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Layman’s summary  
Neuroblastoma is a childhood cancer that accounts for 12-15% of childhood cancer 

deaths. The mechanism of disease and the development of neuroblastoma is not fully 
understood. This lack of knowledge and high mortality is a problem, and we would like to 
understand neuroblastoma better. Recent research suggests that microproteins (super small 
proteins) can have roles in cells. But we need to find microproteins with a function first out 
of thousands of microproteins that are found. We do this by combining data. DNA, the 
genomic information stored in all cells of our body, is the basis for RNA and proteins. DNA 
gets transcribed into RNA. You can see the DNA as a book with all blueprints for different 
building blocks within cells, and RNA as a copy of one of the blueprints. The RNA copy is used 
to build the protein. In all steps involved in this process, errors can occur, which sometimes 
lead to disease. To look for proteins that are specific to a tumor, you can examine the DNA 
(book), RNA (blueprints), and proteins and compare them to data from other tissues. While 
looking at DNA and RNA is getting easier and cheaper, studying proteins in cells remains a 
challenge. To discover new proteins built in a tumor, our lab has established a two-step 
protocol. The first part involves collecting all RNA in a specific tumor type, thereby collecting 
all the blueprints present in the tumor. The second part makes use of a new technique. In 
every cell, you have ribosomes, which are the machines that produce proteins based on the 
RNA blueprints. With this technique, only the RNA that is within the ribosome (machine) is 
examined. These are just small sections of the RNA that are protected within the ribosome, 
which is essentially parts of the blueprint. This is where the first step comes in. These small 
pieces are cross-referenced with the RNA to identify their corresponding RNA blueprints. With 
this technique, we can determine which proteins are made in the cell and discover new 
proteins. For a specific tumor type, thousands of these new proteins can be found. Out of 
these thousands of proteins, we must select candidates for further research. Examining all of 
them would be time and cost consuming. Interesting candidates have a function and need to 
be presented on the outside of the cell so the immune system can recognize and attack them. 
To automate this process, we have built a pipeline, a pipeline is a chain of several 
computational tools. These computational tools are built to predict properties of proteins. 
These properties are their structure, location in the cell, conservation and characteristics that 
can be calculated. We looked at proteins that were specific to neuroblastoma and enriched 
in neuroblastoma, and we found some promising proteins for further research based on the 
predictions of the pipeline. 
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Abstract  
Microproteins, though often overlooked, have the potential to revolutionize cancer 

treatments, including immunotherapy and cellular therapies. With the advancements in 
genomics and proteomics thousands of potential microproteins are discovered. These 
microproteins could have crucial function in the tumor and possibly lead to several different 
new applications in cancer treatment. To identify translated microproteins our lab established 
a two-step protocol which combines making a custom transcriptome based on RNA-
sequencing data of a tumor type, and mapping ribosome profiling data, which is based on the 
sequence that is protected in the ribosome, of the same tumor type against it. Two important 
implications of these microproteins are as target in immunotherapy or having a function in 
the tumor. Prior to targeting microproteins we need to do extensive experiments to validate 
their expression and functions in the tumor. To prioritize targets for further investigation, we 
have designed a pipeline that predicts several properties based on a list of microprotein 
sequences. Our pipeline gives information about the localization, structure, several 
characteristics, and MHC-I binding affinity of microproteins. We use the pipeline to 
specifically look at microproteins found in neuroblastoma. Neuroblastoma is a pediatric 
tumor that account for 12-15% of childhood cancer deaths. It originates somewhere in the 
sympathetic chain but the whole process is still unknown. This makes it a tumor type that 
would benefit a lot when tumor specific microproteins with a function are found. The pipeline 
gives us several targets which are enriched in neuroblastoma and have interesting properties. 
The pipeline also predicts several microproteins with potential strong binders with the MHC-
I complex suggesting that there is potential to use them for immunotherapy. We come up 
with 3 candidates that are good candidates for further research.  
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Introduction 
Microproteins are adding a new layer of complexity to our understanding of the 

genetic code. For years, the field has primarily focused on proteins, with efforts to map the 
entire human proteins, that were bigger than 100 amino acids. In most research an arbitrary 
cut-off of a hundred amino acids is used. This cut off limited the number of false positives 
proteins found and these small proteins were suspected to be noise or non-functional (Dinger 
et al. 2008). Recent studies indicate the contrary and implicate that microproteins may indeed 
have functions (Hassel, Brito-Estrada, and Makarewich 2023; Merino-Valverde, Greco, and 
Abad 2020). State-of-the-art genomics and proteomics also have led to the discovery of 
thousands of potential microproteins (Heesch et al. 2019)(Chothani et al. 2022). 
Microproteins are just one facet of a broader category of genetic elements known as Open 
Reading Frames (ORFs). ORFs are sequences within DNA that have the potential to be 
translated into proteins. There are several different types of ORFs depending on their location 
next to, or over canonical proteins. An ORF can be from annotated coding sequence (CDS) (fig. 
1, left). But ORFs that are outside of the CDS or extensions of known ORFs are also possible. 
ORFs can be completely unannotated and novel, upstream ORFs (uORFs), downstream ORFs 
(dORFs), internal ORFs (intORFs), or overlapping uORFs (uoORFs) or overlapping dORFs 
(doORFs) (fig. 1, right) (Wright et al. 2022).  These ORFs can vary widely in length, with some 
encoding conventional, well-established proteins and others, like microproteins, representing 
smaller and less-studied proteins. There is evidence that uncharacterized ORFs are functional 
(Prensner et al. 2021) and that investigating of unannotated ORFs in cancer and other disease 
states probably will yield new insights. 

 

 
 
Figure 1: Several types of translated ORFs. In blue canonical ORFs are depicted. In orange non-canonical 
proteins are depicted. uORF = upstream open reading frame. dORF = downstream open reading frame. 
uoORF = upstream overlapping open reading frame. doORF = downstream overlapping open reading frame. 
intORF = internal open reading frame.  

 
Proteins from these ORFs can be functional, regulate translation, be a source of novel 

proteins or be a source of novel antigenic peptides (fig. 2). A microprotein can have a function 
in complex stabilization, protein regulation, signaling or as an autonomous protein (fig. 2) 
(Schlesinger and Elsässer 2022). Microproteins can regulate translation, it can repress or 
upregulate a canonical ORF (fig. 2) (Schlesinger and Elsässer 2022). Microproteins can evolve 
over time and acquire a function especially in disease states where previously silent sections 
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of DNA become transcriptionally active. Microproteins can be completely novel when they are 
from previously silenced DNA (fig. 2). Microproteins can be a source of antigenic peptides 
when the microproteins gets degraded and assembled on the MHC-I complex. This works by 
degrading a protein into peptides, these peptides with a length between 8 and 12 amino acids 
bind on the MHC-I (Blees et al. 2017). T-cells recognize the MHC-I and destroys cells when the 
assembled peptides are foreign. These possible functions and the presentation of antigenic 
peptides on the MHC-I complex make microproteins an interesting part of the proteome to 
study.  
 

 
Figure 2: Small ORF translation and the potential function of the small ORF derived microproteins 
(Schlesinger and Elsässer 2022).  

 
When novel peptides are presented by the MHC-I complex they could be potentially 

used for immunotherapy. These interventions include immune checkpoint inhibition, 
antibody-mediated therapy, and adoptive T cell therapy (Zhang and Zhang 2020). With 
immunotherapy, the body’s immune system is harnessed to recognize and destroy cancer 
cells, often through the identification of cancer-specific peptides which act as unique markers 
on tumor cells, enabling targeted immune responses. Immunotherapy options are already 
available for several cancer types, and this field is rapidly advancing, offering new ways of 
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treatment for some types of cancer (Abbott and Ustoyev 2019). Most immunotherapies 
primarily target mutated canonical proteins in adult cancer types, where the proteins have 
gained the mutations over time. This approach has limitations in the case of pediatric cancer 
due to their low mutational burden (Filbin and Monje 2019), which makes novel microproteins 
a more suitable and promising candidate for immunotherapy in pediatric cancer.  

 

Figure 3: Overview of Ribo-seq and RNA-seq. A) on the left the pathway of ribo-seq, it starts at the top with 
digestion, then purification, size selection, library construction and at the end illumine sequencing. B) on the 
right RNA-seq pathway, it starts at the top with RNA purification, depletion, and fragmentation, after this 
library construction and illumine sequencing is performed (Xu et al. 2020).  

 
Both functional and novel microproteins could be of interest for further research, but 

they need to be identified first out of thousands of possible translated microproteins. To 
identify microproteins we have established a two-step protocol. This protocol is performed to 
identify ORFs that are translated in a tissue-specific manner. The protocol makes use of 
ribosome profiling (Ribo-seq) and RNA sequencing to find evidence for actively translated 
ORFs (fig. 3). RNA sequencing (RNA-seq)(fig 3B) is a high-throughput molecular biology 
method that enables the analysis of the transcriptome, the complete set of RNA molecules 
present in a cell or tissue at a given moment (Withanage, Liang, and Zeng 2022). This 
technology has revolutionized the ability to identify novel genes, quantify their expression 
levels, and detect various RNA isoforms and alternative splicing events. RNA sequencing 
allows us to explore the transcriptomic landscape of a tissue. Combining the RNA-seq data of 
several samples of a tissue, a tissue specific transcriptome is built. This tissue specific 
transcriptome can be used to map ribosome profiling data against. Ribosome profiling shows 
the process of translation, the translation of RNA into functional proteins. Ribosome profiling 
(fig 3A), also known as Ribo-seq, sequences only the mRNA encapsulated in the ribosome 
(Ingolia et al. 2009). It involves capturing the positions of ribosomes along messenger RNAs 
(mRNAs) at a genome-wide scale. This technique allows to discern which mRNAs are actively 
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being translated and provides a quantitative measure of ribosome occupancy on individual 
transcripts. By mapping the ribosome profiling data to the assembled tissue-specific 
transcriptome, we know which specific mRNAs are actively being translated into proteins 
ultimately giving us a list of translated ORFs.  

This list of ORFs contains possible new microproteins, but this list contains all 
translated ORFs which are too many to investigate individually. And there is no evidence that 
the microproteins on the list are in fact stable or have a function. The development of new 
methodologies and advances in omics technologies have enabled large-scale discovery of 
previously unannotated ORFs. One of the next challenges is to further annotate, characterize, 
and validate the function of their candidate microprotein products. Using state of the art 
bioinformatics tools we are going to try and solve these challenges and predict several 
properties of novel microproteins. These predictions will give a better understanding about 
the microprotein and their possibility to have a crucial role in the tumor or to be used as target 
for immunotherapy. The pipeline can thus be used to prioritize microproteins for functional 
experiments. 

 
The pipeline is built to address several areas of interest regarding microproteins: 
 

- Cellular Localization: Determining where microproteins localize within cells provides 
insights into their functional roles. Microproteins may play distinct roles depending on 
their subcellular localization, influencing cellular processes and interactions. 

- MHC-I binding affinity: Investigating the binding affinity of microproteins to Major 
Histocompatibility Complex Class I (MHC-I) molecules provides a critical perspective 
on their potential involvement in antigen presentation and probability to be used for 
immunotherapeutic interventions. 

- Structural Analysis: Their three-dimensional structures, offer a deeper insight into 
their functional potential and interactions with other biomolecules. 

- Function: Uncovering the functional roles of microproteins is important. These roles 
may include regulatory functions in cancer progression, immunomodulation, or roles 
in other cellular processes. 

- Conservation: Conservation in microproteins would mean selection, selection means 
more likely to have a function. Microproteins without conservation are still of interest 
because microprotein are evolutionary young.  

- Characteristics: defining several characteristics of microproteins would be interesting 
when comparing them to canonical microproteins to find similarities and differences 
between the sets. 

- Short Linear Motif (SLiM) search: Intrinsically disordered proteins can have functions 
and interactions based on short linear motifs. These motifs can give us more 
information about the disordered microproteins. 
 
By analyzing these aspects, we try to find out the roles that microproteins play and 

their potential to be used in immunotherapy, ultimately advancing our research on tumor 
specific microproteins. 

As a first use case of the pipeline, we use Neuroblastoma ORF data with canonical and 
non-canonical microproteins. Annually, in the Netherlands, around 25 children get diagnosed 
with neuroblastoma (Neuroblastoom n.d.). Neuroblastoma which is a pediatric tumor that 
affects the sympathetic nervous system arises from neural crest progenitor cells. The 
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prognosis of neuroblastoma heavily relies on its disease stage. The chances of recovery vary 
significantly, ranging from 70-90% to 25-50% based on age and risk status. Where low risk has 
a favorable prognosis with a 5-year overall >90% survival (Wienke et al. 2021). High risk 
neuroblastoma has a below 50% 5-year overall survival (Matthay et al. 2016). Early age of 
onset (3-5 years), high frequency of metastatic disease at diagnosis and tendency of 
spontaneous regression of tumors in infancy (Matthay et al. 2016) and the high risk variant of 
neuroblastoma sparked the interest in alternative therapeutic approaches. Neuroblastoma 
also displays low immunogenicity due to its low mutational load and lack of MHC-I expression 
(Wienke et al. 2021). The relatively low survival rates for neuroblastoma combined with the 
low immunogenicity indicate that patients would benefit from an alternative way of 
treatment. 
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Material & Methods 
Software and algorithms 
Table 1: Overview of used software, versions with their source and identifier.  

Name Version Source Identifier 

chimeraX 1.5 (Meng et al. 
n.d.) 

https://doi.org/10.1002/pro.4792 

Rstudio 4.3.0 R Core Team, 
2021 

https://www.R-project.org/ 

Python 3.7 (Van Rossum, 
et al. 2009) 

https://www.python.org/ 

OmegaFold Model 
2 

(Wu et al. 
2022) 

https://doi.org/10.1101/2022.07.21.500999 

DeepTMHMM 1.0.24 (Hallgren et 
al. 2022) 

https://doi.org/10.1101/2022.04.08.487609 

SignalP 6.0 (Teufel et al. 
2022) 

https://doi.org/10.1038%2Fs41587-021-01156-3 

Peptides 2.4.5 (Osorio et al. 
2023) 

https://github.com/dosorio/Peptides/ 

IUPred 3.0 (Erdős, 
Pajkos, and 
Dosztányi 
2021) 

https://doi.org/10.1093%2Fnar%2Fgkab408 

NetMHCpan 4.1 (Reynisson et 
al. 2020) 

https://doi.org/10.1093/nar/gkaa379 

Ggplot2 3.3.5 (Wickham, 
Chang, et al. 
2023) 

https://ggplot2.tidyverse.org 

tidyr 1.2.0 (Wickham, 
Vaughan, et 
al. 2023) 

https://tidyr.tidyverse.org 

pandas 1.1.5 The pandas 
development 
team 

https://doi.org/10.5281/zenodo.8364959 

dplyr 1.0.8 (Wickham, 
François, et 
al. 2023) 

https://dplyr.tidyverse.org 

BioStrings 2.70.1 (Pagès, et al. 
2023) 

https://doi.org/doi:10.18129/B9.bioc.Biostrings 

stringr 1.4.0 (Wickham 
and RStudio 
2022) 

https://stringr.tidyverse.org 

magrittr 2.0.3 (magrittr) et 
al. 2022) 

https://magrittr.tidyverse.org 

numpy 1.24 (Harris et al. 
2020) 

DOI: 10.1038/s41586-020-2649-2 

https://github.com/dosorio/Peptides/
https://tidyr.tidyverse.org/
https://dplyr.tidyverse.org/
https://stringr.tidyverse.org/
https://magrittr.tidyverse.org/
https://doi.org/10.1038/s41586-020-2649-2
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TrimGalore 0.6.6 (Kreuger F, 
2021) 

https://zenodo.org/badge/latestdoi/62039322 

Cutadapt 4.6 (Martin 2011) https://doi.org/10.14806/ej.17.1.200 

FastQC 1.5.0 (Andrews S. 
2010) 

https://doi.org/10.5281/zenodo.6984534 

StringTie 2.1.5 (Pertea et al. 
2015) 

https://doi.org/10.1038%2Fnbt.3122 

STAR 2.7.8a (Dobin et al. 
2013) 

https://doi.org/10.1093/bioinformatics/bts635 

Bowtie 2 (Langmead 
and Salzberg 
2012) 

https://doi.org/10.1038%2Fnmeth.1923 

VennDiagram 1.7.1 (Chen 2022) https://CRAN.R-
project.org/package=VennDiagram 

 

Data and scripts availability 
Scripts 

All scripts used in this study can be found on the following git repository:  
https://github.com/AmaliaNabuurs/protein_prediction_project.git 
 
Containers 

All tools used are containerized to ensure easy reproducibility. Dockers created for this 
project can be found at dockerhub: https://hub.docker.com/u/anabuurs. Their corresponding 
dockerfiles are all in the following git repository: 
https://github.com/AmaliaNabuurs/dockerfiles.git. The only exception is the docker for 
IUPred3.0, this one is set on private due to licensing. The code for IUPred3.0 can be requested 
on https://iupred3.elte.hu/download_new.  
 
Existing dockers: 

- netMHCpan - https://hub.docker.com/r/guobioinfolab/netmhcpan  
- SignalP 6.0 - https://hub.docker.com/r/streptomyces/signalp  

 
Visualization of PDB files from OmegaFold was done with chimeraX 1.5. Molecular 

graphics and analyses performed with UCSF chimeraX, developed by the Resource for 
Biocomputing, Visualization, and Informatics at the University of California, San Francisco, 
with support from National Institutes of Health R01-GM129325 and the Office of Cyber 
Infrastructure and Computational Biology, National Institute of Allergy and Infectious 
Diseases. 

 
Data 
 Total RNA sequencing data on neuroblastoma samples (n=233) were collected from 
the Princess Maxima Centre for Pediatric Oncology. Total Ribosome profiling data on 
neuroblastoma samples (n=15) were collected from the Princess Maxima Centre for Pediatric 
Oncology.  
 

https://github.com/AmaliaNabuurs/protein_prediction_project.git
https://github.com/AmaliaNabuurs/dockerfiles.git
https://iupred3.elte.hu/download_new
https://hub.docker.com/r/guobioinfolab/netmhcpan
https://hub.docker.com/r/streptomyces/signalp


 12 

Data pre-processing 
Neuroblastoma transcriptome creation 
 Creating a neuroblastoma specific transcriptome was done based on 233 RNA 
sequencing samples. Quality control and trimming was done with Trim Galore 0.6.6, a wrapper 
around Cutadapt and FastQC. STAR 2.7.8a was used to align the reads to the genome, guided 
by transcriptome Ensembl v102. Stringtie 2.1.5 was used to assemble the transcriptome. All 
these steps were performed as in our lab’s protocol.  
 
Translatome creation 
 Creating a neuroblastoma translatome was done based on 15 neuroblastoma 
ribosome profiling samples. Quality control and trimming was performed by Trim Galore. 
Contaminant RNA and DNA were removed using Bowtie2. The unmapped ribosome protected 
fragments were aligned using STAR to the custom neuroblastoma transcriptome. All identified 
ORFs were merged and ORFs which appeared in at least 2 samples were kept. All steps were 
performed as in our lab’s protocols. 
 
Identification of non-canonical ORFs 
 ORFquant detects and quantifies ORF translation on complex transcriptomes using 
Ribo-seq data. It quantifies translation at the single ORF level taking into account the presence 
of multiple transcripts expressed by each gene. It outputs info into a GTF file.The GTF from 
ORFquant was used to extract information about the ORFs and filter them for neuroblastoma 
enriched and specific ORFs. This was done by filtering on ORF type keeping only dORFs, novel 
ORFs, uORFs, and lncORFs. And filtering on class type removing all ORFs with class k, as most 
of the novel ORFs derived from k-class transcripts very closely resembled canonical CDS 
regions. After all the ORFs in neuroblastoma were detected, they were filtered on several 
criteria. To get non-canonical ORFs filtering was based on known transcript and proteins from 
the UniPROTdb & GTEx. 
 
Resulting neuroblastoma datasets 
Three datasets based on 15 neuroblastoma ribo-seq samples:  

1. Neuroblastoma non-canonical microproteins – 2464 microproteins. 
2. Neuroblastoma canonical microproteins – 3120 microproteins. 
3. Neuroblastoma enriched non-canonical microproteins – 25 microproteins. 

 
All data was filtered for microproteins with a length between 19 and 150 amino acids.  
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Creation of pipeline 
Selection of tools 

The pipeline has been developed to predict various aspects related to microproteins. 
For each specific category of interest, extensive literature research was conducted to identify 
the most fitting prediction tools. This section will provide an in-depth discussion of the 
selected tools for each category, providing the rationale behind their selection. Key 
considerations in evaluating these tools include their methodology, performance on 
microproteins, input and output file requirements, advantages, disadvantages, and strategies 
for optimizing their utilization on our cluster infrastructure.  

 

Selecting 3D structure predictor 
The three-dimensional structures of microproteins, offer a deeper insight into their 

functional potential and potential interactions with other biomolecules (Lu, Fornili, and 
Fraternali 2013). To find a structure predictor that suits our research question we looked at 
the most widely used and promising structure predictors that are currently available and 
compared them. It is worth noting that microproteins are often characterized by a lack of 
significant conservation across species, necessitating their treatment as de novo or orphan 
proteins due to the absence of conservation data (Sandmann et al. 2023). Most structure 
predictors are within two groups; 1. proteins langue models or 2. multiple sequence alignment 
(MSA) based models which also use trained neural networks. The MSA based models, 
Alphafold2, OpenFold, and MODELLER (table 2) perform good on canonical proteins but lack 
the power to predict de novo proteins (Ahdritz et al. 2022; Skolnick et al. 2021; Webb and Sali 
2016). Proteins language based models, ESMFold, OmegaFold, and RGN2 (table 2) perform 
better on orphan or de novo proteins, making them particularly well-suited for our research 
needs (Chowdhury et al. 2022; Verkuil et al. 2022; Wu et al. 2022). Comparison of RGN2 and 
OmegaFold based on literature showed that OmegaFold performed better on de novo proteins 
than RGN2 (Aubel, Eicholt, and Bornberg-Bauer 2023). Consequently, we have chosen 
OmegaFold as the 3D structure predictor in our pipeline (Wu et al. 2022). 
 
Table 2: Overview of several tools that can be used for visualization of 3D structure of microproteins.  

Name Method Input / 
output 

Disadvantages Advantages  Literature 

Alphafold2 MSA + neural 
network 

Input: 
fasta 
Output: 
pdb  

MSA based Best protein 
predictor in the 
field  
star of CASP14 

(Skolnick et al. 
2021) 

Openfold MSA + neural 
network 

Input: 
fasta 
output: 
pdb 

Not trained less 
data than 
alphafold2 

trained like 
alphafold2 but 
with open code 
and data access  

(Ahdritz et al. 
2022) 

Omegafold language 
based model + 
deep learning  

Input: 
fasta 
Output: 
pdb  

- better when 
there is no 
evolutional info 
present 

(Wu et al. 2022) 
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- best pLM in 
comparison 
paper 

RGN2 language 
based model + 
deep learning 

Input: 
fasta 
output: 
pdb 

slightly worse 
than OmegaFold 
on tested 
proteins 

Better for 
orphan and de 
novo proteins 

(Chowdhury et 
al. 2022) 

ESM 2 / 
ESMFold 

language 
based model + 
deep learning  

Input: 
fasta 
Output: 
pdb 

Based on their 
own study 
performs worse 
than AlphaFold2 
on de novo 
proteins 

Better for de 
novo proteins 

(Verkuil et al. 
2022) 

MODELLER comparative 
modelling of 
protein three-
dimensional 
structures 
spatial 
restraints 

Input: 
alignment 
+ atomic 
coordinate
s + script 
Output: 
several 
options 

MSA based  - whole code 
and method are 
online 
- can do de 
novo proteins 
- is used in de 
novo 
microprotein 
studies 

(Webb and Sali 
2016) 

 
OmegaFold is a cutting-edge protein language model that leverages deep learning 

techniques specifically designed for de novo protein structure prediction. This state-of-the-art 
model employs a neural network architecture to make accurate predictions about the three-
dimensional structure of proteins, providing valuable insights into their spatial arrangement 
and conformation. For each protein analyzed, OmegaFold generates a PDB (Protein Data Bank) 
file containing the precise coordinates of all its amino acids. These PDB files can be utilized for 
visualizing the protein structures using software applications such as pyMOL and ChimeraX 
(Pettersen et al. 2021). OmegaFold provides a crucial assessment metric in the form of a 
pLDDT (predicted Local Distance Difference Test) score for each residue within the predicted 
structure. This score serves as an indicator of the confidence level associated with each 
prediction. A breakdown of how to interpret these pLDDT scores is here: 
 

1. pLDDT between 70 and 90: These regions are expected to be modelled with high 
accuracy, reflecting a generally reliable backbone prediction. Researchers can have 
confidence in the structural information within this range. 

2. pLDDT between 50 and 70: In regions where pLDDT falls within this range, caution is 
advised. These areas are considered low confidence, indicating potential uncertainties 
or deviations in the structure. Further validation or scrutiny may be necessary in these 
regions. 

3. pLDDT < 50: Regions with pLDDT scores below 50 should be approached with extreme 
caution. The 3D coordinates in these areas often exhibit a ribbon-like appearance, and 
their structural interpretation should be avoided due to the significant level of 
uncertainty associated with these predictions. 

 
In summary, OmegaFolds utilization of the pLDDT score not only aids in assessing the 

reliability of its predictions but also assists in distinguishing between well-modelled regions 
and those requiring more scrutiny or validation. This information is instrumental in guiding 
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the interpretation and application of the predicted protein structures in downstream analyses 
and experiments. 
 

Selecting Disorder prediction tool 
The absence of well-defined protein structures often signifies disorder, which refers to 

the lack of a stable tertiary structure. For microproteins, it is well-established that these 
typically possess a small functional domain while exhibiting a significant degree of disorder 
throughout their structure (Wilson et al. 2017). Disordered regions are evolutionary less 
conserved compared to ordered regions (Erdős, Pajkos, and Dosztányi 2021). Important for 
disorder prediction is the DisProt database which includes experimentally verified disordered 
segments (Quaglia et al. 2022).  

In our evaluation, we compared three disorder predictors: IUPred 3.0, flDPnn, and 
SPOT-Disorder2. Based on the results of reviews performed by others and insights gathered 
from the Critical Assessment of protein Intrinsic Disorder (CAID) challenge suggest that flDPnn 
is a top-performing predictor for disorder (Aubel, Eicholt, and Bornberg-Bauer 2023; Conte et 
al. n.d.; Necci et al. 2021; Quaglia et al. 2022). However, flDPnn encountered technical issues 
and was unable to function effectively on our cluster infrastructure. Upon reviewing and 
reevaluating the results from the CAID challenge, we determined that IUPred3 offers a nearly 
equivalent performance to flDPnn in predicting disorder. Notably, IUPred3 demonstrated 
compatibility with our cluster environment, making it a feasible choice for integration into our 
pipeline. Moreover, within the protein research community, IUPred 3.0 has gained 
prominence and is frequently employed (Sandmann et al. 2023; Schmitz, Ullrich, and 
Bornberg-Bauer 2018; Wilson et al. 2017; Xie et al. n.d.). In light of these considerations, we 
have adopted IUPred 3.0 as the primary tool for disorder prediction in our pipeline, ensuring 
the accurate assessment of disorder within microproteins and enhancing the robustness of 
our analyses. 
 
Table 3: Overview of disorder predictors. 

 
 

Method Input / output Dis 
advantages 

Advantages  Literature 

IUPred3 Energy 
estimation 
method 

input amino 
acid sequence  
output text, 
graphical and 
json 

Download 
possible via 
asking/email for 
academic 

Most widely 
used disorder 
predictor  

(Erdős, Pajkos, 
and Dosztányi 
2021) 

flDPnn neural 
network + 
random forest  

input fasta 
output txt & 
visualizations 

Does not work on 
cluster 

docker available 
best according 
to CAID 

(Hu et al. 2021) 

SPOT-
Disorder2 

long short 
term memory 
(LSTM) 
and excitation 
residual 
inception 

input fasta file 
output text file 

Performs worse 
than flDPnn and 
IUPred 

downloadable 
package 

(Hanson et al. 
2019) 

 
IUPred 3.0 is based on a unique energy estimation approach that provides fast and 

robust prediction of disordered tendency. The output from IUPred 3.0 includes a file for each 
protein, containing disorder scores assigned to all individual residues. When the disorder 
score surpasses the threshold of 0.5 for a given residue, it is flagged to be in a disordered 
state. An average is calculated for all input proteins. In addition to the average disorder score, 
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comma-separated values for the disorder scores per residue are included in the final table. 
This granular level of information is valuable for pinpointing specific regions of disorder within 
each protein, as variations can be substantial from one region to another. Furthermore, it is 
important to mention that IUPred 3.0 imposes a minimum protein length requirement of 19 
amino acids for accurate prediction. This ensures that the tool operates effectively and 
reliably, as shorter sequences may not provide sufficient information for disorder prediction. 

 

Short linear motif (SLiM) search 
 In microproteins characterized by a substantial degree of disorder, predicting their 
function can be challenging due to their lack of a well-defined structure. However, it is possible 
to infer potential functions or anticipate protein-protein interactions by examining Short 
Linear Motifs (SLiMs) (Van Roey et al. 2014). SLiMs are typically short peptide sequences, 
ranging from 3 to 15 amino acids in length, with 2 to 5 defined positions. They are known to 
occur by chance and can be difficult to identify (Edwards and Palopoli 2015).  
 To facilitate the discovery of SLiMs within microproteins, there are several specialized 
resources and tools available. The Eukaryotic Linear Motif (ELM) resource is the most 
comprehensive repository of experimentally validated SLiMs (Van Roey et al. 2014). HH-Motif 
employs Hidden Markov Models to identify SLiMs within protein sequences. It is available 
both as a webserver and a standalone version. However, one limitation of HH-motif is that it 
can only detect SLiMs in proteins larger than 50 amino acids, which is not suitable for the 
microproteins due to their small size. QSLiMFinder is a short linear motif predictor using 
specific query protein data. It uses a statistical model, SLIMChance, to calculate the probability 
of a SLiM. The MEME suite, a Motif-based sequence analysis toolbox, can find Motifs you 
provide in protein sequences. SLiMPred computationally predicts SLiM regions in protein 
sequences. It uses machine learning methods to find motifs that are in the Eukaryotic Linear 
Motif database. All tools created for SLiM finding that we took into consideration are web-
based tools. Because of this we decided to write a script that searches for the regex sequences 
that are in the Eukaryotic Linear Motif database ourselves. Tools that use machine learning 
perform better but we decided to use a regex which is robust and informative enough at this 
point. 
 
Table 4: Overview of SLiM search algorithms that are compared. 

Name Method Disadvantages Advantages  Literature  

ELM search Regex 
search 

Regex has no 
interdependencies 
between sides 

Easy to use  (Kumar et al. 2022) 

QSLiMFinder Query 
protein 
data 

Correct for 
evolutionary 
relationships 

- (Palopoli, Lythgow, and 
Edwards 2015) 

HH-Motif Hidden 
Markov 
model 

Can only find SLiM in 
protein >50 amino 
acids 

- (Prytuliak et al. 2017) 

MEME Regex 
search 

Needs list of SLiMs as 
input 

- (Bailey et al. 2015) 

SLiMPred Machine 
learning 
method 

Only a webserver - (Mooney et al. 2012) 

 
 For the detection of SLiMs the ‘elm_classes.tsv’ file (15 July 2023) was downloaded 
from the ELM resource. This file contains the ELM classes they have a regex to define the 
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possible amino acid sequence. All these regexes are sequentially searched. We then filtered 
the peptide sequences for matches to any of the motifs falling in regions with a disorder value 
≥ 0.5. This left us with the ELM classes and sequences for the whole protein and for only the 
disordered parts in the protein. 
 

Selecting localization tools 
Determining the subcellular localization of microproteins is pivotal in unraveling their 

functional roles within cells. Microproteins can assume distinct functions based on their 
subcellular localization, exerting influence over cellular processes and interactions between 
proteins. Additionally, the identification of transmembrane segments and signal sequences 
increases our understanding of a proteins potential cellular localization. 

To comprehensively investigate computationally the subcellular localization and structural 
attributes of microproteins, we explored various categories of tools: 
 

1. Tools for Whole Protein Localization: 
DeepLoc 2.0: Utilizes a neural network to predict the most likely subcellular localization of a 
protein, encompassing 10 areas within the cell. These are the Nucleus, Cytoplasm, 
Extracellular, Mitochondrion, Cell membrane, Endoplasmic reticulum, Chloroplast, Golgi 
apparatus, Lysosome/Vacuole and Peroxisome. It assigns a score to each possible location, 
and if the score surpasses a threshold, the protein is predicted to likely be localized there. 
Quick2D: This web tool combines several predictive components, like the pipeline we aim to 
develop. It integrates multiple tools for predicting various sequence features, including 
secondary structure, intrinsically disordered regions, transmembrane regions, signal peptides, 
and coiled-coil regions. It provides a summary of information from different sources but has 
limitations regarding tool versions and the presentation of detailed information. 

2. Tools Predicting Specific Features: 
DeepTMHMM: Employs hidden Markov models (HMM) to predict transmembrane segments 
within proteins. It can predict both alpha helixes and beta sheets. 
SignalP 6.0: Utilizes a neural network to detect the presence of signal peptides in protein 
sequences. In eukaryotic mode it predicts whether there is a signal present and where the 
signal is located in the sequence. 
NetGPI 1.1: Utilizes a neural network to predict the presence of Glycosylphosphatidylinositol 
(GPI) anchors to the membrane in peptide sequences, which is particularly relevant if a protein 
is secreted.  
TargetP 2.0: Predicts the presence of target signals directing proteins to the mitochondrion or 
plastids. Tools is primarily built for plant target peptides. 
SamCC: Predicts the presence of coiled-coil regions within a protein sequence. 

3. Tools Combining Predictions: 
MembraneFold: Combines the predictions of DeepTMHMM and OmegaFold to deduce the 
structure of transmembrane segments in proteins. 
Phobius: A comprehensive tool that predicts both transmembrane domains and signal 
peptides in protein sequences. 
 

While Quick2D offers a good approach, it has limitations, such as its reliance on older 
version of TMHMM and the lack of detailed information presentation (DUAN et al. 2021; 
Gabler et al. 2020). For instance, it may not specify the origin of the signal detected by SignalP 
and may not provide the topology of membrane segments, which Phobius and TMHMM offer. 



 18 

Additionally, Quick2D is limited in scalability as it can process only one microprotein at a time. 
MembraneFold and Phobius are tools that predict two properties of proteins at once. Since, 
these tools combine two tools, and leave information out, we decided to start with the tools 
that predict one feature of microproteins (Gutierrez et al. 2022; Käll, Krogh, and Sonnhammer 
2004). 

 NetGPI, DeepTMHMM, SignalP, targetP and SamCC predict specific domains in 
proteins (Armenteros et al. 2019; Gíslason et al. 2021; Hallgren et al. 2022; SamCC-Turbo n.d.; 
Teufel et al. 2022). All tools are of interest to get to know something about microproteins. We 
started with SignalP and DeepTMHMM because these tools give two distinct predictions 
about proteins which we suspect to be present. TargetP, NetGPI and SamCC can be interesting 
to add later or revise on a later point. For the first version of the pipeline the focus is on 
DeepTMHMM and SignalP.  
 
Table 5: tools for localization of (part of) the microprotein. 

Name Method input / 
output 

advantages disadvantages literature 

Deep 
TMHMM 

deep learning 
algorithm that 
uses a hidden 
markov model  

input = 
fasta 
output = 
summary 
3line and 
.md 

Prediction of 
transmembrane 
parts 

is also in the 
Quick2D toolkit 
in BioLib, hard to 
containerize  

(Hallgren et al. 
2022) 

SignalP 6.0 Neural network input = 
fasta 
output = 
text based 

Predict signal 
peptides 

- (Teufel et al. 
2022) 

DeepLoc 2.0 Trained 
transformer 
language model  

input = 
fasta 
output = 
text based  

subcellular 
localization  

Does not work 
on cluster 

(Thumuluri et 
al. 2022) 

Quick2D Runs several tools 
to predict 
sequence features   

input = 
protein 
sequence 
output = 
web 
interface 

several tools at 
ones and puts 
them in a single 
graph with the 
outcomes 

Not all 
information of 
the tools used is 
depicted. Some 
tools outdated 

(DUAN et al. 
2021; Gabler et 
al. 2020) 

Phobius A combined 
transmembrane 
topology and 
signal peptide 
predictor 

input = 
protein 
sequence 
output = 
web 
interface 

A combined 
transmembrane 
topology and 
signal peptide 
predictor 

signal P and 
deeplock / 
TMHMM are 
better 

(Käll, Krogh, 
and 
Sonnhammer 
2004) 

NETGPI 1.1 Deep learning 
approach 

input = 
fasta 
output = 
text based 

predicts whether 
protein has GPI 
anchors  

Very specific (Gíslason et al. 
2021) 

TargetP 2.0  Deep learning Input = 
protein 
sequence 
Output = 
text based 

Predicts target 
peptides to 
mitochondrion 
and plastids 

Very specific, 
plant or non-
plant 

(Armenteros et 
al. 2019) 

Membrane 
Fold 

deepTMHMM + 
OmegaFold  

input = 
protein 
sequence 

two tools at once 
(deepTMHMM and 

The tools 
independent are 
more interesting  

(Gutierrez et al. 
2022) 
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output = 
text based 

OmegaFold 
combined) 

SamCC used to detect 
coiled coil domains 
(cc) (coiled coil = 2 
or more alpha 
helixes) 

Input = 
PDB 
coordinates 
Output = 
Text based 

is for coiled coils 
specific 

found in paper 
that looked at de 
novo 
microproteins 

(SamCC-Turbo 
n.d.) 

 
In the development of our pipeline, we have chosen three key tools to facilitate the 

analysis of microprotein localization: DeepTMHMM, SignalP, and DeepLoc. Each tool serves a 
distinct purpose in enhancing our understanding of microprotein characteristics. Together, 
they give the broadest detection of localization signals. These three tools have been selected 
to provide a comprehensive analysis of microproteins, encompassing aspects of structural 
features, localization, and their potential to be signaled to other cell compartments or 
secreted. Unfortunately, after multiple attempts we were not able to run DeepLoc locally, so 
it was decided to only use the tool only on a subset of microproteins that are deemed 
interesting based on predictions made by other tools. 
 

Predicting MHC-I binding affinity 
Investigating the binding affinity of peptides from the microproteins to Major 

Histocompatibility Complex Class I (MHC-I) molecules provides a critical perspective on their 
potential involvement in antigen presentation and as target for immunotherapeutic 
interventions. Based on previous research performed by the group which involved a 
comparison between several types of MHC-I binding affinity predictors netMHCpan was 
chosen.   

NetMHCpan uses state of the art tailored machine learning strategies to integrate 
different training data types (Reynisson et al. 2020). This tool accepts input in the form of 
FASTA protein sequences and provides predictions for each possible peptide within the 
sequence, typically ranging from 8 to 12 amino acids in length. Specifically, it predicts the 
binding affinity of these peptides to a range of HLA (Human Leukocyte Antigen) molecules, 
the human equivalent of MHC. The twelve most common HLA types are included in the 
search: HLA-A01:01, HLA-A02:01, HLA-A03:01, HLA-A24:02, HLA-A26:01, HLA-B07:02, HLA-
B08:01, HLA-B27:05, HLA-B39:01, HLA-B40:01, HLA-B58:01, and HLA-B15:01. 
 

Microprotein conservation 
Conservation in proteins means selection pressure which hints towards importance for 

cell survival. This means that conservation in microproteins would mean that the 
microproteins more probable to have a function. On the other hand, microproteins with 
homologs are less likely to be suitable as targets for immunotherapy. It is worth noting that 
microproteins are not expected to exhibit strong conservation across species, as they are 
known to be evolutionarily young (Sandmann et al. 2023). Conservation or lack of 
conservation in microproteins can be used to find out whether we would be interested in a 
microprotein because of function or because they are a candidate for immunotherapy. For 
conservation search three methods were investigated BLASTp, HMMER and HHpred.  

BLASTp searches the NCBI BLAST database (Altschul et al. 1997). It is used to find 
homologs or orthologs of proteins. It performs a protein versus protein search and uses 
penalties when they do not align. Cut offs are used to determine whether a protein is 
evolutionary related or not. HMMER is a toolbox which can be used to search for distant 
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evolutionary relationships. It uses a Hidden Markov Model which compares the protein to a 
protein database. HHpred is a protein function and protein structure prediction server that is 
based on HHsearch and HHblits, another program in the HH-suite package (Steinegger et al. 
2019).  
 
 
Table 6: Overview of conservation search tools. 

Name Method Input / 
output 

Disadvantages Advantages  Literature  

BLASTp Protein vs 
protein search 

In: fasta 
Out: 
summary 
text based 

Hard for 
microproteins 

Detects 
closest 
evolutionary 
relationships 

(Altschul et al. 
1997) 

HMMER Profile HMM to 
protein search 

In: profile 
based on 
sequence 
Out: text 
based 

Too far away 
evolutionary 

Can detect 
more distant 
evolutionary 
relationships 

(Potter et al. 
2018) 

HHpred MSA + profile 
search 

In: single 
sequence 
Out: text 
based 

Too far away 
evolutionary 

Can detect 
more distant 
evolutionary 
relationships 

(Söding, 
Biegert, and 
Lupas 2005) 

 
In our pipeline, BLASTp was initially configured to interact with the NCBI BLAST online 

database, which functioned adequately for smaller protein lists. However, when dealing with 
our final dataset, consisting of over 2000 microproteins, this approach resulted in excessive 
CPU usage on the NCBI BLAST online database. To address this issue and optimize the process, 
we have decided to suggest that the BLASTp implementation must be revised. Our revised 
approach would involve downloading a part of the NCBI BLAST database and executing the 
BLASTp searches locally. This adjustment not only streamlines the workflow but also ensures 
that the pipeline can effectively handle larger datasets without overburdening external 
databases. Due to time constraints this is outside the constraints of the project. 

 

Microprotein characteristics 
 When examining microproteins, several protein characteristics prove to be of interest, 
as they provide insights into the nature and behavior of these microproteins. These 
characteristics include: 

- Hydrophobicity: Hydrophobicity is a fundamental property that plays a crucial role in 
protein folding. It pertains to the affinity of amino acids within a protein for water 
molecules and influences the protein's three-dimensional structure. 

- Isoelectric point: The isoelectric point represents the pH value at which the net charge 
of a protein becomes zero. It provides information about the solubility of the protein 
under different pH conditions. 

- Instability Index: The instability index is an indicator of the protein’s stability. For 
instance, antimicrobial peptides are considered stable when their instability index 
values are less than 40. 

- Mass over charge: mass over charge, charge fixed for the weight of the protein. 
- Length: The length of the protein in amino acids. 
- Molecular weight: Molecular weight represents the total weight of the microprotein 

in Daltons (Da). 
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- Charge: the charge of the protein by a specific pH, interchangeable with 
hydrophobicity. 

 
To assess and calculate these critical characteristics of microproteins, we have utilized 

the Peptides package in R (Osorio et al. 2023). This package contains functions designed to 
predict these characteristics based on the amino acid sequence of the microprotein. By 
leveraging these computational tools, we can gain an understanding of the physicochemical 
properties of microproteins, facilitating their characterization and functional analysis. 
 

Final overview pipeline 
 The constructed pipeline serves as a powerful framework for the simultaneous 
execution of multiple analytical tools, allowing us to computationally analyze microproteins. 
This pipeline efficiently combines OmegaFold, DeepTMHMM, SignalP, netMHCpan, the 
Peptides package for characteristics prediction, and IUPred3, and a SLiM search. A schematic 
overview of the pipeline is depicted in figure 4. 
 
 

 
Figure 4: Schematic overview of constructed pipeline. It needs a fasta file as input and outputs a tab 
separated file containing the results of all executed tools. Tools are executed parallel.  

 
Pipeline components and output: 

- Structure prediction based on OmegaFold 
o Output: 

▪ pLDDT score average & per residue score 
▪ pLDDT score > 70 is considered reliable 

- Disorder prediction of the residues with IUPred 3.0 
o Output: 

▪ Average disorder and per residue disorder scores 
▪ A disorder score above 0.5 means disordered 

- SLiM search 
o Output: 

▪ SLiMs In the whole protein and SLiMs that are only in the disordered 
parts of the protein 

▪ Sequences, elm class names and total SLiM count 
- Several characteristics, like hydrophobicity and iso electric point are predicted with the 

peptides package in R. 
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o Output: 
▪ Predicts and reports various characteristics, including hydrophobicity, 

isoelectric point, instability, mass over charge, length, molecular 
weight, and charge at specific pH levels. 

- Prediction of MHC-I binding peptides with NetMHCpan. 
o Output: 

▪ Strong binders and weak binders  
▪ Sequences of binders and count per microprotein  

- Prediction of a secretion signal with SignalP 6.0. 
o Output: 

▪ Presence of secretion signal 
- Predict presence of trans membrane domains with DeepTMHMM 

o Output: 
▪ Options that are predicted: transmembrane (TM), globular (Glob), 

transmembrane + secretion peptide (TM+SP) and, secretion peptide 
(SP). 

 
This pipeline efficiently generates comprehensive microprotein profiles, including 

structural, functional, physicochemical, and localization characteristics. The output is provided 
in a tab-separated file, which can be used for further visualization and prioritization of proteins 
for additional research. Intermediate files are also saved, allowing for in-depth data inspection 
and analysis. 
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Figure 5: Flowchart of pipeline. Depicted in squares are the tools / scripts. Depicted in ovals are the input 
files and the output file. Depicted in rounded squares are the intermediate files.  

 

Limitations of the pipeline 
Due to server load and time restrictions on external servers, there is a maximum limit 

on the number of proteins that can be analyzed at once, particularly for the tool that submits 
data externally (e.g., DeepTMHMM). When this limit is exceeded, tools may not start or may 
halt prematurely. Both excessively short and long proteins can pose challenges for the 
pipeline. IUPred 3.0 requires a minimum protein length of 19 amino acids for calculations. 
Longer proteins require significantly more time for processing in the pipeline. Longer proteins 
require more processing time, so analyzing large datasets with lengthy proteins should be 
done with caution, it is advisable to analyze them in smaller batches.  While the tools provide 
predictions, the thresholds and values per prediction need to be accessed from the 
intermediate files. Additionally, experimental validation is essential to confirm the accuracy of 
these predictions. In summary, the pipeline offers a robust and comprehensive solution for 
microprotein analysis, encompassing diverse characteristics and properties. However, it is 
important to be mindful of its limitations to ensure optimal use and accurate interpretation 
of the results. 
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Resources needed. 
 Resources needed for the pipeline are dependent on the number of proteins analyzed 
at once and on their size. A lot of small proteins will take the same amount of time as fewer 
long proteins. The recommended resources are based on amino acids rather than number of 
microproteins. It is recommended to split the input FASTA file in several smaller FASTA files or 
give the pipeline more resources if the tools with the provided computed resources fail. 

DeepTMHMM is the bottleneck of the pipeline, as it can only efficiently analyze 
roughly 225,000 to 250,000 amino acids at once. It might handle slightly more but exceeding 
around 450,000 amino acids is likely to lead to failure. Start time is also a consideration, as a 
busier cluster may require more time until tool execution. All other tools are used on our own 
cluster and can be scaled up for processing any number of amino acids. However, it is 
important to note that netMHCpan may require a significant amount of time when processing 
a single, large Fasta file. For instance, analyzing 250,000 amino acids with netMHCpan takes 
approximately 16 hours. 
 
Table 7: overview of resources used based on a fasta file with 250000 amino acids.  

Tool Time Mem Tmp space GPU / CPU 

OmegaFold 5:00:00 10 Gb - GPU 
NetMHCpan 16:00:00 500 Mb 250 Mb CPU 
IUPred 1:00:00 1 Gb - CPU 
SignalP 00:30:00 3 Gb - CPU 
DeepTMHMM 1:00:00 1 Gb - CPU 
peptides 00:05:00 10 Mb 10 Mb CPU 
SLiM search 00:15:00 1 Gb 500 Mb CPU 
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Results 
As first use case of the constructed pipeline we used a dataset of 15 neuroblastoma 

ribo-seq samples. These samples were mapped to a RNA-seq constructed transcriptome and 
information about the ORFs was collected. Mapping these ORFs against the known proteome 
gave us 2464 microproteins (19-150aa) that were non-canonical in neuroblastoma. As a 
control dataset and as a comparison, a set of 3120 canonical microproteins (19-150aa) from 
the same dataset in neuroblastoma was used.  
 We hypothesized that there would be differences between canonical and non-
canonical proteins. The non-canonical microproteins would be shorter in general, would have 
less p sites per residue, are more likely to be disordered, harder to predict a structure from 
and are suspected to have less signals and transmembrane domains present. This because of 
their probable disordered origin and because microproteins are evolutionary young 
(Sandmann et al. 2023; Wilson et al. 2017). Nevertheless, we hypothesize to find interesting 
candidates for further research.  
 

Neuroblastoma canonical ORFs 
 For all canonical ORFs predictions were made with the pipeline. In the canonical ORF 
dataset there were 3120 microproteins. From these 3120 canonical ORFs there are 9 
subcategories of ORF types. Most of them are in the category ORF_annotated or N_truncation 
which is suspected when looking at canonical microproteins (table 9). From the 3120 
canonical ORFs 1581 have a OmegaFold score above 70 which is reliable, 205 are predicted to 
have a signal peptide by Signal P, 469 are predicted to be transmembrane by DeepTMHMM, 
and 372 and are predicted to have a signal by DeepTMHMM (table 10). SignalP and 
DeepTMHMM overlap with predicting a signal for 174 of these ORFs (fig. 6). The canonical 
microproteins have a mean length of 101, a mean hydrophobicity of 5.48 a mean charge of 
1.83, a mean of 4.8 SLiMs per disordered regions of the proteins, and a mean of 21.5 strong 
binders to the MHC per protein (table 8). 
 
Table 8: Summary of Canonical Microprotein Characteristics 

Characteristic Mean Value Standard Deviation Range 
length (amino acids) 101 33 19 – 150 
Hydrophobicity 5.48 0.35 4.13 - 7.78 
SLiMs  4.80 6.20 0 - 41 
Strong Binders  21.5 10.6 0 - 60 
Charge 1.83 7.2 -44.1 – 40.1 

  
Table 9: Count of canonical ORF types 

C_exte
nsion 

C_trun
cation 

N_exte
nsion 

N_trun
cation 

NC_ext
ension 

Nested
_ORF 

ORF_ann
otated 

Overl_
dORF 

Overl_
dORF 

1 12 26 869 5 27 1853 88 239 
0.03% 0.4% 0.8% 27.9% 0.2% 0.9% 59.4% 2.8% 7.7% 
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Table 10: Count of ORFs above threshold in dataset with canonical ORFs. 

Tool Count 
OmegaFold >0.7 1581 (51%) 
SignalP SP 205 (7%) 
DeepTMHMM TM 469 (15%) 

DeepTMHMM SP 372 (12%) 

 

 
Figure 6: Venn diagram of presence of signal in canonical microproteins. Predicted by SignalP and 
DeepTMHMM. 

 

Neuroblastoma non-canonical ORFs 
 For all non-canonical ORFs predictions were made with the pipeline. In the non-
canonical ORF dataset there were 2464 microproteins. From these 2464 non-canonical ORFs 
there are 4 subcategories of ORF types. 232 lncORFs, 594 uORFs, 114 dORFs, and 1493 novel 
ORFs (table 12). From the 2464 non-canonical ORFs 781 have a OmegaFold score above 70 
which is reliable, 56 are predicted to have a signal peptide by Signal P, 106 are predicted to be 
transmembrane by DeepTMHMM, and 392 and are predicted to have a signal by 
DeepTMHMM (table 13). SignalP and DeepTMHMM overlap with predicting a signal for 49 of 
these ORFs (fig. 7). The non-canonical microproteins have a mean length of 75, a mean 
hydrophobicity of 5.25, a mean charge of 1.83, a mean of 5 SLiMs per disordered regions of 
the proteins, and a mean of 15 strong binders to the MHC per protein (table 11). 
 
Table 11: Summary of non-canonical Microprotein Characteristics 

Characteristic Mean Value Standard Deviation Range 
length (amino acids) 74.5 37.0 19 - 150 
Hydrophobicity 5.25 0.36 4.25 – 7.08 
SLiMs  4.80 6.20 0 - 33 
Charge 1.83 6.03 -42.94 – 44.37 
Strong Binders 15.27 10.65 0 - 53 

  
Table 12: count of non-canonical ORF types 

lncORF uORF dORF novel 
232 594 114 1493 
9.5% 24,4% 4,7% 61,2% 
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Table 13: Count of ORFs above threshold in dataset with non-canonical ORFs. 

Tool Count 
OmegaFold >0.7 781 (30%) 
SignalP SP 56 (2%) 
DeepTMHMM TM 106 (4%) 

DeepTMHMM SP 392 (15%) 

  

 
Figure 7: Venn diagram of presence of signal in non-canonical microproteins. Predicted by SignalP and 
DeepTMHMM 
 

Comparison of canonical and non-canonical ORFs 
Similarities  

Most characteristics of microproteins are the same whether we look at the canonical 
dataset or the non-canonical dataset. The mean IUPred3.0 scores were similar (fig 8. B) and 
the hydrophobicity was similar (fig 8. C), Similar structural motif and functional domain counts 
indicate common features that may play essential roles in microprotein function across both 
categories. 

 
Differences  

There are differences in length (fig 8. A), p-sties per residue (fig 8. E), and OmegaFold 
pLDDT score (fig 8. D) between canonical and non-canonical microproteins in neuroblastoma. 
There was also a difference in the number of predicted Signal Peptides and Transmembrane 
proteins (table 10 & 13). The difference in size suggests that most canonical proteins are 
longer than non-canonical protein, which confirms the bias towards longer proteins which are 
described in literature. The difference in p-sites per residue suggests that canonical 
microproteins are translated more than non-canonical proteins which confirms the translation 
bias towards canonical proteins. The difference in OmegaFold pLDDT score suggests that 
canonical microprotein structure can be predicted more reliably than non-canonical proteins, 
which was suspected. The difference in number of signal peptides and transmembrane 
proteins suggest that there are less functional proteins in the non-canonical dataset than in 
the non-canonical dataset, which was already hypothesized. 

All differences found are in line with what we hypothesized based on the present 
literature. 
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Figure 8: Density plots of canonical and non-canonical proteins of neuroblastoma. Blue is non-canonical and 
red is canonical. A) Density plot of the length. B) Density plot of the mean IUPred3 score red line depicts the 
disorder score of 0.5. C) Density plot of the hydrophobicity. D) Density plot of the mean pLDDT scores of 
OmegaFold, red line depicts the pLDDT score of 70. E) Density plot of the p site per residue. F) Density plot 
of iso-electric point. 

 

Neuroblastoma enriched ORFs 
 To find ORFs in neuroblastoma that are interesting to prioritize and possibly be used 
for immunotherapy and/or cellular therapies. The list of all non-canonical microproteins was 
filtered on neuroblastoma enriched ORFs. This is done by comparing the neuroblastoma RNA 
sequencing data with other datasets. This gave us 147 neuroblastoma enriched transcripts 
and 25 of these transcripts were found in our ribo-seq data. From these 25 neuroblastoma 
enriched ORFs there are 3 subcategories of ORF types. There are 2 lncORFs, 11 uORFs and 12 
novel ORFs (table 14). Different types of ORFs can have different transcription rates and 
functions, which can be interesting and important for their function. From the 25 
neuroblastoma enriched ORFs 7 have a OmegaFold score above 70 which is reliable, 1 is 
predicted to have a signal peptide by Signal P, 1 is predicted to be transmembrane by 
DeepTMHMM, and 5 and predicted to have a signal by DeepTMHMM (table 15). SignalP and 
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DeepTMHMM overlap with predicting a signal for 1 of these ORFs (fig. 9). These ORFs are the 
first 11 that are extra of interest because of their potential biological function and/or place 
within the cell.  
 
Table 14: Neuroblastoma enriched ORF types. 

lncORF uORF dORF novel 
2 11 - 12 

8% 44% - 48% 

 
Table 15: Interesting properties count from neuroblastoma enriched dataset, biological relevance. Total of 
25 microproteins enriched for neuroblastoma.  

Tool Count 
OmegaFold > 70 7 (28%) 
SignalP SP 1 (4%) 
DeepTMHMM TM 1 (4%) 

DeepTMHMM SP 5 (20%) 

 

 
Figure 9: Venn diagram of presence of signal in neuroblastoma enriched microproteins. Predicted by SignalP 
and DeepTMHMM. 

 
Interesting neuroblastoma enriched ORFs 
 Out of the 25 neuroblastoma enriched ORFs three ORFs were selected to be the most 
potential and interesting targets. They include protein target_1, target_2, and target_3. All 
three microproteins are present in 3 or more samples have a good 3D prediction and/or are 
predicted to have a signal peptide or be transmembrane. An overview of the properties of 
these three proteins can be found in table 16. We hypothesize that with further research it 
could be determined whether the predictions about these proteins are true and whether they 
are potential targets for immunotherapy.  
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Table 16: The interesting neuroblastoma enriched microproteins with biological relevance based on the 
pipeline. 

 Target_1 Target_2 Target_3 
Length 
 

117 35 74 

OmegaFold 
score 

80 80 63 

DeepTMHMM 
prediction 

Transmembrane Signal present Signal present 

Sample count 
 

7 (47%) 3 (20%) 3 (20%) 

Mean disorder 
score 

0.08 0.25 0.5 

Type ORF uORF uORF uORF 
BLASTp result Hits, L-type amino acid 

transporter 
No hits No hits 

DeepLoc result 
 

cytoplasm cytoplasm Extracellular 

Strong binders 
 

35 8 22 

Weak binders 
 

73 11 45 

SignalP  
 

No signal No signal Secretion signal 

 

 
 
Figure 10:. A) target_1 B) target_2 C) target_3 they are all predicted by OmegaFold and visualized with 
chimeraX. Colors indicate the pLDDT score predicted by OmegaFold.  
 

The first interesting example of neuroblastoma enriched microprotein is target_1 this 
microprotein is present in 7 out of the 15 samples (47%). It is predicted to be transmembrane 
and OmegaFold predicts the 3D structure with High (>80) confidence (fig 10. A) and has a lot 
of strong and weak binders. These properties together hint towards a functional protein which 
is probably presented by an HLA molecule. A second interesting example of neuroblastoma 
enriched microprotein is target_2 this microprotein is present in 3 out of 15 samples (20%). It 
is predicted to have a signal present and OmegaFold predicts a 3D structure with high (>80) 
confidence (fig 10. B). Predictions suggest that this microprotein has a signal and is of high 
confidence predicted value, this makes the protein interesting to investigate further. A third 
interesting example of a microprotein that is neuroblastoma enriched and looks interesting 
based on the predictions of the pipeline is target_3 (fig 10. C). SignalP 6.0, deepTMHMM and 
DeepLoc 2.0 predict that this protein has a signal peptide present and is localized outside of 
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the cell. This together with its appearance in 3 of 15 samples (20%) and substantial number 
of strong binders to the MHC-I makes it an interesting microprotein. It would be interesting to 
research whether this protein is really secreted and potentially has a function outside of the 
cell.  
 In conclusion, these microproteins are the most interesting targets based on the 
pipeline for further research.  
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Discussion 
The Pipeline's Success  

The pipeline proved to be a valuable tool in identifying various properties of 
microproteins. We were able to calculate characteristics that allowed us to prioritize specific 
microproteins for further investigation. We were also able to predict present signal peptides, 
trans membrane parts, the 3D structure, short linear motifs, disorder, and the binding of 
peptides to the MHC-I. Looking at all these results combined we were able to find potential 
functions and localizations of several of the non-canonical microproteins of interest. With this 
it is possible to predict biological function of non-canonical microproteins and prioritize them 
based on the results by what is interesting.  

We successfully combined the peptides package in R, OmegaFold, IUPred 3.0, SignalP 
6.0, DeepTMHMM, netMHCpan, and a SLiM search. As first use case we looked at 
neuroblastoma, a pediatric cancer that has low survival rates for the high-risk variant. 
Neuroblastoma accounts for 12 - 15% of childhood cancer deaths and it would benefit greatly 
from a different therapy strategy. The biological functions and potential for immunotherapy 
of microproteins in neuroblastoma are of interest for this. In our dataset which included 2464 
non-canonical microproteins. We suggest further research for 3 candidates found based on 
the results of the pipeline. Candidate 1: Target_1 is interesting because the proteins is 
predicted to be transmembrane combined with a good OmegaFold score and a low disorder 
score. Further research could focus on first determining whether the protein has a crucial role 
in the tumor when silencing the microprotein. After that trying to confirm the presence of the 
microprotein in het membrane of the cell. Candidate 2: Target_2 is interesting because it has 
a good OmegaFold score combined with a low disorder score. Further research could focus on 
determining the function with silencing the ORF. Candidate 3: Target_3 is interesting because 
DeepTMHMM, SignalP and DeepLoc predict that it has a signal, is secreted and is extracellular. 
Further research could focus on determining whether this protein is secreted and whether it 
has a function outside of the cell. 

 

The Pipeline’s Limitations 

Length and size constraints 
One notable constraint was the pipeline's runtime when applied to longer proteins. 

The runtime increased significantly with long proteins (> 150aa), posing a challenge for 
analyzing a lot of larger molecules at a time. To mitigate this, it is beneficial to run the pipeline 
in smaller batches. Another limitation was the minimum length of microproteins of 19 amino 
acids which was needed to run the pipeline, which is due to IUPred 3.0 which needs proteins 
to at least have this length. All microproteins shorter than that have to be discarded.  

 

Workflow Manager 
In our current workflow, when a tool within the pipeline fails due to input issues or 

other unforeseen circumstances, manual intervention is necessary. Which means identifying 
the failed tool, addressing the issue, and manually restarting the pipeline or parts of it. 
Additionally, we must handle the merging of results from various tools by hand, a task that 
can become increasingly complex as the pipeline expands and more tools are integrated. A 
workflow manager might be a good solution to overcome these issues. This is how a workflow 
manager can enhance our pipeline. Automated Error Handling: With a workflow manager in 
place, the handling of tool failures becomes automated. When a tool encounters an issue, the 
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workflow manager can detect it and initiate the necessary actions for resolution. This 
eliminates the need for manual intervention, saving time and reducing the risk of errors 
introduced during manual restarts. Efficient Resource Utilization: By managing the pipeline's 
execution, a workflow manager can optimize resource allocation. It can ensure that 
computational resources are efficiently distributed among the tools, reducing the risk of 
resource contention or underutilization. This, in turn, enhances the overall performance and 
speed of the pipeline. Selective Reruns: One of the most significant advantages of a workflow 
manager is its ability to selectively rerun only the tools that fail, rather than restarting the 
entire pipeline or restarting manually. Enhanced Scalability: As our research evolves and the 
complexity of our pipeline grows, scalability becomes a crucial consideration. A workflow 
manager lays the foundation for scalability, as it can easily accommodate the addition of new 
tools or modules without fundamentally altering the pipeline's structure. Time and resource 
constraints during our study limited our ability to incorporate a workflow manager. 
Additionally, the adoption of a workflow manager may require a learning curve and 
adjustments to the existing pipeline structure. 
 

Navigating Biases in Databases 
There is still an issue in the field of microprotein research, the biases in existing 

databases which can result in a bias when neural networks are trained for predictions (Kleppe 
et al. 2021). These biases stem from the focus on well-studied proteins, which has led to 
extensive annotations and data for these proteins. Microproteins, however, represent a 
relatively uncharted territory. Consequently, they may be underrepresented or entirely absent 
from many databases. This lack of annotations for microproteins does not imply their non-
existence but rather reflects a gap in our knowledge and exploration. It underscores the 
importance of conducting further studies on these microproteins. This realization should drive 
efforts to expand and enrich databases with data on microproteins, gradually reducing the 
bias against them. 
 

Significance of SLiMs in Context 
Short linear motifs (SLiMs) offer a fascinating window into the functional aspects of 

microproteins. These motifs provide insights into potential interactions and roles within 
cellular processes. However, they come with their own complexity. It is important to note that 
SLiMs can occur by chance, independent of any functional significance (Davey et al. 2011; 
Neduva and Russell 2005). Which makes it essential to avoid jumping to conclusions solely 
based on the presence of SLiMs (Van Roey, Gibson, and Davey 2012). A nuanced approach 
involves considering SLiMs in combination with other microprotein properties. For instance, 
identifying specific SLiMs within a certain group of microproteins, such as those with signal 
peptides, could be informative. These combinations of characteristics may point towards 
more significant functional roles, enhancing our understanding of microprotein biology. 

 

MHC-I binding peptides and their significance 
 Currently our pipeline takes all peptides from 8 – 12 amino acids long, that our 
microproteins could potentially split in, into account. The binding of these peptides to 12 
different types of HLA is predicted and all strong and weak binders are putted out. This is 
interesting and gives info about the possible presentation of the microproteins on the outside 
of cells. But with the goal of immunotherapy in mind it is important to subset the binders on 
whether they are already known to bind the MHC-I complex or not. We propose to add a 
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component to the pipeline that filters all the known HLA binders. This could add an extra 
column with new strong and weak binders that are unique. Microproteins that have strong 
and weak binders predicted that are not known in immunopeptidomics data are the most 
interesting for prioritizing in future research.  
 Another important thing to note is that there are biases when looking at MHC-I binding 
affinity, HLA subtypes are present in parts of the population and the MHC-I complex has a 
preferable peptide length when assembling on the complex. First, HLA subtypes are only 
expressed within subtypes of the population (Wang and Claesson 2014). By selecting the 12 
HLA types that are most common within the world population we try to account for this. The 
HLA supertypes were used for this, which were reported to cover most of the HLA-A and -B 
polymorphisms (Wang and Claesson 2014). Using different types of HLA allows us to predict 
in which population the peptides would be presented. Second, the preferable peptide length 
of MHC-I is 9 amino acids, netMHCpan which is trained on MHC peptide data also has a bias 
for 9-mers when predicting binders. But it allows for differences in length by incorporating a 
single alignment step which allows for insertions and/or deletions (Nielsen and Andreatta 
2016). With this we try to account for the differences in HLA types within the population and 
the 9-mer bias of the MHC-I complex. 
 

Future Considerations 

Mass Spectrometry Data Analysis 
Mass spectrometry is a powerful technique for identifying and quantifying molecules, 

including proteins. In the context of microproteins, mass spectrometry could potentially offer 
a direct method for confirming the presence of these microproteins in biological samples. The 
size of microproteins presents unique difficulties, especially with mass spectrometry. Cleavage 
Limitations: Mass spectrometry relies on cleaving proteins into smaller fragments for analysis. 
However, the size of microproteins can make them resistant to cleavage, leading to incomplete 
or inconclusive results. This poses a significant challenge in obtaining comprehensive data 
about the structural properties of these molecules. Smaller Size limitations: Microproteins, 
typically less than 100 amino acids in length, fall below the lower limit for conventional mass 
spectrometry analysis. This size constraint can make it inherently difficult to obtain reliable 
mass spectrometry data, as the technique is optimized for larger proteins. New methodologies 
or adaptations of mass spectrometry techniques may be needed to provide more definitive 
results regarding microprotein stability. Finding microproteins in mass spectrometry data 
would be a direct indication that a protein is present in cells and that a protein is stable. This 
is crucial when a protein has a function. In future research, when more time becomes 
available, exploring mass spectrometry data could be immensely valuable. It could help us 
validate the existence of specific microproteins in various biological contexts, shedding light 
on their expression, stability, and potential functions. 
 

Immunopeptidomics 
Immunopeptidomics is a field that focuses on the identification and characterization 

of peptides presented on the cell surface by the major histocompatibility complex (MHC) 
(Chong, Coukos, and Bassani-Sternberg 2022). These peptides play a crucial role in immune 
recognition. Investigating microproteins in the context of immunopeptidomics could reveal 
whether these small proteins are involved in immune responses or other cellular processes. 
While our study did not delve into this area due to time constraints, it is an intriguing avenue 
to explore. Looking at peptides from microproteins present in immunopeptidomics data could 
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provide insights into their interactions with the immune system and their potential 
significance in health and disease. 
 

Protein-Protein Interactions 
Exploring protein-protein interactions involving microproteins is a complex challenge. 

Many existing tools are tailored to larger, well-characterized proteins, making them less 
effective for studying microproteins. Our study briefly touched on this topic but did not pursue 
it extensively. Future research in this area could involve developing specialized tools or 
leveraging advancements in the field to better understand how microproteins interact with 
other cellular components. This knowledge could unveil the roles of microproteins in intricate 
biological networks, potentially leading to the discovery of novel therapeutic targets. 

 

Weighted Gene Correlation Network Analysis 
 A first step when looking at protein-protein interactions could be Weighted Gene 
Correlation Network Analysis (WGCNA)(Langfelder and Horvath 2008). WGCNA looks into the 
relationships between genes, aiming to uncover whether a gene's expression is linked with 
the expression patterns of other genes. This approach is far more nuanced than merely 
assessing individual gene expression levels in isolation. WGCNA provides valuable insights into 
the cooperative behavior of genes within a biological system. It allows us to discern whether 
a particular gene tends to be co-expressed with a set of other genes in a non-random manner. 
This non-random co-expression is often a key indicator that the genes involved share common 
regulatory mechanisms, participate in the same biological pathways, or even interact directly. 
While WGCNA is primarily based on RNA-seq data, it holds great promise when combined 
with our experimental results. This combination can lead to better interpretations of our data, 
potentially uncovering associations and biological insights. 
 

Alternative Homology Prediction Tools 
Homology prediction tools, such as BLAST and HMMER, are important for identifying 

evolutionary relationships between proteins. However, as we encountered in our study, using 
these tools for microproteins, particularly those that are evolutionarily young or funique, can 
be challenging. Exploring alternative homology prediction methods tailored to the specific 
characteristics of microproteins is a promising avenue. These tools could enable researchers 
to uncover evolutionary connections, functional insights, and potential conserved domains in 
microproteins that might have been missed by more traditional approaches. 
 

FoldSeek for divergent evolved microproteins 
To not only look at conservations but also at divergent evolved microproteins. 

FoldSeek could be added to our pipeline, with FoldSeek the visual representations are mapped 
to known 3D structures. This overview will provide an understanding of functions that a 
protein may have based on structure rather than conservation. The tool that is developed for 
this is FoldSeek, it is relatively new and uses the 3D structure to find proteins that have a 
similar structure (van Kempen et al. 2023). Due to time constraints, we did not add this to our 
pipeline, but it would be nice to add in the future.  
 

In summary, our study laid the groundwork for understanding microproteins and their 
properties. However, the complexities and nuances of these microproteins, coupled with 
limitations in time and resources, left some avenues unexplored. These areas, including mass 
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spectrometry data analysis, immunopeptidomics, protein-protein interactions, and 
alternative homology prediction tools, hold immense potential for future research. As the field 
advances and as more data becomes available, revisiting these avenues could uncover insights 
into microprotein biology, further enriching our understanding. 
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