
UTRECHT UNIVERSITY
Faculty of Science

Department of Information and Computing Sciences
MSc Artificial Intelligence

REMOVAL AND INPAINTING OF OBJECTS FROM
STREET-VIEW SCENES USING DIFFUSION MODELS

A THESIS BY

Dimitar Milenov Angelov
2339463

Project supervisor Assist. Prof. dr. Itir Onal Ertugrul
Daily supervisor Jeroen Guelen

Daily supervisor Sara Abdulaziz
Second examiner Assoc. Prof. Dr. ir. Ronald W. Poppe

Abstract

Inpainting is the process of reconstructing missing parts of an image, with the goal of
producing a convincing result. This research, done in collaboration with Cyclomedia,
investigates whether latent diffusion models (Rombach et al., 2022) can be used to inpaint
the missing regions after an object has been removed from a street-view image. Cyclomedia
semantic object masks were refined using the SAM model (Kirillov et al., 2023) to produce
high-quality and accurate object coverage for inpainting. Fine-tuning was evaluated
for increasing the accuracy and quality of inpainting results. A partial loss function
was proposed, implemented, and evaluated. Lastly, a feature-based measure of image
complexity was used to evaluate the training data and a model was trained on a subset of
the most complex training images. The evaluation process includes both computational
metrics and a qualitative user study. We found that the fine-tuning process improves the
generative performance of the models, but that the partial loss and data filtering techniques
did not result in an improvement. We speculate on reasons why that may be the case and
share recommendations for future research directions.

1

Table of Contents

1 Introduction 4
1.1 Research Questions . 6

2 Literature Review 7
2.1 Generative Models . 7

2.1.1 Autoencoders . 8
2.1.2 Generative Adversarial Networks 15
2.1.3 Diffusion Models . 23
2.1.4 Datasets . 28
2.1.5 Evaluation Metrics . 29

2.2 Image Inpainting & Restoration . 33
2.2.1 Non-Neural Methods . 33
2.2.2 Neural Methods . 37

3 Methodology 48
3.1 Data Preprocessing . 48

3.1.1 Training Images . 48
3.1.2 Inference Images . 50

3.2 Fine-Tuned Latent Diffusion . 52
3.3 Partial Loss Function . 53
3.4 Data Filtering . 55
3.5 Evaluation . 57

3.5.1 Quantitative Measures . 57
3.5.2 Qualitative Measures . 58

4 Results 60
4.1 Quantitative Metrics . 61
4.2 Qualitative Metrics . 61

5 Discussion 63
5.1 Summary of Findings . 63
5.2 Limitations . 67
5.3 Future Work . 67

6 Conclusion 69

2

A Validation set results 81

B Unweighted Partial Loss 82

3

1. Introduction

Image inpainting is a fundamental task in computer vision that involves filling in missing
or damaged parts of an image. The ability to reconstruct images that are incomplete or
corrupted is critical in many applications, two of which this work will focus on - object
removal and image restoration. In the context of supplying street-view imagery, removing
objects such as people and cars can be used as a privacy measure, in place of blurring faces
and license plates. An image in which such objects are removed rather than blurred would
be more natural for an end user. However, this is a difficult task, because removing these
objects from an image leaves missing information, creating a hole. This is not acceptable,
as it is important that the resulting image appears natural - one should not be able to tell
that there ever was an object.

Traditional methods for image inpainting rely on handcrafted features and priors, which
limit their ability to handle complex image semantics, making them unsuitable for such
applications (Rojas et al., 2020). Generative Adversarial Networks (GANs) have been able
to create realistic images, but struggle with learning the structures of complex semantically-
rich datasets, such as street-view imagery. Recently, deep learning Diffusion Models
(DMs) have achieved impressive results for generating natural images and complex scenes,
garnering a large amount of research and media attention (Croitoru et al., 2022). They have
been applied to inpainting and achieved state-of-the-art results, beating both traditional
and GAN-based methods (Lugmayr et al., 2022; Rombach et al., 2022). The prospects of
natural removal of privacy-sensitive information and impressive results of DMs motivate
this thesis, which will be performed at Cyclomedia.

The goal is to investigate whether DMs are a suitable method for the task of object removal
on Cyclomedia data. It is important for Cyclomedia that the inpainting is natural and
accurate - meaning no inaccurate data is hallucinated in the inpainted areas. To this end,
several research questions and associated methods are motivated and proposed.

In this introduction, a short overview of Cyclomedia, as well as the research questions of
this thesis, are given. An extensive literature review of the generative modelling and image
inpainting fields are presented. The proposed methodology contains an overview of the
dataset which will be used, three methods to be investigated, and the evaluation strategy.
The proposal ends with an overview of the plan for Phase II of the thesis.

4

Figure 1. Cyclomedia recording setup. Left: Digital Cyclorama Recorder
(DCR) system. Right: Car-mounted DCR system.

Cyclomedia is a company which specializes in providing street-view and aerial imagery
as well as LIDAR point clouds. This thesis will make use of part of their street-view image
dataset, which is recorded annually with high location accuracy. The company provides
full coverage in the Netherlands and partial coverage in other countries, including France,
Germany, the United States, and Scandinavian countries. Cyclomedia’s customers include
municipalities, utilities, infrastructure, and insurance companies, who leverage their data
for things such as virtual inspections, inventory management, and infrastructure planning
without physical site visits. The recorded data is available via an online viewer called
StreetSmart, which includes various features such as distance and surface measurements
on maps and image data.

The street-view data is captured using the Digital Cyclorama Recorder (DCR) system,
which is mounted on top of recording cars. This is shown in Figure 1. The DCR system
comprises of five cameras with their focal points on a line parallel to the driving direction,
enabling the capture of a parallax-free 360° panoramic image, or Cyclorama, while driving.
This patented method ensures that the 100 megapixel images are precisely aligned and
captured exactly every 5 meters (Heuvel et al., 2011). While driving a Velodyne LIDAR
scanner is continuously scanning the environment. The scanner is tilted backward, enabling
the recording of a high-density point cloud of the entire street, including the road, adjacent
areas, and higher buildings. This point cloud is used to calculate the distance for each pixel
in an image. The depth can be determined by measuring the distance between the location
of the camera and the intersection point of a ray from the camera location and the point
cloud. This is done automatically for every image in the Cyclomedia pipeline.

As mentioned already, one of the critical aspects of Cyclomedia’s data is the highly accurate
positioning and calibration of the images. GPS alone would be unreliable, particularly in
urban areas, where a signal might be difficult to receive. Therefore, the position of the
recordings is calculated by combining several sensors, such as GPS and IMU, resulting
in a relative position accuracy within 2 centimeters between Cycloramas. In addition, a

5

dataset of images annotated with semantic maps, created by professional human labelers
is available. Both the semantic-labelled data and location information will be leveraged
during this thesis by the methods in this thesis. This is covered in more details in Section 3.

1.1 Research Questions
Main research question: How effective are latent diffusion models at inpainting natural
street-view scenes?

Subquestions:

1. What is the impact of fine-tuning on the generative performance of the model in
inpainting street-view scenes?

2. How does a loss function which focuses on specific parts of the image influence the
generative performance of the model in inpainting street-view scenes?

3. How does the intricacy and complexity of the data used to fine-tune the data affect
the generative performance in inpainting street-view scenes?

4. Is there a significant user preference when comparing the generative performance of
the fine-tuned model against the baseline for inpainting street-view scenes?

6

2. Literature Review

2.1 Generative Models
Generative models are a type of machine learning model that focus on estimating the
underlying probability distribution that generates the input data. Unlike discriminative
models (such as logistic regression, SVM, and deep neural networks), which estimate the
probability of a target variable Y given an input X (P (X|Y)) by learning the distinguishing
characteristics of Y , generative models learn the entire distribution of P (Y |X). The Naïve
Bayes classifier (Webb, 2010) is the simplest example of an algorithm which uses P (Y |X)

and P (X) and through Bayes’ rule calculates P (X|Y), and is considered a generative
model. Usually calculating P (Y |X) directly is not possible, therefore a generative model
is used to estimate the distribution. Given that a classifier has estimated such a distribution
correctly, one can sample from P (X|Y) arbitrarily to create realistic (fit to the data
distribution) data samples X .

Training a generative model takes substantially longer than a discriminative model because
a much higher number of correlations need to be learned to recreate the entire probability
distribution versus learning to discriminate between samples lying on the distribution.
For instance, a convolutional neural network (CNN) (Venkatesan and Li, 2017) classifier
can distinguish between images of cats and dogs by identifying only a few significant
differences between them, while a deep convolutional generative adversarial network
(DCGAN) (Radford et al., 2016), on the other hand, must learn all features of cats and dogs
to generate realistic images of them. Discriminative models define a decision boundary in
the data space, while generative models must comprehend the entire distribution of the
data – a fundamentally more complex task, as pointed out in Harshvardhan et al. (2020).

Since they are based on such a powerful idea, it should be no surprise that generative
models have found a variety of applications in a range of fields, from computer vision,
to language processing, music, drug discovery, and more Harshvardhan et al. (2020).
This section of the review will focus on generation specifically within the domain of
computer vision, going over the ideas, applications, and architectures behind three of the
main families of models – Autoencoders, Generative Adversarial Networks, and Diffusion
Models. The intention is to provide readers with the necessary background information on
the field of image generation, building up from techniques proposed over four decades ago
to the state-of-the-art techniques disrupting the art world today.

7

Figure 2. Example of an autoencoder architecture. The input image is encoded
to a compressed representation and then decoded. Courtesy Bank et al. (2021)

2.1.1 Autoencoders
Autoencoding models, initially introduced in Rumelhart et al. (1986), are a type of unsuper-
vised learning technique that aim to learn compact representations of data by reconstructing
the input data through an encoding-decoding process. The goal is to learn a function that
maps the input data to a lower-dimensional latent space (also called the "hidden" space)
and a second function which maps the latent representation back to the original data space.
Those functions are typically called an encoder and decoder, respectively, and are each
learned via two independent neural networks. See Figure 2 for a high-level illustration of
an autoencoder model.

The encoding process can be thought of as a compression step, where the input data is
transformed into a more concise form while still capturing the most important aspects of
the raw data. The latent representation is typically much smaller in size than the original
input data, making it significantly more efficient to store and process. This restriction is
called a bottleneck. It is also a form of regularization, which increases the generalization
power of the learned model at the cost of accuracy. If a model were to not be regularized
in some way, the encoder and decoder would simply learn the identity function between
the input data (x) and the reconstructed data (x′). This is an important point, and many
other regularization techniques have been proposed in subsequent research. The relevant
techniques will be explored in this section.

The decoding process can be thought of as a reconstruction step, where the latent represen-
tation is transformed back into the original data space. As such, the input is a learned latent
representation of the input data and the output is the reconstructed data x′. The networks
are trained to minimise a reconstruction loss function, which measures the difference
between x and x′. This is further discussed in 2.1.1.

A key advantage of autoencoders compared to supervised learning models is that autoen-
coders do not need labelled data. This means that one can use natural, unlabelled image
data from the internet for training, without needing to spend person-hours labelling it

8

beforehand.

Learning a latent representation of data is a powerful idea, which can be applied to a
variety of problems. It is therefore not surprising that autoencoders have been applied to a
range of applications beyond image generation, including (but not limited to) classification,
clustering, anomaly detection, recommendation systems, and dimensionality reduction
(Bank et al., 2021).

Reconstruction Loss Functions The Mean Squared Error (MSE) is calculated by
taking the sum of the squares of the differences between the reconstructed data (x′) and
the original input data (x), and dividing by the number of data points (N).

MSE =
1

N

N∑
i=1

(xi − x′
i)
2 (2.1)

The MSE is differentiable and has nice mathematical properties, such as being convex.
However, it can be sensitive to outliers, as large errors can have a significant impact on the
loss value.

The Binary Cross-Entropy (BCE) is calculated by taking the negative sum of the product
of the original input data and the log of the reconstructed data, and the product of the
complement of the original input data and the log of the complement of the reconstructed
data.

BCE = − 1

N

N∑
i=1

(xi ∗ log(x′
i) + (1− xi) ∗ log(1− x′

i)) (2.2)

BCE =

−log(f(s1)) if t1 = 1

−log(1− f(s1)) if t1 = 0

(2.3)

Regularization L1 regularization, also known as Lasso regularization, encourages the
weights to be sparse, meaning that some of them will be set to zero, resulting in a more
interpretable model with fewer features. This is done by adding a penalty term to the loss
function proportional to the absolute values of the weights:

9

LL1 = L+ λ
n∑

i=1

|wi| (2.4)

where L is the original loss function, wi are the weights of the model, n is the number of
weights, and λ is the regularization strength hyperparameter.

L2 regularization, also known as Ridge regularization, encourages the weights to be small,
resulting in a smoother and more generalized model. This is done by the addition of a
penalty term to the loss function proportional to the squared values of the weights:

LL2 = L+ λ
n∑

i=1

w2
i (2.5)

L2 regularization is computationally more efficient than L1 regularization, as it has a
closed-form solution.

A combination of L1 and L2 regularization can be used simultaneously by adding both
penalty terms to the loss function:

LL1+L2 = L+ λ1

n∑
i=1

|wi|+ λ2

n∑
i=1

w2
i (2.6)

where λ1 and λ2 are the regularization strength hyperparameters for L1 and L2 regulariza-
tion, respectively. This encourages a balance between bias and variance.

The bias-variance trade-off is an important trade-off in the design of autoencoders. On one
hand, the architecture should effectively reconstruct the input with minimal error. On the
other hand, it should also produce a low-dimensional representation that can be generalized
to other inputs effectively. Various methods and architectures have been proposed which
attempt to balance these competing goals, as well as improve the models’ ability to learn
rich representations and capture important information.

Sparse Autoencoders (Ng, 2011) are a method of introducing a bottleneck in the infor-
mation flow in a neural network without reducing the number of dimensions of the latent
space. Instead, the loss function is modified via a sparsity penalty term, which discourages

10

the network from activating too many hidden units at the same time. This has the effect of
forcing the network to use only a portion of the available neurons to encode and decode
a given input. This is a different approach to regularization, which typically involves
regularizing the weights of a network, not the activations.

As a result, the trained network will focus individual nodes in the hidden layer to specific
attributes of the input data. Since only a portion of the available neurons in the hidden
layer are used, a limitation is imposed on the network’s ability to memorize the training
data, while not limiting its ability to extract features from it. Additionally, the sparsity
constraint separates the size of the latent state representation and the regularization of the
network. This allows the dimensionality of the encoding to be chosen based on the context
of the data, without running into issues due to under- or over-regularization.

There are two main sparsity terms which can be added to the loss function: L1 regular-
ization (2.4) and KL-divergence. L1 regularization penalizes the absolute value of the
activations, while KL-divergence compares the observed activations to an ideal probability
distribution and penalizes the network when the activations deviate from this distribution.

The KL-divergence is a function which measures the difference between two probability
distributions. In order to use it as a sparsity constraint, a sparsity parameter ρ is defined,
which denotes the expected average activation of a neuron over a subset of the dataset (M).
In essence, by constraining the average activation of a neuron over a collection of samples
neurons are encouraged to fire only for a subset of the observations.

ρj =
1

M

m∑
i=1

[a
(h)
i (x)], (2.7)

where the subscript j denotes the specific neuron in layer h, summing the activations over
M .

As part of our loss function, the KL-divergence (KL(||)) is used to compare the observed
ρ to a Bernoulli random variable distribution of ρ. Usually, the value of ρ is kept close to 0,
e.g. 0.05, with the goal of keeping the average activation of a neuron close to 0. A high
value for KL(||) would mean a large difference between the distribution of ρ over M and
an ideal distribution (Ng, 2011).

The KL-divergence and a reconstruction loss a KL-divergence regularization term have the
following form:

KL =

l(h)∑
j=1

ρ log
ρ

ρj
+ (1− ρ) log

1− ρ

1− ρj
(2.8)

11

Loss = L(x, x′) +
n∑

j=1

KL(ρ||ρj) (2.9)

Denoising Autoencoder A limitation of AE models is their sensitivity to noise in the
input data, which leads to an inability to reconstruct the original signal accurately when
presented with a noisy input. Denoising autoencoder (DAE) models, proposed in Pascal
et al. (2008), aim to solve this by adding noise to the input signal during training called
the "stochastic corruption process" (See Fig. 3). With this approach, it is impossible for
DAEs to learn a direct mapping by memorizing the training data, as the inputs the model is
trained on and the outputs it is trying to reconstruct are not the same. Additionally, DAEs
are relatively easy to train and not significantly more computationally expensive as the
only addition is the stochastic corruption process, which is computationally inexpensive.

The stochastic corruption process works by randomly setting a certain percentage of
the input elements to zero, or to a random value. The percentage of elements that are
corrupted is controlled via a corruption level hyper-parameter (c). This process is done
independently for each input element, and is applied to the input signal during training.
For example, for an image dataset, the stochastic corruption process would add noise to the
image by randomly setting a certain percentage of the pixels to zero or to a random value.
This process can be done in a variety of ways, such as masking out pixels in a random
rectangular region or masking out pixels randomly across the entire image. Pascal et al.
experimentally found that a corruption level of around 50% (c = 0.5) gave good results.

An algorithmic formulation of the stochastic corruption process could be:

■ Let x be the original input vector and c the corruption level (a scalar between 0 and
1)

■ For each element xi in x:
– With probability c, set xi to 0 (or, alternatively, a random value).
– With probability 1− c, keep xi unchanged.

DAEs have been applied in a wide range of applications such as image denoising, audio
denoising, text denoising, and anomaly detection (Patil and P.m, 2020).

Variational Autoencoders (VAEs, Kingma and Welling (2013)) are a class of generative
models that have gained significant attention in recent years for their ability to learn
complex distributions and generate new samples from them. VAEs differ from traditional

12

Figure 3. Denoising Autoencoder architecture utilizing stochastic corruption
process for unsupervised feature learning and noise reduction in images. The
stochastic corruption algorithm randomly applies noise to the input data, en-
couraging the autoencoder to learn robust features that are less sensitive to small
perturbations in the data. Courtesy Chollet (2016).

Autoencoders (AEs) in that they introduce a probabilistic approach to the encoding and
decoding process, which allows for the generation of new samples that are similar to the
training data but not identical.

VAEs were first proposed as a way to improve upon traditional AEs. In traditional AEs,
the encoder and decoder are trained to minimize the reconstruction error between the input
and the output. However, this approach has several limitations, including the inability
to generate new samples from the learned distribution and the difficulty of training the
model when the data is highly correlated. VAEs address these limitations by introducing a
probabilistic approach to the encoding and decoding process.

The basic idea behind VAEs is to introduce a latent variable z, which is assumed to be
a random variable with a prior distribution p(z). The encoder, or recognition model, is
trained to approximate the posterior distribution p(z|x) for a given input x. The decoder,
or generative model, is trained to reconstruct the input x from the latent variable z. The
main advantage of this approach is that it allows for the generation of new samples by
sampling from the prior distribution p(z) and passing them through the decoder.

The training process of VAEs is based on the optimization of the lower variational bound,
which is a lower bound on the log-likelihood of the data. The lower variational bound is
defined as:

log p(x) ≥ Eq(z|x)[log p(x|z)]− KL(q(z|x)||p(z)) (2.10)

Loss = L(x, x′) +
n∑

j=1

KL(qj(z|x)||p(z)) (2.11)

13

where p(x) is the true data distribution, q(z|x) is the approximated posterior distribu-
tion, p(x|z) is the likelihood, and KL(q(z|x)||p(z)) is the KL divergence between the
approximated posterior and the prior distribution.

The lower variational bound can be seen as a trade-off between the reconstruction error and
the regularization term. The first term, Eq(z|x)[log p(x|z)], represents the reconstruction
error, and the second term, KL(q(z|x)||p(z)), represents the regularization term. The lower
variational bound is optimized by maximizing the likelihood of the data while keeping the
regularization term small.

Several methods have been proposed to improve the performance of VAEs. One of the
most popular methods is the use of deep neural networks as the encoder and decoder. This
approach, known as the deep VAE (DVAE), has been shown to be effective in learning
complex distributions and generating high-quality samples (Rezende et al., 2014). Another
popular method is the use of adversarial training, where the decoder is trained to generate
samples that are indistinguishable from the real data, while the encoder is trained to
discriminate between real and generated samples. This approach, known as the adversarial
VAE (AVAE), has been shown to improve the quality of the generated samples and the
stability of the training process (Makhzani et al., 2016).

Another important aspect of VAEs is the choice of the prior distribution p(z). The most
commonly used prior distribution is the standard normal distribution, but other distributions
have also been proposed, such as the Laplace distribution (Rezende et al., 2014) and the
mixture of Gaussians (Tomczak and Welling, 2017). These alternative prior distributions
have been shown to improve the quality of the generated samples and the ability of the
model to capture complex distributions.

14

Figure 4. Generative Adversarial Network (GAN) architecture, consisting of a
generator (G) and a discriminator (D) network. The two networks are trained
synchronously in an adversarial manner, where the generator aims to fool the
discriminator by generating realistic synthetic samples, while the discriminator
tries to correctly identify the real and fake samples. Courtesy Wang et al. (2021).

2.1.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs), introduced in Goodfellow et al. (2014), are deep
neural network architectures consisting of two main components. A generator network (G)
and a discriminator network (D). The generator learns to generate new examples from a
random noise input, while the discriminator learns to distinguish between real data and
data generated by the generator network. The two networks are trained adversarially, with
the generator receiving feedback from the discriminator on its ability to outperform it by
generating high quality images. The architecture is shown in Figure 4.

The adversarial training aims to maximize the ability of the generator to produce realistic
data, and to minimize the ability of the discriminator to distinguish between real and
generated data. This idea is encapsulated in the loss function, called adversarial loss.

min
G

max
D

Ex∼pr log[D(x)] + Ez∼pz log[1−D(G(z))] (2.12)

Where G is the generator network, D is the discriminator network, x is a sample of the
real data, and z is noise.

Since the time GAN architecture was published by Goodfellow et al., it has gained more
attention and became a standard architecture that is being used in many applications for
image generation and restoration. Figure 5 shows a road-map overview of the research done
on GANs and the many variants which have been proposed since the original Goodfellow
et al. paper. This large interest is due to the fact they learn in an unsupervised fashion and,
perhaps most importantly, their power to generate high-quality images. They also have
three major advantages to prior generative models, specifically VAEs, as highlighted in
Wang et al. (2021):

15

Figure 5. A visual timeline of the research on Generative Adversarial Networks
(GANs) and its variants, showcasing the evolution of GANs since their inception
in 2014. The graphic highlights the different types of GANs proposed in
literature, including Deep Convolutional GANs (DCGAN), Wasserstein GANs
(WGAN), Progressively Growing GANs (PGGAN), and StyleGAN, among
others. Courtesy Farajzadeh-Zanjani et al. (2022).

1. GANs are able to produce any type of probability distribution, unlike VAEs which
are mainly driven to approximate the data distribution to a unit Gaussian prior that
limits their ability to learn complex features effectively (Goodfellow, 2017).

2. The GAN framework can train any type of generator network.
3. There is no restriction on the size of the latent variable.

In spite of their high capabilities, GANs have several limitations. One of the most signifi-
cant is that they are difficult to train and evaluate. In terms of training, it can be challenging
for the discriminator and generator to reach a Nash equilibrium, and it is common for the
generator to fail to capture the full distribution of the dataset, getting stuck in a suboptimal
state, and resulting in an issue known as "mode collapse" (Arjovsky and Bottou, 2017).
This results in the generated samples being limited to a specific subset of the data, rather
than having a diverse range of samples that cover the entire data distribution. In terms of
evaluation, the primary issue is determining the dissimilarity between the real distribution
of the target data (pr) and the generated distribution (pg). As explained in 2.1.1, it is not
possible to precisely estimate the real distribution, making it challenging to accurately
compare it to the generated distribution.

Apart from image generation, GAN-based models have been applied to various other
computer vision sub-fields such as image-to-image translation, image super-resolution,

16

and image completion. They have also been applied to different domains, such as natural
language processing, time series synthesis, semantic segmentation, and others (Wang et al.,
2021).

This rest of this section will cover some of the most significant GAN variants relevant to
this work, introducing the idea of each one and highlighting their advances and limitations.

Fully-connected GAN (FCGAN) In the work which proposed the GAN architecture,
Goodfellow et al. (2014), the GAN uses fully-connected neural networks for both the
generator and discriminator, and was applied to the relatively simple image datasets MNIST
(Li Deng, 2012), CIFAR-10 (Krizhevsky and Hinton, 2009), and Toronto Faces.

Goodfellow et al. suggest a training strategy of k steps optimizing the discriminator and
one step optimizing the generator to prevent overfitting of D. It was found that using the
adversarial loss (2.12) as the loss function results in an extremely low loss signal (known
as vanishing gradients) for G, and instead Goodfellow et al. maximize logD(G(z)) for
training G. The architecture uses a maxout activation for the discriminator and a mixture
of ReLU and sigmoid activations for the generator. It is a very influential paper, but the
results of the final model are limited and it does not generalize well to complex images.

Deep Convolutional GAN (DCGAN, Radford et al. (2016)) is a foundational support
for GAN research and is considered a major milestone in the history of GANs. DCGAN
builds upon the original GAN architecture by using deep convolutional networks, rather
than fully connected networks, in both the generator and discriminator. The architecture in
Radford et al. (2016) is made up from four convolution layers in both the generator and
discriminator and notably uses strided convolutional and transpose convolutional (also
called fractional or de-convolutional) layers (Zeiler and Fergus, 2013) in each, respectively.
See the architecture of the generator network in Figure 6 - the inverse is used for the
discriminator.

DCGAN also made several modifications to the GAN architecture with the aim of stabiliz-
ing the training process. These modifications include the use of batch normalization (to
center the generated samples and real samples at zero), and different activation functions
in the networks. In G, ReLU activation is used in the hidden layers and Tanh in the output,
and in D leaky ReLU is used (to prevent vanishing gradients when the activation input
is smaller than 0). The same adversarial-based loss function as the GAN proposed in
Goodfellow et al. (2014) (2.12) is used.

17

Figure 6. Deep Convolutional GAN (DCGAN) generator architecture, consist-
ing of four transpose convolutional layers which gradually increase the image
size from a latent representation to a 642 pixel image. No fully connected or
pooling layers are used. Courtesy Radford et al. (2016).

The training process was done using stochastic gradient descent with a mini-batch size of
128 and the Adam optimizer with a learning rate of 0.0002 and momentum term of 0.5. It
was trained on the 64x64 images from the Large-scale Scene Understanding (LSUN) (Yu
et al., 2016), ImageNet (Deng et al., 2009) and the customized-assembled face datasets.

While DCGAN has been successful in producing realistic low-resolution images, it is
limited in its capacity to generate diverse and high-resolution images. However, it remains
an important milestone in the field of GAN research and the transpose convolutional
architecture used in the generator has become widely adopted in GAN research (Wang
et al., 2021).

Wasserstein GAN (WGAN) The Wasserstein Generative Adversarial Network (WGAN)
(Arjovsky et al., 2017) uses a structure almost identical to the standard Generative Adver-
sarial Network (GAN). However the loss function is changed to the Wasserstein distance,
defined in the same work, in an effort to overcome the problem of mode collapse. The
Wasserstein distance, also known as Earth-Mover’s (EM) distance, is defined as

W (Pr, Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ[∥x− y∥] (2.13)

where
∏
(Pr, Pg) refers to a collection of all mutual proportions, and Pr and Pg, in the

range of γ(x, y), are the real and generated data respectively. Since it is a comparison
between two distributions, one may recall the KL-divergence (see 2.8). Compared to it, the
Wasserstein distance is able to calculate a distance even when the two distributions do not
overlap, and is continuous, making it ideal for providing a meaningful gradient for training

18

Figure 7. A comparison of the gradients provided by a typical Generative
Adversarial Network (GAN) discriminator and a Wasserstein GAN (WGAN)
critic, which highlights the advantage of WGANs over traditional GANs. The
figure illustrates that the gradients provided by the GAN discriminator tend
to saturate, leading to vanishing gradients and slow training. On the other
hand, the WGAN critic provides very clean gradients on all parts of the space,
enabling faster and more stable training. The WGAN architecture is designed
to optimize the Wasserstein distance between the real and fake distributions,
rather than the Jensen-Shannon divergence, as in the case of GANs. This results
in more stable training and higher quality generated samples, making WGANs
a popular choice for generative modeling tasks. Courtesy Arjovsky et al. (2017)

the generator. Figure 7 illustrates the gradient of WGAN comparing to the original GAN.

The inf in equation 2.13 is intractable, but Arjovsky et al. demonstrates that the Wasserstein
distance can be estimated by D as

max
w∼W

Ex∼Pr [fw(x)]− Ez∼pz [fw(G(z))] (2.14)

where fw can be realized by D, w is the parameters in the discriminator and z is the input
noise for the generator. The discriminator aims to maximize this equation in order to make
the optimization distance equivalent to the Wasserstein distance. So the loss for G is

−min
G

Ez∼pz [fw(G(z))] (2.15)

19

This highlights the second architectural difference between WGAN and the original GAN -
the function of D. The D in the original work is used as a binary classifier, but the function
of D in WGAN is to estimate the Wasserstein distance, which is a task with a continuous
output. Thus, the sigmoid in the last layer of D is removed in WGAN architectures.

WGAN was shown to be more stable during training (on the LSUN 64x64 image dataset
(Yu et al., 2016)) and to produce better results in terms of mode collapse problem. However,
the training was still found to be unstable at times when using momentum based optimizers
such as Adam, thus RMSProp (Hinton et al., 2012) is used for training. A very deep
WGAN does not converge easily.

Several subsequent variations of the WGAN architecture have been proposed in the
literature, such as Wasserstein Generative Well-intentioned Network (GWIN) (Cosentino
and Zhu, 2019), GS-WGAN (Chen et al., 2021), and Banach WGAN (Adler and Lunz,
2018). Gulrajani et al. (2017) propose a technique to improve the training procedure. These
works have further improved the performance of WGAN and have subsequently been
applied to various tasks such as image synthesis, text generation, and privacy-preserving
data generation (Farajzadeh-Zanjani et al., 2022).

Progressive Growing GAN (PGGAN) Progressive GAN (PGGAN) (Kim et al., 2021)
is a generative adversarial network that modifies the traditional GAN structure and training
methodology in order to reduce training time, increase the variation of generated images,
and stabilize the training process for generating large high-quality images. PGGAN
achieves this by progressively expanding the depth of G and D in synchrony, adding layers
step-wise during the training process (see Fig. 8). The progressive nature of the training
enables the networks to first learn the large-scale structure of the image and then precisely
learn the accurate scale details, rather than learning all scales of images at the same time.

PGGAN uses the idea of progressive neural networks, which allows for the deployment
of prior knowledge via lateral connections to previously learned features and does not
suffer from forgetting, making it widely applied for learning complex task sequences. The
training process starts with low resolution 4x4 pixel images, and the size of both G and
D is increased over the training process. All variables remain trainable throughout this
growing process, which enables substantially more stable learning for both networks. By
gradually increasing the resolution, the networks are faced with a much simpler task that
increases in complexity over time. This approach gradually leads to the ultimate goal of
discovering a mapping from latent vectors to high-resolution images.

20

Figure 8. A visualization of the Progressively Growing GAN (PGGAN) archi-
tecture, which works by gradually increasing the size of the networks during
the training process. The architecture starts with low-resolution 42 pixel images
and increases the size of both the generator (G) and discriminator (D) over time,
while keeping all variables trainable. This allows for more stable learning as the
networks are gradually faced with a more complex task, leading to the ultimate
goal of generating high-resolution images from latent vectors. Courtesy Kim
et al. (2021)

The PGGAN architecture uses Leaky ReLU with leakiness 0.2 for all layers of both D and
G except the last layers, which use linear activation. Only pixelwise normalization of the
feature vectors after each convolutional 3x3 layer in the generator is deployed, i.e., no batch
normalization, layer normalization, or weight normalization in either network. The Adam
optimizer is utilized for training D and G and the mini-batch size is gradually decreased
as the network size increases in order to deal with limitations on memory capacity. The
WGAN-GP (variant of Wasserstein distance (Gulrajani et al., 2017)) loss is used.

PGGAN has been trained on several datasets such as CIFAR-10 (32x32 pixel images)
(Krizhevsky and Hinton, 2009), LSUN (256x256 pixel images) (Yu et al., 2016), and
CelebA-HQ (1024x1024 pixel images) (Liu et al., 2015). PGGAN has been able to
generate large high-quality images, reduce training time, and solve GAN instability training
problems.

StyleGAN StyleGAN (Karras et al., 2019) is a style-based generative adversarial network
that utilizes the idea of progressive training and a redesigned generator structure to achieve
stylistic control over the generated images. The generator network maps the input latent
code into an intermediate latent space that is disentangled, allowing for regulation of the

21

style of the generated images through the use of a mapping network and noise layers.
An improved version of StyleGAN, known as StyleGAN2 (Karras et al., 2020), was
later proposed and achieved better results in image quality, efficiency, diversity, and
disentanglement.

One of the major contributions of StyleGAN is its ability to control specific features of the
generated images, such as pose, hair, and facial features, without compromising overall
image quality. This is in contrast to earlier GANs such as PGGAN, which had limited
control over specific features. The input features are divided into three types: (i) coarse
features - pose, hair, face, shape; (ii) medium features - facial features, eyes; (iii) fine
features - color scheme.

However, StyleGAN does have some characteristic artifacts, such as blob-shaped artifacts
and phase artifacts, which can be attributed to the use of instance layer normalization
and the progressive growing phenomena. Despite these limitations, StyleGAN and its
improved version StyleGAN2 have made significant contributions to the field of image
synthesis, and have been widely used and researched over the last few years.

22

2.1.3 Diffusion Models
Over the past ten years, generative adversarial networks (GANs) have been the focus of a
lot research effort for their ability to generate high-quality novel data. However, recent
advancements have led to the establishment of the diffusion model (DM) architecture as
the new state-of-the-art in deep generative models. Diffusion models have been able to
generate higher quality data compared to GANs, while also having more stable training
and not compromising on the diversity of the generated samples. In addition, DMs do not
suffer from mode collapse, convergence failure, and the overhead of adversarial learning –
all of which are known limitations of GANs.

Due to their remarkable generative abilities, there has been an increasing research interest in
both improving DM architectures and applying DMs to a variety of tasks in computer vision
– image generation, image super-resolution, image editing, image-to-image translation,
and, notably for this work, image inpainting (Croitoru et al., 2022; Cao et al., 2022).

Diffusion models utilize a two-stage approach. In the first stage, called the forward
diffusion stage, Gaussian noise is added to the input data over T steps. The training data is
gradually degraded until it becomes pure Gaussian noise. In the second stage, known as
the reverse/backward diffusion stage, a generative model is trained to gradually undo the
diffusion process and recover the original input data from the diffused (noisy) data, one
step t at a time. The generative model estimates the noise that should be subtracted at each
step and is typically based on a U-Net architecture (Ronneberger et al., 2015) to allow for
the preservation of the dimensionality of the data at each step.

It should be noted that there are at least three sub-categories of diffusion models, shown
in Figure 9 (Croitoru et al., 2022). The first sub-category consists of denoising diffusion
probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015), which draw inspiration from
non-equilibrium thermodynamics theory. DDPMs are latent variable models that use latent
variables to estimate the probability distribution. DDPMs can be seen as a variety of
Variational Autoencoders (VAEs), where the encoding process inside VAE corresponds to
the forward diffusion stage, and the decoding process corresponds to the reverse diffusion
stage. This review will focus on the DDPM variant, as it is the most relevant to prior
works related to inpainting. The second sub-category is noise conditioned score networks
(NCSNs) (Song and Ermon, 2020), which train a shared neural network via score matching
to estimate the score function (defined as the gradient of the log density) of the perturbed
data distribution at different noise levels.

An alternative approach to modeling diffusion is through stochastic differential equations
(SDEs, Song et al. (2021)), which form the third sub-category of diffusion models. In

23

Figure 9. A generic framework showing the three formulations of diffusion
models based on: stochastic differential equations (SDEs), denoising diffusion
probabilistic models (DDPMs) and noise conditioned score networks (NCSNs).
The SDE formulation is a generalization of the other two. In general, a diffusion
model consists of two processes. The first one, called the forward process,
transforms data into noise, while the second one is a generative process that
reverses the effect of the forward process. This latter process learns to transform
the noise back into data. Courtesy Croitoru et al. (2022).

Croitoru et al. (2022), this is shown as a generalization of the other two variants. The
forward SDE process, shown in the top of Figure 9, shows that a change over time in x

is modeled by a function f plus a stochastic component ∂ω ∼ N(0, ∂t) scaled by σ(t).
Different choices of f and σ will lead to different diffusion processes, hence why the SDE
formulation is a generalization of DDPMs and NCSNs. Modeling diffusion using forward
and reverse SDEs leads to efficient generation strategies and robust theoretical results
(Croitoru et al., 2022).

Denoising Diffusion Probabilistic Models (DDPMs) In this section follows an explana-
tion of the formulation of DDPMs, divided into the forward and reverse diffusion processes.
The DDPM architecture pipeline is shown in Figure 10 The formulation and explanations
are based on Croitoru et al. (2022); Cao et al. (2022); Weng (2021)

In the forward process, Gaussian noise is added to an image x over T steps until the data
is corrupted into pure noise. xt is the image x at time-step t ∈ T . In order to obtain noised
versions of x0 x1, x2, ..., xT , a Markovian process is formulated:

p (xt | xt−1) = N
(
xt;

√
1− βt · xt−1, βt · I

)
,∀t ∈ {1, . . . , T}, (2.16)

24

Figure 10. The arrows pointing from left to right indicate the diffusion process
and the arrows pointing in the reverse direction indicate the reverse process.
The colored background transition terms are components of ELBO: the blue
part stands for decode loss L0, the green part represents forward loss LT , and
the orange part constitutes the reverse loss Lt. Dashed lines with different
colors show the training pattern of the noise prediction model ϵθ. Besides, in
any step 1 ≤ t ≤ T , the yellow lines denote the ancestral sampling process.
Courtesy Cao et al. (2022).

where β1, ..., βT ∈ [0, 1) are hyperparameters controlling the amount of noise added at
each step, I is the identity matrix with the same dimensions at x, and N (x;µ, σ) is the
normal distribution with mean µ and covariance σ which produces x.

This recursive formulation allows for sampling xt directly via:

p (xt | x0) = N
(
xt;

√
β̂t · x0,

(
1− β̂t

)
· I
)
, (2.17)

where β̂t =
∏t

i=1 αi and αt = 1 − βt. In this way, given x0 and a variance schedule βt,
any version xt can be sampled in a single step.

When choosing a variance schedule (βt)
T
t=1, it is important that each step is small,

(βt)
T
t=1 ≪ 1. When this is the case, the reverse steps p (xt−1 | xt) have the same functional

form as the forward process p (xt | xt−1), as it becomes more likely that xt−1 comes from a
region close to where xt is observed, which allows us to model this region with a Gaussian
distribution. For example, in the work of Ho et al. (2020), (βt)

T
t=1 is comprised of linearly

increasing constants between β1 = 10−4 and βT = 2 · 10−2, where T = 1000.

In the reverse process, new samples from p(x0) are generated by starting from a sample
xT ∼ N (0, I) and following the reverse steps p (xt−1 | xt) = N (xt−1;µ (xt, t) ,Σ (xt, t)).
These steps are approximated via a neural network that receives as input the noisy image
xt and the embedding at time step t, and learns to predict the mean µθ (xt, t) and the

25

covariance Σθ (xt, t) of a Gaussian distribution.

Ho et al. (2020) propose significant simplifications to the previously-used formulation for
the loss function of the network (Croitoru et al., 2022; Sohl-Dickstein et al., 2015). As a
result, the network does not predict the mean and covariance directly - instead, it predicts
the noise from the image. The loss function measures, for a given step t of the forward
process, the distance between the real noise zt and the estimation of the network zθ (xt, t)

It is formulated as follows:

L = Et∼[1,T]Ex0∼p(x0)Ezt∼N (0,I) ∥zt − zθ (xt, t)∥2 , (2.18)

where E is the expected value, and zθ (xt, t) is the network predicting the noise in xt.

This formulation allows for images to be sampled from random Gaussian noise. Each time,
due to variations accumulating over the reverse diffusion process, a different image will be
generated. However, the model cannot be guided into generating a specific image. For this,
a form of conditioning is required.

Conditional generation In conditional diffusion models, an additional input y is given
to the generative network, which is trained to model the conditional distribution p(x|y). y
can be of any form, such as (an embedding of) a sequence of text, a label, a semantic map,
an image (Dhariwal and Nichol, 2021), or other extracted features Baranchuk et al. (2022).
In theory, it is possible to include y during the training process and have the model learn
how y affects x at each step as zθ (xt, t, y). However, in practice, this is not an effective
strategy (Dhariwal and Nichol, 2021).

As a solution, Dhariwal and Nichol introduce classifier guidance. The technique uses a pre-
trained classifier to direct the reverse diffusion process in the direction of the gradients of
p(x|y). This method is very effective and flexible, as the gradients of any pre-trained model
can be used, regardless of the modality of y. It is the conditioning method which is used in
most works. It has the limitation of being dependant on a separately trained classification
model, but that is also an advantage as the changes resulting from modifications to the
classifier can be measured independently of the generative model itself.

Latent diffusion While diffusion models are capable of generating very realistic results,
their practicality is limited by their computational requirements. The main reason for this
is that, during inference, a sample image needs to pass through the generative network T

26

times. Improving the sampling speed has been an active area of research, and a number of
approaches have been put forward.

One of the most significant improvements came in the form of latent diffusion, proposed
in Rombach et al. (2022). The technique utilizes a pre-trained autoencoder network (Esser
et al., 2021) trained with a combination of a perceptual loss and adversarial objective to
encode an image x into a latent representation z = E(x) via the encoder E . Using the
DDPM formulation, noise is added to z over T steps and it is iteratively denoised by a
generative U-net. The resulting denoised image is reconstructed from the latent space via
the decoder, to produce the final generated image x̃:

x̃ = D(z) = D(E(x) (2.19)

This architecture is shown in Figure 11.

Figure 11. Latent Diffusion model architecture. Courtesy Rombach et al. (2022)

The final model produced improved results compared to non-latent models (Dhariwal and
Nichol, 2021) while being less computationally demanding on inference. The authors point
out several advantages to this approach: (i) The model is much more efficient because
sampling is performed on a low-dimensional space. (ii) Due to U-net backbone of DMs,
which makes them particularly effective for data with spatial structure, there is no need
for aggressive compression which would reduce the quality of the decoded samples. (iii)
Conditioning can be performed more effectively in the latent space.

27

2.1.4 Datasets
Supervised DL techniques learn by mapping data, in our case images, to their labels.
There exist a variety of datasets, all with different images and labels for different specific
applications. Initially, a specific dataset would be used to address application-specific
problems in inpainting. However, as the field of computer vision has progressed to larger
and deeper networks, which require more data to be trained, models are now trained with
a combination multiple datasets. An advantage of this approach beyond an increase in
the amount of data that is available is that the learned models tend to be more robust and
generalize better.

In table 1, a quick overview of the most used datasets across all the works to train inpainting
models is presented. This is intended as a reference for the reader when considering what
the models of certain works were trained to to do. Of particular relevance to this project
would be any works that used the Paris StreetView and/or Cityscapes datasets, as they most
closely resembles the data of Cyclomedia.

28

Table 1. An overview of the most commonly-used image generation and inpainting datasets.

Dataset Description Citation

Places2 A large-scale image dataset of over 10 million nat-
ural scene images collected from various places
around the world.

Zhou et al. (2018)

ImageNet A large image dataset with over 14 million im-
ages categorized into more than 20, 000 classes,
including animals, scenes, objects, and more.

Deng et al. (2009)

CelebA A large-scale face attributes dataset with over
200, 000 celebrity images, annotated with 40 bi-
nary attributes such as "Smiling" or "Wearing
Glasses."

Liu et al. (2015)

CelebA-HQ A high-quality version of the CelebA dataset, with
images generated using Generative Adversarial
Networks (GANs) to increase the resolution and
variability of the faces.

Karras et al. (2018)

DTD A diverse textures dataset with images of textures
such as fabric, paper, stone, and more, organized
into 47 categories.

Cimpoi et al. (2014)

CMP Facade A dataset of facade images of buildings, collected
in the city center of Dresden, Germany.

Tyleček and Šára
(2013)

Paris
StreetView

A dataset of street scenes from Paris, France, with
a focus on fine-grained recognition tasks, such as
object and scene recognition.

Doersch et al. (2012)

Cityscapes A large-scale dataset of urban scenes, with a fo-
cus on semantic understanding of street scenes in
terms of object and structure recognition.

Cordts et al. (2016)

2.1.5 Evaluation Metrics
Evaluation metrics are used to assess the performance and effectiveness of algorithms.
Different evaluation metrics are used to measure different aspects of an algorithm’s perfor-
mance. In this section, the most common and prevalent image restoration and inpainting
evaluation metrics (Xiang et al., 2023) will be presented. The advantages and disadvantages
of each will be discussed.

The Mean Squared Error (MSE) is a simple and widely used metric for evaluating the
quality of image inpainting and reconstruction. It measures the average squared difference
between the predicted and actual pixel values, which can provide a quantitative measure
of the reconstruction error. Its value is sensitive to small changes in image quality, which

29

makes it useful for comparing different reconstruction methods. However, MSE does
not take into account the human perception of image quality, which limits its usefulness
in some applications. In practice, the Normalized Mean Squared Error (NMSE), which
is normalized by the variance of the original image, is more commonly used to make a
comparison.

MSE =
1

Cj ×Hj ×Wj

||Igt − Iout||22 (2.20)

NMSE =
||Igt − Iout||22

||Igt||22
(2.21)

Where Igt is the original image, Iout is the output image, and they are of size C ×H ×W .

The Peak Signal to Noise Ratio (PSNR) is another widely used simple metric for eval-
uating the quality of image inpainting and reconstruction. It measures the ratio between
the maximum possible power of a signal and the power of the noise present in the signal.
Like MSE, it is sensitive to small changes in image quality and can provide a quantitative
measure of the reconstruction error. However, like MSE, it does not take into account the
human perception of image quality, which may limit its usefulness in some applications.

PSNR = 10 log10

(
MAX2

MSE

)
(2.22)

Where MAX is the maximum possible value of a pixel, usually 255.

The Structural Similarity Index (SSIM) is a more advanced metric for evaluating the
quality of image inpainting and reconstruction. It takes into account the human perception
of image quality by measuring the structural similarity between two images, taking into
account the luminance, contrast, and structure of the images. This makes it more suitable
for evaluating the quality of real images or for tasks where human perception is important.

SSIM = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (2.23)

Where α, β, and γ are parameters that control the relative importance of luminance,
contrast, and structure, denoted by l, c, and s, respectively.

30

The Learned Perceptual Image Patch Similarity (LPIPS, Zhang et al. (2018)) is a
distance metric that is specifically designed to capture the perceptual similarity between
two images. It is one of the most commonly used metrics for evaluating deep learning
inpainting & restoration systems. It uses a modified version of AlexNet (Krizhevsky et al.,
2017) that has been fine-tuned on a large dataset of pairs of images, with each pair labeled
according to their perceptual similarity. Specifically, the network is trained to predict the
similarity between pairs of image patches using a Siamese network architecture, where
two identical networks share weights and are trained to minimize the difference between
the predicted similarity and the true similarity. It has a large number of filters in the
lower layers, allowing it to capture a wide range of low-level image features, and uses
local response normalization (LRN) and max pooling layers to increase its robustness to
small image deformations and variations. LPIPS can provide more accurate and nuanced
evaluations of image quality than traditional metrics like MSE or PSNR.

LPIPS =
∑
l

1

HlWl

∥∥wl ⊙
(
Φl

gt − Φl
out

)∥∥2

2
(2.24)

Where l denotes a layer in the neural network, Φgt,l and Φout,l are the feature maps at layer
l for the ground truth and output images, respectively.

The Inception Score (IS, Salimans et al. (2016)) measures how well the quality and
the diversity of the images. The quality is measured based on how well the generated
images can be classified by a pre-trained image classification network, usually Inception
V3 (Szegedy et al., 2016). The diversity is measured by the entropy of the individual
probability distributions, which captures the range of object categories covered by the
generated images. A high IS score indicates that the generated images are both diverse
and of high quality, while a low IS score indicates that the generated images are either low
quality, not diverse, or both. It is important to note that the IS has some limitations, such as
its sensitivity to the choice of the pre-trained image classification network and the dataset
used for training it. Therefore, the IS should be used in conjunction with other evaluation
metrics to provide a comprehensive analysis of the performance of a generative model.
However, calculating an accurate IS requires a large sample of generated images, limiting
its use for models which have a very high inference time (Lugmayr et al., 2022).

IS = exp
(
Ex̂∼Pg [logDKL (p(y|x)∥p(y))]

)
(2.25)

The Fréchet Inception Distance (FID, Heusel et al. (2017)) is another measure based

31

on the Inception V3 network (Szegedy et al., 2016). However, it uses the activations
of the high-level features of the CNN to compare the distribution of the original and
generated images, rather than its classification results. A low FID score indicates that
the feature distributions of the real and generated images are similar, while a high FID
score indicates that the feature distributions are dissimilar, implying that the generated
images are of low quality or not diverse enough. Compared to the IS, the FID has the
advantage of being less sensitive to changes in image quality and resolution, as it focuses
on the high-level features extracted by the pre-trained CNN, rather than the pixel-level
features of the images. However, the FID requires more computational resources than the
IS, as it involves computing the mean and covariance of the feature representations of both
the real and generated images, and computing the Fréchet distance between the resulting
distributions. Also, much like IS, the FID requires enough samples to allow for a result to
be calculated over a probability distribution.

FID = ∥µr − µg∥22 + Tr
(
σr + σg − 2 (σrσg)

1
2

)
(2.26)

Where µr and µg are the mean feature vectors of the real and generated images, respec-
tively, and Σr and Σg are the covariance matrices.

A user study is also often used, though not always due to the time, effort, and expenses
associated with performing one. It is a subjective evaluation method that involves people
rating the quality of the generated images. It takes into account the human perception of
image quality, which is often the most important factor in assessing the effectiveness of
an algorithm in real-world scenarios. They can be divided into two types - a single image
study and a multiple images study. In a single image user study, either a real or generated
image is shown to the volunteers, who attempt to guess whether the image is real or not.
For the multiple images user study, multiple images generated from different algorithms are
shown to volunteers. The volunteers are required to rank them based on some perceptual
measure, such as realism. For image inpainting, a multiple image user study comparing
against several algorithms is the most effective way to judge the subjective quality and
realism of the images generated by the model.

32

2.2 Image Inpainting & Restoration

2.2.1 Non-Neural Methods
Geometry-based One of the seminal works, “Image Inpainting” by Bertalmio et al.,
proposes a method to “replicate the techniques used by professional restorators”, drawing
on previous works in the fields of film restoration, texture synthesis, and disocclusion. The
method uses partial differential equations (PDEs) to minimise an energy function, which is
defined by two terms: a data fidelity term, which measures how well the inpainted region
fits the known area, and a regularization term, which encourages smoothness in the result.
The algorithm updates the image iteratively, moving inverse to the gradient of the energy
function, until a minimum is reached and the image is inpainted.

This method and derivative geometry-based methods tend to propagate local structures
from the border around the mask to the interior. They can produce convincing results over
small regions (e.g., for image restoration), but they fail when inpainting large areas and
tend to produce flat-looking, unrealistic images (Buyssens et al., 2015). A simple case in
which Bertalmio et al.’s algorithm fails is shown in Figure 12.

Figure 12. Left: Original image, mask in white. Right: Inpainted image using
the Bertalmio et al. (2000) method.

Texture synthesis Texture synthesis is a computer vision technique that involves generat-
ing new textures based on existing textures with applications mainly in computer graphics
& video games (Salem, 2021; Buyssens et al., 2015) (see Fig. 13). Initially, a simple
stochastic model using Markov Random Fields Cross and Jain (1983) would be used,
where textures are blended inwards from the border.

The Copy-Paste algorithm proposed in Efros and Leung (1999) is the pioneering work
which introduced the concept of using image patches. The method is based on a self-
similarity prior and the estimation of a pixel’s value based on a center patch. The nearest
neighbors of the center patch are found through a search process, which is based on a
metric that combines the vector of squared differences with a Gaussian weighting kernel. It
works for simple and low-resolution textures, which were prevalent in computer graphics

33

Figure 13. Results produced with the Wei and Levoy (2000) texture synthesis
algorithm.

at the time, but it can produce repeating patterns and lacks the ability to capture large-scale
patterns.

Wei and Levoy (2000) extends this approach by incorporating a multi-scale framework and
using tree-structure vector quantization to speed up the patch search. Further improvements
were made by Ashikhmin (2001), in which a more efficient search scheme that enhances
the texture synthesis process while reducing the computational time is proposed. Both
methods demonstrate the capability of synthesizing diverse textures while preserving the
structure and properties of the reference texture. They produce smoother blending at faster
speeds than the technique by Efros and Leung (1999).

Texture synthesis techniques produce good results for inpainting small missing regions
in simple structure images, but they can not produce similar results if the image contains
complex unrepeated structure. This is expected, as these techniques are intended to blend
and synthesize texture files - a task which does not concern itself with semantics or
structure. Due to this, such methods are not suitable for inpainting real-world scenes.

Exemplar-based In order to remove large objects from images, a new type of inpainting
method was created. Exemplar-based methods, initially proposed in Criminisi et al. (2004);
Bornard et al. (2002), attempt to fill in the missing region using patches of known image
data. The algorithms work in 3 main steps, repeated until the region is filled in (Buyssens
et al., 2015):

1. Select a pixel p on the border between the known region and masked area.
2. Select the patch Ψp̂ that best matches patch Ψp, which is centred on p.
3. Paste the values of Ψp̂ around p.

The order in which the image is filled (i.e., how p is selected) is critical. A naïve implemen-
tation would be the onion-peel method, used in Bornard et al. (2002), wherein the mask is

34

filled iteratively from the boundary toward the centre. This method produces undesirable
results, especially toward the centre of the mask (see Fig. 14, top). Contrary to Bornard
et al.’s approach, Criminisi et al. (2004) propose a filling order in which pixels lying along
the border are prioritised based on a confidence term Cp and a data term Dp. The data
term ensures that the algorithm prioritises continuation of known structures that enter the
masked area. The results of Criminisi et al.’s algorithm are shown in Figure 14 (bottom).

Figure 14. Top: Onion-peel filling order. Bottom: Data-aware filling order.
Courtesy Criminisi et al. (2004).

Searching over the set of patches for the one that matches Ψp most closely is the most
computationally expensive part of the algorithm. As Buyssens et al. show, this step is
essentially a nearest-neighbour (NN) search, which has a computational complexity of
O(dN), where d is the dimensionality of the search space and N is the number of points
(patches Ψp̂) to be searched. Note that the search has to be performed for each iteration of
the inpainting process.

There are many NN optimizations which can and have been applied to exemplar-based
inpainting methods. For example, He and Sun use the KD-trees algorithm to do an
Approximate Nearest Neighbor (ANN) search (Bentley, 1975), reducing the computational
complexity to O(log(N)), at the cost of needing to construct a KD-tree at each iteration.
This is an approximate solution, wherein not all possible patches are considered, but in
practice it has been found to give acceptable solutions. Another significant optimisation
was proposed in Barnes et al. (2009). The PatchMatch algorithm is based on the idea that
the search can be efficiently approximated by taking advantage of the local coherency of
image patches. It works by first initializing the ANN field and then refining it iteratively in
two phases: propagation and random search. The propagation phase improves a patch by
looking to its neighbours, while the random search phase looks for a better source patch
within a decreasing radius (See Fig. 15). See Ehret and Arias (2018) for an analysis of the
complexity of PatchMatch and its many variants.

35

Figure 15. Phases of PatchMatch search algorithm: (a) patches are initialised
randomly; (b) the blue patch checks green and red patches to see if they will im-
prove its mapping, propagating good matches; (c) the patch searches randomly
for improvements in concentric neighborhoods. Courtesy Barnes et al. (2009).

There are many variations based on Criminisi et al.’s exemplar-based algorithm. For
example, Perez et al. (2004) uses information given by the user to constrain the search
space, making it a semi-supervised approach. The methods in Wong and Orchard (2008);
Guillemot et al. (2013) synthesise a patch Ψp̂ by blending the K best-matching patches,
but this tends to produce blurry textures in the missing regions (Buyssens et al., 2015).

Hybrid Geometry-based methods are effective at reconstructing global structures in
images, but struggle with textural details. Exemplar-based and texture synthesis methods,
on the other hand, are good at filling in texture but have difficulty reconstructing global
structures, particularly when the missing part of a structure is not present in the rest of the
image. As a result, hybrid methods that combine the different methods have been proposed,
aiming to combine the strengths of each approach. Hybrid methods can be separated into
two main classes.

The first class decomposes the image into structure and texture parts, which are then
inpainted separately using a geometry-based method and a synthesis method respectively
(Starck et al., 2005; Bertalmio et al., 2003). The inpainted structure and texture parts are
then combined to reconstruct the final result. However, separating structure from texture is
a challenging problem, especially in the presence of both small and large textures, which
are common in natural images.

The second class uses a geometry-based method to construct an initial sketch of the strong

36

edges of objects which enter the mask. This sketch is then used to define lookup areas for
inpainting with an exemplar-based approach (Cao et al., 2011). These methods are able to
reconstruct structures that are not present in the unmasked part of the image by continuing
main structures that are broken by the mask, a major limitation of purely exemplar-based
methods. Both classes of hybrid approaches can provide improved results over any of
the other three methods, but they are limited in practice due to their high complexity and
tendency to fail on natural images (Buyssens et al., 2015; Salem, 2021).

2.2.2 Neural Methods
Traditional image inpainting algorithms are prone to inconsistent image semantics, which
leads to unsatisfactory results - especially when inpainting a large area in a semantically-
rich context. Even hybrid methods, which balance the effectiveness of geometric, textural,
and exemplar-based methods cannot achieve semantically consistent restoration at a large
scale (Zhang et al., 2023). Since AlexNet (Krizhevsky et al., 2017), deep learning has
shown remarkable results at a variety of tasks in computer vision and revolutionized
the field. Deep learning-based inpainting algorithms have shown a much greater ability
to capture semantic information and have been able to produce significantly improved
results. This section will cover the most significant developments of deep learning-based
approaches to image restoration and inpainting, from neural and convolutional methods,
autoencoder and VAE-based approaches, through GAN architectures, and finally the most
recent works with denoising diffusion probabilistic models.

One of the first attempts on neural image restoration focused on denoising. Burger et al.
(2012) investigate whether a plain multi-layer perceptron (MLP) can outperform state-of-
the-art non-neural methods of the time. They learn a simple direct mapping from noisy
image patches to ones which are noise-free. While previous denoising works focus on
specific types of noise, they demonstrate that the MLP-based approach can be adapted to
any type of noise, given that it is trained on it. The results would not be surprising for us
now, however this work marks a landmark in image restoration, as it is one of the first
successful neural attempts relative to the state-of-the-art at the time.

Eigen et al. (2013) used a 3-layer CNN architecture for the task of blind image restoration
of images corrupted by rain drops and dirt. They specifically target the real-world use
case of images taken through a window, such as inside a vehicle or from outdoor security
cameras. The CNN was trained on clean & corrupted image pairs and they demonstrate
that it was able to learn the appearance of dirt and water droplets in natural images and
map corrupted images to clean ones.

Image degradation - blurring, compression artifacts, noise - can be modelled via convolu-

37

tion. Xu et al. (2014) demonstrate that the inverse process - deconvolution, can be used
to restore images. To do so, they propose a Deconvolutional Convolutional Neural Net-
work (DCNN) - a 3-layer CNN. Note that they do not use any de-convolutional/transpose
convolutional/fractional layers, but rather convolutional layers with learned kernels which
reduce artifacts in a corrupted image. The proposed method achieves PSNR performance
greater than a number of non-neural image restoration methods.

In Ren et al. (2015) propose an architecture which adapts the Shepard framework (Shepard,
1968) into a convolutional form and combines it with a 3-layer CNN, called Shepard
Convolutional Neural Networks (ShCNN). They demonstrate the effectiveness of their
architecture on the image inpainting and super-resolution tasks, achieving greater results
than a deeper CNN architecture and a number of non-neural methods. The ShCNN network
is composed of five layers, two of which are Shepard interpolation layers, and a ReLU
activation function.

One of the first autoencoder-based works on inpainting focuses on blind text removal -
blind meaning, no mask is provided to the model. Xie et al. (2012) train a stacked sparse
denoising autoencoder (SSDA) - a series of autoencoders with a combination of sparsity
constraint and stochastic corruption in the latent layers. They achieve PSNR results which
are comparable to traditional denoising techniques (Portilla et al., 2003) and non-blind
inpainting methods (Mairal et al., 2008).

Although these DL methods perform relatively well in simple cases, they still produce
blurriness on the restored parts of the image and are unable to inpaint on complex scenes
due to a lack of semantic understanding of the image. During this time, GAN models
showed an impressive ability to generate complex images which were semantically sound.
It did not take long before a GAN architecture would be applied to inpainting, to impressive
results.

The work of Pathak et al. was the first to do so, with Context Encoders (Pathak et al.,
2016). The architecture they propose is a combination of an autoencoder model and
conditional DCGAN. They use the encoder to learn a compressed representation of the
semantic features of the image surrounding the area to be inpainted, and condition the
GAN generative network on those embeddings. In this way, they aimed to understand
the content of the image in order to inform the generative network on the missing part(s).
They train their network with a combination of MSE and adversarial loss and are able to
generate a 642 pixel area in the center of 1282 pixel images, while avoiding the blurring
common when using (only) MSE loss. The model achieved exceptional results for the
time - it was the first method which could recreate realistic inpainting results which are

38

Figure 16. Architecture for "Globally and Locally Consistent Image Comple-
tion" by Iizuka et al.. Consists of a completion network and two auxiliary
context discriminator networks used for adversarial training. The global dis-
criminator network takes the entire image as input, while the local discriminator
network takes only a small region around the completed area as input. The goal
is to produce high-quality image completions that blend seamlessly into the
surrounding area. Courtesy Iizuka et al. (2017).

semantically consistent with the rest of the image.

In Iizuka et al. (2017), an improvement of Context Encoders (CE) is proposed. Iizuka et al.
introduce an extra discriminator in the GAN part of the architecture, creating a pair of
discriminator networks, which determine whether an input image is real or fake. The extra
discriminator is called a "Local Discriminator" and its input is only the generated section of
the image, while the "Global Discriminator" gets the entire image as input. The adversarial
loss function is then calculated as a combination of their outputs. The architecture is shown
in Figure 16. The local discriminator ensures that there is local consistency in the inpainted
part of the image and it greatly improves the performance of their model, especially when
inpainting faces. In addition, their model uses dilated convolutions (Yu and Koltun, 2016)
to expand the receptive field of the convolutions and Poisson blending on the output image
for blending around the border of the inpainted area. Iizuka et al.’s approach improved on
the generation ability of Context Encoders, and works with any mask and input image size.
Jiang et al. (2020) propose a further improvement on CEs by adding skip-connections in
the generator and by using Wasserstein loss, improving the stability of the training.

Despite the improvements proposed in Iizuka et al. (2017); Jiang et al. (2020), CNN models
are inherently limited in their ability to borrow or copy information from distant parts of
the image. This limits the ability of models to generate convincing images when there is
a lot of structure in the scene, for example, when inpainting part of a fence. Borrowing
information from distant parts of the image is something that traditional patch-based
methods are explicitly designed to do, so a combination of a patch-based information
gathering approach and GAN-based generator could be an effective solution.

This is exactly what is proposed in Yu et al. (2018) - a deep generative model which

39

Figure 17. Architecture of the Contextual Attention Module (CAM). It com-
putes matching scores between foreground and transformed background patches.
Softmax is applied and an attention score for each pixel is obtained. The fore-
ground patches are reconstructed with the attention scores using transpose-
convolutional layers. Courtesy Yu et al. (2018).

could both generate novel image structures and explicitly borrow surrounding image
patches to make better predictions. Their approach uses two stacked Wasserstein GANs -
one for a coarse generation and one for refinement, and a global and local discriminator
network, as inspired by Iizuka et al. (2017). The model learns to borrow information via a
Contextual Attention Module (CAM) (see Jaderberg et al. (2015) on attention mechanisms),
which determines where to borrow feature for the masked region by computing the cosine
similarity between the background and foreground image patches (see Fig. 17).

The resulting model, a combination of, at the time, state-of-the-art techniques for image
generation, is able to achieve very impressive results, but it does so at a high computational
cost.

Yan et al. (2018) propose a new network called Shift-Net, which uses Deep Feature
Rearrangement. Their architecture is based on a U-Net (Ronneberger et al., 2015), to
which they add a novel shift-connection layer. Encoded features of the known region are
shifted into the unknown area, to provide information for the generator. Guidance loss
is used to encourage the connection between the information from the known region and
the generated part of the image. The resulting network is able to produce comparable
results to Yu et al. (2018); Iizuka et al. (2017) at a greater efficiency, especially excelling
in inpainting missing regions which contain sharp structures and detailed textures. Also of
note for this work is that they train on the Paris StreetView dataset.

In Liu et al. (2018), the authors propose a method for inpainting random masks. The
architecture is based on a U-Net-like architecture, in which all convolutional layers are

40

Figure 18. Pyramid-context ENcoder Network (PEN-Net) architecture, con-
sisting of three specialized components: a pyramid-context encoder (a), a
multi-scale decoder (b), and an adversarial training loss (d). The pyramid-
context encoder effectively encodes compact latent features by utilizing the
Attention Transfer Network (ATN) (c), which fills regions from high-level fea-
ture maps to low-level feature maps, thereby improving the encoding process.
The multi-scale decoder takes reconstructed features from ATNs, latent features,
and input data to generate output images. To optimize the network, pyramid L1
losses and an adversarial loss are minimized. Courtesy Zeng et al. (2019).

replaced with partial convolutional layers, in which the convolution result depends only on
unmasked pixels. A joint loss function is used, comprised of a perceptual loss, style-loss
(Gatys et al., 2015), and total variation (TV) loss (Johnson et al., 2016). The weights
of these losses were determined by a hyperparameter search on 100 images from the
validation set. However, this approach has some drawbacks, such as the high complexity
of gating an un-learnable layer when multiplying it with the input feature map, and the
limitation of each pixel to being either valid or invalid, which can lead to fading of valid
pixels in deep layers.

Zeng et al. (2019) propose a novel model called PEN-Net - "The Pyramid-context ENcoder
Network". PEN-Net, built on a U-Net structure, restores images by encoding contextual
semantics from the full resolution input and decoding the learned semantic features back
into images. The pyramid-context encoder learns region affinity through attention from a
high-level semantic feature map and transfers this attention to previous low-level feature
maps, ensuring both visual and semantic coherence for inpainting. Additionally, the
network includes a multi-scale decoder with deeply-supervised pyramid losses and an
adversarial loss, resulting in fast convergence during training and more realistic results
during testing. The network architecture is shown in Figure 18. They test the trained
network on Facade, DTD, CelebA-HQ, and Places2 and show state-of-the-art performance,
at the cost of high computation and, as a result, a low output resolution.

41

Sagong et al. (2019) improves on Yu et al. (2018) with a model called parallel extended-
decoder path for semantic inpainting (PEPSI). PEPSI has a single shared encoding network
and a parallel decoding network with a coarse and inpainting path, reducing the number of
convolution operations by almost half compared to conventional coarse-to-fine networks.
The coarse path generates a preliminary inpainting result, which trains the encoding
network to predict features for the CAM, while the inpainting path uses refined features
reconstructed by the CAM to create a higher-quality result. In Shin et al. (2021) Diet-
PEPSI is proposed - an improved architecture with fewer network parameters. A new type
of convolutional layer called the rate-adaptive dilated convolutional layer is employed
to use fewer hardware resources. The layer achieves this by modulating the shared
weights with different scaling and shifting values for each dilation rate. By using these
layers, Diet-PEPSI reduces the number of network parameters compared to using multiple
standard dilated convolutional layers. The rate-adaptive dilated convolutional layers are
implemented as residual blocks, called Diet-PEPSI units (DPUs). By replacing multiple
dilated convolutional layers with DPUs, Diet-PEPSI is able to achieve the same receptive
field size as PEPSI while having fewer parameters. PEPSI and Diet-PEPSI have improved
computational efficiency while outperforming other models (such as those in Pathak et al.
(2016); Iizuka et al. (2017); Yu et al. (2018)) in terms of PSNR and SSIM.

In Suvorov et al. (2022), large mask inpainting in complex scenes is attempted, with a
method called Large Mask inpainting (LaMA). Large masks are difficult to inpaint with
conventional convolutional layers due to the limited size of their receptive field - an issue
that each of the last few architectures that were covered have tried to resolve. LaMa does
away with convolutional layers in the first layers entirely. Instead, Fast Fourier convolution
(Chi et al., 2020) layers are used, which have a receptive field size spanning the entire
image. This enables the generator to consider global context right from the early layers,
which is essential for inpainting of high-resolution images. This results in improved
efficiency as trainable parameters can be utilized for reasoning and generation directly,
rather than "waiting" for information to propagate from the outer parts of the image into
the masked area. In addition, they use a novel high receptive field perceptual loss (in
combination with an adversarial loss), optimized for the larger receptive field in the first
layers. The results are very impressive - at the time of writing, this is the state-of-the-art in
terms of GAN-based inpainting. The model shows very impressive semantic understanding
and ability, but the results are still not always perfect. Removal of foreground objects
in very busy, semantically rich scenes shows the limitations best - blurring and haziness
appear, especially at the center of the inpainted area (see Fig. 20.

A previous thesis project, Uittenbogaard (2018), attempted to tackle inpainting at Cyclo-
media. The method made use of the background information in multiple images adjacent

42

to the source image which would be inpainted. Using the depth information captured as
part of the Cycloramas, the adjacent images were reprojected such that the background
information would match the area which is being inpainted. The masked image, mask, and
matching masked background information from the four adjacent reprojected images were
given as input into a GAN model, which would generate the information for the masked
area. This method was used with the aim of preserving the truthfullness in the image, to
ensure no objects that are not known to be there would be hallucinated. The approach is
shown in Figure 19. The original, pre-processed, and generated data for the project are
available and could potentially be used as part of this thesis. It can also be a useful method
to evaluate against.

Diffusion-based Several works have evaluated the use of diffusion models for inpainting.
The initial attempts (Meng et al., 2022; Song et al., 2021) adapted unconditional models to
be used for conditional tasks (such as image inpainting, super-resolution, and colorization).
The models are given as input the image with the masked area replaced by Gaussian noise,
which is then de-noised over N steps. However, as this was a side application of the
models they propose, the authors do not share implementation details nor quantitative
evaluation metrics specific to inpainting. The first work to thoroughly evaluate such a
model for inpainting is Chung et al. (2022). The authors train an unconditional model
and apply it to a number of conditional tasks by changing the inference scheme which is
used. The main advantage of the approach they propose is that they achieve a significant
reduction in the number of sampling steps required at inference. This is done by not
starting the denoising process from pure Gaussian noise, but from a better initialization,
such as one-step correction created via a neural network. As a result, the network is capable
of producing an output significantly faster than SDEdit, while having similar performance
for inpainting.

Image-to-image diffusion models are conditional models, denoted as p(y|x), where both x

and y are images. Such models are presented in Dhariwal and Nichol (2021); Saharia et al.
(2021) and applied to image super-resolution. The first work which examined diffusion
models for inpainting, Saharia et al. (2022), employed an image-to-image conditional
diffusion model. Palette is based on a modified U-Net architecture (Ho et al., 2020),
inspired by the approaches shown in Dhariwal and Nichol (2021); Saharia et al. (2021);
Song et al. (2021). The architecture is based on a 256 × 256 U-Net model with class-
conditional layers, as proposed in Dhariwal and Nichol (2021), but differs in two main
ways: (i) it does not include class-conditioning, and (ii) it includes additional conditioning
of the source image through concatenation, following the approach in Saharia et al. (2021).
For inpainting, the model is explicitly fine-tuned by removing random regions of training

43

Figure 19. An overview of the inpainting pipeline for a previous thesis project
done at Cyclomedia. In the segregation part (top left), first one of the moving
objects is selected. A patch centered around the object is extracted. From
this patch, the moving object is removed and the result of this is an input for
the inpainting network, together with the mask of the moving object. In the
background information part (top left), four images taken close to the image
of interest are reprojected to the point of view of the image of interest. A
patch of the same area is extracted. From this patch, first the area outside of
the occlusion is removed. After that, the moving objects within the occluded
area are removed. After repeating this process four times, the four pieces of
background information are fed to a GAN. Courtesy Uittenbogaard (2018).

44

Figure 20. Comparison of several SOTA inpainting methods on object removal.
Left to right: Masked input image; Result using Content-aware fill tool by
Photoshop, which is built on the Patch-Match method (Barnes et al., 2009);
GAN-based DeepFillv2 (Yu et al., 2019); GAN-based HiFill (Yi et al., 2020);
Co-ModGAN (Zhao et al., 2021); and DDPM-based Palette (Saharia et al.,
2022). An equivalent image comparing results between the methods described
in this review could not be found, but the results are intended to show a gen-
eral difference between the results produced by non-neural, GAN-based, and
Diffusion-based methods. Courtesy Saharia et al. (2022).

examples, and adding an additional mask channel to the architecture. They evaluate the
difference in results between an L1 and L2 loss function and find that an L1 loss produces
significantly lower sample diversity compared to L2. Their approach fills the masked
area with Gaussian noise, which the model then perturbs into a realistic image over 1000
steps. Both free-form and center masks are evaluated and compared to a number of SOTA
GAN-based models in terms of a number of evaluation metrics including the Inception
Score (IS) and Fréchet Inception Distance (FID). They achieve significantly improved
results on the validation sets of the ImageNet and Places2 datasets. A results comparison
image can be seen in Figure 20. The Palette model was also applied to colorization,
outpainting, and JPEG restoration. It achieved SOTA performance on all of these tasks
without any task-specific engineering to the model architecture.

The method presented in Lugmayr et al. (2022), called RePaint, is of particular interest for
this work. This is the only method that was created specifically for inpainting and uses a
diffusion model. Their method is based on the pre-trained guided diffusion model from
Dhariwal and Nichol (2021), adapted in two ways: (i) it makes use of information from the
unmasked regions, and (ii) it uses a custom denoising schedule to improve the harmony
between the generated and the known part.

To explain (i), consider that for each step t ∈ T , two images exist - one created by adding

45

Figure 21. RePaint conditioning on the known region. At each step, the known
region (top) is sampled from the input, while the inpainted part is sampled from
the output of the DDPM (bottom). Courtesy Lugmayr et al. (2022)

noise, and one created by removing noise via the denoising U-Net. These two versions are
denoted as (xt|xt−1) and (xt|xt+1) respectively, based on whether they were derived by a
previous or later stage along T . (xt|xt−1) is the version the denoising network is trying to
recreate and can be considered the ground truth version. To condition on the known region,
at each step t, (xt|xt−1) and (xt|xt+1) are combined by taking (xt|xt+1) for the masked
area and (xt|xt−1) for the known area. This approach is also illustrated in Figure 21.

When using solely this conditioning, Lugmayr et al. found that while the model would
leverage the context of the known region, the result would not harmonize well with the
rest of the image. The authors suggest that this disharmony is because rough boundaries
are created between the known and unknown regions over and over again, at each step
t, and the network does not have enough time and flexibility to fully converge. This is
exacerbated from the variance schedule of βt, due to which the maximum change in the
image decreases with t. To combat this, (ii) is used - the output of the DDPM xt−1 is
diffused back to xt and denoised by the DDPM again. This scales back the output, but
some information from the generated region of xt−1 is still kept in xt and it gives more
time for the network to harmonize the information of the real and generated regions. The
jump size j is a hyper-parameter which controls how many steps are taken back, and r

controls the number of times the resampling is done. In their experiments, which explored
a variety mask types on the ImageNet, CelebA-HQ, and Places2 datasets, they find that
j < 10 tends to produce blurry results, and an increased number of resamplings r improves
the overall image consistency (saturating around r = 10).

RePaint (Lugmayr et al., 2022) is currently the best performing inpainting method in
literature. It achieves greater LPIPS score than diffusion-based SDEdit (Meng et al.,
2022) and GAN-based LaMa Suvorov et al. (2022), and was its results were preferred in

46

a user study. There is a major caveat to these results however - computation time. Due
to the resampling strategy, each step of the diffusion process has to be taken multiple
times, computationally having an effect similar to significantly increasing the size of T .
This greatly increases the number of sequential steps performed during inference. The
pre-trained DDPM RePaint is based on, Dhariwal and Nichol (2021), is not a latent model
and works in pixel space. If a DDPM model operating in a latent space of an autoencoder
(Rombach et al., 2022; Vahdat et al., 2021) is used instead, the computational requirements
would potentially be reduced. However, this approach has not been explored yet.

47

3. Methodology

In this section, the methodology used to answer the research questions and sub-questions is
explained. First, the data pre-processing pipeline for both training and inference is defined,
including the mask-generation and refinement processes. Subsequently, the fine-tuning
methodology and training process for the latent diffusion model is detailed. Next, we
introduce the custom partial loss function - a modification of the native latent diffusion
loss function, which was used with the aim of improving the quality of the inpainting
results. An explanation of the data filtering technique that was applied in order to analyze
and select the most suitable images from the training set for fine-tuning the model follows.
Finally, the quantitative and qualitative evaluation methods are defined.

3.1 Data Preprocessing
The data for this project is a subset of the overall Cyclomedia dataset. It consists of ∼ 4000

images, which were semantically labelled for over 40 classes by human annotators, prior
to the beginning of this research. Most importantly for this research, it contains labels for
people and different types of vehicles.

Prior to any experiments being conducted, the data was split in an 8:1:1 ratio to create a
training, validation, and test set. The images were separated and the test set was used only
for final evaluation.

3.1.1 Training Images
Crop Generation The latent diffusion architecture we utilize is designed to process
images of size 512x512. However, the Cyclomedia dataset comprises of cubic images of
size 4068x4068. Therefore, it is essential to resize the images to enable processing by
the model. One possible technique for downscaling the images is bicubic interpolation
Hirahara et al. (2021), but such an aggressive downsampling approach would limit the
upper boundary of the quality of the generated samples.

To address this concern, an alternative approach for generating 512x512 image crops is
used. The naive approach of simply dividing the original images into fixed-sized crops
may result in several limitations. Since the original images capture a wide field of view,
a significant portion of the images constitute sky or street regions, which offer limited
semantic information - since there are usually no people or cars in the sky. Including these
semantically poor crops in the training process could potentially cause overfitting and
result in inflated performance metrics. Additionally, during the inference stage, objects

48

Figure 22. Training crops generation process. The darkened areas on the top
and bottom of the image are discarded, and 8x3 crops of size 512x512 are
created in a sliding-window fashion. The crops are highlighted in red. Note that
the licence plate was blurred manually for publication.

close to the camera, such as cars, might occupy an area larger than 512x512 and would
need to be downscaled to fit into the model. Ignoring these cases during training would
likely lead to suboptimal generative performance.

Considering these factors, we adopt a two-pronged approach to cropping the images.
Firstly, 512x512 crops from the areas where the objects of interest are most likely to appear
are selected. Specifically, the region between the upper 1/3 and lower 1/4 of the original
image is targeted. This targeted selection ensures that the model receives informative
input and aims to evade overfitting on semantically poor areas. The crops are created in a
sliding-window fashion, until the entire focus area is covered. A visual example of this
can be seen in Figure 22.

Secondly, larger crops exceeding the 512x512 size are created. To accomplish this, a point
within the image is selected and a random integer greater than 512 is chosen and used as
the dimensions of the crop. Subsequently, image crops are extracted from the selected area
surrounding the previously chosen point. These resulting crops are then downscaled to a
512x512 size using bicubic interpolation. This process is repeated until 10 larger crops are
obtained for each image.

49

Figure 23. Different types of polygonal synthetic masks generated following
the Suvorov et al. (2021) method. Left: Thin mask. Middle: Medium mask.
Right: Thick mask.

Thus, for each original image, 34 crops are created: 10 downscaled crops and 24 native
crops. This approach ensures a diverse set of training samples that encompass various
object scales and semantic regions within the images.

Synthetic Masks For training, the method of Suvorov et al. (2021) is followed to create
synthetic masks. It offers two types of masks: polygonal chain masks and box masks, at
three sizes - thin, medium, and thick. For polygonal chain masks, the algorithm samples
the number of line segments and their respective parameters, such as starting points, angles,
lengths, and widths. The algorithm then draws each segment on the mask array.

In the case of medium and thick masks, there is a 30% chance that the mask will be a box
mask instead of a polygonal chain mask. A box mask is created as a combination of a
random number of boxes, with a random size within their respective medium/thick range,
placed randomly within the image. The configuration for generating each type of mask
was kept the same one used in Suvorov et al. (2021). For each image crop, 6 masks are
created - 1 thin, 3 medium, and 2 thick. An example of each mask is shown in Figure 23.

3.1.2 Inference Images
Mask Refinement The Cyclomedia dataset we used contains human-annotated object
labels and segmentations for 23 classes including People, Cars, Trucks, and more. The
object labels were accurate, but the available segmentations had low quality, often missed
large parts of the object, and were insufficient for masking the objects of interest. An
example image masked based on the available Cyclomedia segmentation is shown in
Figure 26.

The accuracy of the object masks is a very important for the performance of object-removal
techniques, due to the fact that the network leverages any information in the image to
complete it in the most realistic manner. If the mask does not cover the object fully, the

50

Figure 24. Example of artifact caused by imperfect mask. A single orange
pixel last left unmasked from the right vest of the person, which results in a
large orange artifact. Note that private information was blurred manually for
publication.

model, in its aim of creating a realistic image, would continue and sometimes entirely
replace the remnants of the object with an artificially-created one in its place. We found that
if even a single pixel remained from the edge of the object, the network would propagate
it into the inpainted area and would result in significant artifacting. An example of this
is shown in Figure 24, where a single orange pixel from the vest of a person was left
unmasked, and caused a large orange artifact to be left in the inpainted result.

To address the challenge of accurate automatic mask generation, we leverage a recently
published model for image segmentation, called SAM (Segment Anything Model) (Kirillov
et al., 2023). SAM is a foundation model that can accurately segment objects from natural
images, with the ability to generate complex boundaries, even ones of occluded or partially
visible objects. It can be prompted by one or several points, or a bounding box surrounding
the object. SAM is based on the Vision Transformer (ViT) architecture (Dosovitskiy et al.,
2021), which uses self-attention to process images as a sequence of patches. SAM extends
ViT by adding a segmentation head that predicts a binary mask for each patch, and then
upsamples the mask to the original image resolution. Prompts are encoded into a latent
vector, which is then concatenated with the patch embeddings. The architecture of SAM is
shown in Figure 25. SAM is trained on a large-scale dataset of over 1 billion masks on 11

million images, covering a wide range of objects and scenes. It is designed to be used in
natural images and does not require any fine-tuning to produce high-quality segmentations.
When combined with the existing object labels and bounding boxes, SAM is ideal for
accurately selecting the regions of the image in which an object is present.

The center point and bounding boxes of the existing masks are calculated and used as
the input prompt. While SAM produces very accurate results, it can sometimes miss the
absolute edges of an object, and the issue of having absolutely full coverage of the object
is still present. As such, the output mask is dilated with a filter of size 7 ∗ 7 (Yu and Koltun,
2016) to ensure the entire object is removed. An example of a final refined mask can be

51

Figure 25. Architecture of Segment Anything Model (SAM). Diagram courtesy
Kirillov et al. (2023).

Figure 26. Left: Unmasked image crop; note that private information was
blurred manually for publication. Middle: Image masked based on Cyclomedia
segmentation. Right: Image masked based on refined mask, generated with
SAM (Kirillov et al., 2023).

seen in Figure 26.

3.2 Fine-Tuned Latent Diffusion
The Fine-Tuned model uses a configuration closely based on the Baseline model. The
settings for the diffusion process, e.g. the number of denoising steps t, the settings for
the attention head, and others, were not changed. The encoder-decoder network was kept
static for the training runs, and was not modified in any way. This was done so that the
two networks would be closely comparable, with the difference being in the fine-tuning
process. The changes in the modified network should be due to its exposure to novel
training images, rather than anything stemming from model settings.

The training data for the Fine-Tuned model was pre-processed as described in Section
3.1.1. However, due to the long training runs and limited compute time, not all image crops
were used. Instead, the model was trained on a random selection of 10% of the crops.

A significant number of tests were done to determine an optimal training strategy. Between
training runs, the results of changes to the learning rate and different optimizers were
tested on the validation set, until appropriate settings were found. Setting the learning
rate to a value greater than 10−3 resulted in the loss exploding and the model outputting
noise, while a value lower than 10−8 did not allow for the model to change sufficiently and

52

Figure 27. Left: Training loss. Right: Validation loss. Note the low loss value
from the beginning of training.

prevented learning as a result. As such, a static learning rate of 10−6 at a batch size of 10,
with the Adam optimizer (Kingma and Ba, 2017) were used. The Fine-Tuned model was
trained for 50 epochs.

After finding an optimal learning configuration for the model, based on the validation
set, the model was learning and showing improvements. However, when looking at both
the training and validation loss during training, shown in Figure 27, it became apparent
that the initial loss very low and reductions were small. This could be explained by the
high performance of the baseline, and a limitation of the loss function to find sufficient
differences between the target and model output. This is addressed in the following section,
where a new inpainting-specific loss for the Latent Diffusion architecture is proposed.

3.3 Partial Loss Function
In the Latent Diffusion architecture, the training loss is computed based on the difference
between a target encoded image and the output of the denoising U-Net. This is computed
at each step t of the denoising process. In the case of inpainting, the target is the latent
masked image, being compared against the output of the U-Net at each timestep t. However,
consider that we are only interested in the area which is being changed - the masked area,
a proportionally small area of the whole image. The rest of the image may also be changed
due to the encoding process, which would introduce unwanted noise when computing the
loss, potentially impeding the training process.

The difference caused by the encoding process can be seen in Figure 28b, where a visu-
alisation of the difference of the unmasked encoded image and masked encoded image
is shown. This visualisation is produced by subtracting the two encoded image matrices.
Ideally, in the case where the two encodings are identical outside the mask, there would
be no noise in the unmasked area. Figure 28b shows that this is not the case. This noise

53

(a) Synthetic image masks. Masked areas shown in white.

(b) Difference between unmasked and masked image embeddings.
The two embeddings are not identical in the unmasked area and the
differences are showing in the form of noise.

would cause some effect on the loss-computation, and may have been impeding learning.

To curb this, we propose the Partial Loss function - a training loss function which only
takes into account the masked areas of the image. The parts of the image which should
remain unchanged are not taken into consideration. This is done by setting the values
of the encoded image matrices to be identical in the unchanged regions. This is done by
creating an inverse mask (i.e. pixels within the masked area are set to 1 and ones in the
unmasked area to 0) and computing the Hadamard product of the two matrices. The loss
can be computed as before, as the difference between the two resulting image matrices.

The final loss is then weighted by the inverse of the proportion of the masked area. This is
done in order to keep the overall value of the loss consistent and provide a strong enough
signal for training the model, even on images with a very small training mask.

The formula for calculating the Partial L1 Loss is shown below, in equation 3.1.

Loss =

∣∣M−1
I ⊙ Ipred −M−1

I ⊙ Igt
∣∣

1−
∑

(M)/(IX ∗ IY)
(3.1)

54

Where I is the embedded image, MI is the corresponding image mask, M−1 is the inverse
of the mask,

∑
(M) is the total number of masked pixels, IX and IY are the X and Y

dimensions of the embedded image, Ipred and Igt are the model prediction and ground
truth respectively, and ⊙ is the element-wise product.

The Partial Loss method has the advantage of being both very computationally efficient
and being compatible with any method for computing the difference between the images.
Models trained with both a Partial L1 and a Partial L2 loss were tested and evaluated on
the validation set, the results of which are presented in Table 3. Additionally, a test was
done with an Unweighted Partial L1 loss, the results of which are reported in the appendix
(A, B).

The loss of the final Partial Loss model is weighted and based on the L1 loss, as these
settings were found to be optimal on the validation set. It was trained following the training
configuration used for the Fine-Tuned model. This was done to ensure that the two models
would be comparable and the effects on the results would be based on the modifications to
the loss function.

3.4 Data Filtering

Figure 29. Comparison of one of the lowest and one of the highest complexity
images, as reported by the segmentation-based complexity measure. Left:
Image with low complexity. Right: Image with high complexity.

During the training process, we found that there were issues with the image cropping
when generating the training data. Despite the efforts made to include meaningful and
informative data, described in Section 3.1.1, a significant number of image crops contained
little to no meaningful information, being comprised of entirely sky or ground.

55

In order to combat this, a more sophisticated method of data filtering was necessary. The
method had to be able to recognize image crops which do not contain much information,
i.e. crops with a low complexity. There are different techniques for measuring image
complexity, such as spatial information measures (Yu and Winkler, 2013), compression-
based techniques (Yu and Winkler, 2013), entropy-based measures (Zhou et al., 2019), and
feature-based techniques.

We chose to use a feature-based technique, particularly SAM, because, as Kirillov et al.
demonstrate, it has the ability to produce very accurate segmentation maps and works
very well on natural images. Similarly to other feature-based techniques, the number of
segmentations correlates with the complexity of the image. That is to say, a more complex
image will result in a higher number of segments being output by SAM. You can see an
example of a low- and high-complexity image in Figure 29.

All of the training crops were processed and the complexity of each one was stored. A
histogram of the results and the number of segments in each image is shown in Figure 30.
Note that, while there is a peak of images with around 50 segments, there is a large number
which have less than that, as well as a long tail of highly-complex crops, with the highest
being 400. We chose to focus on the most complex images, the ones lying in the long tail
on the right of the chart.

Figure 30. A histogram showing the distribution of images relative to the
number of segmentations found in them. Notice the large number of images
with few segmentations (i.e. low complexity) and the long tail on the right.

A new subset of the data was thus created, keeping the same size as the data used to train
the Fine-Tuned and Partial Loss models. This dataset focuses on the 90th percentile

56

most-complex images, all of which have more than 100 segmentations, as can be seen in
Figure 30.

The model fine-tuned on this data was based on the Partial Loss model, and is referred to
as the Top-N model. Only the training data was changed - the validation crops were kept
identical between all three models. No other configuration changes were made, to ensure
comparability between the Top-N and Partial Loss models.

3.5 Evaluation

3.5.1 Quantitative Measures
Quantitative measures evaluate how close the generated image is to the original image,
both in terms of pixel values and perceptual similarity. The four key metrics which are
considered are the Peak Signal-to-Noise Ratio (PSNR, 2.22), the Structural Similarity
Index (SSIM, 2.23), the Learned Perceptual Image Patch Similarity (LPIPS, 2.24), and the
Fréchet Inception Distance (FID, 2.26). All of these measures are widely used in literature
when evaluating image generation and inpainting algorithms (Xiang et al., 2023; Benny
et al., 2021).

PSNR and SSIM are two common quality measures that compare the generated image and
the original image pixel by pixel. PSNR measures the reconstruction error (a higher value
indicates a lower reconstruction error and a better image quality), while SSIM measures the
structural similarity (ranging from −1 to 1, where 1 means identical images and −1 means
completely different images). See 2.22 and 2.23 for more details on how the measures are
computed. Pixel-based metrics compare the generated image and the ground truth image
pixel by pixel, but they do not capture the perceptual aspects of image quality, such as
texture, color, and style.

LPIPS is a measure based on a deep neural network that learns to predict human judgments
of image similarity. Because of this, it can better reflect how humans perceive image
similarity than pixel-based metrics. It can capture these aspects by comparing the feature
representations of the images at different layers of a pre-trained network. LPIPS can also
handle variations in image content, such as object pose, shape, and occlusion, that are
common in image generation tasks. It ranges from 0 to 1, where 0 means identical images
and 1 means very different images - therefore, a lower LPIPS score indicates a higher
quality image.

Diversity measures how varied the generated images are, given different random noises
as inputs. A good inpainting model should be able to generate diverse images that are

57

consistent with the observed regions and the image context. FID is a diversity measure
that compares the feature distributions of the generated images and the real images using a
pre-trained Inception-V3 network (Szegedy et al., 2016). It can capture both the realism
and the diversity of the generated images. Because of this, it has been shown to correlate
well with human judgments of image quality (Benny et al., 2021). A lower FID value
means that the generated images are more similar to the real images in terms of feature
statistics.

While quantitative measures are important for establishing a consistent and objective
measure of comparison between different models, they can have limitations in terms of
their ability to fully evaluate the quality of a generated image. Although perception-based
metrics such as FID and LPIPS approximate how people perceive and evaluate images,
quantitative measures alone may not capture human preferences fully.

3.5.2 Qualitative Measures
Qualitative measures are based on human judgments of the generated images, such as their
realism, diversity, and consistency with the observed regions and the image context. They
can be less consistent and more difficult to collect than than quantitative measures, as they
depend on the subjective opinions of the participants. However, they can provide more
insights into how humans perceive and evaluate the generated images, and complement the
quantitative measures.

To collect qualitative feedback from the participants, we designed a survey with 2 sets of
10 questions. The first set of questions compared the Baseline and the Fine-Tuned models,
and the second set compared the Fine-Tuned and Top-N models. Each question presented
a pair of images, from each of which a person had been removed and inpainted using one
of the models. The order of the images in each pair was randomized for each question, so
the participants did not know which model generated which image.

The participants were asked to compare the images in each pair and select the one they
thought was better, based on their personal preferences and their perception of image
quality. They were instructed to consider factors such as image sharpness, clarity, the
absence of artifacts, and how well the inpainted area blends with the surroundings. If they
had no preference, they could choose “Other” and indicate that there was no difference.
You can see the survey instructions in Figure 31a, and a sample question in Figure 31b.

58

(a) Survey instructions shared with participants prior to being shown
the questions.

(b) Sample survey question. Each image was generated from a different
model. The order of the images was randomized for each question.

Figure 31. Qualitative user study - instructions and questions

Friends of the researchers and employees of Cyclomedia’s R&D department were sent
the survey. Prior to seeing the questions, participants were asked to self-report whether
they had experience working in the field of photogammetry, computer vision, or related
image-processing field. This made it possible to differentiate between computer vision
experts and laypeople, and evaluate if there is any difference in preference between the
two groups.

A preference score was calculated based on the survey, to quantify participants’ inclination
towards one model over the other. To calculate the score, we first assign a value of 1,
-1, or 0 to each answer given by the respondents, depending on whether they prefer the
first model, the second model, or have no preference, respectively. For each participant,
the sum of the answers represents their individual preference score. An overall score is
calculated as the average of all of the individual scores. The score ranges from −10 to 10,
with values further from 0 indicating a stronger preference for one of the models. A score
of 0 would mean the respondent is indifferent between the models.

59

4. Results
Table 2. Qualitative sample of inpainted results on test street-view scenes. A variety of objects are

shown.

Baseline Fine-Tuned Partial-Loss Top-N

The results of the experiments are presented in this section. Both quantitative and qualita-
tive metrics are used for evaluation. The results show the Fine-Tuned model is able to
produce more realistic results than the Baseline. The Partial-Loss and Top-N models are
not able to conclusively outperform the Fine-Tuned model. In terms of human preference,
the Fine-Tuned model is the most favourable. Sample outputs for each of the different
models are shown in Table 2.

60

Table 3. Quantitative testing results of all models on the test set. Highest score for each measure is
underlined. Parenthesis contain standard deviation.

Metric Baseline Fine-tuned Partial Loss Top-N

PSNR (higher is better) 26.114 (33.28) 26.443 (32.17) 26.056 (31.39) 26.443 (34.51)

SSIM (closer to 1 is better) 0.764 (0.016) 0.768 (0.015) 0.768 (0.015) 0.772 (0.014)

FID (lower is better) 19.182 17.287 18.560 18.010

LPIPS (lower is better) 0.141 0.134 0.138 0.135

4.1 Quantitative Metrics
This section of this study encompasses the quantitative assessment of our methods’ gen-
erative performance. To evaluate how well a model can perform inpainting, both the
pixel-based and the perception-based quality of the generated images need to be consid-
ered. In order to do so, a multitude of objective metrics are employed. The four metrics
that were used are PSNR 2.22, SSIM 2.23, LPIPS 2.24, and FID 2.26. Taken together, the
metrics provide a means to quantitatively compare the models and their image generation
capabilities.

The quantitative testing results for all methods are summarized in Table 3. Results were
calculated on the test set. For each metric, the best result is underlined. Where applicable,
the standard deviation is shown in parenthesis.

The results show that Baseline model is outperformed on every metric by all of the other
models. When using the partial loss function, the performance is decreased in comparison
to the Fine-Tuned model. Training on a carefully-curated subset of the data increases
generative performance to the point of matching the Fine-Tuned model in terms of PSNR.
The SSIM is also slightly improved, though the FID and LPIPS scores are lower, indicating
a worse generated image.

4.2 Qualitative Metrics
In this section, the results of the survey are presented. The survey was conducted to
examine user preferences for two different model settings: Baseline vs. Fine-Tuned and
Fine-Tuned vs. Top-N. The study included a total of 28 participants, comprising of 16
laypeople and 12 experts. A paired t-test was performed on the preference score to evaluate
if it is statistically significant against a null hypothesis assuming indifference between the
models, and therefore a score of 0. The preference scores and t-tests are summarized in
Table 4.

61

Table 4. Qualitative results, measured via user-study. Preference score calculated based on the
responses of each participant.

Setting Group
Preference Score Statistical Significance

Mean SD T-Statistic P-Value

Baseline vs Fine-Tuned

All 7.39 2.51 15.29 8.06× 10−15

Experts 7.83 2.67 9.72 9.78× 10−7

Laypeople 7.06 2.33 11.73 5.87× 10−9

Fine-Tuned vs Top-N

All −4.25 2.29 −9.63 3.17× 10−10

Experts −4.0 2.0 −6.63 3.69× 10−5

Laypeople −4.44 2.47 −6.95 4.68× 10−6

For the first set of questions, all participants displayed a strong preference for the Fine-
Tuned setting over the Baseline setting. The mean preference score for the Fine-Tuned
setting was 7.39 (SD = 2.51). The T-test yielded a highly significant result, with a
T-statistic of 15.29 and a p-value of 8.05× 10−15.

This holds within both the expert and layperson groups, with a mean preference score of
7.83 (SD = 2.67) and 7.06 (SD = 2.33) respectively. The T-test confirms the significance
of these results, with a T-statistic of 9.72 and a p-value of 9.78× 10−7 for the experts, and
a T-statistic of 11.73 and a p-value of 5.87× 10−9 for the laypeople. This indicates that
the preference is stronger in the experts group than the laypeople group.

In the second set of questions, all participant groups favored the Fine-Tuned setting over
the Top-N setting. The mean preference score for the second setting was −4.25 (SD
= 2.29). Note the sign of the score is negative, showing a preference for the Fine-Tuned
model. The T-test shows that the preference is significant, with a T-statistic of −9.63 and a
p-value of 3.17× 10−10.

The preference holds within both subsets of the participants, with a mean preference
score of −4.0 (SD = 2.0) among experts and −4.44 (SD = 2.47) among laypeople. The
T-test shows both are statistically significant, with T-statistic of −6.63 and a p-value of
3.69× 10−5 in the experts group and −6.95 and a p-value of 4.68× 10−6 among laypeople.

These results demonstrate consistent preferences among all participant groups for the
Fine-tuned setting in both the first and second set of questions. These findings provide
insights into people’s preferences for the different methods. They will be explored further
in the subsequent "Discussion" section.

62

5. Discussion

5.1 Summary of Findings
In this thesis project, we aimed to investigate the effectiveness of deep learning diffusion
models at inpainting and object removal for natural street-view scenes. We evaluated the
impact of different factors, such as fine-tuning, modifications to the loss function, and data
complexity, on the generative performance of the models. In this section, the main findings
and implications of the experiments which were conducted are discussed.

The main research question of this thesis is:

■ How effective are deep learning diffusion models at inpainting natural street-view
scenes?

To answer this question, quantitative and qualitative experiments were conducted in order
to evaluate the performance of latent diffusion models on the task of inpainting street-view
scenes. We found that latent diffusion models are able to produce very realistic inpainting
results, even in complex scenarios, however their performance is very sensitive to mask
quality. There are additional factors outside of the generative performance of the model as
well, which limit the effectiveness and usefulness of inpainting natural scenes in a realistic
manner. For example, if inpainting a person, even if the mask were to perfectly capture the
person, and the generation were to be indistinguishable from real, the shadow of the person
would remain and the image would look very unnatural (see Figure 32). Externalities
such as these are difficult to account for in the real world and were difficult to evaluate for
within the scope of this research. Nonetheless, the results of this research shows that deep
learning diffusion models are very effective at inpainting natural street-view scenes.

The first subquestion was:

■ What is the impact of fine-tuning on the generative performance of the model in
inpainting street-view scenes?

To answer this question, we compared the Baseline model, as created in Nichol and
Dhariwal (2021), with a Fine-Tuned model, which was further trained on a subset of the
Cyclomedia dataset. The Cyclomedia dataset comprises of high-quality natural street-view
images of the Netherlands. The Fine-Tuned model was trained using synthetic masks,

63

Figure 32. Example of an unnatural inpainting result due to remaining shadow.
Despite a well-masked object, inpainted in a realistic manner, the result is
insufficient because the mask remains. Image inpainted with the Fine-Tuned
model.

generated following the approach of Suvorov et al. (2021).

The results showed that fine-tuning improved the generative performance of the model
on the test set, as measured quantitatively by PSNR, SSIM, FID, and LPIPS metrics (see
Table 3). The model improved on all of the above metrics against the baseline, but the
improvements were limited in terms of absolute value. Despite the limited improvement
in terms of quantitative measures, the qualitative results show a strong preference for the
Fine-Tuned model against the baseline. The qualitative results show that both experts and
laypeople have a strong, statistically significant preference for the images inpainted with
the Fine-Tuned model over ones made with the Baseline model.

The discrepancy between the quantitative and qualitative metrics may be because the
differences in quality are too small for the computational methods to detect, but significant
enough to be noticeable by people. It may be that the results produced by the Baseline
model are already so realistic and natural, that they are reaching a boundary of the
quantitative metrics. Naturally, such a ceiling to detection would be higher for people.

The results indicate that fine-tuning is an effective way to improve the generative perfor-
mance of diffusion models for inpainting street-view scenes. However, the improvements

64

in generative performance come at the cost of training, which is a lengthy and very
computationally-expensive prospect for diffusion models.

The second subquestion was:

■ How does a loss function which focuses on specific parts of the image influence the
generative performance of the model in inpainting street-view scenes?

To answer this question, we proposed a custom loss function for the latent diffusion model,
the Partial Loss, which computes the reconstruction loss on only the masked parts of the
image. The Partial Loss model was fine-tuned using the Partial Loss function, on the same
data as the Fine-Tuned model. The results show that the Partial Loss model has a better
FID and LPIPS score compared to the baseline, but worse in comparison to the Fine-Tuned
model (see Table 3). These results suggest that modifying the loss function to focus on
the inpainted region does not have a significant impact on the generative performance of
diffusion models for inpainting street-view scenes.

The third subquestion was:

■ How does the intricacy and complexity of the data used to fine-tune the model affect
the generative performance in inpainting street-view scenes?

To answer this question, the images in the training set were sorted by their complexity
and a model, called the Top-N model, was fine-tuned on the top 10% of the images. The
quantitative results show that the Top-N model performed best in terms of SSIM and
equally as well as the Fine-Tuned model in terms of PSNR, however it does not perform as
well in FID and LPIPS (see Table 3). The qualitative survey also showed that both experts
and laypeople have a significant preference for images inpainted with the Fine-Tuned
model over the Top-N model. This is a surprising result, as the expected result would
be that having exclusively images with high complexity in the fine-tuning dataset would
result in more effective, faster training, and the model would be better able to produce
higher-quality image inpaintings. However, the results show that this is not the case,
and using more complex data to fine-tune the model does not improve the generative
performance of diffusion models for inpainting street-view scenes.

One reason why this may be the case is that the images which the model is actually being
used on are not necessarily the most complex ones. Because the test and training image
crops are generated in the same way, we would expect them to have a similar distribution
of complexity. When the model is being trained on only a certain part of the training crops,

65

it is being trained on a sample which is out-of-distribution relative to the test set.

The fourth subquestion was:

■ Is there a significant user preference when comparing the generative performance of
the fine-tuned model against the baseline for inpainting street-view scenes?

To answer this question, we conducted a user study to collect preference scores from
28 participants (16 laypeople and 12 experts). The participants were asked to compare
between an images inpainted by the Baseline model and the identical image inpainted
by the Fine-Tuned model. Then, participants chose between one of the two images or
indicated that they had no preference for either one (see an example question in Figure
31b). The results of the survey show that there is a statistically significant preference for
the Fine-Tuned model (see Table 4). This result is true for both experts and laypeople.
These results suggest that the Fine-Tuned model generates inpainted images that are more
visually appealing and realistic to the human eye than the Baseline model, and that this
preference is consistent across different levels of expertise.

The same survey was repeated, however the images compared between the Fine-Tuned and
Top-N models. Users show a less-strong but still significant preference for the Fine-Tuned
model. This indicates that the users found images generated by it to be more

The results showed that there was a consistent user preference for the Fine-Tuned model
over the Baseline model, as measured by the mean preference score and the statistical
significance (see Table 4). The mean preference score for the Fine-Tuned model was 7.39
for all participants, 7.83 for experts, and 7.06 for laypeople, indicating that the Fine-Tuned
model was preferred by the majority of the participants. The preference score for the Fine-
Tuned model was significantly higher than the preference score for the Baseline model,
as indicated by the t-statistic and the p-value. These results suggest that the Fine-Tuned
model generates inpainted images that are in some way more visually appealing, realistic,
or otherwise higher quality to human perception than the Baseline model, and that this
preference is consistent across different levels of expertise.

In summary, the experiments conducted in this thesis show that diffusion models are
effective at inpainting natural street-view scenes, and that fine-tuning is an effective way
of improving the generative performance of the models. We also showed that modifying
the loss function to focus on the inpainted region does not have a significant impact on
the generative performance, and that using more complex data to fine-tune the model does
not improve the generative performance. Finally, a user survey showed that there is a

66

consistent and significant user preference for the Fine-Tuned model over the Baseline
model, and that this preference is independent of the level of expertise.

5.2 Limitations
There are limitations of the work in therms of the quantitative results. In spite of making
use of a multitude of different complimentary metrics, following the approach of previous
works in the field, the measures were not fully able to capture the differences between the
models. The results of the tests are not significantly different enough, even though the
qualitative user survey shows that there is a perceptible and appreciable difference between
the model outputs.

It may be the case that computational evaluation metrics have an upper limit of sensitivity
which has been reached with the advent of newer and better generative techniques. This is
also the argument presented in Stein et al. (2023), in which FID is shown to not be able to
fully capture the performance of diffusion models. Unfortunately this work could not use
the custom inception network Stein et al. propose, because it was not available at the time
of model evaluation.

Another limitation of the study to consider is that there are newer diffusion models, such as
Stable Diffusion 2, which are shown to perform better out-of-the-box and be more efficient.
In addition, there have been iterations on other architectures, notably GigaGAN (Kang
et al., 2023), which is an updated GAN model, which have been shown to perform better
and be more efficient that latent diffusion models. Due to the pace of the generative AI
field, these methods could not be tested within this work.

When implementing the partial loss, the model is fine-tuned using the proposed loss, but
most of its training was done with a loss that evaluates the entirety of the output. The
results of this model were not improved, but that could change if the model is fully trained
using the partial loss function. However, due to limitations of time and availability of
compute resources, it was not feasible to test a model that was fully trained with the partial
loss.

5.3 Future Work
For future research, it would be recommend to start by looking into the feasibility of using
newer generative models, including ones based on the GAN architecture.

From our experience, unless there is the opportunity of doing an extremely long training

67

run on very high-quality data, we would recommend focusing on mask quality initially.
The quality of the object masks had a much greater impact on the efficacy of the models
than fine-tuning did. Getting accurate masks is far from trivial - it is a task that should not
be under-estimated. Additional research into how shadows could be masked may be the
final step to creating a production-level system which can be used in a variety of real-world
scenarios. This is because, no matter how accurate the mask and convincing the inpainting,
the result cannot be convincing if the object’s shadow is left.

Instead of fine-tuning, which is quite time-consuming, it may be useful to consider a
"knowledge base" approach instead. Where the model is guided by and forced to reference
a known set of images, through a process like Low-Rank Adaptation (LoRA, Hu et al.
(2021)), textual inversion (Gal et al., 2022), or Dreambooth (Ruiz et al., 2023). The
techniques above are applied to text-guided image generation, but it would be worth
investigating their feasibility for inpainting. Finally, another approach to guidance could
be based on the use of image semantic-maps.

68

6. Conclusion

This research investigated the generative performance of latent diffusion models (Rombach
et al., 2022) in natural street-view scenes. Cyclomedia semantic object masks were refined
using the SAM model (Kirillov et al., 2023) to produce high-quality and accurate object
coverage for inpainting. Fine-tuning was evaluated for increasing the accuracy and quality
of inpainting results, and we found it improved performance in terms of both computational
metrics and human perception. A partial loss function was proposed, implemented, and
evaluated. The performance when using a model fine-tuned with the partial loss did not
show a significant improvement. Lastly, a feature-based measure of image complexity was
used to evaluate the training data and a model was trained on a subset of the most complex
training images. The performance of the model showed an improvement against baseline
and the partial loss model, but it was not able to match the native fine-tuned model in terms
of human perception.

69

Bibliography

Adler, J. and Lunz, S. (2018). Banach Wasserstein GAN.

Arjovsky, M. and Bottou, L. (2017). Towards Principled Methods for Training Generative
Adversarial Networks. arXiv:1701.04862 [cs, stat].

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. arXiv:1701.07875
[cs, stat].

Ashikhmin, M. (2001). Synthesizing natural textures. In Proceedings of the 2001 sympo-

sium on Interactive 3D graphics, pages 217–226. ACM.

Bank, D., Koenigstein, N., and Giryes, R. (2021). Autoencoders. arXiv:2003.05991 [cs,
stat].

Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., and Babenko, A. (2022). Label-
Efficient Semantic Segmentation with Diffusion Models. arXiv:2112.03126 [cs].

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). PatchMatch:
a randomized correspondence algorithm for structural image editing. ACM Trans.

Graph., 28(3):1–11.

Benny, Y., Galanti, T., Benaim, S., and Wolf, L. (2021). Evaluation Metrics for Conditional
Image Generation. Int J Comput Vis, 129(5):1712–1731.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517.

Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (2000). Image inpainting. In
Proceedings of the 27th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’00, pages 417–424, USA. ACM Press/Addison-Wesley
Publishing Co.

Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. (2003). Simultaneous structure and
texture image inpainting. IEEE Transactions on Image Processing, 12(8):882–889.
Conference Name: IEEE Transactions on Image Processing.

Bornard, R., Lecan, E., Laborelli, L., and Chenot, J.-H. (2002). Missing data correction
in still images and image sequences. In Proceedings of the tenth ACM international

conference on Multimedia, MULTIMEDIA ’02, pages 355–361, New York, NY, USA.
Association for Computing Machinery.

70

Burger, H. C., Schuler, C. J., and Harmeling, S. (2012). Image denoising: Can plain neural
networks compete with BM3D? In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 2392–2399. ISSN: 1063-6919.

Buyssens, P., Daisy, M., Tschumperle, D., and Lezoray, O. (2015). Exemplar-based In-
painting: Technical Review and new Heuristics for better Geometric Reconstructions.
IEEE Trans. on Image Process., pages 1–1.

Cao, F., Gousseau, Y., Masnou, S., and Pérez, P. (2011). Geometrically Guided Exemplar-
Based Inpainting. SIAM J. Imaging Sci., 4(4):1143–1179.

Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P.-A., and Li, S. Z. (2022). A Survey on
Generative Diffusion Model. arXiv:2209.02646 [cs].

Chen, D., Orekondy, T., and Fritz, M. (2021). GS-WGAN: A Gradient-Sanitized Approach
for Learning Differentially Private Generators. arXiv:2006.08265 [cs, stat].

Chi, L., Jiang, B., and Mu, Y. (2020). Fast Fourier Convolution. In Advances in Neural

Information Processing Systems, volume 33, pages 4479–4488. Curran Associates,
Inc.

Chollet, F. (2016). Building Autoencoders in Keras.

Chung, H., Sim, B., and Ye, J. C. (2022). Come-Closer-Diffuse-Faster: Accelerating
Conditional Diffusion Models for Inverse Problems through Stochastic Contraction.
arXiv:2112.05146 [cs, eess, stat].

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). Describing
Textures in the Wild. In 2014 IEEE Conference on Computer Vision and Pattern

Recognition, pages 3606–3613, Columbus, OH, USA. IEEE.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., and Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene
Understanding. arXiv:1604.01685 [cs].

Cosentino, J. and Zhu, J. (2019). Generative Well-intentioned Networks. arXiv:1910.12481
[cs, stat] version: 1.

Criminisi, A., Perez, P., and Toyama, K. (2004). Region Filling and Object Removal by
Exemplar-Based Image Inpainting. IEEE Trans. on Image Process., 13(9):1200–1212.

Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M. (2022). Diffusion Models in
Vision: A Survey. arXiv:2209.04747 [cs].

71

Cross, G. R. and Jain, A. K. (1983). Markov random field texture models. IEEE Trans

Pattern Anal Mach Intell, 5(1):25–39.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255. ISSN: 1063-6919.

Dhariwal, P. and Nichol, A. (2021). Diffusion Models Beat GANs on Image Synthesis.
arXiv:2105.05233 [cs, stat].

Doersch, C., Singh, S., Gupta, A., Sivic, J., and Efros, A. A. (2012). What makes Paris
look like Paris? ACM Trans. Graph., 31(4):1–9.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
(2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. arXiv:2010.11929 [cs].

Efros, A. and Leung, T. (1999). Texture synthesis by non-parametric sampling. In
Proceedings of the Seventh IEEE International Conference on Computer Vision, pages
1033–1038 vol.2, Kerkyra, Greece. IEEE.

Ehret, T. and Arias, P. (2018). On the Convergence of PatchMatch and Its Variants. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1121–1129, Salt Lake City, UT. IEEE.

Eigen, D., Krishnan, D., and Fergus, R. (2013). Restoring an Image Taken through a
Window Covered with Dirt or Rain. pages 633–640.

Esser, P., Rombach, R., and Ommer, B. (2021). Taming Transformers for High-Resolution
Image Synthesis. arXiv:2012.09841 [cs].

Farajzadeh-Zanjani, M., Razavi-Far, R., Saif, M., and Palade, V. (2022). Generative Ad-
versarial Networks: A Survey on Training, Variants, and Applications. In Razavi-Far,
R., Ruiz-Garcia, A., Palade, V., and Schmidhuber, J., editors, Generative Adversar-

ial Learning: Architectures and Applications, volume 217, pages 7–29. Springer
International Publishing, Cham. Series Title: Intelligent Systems Reference Library.

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G., and Cohen-Or,
D. (2022). An Image is Worth One Word: Personalizing Text-to-Image Generation
using Textual Inversion. arXiv:2208.01618 [cs].

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A Neural Algorithm of Artistic Style.
arXiv:1508.06576 [cs, q-bio].

72

Goodfellow, I. (2017). NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv:1701.00160 [cs].

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Networks.
arXiv:1406.2661 [cs, stat].

Guillemot, C., Turkan, M., Le Meur, O., and Ebdelli, M. (2013). Object removal and
loss concealment using neighbor embedding methods. Signal Processing: Image

Communication, 28(10):1405–1419.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Im-
proved Training of Wasserstein GANs. In Advances in Neural Information Processing

Systems, volume 30. Curran Associates, Inc.

Harshvardhan, G., Gourisaria, M. K., Pandey, M., and Rautaray, S. S. (2020). A compre-
hensive survey and analysis of generative models in machine learning. Computer

Science Review, 38:100285.

He, K. and Sun, J. (2012). Statistics of Patch Offsets for Image Completion. In Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision –

ECCV 2012, Lecture Notes in Computer Science, pages 16–29, Berlin, Heidelberg.
Springer.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.

Heuvel, F. A. V. D., Beers, B. J., and Verwaal, R. G. (2011). Method and system for
producing an image from a vehicle.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.

Hirahara, D., Takaya, E., Kadowaki, M., Kobayashi, Y., and Ueda, T. (2021). Effect of
the Pixel Interpolation Method for Downsampling Medical Images on Deep Learning
Accuracy. Journal of Computer and Communications, 9(11):150–156. Number: 11
Publisher: Scientific Research Publishing.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising Diffusion Probabilistic Models.
arXiv:2006.11239 [cs, stat].

73

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W.
(2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685
[cs].

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Globally and locally consistent image
completion. ACM Transactions on Graphics, 36(4).

Jaderberg, M., Simonyan, K., Zisserman, A., and kavukcuoglu, k. (2015). Spatial Trans-
former Networks. In Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Jiang, Y., Xu, J., Yang, B., Xu, J., and Zhu, J. (2020). Image Inpainting Based on
Generative Adversarial Networks. IEEE Access, 8:22884–22892. Conference Name:
IEEE Access.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual Losses for Real-Time Style
Transfer and Super-Resolution. In Leibe, B., Matas, J., Sebe, N., and Welling, M.,
editors, Computer Vision – ECCV 2016, Lecture Notes in Computer Science, pages
694–711, Cham. Springer International Publishing.

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T. (2023).
Scaling up GANs for Text-to-Image Synthesis. arXiv:2303.05511 [cs].

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive Growing of GANs for
Improved Quality, Stability, and Variation. arXiv:1710.10196 [cs, stat].

Karras, T., Laine, S., and Aila, T. (2019). A Style-Based Generator Architecture for
Generative Adversarial Networks. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4396–4405. ISSN: 2575-7075.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing
and Improving the Image Quality of StyleGAN. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 8107–8116. ISSN:
2575-7075.

Kim, M., Kim, S., Kim, M., Bae, H.-J., Park, J.-W., and Kim, N. (2021). Realistic
high-resolution lateral cephalometric radiography generated by progressive growing
generative adversarial network and quality evaluations. Scientific Reports, 11.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs].

Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. CoRR.

74

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead,
S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R. (2023). Segment Anything.
arXiv:2304.02643 [cs].

Krizhevsky, A. and Hinton, G. (2009). Learning Multiple Layers of Features from Tiny
Images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–90.

Li Deng (2012). The MNIST Database of Handwritten Digit Images for Machine Learning
Research [Best of the Web]. IEEE Signal Process. Mag., 29(6):141–142.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B. (2018). Image
Inpainting for Irregular Holes Using Partial Convolutions. pages 85–100.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep Learning Face Attributes in the
Wild. arXiv:1411.7766 [cs].

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Van Gool, L. (2022). Re-
Paint: Inpainting using Denoising Diffusion Probabilistic Models. arXiv:2201.09865
[cs].

Mairal, J., Elad, M., and Sapiro, G. (2008). Sparse Representation for Color Image
Restoration. IEEE Transactions on Image Processing, 17(1):53–69. Conference
Name: IEEE Transactions on Image Processing.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2016). Adversarial
Autoencoders. arXiv:1511.05644 [cs].

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and Ermon, S. (2022).
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equa-
tions. arXiv:2108.01073 [cs].

Ng, A. (2011). Sparse autoencoder.

Nichol, A. and Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic Models.
arXiv:2102.09672 [cs, stat].

Pascal, V., Hugo, L., Yoshua, B., and Pierre-Antoine, M. (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international

conference on Machine learning, ICML ’08, pages 1096–1103, New York, NY, USA.
Association for Computing Machinery.

75

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context
Encoders: Feature Learning by Inpainting. pages 2536–2544.

Patil, B. H. and P.m, P. (2020). A Comprehensive Review on State-of-the-Art Image
Inpainting Techniques. Scalable Computing: Practice and Experience, 21(2):265–
276. Number: 2.

Perez, P., Gangnet, M., and Blake, A. (2004). PatchWorks: Example-Based Region Tiling
for Image Editing.

Portilla, J., Strela, V., Wainwright, M., and Simoncelli, E. (2003). Image denoising using
scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image

Processing, 12(11):1338–1351. Conference Name: IEEE Transactions on Image
Processing.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs].

Ren, J. S., Xu, L., Yan, Q., and Sun, W. (2015). Shepard Convolutional Neural Networks.
In Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. arXiv:1401.4082 [cs, stat].

Rojas, D. J. B., Fernandes, B. J. T., and Fernandes, S. M. M. (2020). A Review on Image
Inpainting Techniques and Datasets. In 2020 33rd SIBGRAPI Conference on Graphics,

Patterns and Images (SIBGRAPI), pages 240–247. ISSN: 2377-5416.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-Resolution
Image Synthesis with Latent Diffusion Models. arXiv:2112.10752 [cs].

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Navab, N., Hornegger, J., Wells, W. M., and
Frangi, A. F., editors, Medical Image Computing and Computer-Assisted Intervention

– MICCAI 2015, Lecture Notes in Computer Science, pages 234–241, Cham. Springer
International Publishing.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and Aberman, K. (2023). Dream-
Booth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation.
arXiv:2208.12242 [cs].

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. In Parallel distributed processing: explorations

76

in the microstructure of cognition, vol. 1: foundations, pages 318–362. MIT Press,
Cambridge, MA, USA.

Sagong, M.-c., Shin, Y.-g., Kim, S.-w., Park, S., and Ko, S.-j. (2019). PEPSI : Fast Image
Inpainting With Parallel Decoding Network. pages 11360–11368.

Saharia, C., Chan, W., Chang, H., Lee, C. A., Ho, J., Salimans, T., Fleet, D. J., and Norouzi,
M. (2022). Palette: Image-to-Image Diffusion Models. arXiv:2111.05826 [cs].

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M. (2021). Image
Super-Resolution via Iterative Refinement. arXiv:2104.07636 [cs, eess].

Salem, N. (2021). A Survey on Various Image Inpainting Techniques.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., and Chen, X.
(2016). Improved Techniques for Training GANs. In Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data.
In Proceedings of the 1968 23rd ACM national conference, ACM ’68, pages 517–524,
New York, NY, USA. Association for Computing Machinery.

Shin, Y.-G., Sagong, M.-C., Yeo, Y.-J., Kim, S.-W., and Ko, S.-J. (2021). PEPSI++: Fast
and Lightweight Network for Image Inpainting. IEEE Transactions on Neural Net-

works and Learning Systems, 32(1):252–265. Conference Name: IEEE Transactions
on Neural Networks and Learning Systems.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep
Unsupervised Learning using Nonequilibrium Thermodynamics. arXiv:1503.03585
[cond-mat, q-bio, stat] version: 8.

Song, Y. and Ermon, S. (2020). Generative Modeling by Estimating Gradients of the Data
Distribution. arXiv:1907.05600 [cs, stat].

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B.
(2021). Score-Based Generative Modeling through Stochastic Differential Equa-
tions. arXiv:2011.13456 [cs, stat].

Starck, J.-L., Elad, M., and Donoho, D. (2005). Image decomposition via the combination
of sparse representations and a variational approach. IEEE Trans. on Image Process.,
14(10):1570–1582.

Stein, G., Cresswell, J. C., Hosseinzadeh, R., Sui, Y., Ross, B. L., Villecroze, V., Liu, Z.,
Caterini, A. L., Taylor, J. E. T., and Loaiza-Ganem, G. (2023). Exposing flaws of

77

generative model evaluation metrics and their unfair treatment of diffusion models.
arXiv:2306.04675 [cs, stat].

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A.,
Kong, N., Goka, H., Park, K., and Lempitsky, V. (2021). Resolution-robust Large
Mask Inpainting with Fourier Convolutions. arXiv:2109.07161 [cs, eess].

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A.,
Kong, N., Goka, H., Park, K., and Lempitsky, V. (2022). Resolution-Robust Large
Mask Inpainting With Fourier Convolutions. pages 2149–2159.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
Inception Architecture for Computer Vision. pages 2818–2826.

Tomczak, J. M. and Welling, M. (2017). Improving Variational Auto-Encoders using
convex combination linear Inverse Autoregressive Flow. arXiv:1706.02326 [stat].

Tyleček, R. and Šára, R. (2013). Spatial Pattern Templates for Recognition of Objects with
Regular Structure. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern,
F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Weickert, J., Hein, M.,
and Schiele, B., editors, Pattern Recognition, volume 8142, pages 364–374. Springer
Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer
Science.

Uittenbogaard, R. (2018). Moving object detection and image inpainting in street-view
imagery.

Vahdat, A., Kreis, K., and Kautz, J. (2021). Score-based Generative Modeling in Latent
Space. arXiv:2106.05931 [cs, stat].

Venkatesan, R. and Li, B. (2017). Convolutional Neural Networks in Visual Computing: A

Concise Guide. CRC Press, Boca Raton.

Wang, Z., She, Q., and Ward, T. E. (2021). Generative Adversarial Networks in Computer
Vision: A Survey and Taxonomy. ACM Comput. Surv., 54(2):37:1–37:38.

Webb, G. I. (2010). Naïve Bayes. In Sammut, C. and Webb, G. I., editors, Encyclopedia

of Machine Learning, pages 713–714. Springer US, Boston, MA.

Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis using tree-structured vector
quantization. In Proceedings of the 27th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’00, pages 479–488, USA. ACM Press/Addison-
Wesley Publishing Co.

78

Weng, L. (2021). What are Diffusion Models? Section: posts.

Wong, A. and Orchard, J. (2008). A nonlocal-means approach to exemplar-based inpainting.
In 2008 15th IEEE International Conference on Image Processing, pages 2600–2603,
San Diego, CA, USA. IEEE.

Xiang, H., Zou, Q., Nawaz, M. A., Huang, X., Zhang, F., and Yu, H. (2023). Deep learning
for image inpainting: A survey. Pattern Recognition, 134:109046.

Xie, J., Xu, L., and Chen, E. (2012). Image Denoising and Inpainting with Deep Neural
Networks. In Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc.

Xu, L., Ren, J. S., Liu, C., and Jia, J. (2014). Deep Convolutional Neural Network
for Image Deconvolution. In Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Yan, Z., Li, X., Li, M., Zuo, W., and Shan, S. (2018). Shift-Net: Image Inpainting via
Deep Feature Rearrangement. pages 1–17.

Yi, Z., Tang, Q., Azizi, S., Jang, D., and Xu, Z. (2020). Contextual Residual Aggregation
for Ultra High-Resolution Image Inpainting. arXiv:2005.09704 [cs].

Yu, F. and Koltun, V. (2016). Multi-Scale Context Aggregation by Dilated Convolutions.
arXiv:1511.07122 [cs].

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. (2016). LSUN:
Construction of a Large-scale Image Dataset using Deep Learning with Humans in
the Loop. arXiv:1506.03365 [cs].

Yu, H. and Winkler, S. (2013). Image complexity and spatial information. In 2013 Fifth

International Workshop on Quality of Multimedia Experience (QoMEX), pages 12–17.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. (2019). Free-Form Image
Inpainting with Gated Convolution. arXiv:1806.03589 [cs].

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). Generative Image
Inpainting With Contextual Attention. pages 5505–5514.

Zeiler, M. D. and Fergus, R. (2013). Visualizing and Understanding Convolutional
Networks. arXiv:1311.2901 [cs].

Zeng, Y., Fu, J., Chao, H., and Guo, B. (2019). Learning Pyramid-Context Encoder
Network for High-Quality Image Inpainting. pages 1486–1494.

79

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 586–595. ISSN: 2575-7075.

Zhang, X., Zhai, D., Li, T., Zhou, Y., and Lin, Y. (2023). Image inpainting based on deep
learning: A review. Information Fusion, 90:74–94.

Zhao, S., Cui, J., Sheng, Y., Dong, Y., Liang, X., Chang, E. I., and Xu, Y. (2021). Large
Scale Image Completion via Co-Modulated Generative Adversarial Networks.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. (2018). Places: A 10
Million Image Database for Scene Recognition. IEEE Trans. Pattern Anal. Mach.

Intell., 40(6):1452–1464.

Zhou, E. Y., Damiano, C., Wilder, J., and Walther, D. B. (2019). Measuring complexity of
images using Multiscale Entropy. Journal of Vision, 19(10):96a.

80

A. Validation set results

Table 5. Quantitative testing results of all models on the validation set. Highest score for each
measure is underlined.

Metric Baseline Fine-tuned Unweighted Partial Loss Partial Loss Partial L2 Loss Top-N

PSNR (higher is better) 25.784 26.228 22.779 26.124 26.125 26.012

SSIM (closer to 1 is better) 0.759 0.764 0.667 0.766 0.763 0.761

FID (lower is better) 39.988 36.131 75.331 38.823 39.412 39.643

LPIPS (lower is better) 0.141 0.134 0.263 0.136 0.138 0.138

81

B. Unweighted Partial Loss

Figure 33. Top left: Masked image, mask was drawn by hand for testing
purposes. Top right: Original image. Bottom left: Baseline model output.
Bottom right: Unweighted Partial Loss model output. Note that the license
plates were manually blurred for publication.

82

	Introduction
	Research Questions

	Literature Review
	Generative Models
	Autoencoders
	Generative Adversarial Networks
	Diffusion Models
	Datasets
	Evaluation Metrics

	Image Inpainting & Restoration
	Non-Neural Methods
	Neural Methods

	Methodology
	Data Preprocessing
	Training Images
	Inference Images

	Fine-Tuned Latent Diffusion
	Partial Loss Function
	Data Filtering
	Evaluation
	Quantitative Measures
	Qualitative Measures

	Results
	Quantitative Metrics
	Qualitative Metrics

	Discussion
	Summary of Findings
	Limitations
	Future Work

	Conclusion
	Validation set results
	Unweighted Partial Loss

