown in Figure 3.1. Both times

2 https://github.com/doccano/doccano
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Figure 3.1 Annotating in Microsoft Excel for the second batch, making use of shortkeys (1=NL,
2=NAME, etc.) and different highlights for each label to make the annotation clear and
efficient.

Sample length Amount of samples Total lines after filtering
First batch 200 17 3312

Second batch 25 100 2068
Total - - 5380

Table 3.4 Size of two annotated samples of the Moroccorp for annotation

I annotated a randomly generated subset of the Moroccorp. For the first batch, I randomly
sampled a line in the dataset and selected 200 lines starting from that line. I repeated this
process 17 times, resulting in 3400 lines. For the second batch, I sampled in a similar way,
but decided to use 100 shorter samples of 25 lines each, resulting in 2500 lines. During both
batches of annotation, I did not completely randomize the lines from the corpus to preserve the
conversation-like nature of the text, so I was able to use contextual clues to label difficult or
ambiguous words. See Table 3.4, for an overview of the size and samples of the two batches.

During the first batch, I initially wanted to preserve the conversational nature of the text by
sampling a relatively long piece of the conversation. Yet, I found that some forum users are
dominant and overrepresented in certain parts of the corpus. To increase the amount of data
and potentially improve model performance I decided to annotate a second batch of lines. This
also served to diversify the amount of different speakers in the dataset. This second batch of
the dataset is more diverse than the first batch, as I took shorter samples from multiple parts
of the large corpus.

Despite the random sampling, several lines appeared twice in the sample. It also occurred
that a spam user would repeat the same message continuously. After deleting these duplicate
sentences, the dataset contained a total of 5380 lines.

I am annotating each word, counting a whitespace as a separator. For each word I annotated
which label is most accurate, without ever assigning multiple labels to the same word. For an
example, see (23).

(23) ”[’Nabila:’, ’alikoem’, ’salleem’]”
”[’NAME’, ’MOR’, ’MOR’]”
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During the first batch of annotation, I initially used three extra separate labels. One
for lexical borrowings from English (Borrow), one for words that are intra-word switched
(Mixed), as well as a label for Straattaal. After going through the first half of the annotation
process, I found that the labels Straattaal (101 occurrences), Borrow (135 occurrences) and
Mixed (8 occurrences) were not only very scarce, but also difficult to distinguish from other
labels. For the Borrowed category I created a definition, but for many words that fall into that
category it seems unnatural to label the words as such, because the words in question are so
assimilated into the Dutch language that they are simply Dutch. Most of the words I annotated
as Straattaal could also be annotated as Moroccan, English or VAR, except for certain words
that originate from Sranan Tongo, which appear infrequently.

I re-evaluated the words from each of these three categories. Borrow words were changed
to either NL, VAR or ENG, depending on their existence in the Dutch dictionary and spelling,
ensuring my decision aligned with the decision process from Section 3.2.2. Most words that
I had annotated as Straattaal could become NL or VAR. The rest of the words I annotated as
either MOR or OTH, depending on the origin of the word. Mixed only had eight words to
re-evaluate, and most became VAR.

At the start of the first batch, I first annotated about a 100 lines and subsequently asked
two fellow students to annotate the same 100 sentences for me. I did this to make sure my
annotations stayed consistent. For each disagreement I discussed with the volunteers as well as
my supervisors to make a plan for future instances of such cases, so that I can be as consistent
as possible.

Most of the disagreements happened with words that could fall into more than one category.
For instance, words that both expressed a sound of emotion (NON), but were also spelled in a
non-standard way (VAR), like ‘hhh’ (laughter). I then decided to use VAR only for words that
would be NL if spelled right, therefore making all language independent utterances, no matter
their spelling: NON. Another example, some words can refer to the name of a forum user,
but are also a perfectly normal Dutch word, like ‘badmeester’ (lifeguard). I opted to always
choose the category that fitted the context best. So, for ‘badmeester’, I would choose NAME,
as it was used in the context of a username, and not about an actual lifeguard.

After analysis of the disagreements I created the following decision process: Can I label the
word immediately without more information? If yes, I would. If I needed more information,
I would first look in the dataset if it was a reference to a username or if it appeared more
than once. This was mostly applicable to words from Moroccan languages, due to my lack of
knowledge. If the word proved to be a reference, then I would assign NAME. If I still did not
know the word I would search the internet and assign the label I found the word to be. For
instance, if the search results would be only other Moroccan websites, I would assume the
word is Moroccan, assign MOR and do the same when the word occurred again.

For the words I did know but had doubts whether a word was spelled right or belonged in
the Dutch language I searched the word in Van Dale. If the word could be found there, then I
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always assigned NL. For other words, I would then determine if the word is English, VAR or
Other.

Although this decision process worked well in general, it would be challenged as I came
across ambiguous cases, as I discuss in Section 3.2.3.

After annotating the second batch, I again asked a fellow student to annotate 100 sentences
and compare the annotations to evaluate them and reach inter annotator agreement. I do this
mathematically with Cohen’s Kappa, of which the equation is given in Equation (3.1).

Κ=
po − pe

1− pe
= 0,7028 (3.1)

In which po is the observed agreement and pe is the agreement which would occur by
chance. The closer kappa is to 1, the higher the agreement. I calculated this in Python using
the cohenskappa function from sklearn. In total, 553 words were compared in this calculation.
As shown in the equation, the agreement was 0,7028.

This score indicates substantial agreement beyond chance in the classification task. It
suggests a reasonably strong level of reliability between annotators or models. Generally, a
kappa value above 0,6 represents an adequate annotator agreement [Nowak and Rüger 2010].

As the student who also annotated had no knowledge from Arabic or Berber, annotating
those went wrong the most. Also they missed some Names. There were also a few occasions
on which it was me who made a mistake and the annotation by the other person was the one
it should have been according to my own rules.

3.2.3 Difficulties and Ambiguities
During the annotation, I encountered various ambiguous cases that I deemed interesting to
report upon. I will first discuss ambiguous cases per label that I eventually assigned. Most of
these are about VAR, but also about MOR and OTH. Then, I will describe some miscellaneous
ambiguities.

3.2.3.1 VAR
I found VAR to be relatively difficult to assign during annotation. To be categorized VAR,
the token must be a spelling variation of a recognizable Dutch word. So, if an English word is
spelled wrong, it counts as ENG, not VAR. I define spelling variations as words that are spelled
differently from its standard dictionary form, like in (24). Also, when a correctly spelled word
is used but it is likely that another word was meant to be used, I annotate it as ‘VAR’, like
in (25). As in the context of this message the chat user was trying to convince another chat
user that they were incorrect about something, it is likely that they meant ‘verkeerd’ (wrong),
instead of ‘verkeer’ (traffic).
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(24) halllloooo
VAR

allemaaal
VAR

hello everybody

(25) je
NL

ziet
NL

verkeer
VAR

you see traffic

Although spelling mistakes were made often enough and were usually easily identified,
grammar mistakes appeared frequently as well. However, labeling them proved to be more
difficult. For example, the nature of many grammar mistakes was the absence of certain
function words, like in (26) which lacks the article ‘een’, as the context of this message
was to offer someone a drink. Without the article, the offer is one of the material glass, not
the object one drinks from. The words that were present and up for labeling had no mistake
themselves, and were thus labeled as correct Dutch. As I chose to label each word individually,
the grammar mistakes caused by omission of words were not caught in the annotation.

(26) indo
NAME

hier
NL

heb
NL

je
NL

glas
NL

indo, here is a glass

Grammar mistakes caused by the usage of a wrong word or an unnecessary word were
labeled as VAR. Wrongly inflected adjectives, like mentioned in Section 3.1, were found
occasionally, see (27, 28).

(27) volgens
NL

mij
NL

heb
NL

je
NL

een
NL

dubbele
VAR

gesprek
NL

according to me you have a double conversation

(28) klein
VAR

kinderen
NL

zijn
NL

groot
NL

achter
NL

de
NL

pc
NL

small children are big behind the pc

Sometimes the mistake was not grammatical, but idiomatic. For instance in (29), the
expression should be ‘doe wat je niet laten kan’ (do what you can’t resist), but the user used
the word for ‘later’, providing a (given the context suspected to be unintentional) variation on
an already existing idiom. The same happens in (30), in which the prefix ‘voor’ is not found
in the original idiom, which means to scold someone. However, I judged this mistake to be
too close to the original idiom, semantically, so I annotated the word as NL.



3.2 Annotation 43

(29) doe
NL

wat
NL

je
NL

niet
NL

later
VAR

kan
NL

do what you can’t do later

(30) de les voorlezen
NL NL NL
reading the lesson aloud

3.2.3.2 MOR
The MOR (Moroccan) label stands out from the other language labels NL (Dutch) and ENG
(English), as it doesn’t encompass words from a single language, but words in this category
from one of two languages: either Moroccan Arabic or Berber. Unlike Dutch and English,
for which accessible dictionary tools are available, I did not find such resources for these two
languages, possibly because I can read neither the Arabic script nor the Berber orthographies.
Therefore, I sought confirmation from a native Berber speaker who also has knowledge of
Moroccan Arabic. I provided them with a list of tokens that I had assigned MOR and appeared
more than once in the dataset. They were able to translate at least 2/3 of the words and
confirmed they were indeed from either Moroccan language, sometimes specifying which
one. As the words in the list appeared separately and without context, not all words could
be easily translated. They did not flag any words to be clearly not Moroccan. However, as
they only looked at tokens that appeared more than once, the possibility that my annotations
contain mistakes remains, more on this in Section 5.2.

Words like muslim, islam are spelled in a certain way in Dutch, but as these are essentially
loanwords from Arabic, the words are often spelled in various ways: ‘moslim’ or ‘muslim’,
‘islam’, ‘islaam’, or with article ‘de islam’. In Dutch, spelling is standardized as ‘moslim’ and
‘de islam’, as a noun with a definite article and not without it. Each occurrence of these words
that differ from these standard spellings I annotated as ‘VAR’, unless used in a Moroccan
Arabic context, then I labeled them ‘MOR’.

3.2.3.3 OTH
Words that fit neither the established language categories (NL, VAR, ENG, MOR) nor
language independent categories (NAME, NON), I annotated as ‘Other’ (OTH), like in (31). I
annotated common internet acronyms, like ‘lol’ and ‘omg’ as OTH, as these tokens transcend
monolingual language use, and might be used in Dutch, English or another language, such as
Turkish in (32). I contemplated whether NON would be the correct label, but I figured that the
acronyms are not completely language independent, making OTH the more logical choice.
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(31) Je
OTH

vous
OTH

souhaite
OTH

une
OTH

bonne
OTH

soirée!!!
OTH

[French] I wish you a good night!!!

(32) askimmm
OTH

seniii
OTH

seviyorum
OTH

lol
OTH

[Turkish] my lovee I love youuu lol

Several other loanwords, originating in English or other languages, like Sranan Tongo,
have been admitted to the official Dutch dictionary, van Dale. I chose to label each loanword
that was spelled in the way it appeared in van Dale, as NL. Initially I had created a label for
‘Straattaal’, but it became too unclear which words did belong to this category and which
did not, as it is not an official language, but rather a way of speaking, taking vocabulary
from a mix of languages. Words that are used in Straattaal that were not found in the van
Dale dictionary, I labeled as ‘Other’, as these words would then originate in Sranan Tongo or
another root language for Straattaal words. If this root language is Arabic, Berber or English,
I assign MOR or ENG, respectively.

3.2.3.4 Encoding errors
Some users would consistently write in a way that may indicate an encoding problem with the
scraping of the forum, like in the following example:

(33) 3e2en
VAR

3b2anaan
VAR

3u2it
VAR

3j2e
VAR

3t2as
VAR

3h2alen
VAR

take a banana from your bag

One forum user writes in Dutch, mostly without spelling errors, but the first letter of each
word they type is encompassed by a 3 and a 2, thus creating a typo for each word written.
Therefore, I labeled each otherwise correct Dutch word written by this user as VAR.

As I split the sentences on whitespaces, various typos by the forum users unintentionally
created new words, where instead of a whitespace, one or more periods or commas’s ( ‘.’ or
‘,’) meant to separate two words. I annotated them all as VAR because of this, but some are
actually two different categories, like ‘name...dutch’ as in (34). Conversely, some words are
split into two or more words because of the extensive use of whitespaces, such as in (35). This
seems to happen intentionally for certain swear words, such that the user may not be flagged
as such and banned from the forum, but for other words it happens as well.
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(34) hicham32...moeders
VAR
hicham32...mothers

(35) Ikroep
VAR

je
NL

en
NL

je
NL

zei
NL

zo
NL

..
NON

h
VAR

o
VAR

m
VAR

o
VAR

I call you and you said like .. g a y

3.2.4 Postprocessing
After annotating each line the annotation process was not finished, as some lines needed to
be revised.3 In addition to that, I found inconsistencies in my own work that I was able to
fix by filtering the dataset on words that receive different labels on different occasions, and
revising the labels for these tokens. I found about 500 words for which this was the case. For
example, I changed definition of OTH after the first batch, by including internet acronyms,
like ‘omg’, but before, I had annotated them as VAR, or even ENG if they appeared in an
English sentence. To make the annotations consistent, I changed them all to OTH. For some
tokens it is justified to receive different labels at different occurrences, as the correct label
for a word is context-dependent. For example, the words ‘in’ and ‘me’ can be either English
or Dutch, depending on its context. The latter even occurs as a spelling error when used as
a possessive pronoun and therefore can be VAR. 220 words still receive a different label at
different occurrences. Many of these are words that can be correct in one context but incorrect
in another, making either NL and VAR the assigned label, depending on the context. Also
many NAME words are usernames that originate from actual Dutch or English words, which
are sometimes used outside of the username context, and therefore assigned NL, VAR or
ENG. After identifying the shifts in the label lists and revising these duplicate words, I made
sure that each line contained the same amount of tokens and labels.

Lastly, I have removed the nicknames that each message starts with in the corpus, as
they make the label NAME too predictable for a model, and do not add anything to the
recognition of code-switching or the Moroccan-Dutch ethnolect. Also, removing the names
benefits anonymization of the data.

In the next section I will present the results of the annotation.

3.3 Data Analysis
This section has three parts. First, I discuss the general size of the annotated dataset along
with the frequency of each label in Section 3.3.1. Then, in Section 3.3.2, I investigate in what
share of the data code-switching takes place. Lastly, in Section 3.3.3, I calculate metrics used

3 Both annotation tools export the annotated dataset in a different format, so these needed to be matched. The
exportation also resulted in some words erroneously receiving no label at all, or receiving labels meant for words
next to them, due to a shift in the label list.



46 Chapter 3 Annotating and Analyzing the Moroccorp

Metric Annotated Moroccorp
Number of Words 26.947 words
Vocabulary Size 8.032 unique words

Number of Sentences (lines) 5380 lines
Average Sentence Length 5,30 words per line

Unique Sentences 4935 unique sentences
Number of Unique Users 636 unique users

Table 3.5 Size of the Annotated Moroccorp

Label Total Words Percentage of Total Words Unique Instances Percentage of Unique Instances
NL 19.305 71,64% 3.979 20,61%

NAME 2.116 7,85% 992 46,88%
VAR 1.782 6,61% 1.246 69,92%
MOR 1.649 6,11% 1.085 65,80%
NON 1.158 4,30% 419 36,18%
ENG 731 2,71% 416 56,91%
OTH 206 0,76% 153 74,27%
Total 26.947 100% 8290 30,76%

Table 3.6 Total amount of words per label in annotated part of Moroccorp, as well as the amount of
unique instances per label and both of their relative amounts. Unique instances are calculated
per label, and the total amount is their sum.

for measuring code-switching, to be able to compare the amount of code-switching in the
Moroccorp with other datasets.

3.3.1 The Labeled Dataset
I labeled the dataset4. Table 3.5 illustrates the size of the annotated dataset in various general
metrics. The distribution of labels in the annotated dataset on word level is depicted in
Table 3.6.

The vast majority of words in the corpus (71,64%) are correct Dutch (NL). 6,6% of the
dataset is labeled as VAR. As VAR is defined as misspellings or otherwise incorrect variations
of Dutch, I can take the sum of NL and VAR to calculate a total amount of Dutch words
(21.087), which thus makes up 78,3% of the dataset. Then, I can calculate how many of the
Dutch words in the dataset is an incorrect variation, see Equation (3.2).

1.782
21.087

·100% = 8,45% (3.2)

4 https://huggingface.co/datasets/Tommert25/extradata0908/tree/main
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Almost 8,5% of Dutch words in the dataset appear in a way that is incorrect and are therefore
VAR.

About 12% of words in the dataset are NAME or NON, and therefore language indepen-
dent. Moroccan languages (MOR) make up over 6 percent of the dataset. If I add the other
two non-Dutch language labels ENG and OTH to that number, the share of languages other
than Dutch in the dataset reaches just under 10 percent (9,58%).

The Moroccan ethnolect is characterized by insertions of Arabic or Berber function words,
as well as deliberate misspellings (rebellion spelling) and wrong inflections of Dutch adjec-
tives. This is roughly captured by the combination of MOR and VAR, making almost 13% of
the dataset part of the Moroccan ethnolect. Not all VAR words are typical instances of rebel-
lion spelling, as it is difficult to assert when a misspelling is deliberate. Many VAR words are
typical cases of letter repetition, showing excitement in computer-mediated communication,
and wrong inflections of Dutch adjectives are also frequently found in the sample.

I also calculated how many unique words occur in each category, as well as how large
the share of unique words is compared to the total amount of words in a category. This is
relevant, as variety within a category affects a classification model’s ability to generalize and
accurately classify diverse instances of a given category. As seen in Table 3.6, about 30%
of the total amount of words are unique instances in this dataset. If I examine each label
individually, there are notable variations. For four labels this amount is much higher: MOR,
VAR, ENG and OTH. For ENG and OTH this is explainable as both are relatively infrequent,
making each new occurrence likely to be a unique instance. The VAR category is inherently
highly variant and expected to contain a high number of unique instances. Interestingly, there
are percentually almost as many unique tokens from Moroccan languages as there are from the
VAR category. It can be explained, as just like VAR, there is no set way of spelling Arabic or
Berber words in the Roman alphabet. As an illustration, the Arabic greeting ‘salam alaykum’
appears in the labeled dataset in more than five variations of spelling.

The total amount of unique instances in the dataset in Table 3.6 does not match the
vocabulary size of the total dataset from Table 3.5. However, this can be explained. I calculated
the number of unique instances in Table 3.6 by taking the sum of the unique instances per
label, but there are 258 words that are found in multiple categories and therefore counted
more than once as a unique instance. Like I discussed in Section 3.2.4, this holds because the
same words can be used in different ways, depending on context. For example, ‘jonge’, which
is used as correct Dutch (NL), but also as an incorrect inflection (VAR), therefore counted
twice as a unique token. Another example is the username ‘koe’, which counts as NAME, but
‘koe’ is also the Dutch word for ‘cow’, counting as NL.

3.3.2 Quantifying Code-Switching in the Annotated Corpus
Out of the two main different types of code-switching I introduced in Section 2.1, I focus on
intra-sentential code-switching, as my labels provide a good framework to quantify this and
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I am interested in examining code-switching within shorter linguistic units, which are most
of the instances in the dataset. The chat messages in the dataset can be sent with an unknown
amount of time between them, leaving ambiguous whether the text is of a conversation-like
nature. I could ignore this, and define an intersentential code-switch if there is a new matrix
language or if there is a new label present in a following sentence. However, I leave this for
future work. An intersentential code-switch would also occur when multiple sentences are
sent within one message, but messages in chat logs are generally short, making this unlikely
to occur frequently.

I want to know how much intra-sentential code-switching occurs in the annotated dataset.
This only happens when at least one word in the sentence receives a different unique label
than another. I exclude the labels NAME and NON from being counted as a unique label, as
these labels are largely language-independent. The VAR label is language related, as it is used
only for words that are supposed to be Dutch, but are used incorrectly, due to misspelling or
another linguistic error. Although it is a relevant label because the Moroccan-Dutch ethnolect
is characterized by frequent mistakes like this, switching from NL to VAR is not code-
switching, for there is no switch to another language present. I also don’t count the VAR
labels as a unique label for the code-switching subset, but include them as if they were NL.
Switching from VAR to MOR, for example, does count as code-switching.

I speak of intra-sentential code-switching when at least one word in the sentence receives
a label with a different language than another, counting VAR as a part of NL and excluding
the language independent labels NAME and NON.

I calculate in how many lines of the corpus there is only one unique label present. There
are 2709 mono-labeled lines in the annotated dataset: lines with only one unique label. This is
roughly half of the dataset. Inversely, this also means that the other half of the dataset consists
of lines with two or more unique labels. Then, only lines remain that include code-switching
between different languages NL/VAR, ENG, MOR and OTH. In 527 lines in the annotated
dataset, there is an occurrence of code-switching. That is 9,80% of the total amount of data.
In Table 3.7, I made an overview of my calculations. Then, in Table 3.8, I provide insight as
to how much each label occurs with each other in a line.

I found several clear examples of intra-sentential code-switching in the dataset. 324 lines
for code-switching between Dutch and Arabic (36), 114 lines for Dutch-English (37) and 24
lines in which English-Arabic code-switching occurred (38).

(36) Ik
NL

ben
NL

shab
MOR

taghennant.
MOR

(37) Ilovebeing
NAME

Het
NL

was
NL

slechts
NL

mij
VAR

liefde
NL

voor
NL

Islam
NL

die
NL

meteen
NL

in
NL

oprukken
NL

kwam
NL

So
ENG

don’t
ENG

blame
ENG

me.
ENG
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Set of sentences Amount of lines Percentage
Total 5380 100%

Mono-labeled lines 2709 50,4%
Code-switching only 527 9,80%

Table 3.7 Amount of lines in the annotated corpus with different levels of plurality. Lines with only one
unique label in Mono-labeled lines, compared to amount of lines that contain code-switching:
more than one unique language label in the annotated corpus, excluding NAME and NON,
and counting each VAR label as if it was NL.

Label combinations NL ENG MOR VAR OTH
NL 1537 114 324 933 58

ENG - 94 24 37 6
MOR - - 194 89 12
VAR - - - 196 12
OTH - - - - 59

Table 3.8 Combinations of labels lines in the annotated Moroccorp. The numbers on the diagonal are
the number of monolingual lines in which only one label occurred. The other numbers are the
amount of lines for each combination.

(38) Salaam
MOR

again!!
ENG

I checked the occurrence for each combination of two labels within one line. Each label
occurs with every other label at least once, as depicted in Table 3.8. The numbers on the
diagonal show how many lines were monolingual in each category. Out of all different
combinations of languages, Dutch-Arabic occurred the most within the same sentence. The
low number of Dutch-English combinations surprised me. Although a lot of words with
English origins are also used in the corpus, most of these are assimilated in the Dutch language
to the point that they have an official dictionary entry, and therefore simply counted as NL.

3.3.3 Code-switching metrics
To measure how much code-switching occurs in a dataset, the Code Mixing Index (CMI) was
introduced, a formula that measures how many words in a document do not belong to the most
frequent language (the matrix language) [Das and Gambäck 2014, Gambäck 2014]. It finds
the matrix language, then counts the percentage of words belonging to all other languages
present, excluding language independent utterances.
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Label Amount Percentage CS-only CS-only percentage
NL+VAR 21.087 89,1% 2.978 76,7%

MOR 1.649 7,0% 607 15,6%
ENG 731 3,1% 214 5,5%
OTH 206 0,9% 82 2,1%
Total 23.673 100% 3.881 100%

Table 3.9 Total amount and percentages of words, excluding language independent labels and taking
NL and VAR together as one label. First for the total annotated dataset, then for only lines
with code-switching (CS-only).

CMI = 100 · ∑
N
i=1(wi)−max(w)

n−u
(3.3)

The formula for CMI is shown in Equation (3.3), where ∑
N
i=1(wi) is the sum over all N

languages present in the utterance of their respective number of words, max(w) is the number
of words present from the language with the highest word count, n is the total number of
words, and u is the number of words given language independent tags.

Because the sum of all language-related words is the same value as n−u we can also write
the formula as:

CMI =

100 ·
(

1− max(w)
n−u

)
if n > u

0 if n = u
(3.4)

The higher the CMI, the more multilingual a dataset is, making it plausible to also contain
more code-switching. The index provides insight into the extent to which multiple languages
coexist within the dataset.

In Table 3.10, I show several CMI scores for other datasets on which Language detection
was performed. CMI indices on datasets of the LinCE benchmark [Aguilar et al. 2020] vary
from 2,82 (Modern Standard Arabic-Egyptian Arabic) to 19,85 (Nepali-English).

In the following part of the section, I calculate the CMI for the Moroccorp, of which the
results are showcased in Table 3.12. If I compare these CMI indices to those found in the
datasets used by Aguilar et al. [2020], then I find that on document-level these numbers are
most similar to the CMI scores from Mave et al. [2018], and seem to fit in well with other
datasets used for language identification.

Using the numbers from Table 3.9, where I depict the amount of each relevant label,
excluding the NAME and NON labels, I calculate CMI on document level as follows:
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Author and Corpus languages CMI (document-level) CMI (CS only)
Molina et al. [2016]: SPA-EN 8,29 21,86
Solorio et al. [2014]: NEP-EN 19,85 25,75
Mave et al. [2018]: HIN-EN 10,14 22,68

Molina et al. [2016]: MSA - EA 2,82 23,89
Kalkman [2023]: MOR - NL 10,92 23,27

Table 3.10 Comparing Code Mixing Index for the Moroccorp with other datasets. The left column
depicts the CMI for the entire corpus, and the right the CMI for the subset of sentences in the
corpus that contain code-switching (CS). The acronyms for languages are EN: English, SPA:
Spanish, NEP: Nepali, HIN: Hindi, MSA: Modern Standard Arabic, EA: Egyptian Arabic,
MOR: Moroccan Languages, NL: Dutch.

CMI = 100 · (MOR+ENG+OTH+(NL+VAR))− (NL+VAR)
TOTAL−NON −NAME

= 10,92 (3.5)

The matrix language is NL, and there are four languages present, as well as two language
independent tags. The tricky part here is VAR, as it is neither a separate language, nor lan-
guage independent. Just like in Table 3.7, I counted the VAR words as a part of NL, the matrix
language, resulting in a CMI of 10,92, as shown in Equation (3.5).

The Code-mixing index can also be calculated at the utterance level [Gambäck and Das
2016]. It measures how many words do not belong to the matrix language, for each individual
line. This is more insightful about how much intra-sentential code-switching occurs in the
dataset. The higher the CMI, the more alternations the dataset contains, showing the code-
switching behavior to be more complex. I use Equation (3.4) for the calculation of this version
of CMI, as it has to be calculated for each utterance individually, counting out utterances that
only consist of language independent utterances, or where n = u.

I start by finding the matrix language in each line of the dataset. This is defined as the most
common label in an utterance, and can therefore be different for every utterance. Most of the
utterances in the dataset will have NL as the matrix language, but not all. If there are only
language independent words (n = u) or the matrix language is NON or NAME, the CMI of
that line would be 0. For the other lines, I calculated how many words were not part of the
matrix language for that line, divided by the total amount of words in that line, while counting
out any NON or NAME words. The average Code-mixing index per utterance was 2,627. Just
like on document-level, I counted all VAR words as if they were NL. Compared to the datasets
from Gambäck and Das [2016], it is relatively low, but not the lowest.
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Language Pair CMI
Moroccan - Dutch 2,63
German - Turkish 4,11
English - Hindi 1,87

English - Spanish 4,91
English - Nepali 7,98

Table 3.11 Average CMI on utterance level for various datasets. The first number is calculated by me for
the annotated Moroccorp. The rest are all from Gambäck and Das [2016].

I also calculated both versions of CMI also for the subset of the dataset that contains
lines with code-switching only (CS-only), of which the results are depicted in Table 3.12.
Unfortunately I could not find utterance-level scores of CMI for the datasets in Table 3.10,
but the scores from Gambäck and Das [2016] are depicted in Table 3.11.

Another metric of interest is the Multilingual index (M-index): a word-count based mea-
sure quantifying the inequality of distribution of language tags in a corpus of at least two
languages, developed by Barnett et al. [2000]. In Equation (3.6), the equation for this metric
is depicted.

M-Index =
1−∑ p j

2

(k−1) ·∑ p j2
(3.6)

In which k is the number of labels represented in the corpus and p j the share of words
that received label j over the total amount of words, with j ranging over the present labels
[Guzmán et al. 2017]. An M-index ranges from 0, which indicates a monolingual dataset, to
1, meaning that each language is equally represented.

In [Khanuja et al. 2020], the M-index was calculated for various datasets, two of which
are used for LID. FIRE LID, a code-switched Hindi-English dataset [Roy et al. 2013] and
EMNLP, a code-switched Spanish-English dataset [Solorio et al. 2014]. These texts have an
M-index of 0,39 and 0,33, respectively.

Now, as depicted in Equation (3.7), this value needs to be calculated while excluding the
language independent labels. I recalculated the percentages of label occurrences in Table 3.9,
and use these numbers in the formula to calculate an M-Index of 0,08343. As with the CMI,
I grouped words from VAR and NL together, and use the sum of these labels for further
calculations.

M-Index =
1− ((NL+VAR)2 +MOR2 +ENG2 +OTH2)

(4−1) · ((NL+VAR)2 +MOR2 +ENG2 +OTH2)
= 0,08343 (3.7)
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Set of sentences All lines Only lines with Code-switching
Amount of sentences 5380 510

Percentage 100% 9,48%
CMI (document-level) 10,92 23,27
CMI (utterance-level) 2,627 27,74

M-index 0,08343 0,2077

Table 3.12 Measuring the amount of code-switching in the annotated Moroccorp.

I also calculate the M-index for the share of subset that only contains lines in which
code-switching takes place, using the CS-only percentages from Table 3.9. Naturally, there
is more code-switching in the subset than in the entire dataset. Both of the M-index values are
relatively low, compared to M-indices found in [Khanuja et al. 2020], showing that Dutch is
very dominant in the Moroccorp and the present languages are not equally represented. This is
also due to the fact that I calculated the index with four languages in mind (VAR+NL, MOR,
ENG and OTH), whereas the two datasets from Khanuja et al. [2020] both have only two
focus languages. An overview of the metrics I calculated is given in Table 3.12. I calculated
each of the metrics for the entire annotated dataset, and also for the code-switching subset.

In conclusion, the degree of code-switching in the Moroccorp is comparable to datasets
used in other code-switching research, like in Aguilar et al. [2020]. Therefore, it can be
assumed that the Moroccorp holds utility for further code-switching research.





4 Fine-tuning Classification
Models
Using the annotated dataset from the previous chapter, I fine-tuned two pre-trained deep
learning models on the word-level Language Identification task, which takes the form of
multiclass token classification. For a detailed explanation of fine-tuning a pre-trained model
for token classification, see Section 2.4. Both models use the transformer architecture. The
first pre-trained model I fine-tune is RobBERT [Delobelle et al. 2020], as it is the state-of-the
art Dutch RoBERTa model, as stated in Section 2.4. The second deep learning model I use is
Multilingual BERT (M-BERT) [Devlin et al. 2019, Pires et al. 2019], which I also discussed in
Section 2.4. Thirdly, I compare the two deep learning models to a logistic regression baseline.

This chapter outlines the steps I took to create models that perform token classification.
First, the annotated dataset is altered to fit a transformer architecture, which I discuss in
Section 4.1. Then, I discuss the models I fine-tune in Section 4.2 and in Section 4.3, I elaborate
on their evaluation as well as hyperparameter tuning. Section 4.4 explores training on an
augmented dataset. Finally, the results of the models are shown and compared inSection 4.5.

4.1 Preprocessing data
I divide the corpus into a standard training set, a validation set and a final test set, split in
70/15/15 proportions. The validation set is used to determine on which hyperparameters the
models perform best. Using the models that perform best on the validation set, a test set is
employed to evaluate the trained model’s performance on unseen data.

I split the dataset two separate times, once with randomization and once without, thus
retaining the conversational nature of the text. Since the BERT models are attention-based
and take more than one line or sentence at a time, a batch, for evaluation during training, I
hypothesized that a continuation of the conversation without interruption would benefit the
models’ performance. However, randomizing the dataset also increases diversity per split. To
decide which version I would use, I looked at the label distribution per set, see Table 4.1,
as well as amount of code-switching, depicted in Table 4.2. In Table 4.1, the distribution of
labels is shown in percentages of the total amount of words in the given set, to showcase if the
labels are equally distributed or not. The percentages from the randomized split datasets are
similar to each other, showing very little differences in distribution, never deviating more than
2% from the distribution in the ‘Total’ column of Table 4.1. Conversely, the percentages in the
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Randomized Total Train Validation Test
NL 71,64% 71,23% 72,74% 72,41%

NAME 7,85% 8,07% 6,97% 7,73%
VAR 6,61% 6,47% 7,38% 6,50%
MOR 6,11% 6,24% 6,22% 5,44%
NON 4,30% 4,47% 3,49% 4,33 %
ENG 2,71% 2,72% 2,41% 3,00%
OTH 0,76% 0,79% 0,79% 0,59%

Conversational flow Total Train Validation Test
NL 71,64% 73,24% 67,63% 68,98%

NAME 7,85% 7,28% 9,61% 8,61%
VAR 6,61% 7,64% 5,04% 4,23%
MOR 6,11% 4,38% 5,68% 12,22%
NON 4,30% 4,17% 6,64% 3,17%
ENG 2,71% 2,52% 3,98% 2,51%
OTH 0,76% 0,78% 1,43% 0,28%

Table 4.1 The relative distribution of labels per data split based on the total number of words in that split.
A comparison between the randomized dataset and the dataset retaining the conversational
flow. Percentages in the splits deviating more than two percent from the percentage in the
total data, are denoted in magenta.

part of the table representing the non-randomized split datasets, following the conversational
flow deviates more than 2% at various occasions. The most extreme difference is the double
amount of MOR (12,22%) in the Test set in comparison to the total distribution (6,11%). Such
a difference makes the task more difficult on the test set than on the training set.

Additionally, in Table 4.2, I show that the randomized train, validation and test set have
a more equal distribution of mono-labeled lines, or lines consisting of words with only
one unique label, than the split sets retaining the conversational flow. However, if I only
consider lines with code-switching, there was no real difference between the two approaches.
Nonetheless, due to the more equal distribution of labels, I choose to use the randomized sets.

In the randomized splits, I determine how many words overlap between the splits. Examin-
ing word overlap between the training and test sets is important to assess how well the model
generalizes to unseen data. High word overlap might indicate that the model is memorizing
specific instances from the training set, potentially leading to overfitting and reduced perfor-
mance on new examples. Despite being randomized, there will always be a different amount
of word overlap between different sets. The amount of word overlap between the Training set
and both other sets is showcased in Table 4.3. I also calculated how many unique words are
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Conversational flow Train Validation Test
All lines 3766 807 807

Mono-labeled lines 1990 (52,8%) 412 (51,1%) 307 (38,0%)
Code-switching only 373 (9,90%) 69 (8,55%) 85 (10,53%)

Randomized Train Validation Test
All lines 3766 807 807

Mono-labeled lines 1921 (48,99%) 397 (49,19%) 391 (48,45%)
Code-switching only 366 (9,72%) 87 (10,78%) 74 (9,17%)

Table 4.2 Distribution of amount of lines between the splits. Distribution of lines that are labeled
with one unique label and of lines that contain code-switching is also shown. A comparison
between the randomized dataset and the dataset retaining the conversational flow.

Train Validation Test Total
Total amount of Words 18735 4149 4063 26947

Overlap with Training set - 3117 (75,13%) 2982 (73,39%) 2488 (9,23%)
Unique Words 6177 1930 1996 8032

Unique Word-label pairs 6352 1978 2035 8290
Overlap with Training set - 989 (50,00%) 1020 (50,12%) 499 (6,02%)

Table 4.3 Word overlap between training, validation and test set. The numbers depicting the overlap in
the ‘Total’ column denote how many (unique) words appear in all three sets.

present in each set, how many unique word-label pairs and how much they overlap between
the splits. As shown in the ‘Total’ column, 499 unique word-label pairs appeared in all three
sets. Both the validation and test set have 50% overlap with the unique word-label pairs of
the training set. This may be a consequence of the randomization of the corpus, which put
different parts of the same conversation in different subsets.

As I annotated the dataset on word-level, split on whitespaces, it is already tokenized to
some degree. However, both M-BERT and RobBERT tokenize on subword-level, so the words
and labels were split up and aligned. Here I had a choice to label each subword or label each
complete word. I tried both, but decide to adhere to my own annotations, and only have the
models label as many words as I had done. This also makes it feasible to compare the two
transformer models to each other, as well as to the baseline model, as different tokenizers
create a different amount of subwords, making a comparison between evaluation scores unfair.
Although the models do not receive explicit information from certain subwords, they are
nonetheless processed and used as contextual information.
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Model M-BERT RobBERT
Architecture BERT RoBERTa

Training Task MLM and NSP MLM
Data Source Wikipedia in 104 languages Dutch part of OSCAR

Size of Training Data unknown3 39GB or 6.6M words
Size 170M Parameters 355M Parameters

Tokenization algorithm WordPiece Byte Pair Encoding (BPE)
Vocabulary Size 105.879 tokens 40.000 tokens

Table 4.4 Comparing M-BERT and RobBERT. This is an exact copy of the table in Section 2.4.

4.2 Models
I train three models, two transformer-based deep learning models (RobBERT and M-BERT)
and one multinomial logistic regression model as a baseline. The classes I train on are the
seven labels introduced in Section 3.2.1: NL, ENG, MOR, VAR, NAME, NON and OTH. The
checkpoint I use for RobBERT is called ‘pdelobelle/robbert-v2-dutch-base’1.The checkpoint
I use for M-BERT is ‘bert-base-multilingual-cased’2 and my setup is the same as the one for
RobBERT. To realize the training of the deep learning models, I will use the Huggingface
Trainer API from the transformers library [Wolf et al. 2020], and load each model in with a
Token Classification Head.

Before training, the input to the model will be labeled and tokenized using the tokenizer
of the specified model (M-BERT or RobBERT). For both transformer models, a pre-trained
model is fine-tuned. The two pre-trained models have some key differences, some of which I
have specified in Table 4.4, which I also placed in Section 2.4.

4.2.1 The pre-trained models
For fine-tuning both M-BERT and RobBERT, the same code was used, changing only the
model checkpoint, and therefore also the Tokenizer. The tokenizer is different in each of the
two models. M-BERT’s tokenizer is based on WordPiece, whereas RobBERT used Byte Pair
Encoding (BPE). Both algorithms are a subword tokenization algorithm, but differ in how
they merge subwords to whole words. WordPiece tends to produce subword units that align
more closely with complete words, while BPE can generate more flexible subword units that
may or may not correspond to complete words.

1 https://huggingface.co/pdelobelle/robbert-v2-dutch-base
2 https://huggingface.co/bert-base-multilingual-cased
3 Not specified in any of the papers regarding M-BERT, and as Wikipedia is highly variable, it is difficult to estimate
the size of the training data
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Aside from the algorithms, both models have a vastly different vocabulary, both in size and
content, because they were trained on different datasets. RobBERT was trained on the Dutch
part of the OSCAR corpus. The OSCAR corpus is a 12GB multilingual corpus, obtained by
Language Identification and filtering of the CommonCrawl corpus, a huge dataset containing
plain text extracts of web pages written in a large variety of languages and covering all
possible types of topics [Ortiz Suárez et al. 2020]. M-BERT was trained on Wikipedia articles,
written in the 104 languages that are used the most on Wikipedia, including Dutch, English
and Arabic (dialect unspecified). Berber languages are not part of the training data for M-
BERT. The model uses a shared vocabulary of 105.879 tokens, with no markers denoting
which language a word is from. This makes it difficult to say how large the Dutch part of
the vocabulary is. Notably, languages with large Wikipedias were downsampled whereas
languages with smaller Wikipedias were upsampled. Although this is a larger vocabulary
than RobBERT has (40.000 tokens), RobBERT’s vocabulary is completely Dutch, whereas
the Dutch part of M-BERT’s vocabulary is only one out of 104 languages in the vocabulary.

Each model also uses a different range of special tokens. M-BERT uses ‘[CLS]’, ‘[SEP]’,
‘[PAD]’ and starts a token that is not the start of a word with ‘##’, whereas RobBERT uses
‘<s>’, </s> and starts every beginning of a word with ‘Ġ’.

The pre-training tasks for the two models are only slightly different. RobBERT uses the
RoBERTa architecture [Liu et al. 2019], meaning it was only trained on Masked Language
Modeling (MLM) and not on Next Sentence Prediction (NSP). M-BERT was trained on
both MLM and NSP. Pre-processing for RobBERT made sure that sequences start and end
in complete sentences with a maximum length of 512 tokens. For a more detailed explanation
on the pre-training, see Section 2.4.

4.2.2 Setup for the transformer models
To fine-tune the pre-trained models, they are loaded with a classification head. Specifically, I
use AutoModelForTokenClassification, from the transformers library. This adds a final layer
to the pre-trained neural network. This layer is designed to generate an output for classification
as opposed to another NLP task, like question answering. However, the layer is initialized
randomly, and will therefore still need to be trained. As also explained in Section 2.4, a
classification head is a feedforward neural network layer, that outputs a tensor of logits that
has three dimensions. The first two dimensions are equal to the shape of the amount of tokens
(10x10 means 10 lines of each 10 tokens). The third, is the shape of the amount of possible
labels, which is 7. Concretely, this tensor outputs seven values for each word in the batch. The
highest value is the label that will be predicted. The lines of text from the dataset are given
to the model in so-called batches. Theoretically, a batch can consist of one line, but typically
the batch size will be larger (e.g. 4, 8, 16 or 32). During training, a loss function computes for
each batch the distance between the outputs and the target labels. This function first converts
the outputs to probabilities and comparing them to the actual labels (that has probability 1 for
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the correct label and 0 for all others). The objective of training is to minimize this loss. After
each batch, gradients are computed to change the weights of the neural network in order to
minimize the loss function.

I use CrossEntropyloss, for which I denote the equation in Equation (4.1).

L(y, p) =−∑
i

yi log(pi) (4.1)

L(y, p): Cross-entropy loss.
yi: The actual (true) probability of the i-th class (1 for the correct class, 0 for others).
pi: The predicted probability of the i-th class.

The optimizer then minimizes the loss. For this, I use AdamW [Loshchilov and Hutter
2019].

I trained both models many times, trying various configurations, which I discuss in Sec-
tion 4.3.1.

4.2.3 Baseline
To provide insight into the effectiveness of sophisticated approaches, compared to more
straightforward models for a challenging task like Token Classification, it is valuable to
compare results between advanced transformer models and simpler baselines. This compar-
ative analysis helps assess whether the increased complexity and resource requirements of
advanced models yield significant improvements in performance over simpler alternatives.

I use Multi-class logistic regression as a baseline, for which the equation is given in
Equation (4.2):

P(Y = k|X) =
eβk·X

∑
7
l=1 eβl ·X

(4.2)

Equation (4.2) calculates the probability that a word falls into category k, given a vector
of predictor variables X. βk denotes the coefficients associated with the predictor variables
for category k, which are similar to the weights in the transformer models. The numerator
represents the exponential of the dot product between βk and the vector of predictor variables
X. This term reflects the ”likelihood” of the observation belonging to category k.

The summation in the denominator of the fraction normalizes the probabilities across all
categories, ensuring that the probabilities add up to 1.

To classify a word, probabilities are computed for each category, and the category with the
highest probability will be the prediction for this word.

To represent the data in a vector X, as is needed for this method, I use a one-hot encoder,
called CountVectorizer. A one-hot encoder creates a new vector for each word, all the size
of the vocabulary, with only a single 1 and the rest zeros. I flatten the dataset to one large
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list of words, treating each word as an individual data point and omitting the context of the
sentence-like structure of the lines. The vectors of predictor variables each stand for a word,
not a sentence. A multi-class logistic regression model is then fitted on the vectorized data
and their label.

Initially, I tried the python library LangID as a second baseline model. It is a standalone
python file, pre-trained on 97 languages. Langid.py utilizes a naive Bayes classifier with a
multinomial event model [McCallum and Nigam 1998], which is trained on a combination
of byte n-grams (where n ranges from 1 to 4). The training data is taken from JRC-Acquis,
ClueWeb 09, Wikipedia, Reuters RCV2 and Debian i18n [Lui and Baldwin 2012]. It works
best on document level.

To make LangID work, I had to rename my labels to the labels LangID recognizes, meaning
one of the 97 languages it is trained on. This was straightforward for NL and ENG. VAR could
count as Dutch and MOR could become Arabic, but NAME, NON, and especially OTH were
difficult to rename. LangID reached an accuracy of 25%, even when I reduced the amount
of possible categories to only ‘NL’, ‘ENG’ and ‘AR’(Arabic). It did not once predict Arabic,
although there is a label for Arabic in LangID and the Arabic language is present in the
dataset. Therefore, I assume that the model is confused by the Romanized Arabic, as the
dataset is entirely written in the Roman script.

To mitigate this issue, a model could be trained using code from LangID. However, the
initial performance of 25% accuracy was not promising and I decided that a second baseline
was not needed for this thesis, continuing with only the multinomial logistic regression model.

4.3 Evaluation and Results
For the evaluation, I use Accuracy, Precision, Recall and F1-score, like in Aguilar et al. [2020],
Shakeel et al. [2019].

Accuracy =
True
Total

(4.3)

As depicted in Equation (4.3), accuracy is label independent, and is calculated based on how
many predictions are correct (True), compared to the total amount of predictions (Total). The
next three metrics are label dependent. For each category k, I calculate the following scores:

Precision =
TP

TP+FP
(4.4)

Recall =
TP

TP+FN
(4.5)

F1-score = 2 · Precision ·Recall
Precision+Recall

(4.6)
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In which TP (True Positive), is the total of correctly classified items in category k, FP
(False Positive) the total of items that were classified as category k, but in reality belong to
a different category. As shown in Equation (4.4), Precision uses only these numbers. Recall,
for which the equation is given in Equation (4.5), uses FN (False Negative), instead. for the
total of items that should have been classified as category k, but was incorrectly classified
otherwise. The F1-score combines the precision and recall, by taking the harmonic mean of
the two metrics, as shown in Equation (4.6).

As shown in Table 3.6, the categories in the dataset are not evenly spread and the label
‘NL’ will be by far the most common. Though, I am most interested in the capabilities of the
models for the classification of labels VAR, ENG, MOR and OTH. Instead of amplifying the
Dutch label in the evaluation due to its high occurrence, I use the macro-average F1-score as
a final evaluation. This is calculated as the average of the F1-scores of each label, weighing
each label equally, despite the high number of NL words.

The human annotation agreement was 0,70. I expect the value for the evaluation metrics to
not exceed this number by much.

I compare the macro-average F1-scores of RobBERT, M-BERT and the multiclass logistic
regression model, to see which model performs the best, and by how much.

4.3.1 RobBERT: Hyperparameter tuning and Results
Training the best model requires hyperparameter tuning: the process of systematically adjust-
ing the hyperparameters of a machine learning model to optimize its performance. Hyperpa-
rameters are configuration settings that influence the model’s learning process. Tuning aims to
enhance a model’s accuracy and generalization on unseen data. For this process, I specifically
focus on the hyperparameters batch size and learning rate.

With a small batch size, each iteration provides the model with a limited sample of the
entire dataset. The model’s parameter updates are based on this limited view, introducing
variability. As the training dataset is not very large, a smaller batch size may result in better
generalization. However, too small a batch size might make learning too erratic. Aguilar et al.
[2020] use a batch size of 32. I also try this batch size, and three smaller batch sizes of 4, 8
and 16.

The learning rate might need adjustment based on the batch size. Smaller batches often
require a smaller learning rate. Aguilar et al. [2020] uses a learning rate (η) of 5 · 10−5. I
try the same configuration, as well as one smaller learning rate of 2.5 · 10−5 and two larger
learning rates of η = 7.5 ·10−5 and 1.0 ·10−4.

Like Aguilar et al. [2020], I use the AdamW optimizer [Loshchilov and Hutter 2019]. All
of my experimental choices are tuned by observing the performance on the validation sets. The
models with the highest perfoming configurations will be exposed to the test set. To ensure
reproducibility, I run all my experiments with the same seed, set to 42.
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Scores Batch size = 4 Batch = 8 Batch = 16 Batch = 32 Average
η = 2.5 ·10−5 0,8017 0,8045 0,7927 0,7562 0,788
η = 5.0 ·10−5 0,8087 0,7899 0,7866 0,8049 0,797
η = 7.5 ·10−5 0,7934 0,7927 0,8092 0,8131 0,8021
η = 1.0 ·10−4 0,7846 0,7929 0,8207 0,8011 0,7998

Average 0,7971 0,795 0,8023 0,792 -

Table 4.5 Best Macro-average F1-scores on validation set for different configurations of RobBERT
evaluating on subword level, best epoch out of 8.

I fine-tune 16 different RobBERT models. Each is trained for eight epochs for every
combination of the hyperparameters batch size and learning rate. I report the macro-average
F1-score for the best epoch of each combination in Table 4.5.

As shown in bold in Table 4.5, a learning rate of 7.5 ·10−5 (0,000075) receives the highest
F1-score on average. The models using a batch size of 16 are on average the highest scoring,
so I continue using these hyperparameters.

I initially chose 8 as the number of epochs because there was no improvement in validation
loss at all after eight epochs. However, I later realized that loss is not always the best metric
for model performance, as it may not perfectly align with the classification metrics I am
interested in optimizing, e.g. precision, recall, F1-score. This can be due to class imbalance,
if the model focuses on the more prevalent classes to minimize the loss, while the minority
classes are neglected. Another reason for the unusual relationship between the two metrics
may be the large overlap between the training and validation set. The increasing validation
loss indicates overfitting on the training set. However, as the training set and the validation
set have a large word overlap, a slight increase in loss may not necessarily indicate a decrease
in classification performance. The three classification metrics were often still improving on
the last epoch of training, so I decide to train the on average best performing hyperparameter
configurations again, for a higher amount of 14 epochs.

Instead of retrying all combinations, I pick the two on average best performing parameters
and compare only those. First I set the batch size to 16, then try each of the four learning rates
from the previous search. Then, I set the learning rate to 7,5e-5, and try each of the four batch
sizes from the previous search. The macro-average F1-scores for these models are depicted in
Table 4.6:

Ultimately, the two models with the configurations that perform best on the validation set
both use learning rate 7.5e-5, one with batch size 4 and one with batch size 16. To determine
which configuration is the best, I let them loose on the test set. The former performed worse
on the test dataset, with a macro-average F1-score of 0,79, whereas the latter reached a score
of 0,81, which is closer to that of the validation set. Also, based on my hyperparameter search
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batch size: 16 learning rate: 7,5 e-5
learning rate F1-score batch size F1-score

2.5e-5 0,8194 4 0,8369
5e-5 0,8051 8 0,7956

7.5e-5 0,8307 16 0,8307
10e-5 0,8088 32 0,8232

Table 4.6 Best RobBERT F1-scores on the validation set, each with a maximum of 14 epochs. On the
left for batch size 16, with different learning rates. On the right, different batch sizes for
learning rate 7,5e-5. The highest scoring combination is highlighted in bold.

Hyperparameter Value
batch size 16

learning-rate (η) 7,5 ·10−5

optimizer Adam with betas=(0.9,0.999)
ε 1 ·10−8

lr scheduler type linear
number of epochs 14

Table 4.7 Configuration of the fine-tuned RobBERT model with the highest scoring hyperparameters
on the validation set.

from Table 4.5, batch size 16 seemed to be the better option on average. Therefore I decide to
select the following configuration of the model as my representative for the RobBERT model:

I then initially tried four different seeds with these configurations. Based on the then five
seeds, I selected the best model for error analysis in Section 5.1. For extra robustness, I
subsequently trained five more, reaching a total of 10 seeds of the RobBERT model with
the best configuration. The average scores for each label along with their standard deviation
are shown in Table 4.8. Unsurprisingly, NL receives the highest score, with NON following
closely. The least common label, OTH, is also the lowest scoring one, which is also in line
with other work.

4.3.2 M-BERT: Hyperparameter tuning and Results
For the hyperparameter tuning of M-BERT, the exact same dataset and classification metrics
are used. A logical starting point is the same configuration as the best one from RobBERT
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Labels Precision Recall F1-score Support
NL 0,97 (σ=0,002) 0,99 (σ=0,001) 0,98 (σ=0,001) 3018

VAR 0,81 (σ=0,012) 0,69 (σ=0,016) 0,75 (σ=0,006) 306
NAME 0,88 (σ=0,017) 0,92 (σ=0,012) 0,90 (σ=0,008) 289
MOR 0,88 (σ= 0,014) 0,87 (σ= 0,014) 0,88 (σ= 0,006) 258
NON 0,91 (σ=0,029) 0,95 (σ= 0,009) 0,93 (σ=0,012) 145
ENG 0,87 (σ=0,028) 0,84 (σ=0,028) 0,85 (σ=0,023) 100
OTH 0,61 (σ=0,085) 0,47 (σ=0,043) 0,53 (σ=0,044) 33

micro avg (acc) 0,94 (σ= 0,001) 0,94 0,94 4149
macro avg 0,84 (σ=0,011) 0,82 (σ=0,007) 0,83 (σ= 0,008) 4149

Table 4.8 Results on the validation set per label of the RobBERT model with the selected configuration.
Means and standard deviations based on 10 different seeds.

batch size: 16 learning rate: 7.5e-5
learning rate F1-score batch-size F1-score

2,5e-5 0,8365 4 0,8374
5e-5 0,8416 8 0,8228

7,5e-5 0,8450 16 0,8450
10e-5 0,8287 32 0,8283

Table 4.9 Best M-BERT F1-scores on the validation set after 14 epochs of training. On the left, different
batch sizes on learning rate 7.5e-5. On the right, different learning rates for batch size 16. The
highest scoring combination is highlighted in bold.

while tuning M-BERT. I again set a seed to 42, as I have done for RobBERT. Starting with
the same configuration as (4.7):

Now I compare the same batch sizes as before on the macro-average F1-score, as shown in
Table 4.9. This table also depicts the comparison on the learning rates as I have for RobBERT:

Just like the RobBERT model, the combination of batch-size = 16 and learning-rate = 7.5e-
5 works best for M-BERT. Again, I run the model on four extra random seeds. Based on these
five models, I choose the best model to analyse in Section 5.1. For robustness, I run another
five seeds, creating a total of ten models of this configuration. The average evaluation per label
on the validation set is shown in Table 4.10. All scores do seem to be a little higher than those
of RobBERT. I compare them in section Section 4.5.
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Labels Precision Recall F1-score Support
NL 0,96 (σ= 0,004) 0,98 (σ=0,003) 0,97 (σ=0,001) 3018

VAR 0,76 (σ= 0,024) 0,62 (σ= 0,037) 0,68 (σ= 0,017) 306
NAME 0,89 (σ= 0,017) 0,92 (σ= 0,012) 0,90 (σ= 0,009) 289
MOR 0,90 (σ= 0,025) 0,86 (σ= 0,026) 0,88 (σ= 0,011) 258
NON 0,94 (σ= 0,022 ) 0,93 (σ= 0,027 ) 0,93 (σ= 0,009 ) 145
ENG 0,92 (σ= 0,031 ) 0,82 (σ= 0,049 ) 0,87 (σ= 0,025 ) 100
OTH 0,74 (σ= 0,103 ) 0,53 (σ= 0,066 ) 0,62 (σ= 0,054 ) 33

accuracy 0,94 0,94 0,94 (σ= 0,002 ) 4149
macro-average 0,87 (σ= 0,017 ) 0,81 (σ= 0,012 ) 0,84 (σ= 0,009 ) 4149

Table 4.10 Validation-set results per label for the M-BERT model that performed the best. Means and
standard deviations based on ten different seeds.

Parameter Options
multiclass [ovr, multinomial]

solver [lbfgs, newton-cg, sag, saga]
penalty [l1, l2]

Table 4.11 Possible parameters for logistic regression used during grid search

4.3.3 Baseline: Logistic Regression
I fit a multinomial logistic regression model on the same training set as I used for the
transformer models.

Initially, the model would predict NL, the most common label, for each word. To improve
this, I performed a grid search for the best hyperparameters on the training set, using 5 folds
of cross-validation on the training set, and eventually got better results.

Table 4.11 shows all the parameters that were tested in the search. Multiclass determines
how the model handles multiple classes, with the first strategy (‘ovr’) making the classification
for each class a binary problem. Solver denotes the optimization algorithm used during
training. ‘lbfgs’(Limited-memory Broyden–Fletcher–Goldfarb–Shanno) is memory-efficient,
but less efficient on large datasets. ‘newton-cg’ (Newton Conjugate Gradient) requires more
memory, but is suitable for larger datasets. ‘sag’ (Stochastic Average Gradient) is a stochastic
optimization algorithm. It is particularly useful for larger datasets, as it is computationally
efficient. Finally, saga (SAGA - Shuffling Approximate Gradient Descent), is an extension of
sag, supporting l1 regularization. The penalty determines the type of regularization applied
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Penalty l1 l2
‘ovr’ ‘multinomial’ ‘ovr’ ‘multinomial’

‘lbfgs’ - - 0,45 0,51
‘newton-cg - - 0,45 0,51

‘sag’ - - 0,45 0,51
‘saga’ 0,48 0,54 0,45 0,51

Table 4.12 Macro-average F1-scores on validation set for combination of hyperparameters of the
multinomial logistic regression model. The ‘l1’ penalty is only compatible with the ‘saga’
solver.

Labels Precision Recall F1-score Support
NL 0,81 1.00 0,89 3018

VAR 0,94 0,19 0,32 306
NAME 0,93 0,64 0,76 289
MOR 0,89 0,26 0,40 258
NON 0,97 0,42 0,59 145
ENG 0,95 0,36 0,52 100
OTH 1.00 0,18 0,31 33

accuracy 0,82 0,82 0,82 4149
macro-average 0,93 0,44 0,54 4149

Table 4.13 Validation-set results per label for the multinomial regression model

to prevent overfitting, for which ‘l1’ means the absolute values of coefficients and ‘l2’ the
squared values of coefficients, putting more weight on mistakes.

As shown in Table 4.12, the type of solver did not alter the macro-average F1-score, while
using l2 regularization. ‘Multinomial’ reached a higher score than ‘ovr’ in all cases. The
best combination is: multiclass=‘multinomial’, solver=‘saga’, penalty=‘l1’, reaching a macro-
average F1-score of 0,54.

The results of the logistic regression model with the best combination of parameters are
shown per label in Table 4.13 for the validation set, and in Table 4.14 for the test set.

Interestingly, the model predicts NL disproportionately often, reaching an almost perfect
Recall score of 0,997, rounded up to 1.00 in both result tables. However, this does result in
a lower precision for NL. The model seems to only predict a label other than NL for words
of which it is certain. This ensures a very high precision score for each label other than NL.
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Labels Precision Recall F1-score Support
NL 0,81 1,00 0,89 2942

NAME 0,97 0,59 0,73 314
VAR 0,93 0,19 0,31 264
MOR 0,93 0,29 0,45 221
NON 0,96 0,47 0,63 176
ENG 0,93 0,21 0,35 122
OTH 0,83 0,21 0,33 24

accuracy 0,82 0,82 0,82 4063
macro-average 0,91 0,42 0,53 4063

Table 4.14 Test set results per label for the Multinomial logistic regression model

However, for less common words, the prediction often remains NL, resulting in very low
Recall and F1 scores, compared to the results from the transformer models.

4.4 Data augmentation
After finding the best model hyperparameters, I still had promise of improvement via ap-
proaches that are typical for imbalanced data, like upsampling. This addresses class imbal-
ance by increasing the frequency of tokens from the underrepresented classes in the training
data. Typically, tokens from only these classes would be duplicated or synthetically gener-
ated. Duplicating only the words from the underrepresented classes was possible, but I opted
to leave the words in their natural environment, so the models may use contextual clues for
their decision making. I decided to deploy data augmentation by duplicating entire lines in my
dataset that contained at least one of the three labels that did not appear as often: OTH (148
occurrences in the training set), ENG (510 occurrences in the training set) and MOR (1169
occurrences in test set).

I approximately doubled the occurrence of the three underrepresented labels by duplicating
each line in the training set in which at least one of these three labels were present. As I
duplicate entire lines, instead of only the individual words from underrrepresented labels, this
intrinsically includes words from overrepresented labels.

The main goal of this procedure is to increase balance in the dataset by reducing the
underrepresentation of OTH, ENG and MOR. While I considered the inclusion of the VAR
label, I observe that VAR almost exclusively occurs together with the most overrepresented
label NL, which may cancel out the effect of upsampling. Also, it is only the fourth least
occurring label.

In total, 800 lines are added to the training set, each containing at least one word with either
OTH, ENG or MOR for a label.
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Labels Precision Recall F1-score Support
M-BERT RobBERT M-BERT RobBERT M-BERT RobBERT

NL 0,97 (+0,01) 0,97 (=) 0,98 (=) 0,99 (=) 0,97 (=) 0,98 (=) 3018
VAR 0,74 (-0,02) 0,84 (+0,03) 0,65 (+0,03) 0,67 (-0,02) 0,69 (+0,01) 0,74 (-0,01) 306

NAME 0,88 (-0,01) 0,88 (=) 0,92 (=) 0,92 (=) 0,90 (=) 0,90 (=) 289
MOR 0,89 (-0,01) 0,87 (-0,01) 0,86 (=) 0,88 (+0,01) 0,88 (+0) 0,87 (-0,01) 258
NON 0,90 (-0,04) 0,91 (=) 0,94 (+0,01) 0,94 (-0,01) 0,92 (-0,01) 0,93 (=) 145
ENG 0,95 (+0,03) (-0,03) 0,71 (-0,09) 0,85 (+0,01) 0,81 (-0,06) 0,85 (=) 100
OTH 0,83 (+0,09) 0,64 (+0,03) 0,58 (+0,05) 0,48 (+0,01) 0,68 (+0,06) 0,55 (+0,02) 33

accuracy 0,94 (=) 0,94 (=) 0,94 (=) 0,94 (=) 0,94 (=) 0,94 (=) 4149
macro avg 0,88 (+0,01) 0,85 (+0,01) 0,81 (=) 0,82 (=) 0,84 (=) 0,83 (=) 4149

Table 4.15 Results on augmented dataset, evaluating on the validation set. The numbers in brackets are
the deviations from the average results on the non-augmented training set, from Table 4.8 and
Table 4.10. Deviating results are colored if higher, lower or within the standard deviation of
the average results on the non-augmented dataset.

This results in a slightly larger training dataset of 4566 lines. I do not augment the
validation and test set, as this would increase the difficulty of the task and cancel out the
augmented training set, nor would the results be comparable to the previous scores.

I train a RobBERT and a M-BERT model on this augmented dataset, using the same
configurations as the best models on the non-augmented dataset, as depicted in (4.7). The
results of both M-BERT and RobBERT are shown in Table 4.15. As the results of training a
transformer model are sensitive to random initialization, I compare the results to the averages
and standard deviations of the ten seeds I previously ran in Table 4.8 and Table 4.10. Results in
orange indicate a small change falling within the standard deviations, compared to the scores
from Table 4.8 and Table 4.10. In magenta I highlight results that are higher and go beyond the
standard deviations. In blue, I highlight the results that are lower and fall out of the standard
deviation.

For the upsampled labels MOR, ENG and OTH, the only label with exclusively positive
changes compared to the models trained on the non-augmented dataset, is OTH. M-BERT
even reached an F1-score that falls out of the standard deviation from the results on the non-
augmented dataset. For MOR, the results barely made a difference, and for ENG the models
trained on the augmented dataset reached a much lower score, suggesting a negative impact
of the augmentation. Generally, the results in Table 4.15 are the same or very similar to the
results without data augmentation. For M-BERT there are more negative than positive changes
in the augmented results compared to the results before augmentation. For RobBERT, there
are no negative changes that exceed the standard deviation from the previous model, but only
one positive change that does this.
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Labels Precision Recall Support
M-BERT RobBERT M-BERT RobBERT

NL 0,96 (σ= 0,004) 0,97 (σ= 0,002) 0,98 (σ= 0,003) 0,98 (σ= 0,002) 2942
NAME 0,91 (σ= 0,017) 0,89 (σ= 0,020) 0,91 (σ= 0,019) 0,92 (σ= 0,012) 314
VAR 0,74 (σ= 0,036) 0,81 (σ=0,012) 0,59 (σ= 0,030) 0,67 (σ=0,023) 264
MOR 0,82 (σ= 0,027) 0,85 (σ=0,016) 0,90 (σ= 0,025) 0,88 (σ=0,018) 221
NON 0,98 (σ= 0,006) 0,93 (σ=0,026) 0,88 (σ= 0,027) 0,91 (σ=0,009) 176
ENG 0,92 (σ= 0,023) 0,89 σ= 0,030) 0,85 (σ= 0,034) 0,87 (σ= 0,015) 122
OTH 0,54 (σ= 0,085) 0,40 (σ= 0,064) 0,44 (σ= 0,095) 0,50 (σ= 0,059) 24

macro avg 0,84 (σ= 0,018) 0,82 (σ= 0,010) 0,79 (σ= 0,015) 0,82 (σ= 0,011) 4063

Table 4.16 Comparison of means of Precision and Recall between the two transformer models, evaluated
on the test set. The means and standard deviations are taken from ten seeds of each model.
The higher score between the two models is highlighted in magenta for scores significantly
higher (p-value < 0,05) or in orange for scores that are not significantly higher. Recall for NL
is the same for both, so is not highlighted.

Because I found no indication that using the augmented dataset improves results, I choose
to keep working with the models that are trained on the non-augmented data.

4.5 Comparison
As seen in Section 4.3, I trained five versions of the models with the best hyperparameter
settings, each with a different seed. To test robustness, I try five extra seeds, making the total
ten seeds and report the average scores for both RobBERT and M-BERT.

In Table 4.16, I show the precision and recall scores for each model next to each other.
The F1-scores I show separately, in Table 4.17. These are the average scores of ten seeds of
the models with the best configuration, performed on the test set. For each label and metric, I
highlight which of the two models reaches a higher score on average. The highlight is given
in magenta if the score is significantly higher than the other model’s average (p <0,05). I
tested for significance using a two-sample t-test. Interestingly, M-BERT is better at precision,
whereas RobBERT reaches the higher score on Recall. A higher recall indicates that the model
is effective at identifying instances of the relevant classes but may be more prone to false
positives. A possible explanation for the higher recall for RobBERT is the more extensive
vocabulary and pre-training of the Dutch language, compared to M-BERT. This would explain
a higher macro-average recall score, as the model is better at recognizing a category as VAR
or NL. When recall is higher, precision is often lower and vice versa, due to the inherent
trade-off between the two metrics.

VAR receives the greatest difference between the two models on these metrics. RobBERT’s
Recall score for VAR is 0,08 higher than M-BERT’s Recall for VAR. It is also the only
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Labels F1-score (M-BERT) F1-score (RobBERT) Support
NL 0,97 (σ=0,002) 0,98 (σ=0,001) 2942

NAME 0,91 (σ=0,010) 0,90 (σ=0,010) 314
VAR 0,65 (σ=0,016) 0,73 (σ= 0,015) 264
MOR 0,86 (σ=0,015) 0,86 (σ= 0,012) 221
NON 0,93 (σ=0,016) 0,92 (σ= 0,013) 176
ENG 0,88 (σ=0,023) 0,88 (σ= 0,019) 122
OTH 0,48 (σ=0,053) 0,44 (σ= 0,049) 24

accuracy 0,93 (σ= 0,004) 0,94 (σ=0,003) 4063
macro avg F1-score 0,81 (σ=0,013) 0,82 (σ= 0,010) 4063

Table 4.17 Comparison of Test-set results per label for BERT models that performed the best. The higher
score between the two models is highlighted in magenta for scores significantly higher (p-
value < 0,05) or in orange for scores that are not significantly higher. Scores that are the same
for both are in italics.

label for which the same model has a higher score on both precision and recall. This may be
explained, as RobBERT’s vocabulary has more Dutch words than M-BERT, making it easier
to recognize a spelling variation for RobBERT than for M-BERT. The differences between
scores for OTH are substantial, and so are their standard deviations, making this the least
stable scoring label. This may be due to the small number of instances in both the training and
test data. A small number of examples makes a model susceptible to the effects of randomness.
Additionally, the correct classification of a single word in this category carries more weight
for the final scores compared to a word in a larger category.

In Table 4.17, I compare the F1-scores of the two models for each label, as well as the
accuracy and the macro-average F1-score. For this comparison I highlighted the higher score
between the two models. If the difference was significant according to a two-sample t-test,
the highlight is in magenta, otherwise in orange. If both models reached the same score, I
highlighted this label in italics. Most labels receive a very similar score for either of the two
models. Only NL and VAR receive an F1-score that is significantly higher for RobBERT than
for M-BERT. This can be attributed to the fact that RobBERT was only trained on the Dutch
language, resulting in a larger Dutch vocabulary. Although M-BERT has slightly higher scores
for three labels, and RobBERT only for two, it is the large difference in score for the VAR label
that pulls up the macro-average F1-score for RobBERT. The significantly higher accuracy for
RobBERT can be explained by the fact that RobBERT’s scores are not significantly lower for
the categories that score less than M-BERT, but are significantly higher for those that score
higher. Notably, the two categories where RobBERT outperforms M-BERT have a substantial
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M-BERT RobBERT Logistic Regression
Precision 0,842 (σ=0,018) 0,820 (σ=0,010) 0,9082 (σ=0,00)

Recall 0,793 (σ=0,015) 0,819 (σ=0,011) 0,4224 (σ=0,00)
F1-score 0,812 (σ=0,013) 0,817 (σ=0,010) 0,5278 (σ=0,00)
Accuracy 0,933 (σ=0,004) 0,940 (σ=0,002) 0,82 (σ=0,00)

Table 4.18 Comparison of Average scores based on ten different random seeds. The highest score is
denoted in bold.

number of instances, contributing significantly to the overall accuracy, particularly in the case
of NL. The difference in macro-average F1-score is not significant (p=0,07).

Ultimately, both models perform this task adequately, given that Cohen’s kappa for the
annotation of this dataset was only 0,70, the scores the two transformer models reached are
high. The models are especially good at (F1-score > 0,90) recognizing Dutch (NL), Named
entities (NAME) and Language independent utterances (NON). Both English and Moroccan
languages also receive high scores (F1-score > 0,85). The labels I personally found the
most challenging during annotation, manifest the lowest scores for both models: (spelling
or grammatical) Variations of Dutch words (VAR) and words from other languages (OTH).

Table 4.18 showcases the final results of the three different models. The results are based on
ten different random seeds of initializing the training process with the previously discussed
hyperparameters. For the logistic regression model, different seeds did not yield different
results. Logistic regression is a deterministic algorithm, meaning that given the same input
and parameters, it will produce the same output every time. Unlike in the transformer models,
the random seed in logistic regression typically influences the initialization of the optimization
process rather than the randomness in the model itself.

Interestingly, the precision was highest for the logistic regression model. This is explain-
able, as this baseline classifies most words as NL and seems to only classify a word as another
label when it is certain it belongs to that category, because the model has seen it before, in the
training set. This results in a precision score of higher than 0,90 for almost all categories. NL
is the exception category, which is often attributed to words that are not Dutch, resulting in
many false positives. This also results in an almost perfect Recall score for NL (0,997), but a
low score for each other label, making the average Recall and F1-score rather low.

The other three metrics: Recall, F1-score and Accuracy are all much higher for the
transformer models, and each is the highest for RobBERT. Both the average scores Recall and
Accuracy are significantly higher than those for M-BERT (p <0,05). I tested for significance
using a two-sample t-test. The difference in F1-score between the two transformer models
was not significant.



5 Discussion and Conclusion
In this chapter I discuss the results of the models, as well as limitations of my research and
ideas for future work. In Section 5.1, I show what the models can and cannot do, by analyzing
the models’ predictions. Then, I elaborate on ideas for Future Research in Section 5.2. Finally,
I provide a short summary of my findings in Section 5.3.

In short, the models are not good at recognizing spelling variations of recognizable Dutch
words (VAR). The inclusion of such a label in combination with research on code-switching
may be too confusing for a model to learn next to labels for other languages. However, for
recognizing the Moroccan ethnolect or studying other language varieties, like Straattaal, it is
essential. The characteristics of the label may be split into various parts, like spelling errors
and grammatical errors being separate labels. The combination of the two phenomena may
have been too difficult. The models are relatively good at recognizing Dutch (NL), Named
entities (NAME), language independent utterances (NON) and English words (ENG). If there
had been more instances of words from other languages (OTH), it may have performed better,
but for now its results are the lowest. For a full explanation of the labels, see Section 3.2.1.

The recognition of Moroccan languages (MOR) sees quite impressive scores, if I compare
the scores to the Cohen’s kappa from the annotation evaluation. This can be explained by the
fact that the annotations were all done by me, making the models emulate my own decisions.
If multiple annotators had been involved, the score may not have exceeded the calculated
agreement. I would say that the models can be used to recognize and extract Moroccan
languages from an informal Dutch text.

5.1 Error Analysis
After running the first five different seeds for both M-BERT and RobBERT models, the
models run with seed 42 came out as the highest performing model. Therefore, these are
the models I use for this error analysis1,2.

Later, I ran five extra models with different seeds for robustness of the results in Chapter
4, of which two reach a higher macro-average F1-score than the model mentioned above, but
I choose to remain working with this model, as I had already started on this analysis and the
higher scoring models fall within the standard deviations and don’t differ much.

1 https://huggingface.co/Tommert25/RobBERTBestModelOct13
2 https://huggingface.co/Tommert25/MultiBERTBestModelOct13
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Total errors per label Percentage of errors per label
Label M-BERT RobBERT Baseline M-BERT RobBERT Baseline
NL 51 54 9 1,7% 1,8% 0,3%

VAR 110 94 214 41,7% 34,9% 81,1%
NAME 29 23 129 9,2% 7,3% 41,1%
MOR 18 31 156 8,1% 14,0% 70,6%
NON 21 16 94 12,0% 9,1% 53,4%
ENG 19 14 96 15,4% 11,5% 78,7%
OTH 12 11 19 50,0% 45,8% 79,2%
Total 260 238 717 6,4% 5,9% 17,6%

Table 5.1 Absolute and relative amounts of errors per category on the test set of the annotated dataset,
for all three trained models.

The finished models reach different scores for each label, as seen in Section 4.5. Generally,
the models tend to have problems with the same labels that I had during annotation: VAR,
MOR and OTH, see Section 3.2.3. Additionally, several mistakes tend to be model-specific.
For instance, RobBERT is slightly better at recognizing VAR, whereas M-BERT makes fewer
mistakes at recognizing MOR.

I analyze the diversity of predictions for each category of words, as well as the frequency
of the different types of errors. For this analysis I only examine the predictions for the test set.
First, I present a quantitative analysis on the errors of the models in Section 5.1.1, followed
by a short qualitative analysis in Section 5.1.2 for the types of errors of each label.

5.1.1 Quantitative analysis
In Table 5.1, I made an overview of the amount of errors per category, both absolute and
relative. Out of the 4063 words in the test set that were classified, M-BERT misclassified
a total of 260 words, while for RobBERT that number is 238 words. Relatively, OTH is
misclassified the most by the transformer models, but in absolute, VAR has the most errors,
for both transformer models. For the baseline, VAR has the most errors both in relative and
absolute.

The heatmaps in Figure 5.1 and Figure 5.2, show for each pair of prediction and true label
how many instances were predicted for M-BERT and RobBERT, respectively. VAR and NL
are most often mistaken for each other, as shown in both heatmaps, and predicted often for
other words as well. OTH, ENG and NON are not often wrongly predicted by M-BERT, but a
little more by RobBERT. NON is often mistaken for MOR by M-BERT. Generally, RobBERT
is a little more diverse in its predictions, as shown by the slightly more spread out prevalence
of green tiles, than M-BERT, whose colored tiles are quite centralized in the top left corner.
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Figure 5.1 Predictions made by M-BERT on each of the 4063 words of the test set. On the x-axis the
true label of a word, and on the y-axis the model prediction. The darker blue, the higher the
number of instances of a pair of prediction and label. A white block without a number means
that there were no instances of this prediction and label pair. On the diagonal, the predictions
and the true labels match. These are the correctly classified words. All other squares reflect
instances of incorrect predictions.

In Table 5.2, I made an overview of a comparison between predictions of M-BERT and
RobBERT per label. M-BERT and RobBERT agreed 3825 times. That is 94.15% of all
tokens. They disagreed 238 times (5.85%). In Figure 5.3 I show each prediction for which
both RobBERT and M-BERT agree. These are mistakes that both models made in the exact
same way (so M-BERT assigned the same wrong label as RobBERT). As visible in Figure 5.3,
there are fewer green tiles and therefore less diversity in the mistakes in this figure than in the
figures for the individual models.

Words in the VAR category have the highest number of incorrect predictions for both
models. Within these errors, NL was predicted the most for the words. Notably, RobBERT
makes fewer mistakes (94) than M-BERT (110) on this category. Perhaps the Dutch model
is better at distinguishing right from wrong due to its extensive Dutch vocabulary, that M-
BERT may not possess. There are 108 words for which both transformer models agree on
the predicted label, whereas the true label is different. This leaves 150 errors unique to M-
BERT and 128 unique to RobBERT. and a total of 388 unique wrong predictions. This is
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Figure 5.2 Predictions made by RobBERT on each of the 4063 words of the test set. The same color
scheme was used as above in Figure 5.1.

the sum of the mistakes from both models, minus 110 mistakes the models have in common.
Additionally, various words were misclassified by both models, but M-BERT and RobBERT
disagree on a prediction. For example, ‘homoo’ is predicted to be MOR by M-BERT but ENG
by RobBERT, when factually it belongs to VAR, as it is a spelling variation of the Dutch word
‘homo’, which means ‘gay’.

So, what can the transformer models do that the baseline cannot? The predictions made
by the logistic regression model are shown in Figure 5.4. The model predicts NL 3629 times,
out of 4063 words to be classified, or 89.3% of the time. This strategy results in very few
mistakes for the NL category, but all labels, except for NAME, are more often classified as
NL than they are correctly identified. The model rarely makes other mistakes: the word is
either correctly predicted or predicted NL. Only a handful of different predictions are made.

As the transformer models make fewer mistakes in each category, except for NL, due to the
apparent strategy of the baseline model, it is safe to say that the transformers are a lot better
at this task.

5.1.2 Qualitative analysis
Now follows qualitative analysis regarding the words the models are unable to classify
correctly. Generally, the mistakes the models agree on are for words I also found difficult or
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Figure 5.3 Predictions that were the same for both RobBERT and M-BERT. The same color scheme was
used as for Figure 5.1.

Figure 5.4 Predictions made by the logistic regression baseline model. The same color scheme was used
as for Figure 5.1
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The models agree The models disagree
Label Correct Incorrect M-BERT RobBERT Both wrong
NL 2857 16 34 31 4

VAR 132 51 22 43 16
NAME 279 11 6 12 6
MOR 185 7 18 5 6
NON 152 11 2 8 3
ENG 101 7 3 7 4
OTH 11 5 1 2 5
Total 3717 108 86 108 44

Table 5.2 Amount of predictions the transformer models agreed upon and disagreed upon, listed per
true label. If the models disagreed, I also specified which model predicted the label correctly,
or if they were both wrong.

ambiguous, as discussed in Section 3.2.3. The words the models disagree on, can sometimes
be explained based on the model’s properties.

I discuss the errors both models made, as well as which errors are more common in one
model or the other. First, I discuss predictions for VAR.

5.1.2.1 VAR
The VAR category is most often misclassified as NL, by M-BERT (87 words), as well as
RobBERT (57 words). 43 VAR words in the test set were predicted to be NL by both models.
I try to find a theme in difficulty for the models. Examples are shown in the following

• Words that are technically correct Dutch, but were the wrong word to use, like ‘schat-
tige’(wrong inflection), ‘het’ (wrong article), ‘me’ (wrongly used as a possessive pro-
noun).

• But also words with a typo, like ‘filmpoje’ (from: ‘filmpje’, video) ‘hulen’ (from:
‘huilen’, cry), or ‘belefheid’(from: ‘beleefdheid’, politeness).

• Words that are split due to their offensive nature into two words so that a chat moderator
wouldn’t flag them and ban them: ‘hoe’, ‘rige’. (from: ‘hoerige’, slutty)

M-BERT misclassifies more VAR words than RobBERT. Especially simple spelling or
typing mistakes are more often misclassified by M-BERT.

Such as, ‘verkerd’ (from: ‘verkeerd’, wrong), ‘scheinheilig’ (from: ‘schijnheilig’, hyp-
ocrite).‘geneusde’ (from: ‘gekneusde’, bruised)



5.1 Error Analysis 79

Description Example Corrected version Translation
Words lacking a final ‘n’ ‘wille’ willen (to) want

Letter repetitions ‘straksssssss’ straks soon/later
Common unofficial Dutch acronyms ‘gwn’ gewoon simply/just/usual
Words with strange encoding error ‘3d2it 3i2s 3e2cht’ dit is echt this is real

Table 5.3 Types of VAR words the transformer models were typically able to recognize as VAR.

Several VAR words are misclassified as MOR, such as ‘samballl’ (sambal) and ‘wrm’
(acronym for ‘waarom’, why). This can be explained, as words in the MOR category can also
be acronyms or may use letter repetition.

In Table 5.3, there is an overview of types of VAR words that both transformer models
consistently predicted correctly. The logistic regression model simply predicted correctly any
words that appeared in the training set, without a visible theme.

Most correctly classified words were either words that appeared many times, like ‘gwn’,
a common way of writing ‘gewoon’ (simply, just). ‘ff’ (dutch acronym for ‘even’, which has
many translations, it’s like ‘just’ or sth), ‘k’, which is short for ‘ik’ (I).

Words with letter repetitions were usually classified correctly as VAR, such as ‘babyyyy’
(baby), ‘gaaan’ (gaan, go) or ‘strakssssssss’ (straks, soon). These are typically not words that
appeared more than once, as the amount of letter repetitions is rarely consistent

Words that lack a final ‘n’, were also classified correctly. ‘wille’, ‘make’, ‘mense’, ‘manne’.
Words that start with a 3 and a 2 around the first letter are also categorized correctly. ‘3d2it’,

3i2s’, ‘3e2cht’.
Overall, this category is an interesting one! However, I believe now that it is a too confusing

category to train on in combination with classification of code-switching, as the label is too
volatile and inconsistent, and is too much like NL.

5.1.2.2 NL
Relatively, the NL category has the least mistakes, but as it is such a frequent label, it is the
second most misclassified label in absolute numbers.

M-BERT categorizes 31 words in the test set as VAR that I assigned NL, and 20 words as
another category, mostly NAME. RobBERT’s most commonly assigned label for NL words is
also VAR (23), although the predictions are more diverse than in M-BERT. VAR is followed
closely by NAME (14), as well as 17 words something else (either ENG, NON or MOR).

First, I discuss words that the models thought to be VAR. 10 words are deemed VAR by
both models, but NL by me. I found that in some cases the model was right where I was not.
For instance, ‘dankjee’ (thankss) was classified as VAR, whereas I labeled it NL. The word
has a letter repetition, and is normally spelled as ‘dankje’ so the models are correct that it
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Category Example
Laughter ‘hhhh’, ‘hahahahhah’
Emojis ‘:D’, ‘:P’, ‘:-)’

Human sounds ‘hmmm’, ‘pff’

Table 5.4 Types of words easily categorized as NON by transformer models

should be VAR. Another word that I labeled NL: ‘das’ (that’s), should be written as ‘da’s’ and
may then still qualify for VAR, as it is an informal short version of ‘dat is’ (that is).

M-BERT does not recognize certain words that are clearly Dutch, but probably a little
infrequent, so not part of M-BERT’s vocabulary, like ‘Afghaan’ (Afghan), ‘waterijsje’ (pop-
sicle), ‘hoogmoed’ (pride).

In contrast, RobBERT does recognize these words as correct Dutch, but instead appears
to be stricter than my annotations in two instances. Like for ‘naief’ (naive), which misses
a diaeresis and thus should be ‘naı̈ef’. RobBERT classified this word as VAR, whereas I
assigned NL. The same goes for ‘beinvloedt’(influences), which should be ‘beı̈nvloedt’. As
RobBERT is trained on informal data from the internet, this surprised me. During annotation,
I chose to ignore punctuation-like mistakes, as this is very common in the dataset.

5.1.2.3 MOR
MOR generally does quite well, between 8 and 14 percent wrongly classified. Unlike VAR,
the MOR words don’t really have one label they are confused with. NAME is most often
predicted, followed closely by VAR.

RobBERT makes more mistakes than M-BERT in this category, especially on words that
occur more often, despite being spelled differently, like ‘Wallah’, ‘imam’ and ‘hamdoelilah’,
all being mistaken for NAME.

Some words are classified as OTH, by both models, such as ‘denia’ (Arabic for: world),
‘ilaha’ (Arabic for: worshipped) and ‘mlieh’ (Berber for: good). Although I wasn’t certain
during annotation, they turned out to be correctly annotated by me.

5.1.2.4 NON
The NON category is generally easy for the transformer models. Laughter, emojis, website
links, separate punctuation characters and human sounds such as ‘hmm’ and ‘pff’ were
consistently categorized correctly as NON by both transformer models. See Table 5.4 for an
overview. The logistic regression model categorizes only laughter, website links and human
sounds consistently correct, omitting emojis and sole punctuation marks entirely from the
category. Interestingly, the logistic regression model did recognize ‘bla’ as NON, whereas
M-BERT did not. RobBERT did catch this word.
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Most mistakes the models agreed on was one user who spammed ‘lalala’ various times,
which both models judged to be MOR, for reasons unknown to me. Also, some human sounds
were predicted to be VAR, like ‘ieeeeee’ and ‘aaai’.

Again, I found words that were wrongly labeled by me, such as ‘lol’, which I consistently
label OTH, but once by accident NON, so the model remains consistent and labeled it as OTH.
Nonetheless, it counts as a mistake.

I also counted links to websites as NON and although the models generally understand
this, one link was labeled wrong by both M-BERT and RobBERT.

5.1.2.5 OTH
Despite the lack of instances in the OTH category in the test set, many were mistakes. Most
words were labeled NL. Interestingly, many words could have been NL, like ‘pas’, which can
mean ‘step’ in Dutch, but was in this context used as the French word for ‘no’, as in ‘pas
de problème’ (no problem). Another example could be ‘heil’, which was used in the context
of the nazi greeting ‘heil Hitler’, and therefore judged by me to be German. However, ‘heil’
also can mean ‘welfare’ in Dutch. The Dutch abbreviation ‘btw’ can mean either ‘belasting
toegevoegde waarde’ (taxes added value), or it’s used as an internet acronym for ‘by the way’
in this context, counting as OTH. However, both models label this word as NL.

Again, some mistakes were made by me, setting up the model for failure. ‘woehoeeeeeeee’
should not have been labeled as OTH, but could either be NON or VAR, depending on if
‘woehoe’ counts as a word in Dutch. Van dale dictionary does not include it, and it would
therefore be NON. The models both classified it as VAR, making it wrong anyway, but for
a different category. Also, ‘Hitler’ should have been NAME, although both models predicted
NL.

Given the multilingual premise of M-BERT, I presumed that M-BERT would perform
better on this category than RobBERT would. This is barely the case, as they perform quite
similarly. Although they only agree five times, most words in this category were misclassified.
An example of M-BERT performing better is that ‘ciao’ was not recognized by RobBERT, but
it was by M-BERT.

5.1.2.6 NAME
The NAME category goes relatively well. Most misclassified names on which the models
agree are mistaken for MOR, which is understandable, as many names refer to Moroccan
people with Moroccan names, like ‘zohra’, ‘A9al’, and ‘shai’. Mistakes in M-BERT are mostly
due to wrongly predicting NL, followed by VAR. Sometimes this is understandable. For
example, ‘Keukenprinses’ (kitchen princess), ‘ben’ ((I) am) and ‘ajax’ (Dutch soccer club)
all appear in the Dutch language.



82 Chapter 5 Discussion and Conclusion

VAR is often assigned for names that contain letter repetition, like ‘iliass’, ‘balkannn’ and
‘marouannnn’, whereas English usernames can be mistaken for English, such as ‘SWeetheart’
and ‘ice-cream-man’.

RobBERT fails to recognize brand names like ‘sevenup’, ‘bacardi’ or ‘rtl8’, whereas M-
BERT only misclassifies ‘bacardi’.

5.1.2.7 ENG
Again, in this category we see a lot words that could have been Dutch, but are used in an
English context here, like ‘help’, ‘van’ or ‘room’ (which means cream in Dutch).

M-BERT misclassifies various to a human obviously non-Dutch words as NL, like ‘de-
struction’, ‘voice’ and ‘weed’. RobBERT does not do this.

5.2 Limitations and Future Work
In this section, I discuss the limitations of my two deliverables, and propose ideas for future
work, approaching each component individually. First I elaborate on the annotated dataset,
followed by a review of the fine-tuned classification models.

5.2.1 Dataset and Annotations
As discussed in Section 3.2.1, I annotated a subset of the Moroccorp on word-level, using a
set of seven labels suitable for language identification. This set of labels includes language
labels for Dutch, English, Moroccan languages and Other languages (NL, ENG, MOR, OTH)
as well as labels for language independent utterances (NAME, NON), while labeling incorrect
and non-standard instances of Dutch words separately (VAR).

The full, unlabeled corpus was scraped from a chat forum by Ruette and Van de Velde
[2013], to collect data on informal language production. The authors stress that a corpus
of chat language is only partially relevant for linguistic research, as only a small group of
people is documented in a highly specific setting. This makes it challenging to generalize
any findings. Contribution per individual user differed greatly. The twenty most active users
contributed about 10% to the corpus [Ruette and Van de Velde 2013]. This limitation is
continued in my subset of the Moroccorp, as the sample is skewed and not representing all
possible variations, causing some features to get too much weight. The sampling of the first
batch of the dataset was done with longer parts of text (200 lines per batch) in which some
users were prominently featured, although they could be huge outliers. A clear example of
an outlier is the user that writes each word like ‘3t2his’, encompassing the first letter of each
word with a 3 and a 2, which I discussed in Section 3.2.3. Words written by this user are
very dominant in the recognition of the VAR label. One in six words of the words that receive
the VAR label are written by this user, whereas this user was the only user in the annotated
dataset (as well as in the full Moroccorp) that typed like this. Despite this, many words that
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are correctly labeled VAR are of this type, impacting the scores of VAR greatly. In the future,
such outliers could be excluded.

During the error analysis from Section 5.1, I discovered that my own annotations can be
low in reliability. While I had ensured that words with at least two occurrences in the dataset
were either labeled consistently or are exceptions, other words remained without inspection.
While analyzing the models’ mistakes in Section 5.1.2, I discovered that various words that
had a sole occurrence in the dataset, were mislabeled by me. These are either words with
spelling errors that I missed, or words that I labeled as VAR, but were actually used correctly
so should have been NL. Other mislabeling was done due to me changing the definitions of a
label during annotation. For example, I initially included language independent utterances,
like ‘:D’, in the label OTH. When I created a separate label NON for these instances, I
relabeled them, but missed several. Another aspect that may be interesting to change is the
splitting of words on spaces. In the dataset, various words are concatenated with a comma or
a period instead of a whitespace, such as ‘Zorro..jij’ resulting in several words being treated
as a single word by me during annotation, despite consisting of two words that each fall into a
different category. In the future, the words could also be split on punctuation marks to prevent
this.

Regarding the validity of the annotations, my limited knowledge on the languages present
in the dataset made the annotation process more difficult. For example, I treated the wildly
different languages of Arabic and Berber as one single language, due to my limitation of
knowledge. They are from different language families and therefore quite different. In the
future, a label for each Moroccan language could be used. Also, a label like ‘unknown’ may
be introduced, to prevent mislabeling words that are too ambiguous to classify. As stated in
Section 3.2.3, a fellow student, who is fluent in Berber and has knowledge of Arabic, helped
me verify the Moroccan nature of the words I annotated as such. Their check indicated that
the majority of my annotations are valid, but they only reviewed the 200 most frequently
occurring unique instances I had annotated as Moroccan words. Moreover, words that I may
not have recognized as Moroccan in the first place were not reviewed. In the future, the
annotation process could be done by multiple annotators, who can review each other’s work.
This would limit inconsistencies to some extent, either due to inattentivity or a disagreement
on the definitions of the labels.

As became clear from my analysis in Section 3.3, the annotated dataset does not feature
each category of words in equal amounts. Especially OTH and ENG appear infrequently,
as together they make up only 3,5% of the dataset. Perhaps, future research could combine
these two labels, as the main focus of the dataset is code-switching between Dutch and the
Moroccan languages as well as the use of the Moroccan-Dutch ethnolect. However, combining
labels that are not closely related may also increase the difficulty of the task.

I also think that the use of a VAR label is too broad to capture in this classification task. The
range of simple mistakes, like letter repetition to a more advanced mistake of using an existing
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word in the wrong place, in combination with code-switching seems too much to handle all at
once. The label could be split into different types of spelling variations. For instance, spelling
errors and grammatical errors separately. This may make it easier to classify.

For future work, intersentential code-switching in the Moroccorp can be investigated as
well. Although the dataset does not provide timestamps on each message, making it unknown
whether the text is of a conversation-like nature and the lines that follow each other are
reactions to each other, it can still be investigated how often a switch happens between lines
in the dataset. Additionally, the messages that were uttered by the same user can be grouped
as one utterance, making the lines longer. It would be interesting to see if the amount of
intersentential code-switching is (dis)similar to the amount of intra-sentential code-switching
in the Moroccorp, as each type of code-switching uses different linguistic patterns and serve
different communicative functions.

Like I discussed in Section 3.3.3, the Code-Mixing index on document-level measures how
many words in the dataset does not belong to the matrix language. Intrinsically, this does not
reflect the amount of intra-sentential code-switching, but how multilingual a document is.
The Code-Mixing index on utterance-level does reflect the amount of intra-sentential code-
switching. Other than the paper that initially proposed this metric, I found no other users of
this metric. As the goal of this index is to make the amount of code-switching comparable
among datasets, this aspect could be investigated further in the future.

5.2.2 Models and training
As discussed in Chapter 4, I fine-tuned two pre-trained deep learning transformer-based lan-
guage models, named Multilingual BERT (M-BERT) and RobBERT, on the task of token
classification for the annotated dataset. Additionally, I trained a multinomial logistic regres-
sion model on the same task.

I performed hyperparameter tuning, to optimize the results of the models. The current
hyperparameter tuning could have been more thorough as I started out with a maximum of
8 epochs, whereas later it became clear that 14 epochs generally results in a higher score.
Also, I performed the hyperparameter tuning all on the same seed. However, by not trying
multiple seeds, some performance differences could simply be random. In the future, more
models could be run to ensure that the best hyperparameters are found. Future work could
also explore the tuning of different hyperparameters, like weight decay, the type of optimizer
algorithm or a dropout rate, as well as their combination.

The amount of word overlap between the training, validation and test set is relatively high
(75% between validation and training set). This could be an explanation for the increasing
classification scores in combination with increasing validation loss, as the models are actually
overfitted on the training set, becoming worse at generalization. However, because the vali-
dation and test sets are both highly similar to the training set, the overfitting is not reflected
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in the evaluation scores but only in the validation loss. In the future, word overlap could be
limited as the dataset splits become larger.

Because of the unequal amount of instances for each label in the dataset, I augmented the
data, by copying each line in the training set in which one of the three least common labels
(MOR, ENG, OTH) were present. As exemplified by the low number of 24 instances of the
OTH label in the test set, compared to the 2942 NL words, more data on the less frequent labels
is needed. The data augmentation I performed in Section 4.4 did not show improvement, as
shown in Table 4.15. Future work could use a larger dataset by annotating more text, until I
reach a minimum amount of words that falls in a category. Additionally, I could employ other
forms of data augmentation, like the exclusion of monolingual lines or the downsampling
of the most common labels. This would amplify the amount of examples in which there is
code-switching present, making the models more familiar with it.

In the future, the models I fine-tuned may be used for other language identification
tasks, using other datasets that are suitable for it, like the datasets used in the benchmarks
GlueCOS [Khanuja et al. 2020] and LinCE [Aguilar et al. 2020], which are composed of
code-switched text in various language combinations, such as Spanish-English and Modern
Standard Arabic-Egyptian Arabic. It would be interesting to investigate whether the models
are able to transfer their learned knowledge to other datasets, despite them being composed
of different combinations of languages and may require additional fine-tuning.

Furthermore, the exploration of using the Moroccorp for different tasks, such as Part-of-
speech tagging, Named Entity Recognition or Question answering is also interesting, as these
tasks have practical applications in the real world, and are especially challenging for low-
resource languages.

5.3 Summary and Conclusion
In this thesis I investigated the use of code-switching and the Moroccan ethnolect in a
Moroccan-Dutch dataset (Moroccorp) that originates from a chat forum. Then, I researched
the capabilities of transformer models to identify the use of these two phenomena using a
token classification task.

I conducted a literature review on both the linguistic approach of code-switching in
Section 2.1 as well as the origin and characteristics of the Moroccan ethnolect in Section 2.2.
Then, I reviewed research approaches on the identification of code-switching using NLP
models in Section 2.3 and researched the use of transformer architectures and transformer
models that are suitable for Dutch in Section 2.4.

I randomly sampled a subset of Moroccorp to annotate on word-level using a set of labels
that I selected in Section 3.2.1, including labels for three languages (NL, ENG, MOR),
named entities (NAME), language independent utterances (NON), other languages (OTH)
and spelling variations of Dutch (VAR). I explained the full process of this annotation in
Section 3.2.2.
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The annotated dataset was then analyzed and I measured how much code-switching occurs
in Section 3.3. Both code-switching and the Moroccan ethnolect occur in the Moroccorp.
Code-switching mostly happens between Dutch and Arabic or Berber, while English-Dutch
code-switching is found frequently as well. Words from other languages are also found in the
dataset, such as Turkish, French and Sranan Tongo. The frequency of code-switching (CMI
= 10,92) is similar to other datasets on which research regarding code-switching is executed,
like Mave et al. [2018] (CMI = 10,14). This is an indication that the Moroccorp is suitable
for more research on code-switching, perhaps in the form of a more complicated task, like
Question answering. As discussed in Section 2.2.3 and Section 2.2.4, the Moroccan ethnolect
is characterized by insertions of certain Arabic function words, deliberate misspellings and
wrong grammatical inflections of adjectives, all of which are found in the labeled dataset, as
stated in Section 3.3.

I then used the annotated dataset for a custom classification task, which includes language
identification as well as the identification of language independent utterances, named entitites
and spelling variations of Dutch, using the labels previously mentioned. I fine-tuned two pre-
trained transformer models on this dataset, RobBERT and Multilingual BERT. Additionally,
I trained a logistic regression model as a baseline. The setup for the models is discussed in
Chapter 4 and their evaluation and hyperparameter tuning in Section 4.3.

The transformer models perform the classification task relatively well, reaching scores
(RobBERT: F1-score = 0,82; M-BERT: F1-score = 0,81) that are higher than the inter-
annotator agreement (0,70). The transformer models reach scores that are significantly higher
than the simple logistic regression baseline (F1-score = 0,53). Although the two transformer
models reach no significant difference (p = 0,07) on the macro-average F1-score, there remain
certain differences in performance. RobBERT reached a significantly higher accuracy score,
mostly due to the large amount of Dutch words that it classifies correctly, as well as a
significantly higher amount of spelling variations of Dutch that it recognizes. For the task of
recognizing Moroccan languages, both models score similarly high. For the task of identifying
part of the Moroccan ethnolect, in the form of VAR, RobBERT is the better option. Both
models can be used for recognizing NL, ENG, NON and NAME.

Ultimately, both models are suitable for the task, but they may achieve higher performance
on a more balanced dataset. Also, the task of simultaneously recognizing code-switching in
combination with spelling variations of Dutch is complex due to the difference in nature of the
two tasks and a strategic approach of focusing on each task individually in the future would
yield more beneficial outcomes.
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R. Barnett, E. Codó, E. Eppler, M. Forcadell, P. Gardner-Chloros, R. van Hout, M. Moyer, M. C. Tor-
ras, M. T. Turell, M. Sebba, M. Starren, and S. Wensing. 2000. The LIDES coding manual: A
document for preparing and analyzing language interaction data version 1.1—july, 1999. Inter-
national Journal of Bilingualism, 4(2): 131–132. https://doi.org/10.1177/13670069000040020101.
DOI: 10.1177/13670069000040020101.

A. Bell. 2013. The Guidebook to Sociolinguistics, 1. Introducing Linguistics, 3. Wiley-Blackwell. ISBN
978-0631228660.

D. Blasi, A. Anastasopoulos, and G. Neubig, 2021. Systematic inequalities in language technology
performance across the world’s languages.

87



88 BIBLIOGRAPHY

S. L. Blodgett and B. O’Connor. 2017. Racial disparity in natural language processing: A case study of
social media african-american english. CoRR, abs/1707.00061. http://arxiv.org/abs/1707.00061.

S. L. Blodgett, L. Green, and B. O’Connor. 2016. Demographic dialectal variation in social media: A
case study of African-American English. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1119–1130. Association for Computational Linguistics,
Austin, Texas. https://aclanthology.org/D16-1120. DOI: 10.18653/v1/D16-1120.

Z. Bock. 2013. Cyber socialising: Emerging genres and registers of intimacy among young South
African students. Language Matters, 44: 68–91. DOI: 10.1080/10228195.2013.784924.

S. Bonjour, 2009. Grens en gezin. Beleidsvorming inzake gezinsmigratie in Nederland, 1955-2005.

L. Boumans and E. Crevels, 2005. The Dutch bilingualism database.

A. Brandsen, A. Dirkson, S. Verberne, M. Sappelli, D. M. Chu, and K. Stoutjesdijk, 2019. BERT-NL a
set of language models pretrained on the Dutch SoNaR corpus.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, 2020. Language models are
few-shot learners. https://arxiv.org/abs/2005.14165.

CBS, 2023. Hoeveel mensen met een migratieachtergrond wonen in Ne-
derland? https://www.cbs.nl/nl-nl/dossier/dossier-asiel-migratie-en-integratie/
hoeveel-mensen-met-een-migratieachtergrond-wonen-in-nederland-.

J. Cheshire, P. Kerswill, S. P. Fox, and E. Torgersen. 2011. Contact, the feature pool and the speech
community: The emergence of multicultural London English. Journal of Sociolinguistics, 15: 151–
196.

L. Cornips and V. de Rooij. 2003. Kijk, Levi’s is een goeie merk: maar toch hadden ze ’m gedist van je
schoenen doen ’m niet. Jongerentaal heeft de toekomst, pp. 131–142. Bert Bakker, Nederland. ISBN
90 351 2571 1.

R. Dale. 2021. GPT-3: What’s it good for? Natural Language Engineering, 27(1): 113–118. DOI:
10.1017/S1351324920000601.

E. Darics. 2013. Non-verbal signalling in digital discourse: the case of letter repetition. Discourse,
Context and Media, 2: 141–148.
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